WO2022164262A1 - Nanoprobe for measuring intracellular ph, and method and apparatus for measuring ph in single cell using same - Google Patents
Nanoprobe for measuring intracellular ph, and method and apparatus for measuring ph in single cell using same Download PDFInfo
- Publication number
- WO2022164262A1 WO2022164262A1 PCT/KR2022/001600 KR2022001600W WO2022164262A1 WO 2022164262 A1 WO2022164262 A1 WO 2022164262A1 KR 2022001600 W KR2022001600 W KR 2022001600W WO 2022164262 A1 WO2022164262 A1 WO 2022164262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanoprobe
- optical fiber
- nanowire
- cell
- measuring
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 230000003834 intracellular effect Effects 0.000 title claims description 50
- 239000013307 optical fiber Substances 0.000 claims abstract description 85
- 239000002070 nanowire Substances 0.000 claims abstract description 80
- 239000000463 material Substances 0.000 claims abstract description 46
- 239000000243 solution Substances 0.000 claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 9
- 238000011049 filling Methods 0.000 claims abstract description 6
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 25
- 230000003287 optical effect Effects 0.000 claims description 21
- 238000001139 pH measurement Methods 0.000 claims description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 229920001600 hydrophobic polymer Polymers 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000009736 wetting Methods 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 232
- 210000004940 nucleus Anatomy 0.000 description 33
- 238000003780 insertion Methods 0.000 description 25
- 230000037431 insertion Effects 0.000 description 25
- 210000000805 cytoplasm Anatomy 0.000 description 24
- 238000005424 photoluminescence Methods 0.000 description 23
- 238000012544 monitoring process Methods 0.000 description 21
- 230000008859 change Effects 0.000 description 20
- 230000001086 cytosolic effect Effects 0.000 description 20
- 230000022131 cell cycle Effects 0.000 description 18
- 230000003833 cell viability Effects 0.000 description 17
- 239000011575 calcium Substances 0.000 description 16
- 210000003463 organelle Anatomy 0.000 description 15
- 210000000633 nuclear envelope Anatomy 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 239000012528 membrane Substances 0.000 description 13
- 230000006506 pH homeostasis Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000001413 cellular effect Effects 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 238000000799 fluorescence microscopy Methods 0.000 description 10
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 9
- 229910001424 calcium ion Inorganic materials 0.000 description 9
- DANUORFCFTYTSZ-UHFFFAOYSA-N epinigericin Natural products O1C2(C(CC(C)(O2)C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)C)C(C)C(OC)CC1CC1CCC(C)C(C(C)C(O)=O)O1 DANUORFCFTYTSZ-UHFFFAOYSA-N 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- DANUORFCFTYTSZ-BIBFWWMMSA-N nigericin Chemical compound C([C@@H]1C[C@H]([C@H]([C@]2([C@@H](C[C@](C)(O2)C2O[C@@](C)(CC2)C2[C@H](CC(O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C)O1)C)OC)[C@H]1CC[C@H](C)C([C@@H](C)C(O)=O)O1 DANUORFCFTYTSZ-BIBFWWMMSA-N 0.000 description 9
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 238000011065 in-situ storage Methods 0.000 description 8
- 238000000103 photoluminescence spectrum Methods 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 7
- 238000011088 calibration curve Methods 0.000 description 7
- 210000000170 cell membrane Anatomy 0.000 description 7
- 210000003855 cell nucleus Anatomy 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000011278 mitosis Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000005779 cell damage Effects 0.000 description 6
- 208000037887 cell injury Diseases 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 5
- 238000004624 confocal microscopy Methods 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 229910001425 magnesium ion Inorganic materials 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 5
- 239000003642 reactive oxygen metabolite Substances 0.000 description 5
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 5
- ZUHQCDZJPTXVCU-UHFFFAOYSA-N C1#CCCC2=CC=CC=C2C2=CC=CC=C21 Chemical compound C1#CCCC2=CC=CC=C2C2=CC=CC=C21 ZUHQCDZJPTXVCU-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 230000018199 S phase Effects 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000032823 cell division Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 210000005061 intracellular organelle Anatomy 0.000 description 4
- 230000012105 intracellular pH reduction Effects 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000010337 G2 phase Effects 0.000 description 3
- 229920003060 Poly(vinyl benzyl chloride) Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- -1 adenosine triphosphates Chemical class 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000018486 cell cycle phase Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 238000012650 click reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000016507 interphase Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000000394 mitotic effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000029219 regulation of pH Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- TUSLILBAQFTUPF-UHFFFAOYSA-N 1-azidoprop-2-enylbenzene Chemical compound [N-]=[N+]=NC(C=C)C1=CC=CC=C1 TUSLILBAQFTUPF-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 241000244203 Caenorhabditis elegans Species 0.000 description 2
- 102000003846 Carbonic anhydrases Human genes 0.000 description 2
- 108090000209 Carbonic anhydrases Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000011731 Vacuolar Proton-Translocating ATPases Human genes 0.000 description 2
- 108010037026 Vacuolar Proton-Translocating ATPases Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000001917 fluorescence detection Methods 0.000 description 2
- 239000003269 fluorescent indicator Substances 0.000 description 2
- 108091006047 fluorescent proteins Proteins 0.000 description 2
- 102000034287 fluorescent proteins Human genes 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000002977 intracellular fluid Anatomy 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- HHRZAEJMHSGZNP-UHFFFAOYSA-N mebanazine Chemical compound NNC(C)C1=CC=CC=C1 HHRZAEJMHSGZNP-UHFFFAOYSA-N 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 230000004065 mitochondrial dysfunction Effects 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- 230000031877 prophase Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000016853 telophase Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002407 ATP formation Effects 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N Adenosine Natural products C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241001449342 Chlorocrambe hastata Species 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000235343 Saccharomycetales Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000001195 anabolic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- UDLLFLQFQMACJB-UHFFFAOYSA-N azidomethylbenzene Chemical compound [N-]=[N+]=NCC1=CC=CC=C1 UDLLFLQFQMACJB-UHFFFAOYSA-N 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000023402 cell communication Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000007960 cellular response to stress Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- 239000002555 ionophore Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000013289 nano-metal-organic framework Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000025308 nuclear transport Effects 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000007793 ph indicator Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000022558 protein metabolic process Effects 0.000 description 1
- HHJTWTPUPVQKNA-PIIMIWFASA-N psychosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O HHJTWTPUPVQKNA-PIIMIWFASA-N 0.000 description 1
- HHJTWTPUPVQKNA-UHFFFAOYSA-N psychosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)COC1OC(CO)C(O)C(O)C1O HHJTWTPUPVQKNA-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000001567 regular cardiac muscle cell of ventricle Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035440 response to pH Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- MOYOTUKECQMGHE-PDEFJWSRSA-M sodium;(2r)-2-[(2r,3s,6r)-6-[[(2s,4r,5r,6r,7r,9r)-2-[(2r,5s)-5-[(2r,3s,5r)-5-[(2s,3s,5r,6r)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-7-methoxy-2,4,6-trimethyl-1,10-dioxaspiro[4.5]decan-9-yl]methyl]-3-met Chemical compound [Na+].C([C@@H]1C[C@H]([C@H]([C@]2([C@@H](C[C@](C)(O2)[C@@H]2O[C@@](C)(CC2)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C)O1)C)OC)[C@H]1CC[C@H](C)[C@H]([C@@H](C)C([O-])=O)O1 MOYOTUKECQMGHE-PDEFJWSRSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/80—Indicating pH value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/4833—Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/38—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
Definitions
- the present invention relates to the measurement of pH in a single cell, and more particularly, to a nanoprobe capable of accurately measuring the pH in a single cell, and a method and apparatus for measuring the pH in a single cell using the same.
- pH is an important factor because it affects intracellular protein metabolism and directly affects cell function (see J. Immunol. Methods. 221, 43-57 (1998)). It is also known that intracellular pH measurement is utilized as a criterion for diagnosing diseases such as cancer (see Biochemistry . 35, 2811-2817 (1996)).
- the nucleus of cancer cells divides rapidly and the pH is expected to be different from that of normal cells (see Chem. Soc. Rev. 46, 3830-3852 (2017); and Nat. Rev. Cancer . 11, 671677 (2011)).
- a nanoparticle insertion-based technology for measuring intracellular pH measures pH by inserting a fluorescent nanomaterial that responds to pH into the cell, and then analyzing the signal outside the cell ( J. Am. Chem. See Soc. 136, 12253-12256 (2014); Anal. Chem. 91, 8383-8389 (2019); and Analyst 145, 5768-5775 (2020)).
- analysis of cells in their natural state is impossible due to the insertion of foreign substances into cells, and single cell analysis is very difficult due to the randomness of the insertion of fluorescent nanomaterials into cells.
- the intracellular signal is measured outside the cell, light scattering is inevitable, so the accuracy of pH measurement is poor.
- it is known that it is very difficult to measure the pH in the nucleus because it is almost impossible to insert nanomaterials into the nucleus of a single cell.
- Another method is a probe insertion-based pH measurement method, and there is a technology for measuring intracellular pH by inserting a probe containing a substance that responds to pH into the cell ( Sensors Actuators, B Chem. 290, 527-). 534 (2019); and Analyst 145, 4852-4859 (2020)).
- a probe is prepared by binding a pH-responsive material to the surface of a tapered glass capillary. Therefore, the diameter of the probe becomes thicker as it goes away from the tip of the probe, and when inserted to a desired position in the cell, the cell may be damaged. Then, the laser is irradiated from the outside of the cell towards the probe inside the cell, and the reflected light is again detected outside the cell. will measure
- severe scattering of light is unavoidable in the process of light passing through various media, resulting in poor accuracy.
- the present invention has been developed to solve the above problems, and a nanoprobe capable of accurately measuring the pH in a single living cell in real time without contamination or damage to the cell during intracellular insertion, and a method for measuring intracellular pH using the same and to provide an apparatus.
- the method for measuring the pH in a single cell is (a) pH responsiveness that can respond to pH in a nanowire grown on the tapered tip of an optical fiber inserting a nanoprobe formed by binding a fluorescent material into a single cell; (b) incident light to the nanoprobe through the optical fiber; (c) excitation of the pH-responsive fluorescent material by the light to generate fluorescence; (d) acquiring a fluorescent signal generated from the fluorescent material through the optical fiber according to the pH of the cell; and (e) analyzing the fluorescence signal to obtain a pH value in the cell.
- the method for manufacturing a nanoprobe according to the present invention comprises: (a) filling a nanopipette with a nanowire material solution and lowering the nanopipette to bring the nanowire material solution into contact with the tip of an optical fiber; (b) raising the nanopipette to grow a nanowire on the end of the optical fiber; (c) filling a micropipette with an aqueous solution containing a pH-responsive fluorescent substance and lowering the micropipette so that a part of the nanowire is immersed in the aqueous solution; and (d) raising the micropipette to form a nanoprobe labeled with a pH-responsive fluorescent material.
- the nanowire material solution is a hydrophobic polymer solution, and at least PVBN 3 , PVB-alkyne, and PVB-COOH may be selected from the group consisting of.
- the optical fiber has a tapered tip, and the pH-responsive fluorescent material is a fluorescein molecule having a functional group capable of binding to the nanowire - wherein the fluorescein is at least DBCO-FAM, Azide-FAM, or Amine-FAM may be selected from the group consisting of -.
- the wetting (or labeled) length of the nanowire by the pH-responsive fluorescent material is controlled to be 100 nm to 900 nm, preferably 500 nm or less.
- an apparatus for measuring pH in a single cell includes: a nanoprobe formed by combining a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on a tapered tip of an optical fiber; a manipulator capable of three-dimensional movement control of the nanoprobe to insert the nanoprobe into the single living cell; a light source for applying light to the optical fiber; an optical coupler connecting the optical fibers to transmit the light incident through the optical fiber to the nanoprobe and to transmit the fluorescence signal generated from the nanoprobe to the spectrometer through an additional optical fiber; and a spectrometer to obtain a pH value by analyzing spectral data from the fluorescence signal generated by the nanoprobe.
- the nanoprobe may have a uniform diameter.
- the nanoprobe has a diameter of 10 nm to 900 nm, preferably 400 nm or less, and a length of 1 ⁇ m to 10 ⁇ m, preferably 5 ⁇ m or less.
- the light incident through the optical fiber may be near-infrared or visible light, and the light may have a wavelength of 300 nm to 1000 nm, preferably 400 nm to 700 nm.
- the wavelength of light incident through the optical fiber is selectable according to the component, shape and optical properties of the nanoprobe, the type of target molecule to be detected, and the type of target cell.
- the method for preparing the nanowire material solution is a mixture of PVC (0.014 g, 131 mmol) and sodium azide (0.010 g, 220 mmol) in anhydrous DMF solvent (0.7 mL). Mix in an amber vial at 70 °C and cover with aluminum foil to block light; After 2 hours of reaction, methanol (0.5 mL) is added, and the mixed solution is centrifuged at 10,000 rpm for 1 minute to remove excess unreacted reagent and precipitate an azide-functionalized polymer; and drying the obtained precipitate under vacuum for 1 hour and then dissolving it by adding an NMP solvent (50 ⁇ L).
- NMP solvent 50 ⁇ L
- the inventors have developed a nanoprobe with high mechanical strength that enables in situ monitoring of pH dynamics in desired organelles through direct optical communication.
- pH changes in different compartments inside living cells are continuously monitored to adjust pH homeostasis of specific organelles and pH according to stimuli. was successfully observed.
- the nucleus exhibits pH homeostasis in the resting phase but changes in pH during the mitotic phase, thereby participating in independent pH regulation by the nuclear membrane.
- the fast and accurate local pH detection and reporting function of nanoprobes is very useful for investigating cellular behavior in various biological situations of various living cells.
- the present invention provides the following effects.
- the pH can be accurately measured for each position inside the single cell without contamination and damage to the cell when inserted into the cell.
- the pH measuring device Using the pH measuring device according to the present invention, it is possible to accurately measure the pH of the cytoplasm and cell nucleus of a single cell without contamination or damage to the cell when inserted into the cell, and the pH in other organelles in the cell Of course, it can also be accurately measured.
- FIG. 1 is a device configuration diagram (a) of a nanoprobe capable of detecting and transmitting a change in pH over time in a single living cell (a), an electron micrograph (b) of the nanoprobe, and pH detection in a single living cell using the nanoprobe.
- a drawing showing (c) is a device configuration diagram (a) of a nanoprobe capable of detecting and transmitting a change in pH over time in a single living cell (a), an electron micrograph (b) of the nanoprobe, and pH detection in a single living cell using the nanoprobe.
- Figure 2 is a graph showing the 1H-NMR spectrum of PVC (Poly (vinylbenzyl chloride)) and PVBN3 (Poly (vinylbenzyl azide)),
- FIG. 3 is a view and a photograph showing the steps of making a PVBN 3 nanowire at the end of a tapered optical fiber;
- FIG. 4 is a photograph showing the binding step of DBCO functionalized fluorescein (FAM) with PVBN 3 nanowires,
- FIG. 10 is a graph showing a histogram of cell viability after the inserted nanoprobe (grey) or tapered optical fiber (white) was extracted from the cytoplasm and nucleus, respectively;
- FIG. 11 is a diagram illustrating a Boltzmann fitting to obtain a pH calibration curve targeting the intracellular environment
- 13 is an image and graph showing the pH value monitoring results in the cytoplasm and the cell nucleus during the entire cycle of a single cell using a nanoprobe;
- Figure 15 is a confocal microscopically observed merged (bright field and fluorescence) image photograph of HeLa cells stained with a nuclear-specific Hex dye (white) during mitosis (from electrophoresis to cytoplasmic division) for pH measurement;
- 16 is a diagram and a photograph showing changes in cytoplasmic pH in response to external calcium ions
- 17 is a photograph and graph showing the real-time measurement result of the cytoplasmic pH of HeLa cells treated with an excess of magnesium ions (5 mM);
- pH-responsive molecular probes e.g., fluorescent dyes, quantum dots and nanoparticles
- pH-responsive fluorescent proteins can be genetically encoded inside engineered cells, their subsequent transport by sophisticated genetic engineering and protein trafficking associated with the expression of pH-responsive fluorescent proteins is very difficult.
- Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591-1599 (1998); and Palmer, AE, Qin, Y., Park, JG & McCombs, JE Design and application of genetically encoded biosensors. Trends See Biotechnol. 29, 144-152 (2011)).
- nanopipettes Zhang, Y. et al. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS Nano 10, 3214-3221 (2016); and Guo, J. et al.
- the present inventors fabricated a nanoprobe with high mechanical strength and sufficiently small diameter to monitor the pH change of a desired cell compartment through direct optical communication.
- the polyvinyl benzyl azide (PVBN 3 ) nanowire according to the present invention is structurally strong and long enough to penetrate cell membranes and organelle membranes, but cell damage or leakage is negligible because of its small diameter (200 nm or less).
- High-density fluorescein chemically labeled at the tip of the nanoprobe, can respond rapidly to local pH changes, and through the nanoprobe, a pH-responsive photoluminescence (PL) signal can be sent directly to the spectrometer.
- in-situ pH detection system pH homeostasis of specific organelles and pH adjustment according to stimulation by continuously monitoring changes in the pH of various compartments inside a single living cell
- Several scientific information such as (stimuli-selective pH regulations) were obtained.
- the nucleus exhibits pH homeostasis in resting phase but changes in pH during mitosis, demonstrating for the first time that the nuclear membrane is independently involved in pH regulation. This is due to the unique ability of the nanoprobe of the present invention to enable live streaming of subcellular events with local pH monitoring of single living cells.
- single intracellular pH measurement starts with forming a nanoprobe having a uniform diameter capable of responding to pH by directly growing it on the tip of a tapered optical fiber.
- a nanoprobe includes a pH-responsive fluorescent material on its surface, and a method of forming the nanoprobe will be described with reference to FIG. 3 in the Examples below.
- 'single cell' means to include a single living cell and a single dead cell.
- 'a single intracellular pH measurement' means to include not only the cell nucleus, but also the cytoplasm and pH measurement of other intracellular organelles.
- the single intracellular pH measurement method of the present invention can accurately measure the pH inside a cell by inserting a nanoprobe into the cell and directly analyzing the fluorescence signal generated according to the pH of the cell through an optical fiber.
- the single intracellular pH measuring method of the present invention can measure the intracellular pH change in real time by directly measuring the change in the fluorescence signal according to the change in the pH of the cell according to time or environment.
- the single intracellular pH measurement method of the present invention has a sufficiently small and uniform diameter of the nanoprobe, so there is almost no cell damage, and by receiving a signal directly from a desired position in the cell, it is possible to accurately measure the pH at each intracellular location.
- FIG. 1 shows the design configuration of the structure of a nanoprobe capable of detecting a change in pH with time and space in a single living cell and the pH detection in a single living cell using the nanoprobe.
- a nanoprobe (Nanoprobe or Nanowire waveguide; 1) combines a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on the tapered tip 3 of the optical fiber 2 (see FIG. 1B) (FIG. 4A). to 4g), the laser incident from the light source (laser generator; 4) to the first optical fiber 2a reaches the nanoprobe 1 through the optical fiber 2 (white arrow).
- the optical fiber 2 includes a first optical fiber 2a for transmitting light (eg, a laser beam) incident from the light source 4 to the nanoprobe 1 and fluorescence generated from the fluorescent material on the surface of the nanoprobe. It is branched into a second optical fiber 2b for transmitting a signal to the spectrometer 8, and the first optical fiber 2a and the second optical fiber 2b are combined into one through a fiber coupler 5, and the nanoprobe It leads to (1).
- the optical coupler 5 transmits the light incident to the first optical fiber 2a only to the nanoprobe 1 and transmits the fluorescence signal generated from the fluorescent material on the surface of the nanoprobe 1 only to the spectrometer 8 . guide the progress.
- the nanoprobe 1 is inserted into a single living cell 7 using a manipulator 6 capable of three-dimensional movement control (see Fig. 1c).
- the positioning of the nanoprobe in the living cell can be precisely controlled with a 3-axis micromanipulator 6 while observing with confocal fluorescence microscopy.
- the light (laser beam) reaching the nanoprobe 1 from the light source 4 through the first optical fiber 2a and the optical coupler 5 generates an evanescent wave, and the pH reactivity at the tip of the nanoprobe
- the pH-responsive fluorescent material emits a photoluminescence (PL) signal.
- PL photoluminescence
- this signal is transmitted to the optical fiber 2 through the nanoprobe 1, it is guided to the second optical fiber 2b by the optical coupler 5 without being subjected to environmental interference in optical communication, and directly to the spectrometer 8 transmitted (black arrow).
- the pH value is measured from the spectral data of fluorescence obtained by the spectrometer 8.
- the fluorescence signal of the nanoprobe 1 from the inside of the cell is directly transferred to the spectrometer 8 without distortion. Because it is measured, it is possible to measure the accurate pH value.
- Fig. 1b shows a field emission scanning electron microscope image (scale bar 1 ⁇ m) of a nanoprobe of the present invention grown directly on the tip of a tapered optical fiber
- Fig. 1c shows local pH monitoring of living cells across the rigid membrane of a cell or organelle.
- the long and thin nanoprobe of the present invention is mechanically robust and does not induce cell leakage during membrane penetration, and the fluorescently labeled tip can easily reach a desired location (in the cytoplasm or nucleus) for in situ pH detection (inset). Reference).
- the intensity of the PL signal changes rapidly, which can be monitored in real time through a nanoprobe.
- the nanoprobe 1 is capable of penetrating not only the cell membrane but also the nuclear membrane, so it is possible to measure the pH in the nucleus as well as the cytoplasm (see FIG. 1c; of course, it is also possible to measure the pH of other intracellular organelles).
- the nanoprobe 1 since the nanoprobe 1 has a sufficiently small diameter (d; 10 nm to 900 nm, preferably 400 nm or less), there is an advantage that there is no cell damage.
- the nanoprobe 1 since the nanoprobe 1 has a sufficiently small length ( l ; 1 ⁇ m to 10 ⁇ m, preferably 5 ⁇ m or less), it can be positioned at a specific location within the cell to measure pH at a desired location (cytoplasm, cell nucleus, etc.). In addition, since the pH-responsive fluorescent material on the surface of the nanoprobe 1 is in instantaneous chemical equilibrium with the proton, it is possible to accurately measure the change in the pH value in real time according to the change of time or environment in the cell.
- the light source incident through the optical fiber 2a is a laser or LED, and may be light in the near-infrared or visible region, preferably light of a wavelength of 300 nm to 1000 nm, more preferably of a wavelength of 400 nm to 700 nm. can be light.
- the usable wavelength of light is not limited thereto, and may be arbitrarily selected according to the component, shape, and optical properties of the nanoprobe (optical nanowaveguide), the type of target molecule to be detected, the type of target cell, and the like.
- a pH-responsive fluorescent dye at one end of a polymeric nanowire (Alvarez-Pez, JM, Ballesteros, L., Talavera, E. & Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J. Phys. Chem. A 105, 6320-6332 (2001)) -
- the pH-responsive fluorescent dye is composed of fluorescein (DBCO-FAM, Azide-FAM, Amine-FAM, etc.) having a functional group capable of binding to the nanowire.
- a nanoprobe suitable for in situ monitoring of local pH over time in single living cells was successfully prepared (Fig. 1a).
- PVBN 3 polyvinylbenzylazide
- FIG. 2 evaporation of polyvinylbenzylazide (PVBN 3 ) solution (M n 52,000 g/mol)
- FIG. 3 the optical fiber was connected to the laser source and the spectrometer by a 1x2 fiber coupler (see “Method” below).
- the tip (length of 100 nm to 900 nm, preferably 500 nm or less) could be selectively converted into high-density pH reporters through a copper-free click reaction (Fig. 4).
- the nanoprobe of the present invention served as an excellent bidirectional optical signal transmission path for the PL signal from the excitation laser (white arrow) and localized fluorescein (black arrow). As the PL signal was transmitted directly to the spectrometer, the intensity of the PL spectrum, which changed according to the concentration of protons at a desired location, regardless of the environment around the nanoprobe, was measured in real time (see FIG. 1 ).
- the physical and optical properties of the nanoprobe according to the present invention were very suitable for detecting and delivering intracellular pH inside living cells.
- Previous studies on nanowire diameters that minimize cell damage (Obataya, I., Nakamura, C., Han, SW, Nakamura, N. & Miyake, J. Direct insertion of proteins into a living cell using an atomic force microscope with Based on a nanoneedle.
- the nanoprobe has a rigid membrane. could easily penetrate; Higher modulus of elasticity (> 0.1 GPa) than actual cell membrane (E - 0.05 GPa) (Wang, K. et al. Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells. Sci. Data 4, 1-8 (2017) ))), when the nanoprobe was inserted into the agar gel, no structural deformation was observed (see FIG. 5 ).
- PVBN higher than the refractive index of the cellular environment (below 1.37) (see Liu, PY et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future.
- FIG. 2 shows 1H-NMR spectrum of PVC (Poly (vinylbenzyl chloride)) and PVBN 3 (Poly (vinylbenzyl azide)).
- Top panel 1H spectrum of PVC in DMSO-d 6 . These include 7.30-6.00 ppm of aromatic rings (b), 4.81-4.38 ppm of —CH 2 Cl(c) and 1.87-1.04 ppm of methylene of the PVC backbone (a).
- Lower panel 1H spectrum of PVBN 3 of DMSO-d 6 . These include 7.30-6.00 ppm of aromatic rings (b), 4.35-3.80 ppm of —CH 2 N 3 (c′) and 1.87-1.04 ppm of methylene (a).
- FIG. 3 shows the steps of making a PVBN 3 nanowire at the end of a tapered optical fiber
- FIG. 3 a is a method of growing PVBN 3 nanowires at the tip of a tapered optical fiber using the apparatus manufactured by the applicant directly for manufacturing the nanowire. The process is schematically shown.
- FIG. 3b is an enlarged view of PVBN 3 nanowires grown on the tip of a tapered optical fiber, and the growth process of these PVBN 3 nanowires will be described in detail with reference to FIGS. 3c to 3f .
- a nanowire material solution that is, a PVBN 3 solution
- the nanowire material solution is preferably a hydrophobic polymer solution (eg, PVBN3 , PVB-alkyne, PVB-COOH, etc. can be selected from the group consisting of).
- the tip of the nanopipette is in contact with the tip of the tapered optical fiber.
- FIG. 3E when the nanopipette is pulled up vertically, the PVBN3 nanowires grown on the ends of the tapered optical fibers are formed as the solvent of the PVBN3 solution evaporates.
- Figure 3f shows freestanding PVBN 3 nanowires grown on the tip of a tapered optical fiber (scale bar, 10 ⁇ m).
- FIG. 4 shows the binding process of DBCO-functionalized fluorescein (FAM) to PVBN 3 nanowires.
- FAM DBCO-functionalized fluorescein
- FIG. 4a an aqueous solution (100 nM) containing DBCO-FAM molecules, a pH-responsive fluorescent dye, is detailed.
- a method of bonding (bonding) with the surface of PVBN 3 nanowires grown on the ends of the tapered optical fibers according to FIG. 3 is schematically shown. More specifically, according to FIG. 4b, with the glass micropipette filled with an aqueous solution (100 nM) containing DBCO-FAM molecules, the glass micropipette is vertically lowered toward the PVBN 3 nanowire, as shown in FIG. 4c .
- the DBCO-FAM molecule is a copper-free click reaction (Campbell-Verduyn, LS et al. Strain-promoted copper-free 'click' chemistry for 18F radiolabeling of bombesin. Angew. Chemie - Int. Ed 50 , 11117-11120 (2011)) bonded (bonded) to the azide group of PVBN 3 nanowires.
- FIG. 4d a FAM-labeled nanoprobe is formed (scale bar, 10 ⁇ m).
- Fig. 4e shows a bright field image of a nanoprobe grown on a tapered optical fiber obtained by confocal microscopy
- Fig. 4f shows a dark field image
- Fig. 4g shows a merged image, respectively.
- a green fluorescence signal shown in white in the figure
- the tip fluorescence is controlled to a length of 100 nm to 900 nm, preferably 500 nm or less, by precisely adjusting the wetting depth of the nanowire using a high-precision xyz motor stage with a position accuracy of 250 nm.
- FIG. 5 shows the evaluation of the mechanical properties of the nanoprobe inserted into the agar gel.
- FIGS. 5A to 5C bright field images before (a), in the middle (b) and after (c) of the insertion process are shown.
- the white dotted line indicates the surface of the agar gel. It can be seen from this analysis that there is little deformation of the nanoprobe after insertion (scale bar, 10 ⁇ m).
- FIG. 6 shows the evaluation of light loss at the junction of the nanowire and the tapered optical fiber.
- FIGS. 6a to 6b the bright field image ( FIG. 6a ) and the dark field image ( FIG. 6b ) of the nanowire guided laser light (473 nm) are is shown
- Light scattering is observed at the tip of the nanoprobe (bottom dashed circle), whereas there is almost no light scattering at the bonding site (upper dashed circle) (scale bar, 10 ⁇ m).
- the nanoprobe can measure a rapid change in pH, cause negligible damage to cells during insertion, and selectively respond to pH even in a complex intracellular environment. Indicate the characteristics of the probe.
- the nanoprobe (dotted arrow, diameter less than 200 nm) could be easily inserted into living cells (top), whereas the tapered optical fiber (solid arrow, tip diameter less than 200 nm) induced severe cell damage and leakage (bottom). ).
- HeLa cells were stained with calcein-AM (green) and propidium iodide (red) (scale bar 10 ⁇ m).
- the pH reactivity of the nanoprobes in various solutions with pH values ranging from 4 to 8 was investigated using a micro-photoluminescence system (Fig. 1a) (Fig. 7a).
- pH-dependent properties Alvarez-Pez, JM, Ballesteros, L., Talavera, E. & Yguerabide, J.
- the PL spectrum through the nanoprobe responded to the pH change within a very short time ( ⁇ 100 ms) (Fig. 7b).
- a droplet immersed in a nanowire of pH 7.5 was rapidly changed (acidified) to pH 6.8 (Fig. 7b, black arrow)
- the PL peak intensity rapidly decreased within 100 ms.
- these weakly acidic droplets were rapidly mixed with a basic buffer solution, the PL peak intensity rapidly increased, showing a final pH of 7.2 (Fig. 7b, gray arrow).
- Fluorescein excited-state proton exchange reactions Nanosecond emission kinetics and correlation with steady-state reaction (Alvarez-Pez, JM, Ballesteros, L., Talavera, E.
- the nanoprobe of the present invention When the nanoprobe of the present invention was injected into living cells, the cells were not severely damaged even though the nanoprobe was deeply injected ( FIG. 7c ).
- HeLa cells were stained with calcein-AM and propidium iodide (PI), which emit green and red fluorescence in live and dead cells, respectively. Due to the micro-diameter (below 200 nm) and uniform structure (Fig. 1b), the nanoprobes of the present invention did not cause damage to cells during 10 min after insertion and extraction (Fig. 7c, upper panel).
- Fig. 8 shows the results of the light stability and reproducibility test of the nanoprobe.
- the PL peak intensity (I/I 0 ) the change with time was hardly negligible.
- 9 is a comparison of cell viability between nanoprobe and tapered optical fiber insertion in living HeLa cells.
- cells were treated with calcein-AM (green fluorescence) and propidium iodide (red fluorescence). was dyed with 9a to 9b show merged (brightfield and fluorescence) images upon insertion and extraction of a nanoprobe (a) or tapered optical fiber (b) (scale bar, 10 ⁇ m).
- HeLa cells were propidium iodide as an indicator of dead cells. dyed with dyes. Cell viability is based on the number of viable cells without a red fluorescence signal.
- Figure 11 shows a Boltzmann fitting for obtaining a pH calibration curve for the intracellular environment
- Figure 11a is the Boltzmann equation of the pH calibration curve
- Figure 11b is nigericin treated (nigericin) -treated)
- FIGS. 12A to 12B are bright fields of nanowire insertion sites outside (a) and inside (b) HeLa cells, respectively. Images (fixed pH: 7.5) are shown, and FIGS. 12c to 12e are PLs of nanoprobes measured outside (black line) and inside (grey line) of nigericin-treated HeLa cells at various pHs (7.0-8.0). Spectra are shown (scale bar, 10 ⁇ m).
- 13 shows the results of monitoring the pH values in the cytoplasm and the cell nucleus during the entire cycle of a single cell using the nanoprobe.
- the nanoprobe is the cytoplasm ( Inserted into the top) and nucleus (bottom) (scale bar 10 ⁇ m).
- 13c shows the identification process of cell cycle phases for individual HeLa cells, when Hoechst dye specifically stains the nucleus of live cells (step 1), using the automatic image segmentation algorithm of the present invention.
- step 2 Calculate the net fluorescence intensity of the nucleus for all cells (step 2), prepare a DNA histogram to profile the cell cycle of HeLa cells (step 3), and color mapping on the cell image for each cell was identified (step 4) (scale bar 50 ⁇ m). 13D shows the measured nuclear pH for each cell cycle stage. Schematic (top) of cell cycle stages, dark field and merged (bright field + fluorescence) images of Hoechst stained cells (middle), and nuclear pH values (bottom) are shown for cell cycle stages.
- the nanoprobe of the present invention can monitor the local pH of different organelles in real time, the inventors were able to successfully demonstrate the measurement of pH values for the cytoplasm and nucleus in a single living cell ( FIGS. 13a to 13b ).
- Critical cellular functions e.g., DNA replication, gene expression, and epigenetic modulation (Francastel, C., Schubeler, D., Martin, DIK & Groudine, M. Nuclear compartmentalization and gene activity. Nat. Rev. Mol ) Cell Biol. 1, 137-143 (2000); and Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem.
- the inventors first stained the cells with Hoechst dye that specifically binds to DNA inside the nucleus and emits a blue fluorescent signal (step 1), and automatic image analysis (nuclei segmentation) was performed. The DNA content of each cell was measured through the assay, where the total fluorescence intensity was calculated for several nuclei (see Figure 13c and Methods). Finally, cell cycle stages were identified by color mapping to cell images based on DNA histograms (step 4). Through the analysis, we identified the cell cycle phases (G1, S and G2/M) of individual HeLa cells, and then calculated the proportions of each phase (G1, 73.9%, S, 11.1%, G2/M, 15.0%).
- FIG. 14 shows brightfield images (top panel) and merged (brightfield and fluorescence, bottom panels) images of insertion of a nanoprobe into a single HeLa living cell during mitosis, observed with confocal microscopy (scale bar, 10 ⁇ m). ).
- Figure 15 shows merged (bright field and fluorescence) images observed with confocal microscopy of HeLa cells stained with a nuclear-specific Hoechst dye (white) during mitosis (from electrophoresis to cytoplasmic division) for pH measurement (Fig. Scale bar, 10 ⁇ m).
- FIG. 16 shows changes in cytoplasmic pH in response to external calcium ions, and shows real-time cellular pH monitoring results for ion stress.
- 16A is a schematic diagram of intracellular acidification in the presence of excess calcium ions.
- high concentrations of calcium ions affect pH homeostasis by adversely affecting cells, including overproduction of adenosine triphosphates (ATPs) and reactive oxygen species (ROS).
- ATPs adenosine triphosphates
- ROS reactive oxygen species
- ROS reactive oxygen species
- FIG. 17 shows the results of real-time measurement of the cytoplasmic pH of HeLa cells treated with an excess of magnesium ions (5 mM).
- the white triangle in the upper panel shows the insertion position of the nanoprobe.
- Gray arrows indicate the point at which the medium is switched from a normal magnesium concentration (1.8 mM) to a high magnesium concentration (5 mM) (scale bar, 10 ⁇ m).
- the inventors were able to monitor pH changes by successfully accessing organelles and cytoplasm without causing cell damage and leakage in single living cells.
- the in situ pH monitoring of the present invention is important in that it can provide a fundamental understanding of the role of intracellular organelle membranes.
- the cell activity can exhibit different pH changes by the nuclear membrane (Sherman, TA, Rongali, SC, Matthews, TA). , Pfeiffer, J. & Nehrke, K.
- the local pH monitoring nanoprobe of the present invention can be widely applied to study the life of individual cells in a variety of interesting conditions. For example, real-time detection of changes in the pH of organelles during various cell behaviors (e.g., differentiation, cell signaling or communication, programmed cell death) could be utilized to understand biological processes along organelle membranes (Jaworska, et al. A., Malek, K. & Kudelski, A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021); and Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709-2728 (2010)).
- HEPES pH 7.5 buffer (1 M), potassium chloride, calcium dichloride (CaCl 2 ) and magnesium dichloride (MgCl 2 ) were purchased from BioPrince (Chuncheon, Korea).
- Hoechst 33342 (10 mg/ml) solution was purchased from Biotium (Fremont, CA).
- Glass capillaries (BF-100-50-10) for nanopipette fabrication were purchased from Sutter Instrument (Novato, CA).
- a glass nanopipette was processed using a P-97 micropipette puller (Sutter Instrument) for nanowire fabrication, and a tapered optical fiber was manufactured using a P-2000 laser-based micropipette puller (Sutter Instrument). Then, the position of the glass nanopipette and the tapered optical fiber was precisely controlled by an xyz stepping motor stage with a position accuracy of sub-250 nm (Kohzu Precision).
- a glass nanopipette filled with NMP's PVBN 3 solution at a concentration of 1.0 wt% was vertically lowered to touch the tip of the tapered optical fiber.
- Nanowire fabrication is self-optical imaging consisting of a two-axis CCD camera (INFINITY 1-2C, Lumenera Camera), an objective (100x Plan Apo infinitely calibrated objective, Mitutoyo), and a yellow LED illuminator (precision LED spotlight, 590 nm, Mightex). was monitored in real time using the system.
- DBCO fluorescein (FAM) To bond DBCO fluorescein (FAM) to PVBN 3 nanoprobes, a glass micropipette was filled with an aqueous solution (100 nM) containing DBCO-FAM molecules. When the glass micropipette was vertically lowered and the nanowire was immersed for 10 minutes, the DBCO-FAM molecule was bonded to the azide group of the PVBN 3 nanowire by a click reaction. By adjusting the contact area between the nanowire and the solution containing DBCO-FAM molecules, the FAM-labeled area of the nanoprobe could be controlled. Nanoprobes were washed twice with 1x PBS solution prior to pH measurement analysis.
- a continuous laser (473 nm blue solid-state laser, MBL-III-473, Uniotech) coupled with a computer-controlled shutter to excite the DBCO fluorescein signal (PL spectrum) from the tip of the nanoprobe was coupled to a fiber optic and a 1x2 optical coupler (narrowband fiber optic). coupler, 532 ⁇ 15 nm, 50:50 split, Thorlab) was injected into the nanoprobe. All PL spectra were recorded with a spectrometer (Avaspec-ULS2048L-EVO, Avantes).
- HeLa cells were obtained from the Korean cell line bank. Cells were cultured in 35 mm Petri dishes (SPL Life Sciences) under appropriate conditions (37° C. temperature and 5% CO 2 atmosphere), 10% fetal bovine serum (FBS, Gibco), 100 U/ml penicillin (Welgene), and 100 ⁇ g/ml strepto Cultured in Dulbecco's modified Eagle's medium (DMEM, Welgene) supplemented with mycin (Welgene). In preparation for cell experiments, HeLa cells were cultured for two days.
- FBS fetal bovine serum
- FBS fetal bovine serum
- Welgene 100 U/ml penicillin
- DMEM Dulbecco's modified Eagle's medium
- HeLa cells were pre-incubated with calcein-AM and propidium iodide dyes at 37°C for 15 min.
- calcein-AM and propidium iodide dyes were inserted into the cytoplasm or nucleus of HeLa cells for 1 min and then extracted.
- green fluorescence (515 nm) and red fluorescence (636 nm) were observed with a confocal microscope (STELLARIS 5, Leica) using a 10x objective lens (0.4 numerical aperture, HC PL APO 10x, Leica) to determine the cell viability. evaluated.
- HC PL APO 10x, Leica confocal microscope
- a self-microscopic photoluminescence configuration consisting of an x-y-z micromanipulator (positional accuracy: 250 nm, Kohzu Precision), a motor controller (SC-210, Kohzu Precision) and a computer. was used to accurately position the nanoprobe.
- the position of the nanoprobe was monitored with a 10x objective (0.4 numerical aperture, HC PL APO 10x, Leica) and a confocal microscope (STELLARIS 5, Leica) equipped with a CCD camera.
- PL spectra were collected in real time while positioning the nanoprobe at a desired position inside the cell.
- a diluted Hoechst 33342 solution (10 ⁇ g/ml) was prepared and then mixed with the cultured cells for 15 minutes (in cell culture conditions). Images of stained cells were acquired with a confocal microscope at 2048 x 2048 pixels. The nuclear fluorescence intensity of each cell was calculated by applying a MATLAB-based image processing algorithm for nuclear division. Specifically, the algorithm is designed to binarize the filtered image by removing noise from the raw image using Gaussian filtering and setting an adaptive threshold. The binary image was then segmented by applying an open and close algorithm to smooth out the rough edges. To minimize the identification error of individual nuclear segmentation, small binary noise clusters and nuclei around the boundary region of the image process were automatically removed.
- the fluorescence intensity within segmented regions of each nucleus was collected. From the fluorescence intensity data, individual cells were visually selected cutoff (Roukos, V., Pegoraro, G., Voss, TC & Misteli, T. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 10, 334-348). (2015)) sorted DNA histograms into different cell cycle stages (G1, S, G2/M) were plotted. Here, the proportion of cells within each stage was automatically calculated using the Origin software (version 8.5). The phase of each cell in the image was divided into G phase, S phase, and G2/M phase by color mapping to cell images of different colors based on a DNA histogram.
- the cultured HeLa cells were washed twice with freshly prepared DMEM and incubated with Hoechst dye-containing buffer (10 ⁇ g/ml in DMEM) for 15 min. After the medium was replaced with fresh DMEM buffer, the nanoprobes were inserted into single HeLa viable cells at each cell cycle stage and the nuclear pH was measured by imaging with a confocal microscope.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Plasma & Fusion (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
The present invention relates to a method and apparatus for measuring pH in a single cell, and a method for manufacturing a nanoprobe for same. The method for measuring pH in a single cell comprises (a) inserting, into the single cell, a nanoprobe formed by coupling a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on a tapered tip of an optical fiber, (b) shining light on the nanoprobe through the optical fiber, (c) exciting the pH-responsive fluorescent substance by means of the light to generate fluorescence, (d) acquiring, through the optical fiber, a fluorescence signal generated from the fluorescent material according to the pH of the cell, and (e) obtaining the pH value in the cell by analyzing the fluorescence signal. The method for manufacturing a nanoprobe comprises (a) filling a nanopipette with a nanowire material solution and lowering the nanopipette to bring the nanowire material solution into contact with an end of an optical fiber, (b) raising the nanopipette to grow a nanowire on the end of the optical fiber, (c) filling a micropipette with an aqueous solution containing a pH-responsive fluorescent substance and lowering the micropipette so that a portion of the nanowire is immersed in the aqueous solution, and (d) raising the micropipette to form a nanoprobe labeled with the pH-responsive fluorescent substance.
Description
본 발명은 단일 세포 내의 pH 측정에 관한 것으로, 보다 상세하게는 단일 세포 내의 pH를 정확하게 측정할 수 있게 하는 나노탐침과 이를 이용하여 단일 세포 내의 pH를 측정하기 위한 방법 및 장치에 관한 것이다. The present invention relates to the measurement of pH in a single cell, and more particularly, to a nanoprobe capable of accurately measuring the pH in a single cell, and a method and apparatus for measuring the pH in a single cell using the same.
종래에는 세포들이 모두 균질(homogeneous)하다고 여겨 세포를 집단으로(collectively) 분석하였지만, 실제 개개의 세포들은 비균질(heterogeneous)하다는 사실이 최근에 밝혀졌다(Cell Cycle 12, 3640-3649 (2013) 참조). 이에 따라 최근에는 단일 세포의 개별적 특성을 분석하는 기술이 주목받고 있다(Nat. Cell Biol. 20, 1349-1360 (2018) 참조).Conventionally, all cells were considered to be homogeneous and the cells were analyzed collectively, but it was recently found that individual cells are heterogeneous (see Cell Cycle 12, 3640-3649 (2013)). . Accordingly, recently, a technique for analyzing individual characteristics of a single cell has been attracting attention (see Nat. Cell Biol. 20, 1349-1360 (2018)).
세포 특성과 연관된 인자들은 pH, mRNA, 단백질 등으로 다양하다. 그 중에서도 pH는 세포내 단백질 대사에 영향을 미쳐 세포 기능에 직접적인 영향을 주기 때문에 중요한 인자이다(J. Immunol. Methods. 221, 43-57 (1998) 참조). 세포내 pH 측정은 암과 같은 질병을 진단할 수 있는 기준으로 활용된다고도 알려져 있다(Biochemistry. 35, 2811-2817 (1996) 참조).Factors related to cellular properties are various such as pH, mRNA, and protein. Among them, pH is an important factor because it affects intracellular protein metabolism and directly affects cell function (see J. Immunol. Methods. 221, 43-57 (1998)). It is also known that intracellular pH measurement is utilized as a criterion for diagnosing diseases such as cancer (see Biochemistry . 35, 2811-2817 (1996)).
특히 암세포의 핵은 분열이 빨라 정상 세포의 핵과 pH가 다를 것으로 예상되고 있다(Chem. Soc. Rev. 46, 3830-3852 (2017); 및 Nat. Rev. Cancer. 11, 671677 (2011) 참조). 그러나, 세포 핵은 세포질 내 깊숙이 있을 뿐만 아니라 핵막으로 둘러 쌓여 있어 핵 내부의 pH를 측정하는 것은 매우 어렵다고 알려져 있다. 따라서 단일 세포질의 pH보다 단일 세포 핵 내의 pH를 측정하는 것은 더욱 어려운 기술이다. In particular, the nucleus of cancer cells divides rapidly and the pH is expected to be different from that of normal cells (see Chem. Soc. Rev. 46, 3830-3852 (2017); and Nat. Rev. Cancer . 11, 671677 (2011)). . However, it is known that it is very difficult to measure the pH inside the nucleus because the cell nucleus is not only deep in the cytoplasm but also surrounded by a nuclear membrane. Therefore, measuring the pH in a single cell nucleus is a more difficult technique than the pH of a single cytoplasm.
이에 종래에는 단일 세포 내의 pH를 측정하기 위해 다음과 같은 방법들이 사용되었다. For this reason, conventionally, the following methods have been used to measure the pH in a single cell.
먼저, 세포내 pH를 측정하기 위한 나노입자 삽입(Nanoparticle insertion) 기반 기술은 세포 내에 pH에 반응하는 형광 나노물질을 삽입한 후, 세포 외부에서 신호를 분석하여 pH를 측정한다(J. Am. Chem. Soc. 136, 12253-12256 (2014); Anal. Chem. 91, 8383-8389 (2019); 및 Analyst 145, 5768-5775 (2020) 참조). 그러나, 세포내 이물질 삽입으로 인해 자연 상태의 세포 분석이 불가능하고, 세포내 형광 나노물질 삽입의 무작위성 때문에 단일 세포 분석이 매우 어렵다. 또한, 세포내 신호를 세포 밖에서 측정하기에 빛의 산란이 불가피하여 pH 측정의 정확도가 떨어진다. 게다가, 단일 세포의 핵 내에 나노 물질을 삽입하는 것은 거의 불가능하여 핵 내의 pH 측정은 매우 어려운 것으로 알려져 있다. First, a nanoparticle insertion-based technology for measuring intracellular pH measures pH by inserting a fluorescent nanomaterial that responds to pH into the cell, and then analyzing the signal outside the cell ( J. Am. Chem. See Soc. 136, 12253-12256 (2014); Anal. Chem. 91, 8383-8389 (2019); and Analyst 145, 5768-5775 (2020)). However, analysis of cells in their natural state is impossible due to the insertion of foreign substances into cells, and single cell analysis is very difficult due to the randomness of the insertion of fluorescent nanomaterials into cells. In addition, since the intracellular signal is measured outside the cell, light scattering is inevitable, so the accuracy of pH measurement is poor. Moreover, it is known that it is very difficult to measure the pH in the nucleus because it is almost impossible to insert nanomaterials into the nucleus of a single cell.
또 다른 방법은 탐침 삽입(Probe insertion) 기반의 pH 측정 방법으로서, 세포 내로 pH에 반응하는 물질을 포함한 탐침을 삽입하여 세포내 pH를 측정하는 기술이 있다(Sensors Actuators, B Chem. 290, 527-534 (2019); 및 Analyst 145, 4852-4859 (2020) 참조). 이 방법에서는 테이퍼된 유리관(tapered glass capillary) 표면에 pH 반응성 물질을 결합하여 탐침을 제조한다. 따라서 탐침 팁(tip)에서 멀어질수록 탐침 직경이 굵어져서, 세포내 원하는 위치까지 삽입하게 되면 세포를 손상시킬 수 있다. 그리고, 레이저를 세포 외부에서 세포내 탐침을 향해 조사하고 그 반사된 빛을 다시 세포 외부에서 검출하는데, 이때 검출된 빛의 스펙트럼에서 'pH반응성 물질에 의해 발생된 스펙트럼'을 측정하여 세포 내의 pH를 측정하게 된다. 여기서 빛을 세포 외부에서 조사하고, 또 반사된 빛을 세포 외부에서 수신하기 때문에, 빛이 여러 매질을 통과하게 되는 과정에서 빛의 심한 산란이 불가피하여, 정확도가 떨어진다는 문제점이 있다. Another method is a probe insertion-based pH measurement method, and there is a technology for measuring intracellular pH by inserting a probe containing a substance that responds to pH into the cell ( Sensors Actuators, B Chem. 290, 527-). 534 (2019); and Analyst 145, 4852-4859 (2020)). In this method, a probe is prepared by binding a pH-responsive material to the surface of a tapered glass capillary. Therefore, the diameter of the probe becomes thicker as it goes away from the tip of the probe, and when inserted to a desired position in the cell, the cell may be damaged. Then, the laser is irradiated from the outside of the cell towards the probe inside the cell, and the reflected light is again detected outside the cell. will measure Here, since light is irradiated from the outside of the cell and the reflected light is received from outside the cell, severe scattering of light is unavoidable in the process of light passing through various media, resulting in poor accuracy.
이에 본 발명은 상기와 같은 문제점을 해결하기 위한 개발된 것으로, 세포내 삽입 시 세포의 오염 및 손상이 없이 단일 생세포 내의 pH를 실시간으로 정확하게 측정할 수 있는 나노탐침과 이를 이용한 단일 세포 내 pH 측정 방법 및 장치를 제공하는데 그 목적이 있다.Accordingly, the present invention has been developed to solve the above problems, and a nanoprobe capable of accurately measuring the pH in a single living cell in real time without contamination or damage to the cell during intracellular insertion, and a method for measuring intracellular pH using the same and to provide an apparatus.
위와 같은 목적을 달성하기 위한 본 발명의 한 형태에 따르면, 단일 세포 내의 pH를 측정하는 방법은, (a) 광섬유의 테이퍼진 선단에 성장시킨 나노선(nanowire)에 pH에 반응할 수 있는 pH 반응성 형광 물질을 결합하여 형성된 나노탐침을 단일 세포 내에 삽입하는 것; (b) 상기 나노탐침에 상기 광섬유를 통해 광을 입사하는 것; (c) 상기 광에 의해 상기 pH 반응성 형광 물질이 여기되어 형광을 발생시키는 것; (d) 상기 세포의 pH에 따라 상기 형광 물질로부터 발생하는 형광 신호를 상기 광섬유를 통해 획득하는 것; 및 (e) 상기 형광 신호를 분석하여 세포 내의 pH 값을 얻는 것을 포함한다.According to one aspect of the present invention for achieving the above object, the method for measuring the pH in a single cell is (a) pH responsiveness that can respond to pH in a nanowire grown on the tapered tip of an optical fiber inserting a nanoprobe formed by binding a fluorescent material into a single cell; (b) incident light to the nanoprobe through the optical fiber; (c) excitation of the pH-responsive fluorescent material by the light to generate fluorescence; (d) acquiring a fluorescent signal generated from the fluorescent material through the optical fiber according to the pH of the cell; and (e) analyzing the fluorescence signal to obtain a pH value in the cell.
본 발명에 따른 나노탐침의 제조 방법은, (a) 나노선 물질 용액을 나노 피펫에 채우고 상기 나노 피펫을 아래로 내려 상기 나노선 물질 용액을 광섬유의 끝단에 접촉시키는 것; (b) 상기 나노 피펫을 상승시켜 상기 광섬유 끝단에 나노선(nanowire)을 성장시키는 것; (c) pH 반응성 형광 물질을 함유하는 수용액을 마이크로 피펫에 채우고 상기 마이크로 피펫을 아래로 내려 상기 나노선의 일부가 상기 수용액에 잠기도록 하는 것; 및 (d) 상기 마이크로 피펫을 상승시켜 pH 반응성 형광 물질로 표지된 나노탐침을 형성하는 것을 포함하며, 이와 같은 방법에 의해 제조되는 본 발명에 따른 pH 측정을 위한 나노탐침은 광섬유; 상기 광섬유의 일 끝에 나노선 물질 용액이 성장하여 형성된 나노선; 및 상기 나노선의 일부에 표지된 pH 반응성 형광 물질을 포함하여 이루어진다. The method for manufacturing a nanoprobe according to the present invention comprises: (a) filling a nanopipette with a nanowire material solution and lowering the nanopipette to bring the nanowire material solution into contact with the tip of an optical fiber; (b) raising the nanopipette to grow a nanowire on the end of the optical fiber; (c) filling a micropipette with an aqueous solution containing a pH-responsive fluorescent substance and lowering the micropipette so that a part of the nanowire is immersed in the aqueous solution; and (d) raising the micropipette to form a nanoprobe labeled with a pH-responsive fluorescent material. a nanowire formed by growing a nanowire material solution at one end of the optical fiber; and a pH-responsive fluorescent material labeled on a part of the nanowire.
본 발명에 있어서, 상기 나노선 물질 용액은 소수성 고분자 용액이며, 이러한 적어도 PVBN3, PVB-alkyne, PVB-COOH로 이루어진 군으로부터 선택될 수 있다. 또한, 상기 광섬유는 테이퍼진 선단을 가지며, 상기 pH 반응성 형광 물질은 상기 나노선과 결합 가능한 작용기를 갖는 플루오레세인 분자 - 여기서, 플루오레세인은 적어도 DBCO-FAM, Azide-FAM, 또는 Amine-FAM으로 이루어진 군으로부터 선택될 수 있음 - 이다. 본 발명에 따르면, 상기 pH 반응성 형광 물질에 의한 상기 나노선의 젖음(또는 표지된) 길이는 100nm 내지 900nm, 바람직하게는 500nm 이하로 제어된다. In the present invention, the nanowire material solution is a hydrophobic polymer solution, and at least PVBN 3 , PVB-alkyne, and PVB-COOH may be selected from the group consisting of. In addition, the optical fiber has a tapered tip, and the pH-responsive fluorescent material is a fluorescein molecule having a functional group capable of binding to the nanowire - wherein the fluorescein is at least DBCO-FAM, Azide-FAM, or Amine-FAM may be selected from the group consisting of -. According to the present invention, the wetting (or labeled) length of the nanowire by the pH-responsive fluorescent material is controlled to be 100 nm to 900 nm, preferably 500 nm or less.
본 발명의 또 하나의 형태로서, 단일 세포 내의 pH를 측정하기 위한 장치는, 광섬유의 테이퍼진 선단에 성장시킨 나노선에 pH에 반응할 수 있는 pH 반응성 형광 물질을 결합하여 형성되는 나노탐침; 상기 단일 생세포 내에 상기 나노탐침을 삽입하도록 나노탐침의 3차원 이동제어가 가능한 조작기; 상기 광섬유에 광을 인가하는 광원; 상기 광섬유를 통해 입사된 광을 상기 나노탐침에 전달하고 상기 나노탐침에서 발생된 형광 신호를 추가의 광섬유를 통해 분광계에 전달하도록 광섬유들을 연결하는 광결합기; 및 상기 나노탐침에서 발생된 형광 신호로부터 스펙트럼 데이터를 분석하여 pH 값을 얻는 분광계를 포함하여 이루어진다. As another aspect of the present invention, an apparatus for measuring pH in a single cell includes: a nanoprobe formed by combining a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on a tapered tip of an optical fiber; a manipulator capable of three-dimensional movement control of the nanoprobe to insert the nanoprobe into the single living cell; a light source for applying light to the optical fiber; an optical coupler connecting the optical fibers to transmit the light incident through the optical fiber to the nanoprobe and to transmit the fluorescence signal generated from the nanoprobe to the spectrometer through an additional optical fiber; and a spectrometer to obtain a pH value by analyzing spectral data from the fluorescence signal generated by the nanoprobe.
본 발명에 있어서, 상기 나노탐침은 직경이 균일한 것일 수 있다. 상기 나노탐침은 직경이 10nm 내지 900nm, 바람직하게는 400nm 이하이고, 길이가 1μm 내지 10μm, 바람직하게는 5μm 이하이다. In the present invention, the nanoprobe may have a uniform diameter. The nanoprobe has a diameter of 10 nm to 900 nm, preferably 400 nm or less, and a length of 1 μm to 10 μm, preferably 5 μm or less.
본 발명에 있어서, 상기 광섬유를 통해 입사되는 광은 근적외선 또는 가시광선 영역의 광일 수 있으며, 상기 광은 파장이 300nm 내지 1000nm, 바람직하게는 400nm 내지 700nm 일 수 있다. 상기 광섬유를 통해 입사되는 광의 파장은 나노탐침의 성분, 형태 및 광학적 특성, 검출하고자 하는 표적 분자의 종류, 및 대상 세포의 종류에 따라 선택가능하다. In the present invention, the light incident through the optical fiber may be near-infrared or visible light, and the light may have a wavelength of 300 nm to 1000 nm, preferably 400 nm to 700 nm. The wavelength of light incident through the optical fiber is selectable according to the component, shape and optical properties of the nanoprobe, the type of target molecule to be detected, and the type of target cell.
본 발명의 또 하나의 형태로서, 상기 나노선 물질 용액을 제조하기 위한 방법은, 무수 DMF 용매(0.7mL) 중 PVC(0.014g, 131mmol)와 아지드화 나트륨(0.010g, 220mmol)의 혼합물을 70°C의 호박색 바이알(amber vial) 내에서 섞고 알루미늄 호일로 덮어 빛을 차단하는 단계; 2시간 반응 후, 메탄올(0.5mL)을 첨가하고, 혼합 용액을 10,000rpm에서 1분간 원심분리하여 과량의 미반응 시약을 제거하고 아지드 작용성 폴리머(azide-functionalized polymer)를 침전시키는 단계; 및 얻어진 침전물을 진공 하에 1시간 동안 건조시킨 다음 NMP 용매(50 μL)를 첨가하여 용해시키는 단계를 포함할 수 있다. As another aspect of the present invention, the method for preparing the nanowire material solution is a mixture of PVC (0.014 g, 131 mmol) and sodium azide (0.010 g, 220 mmol) in anhydrous DMF solvent (0.7 mL). Mix in an amber vial at 70 °C and cover with aluminum foil to block light; After 2 hours of reaction, methanol (0.5 mL) is added, and the mixed solution is centrifuged at 10,000 rpm for 1 minute to remove excess unreacted reagent and precipitate an azide-functionalized polymer; and drying the obtained precipitate under vacuum for 1 hour and then dissolving it by adding an NMP solvent (50 μL).
국부적인 pH 모니터링을 통해 세포의 이질성과 신진대사를 이해하는 것이 중요함에도 불구하고, 세포와 세포소기관 막 너머의 단일 생세포의 시공간에 따른 pH 모니터링은 도전적인 일이다. Although it is important to understand cellular heterogeneity and metabolism through local pH monitoring, spatio-temporal pH monitoring of single living cells beyond cell and organelle membranes is challenging.
본 발명에서 발명자들은 직접적인 광 통신을 통해 원하는 세포 소기관에서 pH 역학(pH dynamics)의 현장 모니터링을 가능하게 하는 기계적 강도가 높은 나노탐침을 개발하였다. 폴리비닐벤질 아지드 나노선의 한쪽 끝에 플루오레세인(fluorescein)을 화학적으로 라벨링(labelling)함으로써, 생세포 내부의 서로 다른 구획들의 pH 변화를 지속적으로 모니터링하여 특정 세포 소기관의 pH 항상성과 자극에 따른 pH 조절을 성공적으로 관찰하였다. In the present invention, the inventors have developed a nanoprobe with high mechanical strength that enables in situ monitoring of pH dynamics in desired organelles through direct optical communication. By chemically labeling one end of polyvinylbenzyl azide nanowire with fluorescein, pH changes in different compartments inside living cells are continuously monitored to adjust pH homeostasis of specific organelles and pH according to stimuli. was successfully observed.
중요하게는, 인간 세포 주기 동안, 핵이 휴지기에서는 pH 항상성을 나타내지만 유사분열기(mitotic phase)에서는 pH 변화를 나타내어 핵막에 의한 독립적인 pH 조절에 관여한다는 사실을 처음으로 입증하였다. 나노탐침의 빠르고 정확한 국부 pH 검출·전달(reporting) 기능은 다양한 생세포의 다양한 생물학적 상황에서 세포 거동을 조사하는데 매우 유용하다.Importantly, it was demonstrated for the first time that during the human cell cycle, the nucleus exhibits pH homeostasis in the resting phase but changes in pH during the mitotic phase, thereby participating in independent pH regulation by the nuclear membrane. The fast and accurate local pH detection and reporting function of nanoprobes is very useful for investigating cellular behavior in various biological situations of various living cells.
한편, 상술된 특징들에 따르면 본 발명은 다음과 같은 효과를 제공한다. On the other hand, according to the above-described features, the present invention provides the following effects.
1) 본 발명에 따른 나노탐침을 이용한 단일 세포 내의 pH를 측정하기 위한 장치를 이용하면, 세포내 삽입 시 세포의 오염 및 손상이 없이, 단일 세포 내부의 위치별로 pH를 정확하게 측정할 수 있다. 1) If the device for measuring the pH in a single cell using the nanoprobe according to the present invention is used, the pH can be accurately measured for each position inside the single cell without contamination and damage to the cell when inserted into the cell.
2) 본 발명에 따른 pH 측정 장치를 이용하면, 세포내 삽입 시 세포의 오염 및 손상이 없이, 단일 세포 내부에서 시간이나 환경의 변화에 따른 pH의 변화를 실시간으로 측정할 수 있다. 2) Using the pH measuring device according to the present invention, it is possible to measure the change in pH according to time or environment in a single cell in real time without contamination and damage to the cell when inserted into the cell.
3) 본 발명에 따른 pH 측정 장치를 이용하면, 세포내 삽입 시 세포의 오염 및 손상이 없이, 단일 세포의 세포질과 세포 핵의 pH를 정확하게 측정할 수 있으며, 그 외 세포내 다른 소기관에서의 pH도 정확하게 측정할 수 있음은 물론이다. 3) Using the pH measuring device according to the present invention, it is possible to accurately measure the pH of the cytoplasm and cell nucleus of a single cell without contamination or damage to the cell when inserted into the cell, and the pH in other organelles in the cell Of course, it can also be accurately measured.
4) 본 발명에 따른 pH 측정 장치를 이용하면, 단일 세포의 성장 중에 핵 내부의 pH 변화를 실시간으로 측정할 수 있다. 4) Using the pH measuring device according to the present invention, it is possible to measure the pH change in the nucleus during the growth of a single cell in real time.
도 1은 단일 생세포 내에서 시공간에 따른 pH 변화를 검출·전달할 수 있는 나노탐침의 장치 구성도(a), 나노탐침의 전자현미경 사진(b), 및 이러한 나노탐침을 이용한 단일 생세포내 pH 검출을 보여주는 도면(c), 1 is a device configuration diagram (a) of a nanoprobe capable of detecting and transmitting a change in pH over time in a single living cell (a), an electron micrograph (b) of the nanoprobe, and pH detection in a single living cell using the nanoprobe. A drawing showing (c),
도 2는 PVC(Poly(vinylbenzyl chloride)) 및 PVBN3(Poly(vinylbenzyl azide))의 1H-NMR 스펙트럼을 나타낸 그래프,Figure 2 is a graph showing the 1H-NMR spectrum of PVC (Poly (vinylbenzyl chloride)) and PVBN3 (Poly (vinylbenzyl azide)),
도 3은 테이퍼진 광섬유의 끝에 PVBN3 나노선을 만드는 단계를 나타낸 도면 및 사진, 3 is a view and a photograph showing the steps of making a PVBN 3 nanowire at the end of a tapered optical fiber;
도 4는 DBCO 기능화된 플루오레세인(FAM)의 PVBN3 나노선과의 결합 단계를 나타낸 사진,Figure 4 is a photograph showing the binding step of DBCO functionalized fluorescein (FAM) with PVBN 3 nanowires,
도 5는 한천 겔에 삽입하여 나노탐침의 기계적 특성 평가를 나타낸 사진,5 is a photograph showing the evaluation of the mechanical properties of the nanoprobe inserted into the agar gel;
도 6은 나노선과 테이퍼 광섬유의 접합부에서의 광 손실 평가를 나타낸 사진, 6 is a photograph showing the evaluation of light loss at the junction of the nanowire and the tapered optical fiber;
도 7은 국부 pH 변화에 대한 나노탐침의 광학 반응을 나타낸 그래프 및 사진, 7 is a graph and a photograph showing the optical response of the nanoprobe to the local pH change;
도 8은 나노탐침의 광 안정성과 재현성 시험 그래프, 8 is a graph of the light stability and reproducibility test of the nanoprobe;
도 9는 살아있는 헬라 세포에 나노탐침과 테이퍼 광섬유 삽입 사이의 세포 생존율을 비교한 사진,9 is a photograph comparing the cell viability between the nanoprobe and the tapered optical fiber insertion into living HeLa cells;
도 10은 삽입된 나노탐침(회색) 또는 테이퍼진 광섬유(흰색)를 각각 세포질 및 핵으로부터 추출한 후 세포 생존율의 히스토그램을 도시한 그래프, 10 is a graph showing a histogram of cell viability after the inserted nanoprobe (grey) or tapered optical fiber (white) was extracted from the cytoplasm and nucleus, respectively;
도 11은 세포내 환경을 대상으로 하는 pH 검정 곡선을 획득하기 위한 볼츠만 피팅을 도시한 도면, 11 is a diagram illustrating a Boltzmann fitting to obtain a pH calibration curve targeting the intracellular environment;
도 12는 헬라 생세포 외부와 내부의 나노탐침의 pH 의존성 형광 신호의 조사 결과를 나타낸 사진 및 그래프, 12 is a photograph and graph showing the results of investigation of pH-dependent fluorescence signals of nanoprobes outside and inside HeLa living cells;
도 13은 나노탐침을 이용한 단일 세포 전체 주기 동안 세포질과 세포핵 내에서의 pH값 모니터링 결과를 나타낸 이미지 및 그래프, 13 is an image and graph showing the pH value monitoring results in the cytoplasm and the cell nucleus during the entire cycle of a single cell using a nanoprobe;
도 14는 유사분열기 동안 단일 헬라 생세포에의 나노탐침의 삽입을 나타내는, 공초점 현미경에 의해 관찰된 명시야 이미지 및 병합(명시야 및 형광) 이미지 사진, 14 is a photograph of brightfield images and merged (brightfield and fluorescence) images observed by confocal microscopy, showing the insertion of nanoprobes into single HeLa living cells during mitosis;
도 15는 pH 측정을 위해 유사분열기(전기부터 세포질 분열까지) 동안 핵-특이적 헥스트 염료(흰색)로 염색된 헬라 세포의, 공초점 현미경으로 관찰된 병합(명시야 및 형광) 이미지 사진,Figure 15 is a confocal microscopically observed merged (bright field and fluorescence) image photograph of HeLa cells stained with a nuclear-specific Hex dye (white) during mitosis (from electrophoresis to cytoplasmic division) for pH measurement;
도 16은 외부 칼슘 이온에 반응하는 세포질 pH 변화를 나타낸 도면 및 사진, 16 is a diagram and a photograph showing changes in cytoplasmic pH in response to external calcium ions;
도 17은 과량의 마그네슘 이온(5 mM)으로 처리된 헬라 세포의 세포질 pH의 실시간 측정 결과를 나타낸 사진 및 그래프, 17 is a photograph and graph showing the real-time measurement result of the cytoplasmic pH of HeLa cells treated with an excess of magnesium ions (5 mM);
도 18은 과량의 칼슘 이온(a)과 과도한 마그네슘 이온(b)으로 처리된 살아있는 헬라 세포의 병합(명시야 및 형광) 이미지 및 암시야 이미지 사진.18 is a merged (bright-field and fluorescence) image and dark-field image photograph of living HeLa cells treated with excess calcium ions (a) and excess magnesium ions (b).
이하 첨부된 도면과 실시예들을 통해 본 발명을 보다 구체적으로 설명한다. 아래의 실시예에서는 발명을 설명함에 있어서 필연적인 부분들을 제외하고는 그 도시와 설명을 생략하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples. In the following embodiments, the illustration and description will be omitted except for essential parts in describing the invention.
세포는 서로 다르다. 동일한 환경에서도 유전적으로 동일한 세포는 개별적 구획화로 인한 생명 활동으로 다양성(cell-to-cell variabilities)(예: 세포 형태, 증식, 성장 및 생존율)을 나타낼 수 있다(Stoeger, T., Battich, N. & Pelkmans, L. Passive Noise Filtering by Cellular Compartmentalization. Cell164, 1151-1161 (2016) 참조). 개별 세포의 다양한 거동을 이해하려면 생세포 내부의 생리적 매개변수(예: pH, 온도 및 산소 수준)의 변화를 측정하고 분석하는 것이 중요하다(Zhang, X. ai et al. Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature. Microchim. Acta 186, (2019) 참조). 특히, 핵, 미토콘드리아, 소포체(endoplasmic reticulum) 및 골지체(Golgi apparatus)처럼 세포소기관들은 때에 따라 생물학적 기능을 수행하므로, 서로 다른 세포소기관의 변화는 시간에 따라 개별적으로 모니터링되어야 한다(Jaworska, A., Malek, K. & Kudelski, A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021), 및 Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709-2728 (2010) 참조). 특히, 세포 대사 및 항상성의 서로 다른 수준으로 인해, 세포마다 시공간에 따른 pH 이질성이 있을 수 있다(Søndergaard, R. V., Henriksen, J. R. & Andresen, T. L. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH. Nat. Protoc. 9, 2841-2858 (2014) 참조). 이론적으로는, 국부 pH는 연속적인 이화작용 또는 동화작용 과정에 의해 세포 분열 동안 변동할 것으로 예측되었으며, 세포 사멸 자극(apoptotic stimuli)에 의해 활성화될 경우, 프로그래밍된 세포 사멸이 미토콘드리아 기능 장애를 일으켜, 세포내 환경의 급격한 산성화로 이어진다(Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. C. Changes in intramitochondrial and cytosolic pH: Early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2, 318-325 (2000) 참조). Cells are different. Even in the same environment, genetically identical cells can exhibit cell-to-cell variabilities (eg, cell morphology, proliferation, growth and viability) due to individual compartmentalization (Stoeger, T., Battich, N. & Pelkmans, L. Passive Noise Filtering by Cellular Compartmentalization. Cell 164, 1151-1161 (2016)). To understand the various behaviors of individual cells, it is important to measure and analyze changes in physiological parameters (eg, pH, temperature, and oxygen levels) inside living cells (Zhang, X. ai et al. Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature (see Microchim. Acta 186, (2019)). In particular, since organelles such as the nucleus, mitochondria, endoplasmic reticulum, and Golgi apparatus perform biological functions from time to time, changes in different organelles must be individually monitored over time (Jaworska, A., Malek, K. & Kudelski, A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021), and Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709-2728 (2010)). In particular, due to different levels of cellular metabolism and homeostasis, there may be temporal and temporal pH heterogeneity between cells (Søndergaard, RV, Henriksen, JR & Andresen, TL Design, calibration and application of broad-range optical nanosensors for determining intracellular). see pH. Nat. Protoc. 9, 2841-2858 (2014)). Theoretically, local pH was predicted to fluctuate during cell division by successive catabolism or anabolic processes, and when activated by apoptotic stimuli, programmed cell death results in mitochondrial dysfunction, Leads to rapid acidification of the intracellular environment (Matsuyama, S., Llopis, J., Deveraux, QL, Tsien, RY & Reed, JC Changes in intramitochondrial and cytosolic pH: Early events that modulate caspase activation during apoptosis. Nat. Cell Biol 2, 318-325 (2000)) .
국부적인 pH 변화의 중요성으로 인해, 실시간으로 세포내 pH를 검출·전달할 수 있는 시스템 개발에 대한 광범위한 연구가 진행되었다. 다양한 pH 반응성 분자 프로브(예: 형광 염료, 양자점 및 나노입자)는 전기천공 또는 엔도사이토시스(endocytosis)를 통해 불침투성 세포막을 뚫고 세포내로 들어가 pH 검출에 사용될 수 있다(He, C., Lu, K. & Lin, W. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136, 12253-12256 (2014); Dennis, A. M., Rhee, W. J., Sotto, D., Dublin, S. N. & Bao, G. Quantum dot-fluorescent protein fret probes for sensing intracellular pH. ACS Nano 6, 2917-2924 (2012); Shen, Y. et al. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale 10, 1622-1630 (2018); 및 Albertazzi, L., Storti, B., Marchetti, L. & Beltram, F. Delivery and subcellular targeting of dendrimer-based fluorescent pH sensors in living cells. J. Am. Chem. Soc. 132, 18158-18167 (2010) 참조). 그러나, 자발적인 세포 내 삽입의 특성으로 인해, 프로브를 원하는 위치에 배치하는 것, 특히 막으로 둘러싸인 세포소기관 내부에 배치하는 것은 여전히 기술적인 과제로 남아있다. pH 반응성 형광 단백질은 조작된 세포 내부에 유전적으로 인코딩(encoded)될 수 있지만, pH 반응성 형광 단백질의 발현(expression)과 관련된 정교한 유전자 공학 및 단백질 트래피킹(protein trafficking)에 의한 이후의 수송은 대단히 어렵다(Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591-1599 (1998); 및 Palmer, A. E., Qin, Y., Park, J. G. & McCombs, J. E. Design and application of genetically encoded biosensors. Trends Biotechnol. 29, 144-152 (2011) 참조). 대안으로, 나노피펫(Zhang, Y. et al. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS Nano 10, 3214-3221 (2016); 및 Guo, J. et al. D ynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 145, 4852-4859 (2020) 참조) 또는 광섬유(Yang, Q. et al. Label-free in situ pH monitoring in a single living cell using an optical nanoprobe. Med. Devices Sensors 3, 1-10 (2020) 참조)가 표적 세포에 직접 삽입되었다. 그러나, 프로브의 크기와 모양을 정확하게 제어하지 않으면, 막에 구멍을 뚫는 것은 세포에 치명적이다. 또한, 나노구조 물질의 표면 변형 및 조작의 어려움으로 인해 pH 검출을 국부화할 수 없었고, 약한 검출 신호는 복잡한 세포 환경에 의해 쉽게 왜곡되었다(Yan, R. et al. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7, 191-196 (2011); 및 Lin, L. et al. Real-time tracing the changes in the intracellular pH value during apoptosis by near-infrared ratiometric fluorescence imaging. Chem. Commun. 54, 9071-9074 (2018) 참조). 그러므로, 단일 생세포의 다수의 불투과성 막을 가로질러 세포 내 소기관별로 실시간 pH 모니터링을 가능하게 하는 기술은 여전히 개발이 필요한 상태이다. Due to the importance of local pH changes, extensive research has been conducted on the development of systems that can detect and transmit intracellular pH in real time. A variety of pH-responsive molecular probes (e.g., fluorescent dyes, quantum dots and nanoparticles) can penetrate impermeable cell membranes and enter cells via electroporation or endocytosis and can be used for pH detection (He, C., Lu, K. & Lin, W. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136, 12253-12256 (2014); D., Dublin, SN & Bao, G. Quantum dot-fluorescent protein fret probes for sensing intracellular pH. ACS Nano 6, 2917-2924 (2012); Shen, Y. et al. Organelle-targeting surface-enhanced Raman scattering ( SERS) nanosensors for subcellular pH sensing.Nanoscale 10, 1622-1630 (2018); and Albertazzi, L., Storti, B., Marchetti, L. & Beltram, F. Delivery and subcellular targeting of dendrimer-based fluorescent pH sensors in living cells. J. Am. Chem. Soc. 132, 18158-18167 (2010)). However, due to the nature of spontaneous intracellular insertion, placing the probe in a desired location, especially inside a membrane-enclosed organelle, still remains a technical challenge. Although pH-responsive fluorescent proteins can be genetically encoded inside engineered cells, their subsequent transport by sophisticated genetic engineering and protein trafficking associated with the expression of pH-responsive fluorescent proteins is very difficult. (Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591-1599 (1998); and Palmer, AE, Qin, Y., Park, JG & McCombs, JE Design and application of genetically encoded biosensors. Trends See Biotechnol. 29, 144-152 (2011)). Alternatively, nanopipettes (Zhang, Y. et al. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS Nano 10, 3214-3221 (2016); and Guo, J. et al. D ynamic single-cell) intracellular pH sensing using a SERS-active nanopipette. See Analyst 145, 4852-4859 (2020)) or optical fiber (Yang, Q. et al. Label-free in situ pH monitoring in a single living cell using an optical nanoprobe. Med. Devices Sensors 3, 1-10 (2020)) were directly inserted into target cells. However, unless the size and shape of the probe is precisely controlled, puncturing the membrane is lethal to the cells. In addition, the pH detection could not be localized due to the difficulty of surface modification and manipulation of the nanostructured material, and the weak detection signal was easily distorted by the complex cellular environment (Yan, R. et al. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7, 191-196 (2011); and Lin, L. et al. Real-time tracing the changes in the intracellular pH value during apoptosis by near-infrared ratiometric fluorescence imaging. Chem. Commun. 54, 9071- 9074 (2018)). Therefore, a technique that enables real-time pH monitoring by intracellular organelles across multiple impermeable membranes of a single living cell is still in need of development.
본 발명에서 발명자들은 직접 광 통신을 통해 원하는 세포 구획의 pH 변화를 모니터링할 수 있는 기계적 강도가 높고 직경이 충분히 작은 나노탐침을 제작하였다. 본 발명에 따른 폴리비닐벤질아지드(PVBN3) 나노선(nanowire)은 구조적으로 강하고, 세포막 및 세포소기관 막을 관통하기에 충분한 길이이지만, 직경이 작기(200nm 이하) 때문에 세포 손상이나 누설은 무시할 수 있을 정도로 매우 적다. 나노탐침의 끝에 화학적으로 라벨링된(labelled) 고밀도 플루오레세인(Fluorescein)은 국부적인 pH 변화에 신속하게 반응할 수 있으며, 나노탐침을 통해 pH-반응성 광발광(photoluminescence; PL) 신호가 분광계에 직접 전송(<100ms)되어, 광학 손실과 주변 노이즈에 따른 신호 왜곡을 최소화한다. 본 발명에 따른 현장(in-situ) pH 검출 시스템을 사용하여, 단일 생세포 내부의 다양한 구획들의 pH 변화를 지속적으로 모니터링하여 특정 세포소기관의 pH 항상성(organelle-exclusive pH homeostasis) 및 자극에 따른 pH 조절(stimuli-selective pH regulations)과 같은 여러 과학적 정보를 얻을 수 있었다. 특히, 세포 주기 동안 핵이 휴지기에서는 pH 항상성을 나타내지만 유사분열기에서는 pH 변동을 나타내어, 핵막이 독립적으로 pH 조절에 관여한다는 사실을 처음으로 입증하였다. 이것은 단일 생세포의 국부 pH 모니터링으로 세포내의 이벤트들(subcellular events)의 라이브 스트리밍을 가능하게 한 본 발명의 나노탐침의 고유한 기능에 기인한다. In the present invention, the present inventors fabricated a nanoprobe with high mechanical strength and sufficiently small diameter to monitor the pH change of a desired cell compartment through direct optical communication. The polyvinyl benzyl azide (PVBN 3 ) nanowire according to the present invention is structurally strong and long enough to penetrate cell membranes and organelle membranes, but cell damage or leakage is negligible because of its small diameter (200 nm or less). there are very few High-density fluorescein, chemically labeled at the tip of the nanoprobe, can respond rapidly to local pH changes, and through the nanoprobe, a pH-responsive photoluminescence (PL) signal can be sent directly to the spectrometer. transmitted (<100 ms), minimizing signal distortion due to optical loss and ambient noise. Using the in-situ pH detection system according to the present invention, pH homeostasis of specific organelles and pH adjustment according to stimulation by continuously monitoring changes in the pH of various compartments inside a single living cell Several scientific information such as (stimuli-selective pH regulations) were obtained. In particular, during the cell cycle, the nucleus exhibits pH homeostasis in resting phase but changes in pH during mitosis, demonstrating for the first time that the nuclear membrane is independently involved in pH regulation. This is due to the unique ability of the nanoprobe of the present invention to enable live streaming of subcellular events with local pH monitoring of single living cells.
본 발명에서 단일 세포내 pH 측정은, 먼저 pH에 반응할 수 있는 직경이 균일한 나노탐침을 테이퍼진 광섬유(tapered optical fiber)의 선단에 직접 성장시켜 형성하는 것에서부터 시작된다. 이러한 나노탐침은 표면에 pH 반응성 형광 물질을 포함하는 것으로, 나노탐침의 형성 방법은 아래의 실시예에서 도 3을 참조하여 설명된다. 참고로, 여기서 '단일 세포'는 살아있는 단일 생세포와 죽은 단일 세포까지 포함하는 것을 의미한다. 또한, '단일 세포내 pH 측정'은 세포 핵 뿐만 아니라 세포질, 다른 세포내 소기관의 pH 측정까지 포함하는 것을 의미한다. In the present invention, single intracellular pH measurement starts with forming a nanoprobe having a uniform diameter capable of responding to pH by directly growing it on the tip of a tapered optical fiber. Such a nanoprobe includes a pH-responsive fluorescent material on its surface, and a method of forming the nanoprobe will be described with reference to FIG. 3 in the Examples below. For reference, here, 'single cell' means to include a single living cell and a single dead cell. In addition, 'a single intracellular pH measurement' means to include not only the cell nucleus, but also the cytoplasm and pH measurement of other intracellular organelles.
본 발명의 단일 세포내 pH 측정 방법은 나노탐침을 세포 내로 삽입하여 세포의 pH에 따라 발생하는 형광 신호를 광섬유를 통해 취득하여 직접 분석함으로써 세포 내부의 pH를 정확하게 측정할 수 있다. The single intracellular pH measurement method of the present invention can accurately measure the pH inside a cell by inserting a nanoprobe into the cell and directly analyzing the fluorescence signal generated according to the pH of the cell through an optical fiber.
또한, 본 발명의 단일 세포내 pH 측정 방법은 세포의 pH가 시간이나 환경에 따라 변화하면, 그에 따른 형광 신호의 변화를 직접 측정함으로써 실시간으로 세포 내의 pH 변화를 측정할 수 있다. In addition, the single intracellular pH measuring method of the present invention can measure the intracellular pH change in real time by directly measuring the change in the fluorescence signal according to the change in the pH of the cell according to time or environment.
또한, 본 발명의 단일 세포내 pH 측정 방법은 나노탐침의 직경이 충분히 작고 균일하여 세포의 손상이 거의 없으며, 세포 내의 원하는 위치에서 신호를 직접 받음으로써 세포내 위치별로 정확한 pH의 측정이 가능하다. In addition, the single intracellular pH measurement method of the present invention has a sufficiently small and uniform diameter of the nanoprobe, so there is almost no cell damage, and by receiving a signal directly from a desired position in the cell, it is possible to accurately measure the pH at each intracellular location.
[실시예][Example]
도 1은 단일 생세포 내에서 시공간에 따른 pH 변화를 검출할 수 있는 나노탐침의 구조의 설계 구성 및 이러한 나노탐침을 이용한 단일 생세포내 pH 검출을 나타낸 것으로, 도 1a는 직접적인 광통신을 통해 실시간으로 세포내 구획의 현장 pH 모니터링을 위한 나노 탐침 시스템의 전체 모식도이다. 1 shows the design configuration of the structure of a nanoprobe capable of detecting a change in pH with time and space in a single living cell and the pH detection in a single living cell using the nanoprobe. An overall schematic diagram of the nanoprobe system for in situ pH monitoring of compartments.
나노탐침(Nanoprobe 또는 Nanowire waveguide; 1)은 광섬유(2)의 테이퍼진 선단(3; 도 1b 참조)에 성장시킨 나노선(nanowire)에 pH에 반응할 수 있는 pH 반응성 형광 물질을 결합(도 4a 내지 4g 참조)하여 형성된 것으로, 광원(레이저발생기; 4)으로부터 제1 광섬유(2a)로 입사된 레이저는 광섬유(2)를 통해 나노탐침(1)에 도달된다(흰색 화살표). A nanoprobe (Nanoprobe or Nanowire waveguide; 1) combines a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on the tapered tip 3 of the optical fiber 2 (see FIG. 1B) (FIG. 4A). to 4g), the laser incident from the light source (laser generator; 4) to the first optical fiber 2a reaches the nanoprobe 1 through the optical fiber 2 (white arrow).
본 실시예에서 광섬유(2)는 광원(4)으로부터 입사되는 광(예: 레이저빔)을 나노탐침(1)에 전달하기 위한 제1 광섬유(2a)와 나노탐침 표면의 형광 물질로부터 발생하는 형광 신호를 분광계(8)로 전달하기 위한 제2 광섬유(2b)로 분기되고, 이들 제1 광섬유(2a)와 제2 광섬유(2b)는 광결합기(fiber coupler;5)를 통해 하나로 결합되어 나노탐침(1)으로 이어진다. 광결합기(5)는 제1 광섬유(2a)로 입사되는 광이 나노탐침(1)에만 전달되도록, 그리고 나노탐침(1) 표면의 형광 물질로부터 발생하는 형광 신호가 분광계(8)로만 전달되도록 광의 진행을 가이드한다. In this embodiment, the optical fiber 2 includes a first optical fiber 2a for transmitting light (eg, a laser beam) incident from the light source 4 to the nanoprobe 1 and fluorescence generated from the fluorescent material on the surface of the nanoprobe. It is branched into a second optical fiber 2b for transmitting a signal to the spectrometer 8, and the first optical fiber 2a and the second optical fiber 2b are combined into one through a fiber coupler 5, and the nanoprobe It leads to (1). The optical coupler 5 transmits the light incident to the first optical fiber 2a only to the nanoprobe 1 and transmits the fluorescence signal generated from the fluorescent material on the surface of the nanoprobe 1 only to the spectrometer 8 . guide the progress.
나노탐침(1)은 3차원 이동제어가 가능한 조작기(manipulator;6, 마이크로미터 해상도)를 이용하여 단일 생세포(7) 내로 삽입된다(도 1c 참조). 생세포 내에 나노탐침을 위치결정(positioning)하는 것은 공초점 형광 현미경(confocal fluorescence microscopy)으로 관찰하면서 3축 미세 조작기(6)로 정밀하게 제어할 수 있다. 이때, 광원(4)으로부터 제1 광섬유(2a)와 광결합기(5)를 통해 나노탐침(1)에 도달한 광(레이저빔)은 소멸파(evanescent wave)를 발생시키고 나노탐침 끝에 있는 pH 반응성 형광 물질을 여기시켜 pH 반응성 형광물질이 광발광(PL) 신호를 방출하게 된다. 이 신호는 나노탐침(1)을 통해 광섬유(2)에 전달된 후, 광통신에 환경 간섭을 받지 않고 광결합기(5)에 의해 제2 광섬유(2b)로 가이드되어 분광계(spectrometer; 8)에 직접 전달된다(검은색 화살표). 이러한 과정을 통해 분광계(8)에서 얻어진 형광의 스펙트럼 데이터로부터 pH 값을 측정하게 되는데, 이 경우 세포 내부(도 1c 참조)에서 나노탐침(1)의 형광신호를 왜곡이 없이 분광계(8)로 직접 측정하기 때문에 정확한 pH 값의 측정이 가능하다. The nanoprobe 1 is inserted into a single living cell 7 using a manipulator 6 capable of three-dimensional movement control (see Fig. 1c). The positioning of the nanoprobe in the living cell can be precisely controlled with a 3-axis micromanipulator 6 while observing with confocal fluorescence microscopy. At this time, the light (laser beam) reaching the nanoprobe 1 from the light source 4 through the first optical fiber 2a and the optical coupler 5 generates an evanescent wave, and the pH reactivity at the tip of the nanoprobe By exciting the fluorescent material, the pH-responsive fluorescent material emits a photoluminescence (PL) signal. After this signal is transmitted to the optical fiber 2 through the nanoprobe 1, it is guided to the second optical fiber 2b by the optical coupler 5 without being subjected to environmental interference in optical communication, and directly to the spectrometer 8 transmitted (black arrow). Through this process, the pH value is measured from the spectral data of fluorescence obtained by the spectrometer 8. In this case, the fluorescence signal of the nanoprobe 1 from the inside of the cell (see FIG. 1c) is directly transferred to the spectrometer 8 without distortion. Because it is measured, it is possible to measure the accurate pH value.
도 1b는 테이퍼진 광섬유의 끝 부분에 직접 성장된 본 발명의 나노탐침의 전계 방출 주사 전자 현미경 이미지(스케일 바 1μm)를 나타내고, 도 1c는 세포 혹은 세포소기관의 단단한 막을 가로질러 생세포의 국부 pH 모니터링하는 이미지를 나타낸다. 본 발명의 길고 얇은 나노탐침은 기계적으로 견고하면서도 막 침투 과정에서 세포 누출을 유발하지 않으며, 형광 라벨링된 끝단은 현장 pH 검출을 위해 원하는 위치(세포질 또는 핵에서)에 쉽게 도달할 수 있다(삽입도 참조). 세포내 국부적인 양성자(proton) 농도에 따라, PL 신호의 강도가 빠르게 변하며, 이는 나노탐침을 통해 실시간으로 모니터링될 수 있다. Fig. 1b shows a field emission scanning electron microscope image (scale bar 1 μm) of a nanoprobe of the present invention grown directly on the tip of a tapered optical fiber, and Fig. 1c shows local pH monitoring of living cells across the rigid membrane of a cell or organelle. represents an image that The long and thin nanoprobe of the present invention is mechanically robust and does not induce cell leakage during membrane penetration, and the fluorescently labeled tip can easily reach a desired location (in the cytoplasm or nucleus) for in situ pH detection (inset). Reference). Depending on the local intracellular proton concentration, the intensity of the PL signal changes rapidly, which can be monitored in real time through a nanoprobe.
본 발명에서 나노탐침(1)은 세포막 뿐만 아니라 핵막도 관통할 수 있는 것으로, 그러기 때문에 세포질 뿐만 아니라 핵 내의 pH 측정도 가능하다(도 1c 참조; 물론 다른 세포내 소기관의 pH 측정도 가능하다). 또한, 나노탐침(1)은 직경(d; 10nm 내지 900nm, 바람직하게는 400nm 이하)이 충분히 작으므로 세포 손상이 없는 장점이 있다. 또한, 나노탐침(1)은 길이(l; 1μm 내지 10μm, 바람직하게는 5μm 이하)가 충분히 작으므로 세포내 특정 위치로 위치시켜 원하는 위치(세포질, 세포 핵 등)에서 pH 측정이 가능하다. 뿐만 아니라, 나노탐침(1) 표면의 pH 반응성 형광 물질은 양성자(proton)와 순간적인 화학 평형을 이루기 때문에 세포 내에서 시간이나 환경의 변화에 따른 pH 값의 변화를 실시간으로 정확히 측정할 수 있다. In the present invention, the nanoprobe 1 is capable of penetrating not only the cell membrane but also the nuclear membrane, so it is possible to measure the pH in the nucleus as well as the cytoplasm (see FIG. 1c; of course, it is also possible to measure the pH of other intracellular organelles). In addition, since the nanoprobe 1 has a sufficiently small diameter (d; 10 nm to 900 nm, preferably 400 nm or less), there is an advantage that there is no cell damage. In addition, since the nanoprobe 1 has a sufficiently small length ( l ; 1 μm to 10 μm, preferably 5 μm or less), it can be positioned at a specific location within the cell to measure pH at a desired location (cytoplasm, cell nucleus, etc.). In addition, since the pH-responsive fluorescent material on the surface of the nanoprobe 1 is in instantaneous chemical equilibrium with the proton, it is possible to accurately measure the change in the pH value in real time according to the change of time or environment in the cell.
본 발명에서 광섬유(2a)를 통해 입사되는 광원은 레이저 또는 LED 등으로서, 근적외선 또는 가시광선 영역의 광일 수 있고, 바람직하게는 300nm 내지 1000nm 파장의 광일 수 있으며, 더 바람직하게는 400nm 내지 700nm 파장의 광일 수 있다. 하지만, 이용할 수 있는 광의 파장은 이에 한정되지 않으며, 나노탐침(광나노도파관)의 성분, 형태 및 광학적 특성, 검출하고자 하는 표적 분자의 종류, 대상 세포의 종류 등에 따라 임의로 선택될 수 있다.In the present invention, the light source incident through the optical fiber 2a is a laser or LED, and may be light in the near-infrared or visible region, preferably light of a wavelength of 300 nm to 1000 nm, more preferably of a wavelength of 400 nm to 700 nm. can be light. However, the usable wavelength of light is not limited thereto, and may be arbitrarily selected according to the component, shape, and optical properties of the nanoprobe (optical nanowaveguide), the type of target molecule to be detected, the type of target cell, and the like.
고분자 나노선의 한쪽 끝에 pH 반응성 형광 염료(Alvarez-Pez, J. M., Ballesteros, L., Talavera, E. & Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J. Phys. Chem. A 105, 6320-6332 (2001) 참조) - 여기서, pH 반응성 형광 염료는 나노선과 결합가능한 작용기를 갖는 플루오레세인(DBCO-FAM, Azide-FAM, Amine-FAM 등으로 이루어진 군으로부터 선택 가능) 분자임 - 를 화학적으로 라벨링(labelling)하여, 단일 생세포에서 시간 경과에 따른 국부 pH 현장 모니터링에 적합한 나노탐침을 성공적으로 제조하였다(도 1a). 구체적으로, 폴리비닐벤질아지드(PVBN3) 용액(Mn 52,000g/mol)(도 2)의 증발에 의해, PVBN3 나노선이 테이퍼진 광섬유의 끝 부분에 직접 성장되었으며(도 1b 및 도 3), 광섬유는 1x2 광섬유 커플러에 의해 레이저 소스와 분광계에 연결되었다(아래의「방법」참조). 나노선의 표면이 아지드 작용기(azide moieties)(-N3)로 가득 차 있기 때문에, 일 예로 디벤조사이클로옥틴(DBCO) 기능화된 플루오레세인(FAM)과의 결합으로 나노선의 끝(길이 100nm 내지 900nm, 바람직하게는 500nm 이하)이 카퍼-프리 클릭 반응(copper-free click reaction)을 통해 고밀도 pH 리포터(reporters)로 선택적으로 변환될 수 있었다(도 4). 중요하게는, 본 발명의 나노탐침은 여기 레이저(흰색 화살표)와 국부화된 플루오레세인으로부터의 PL 신호(검은색 화살표)의 우수한 양방향 광신호 전송경로의 역할을 하였다. PL 신호가 분광계로 직접 전송됨에 따라, 나노탐침 주변 환경에 관계없이 원하는 위치에서의 양성자(proton) 농도에 따라 변하는 PL 스펙트럼의 세기가 실시간으로 측정되었다(도 1 참조).A pH-responsive fluorescent dye at one end of a polymeric nanowire (Alvarez-Pez, JM, Ballesteros, L., Talavera, E. & Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J. Phys. Chem. A 105, 6320-6332 (2001)) - Here, the pH-responsive fluorescent dye is composed of fluorescein (DBCO-FAM, Azide-FAM, Amine-FAM, etc.) having a functional group capable of binding to the nanowire. By chemically labeling a molecule (selectable from the group), a nanoprobe suitable for in situ monitoring of local pH over time in single living cells was successfully prepared (Fig. 1a). Specifically, by evaporation of polyvinylbenzylazide (PVBN 3 ) solution (M n 52,000 g/mol) (FIG. 2), PVBN 3 nanowires were directly grown on the tip of the tapered optical fiber (FIG. 1b and FIG. 1b and FIG. 3), the optical fiber was connected to the laser source and the spectrometer by a 1x2 fiber coupler (see “Method” below). Since the surface of the nanowire is filled with azide moieties (-N 3 ), for example, by binding with dibenzocyclooctyne (DBCO) functionalized fluorescein (FAM), the tip (length of 100 nm to 900 nm, preferably 500 nm or less) could be selectively converted into high-density pH reporters through a copper-free click reaction (Fig. 4). Importantly, the nanoprobe of the present invention served as an excellent bidirectional optical signal transmission path for the PL signal from the excitation laser (white arrow) and localized fluorescein (black arrow). As the PL signal was transmitted directly to the spectrometer, the intensity of the PL spectrum, which changed according to the concentration of protons at a desired location, regardless of the environment around the nanoprobe, was measured in real time (see FIG. 1 ).
본 발명에 따른 나노탐침의 물리적 특성과 광학적 특성은 생세포 내부의 세포내 pH를 검출·전달하는데 매우 적합하였다. 세포 손상을 최소화하는 나노선 직경에 대한 이전 연구(Obataya, I., Nakamura, C., Han, S. W., Nakamura, N. & Miyake, J. Direct insertion of proteins into a living cell using an atomic force microscope with a nanoneedle. Nanobiotechnology 1, 347-352 (2005) 참조)에 기초하여, 본 발명의 Confined-growth method (Je, J. H.; Yang, U.; Oh, S. S.; Yong, M. J.; Kang, B. H. Method of forming micro-or nanowires at predetermined positions of an object using a micro- or nanopipette, US Patent 17,306,220, May 3, 2021 참조)에 의해 정확하게 제어된 200nm 이하의 직경의 나노탐침을 준비하였다(도 1b). 직경이 작음에도 불구하고, PVBN3(E - 1.7 GPa)의 높은 탄성계수(Bicerano, J. Prediction of Polymer Properties, 2nd ed. (Marcel Dekker, New York, 1996) 참조)로 인해 나노탐침은 단단한 막을 쉽게 관통할 수 있었다; 실제 세포막(E - 0.05 GPa)보다 높은 탄성계수(> 0.1 GPa)(Wang, K. et al. Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells. Sci. Data 4, 1-8 (2017) 참조)를 나타내는 것으로 알려진 한천(agar gel)에 나노탐침을 삽입했을 때, 구조 변형이 관찰되지 않았다(도 5 참조). 중요하게는, 세포 환경의 굴절률(1.37 이하)(Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634-644 (2016) 참조)보다 높은 PVBN3의 굴절률(1.67 이하)(kJames, J., Hanna, J. M. & Subila, K. B. Refractive Index Engineering using Polymer Nanocomposites. (PhD thesis, University of South Brittany, France, 2019) 참조), 및 나노탐침과 테이퍼진 광섬유 사이의 매끄러운 접합을 포함하는, 나노탐침의 고유한 특성들은 현장(in situ) 및 실시간 pH 모니터링에 적합하였다. 접합부에서의 산란은 무시할 수 있을 정도로 매우 적기 때문에(도 6), 플루오레세인의 국부 형광 신호는 쉽게 수집되고 84%보다 큰 효율로 전송되었다(Lee, J. et al. Quantitative Probing of Cu2+ Ions Naturally Present in Single Living Cells. Adv. Mater. 28, 4071-4076 (2016) 참조).The physical and optical properties of the nanoprobe according to the present invention were very suitable for detecting and delivering intracellular pH inside living cells. Previous studies on nanowire diameters that minimize cell damage (Obataya, I., Nakamura, C., Han, SW, Nakamura, N. & Miyake, J. Direct insertion of proteins into a living cell using an atomic force microscope with Based on a nanoneedle. Nanobiotechnology 1, 347-352 (2005)), the Confined-growth method of the present invention (Je, JH; Yang, U.; Oh, SS; Yong, MJ; Kang, BH Method of forming micro) -or nanowires at predetermined positions of an object using a micro- or nanopipette, see US Patent 17,306,220, May 3, 2021) to prepare nanoprobes with a diameter of 200 nm or less ( FIG. 1b ). Despite their small diameter, due to the high modulus of elasticity of PVBN 3 (E - 1.7 GPa) (see Bicerano, J. Prediction of Polymer Properties, 2nd ed . (Marcel Dekker, New York, 1996)), the nanoprobe has a rigid membrane. could easily penetrate; Higher modulus of elasticity (> 0.1 GPa) than actual cell membrane (E - 0.05 GPa) (Wang, K. et al. Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells. Sci. Data 4, 1-8 (2017) ))), when the nanoprobe was inserted into the agar gel, no structural deformation was observed (see FIG. 5 ). Importantly, PVBN higher than the refractive index of the cellular environment (below 1.37) (see Liu, PY et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634-644 (2016)) Refractive index of 3 (below 1.67) (see kJames, J., Hanna, JM & Subila, KB Refractive Index Engineering using Polymer Nanocomposites . (PhD thesis, University of South Brittany, France, 2019)), and nanoprobe and tapered fiber The unique properties of the nanoprobe, including the smooth bonding between them, make it suitable for in situ and real-time pH monitoring. Since the scattering at the junction is negligibly very small (Fig. 6), the local fluorescence signal of fluorescein was easily collected and transmitted with an efficiency greater than 84% (Lee, J. et al. Quantitative Probing of Cu 2+ ). Ions Naturally Present in Single Living Cells. Adv. Mater. 28, 4071-4076 (2016)).
도 2는 PVC(Poly(vinylbenzyl chloride)) 및 PVBN3(Poly(vinylbenzyl azide))의 1H-NMR 스펙트럼을 나타낸다. Figure 2 shows 1H-NMR spectrum of PVC (Poly (vinylbenzyl chloride)) and PVBN 3 (Poly (vinylbenzyl azide)).
상측 패널: DMSO-d6에서 PVC의 1H 스펙트럼. 여기에는 7.30-6.00ppm의 방향족 고리(b), 4.81-4.38ppm의 -CH2Cl(c) 및 1.87-1.04ppm의 PVC 백본의 메틸렌(a)이 포함된다. 하측 패널: DMSO-d6의 PVBN3의 1H 스펙트럼. 여기에는 7.30-6.00ppm의 방향족 고리(b), 4.35-3.80ppm의 -CH2N3(c') 및 1.87-1.04ppm의 메틸렌(a)이 포함된다. -CH2의 4.5ppm(PVC, c)에서 4.2ppm(PVBN3, c')로의 이동은 염화물이 아지드로 치환되었음을 나타내며, PVBN3의 합성이 성공적임을 나타낸다. 모든 1H-NMR 스펙트럼은 실온에서 용매로서 DMSO-d6을 사용하여 500MHz에서 기록되었다. 모든 H-NMR 스펙트럼의 화학적 이동은 BRUKER AVANCE Ascend 500에 의한 DMSO-d6의 잔류 신호(δ2.50)를 기준으로 한다. Top panel: 1H spectrum of PVC in DMSO-d 6 . These include 7.30-6.00 ppm of aromatic rings (b), 4.81-4.38 ppm of —CH 2 Cl(c) and 1.87-1.04 ppm of methylene of the PVC backbone (a). Lower panel: 1H spectrum of PVBN 3 of DMSO-d 6 . These include 7.30-6.00 ppm of aromatic rings (b), 4.35-3.80 ppm of —CH 2 N 3 (c′) and 1.87-1.04 ppm of methylene (a). The shift from 4.5 ppm (PVC, c) to 4.2 ppm (PVBN 3 , c′) of —CH 2 indicates that the chloride was substituted with azide, indicating that the synthesis of PVBN 3 was successful. All 1H-NMR spectra were recorded at 500 MHz using DMSO-d 6 as solvent at room temperature. Chemical shifts of all H-NMR spectra are based on the residual signal (δ2.50) of DMSO-d 6 by BRUKER AVANCE Ascend 500.
도 3은 테이퍼진 광섬유의 끝에 PVBN3 나노선을 만드는 단계를 도시한 것으로, 도 3a는 나노선 제조를 위해 본 출원인이 직접 제작한 장치를 이용하여 테이퍼진 광섬유의 끝에 PVBN3 나노선을 성장시키는 과정을 개략적으로 나타내고 있다. 3 shows the steps of making a PVBN 3 nanowire at the end of a tapered optical fiber, and FIG. 3 a is a method of growing PVBN 3 nanowires at the tip of a tapered optical fiber using the apparatus manufactured by the applicant directly for manufacturing the nanowire. The process is schematically shown.
도 3b는 테이퍼진 광섬유의 끝에 성장된 PVBN3 나노선을 확대하여 나타낸 것으로, 이러한 PVBN3 나노선의 성장 과정은 도 3c 내지 3f를 참조하여 상세히 설명된다. 먼저, 도 3c에 따르면, 나노선 물질 용액, 즉 PVBN3 용액을 유리 나노 피펫에 채우고 나노피펫을 수직으로 내려서 테이퍼진 광섬유의 팁과 접촉시킨다. 본 발명에서 나노선 물질 용액은 바람직하게는 소수성 고분자 용액(예를 들어, PVBN3 , PVB-alkyne, PVB-COOH 등으로 이루어진 군으로부터 선택 가능)이다. FIG. 3b is an enlarged view of PVBN 3 nanowires grown on the tip of a tapered optical fiber, and the growth process of these PVBN 3 nanowires will be described in detail with reference to FIGS. 3c to 3f . First, according to FIG. 3C , a nanowire material solution, that is, a PVBN 3 solution, is filled in a glass nanopipette, and the nanopipette is vertically lowered to contact the tip of the tapered optical fiber. In the present invention, the nanowire material solution is preferably a hydrophobic polymer solution (eg, PVBN3 , PVB-alkyne, PVB-COOH, etc. can be selected from the group consisting of).
도 3d에 따르면, 나노피펫의 팁은 테이퍼진 광섬유의 팁과 접촉한다. 도 3e에 따르면, 나노피펫을 수직으로 끌어올리면 PVBN3 용액의 용매가 증발함에 따라 테이퍼진 광섬유의 끝단에 성장한 PVBN3 나노선이 형성된다. 도 3f는 테이퍼진 광섬유의 끝에 성장한 자립형(freestanding) PVBN3 나노선을 나타낸다(스케일 바, 10μm).According to Figure 3d, the tip of the nanopipette is in contact with the tip of the tapered optical fiber. According to FIG. 3E, when the nanopipette is pulled up vertically, the PVBN3 nanowires grown on the ends of the tapered optical fibers are formed as the solvent of the PVBN3 solution evaporates. Figure 3f shows freestanding PVBN 3 nanowires grown on the tip of a tapered optical fiber (scale bar, 10 μm).
도 4는 DBCO 기능화된 플루오레세인(FAM)의 PVBN3 나노선에의 결합 과정을 도시한 것으로, 도 4a에 따르면, pH 반응성 형광 염료인 DBCO-FAM 분자를 함유하는 수용액(100 nM)을 상술한 도 3에 따라 테이퍼진 광섬유의 끝단에 성장된 PVBN3 나노선의 표면과 결합(접합)시키는 방법이 개략적으로 도시되어 있다. 보다 구체적으로, 도 4b에 따르면, 유리 마이크로피펫에 DBCO-FAM 분자를 함유하는 수용액(100 nM)을 채운 상태로 유리 마이크로피펫을 PVBN3 나노선을 향해 수직으로 내려 도 4c에 도시된 바와 같이 나노선의 끝단을 유리 마이크로피펫 내의 수용액 속에 담근다. 도 4c에서 DBCO-FAM 분자는 카퍼-프리(copper-free) 클릭 반응(Campbell-Verduyn, L. S. et al. Strain-promoted copper-free 'click' chemistry for 18F radiolabeling of bombesin. Angew. Chemie - Int. Ed. 50, 11117-11120 (2011) 참조)에 의해 PVBN3 나노선의 아지드(azide) 그룹에 결합(접합)된다. 이 상태에서 피펫을 위로 올리면 도 4d에 도시된 바와 같이 FAM으로 표지(FAM-labeled)된 나노탐침이 형성된다(스케일 바, 10μm). 도 4e는 공초점 현미경으로 얻은 테이퍼진 광섬유 상에 성장된 나노탐침의 명시야 이미지, 도 4f는 암시야 이미지, 및 도 4g는 병합 이미지를 각각 나타낸다. 암시야 이미지(도 4f)에서 녹색 형광 신호(도면에서는 흰색으로 도시됨)는 나노탐침의 끝단에서 명확하게 관찰되지만 나노선의 나머지 부분과 테이퍼진 광섬유 표면에서는 형광 신호가 감지되지 않는다. 끝단 형광은, 250 nm의 위치 정확도를 갖는 고정밀 x-y-z 모터 스테이지를 사용하여 나노선의 젖음 깊이(wetting depth)를 정밀하게 조정함으로써, 길이 100nm 내지 900nm, 바람직하게는 500nm 이하로 제어된다.Figure 4 shows the binding process of DBCO-functionalized fluorescein (FAM) to PVBN 3 nanowires. According to Figure 4a, an aqueous solution (100 nM) containing DBCO-FAM molecules, a pH-responsive fluorescent dye, is detailed. A method of bonding (bonding) with the surface of PVBN 3 nanowires grown on the ends of the tapered optical fibers according to FIG. 3 is schematically shown. More specifically, according to FIG. 4b, with the glass micropipette filled with an aqueous solution (100 nM) containing DBCO-FAM molecules, the glass micropipette is vertically lowered toward the PVBN 3 nanowire, as shown in FIG. 4c . Immerse the tip of the wire into the aqueous solution in a glass micropipette. In Figure 4c, the DBCO-FAM molecule is a copper-free click reaction (Campbell-Verduyn, LS et al. Strain-promoted copper-free 'click' chemistry for 18F radiolabeling of bombesin. Angew. Chemie - Int. Ed 50 , 11117-11120 (2011)) bonded (bonded) to the azide group of PVBN 3 nanowires. When the pipette is raised in this state, as shown in FIG. 4d , a FAM-labeled nanoprobe is formed (scale bar, 10 μm). Fig. 4e shows a bright field image of a nanoprobe grown on a tapered optical fiber obtained by confocal microscopy, Fig. 4f shows a dark field image, and Fig. 4g shows a merged image, respectively. In the dark field image (Fig. 4f), a green fluorescence signal (shown in white in the figure) is clearly observed at the tip of the nanoprobe, but no fluorescence signal is detected at the rest of the nanowire and the tapered fiber surface. The tip fluorescence is controlled to a length of 100 nm to 900 nm, preferably 500 nm or less, by precisely adjusting the wetting depth of the nanowire using a high-precision xyz motor stage with a position accuracy of 250 nm.
도 5는 한천 겔에 삽입하여 나노탐침의 기계적 특성 평가를 나타낸 것으로, 도 5a 내지 5c에 따르면, 삽입 공정 전(a), 중간(b), 후(c)의 명시야 이미지가 도시된다. 여기서, 흰색 점선은 한천 겔의 표면을 나타낸다. 이 분석에서 삽입 이후 나노탐침의 변형이 거의 없다는 사실을 확인할 수 있다(스케일 바, 10μm).FIG. 5 shows the evaluation of the mechanical properties of the nanoprobe inserted into the agar gel. According to FIGS. 5A to 5C, bright field images before (a), in the middle (b) and after (c) of the insertion process are shown. Here, the white dotted line indicates the surface of the agar gel. It can be seen from this analysis that there is little deformation of the nanoprobe after insertion (scale bar, 10 μm).
도 6은 나노선과 테이퍼 광섬유의 접합부에서의 광 손실 평가를 나타낸 것으로, 도 6a 내지 6b에 따르면, 나노선 유도 레이저 광(473nm)의 명시야 이미지(도 6a) 및 암시야 이미지(도 6b)가 도시된다. 나노탐침의 선단(하측 파선 원)에서는 광산란이 관찰되는 반면, 접착부위(상측 파선 원)에서는 광산란이 거의 없다(스케일 바, 10μm).6 shows the evaluation of light loss at the junction of the nanowire and the tapered optical fiber. According to FIGS. 6a to 6b, the bright field image ( FIG. 6a ) and the dark field image ( FIG. 6b ) of the nanowire guided laser light (473 nm) are is shown Light scattering is observed at the tip of the nanoprobe (bottom dashed circle), whereas there is almost no light scattering at the bonding site (upper dashed circle) (scale bar, 10 μm).
도 7은 국부 pH 변화에 대한 나노탐침의 광학적 반응을 나타낸 것으로, 신속한 pH 변화를 측정할 수 있고, 삽입 시 세포 손상이 무시할 수 있을 정도로 적으며, 복잡한 세포내 환경에서도 pH에 선택적으로 반응하는 나노탐침의 특성을 나타낸다. 7 shows the optical response of the nanoprobe to the local pH change. The nanoprobe can measure a rapid change in pH, cause negligible damage to cells during insertion, and selectively respond to pH even in a complex intracellular environment. Indicate the characteristics of the probe.
도 7a에 따르면, 액적의 pH를 4에서 8로 변경시켰을 때(삽입도 참조), 침지된 나노탐침은 레이저(λ = 473 nm) 여기 시 pH에 따른 PL 스펙트럼 변화를 성공적으로 보였다. 도 7b에 따르면, 시간에 따른 형광 신호(λ = 535 nm)는 pH 변화에 대한 빠른 반응(<100ms)으로 인해 나노탐침에 의해 실시간으로 모니터링되었다. 검은색 화살표와 회색 화살표는 각각 산성 및 염기성 용액의 주입 지점을 나타낸다. 도 7c에 따르면, 나노탐침(점선 화살표, 직경 200nm 이하)은 생세포에 쉽게 삽입될 수 있었지만(위), 테이퍼진 광섬유(실선 화살표, 팁 직경 200nm 이하)는 심각한 세포 손상과 누출을 유발하였다(아래). 세포의 생존 여부 확인을 위해, 헬라(HeLa) 세포를 칼세인(calcein)-AM(녹색)과 프로피디움 요오드화물(propidium iodide)(빨간색)로 염색하였다(스케일 바 10μm). 도 7d에 따르면, pH 5 내지 9 (n=3) 범위에서 니제리신(nigericin) 처리된 세포에서 표준화된 PL 피크 강도(I535/I685)를 측정한 후 볼츠만(Boltzmann) 함수(R2 = 0.9969)로 피팅하여 pH 검정 곡선(검은색)을 얻었다. pH 7.5(n=3)에서 니제리신을 처리한 헬라 세포에서 측정한 바와 같이, 세포 내부(회색)와 외부(흰색)의 정규화된 PL 피크 강도가 동일하므로 세포내 및 세포외 pH 값이 동일함을 나타낸다(삽입도 참조).According to FIG. 7a, when the pH of the droplet was changed from 4 to 8 (see inset), the immersed nanoprobe successfully exhibited a change in the PL spectrum according to pH upon laser (λ = 473 nm) excitation. According to Figure 7b, the time-dependent fluorescence signal (λ = 535 nm) was monitored in real time by the nanoprobe due to the rapid response (<100 ms) to the pH change. The black and gray arrows indicate the injection points of acidic and basic solutions, respectively. According to Fig. 7c, the nanoprobe (dotted arrow, diameter less than 200 nm) could be easily inserted into living cells (top), whereas the tapered optical fiber (solid arrow, tip diameter less than 200 nm) induced severe cell damage and leakage (bottom). ). To determine whether or not the cells are viable, HeLa cells were stained with calcein-AM (green) and propidium iodide (red) (scale bar 10 μm). According to FIG. 7D, after measuring the normalized PL peak intensity (I535/I685) in nigericin-treated cells in the pH range of 5 to 9 (n=3), the Boltzmann function (R 2 = 0.9969) ) to obtain a pH calibration curve (black). As measured in HeLa cells treated with nigericin at pH 7.5 (n=3), the normalized PL peak intensities inside the cell (grey) and outside (white) are the same, so the intracellular and extracellular pH values are the same is shown (see inset).
마이크로 광발광 시스템(도 1a)을 사용하여 pH 값이 4에서 8까지의 다양한 용액에서 나노탐침의 pH 반응성을 조사하였다(도 7a). 나노탐침을 서로 다른 pH 액적(완충액, 5μl)에 담글 경우, 레이저 여기(λ = 473nm)시 pH-의존적 PL 스펙트럼이 성공적으로 얻어졌으며, 535nm(I535)에서 PL 피크 강도는 플루오레세인(fluorescein)의 잘 알려진 pH-의존적 특성(Alvarez-Pez, J. M., Ballesteros, L., Talavera, E. & Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J. Phys. Chem. A 105, 6320-6332 (2001) 참조)과 일치하여, pH가 증가함에 따라 점진적인 증가를 보였다. 685nm(I685)에서 PL 강도는 pH가 증가함에 따라 무시할 수 있을 정도의 변화를 나타내므로, 나머지 pH 모니터링에 대한 참조 신호로 사용되었다. 중요하게는, 나노탐침은 형광 검출에서 우수한 광안정성과 재현성을 나타냈으며, 18초의 연속 레이저 노출에 대해 PL 피크 강도의 변화가 무시될 만큼 작게 관찰되었고(도 8a), pH 5.0 내지 7.5의 주기적 변화 동안 PL 피크 강도가 가역적으로 변경되었다(도 8b).The pH reactivity of the nanoprobes in various solutions with pH values ranging from 4 to 8 was investigated using a micro-photoluminescence system (Fig. 1a) (Fig. 7a). When the nanoprobe was immersed in droplets of different pH (buffer, 5 μl), pH-dependent PL spectra were successfully obtained upon laser excitation (λ = 473 nm), and the PL peak intensity at 535 nm (I 535 ) was fluorescein (fluorescein). ) of the well-known pH-dependent properties (Alvarez-Pez, JM, Ballesteros, L., Talavera, E. & Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J Phys. Chem. A 105, 6320-6332 (2001)) showed a gradual increase with increasing pH. The PL intensity at 685 nm (I 685 ) exhibited a negligible change with increasing pH, so it was used as a reference signal for the rest of the pH monitoring. Importantly, the nanoprobe exhibited good photostability and reproducibility in fluorescence detection, with negligible changes in PL peak intensity observed for 18 s of continuous laser exposure (Fig. 8a), and periodic changes in pH 5.0 to 7.5 PL peak intensity was reversibly changed during (Fig. 8b).
나노탐침을 통한 PL 스펙트럼은 매우 짧은 시간(<100ms) 내에 pH 변화에 반응하였다(도 7b). 예를 들어, pH 7.5의 나노선을 담근 액적을 pH 6.8로 빠르게 변화(산성화)시켰을 때(도 7b, 검은색 화살표), PL 피크 강도는 100ms 이내의 시간 사이에 급격히 감소하였다. 반대로, 이 약산성 액적을 염기성 완충용액과 빠르게 혼합하면, PL 피크 강도가 급격히 증가하여 최종 pH가 7.2임을 보여주었다(도 7b, 회색 화살표). 플루오레세인이 양성자, H+과 순간적으로 반응(Alvarez-Pez, J. M., Ballesteros, L., Talavera, E. & Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J. Phys. Chem. A 105, 6320-6332 (2001) 참조)함에 따라, pH 반응성 거동의 속도 결정 단계(rate-determining step)가 액적에서의 양성자 확산(proton diffusion)이 될 것이라는 것은 잘 알려져 있다. 세포내 유체의 양성자 확산 속도가 완충 용액의 양성자 확산 속도와 크게 다르지 않다는 점(Zaniboni, M. et al. Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am. J. Physiol. - Hear. Circ. Physiol. 285, 1236-1246 (2003) 참조)을 고려하면, pH 변화에 대한 빠른 형광 반응은 본 발명의 나노 탐침 시스템이 다양한 세포내 환경에서도 실시간으로 pH 변화를 모니터링할 수 있음을 의미한다.The PL spectrum through the nanoprobe responded to the pH change within a very short time (<100 ms) (Fig. 7b). For example, when a droplet immersed in a nanowire of pH 7.5 was rapidly changed (acidified) to pH 6.8 (Fig. 7b, black arrow), the PL peak intensity rapidly decreased within 100 ms. Conversely, when these weakly acidic droplets were rapidly mixed with a basic buffer solution, the PL peak intensity rapidly increased, showing a final pH of 7.2 (Fig. 7b, gray arrow). Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state reaction (Alvarez-Pez, JM, Ballesteros, L., Talavera, E. & Yguerabide , J. According to fluorescence intensity (see J. Phys. Chem. A 105, 6320-6332 (2001)), it is suggested that the rate-determining step of pH-responsive behavior will be proton diffusion in the droplet. It is well known. The rate of proton diffusion in intracellular fluids is not significantly different from that in buffered solutions (Zaniboni, M. et al. Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am. J. Considering Physiol. -Hear. means you can
생세포내 pH 모니터링을 위한 나노탐침의 적용 가능성Applicability of nanoprobes for pH monitoring in living cells
본 발명의 나노탐침이 생세포에 주입되었을 때, 나노탐침을 깊게 주입했음에도 세포가 심하게 손상되지 않았다(도 7c). 세포 생존 여부의 실시간 관찰을 위해, 헬라 세포를 생세포와 죽은 세포에서 각각 녹색 및 적색 형광을 방출하는 칼세인(calcein)-AM 및 프로피디움 요오드화물(propidium iodide;PI)로 염색하였다. 미세 직경(200nm 이하)과 균일한 구조(도 1b)로 인해, 본 발명의 나노탐침은 삽입 및 추출 후 10분 동안에 세포에 손상을 일으키지 않았다(도 7c, 상측 패널). 중요하게는, 적색 형광 신호가 측정되지 않으므로, 발명자들은 나노선 삽입 중 또는 추출 후에도 PI 염료가 세포내 공간에 들어가지 않는다는 것을 발견하여 세포막이 잘 보존되었음을 확인하였다(도 7c 및 도 9). 더욱이, 세포 형태는 추출 후에도 분명히 영향을 받지 않았으며, 이는 본 발명의 pH 검출 시스템이 막 파열 및 변형을 유발하지 않음을 의미한다.When the nanoprobe of the present invention was injected into living cells, the cells were not severely damaged even though the nanoprobe was deeply injected ( FIG. 7c ). For real-time observation of cell viability, HeLa cells were stained with calcein-AM and propidium iodide (PI), which emit green and red fluorescence in live and dead cells, respectively. Due to the micro-diameter (below 200 nm) and uniform structure (Fig. 1b), the nanoprobes of the present invention did not cause damage to cells during 10 min after insertion and extraction (Fig. 7c, upper panel). Importantly, since no red fluorescence signal was measured, the inventors found that the PI dye did not enter the intracellular space during nanowire insertion or even after extraction, confirming that the cell membrane was well preserved ( FIGS. 7C and 9 ). Moreover, the cell morphology was clearly not affected even after extraction, meaning that the pH detection system of the present invention did not induce membrane rupture and deformation.
반대로, 전형적인 원뿔 모양의 테이퍼진 광섬유(팁 직경: 200nm 이하)의 삽입은 삽입 지점에서 세포내 액 누출과 함께 막 파열로 인한 세포 사멸로 이어졌다(도 7c, 하측 패널 및 도 9). 나노탐침과 테이퍼진 광섬유를 헬라 세포의 세포질과 핵에 삽입하여 세포 생존율을 비교했을 때, 본 발명의 나노탐침이 테이퍼진 광섬유(세포질에서 33%(n=20), 핵에서 25%(n=20)) 보다 확실히 더 높은 세포 생존율(세포질에서 100%(n=20), 핵에서 100%(n=20))을 보였다(도 10). 발명자들은 나노 탐침 시스템 삽입 시 세포 생존률이 바이오센싱(bio-sensing) 프로브를 위한 캐리어로 사용되는 기존 시스템들보다 높다는 점을 확인하였다(표 1 참조).Conversely, insertion of a typical cone-shaped tapered optical fiber (tip diameter: 200 nm or less) led to cell death due to membrane rupture with intracellular fluid leakage at the insertion point (Fig. 7c, lower panel and Fig. 9). When the cell viability was compared by inserting a nanoprobe and a tapered optical fiber into the cytoplasm and nucleus of HeLa cells, the nanoprobe of the present invention was a tapered optical fiber (33% in the cytoplasm (n=20), and 25% in the nucleus (n= 20)) showed a significantly higher cell viability (100% in the cytoplasm (n=20), 100% in the nucleus (n=20)) ( FIG. 10 ). The inventors confirmed that the cell viability upon insertion of the nanoprobe system was higher than that of existing systems used as carriers for bio-sensing probes (see Table 1).
유형category | 세포 생존율cell viability |
비고 |
나노탐침 nano probe | 100%100% | 본 발명the present invention |
테이퍼진 광섬유 팁들Tapered Fiber Optic Tips | 33%33% | |
테이퍼진 광섬유 팁들Tapered Fiber Optic Tips | 42%42% | Yan, R. etal.Nanowire-basedsingle-cellendoscopy.Nat.Nanotechnol.7, 191-196 (2011) 참조Yan, R. et al. Nanowire-based single-cellendoscopy. Nat. Nanotechnol. 7, 191-196 (2011) |
bPEI (Branched polyethylenimine)Branched polyethylenimine (bPEI) | 66%66% |
Arif, M., Tripathi, S. K., Gupta, K. C. & Kumar, P. Self-assembled amphiphilic phosphopyridoxyl-polyethylenimine polymers exhibit high cell viability and gene transfection efficiency in vitro and in vivo. J.Mater.Chem.B1, 4020-4031 (2013) 참조Arif, M., Tripathi, SK, Gupta, KC & Kumar, P. Self-assembled amphiphilic phosphopyridoxyl-polyethylenimine polymers exhibit high cell viability and gene transfection efficiency in vitro and in vivo. See J. |
리포펙타민( Lipofectamine)Lipofectamine | 36%36% | |
실리카 나노입자(Silica nanoparticle)Silica nanoparticles | 90%90% | Wang, L. etal. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells. Talanta209, 120436 (2020) 참조Wang, L. et al. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells. See Talanta 209, 120436 (2020) |
PS-co-PNIPAM 히드로겔(hydrogel)PS-co-PNIPAM hydrogel | 85%85% | Liu, H. etal. Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. Talanta 211, 120755 (2020) 참조Liu, H. et al. Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. See Talanta 211, 120755 (2020) |
GO 글리코시트(glycosheets)GO glycosheets | 65%65% | Ji, D. K. etal. Targeted Intracellular Production of Reactive Oxygen Species by a 2D Molybdenum Disulfide Glycosheet. Adv. Mater .28, 9356-9363 (2016) 참조Ji, DK et al. Targeted Intracellular Production of Reactive Oxygen Species by a 2D Molybdenum Disulfide Glycosheet. Adv. Mater. 28, 9356-9363 (2016) |
다음으로, 발명자들은 나노탐침을 통한 pH 모니터링이 복잡한 세포 환경 속에서도 높은 정확도를 보장한다는 것을 검증했다(도 7d). 세포내 pH를 체계적으로 조작하기 위해, 헬라 세포를 K+/H+-이온원 니제리신(ionophore nigericin)(Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 6803-6808 (1998) 참조)을 포함하는 다양한 pH 값(pH 5-9)의 고칼륨 완충 용액에서 배양하였다. 이렇게 니제리신 처리된 특정 pH 값의 헬라 세포 내에서 형광 신호 강도 비율(I535/I685)을 측정하여, 발명자들은 세포내 pH 모니터링을 위한 pH 검정 곡선을 성공적으로 얻었다(도 7d의 검은색 곡선 및 도 11). 이 곡선으로부터, 발명자들은 본 발명의 나노탐침의 검출 가능한 범위(pH 6.5-7.5)가 생세포의 생리학적 pH 검출·전달에 완벽하게 적합함을 확인하였다(Jaworska, A., Malek, K. & Kudelski, A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021) 참조). 흥미롭게도, 본 발명의 나노탐침은, 동일한 pH 7.5 상황의 생세포 내부와 외부에서 주변 환경에 관계없이 거의 동일한 PL 강도가 측정되었으며(도 7d의 우측 삽입도 및 도 12 a,b,d); 3개의 실험 그룹(pH 7, 7.5 및 8)에서 헬라 세포 내부 및 외부에서 얻은 PL 강도 역시 거의 동일하였다(도 12 c,e). 이 관찰에서, 본 발명의 나노탐침은 다양한 이온, 단백질, 및 대사 산물(Ellis, R. J. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114-119 (2001) 참조)을 포함하는 복잡한 세포 환경에서도 pH 변화에 정확하게 반응할 수 있음을 시사한다. Next, the inventors verified that the pH monitoring through the nanoprobe guarantees high accuracy even in the complex cellular environment (Fig. 7d). To systematically manipulate intracellular pH, HeLa cells were treated with K + /H + -ionophore nigericin (Llopis, J., McCaffery, JM, Miyawaki, A., Farquhar, MG & Tsien, RY). Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 95, 6803-6808 (1998)). Incubated in high potassium buffer solution. By measuring the fluorescence signal intensity ratio (I 535 /I 685 ) in HeLa cells at a specific pH value treated with nigericin in this way, the inventors successfully obtained a pH calibration curve for intracellular pH monitoring (black in Fig. 7d). curves and Fig. 11). From this curve, the inventors confirmed that the detectable range (pH 6.5-7.5) of the nanoprobe of the present invention is perfectly suitable for the detection and delivery of physiological pH in living cells (Jaworska, A., Malek, K. & Kudelski). , A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021). Interestingly, in the nanoprobe of the present invention, almost the same PL intensity was measured in and outside living cells at the same pH 7.5 regardless of the surrounding environment (right inset of Fig. 7d and Fig. 12a,b,d); In the three experimental groups (pH 7, 7.5 and 8), the PL intensities obtained inside and outside the HeLa cells were also almost identical (Fig. 12 c, e). From this observation, the nanoprobe of the present invention can be used with various ions, proteins, and metabolites (Ellis, RJ Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114-119 (2001) ), suggesting that it can respond accurately to changes in pH even in complex cellular environments including
도 8은 나노탐침의 광 안정성과 재현성 시험 결과를 나타낸 것으로, 도 8a에 따르면, 버퍼 액적(1x PBS, pH 7.4)에 담긴 나노탐침에 대한 연속 레이저 노출(473nm) 동안에 PL 피크 강도(I/I0)의 시간에 따른 변화가 무시될 만큼 거의 없었다. 여기서, I0는 t=0에서의 PL 피크 강도이다. 도 8b는 산성 액적(1x PBS, pH 5.0) 및 염기성 액적(1x PBS, pH 7.5)에서 번갈아 측정된 결과이다. pH가 5.0(흰색)과 7.5(검은색) 사이에서 주기적으로 변동(n=3)하는 것으로부터 나노탐침의 재현성이 우수함을 알 수 있었다. Fig. 8 shows the results of the light stability and reproducibility test of the nanoprobe. According to Fig. 8a, the PL peak intensity (I/I 0 ), the change with time was hardly negligible. where I 0 is the PL peak intensity at t=0. Figure 8b is the result of the measurement alternately in the acidic droplet (1x PBS, pH 5.0) and the basic droplet (1x PBS, pH 7.5). It was found that the reproducibility of the nanoprobe was excellent from the periodic fluctuation (n=3) of pH between 5.0 (white) and 7.5 (black).
도 9는 살아있는 헬라 세포에 나노탐침과 테이퍼 광섬유 삽입 사이의 세포 생존 여부를 비교한 것으로, 살아있는 세포와 죽은 세포의 지표로서, 세포를 칼세인-AM(녹색 형광)과 요오드화 프로피듐(적색 형광)으로 염색하였다. 도 9a 내지 9b는 나노탐침(a) 또는 테이퍼진 광섬유(b)의 삽입 및 추출 시의 병합된 (명시야 및 형광) 이미지를 나타낸다(스케일 바, 10μm).9 is a comparison of cell viability between nanoprobe and tapered optical fiber insertion in living HeLa cells. As an indicator of living cells and dead cells, cells were treated with calcein-AM (green fluorescence) and propidium iodide (red fluorescence). was dyed with 9a to 9b show merged (brightfield and fluorescence) images upon insertion and extraction of a nanoprobe (a) or tapered optical fiber (b) (scale bar, 10 μm).
도 10은 삽입된 나노탐침(회색) 또는 테이퍼진 광섬유(흰색)를 각각 세포질 및 핵으로부터 추출한 후 세포 생존율의 히스토그램(n=20)을 도시한 것으로, 헬라 세포는 죽은 세포의 지표로서 요오드화 프로피듐 염료로 염색되었다. 세포의 생존율은 적색 형광 신호가 없는 생세포의 수에 기초한다.Figure 10 shows a histogram (n = 20) of cell viability after the inserted nanoprobe (grey) or tapered optical fiber (white) was extracted from the cytoplasm and nucleus, respectively. HeLa cells were propidium iodide as an indicator of dead cells. dyed with dyes. Cell viability is based on the number of viable cells without a red fluorescence signal.
도 11은 세포내 환경을 대상으로 하는 pH 검정곡선(pH calibration curve)을 획득하기 위한 볼츠만 피팅을 도시한 것으로, 도 11a는 pH 검정곡선의 볼츠만 방정식이고, 도 11b는 니게리신 처리된(nigericin-treated) 헬라 세포의 pH 값의 함수로서 강도 비(I535/I685)의 볼츠만 피팅 곡선(왼쪽 그래프), 및 각 매개변수의 값(오른쪽 표)을 나타낸다.Figure 11 shows a Boltzmann fitting for obtaining a pH calibration curve for the intracellular environment, Figure 11a is the Boltzmann equation of the pH calibration curve, Figure 11b is nigericin treated (nigericin) -treated) Boltzmann fitting curves (left graph) of the intensity ratio (I 535 /I 685 ) as a function of pH value of HeLa cells, and the value of each parameter (right table).
도 12는 헬라 생세포 외부와 내부의 나노탐침의 pH 의존성 형광 신호의 조사 결과를 도시한 것으로, 도 12a 내지 12b는 각각 헬라 세포의 외부(a) 및 내부(b)의 나노선 삽입 부위의 명시야 이미지(고정 pH: 7.5)를 나타내고, 도 12c 내지 12e는 다양한 pH(7.0-8.0)에서 니게리신 처리된 헬라 세포의 외부(검은색 선) 및 내부(회색 선)에서 측정된 나노탐침의 PL 스펙트럼을 나타낸다(스케일 바, 10μm).12 shows the results of investigation of pH-dependent fluorescence signals of nanoprobes outside and inside living HeLa cells. FIGS. 12A to 12B are bright fields of nanowire insertion sites outside (a) and inside (b) HeLa cells, respectively. Images (fixed pH: 7.5) are shown, and FIGS. 12c to 12e are PLs of nanoprobes measured outside (black line) and inside (grey line) of nigericin-treated HeLa cells at various pHs (7.0-8.0). Spectra are shown (scale bar, 10 μm).
도 13은 나노탐침을 이용한 단일 세포 전체 주기 동안 세포질과 세포핵 내에서의 pH값을 모니터링한 결과를 도시한 것으로, 도 13a에 따르면, 나노탐침은 훽스트(Hoechst) 염료로 염색된 헬라 생세포의 세포질(위)과 핵(아래)에 삽입되었다(스케일 바 10μm). 도 13b는 세포질 pH(n=15)와 핵 pH(n=29) 간 비교도이다. 도 13c는 개별 헬라 세포에 대한 세포 주기 단계의 식별 과정을 도시한 것으로, 훽스트(Hoechst) 염료가 생세포의 핵을 특이적으로 염색(1단계)할 때, 본 발명의 자동 이미지 분할 알고리즘을 사용하여 모든 세포에 대해 핵의 순 형광 강도를 계산하고(2단계), DNA 히스토그램을 준비하여 헬라 세포의 세포 주기를 프로파일링하며(3단계), 세포 이미지에 대한 컬러 매핑(colour mapping)을 통해 각 세포의 상태를 식별하였다(4단계)(스케일 바 50μm). 도 13d는 각 세포 주기 단계에 대해 측정된 핵 pH를 보여준다. 세포 주기 단계의 도식(상단)으로서, 훽스트 염색 세포의 암시야 및 병합된(명시야 + 형광) 이미지(중간), 및 핵 pH 값(하단)이 세포 주기 단계별로 표시된다. G1 및 S/G2상은 유사한 pH 값들(G1상: 6.91±0.03(n=14), S/G2상: 6.92±0.03(n=15))을 나타냈으며, 전기(prophase), 중기(metaphase), 말기(telophase), 및 세포질분열에서의 핵 pH 값은 조위 곡선(tidal curve)을 나타냈다(전기: 6.97±0.05(n=10); 중기: 7.01±0.05(n=10); 말기: 7.05±0.03(n=12); 세포질분열: 6.98±0.03(n=16))(스케일 바 10μm).13 shows the results of monitoring the pH values in the cytoplasm and the cell nucleus during the entire cycle of a single cell using the nanoprobe. According to FIG. 13a, the nanoprobe is the cytoplasm ( Inserted into the top) and nucleus (bottom) (scale bar 10 μm). 13B is a comparison diagram between cytoplasmic pH (n=15) and nuclear pH (n=29). 13c shows the identification process of cell cycle phases for individual HeLa cells, when Hoechst dye specifically stains the nucleus of live cells (step 1), using the automatic image segmentation algorithm of the present invention. Calculate the net fluorescence intensity of the nucleus for all cells (step 2), prepare a DNA histogram to profile the cell cycle of HeLa cells (step 3), and color mapping on the cell image for each cell was identified (step 4) (scale bar 50 μm). 13D shows the measured nuclear pH for each cell cycle stage. Schematic (top) of cell cycle stages, dark field and merged (bright field + fluorescence) images of Hoechst stained cells (middle), and nuclear pH values (bottom) are shown for cell cycle stages. G1 and S/G2 phases showed similar pH values (G1 phase: 6.91±0.03 (n=14), S/G2 phase: 6.92±0.03 (n=15)), prophase, metaphase, Nuclear pH values in telophase, and cytoplasmic division, showed tidal curves (early: 6.97±0.05 (n=10); middle: 7.01±0.05 (n=10); late: 7.05±0.03). (n=12); cytoplasmic division: 6.98±0.03 (n=16)) (scale bar 10 μm).
본 발명의 나노탐침은 실시간으로 다른 세포소기관의 국부 pH를 모니터링할 수 있기 때문에, 발명자들은 단일 생세포 내의 세포질 및 핵에 대한 pH값 측정을 성공적으로 시연할 수 있었다(도 13a 내지 13b). 중요한 세포 기능(예: DNA 복제, 유전자 발현 및 후성유전적 조절(epigenetic modulation)(Francastel, C., Schubeler, D., Martin, D. I. K. & Groudine, M. Nuclear compartmentalization and gene activity. Nat. Rev. Mol. Cell Biol. 1, 137-143 (2000); 및 Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem. Lett. 27, 3127-3130 (2017) 참조)에 있어 핵 pH의 중요성에도 불구하고, 핵 내부 pH를 직접 측정(determination)하는 것은 대단히 어려웠는데(Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50-61 (2010) 참조), 주 이유는 세포 내 두 개의 막인 세포막과 핵막이 존재하기 때문이다. 핵막에 존재하는 큰 직경(120nm 이하)의 핵공으로 인해, 많은 연구들이 핵의 pH가 세포질의 pH와 동일하다고 가정하였다(Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50-61 (2010); 및 Fabre, E. & Hurt, E. C. Nfuclear transport. Current Opinion in Cell Biology vol. 6 (EMBL, Heidelberg, 1994) 참조). 그러나, 지난 10년 동안의 최근 연구 결과는 핵 구획이 핵 구획의 자체 내부 pH를 제어할 수 있어 핵 pH를 세포질 pH와 다르게 만들 수 있다고 제안되고 있다(Sherman, T. A., Rongali, S. C., Matthews, T. A., Pfeiffer, J. & Nehrke, K. Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. Biochim. Biophys. Acta - Mol. Cell Res. 1823, 808-817 (2012); Santos, J. M., Martinez-Zaguilαn, R., Facanha, A. R., Hussain, F. & Sennoune, S. R. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am. J. Physiol. - Cell Physiol. 311, C547-C558 (2016); 및 Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem. Lett. 27, 3127-3130 (2017) 참조). 이 논란의 여지가 있는 문제에 답하기 위해, 발명자들은 단일 헬라 생세포의 원하는 위치에 나노탐침을 삽입하여 핵과 세포질의 pH 값을 별도로 측정하였다(도 13a). 결과적으로, 발명자들은 핵 pH(6.92±0.04, n=29)가 세포질 pH(7.11±0.05, n=15)보다 유의미하게 낮음을 발견하였으며(도 13b), 이것은 세포 구획마다 별도의 pH 조절 기능에 의해 핵과 세포질 사이에 pH 구배가 있을 수 있음을 의미한다. Since the nanoprobe of the present invention can monitor the local pH of different organelles in real time, the inventors were able to successfully demonstrate the measurement of pH values for the cytoplasm and nucleus in a single living cell ( FIGS. 13a to 13b ). Critical cellular functions (e.g., DNA replication, gene expression, and epigenetic modulation (Francastel, C., Schubeler, D., Martin, DIK & Groudine, M. Nuclear compartmentalization and gene activity. Nat. Rev. Mol ) Cell Biol. 1, 137-143 (2000); and Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem. Lett. 27, 3127-3130 (2017)), direct determination of nuclear intracellular pH has been extremely difficult (Casey, JR, Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50-61 (2010)), the main reason is that two membranes, the cell membrane and the nuclear membrane, exist in the cell. For this reason, many studies have assumed that the nuclear pH is equal to the cytoplasmic pH (Casey, JR, Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50 -61 (2010); and Fabre, E. & Hurt, EC Nfuclear transport . Current Opinion in Cell Biology vol. 6 (EMBL, Heidelberg, 1994). The ability to control the internal pH of the nuclear compartment It has been suggested that pH can be made different from cytoplasmic pH (Sherman, TA, Rongali, SC, Matthews, TA, Pfeiffer, J. & Nehrke, K. Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. Biochim. Biophys. Acta - Mol. Cell Res. 1823, 808-817 (2012); Santos, JM, Martinez-Zaguilαn, R., Facanha, AR, Hussain, F. & Sennoune, SR Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am. J. Physiol. - Cell Physiol. 311, C547-C558 (2016); and Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem. Lett. 27, 3127-3130 (2017)). To answer this controversial question, the inventors inserted a nanoprobe at a desired location in a single live HeLa cell and measured the pH values of the nucleus and cytoplasm separately (Fig. 13a). As a result, the inventors found that the nuclear pH (6.92 ± 0.04, n = 29) was significantly lower than the cytoplasmic pH (7.11 ± 0.05, n = 15) (Fig. 13b), which contributed to the separate pH control function for each cell compartment. This means that there may be a pH gradient between the nucleus and the cytoplasm.
핵막이 견고함에도 누출 없이 나노탐침에 의해 쉽게 관통되었기 때문에, 발명자들은 전체 인간 세포 주기에 걸쳐 핵 pH 변화를 직접 모니터링할 수 있었다. 이를 위해 사전에, 개별 헬라 세포의 세포 주기 상태를 확인하는 것이 필요하였다(도 13c 내지 도 13d)(Rloukos, V., Pegoraro, G., Voss, T. C. & Misteli, T. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 10, 334-348 (2015) 참조). 원칙적으로, 세포 분열이 진행됨에 따라 핵 내부의 총 DNA 양이 변하는데, 총 DNA 양을 정량화하면 세포 분열의 세포 주기 단계를 결정할 수 있다. 상세하게는, 발명자들은 먼저 핵 내부의 DNA에 특이적으로 결합하여 청색 형광 신호를 방출하는 훽스트(Hoechst) 염료로 세포를 염색하였고(1단계), 자동 영상 분석(핵 분할(nuclei segmentation))을 통해 각 세포의 DNA 함량을 측정하였는데, 여기서 총 형광 강도는 여러 핵에 대해 계산되었다(도 13c 및 방법 참조). 마지막으로 DNA 히스토그램을 기반으로 세포 이미지에 컬러 매핑하여 세포 주기 단계가 식별되었다(4단계). 분석을 통해, 발명자들은 개별 헬라 세포의 세포 주기 단계(G1, S 및 G2/M)를 확인하고, 이어서 각 단계의 비율(G1, 73.9%, S, 11.1%, G2/M, 15.0%)을 얻었으며, 각 단계의 비율은 알려진 헬라 세포의 특성과 잘 일치하였다(G1, 72.1%; S, 12.6%; G2/M, 12%)(Athukorala, Y., Trang, S., Kwok, C. & Yuan, Y. V. Antiproliferative and antioxidant activities and mycosporine-Like amino acid profiles of wild-Harvested and cultivated edible canadian marine red macroalgae. Molecules 21, (2016) 참조).Because the nuclear membrane was easily pierced by the nanoprobe without leakage despite its robustness, the inventors were able to directly monitor changes in nuclear pH across the entire human cell cycle. For this, in advance, it was necessary to confirm the cell cycle status of individual HeLa cells ( FIGS. 13c to 13d ) (Rloukos, V., Pegoraro, G., Voss, TC & Misteli, T. Cell cycle staging of individual cells). by fluorescence microscopy (see Nat. Protoc. 10, 334-348 (2015)). In principle, the total amount of DNA inside the nucleus changes as cell division progresses, and quantifying the total amount of DNA can determine the cell cycle phase of cell division. Specifically, the inventors first stained the cells with Hoechst dye that specifically binds to DNA inside the nucleus and emits a blue fluorescent signal (step 1), and automatic image analysis (nuclei segmentation) was performed. The DNA content of each cell was measured through the assay, where the total fluorescence intensity was calculated for several nuclei (see Figure 13c and Methods). Finally, cell cycle stages were identified by color mapping to cell images based on DNA histograms (step 4). Through the analysis, we identified the cell cycle phases (G1, S and G2/M) of individual HeLa cells, and then calculated the proportions of each phase (G1, 73.9%, S, 11.1%, G2/M, 15.0%). and the ratio of each step was in good agreement with known HeLa cell properties (G1, 72.1%; S, 12.6%; G2/M, 12%) (Athukorala, Y., Trang, S., Kwok, C. & Yuan, YV Antiproliferative and antioxidant activities and mycosporine-Like amino acid profiles of wild-Harvested and cultivated edible canadian marine red macroalgae. Molecules 21, (2016)).
각 세포 주기 단계의 평가(도 13c)를 기반으로, 발명자들은 세포 분열 중 핵 pH 변화를 측정하여 휴지기의 pH 항상성과 유사분열기의 pH 변동을 발견하였다(도 13d). 구체적으로, G1 및 S/G2 단계의 헬라 세포는 유사한 pH 값을 나타내었다(G1 단계: 6.91±0.03(n=14); S/G2 단계: 6.92±0.03(n=15), 도 13d의 하단 회색 박스). 이전에, 여러 연구에서 휴지기 동안 세포질은 ATP 합성/가수분해 및 산화환원 진동과 같은 여러 가지 이유로 pH 변동을 나타내는 것으로 보고되었다(Da Veiga Moreira, J. et al. Cell cycle progression is regulated by intertwined redox oscillators. Theor. Biol. Med. Model. 12, 1-14 (2015); 및 DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab. 7, 11-20 (2008) 참조). 이전과는 다르게, 발명자들은 핵이 G1 및 S/G2 단계에서 pH 변동없이 pH를 보존한다는 것을 분명히 관찰했으며, 이는 아마도 핵막의 pH 조절 기능 때문이라 여겨진다. 휴지기의 이 핵 pH 항상성은 출아 효모(budding yeast)의 핵 pH 변화를 조사한 이전 발견(Zhao, H. et al. Dynamic imaging of cellular pH and redox homeostasis with a genetically encoded dual-functional biosensor, pHaROS, in yeast. J. Biol. Chem. 294, 15768-15780 (2019) 참조)과 일치한다. 놀랍게도, 헬라 세포가 전기(prophase)에 들어갔을 경우, 핵 pH는 세포가 말기(telophase)에 도달할 때까지 계속 소폭 증가했다(전기: 6.97±0.05(n=10), 중기: 7.01±0.05(n=10), 말기: 7.05±0.03(n=12), 도 13d의 하단 흰색 박스, 및 도 14 내지 도 15). 유사분열기 동안, 핵 pH 항상성의 일시적인 파괴는 핵막의 붕괴와 관련이 있을 수 있어(Cooper GM. The Cell: A Molecular Approach. 2nd edition. (Sunderland (MA), Sinauer Associates, 2000) 참조), 일시적으로 핵의 pH 조절 능력을 방해할 수 있다. 그러나, 세포가 유사분열기의 말기에 세포질분열 단계에 도달함에 따라, 핵 pH는 원래의 pH 값(세포질분열: 6.98±0.03(n=16))으로 되돌아갔으며, 이는 분열된 세포 핵막의 재구성이 원래의 pH 항상성의 회복으로 이어질 것임을 시사한다. 발명자들은 전체 세포 주기 동안 pH를 직접 모니터링함으로써, 핵이 자체 pH 조절 기능을 가진다는 것을 분명히 확인하였다.Based on the evaluation of each cell cycle stage (Fig. 13c), the inventors measured nuclear pH changes during cell division to find resting pH homeostasis and mitotic pH fluctuations (Fig. 13d). Specifically, HeLa cells in the G1 and S/G2 stages showed similar pH values (G1 stage: 6.91±0.03 (n=14); S/G2 stage: 6.92±0.03 (n=15), bottom of FIG. 13d ) gray box). Previously, several studies have reported that cytoplasm during resting phase exhibits pH fluctuations for several reasons such as ATP synthesis/hydrolysis and redox oscillations (Da Veiga Moreira, J. et al. Cell cycle progression is regulated by intertwined redox oscillators). Theor. Biol. Med. Model. 12, 1-14 (2015); and DeBerardinis, RJ, Lum, JJ, Hatzivassiliou, G. & Thompson, CB The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation.Cell Metab 7, 11-20 (2008)) . Unlike before, we clearly observed that the nucleus preserves pH without pH fluctuations in the G1 and S/G2 phases, probably due to the pH-regulating function of the nuclear membrane. This quiescent nuclear pH homeostasis is a result of previous findings investigating changes in nuclear pH in budding yeast (Zhao, H. et al. Dynamic imaging of cellular pH and redox homeostasis with a genetically encoded dual-functional biosensor, pHaROS, in yeast). J. Biol. Chem. 294, 15768-15780 (2019)). Surprisingly, when HeLa cells entered prophase, the nuclear pH continued to increase slightly until the cells reached telophase (previous: 6.97±0.05 (n=10), metaphase: 7.01±0.05 ( n=10), late: 7.05±0.03 (n=12), bottom white box in FIG. 13D , and FIGS. 14-15 ). During mitosis, transient disruption of nuclear pH homeostasis may be associated with disruption of the nuclear membrane (see Cooper GM. The Cell: A Molecular Approach. 2nd edition. (Sunderland (MA), Sinauer Associates, 2000)), temporarily It can interfere with the ability of the nucleus to regulate pH. However, as the cells reached the mitotic stage at the end of mitosis, the nuclear pH returned to the original pH value (cytoplasmic: 6.98 ± 0.03 (n = 16)), indicating that the reorganization of the nuclear membrane of the divided cell was originally suggest that it will lead to the restoration of pH homeostasis. By directly monitoring the pH during the entire cell cycle, the inventors clearly confirmed that the nucleus has its own pH control function.
도 14는 공초점 현미경으로 관찰된, 유사분열기 동안 단일 헬라 생세포에의 나노탐침의 삽입에 대한 명시야 이미지(상측 패널) 및 병합(명시야 및 형광, 하측 패널) 이미지를 나타낸다(스케일 바, 10μm).14 shows brightfield images (top panel) and merged (brightfield and fluorescence, bottom panels) images of insertion of a nanoprobe into a single HeLa living cell during mitosis, observed with confocal microscopy (scale bar, 10 μm). ).
도 15는 pH 측정을 위해 유사분열기(전기부터 세포질 분열까지) 동안 핵-특이적 훽스트 염료(흰색)로 염색된 헬라 세포의, 공초점 현미경으로 관찰된 병합(명시야 및 형광) 이미지들을 나타낸다(스케일 바, 10μm).Figure 15 shows merged (bright field and fluorescence) images observed with confocal microscopy of HeLa cells stained with a nuclear-specific Hoechst dye (white) during mitosis (from electrophoresis to cytoplasmic division) for pH measurement (Fig. Scale bar, 10 μm).
도 16은 외부 칼슘 이온에 반응하는 세포질 pH 변화를 도시한 것으로, 이온 스트레스에 대한 실시간 세포질 pH 모니터링 결과를 나타낸다. 도 16a는 과량의 칼슘 이온 존재 시 세포내 산성화의 개략도로서. 일반적으로 고농도의 칼슘 이온은 아데노신 3인산염(ATPs) 및 활성산소종(ROS)의 과잉 생산을 포함하여 세포에 악영향을 일으켜 pH 항상성에 영향을 미친다. 도 16b 내지 16c에 따르면, 외부 칼슘 이온 스트레스에 따른 서로 다른 세포 반응이 세포질 pH 변화에 의해 측정되었다(n=3). 명시야 이미지의 흰색 삼각형은 pH 측정을 위해 본 발명의 나노탐침이 삽입된 위치를 나타낸다. 회색 화살표와 검은색 화살표는 각각 외부 Ca2+ 스트레스의 도입 지점 및 제거 지점을 나타낸다(스케일 바 10μm). FIG. 16 shows changes in cytoplasmic pH in response to external calcium ions, and shows real-time cellular pH monitoring results for ion stress. 16A is a schematic diagram of intracellular acidification in the presence of excess calcium ions. In general, high concentrations of calcium ions affect pH homeostasis by adversely affecting cells, including overproduction of adenosine triphosphates (ATPs) and reactive oxygen species (ROS). 16b to 16c, different cellular responses to external calcium ion stress were measured by changes in cytoplasmic pH (n=3). The white triangle in the bright field image indicates the position where the nanoprobe of the present invention is inserted for pH measurement. Gray and black arrows indicate the point of introduction and removal of external Ca 2+ stress, respectively (scale bar 10 μm).
또한, 발명자들은 외부 2가 이온 스트레스를 제공하여 단일 헬라 생세포의 세포질 pH 역학을 조사한 결과, 개별 세포들이 실제로 이온에 따라 서로 다르게 반응함을 확인하였다(도 16). 과량의 칼슘(5mM)을 세포 배양 배지에 첨가한 경우, 높은 세포외 Ca2+에 의해 유도된 세포내 산성화의 결과로 세포질 pH가 30분 이내에 현저하게 감소했다(7.17±0.02 - 6.97±0.04)(도 16b). 흥미롭게도, Ca2+가 Mg2+로 대체되었을 경우 pH 변화는 미미했다(7.09±0.01 - 7.08±0.01)(도 17). 세포외 배지에 과량의 Ca2+가 존재하면 활성 산소 종(ROS)의 생성, ATP 수준을 증가시킴에 따른 미토콘드리아 기능 장애, 및 심지어 세포 사멸 및 괴사를 통한 세포 사멸을 유발할 수 있는 것으로 알려져 있다(McGinnis, K. M., Wang, K. K. W. & Gnegy, M. E. Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells. J. Neurochem. 72, 1853-1863 (1999); 및 Voccoli, V., Tonazzini, I., Signore, G., Caleo, M. & Cecchini, M. Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis. 5, 1-10 (2014) 참조). 따라서, 헬라 세포의 Ca2+ 의존성 세포내 산성화는 높은 세포외 Ca2+의 부작용에 의해 발생하는 것으로 간주되었으며, 이는 칼슘 이온 처리에 따른 세포 생존율 조사에 의해 추가로 뒷받침되었다(도 18a). 더욱이, 본 발명의 마그네슘 처리 실험은 세포가 세포외 Mg2+ 농도의 증가에 내성이 있음을 보여주었으며, 이전 결과(Libako, P. et al. Blocking the rise of intracellular calcium inhibits the growth of cells cultured in different concentrations of magnesium. Magnes. Res. 25, 12-20 (2012) 참조)와 일치하여 Ca2+ 자극과 달리 세포 오작동이나 세포 사멸이 없었다(도 17 및 도 18b).In addition, as a result of examining the cytoplasmic pH dynamics of single HeLa living cells by providing external divalent ion stress, the inventors confirmed that individual cells actually react differently depending on the ion ( FIG. 16 ). When an excess of calcium (5 mM) was added to the cell culture medium, the cytoplasmic pH significantly decreased within 30 min as a result of intracellular acidification induced by high extracellular Ca 2+ (7.17±0.02 - 6.97±0.04). (Fig. 16b). Interestingly, when Ca 2+ was replaced with Mg 2+ , the pH change was insignificant (7.09±0.01 - 7.08±0.01) ( FIG. 17 ). It is known that the presence of excess Ca 2+ in the extracellular medium can lead to the production of reactive oxygen species (ROS), mitochondrial dysfunction by increasing ATP levels, and even apoptosis through apoptosis and necrosis. McGinnis, KM, Wang, KKW & Gnegy, ME Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells. J. Neurochem. 72, 1853-1863 (1999); and Voccoli, V. , Tonazzini, I., Signore, G., Caleo, M. & Cecchini, M. Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. See Cell Death Dis. 5, 1-10 (2014)) . Therefore, Ca 2+ -dependent intracellular acidification of HeLa cells was considered to be caused by the side effect of high extracellular Ca 2+ , which was further supported by the investigation of cell viability following calcium ion treatment (Fig. 18a). Moreover, the magnesium treatment experiment of the present invention showed that cells are resistant to an increase in extracellular Mg 2+ concentration, and the previous results (Libako, P. et al. Blocking the rise of intracellular calcium inhibits the growth of cells cultured in Consistent with different concentrations of magnesium. Magnes. Res. 25, 12-20 (2012)), unlike Ca 2+ stimulation, there was no cell malfunction or apoptosis ( FIGS. 17 and 18b ).
중요하게는, 헬라 생세포는 외부 이온 스트레스가 제거되었을 때 원래의 pH 상태를 회복하였다(도 16c). pH 항상성의 회복을 관찰하기 위해, 발명자들은 30분 동안 과량의 Ca2+ (5mM)으로 헬라 세포를 배양한 다음, 배지의 Ca2+ 농도를 정상 범위(1.8mM)로 빠르게 조정하였다. 이 과정에서 발명자들은 3개의 개별 세포에서 세포질 pH 변화를 모니터링했다. 이전의 Ca2+ 의존성 세포내 산성화에서 관찰된 바와 같이(도 16b), 처음 30분 동안 높은 세포외 Ca2+는 헬라 세포의 세포질을 산성으로 유도했다(7.10±0.02 - 6.99±0.02). 놀랍게도, 세포외 Ca2+ 스트레스를 제거한 후(도 16c, 검은색 화살표), 세포는 점차 고유한 중성 pH(6.99±0.02 - 7.09±0.02)를 회복했는데, 이는 헬라 생세포의 세포질 pH 항상성이 이전에 이온 스트레스에 의해 야기되었던 pH 조절의 상실로부터 성공적으로 회복되었음을 의미한다. 외부 이온 스트레스에 대한 헬라 세포의 전반적인 경향은 유사했지만, pH로 표현된 헬라 세포의 개별 반응이 크기, 형태, 이웃 세포 및 분할 단계와 같은 세포 간 차이처럼 이질적이었다는 것은 흥미로운 점이다(Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225-257(2005) 참조).Importantly, living HeLa cells restored their original pH state when the external ionic stress was removed (Fig. 16c). To observe the restoration of pH homeostasis, the inventors incubated HeLa cells with an excess of Ca 2+ (5 mM) for 30 min, and then quickly adjusted the Ca 2+ concentration of the medium to the normal range (1.8 mM). During this process, the inventors monitored changes in cytoplasmic pH in three individual cells. As observed in the previous Ca 2+ -dependent intracellular acidification ( FIG. 16b ), high extracellular Ca 2+ during the first 30 min induced the cytoplasm of HeLa cells to be acidic (7.10±0.02 - 6.99±0.02). Remarkably, after removal of extracellular Ca 2+ stress (Fig. 16c, black arrow), cells gradually restored their intrinsic neutral pH (6.99±0.02 - 7.09±0.02), indicating that the cytoplasmic pH homeostasis of living HeLa cells had previously been It means a successful recovery from the loss of pH control caused by ionic stress. Although the overall tendency of HeLa cells to external ionic stress was similar, it is interesting to note that individual responses of HeLa cells, expressed as pH, were heterogeneous, such as size, morphology, and intercellular differences such as neighboring cells and division phase (Kultz, D. Molecular and evolutionary basis of the cellular stress response (see Annu. Rev. Physiol. 67, 225-257 (2005)).
도 17은 과량의 마그네슘 이온(5 mM)으로 처리된 헬라 세포의 세포질 pH의 실시간 측정 결과를 나타낸 것으로, 단일 헬라 세포(n=3)를 추적하여 얻은 명시야 이미지(상측 패널)와 측정된 pH 변화(하측 그래프)를 보여준다. 상측 패널의 흰색 삼각형은 나노탐침의 삽입 위치를 보여준다. 회색 화살표는 매체를 정상 마그네슘 농도(1.8 mM)에서 높은 마그네슘 농도(5 mM)로 교체하는 지점을 나타낸다(스케일 바, 10μm).17 shows the results of real-time measurement of the cytoplasmic pH of HeLa cells treated with an excess of magnesium ions (5 mM). A bright field image (upper panel) obtained by tracking a single HeLa cell (n=3) and the measured pH It shows the change (lower graph). The white triangle in the upper panel shows the insertion position of the nanoprobe. Gray arrows indicate the point at which the medium is switched from a normal magnesium concentration (1.8 mM) to a high magnesium concentration (5 mM) (scale bar, 10 μm).
도 18a 내지 18b는 과량의 칼슘 이온(a)과 과량의 마그네슘 이온(b)으로 처리된 살아있는 헬라 세포의 병합(명시야 및 형광) 이미지 및 암시야 이미지를 나타낸 것으로, 두 분석 모두 헬라 세포를 칼세인-AM과 요오드화 프로피듐으로 전염색하여 세포 생존율을 분석하였다(스케일 바, 100μm). 이로부터 칼슘 이온 처리가 헬라 세포에 스트레스를 주어 생존율을 떨어뜨리지만, 마그네슘 이온 처리는 헬라 세포의 생존율에 영향을 주지 않는다는 사실을 확인할 수 있었다.18a to 18b show merged (bright-field and fluorescence) and dark-field images of live HeLa cells treated with excess calcium ions (a) and excess magnesium ions (b), both assays showing HeLa cells Cell viability was analyzed by transstaining with Sein-AM and propidium iodide (scale bar, 100 μm). From this, it was confirmed that although calcium ion treatment puts stress on HeLa cells and reduces the survival rate, magnesium ion treatment does not affect the survival rate of HeLa cells.
결론conclusion
본 발명에서 국부 pH 검출·전달 기능을 갖춘 나노탐침을 활용하여, 발명자들은 단일 생세포에서 세포 손상 및 누출을 일으키지 않고 세포소기관 및 세포질에 성공적으로 액세스(access)하여 pH 변화를 모니터링할 수 있었다. 비투과성의 세포막과 핵막을 넘어서, 본 발명의 현장 pH 모니터링은 세포내 소기관막의 역할에 대한 근본적인 이해를 제공할 수 있다는 점에서 중요하다. 세포질(7.11±0.05)과 핵(6.92±0.04) 사이의 pH 차이를 관찰한 결과, 핵막에 의해 세포 활동이 상이한 pH 변화를 나타낼 수 있음이 확인되었다(Sherman, T. A., Rongali, S. C., Matthews, T. A., Pfeiffer, J. & Nehrke, K. Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. Biochim. Biophys. Acta - Mol. Cell Res. 1823, 808-817 (2012); Santos, J. M., Martinez-Zaguilαn, R., Facanha, A. R., Hussain, F. & Sennoune, S. R. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am. J. Physiol. - Cell Physiol. 311, C547-C558 (2016); 및 Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem. Lett. 27, 3127-3130 (2017) 참조). 특히, 세포 성장 및 핵 분열 과정에서의 pH 항상성 및 변동은 분해되기 전의 핵막이 세포내 pH 유지 및 핵 수송에 관여하여 생분자 합성을 촉진(Cooper GM. The Cell: A Molecular Approach. 2nd edition. (Sunderland (MA), Sinauer Associates, 2000); 및 Demaurex, N. pH homeostasis of cellular organelles. News Physiol. Sci. 17, 1-5 (2002) 참조)한다는 점을 보여준다. 발명자들이 아는 한, 이것은 특히 인간 세포의 분열하는 핵에서도 독립적인 pH 조절 기능이 존재한다는 최초의 직접적인 증거이다.Utilizing the nanoprobe with local pH detection and delivery in the present invention, the inventors were able to monitor pH changes by successfully accessing organelles and cytoplasm without causing cell damage and leakage in single living cells. Beyond impermeable cell and nuclear membranes, the in situ pH monitoring of the present invention is important in that it can provide a fundamental understanding of the role of intracellular organelle membranes. As a result of observing the pH difference between the cytoplasm (7.11±0.05) and the nucleus (6.92±0.04), it was confirmed that the cell activity can exhibit different pH changes by the nuclear membrane (Sherman, TA, Rongali, SC, Matthews, TA). , Pfeiffer, J. & Nehrke, K. Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. Biochim. Biophys. Acta - Mol. Cell Res. 1823, 808-817 (2012); Santos, JM, Martinez-Zaguilαn, R. , Facanha, AR, Hussain, F. & Sennoune, SR Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am. J. Physiol.-Cell Physiol. 311, C547-C558 (2016); and Nakamura, A. & Tsukiji, S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorganic Med. Chem. Lett. 27, 3127-3130 (2017)). In particular, pH homeostasis and fluctuations in the process of cell growth and nuclear division promote biomolecular synthesis as the nuclear membrane before decomposition is involved in intracellular pH maintenance and nuclear transport (Cooper GM. The Cell: A Molecular Approach. 2nd edition. (Cooper GM. The Cell: A Molecular Approach. 2nd edition.) Sunderland (MA), Sinauer Associates, 2000); and Demaurex, N. pH homeostasis of cellular organelles. News Physiol. Sci. 17, 1-5 (2002)). To the best of the inventors' knowledge, this is the first direct evidence of the existence of an independent pH control function, especially in the dividing nucleus of human cells.
외부 이온 자극에 대한 서로 다른 세포 반응에서 관찰된 바와 같이, 본 발명의 국부 pH 모니터링 나노탐침은 다양한 흥미로운 조건에서 개별 세포의 삶을 연구하는데 널리 적용될 수 있다. 예를 들어, 다양한 세포 거동(예: 분화, 세포 신호 또는 통신, 프로그래밍된 세포 사멸) 동안 세포소기관의 pH 변화를 실시간으로 검출하게 되면 소기관막에 따른 생물학적 과정을 이해하는데 활용될 수 있다(Jaworska, A., Malek, K. & Kudelski, A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021); 및 Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709-2728 (2010) 참조). As observed in different cellular responses to external ion stimuli, the local pH monitoring nanoprobe of the present invention can be widely applied to study the life of individual cells in a variety of interesting conditions. For example, real-time detection of changes in the pH of organelles during various cell behaviors (e.g., differentiation, cell signaling or communication, programmed cell death) could be utilized to understand biological processes along organelle membranes (Jaworska, et al. A., Malek, K. & Kudelski, A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 251, 119410 (2021); and Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709-2728 (2010)).
방법Way
시약 및 재료:Reagents and Materials:
폴리(비닐벤질 클로라이드)(PVC, Mn = 55,000g/mol), 아지드화 나트륨(sodium azide), N,N-디메틸포름아미드(DMF), 1-메틸-2-피롤리디논(NMP), 메탄올, 디메틸 설폭사이드-d6(DMSO-d6) , 한천 분말(agar powder), 10X 인산완충식염수(PBS), 수산화나트륨, 염산(37%), 프로피디움 요오드화물, 칼세인-AM, 및 니제리신 나트륨염은 Sigma-Aldrich(St. Louis, MO)에서 구입했다. 5'-DBCO-T5-FAM-3'은 바이오니아(대전, 한국)에서 합성하였다. HEPES(pH 7.5) 완충액(1 M), 염화칼륨, 이염화칼슘(CaCl2) 및 이염화마그네슘(MgCl2)은 BioPrince(춘천, 한국)에서 구입했다. 훽스트(Hoechst) 33342(10 mg/ml) 용액은 Biotium(Fremont, CA)에서 구입했다. 나노피펫 제작을 위한 유리 모세관(BF-100-50-10)은 Sutter Instrument(Novato, CA)에서 구입했다.Poly(vinylbenzyl chloride) (PVC, M n = 55,000 g/mol), sodium azide, N,N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP) , methanol, dimethyl sulfoxide-d 6 (DMSO-d 6 ), agar powder, 10X phosphate buffered saline (PBS), sodium hydroxide, hydrochloric acid (37%), propidium iodide, calcein-AM, and nigericin sodium salt were purchased from Sigma-Aldrich (St. Louis, MO). 5'-DBCO-T 5 -FAM-3' was synthesized by Bioneer (Daejeon, Korea). HEPES (pH 7.5) buffer (1 M), potassium chloride, calcium dichloride (CaCl 2 ) and magnesium dichloride (MgCl 2 ) were purchased from BioPrince (Chuncheon, Korea). Hoechst 33342 (10 mg/ml) solution was purchased from Biotium (Fremont, CA). Glass capillaries (BF-100-50-10) for nanopipette fabrication were purchased from Sutter Instrument (Novato, CA).
나노탐침의 제작:Fabrication of the nanoprobe:
무수 DMF 용매(0.7mL) 중 PVC(0.014g, 131mmol)와 아지드화 나트륨(0.010g, 220mmol)의 혼합물을 70°C의 호박색 바이알(amber vial)에서 섞고 알루미늄 호일로 덮어 빛을 차단했다. 2시간 반응 후, 메탄올(0.5mL)을 첨가하고, 혼합 용액을 10,000rpm에서 1분간 원심분리(Mini microcentrifuge, Labogene)하여 과량의 미반응 시약을 제거하고 아지드 작용성 폴리머(azide-functionalized polymer)를 침전시켰다. 마지막으로, 얻어진 침전물을 진공 하에 1시간 동안 건조시킨 다음 NMP 용매(50 μL)를 첨가하여 용해시켰다. PVBN3의 성공적인 합성은 1H NMR 분광법으로 확인되었다(도 2). 나노선 제작을 위해 P-97 마이크로피펫 풀러(Sutter Instrument)를 이용하여 유리 나노피펫을 가공하였고, P-2000 레이저 기반 마이크로피펫 풀러(Sutter Instrument)를 이용하여 테이퍼진 광섬유를 제작하였다. 그 후, 유리 나노피펫과 테이퍼진 광섬유의 위치는 250nm 이하(Kohzu Precision)의 위치 정확도로 x-y-z 스테핑 모터 스테이지에 의해 정밀하게 제어되었다. 나노선 제작을 위해 NMP의 PVBN3 용액을 1.0 wt% 농도로 채운 유리 나노피펫을 수직 방향으로 내려서 테이퍼진 광섬유의 끝 부분에 닿게 하였다. 나노피펫을 수직 방향으로 올리면 빠른 용매 증발에 의해 테이퍼진 광섬유의 끝 부분에 PVBN3 나노선이 형성되어 독립형(freestanding) PVBN3 나노선을 형성하였다. 나노선 제작은 2축 CCD 카메라(INFINITY 1-2C, Lumenera Camera), 대물렌즈(100x Plan Apo 무한 보정 대물 렌즈, Mitutoyo), 및 노란색 LED 조명기(정밀 LED 스포트라이트, 590nm, Mightex)로 구성된 자체 광학 이미징 시스템을 사용하여 실시간으로 모니터링되었다. A mixture of PVC (0.014 g, 131 mmol) and sodium azide (0.010 g, 220 mmol) in anhydrous DMF solvent (0.7 mL) was mixed in an amber vial at 70 °C and covered with aluminum foil to block light. After 2 hours of reaction, methanol (0.5 mL) was added, and the mixed solution was centrifuged at 10,000 rpm for 1 minute (Mini microcentrifuge, Labogene) to remove excess unreacted reagent and azide-functionalized polymer. was precipitated. Finally, the obtained precipitate was dried under vacuum for 1 hour and then dissolved by adding NMP solvent (50 μL). Successful synthesis of PVBN 3 was confirmed by 1 H NMR spectroscopy ( FIG. 2 ). A glass nanopipette was processed using a P-97 micropipette puller (Sutter Instrument) for nanowire fabrication, and a tapered optical fiber was manufactured using a P-2000 laser-based micropipette puller (Sutter Instrument). Then, the position of the glass nanopipette and the tapered optical fiber was precisely controlled by an xyz stepping motor stage with a position accuracy of sub-250 nm (Kohzu Precision). For nanowire fabrication, a glass nanopipette filled with NMP's PVBN 3 solution at a concentration of 1.0 wt% was vertically lowered to touch the tip of the tapered optical fiber. When the nanopipette was lifted in the vertical direction, PVBN 3 nanowires were formed at the tip of the tapered optical fiber by rapid solvent evaporation, thereby forming freestanding PVBN 3 nanowires. Nanowire fabrication is self-optical imaging consisting of a two-axis CCD camera (INFINITY 1-2C, Lumenera Camera), an objective (100x Plan Apo infinitely calibrated objective, Mitutoyo), and a yellow LED illuminator (precision LED spotlight, 590 nm, Mightex). was monitored in real time using the system.
나노선에 대한 플루오레세인의 접합:Conjugation of Fluorescein to Nanowires:
DBCO 플루오레세인(FAM)을 PVBN3 나노탐침에 접합하기 위해 유리 마이크로피펫을 DBCO-FAM 분자 함유 수용액(100nM)으로 채웠다. 유리 마이크로피펫을 수직 방향으로 내려 10분동안 나노선을 담그면 DBCO-FAM 분자가 클릭 반응에 의해 PVBN3 나노선의 아지드기에 접합되었다. 나노선과 DBCO-FAM 분자 함유 용액 사이의 접촉 면적을 조정하여 나노탐침의 FAM-라벨링된 영역을 제어할 수 있었다. pH 측정 분석 전에 나노탐침을 1x PBS 용액으로 2회 세척하였다.To bond DBCO fluorescein (FAM) to PVBN 3 nanoprobes, a glass micropipette was filled with an aqueous solution (100 nM) containing DBCO-FAM molecules. When the glass micropipette was vertically lowered and the nanowire was immersed for 10 minutes, the DBCO-FAM molecule was bonded to the azide group of the PVBN 3 nanowire by a click reaction. By adjusting the contact area between the nanowire and the solution containing DBCO-FAM molecules, the FAM-labeled area of the nanoprobe could be controlled. Nanoprobes were washed twice with 1x PBS solution prior to pH measurement analysis.
나노탐침을 통한 형광 신호(PL 스펙트럼) 측정:Measurement of fluorescence signal (PL spectrum) with nanoprobe:
나노탐침의 끝에서부터 DBCO 플루오레세인 신호(PL 스펙트럼)를 여기시키기 위해 컴퓨터 제어 셔터와 결합된 연속 레이저(473nm 청색 고체 레이저, MBL-III-473, Uniotech)를 광섬유 및 1x2 광학 커플러(협대역 광섬유 커플러, 532±15 nm, 50:50 분할, Thorlab)를 통해 나노탐침에 주입하였다. 모든 PL 스펙트럼은 분광계(Avaspec-ULS2048L-EVO, Avantes)로 기록되었다.A continuous laser (473 nm blue solid-state laser, MBL-III-473, Uniotech) coupled with a computer-controlled shutter to excite the DBCO fluorescein signal (PL spectrum) from the tip of the nanoprobe was coupled to a fiber optic and a 1x2 optical coupler (narrowband fiber optic). coupler, 532±15 nm, 50:50 split, Thorlab) was injected into the nanoprobe. All PL spectra were recorded with a spectrometer (Avaspec-ULS2048L-EVO, Avantes).
세포 배양 실험:Cell culture experiments:
헬라 세포는 한국 세포주 은행에서 얻었다. 세포는 적절한 조건(37℃ 온도 및 5% CO2 대기) 하에서 35mm 배양접시(SPL Life Sciences)에 10% 소태아혈청(FBS, Gibco), 100U/ml 페니실린(Welgene), 및 100㎍/ml 스트렙토마이신(Welgene)이 보충된 Dulbecco의 변형된 이글 배지(Eagle's medium)(DMEM, Welgene)에서 배양되었다. 세포 실험을 준비할 때, 헬라 세포를 이틀 동안 배양하였다.HeLa cells were obtained from the Korean cell line bank. Cells were cultured in 35 mm Petri dishes (SPL Life Sciences) under appropriate conditions (37° C. temperature and 5% CO 2 atmosphere), 10% fetal bovine serum (FBS, Gibco), 100 U/ml penicillin (Welgene), and 100 μg/ml strepto Cultured in Dulbecco's modified Eagle's medium (DMEM, Welgene) supplemented with mycin (Welgene). In preparation for cell experiments, HeLa cells were cultured for two days.
세포 생존율 분석:Cell viability assay:
세포 생존율을 분석하기 위해 헬라 세포를 37℃에서 15분 동안 칼세인-AM 및 프로피디움 요오드화물 염료와 함께 사전 배양하였다. 헬라 세포에 대한 나노탐침 및 테이퍼진 광섬유의 삽입 효과를 조사하기 위해, 둘 다 헬라 세포의 세포질 또는 핵에 1분 동안 삽입한 후 추출하였다. 이 과정 후 10x 대물렌즈(0.4 개구수, HC PL APO 10x, Leica)를 이용하여 공초점 현미경(STELLARIS 5, Leica)으로 녹색형광(515 nm)과 적색형광(636 nm)을 관찰하여 세포생존율을 평가하였다. 세포 생존율 히스토그램 조사에서, 세포를 세포 배양 조건에서 3시간 동안 배양한 다음 공초점 현미경으로 이미지화하였다.To analyze cell viability, HeLa cells were pre-incubated with calcein-AM and propidium iodide dyes at 37°C for 15 min. To investigate the insertion effect of nanoprobes and tapered optical fibers on HeLa cells, both were inserted into the cytoplasm or nucleus of HeLa cells for 1 min and then extracted. After this process, green fluorescence (515 nm) and red fluorescence (636 nm) were observed with a confocal microscope (STELLARIS 5, Leica) using a 10x objective lens (0.4 numerical aperture, HC PL APO 10x, Leica) to determine the cell viability. evaluated. In cell viability histogram investigation, cells were cultured in cell culture conditions for 3 hours and then imaged by confocal microscopy.
검정 곡선을 얻기 위한 세포 내 pH 조작:Intracellular pH manipulation to obtain a calibration curve:
배양된 헬라 세포를 다양한 pH 값(5-9)에서 새로 준비된 DMEM 및 니제리신 완충액(10mM HEPES, 10mM NaCl, 130mM KCl, 1mM MgCl2)으로 두 번 세척하였다. 다음으로, 발명자들은 15-25분 동안 37℃에서 세척된 세포에 15 μM 니제리신을 첨가하였다. 서로 다른 pH 의존성 형광 신호(5-9)에 의존하는 형광 신호 강도 비율(intensity ratio)의 S자형(sigmoidal) 증가에 기초하여, pH 검정 곡선은 IUPAC 정의에 의해 계산된 측정 데이터(R2 = 0.9969), 매우 우수한 감도(18.722(I535/I685)/pH 단위), 및 검출 해상도(0.0365 pH 단위)와 좋은 상관관계를 갖는 볼츠만 피팅(Boltzmann fitting)에 의해 얻어졌다. Cultured HeLa cells were washed twice with freshly prepared DMEM and nigericin buffer (10 mM HEPES, 10 mM NaCl, 130 mM KCl, 1 mM MgCl 2 ) at various pH values (5-9). Next, we added 15 μM nigericin to the washed cells at 37° C. for 15-25 minutes. Based on the sigmoidal increase in the fluorescence signal intensity ratio dependent on the different pH-dependent fluorescence signals (5-9), the pH calibration curve is calculated from the measured data (R 2 = 0.9969) calculated by the IUPAC definition. ), very good sensitivity (18.722 (I 535 /I 685 )/pH unit), and a good correlation with detection resolution (0.0365 pH unit) was obtained by Boltzmann fitting.
나노탐침을 단일 헬라 세포에 삽입하기 위한 구성:The configuration for inserting the nanoprobe into a single HeLa cell:
세포 실험 전에, 배양된 헬라 세포를 새로 준비된 DMEM으로 두 번 세척하였다. 단일 헬라 세포 내부의 나노탐침의 삽입 부위를 정밀하게 제어하기 위해, x-y-z 미세조작기(위치 정확도: 250 nm, Kohzu Precision), 모터 컨트롤러(SC-210, Kohzu Precision) 및 컴퓨터로 구성된 자체 미세 광발광 구성을 사용하여 나노탐침을 정확하게 위치시켰다. 삽입하는 동안, 나노탐침의 위치는 10x 대물렌즈(0.4 개구수, HC PL APO 10x, Leica) 및 CCD 카메라를 구비한 공초점 현미경(STELLARIS 5, Leica)으로 모니터링되었다. 나노탐침을 세포 내부의 원하는 위치에 위치시키면서 실시간으로 PL 스펙트럼을 수집하였다.Before cell experiments, cultured HeLa cells were washed twice with freshly prepared DMEM. To precisely control the insertion site of the nanoprobe inside a single HeLa cell, a self-microscopic photoluminescence configuration consisting of an x-y-z micromanipulator (positional accuracy: 250 nm, Kohzu Precision), a motor controller (SC-210, Kohzu Precision) and a computer. was used to accurately position the nanoprobe. During insertion, the position of the nanoprobe was monitored with a 10x objective (0.4 numerical aperture, HC PL APO 10x, Leica) and a confocal microscope (STELLARIS 5, Leica) equipped with a CCD camera. PL spectra were collected in real time while positioning the nanoprobe at a desired position inside the cell.
개별 헬라 세포의 세포 주기 상태 식별:Identify the cell cycle status of individual HeLa cells:
헬라 세포에서 DNA를 특이적으로 염색하기 위하여, 먼저 희석된 훽스트(Hoechst) 33342 용액(10 μg/ml)을 준비한 다음 배양된 세포와 15분 동안 혼합하였다(세포 배양 조건에서). 염색된 세포의 이미지는 2048 x 2048 픽셀에서 공초점 현미경으로 획득하였다. 핵분할을 위한 MATLAB 기반 영상처리 알고리즘을 적용하여 각 세포의 핵형광 강도를 계산하였다. 구체적으로, 알고리즘은 가우스 필터링(Gaussian filtering)을 사용하여 원시 이미지로부터 노이즈를 제거하고 적응 임계값을 설정하여 필터링된 이미지를 이진화하도록 설계되었다. 그런 다음, 열림 및 닫힘 알고리즘을 적용하여 거친 가장자리를 매끄럽게 함으로써 바이너리 이미지를 분할하였다. 개별 핵 분할의 식별 오류를 최소화하기 위해, 작은 바이너리 노이즈 클러스터와 이미지 프로세스의 경계 영역 주변의 핵이 자동으로 제거되었다. 자동으로 분할된 이미지에 기초하여, 각 핵의 분할된 영역 내 형광 강도를 수집하였다. 형광 강도 데이터로부터, 개별 세포가 시각적으로 선택된 컷오프(Roukos, V., Pegoraro, G., Voss, T. C. & Misteli, T. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 10, 334-348 (2015) 참조)에 의해 서로 다른 세포 주기 단계(G1, S, G2/M)로 분류된 DNA 히스토그램을 도식하였다. 여기에서, 각 단계 내의 세포의 비율은 오리진(Origin) 소프트웨어(버전 8.5)를 사용하여 자동으로 계산되었다. 영상에서 각 세포의 위상은 DNA 히스토그램에 기초하여 서로 다른 색상의 세포 영상에 컬러 매핑(color mapping)함으로써 G상, S상, 및 G2/M상으로 구분하였다.To specifically stain DNA in HeLa cells, first a diluted Hoechst 33342 solution (10 μg/ml) was prepared and then mixed with the cultured cells for 15 minutes (in cell culture conditions). Images of stained cells were acquired with a confocal microscope at 2048 x 2048 pixels. The nuclear fluorescence intensity of each cell was calculated by applying a MATLAB-based image processing algorithm for nuclear division. Specifically, the algorithm is designed to binarize the filtered image by removing noise from the raw image using Gaussian filtering and setting an adaptive threshold. The binary image was then segmented by applying an open and close algorithm to smooth out the rough edges. To minimize the identification error of individual nuclear segmentation, small binary noise clusters and nuclei around the boundary region of the image process were automatically removed. Based on the automatically segmented images, the fluorescence intensity within segmented regions of each nucleus was collected. From the fluorescence intensity data, individual cells were visually selected cutoff (Roukos, V., Pegoraro, G., Voss, TC & Misteli, T. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 10, 334-348). (2015)) sorted DNA histograms into different cell cycle stages (G1, S, G2/M) were plotted. Here, the proportion of cells within each stage was automatically calculated using the Origin software (version 8.5). The phase of each cell in the image was divided into G phase, S phase, and G2/M phase by color mapping to cell images of different colors based on a DNA histogram.
세포 주기 동안 핵 pH 변화의 측정:Measurement of changes in nuclear pH during the cell cycle:
배양된 헬라 세포를 새로 준비된 DMEM으로 두 번 세척하고 훽스트(Hoechst) 염료 함유 완충액(DMEM 중 10μg/ml)과 함께 15분 동안 배양하였다. 배지를 새로운 DMEM 완충액으로 교체한 후, 각 세포 주기 단계에서 단일 헬라 생세포에 나노탐침을 삽입하고 공초점 현미경으로 이미징하여 핵 pH를 측정하였다.The cultured HeLa cells were washed twice with freshly prepared DMEM and incubated with Hoechst dye-containing buffer (10 μg/ml in DMEM) for 15 min. After the medium was replaced with fresh DMEM buffer, the nanoprobes were inserted into single HeLa viable cells at each cell cycle stage and the nuclear pH was measured by imaging with a confocal microscope.
이상 본 발명의 일 실시예에 대하여 설명하였으나, 지금까지 설명한 내용들은 본 발명의 바람직한 실시예들 중 그 일부를 예시한 정도에 불과하며, 아래에 첨부된 청구범위에 나타날 수 있는 것을 제외하고는 상술한 내용에 의해 제한되지 않는다. 따라서, 본 발명은 이와 동일한 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 범위 내에서 발명의 기술적 사상과 요지를 벗어나지 않으면서 균등물의 많은 변화, 수정 및 대체가 이루어질 수 있음을 이해하여야 할 것이다. Although an embodiment of the present invention has been described above, the contents described so far are merely illustrative of some of the preferred embodiments of the present invention, and are described above except as may appear in the claims appended below. It is not limited by one content. Accordingly, the present invention understands that many changes, modifications and substitutions of equivalents can be made within the scope set forth in the following claims by those skilled in the art without departing from the spirit and spirit of the invention. will have to
부호의 설명Explanation of symbols
1 : 나노탐침1: nano probe
2 : 광섬유2: optical fiber
2a : 제1 광섬유2a: first optical fiber
2b : 제2 광섬유2b: second optical fiber
3 : 테이퍼진 선단3: tapered tip
4 : 광원4: light source
5 : 광결합기(fiber coupler)5: optical coupler (fiber coupler)
6 : 조작기(manipulator)6: manipulator
7 : 단일 생세포7: single living cell
8 : 분광계8: spectrometer
Claims (29)
- 나노탐침을 제조하는 방법으로서, A method for manufacturing a nanoprobe comprising:(a) 나노선 물질 용액을 나노 피펫에 채우고 상기 나노 피펫을 아래로 내려 상기 나노선 물질 용액을 광섬유의 끝단에 접촉시키는 것;(a) filling a nanopipette with a nanowire material solution and lowering the nanopipette to bring the nanowire material solution into contact with an end of an optical fiber;(b) 상기 나노 피펫을 상승시켜 상기 광섬유 끝단에 나노선(nanowire)을 성장시키는 것; (b) raising the nanopipette to grow a nanowire on the end of the optical fiber;(c) pH 반응성 형광 물질을 함유하는 수용액을 마이크로 피펫에 채우고 상기 마이크로 피펫을 아래로 내려 상기 나노선의 일부가 상기 수용액에 잠기도록 하는 것; 및 (c) filling a micropipette with an aqueous solution containing a pH-responsive fluorescent substance and lowering the micropipette so that a part of the nanowire is immersed in the aqueous solution; and(d) 상기 마이크로 피펫을 상승시켜 pH 반응성 형광 물질로 표지된 나노탐침을 형성하는 것을 포함하는, 나노탐침 제조 방법.(d) raising the micropipette to form a nanoprobe labeled with a pH-responsive fluorescent material.
- 제 1항에 있어서, The method of claim 1,상기 나노선 물질 용액은 소수성 고분자 용액인, 나노탐침 제조 방법. The nanowire material solution is a hydrophobic polymer solution, a method of manufacturing a nanoprobe.
- 제 2항에 있어서, 3. The method of claim 2,상기 소수성 고분자 용액은 적어도 PVBN3, PVB-alkyne, PVB-COOH로 이루어진 군으로부터 선택되는, 나노탐침 제조 방법. The hydrophobic polymer solution is at least PVBN 3 , PVB-alkyne, PVB-COOH is selected from the group consisting of, nanoprobe manufacturing method.
- 제 1항에 있어서, The method of claim 1,상기 광섬유는 테이퍼진 선단을 갖는, 나노탐침 제조 방법. The optical fiber has a tapered tip, nanoprobe manufacturing method.
- 제 1항에 있어서, The method of claim 1,상기 pH 반응성 형광 물질은 상기 나노선과 결합 가능한 작용기를 갖는 플루오레세인 분자인, 나노탐침 제조 방법.The pH-responsive fluorescent material is a fluorescein molecule having a functional group capable of binding to the nanowire.
- 제 5항에 있어서, 6. The method of claim 5,상기 플루오레세인은 적어도 DBCO-FAM, Azide-FAM, Amine-FAM으로 이루어진 군으로부터 선택되는, 나노탐침 제조 방법. Wherein the fluorescein is selected from the group consisting of at least DBCO-FAM, Azide-FAM, and Amine-FAM.
- 제 1항에 있어서, The method of claim 1,상기 pH 반응성 형광 물질에 의한 상기 나노선의 젖음(또는 표지된) 길이는 100 내지 900nm로 제어되는, 나노탐침 제조 방법. Wetting (or labeled) length of the nanowire by the pH-responsive fluorescent material is controlled to 100 to 900nm, nanoprobe manufacturing method.
- 제 1항에 있어서, The method of claim 1,상기 pH 반응성 형광 물질에 의한 상기 나노선의 젖음(또는 표지된) 길이는 100 내지 500nm로 제어되는, 나노탐침 제조 방법. Wetting (or labeled) length of the nanowire by the pH-responsive fluorescent material is controlled to 100 to 500nm, nanoprobe manufacturing method.
- pH 측정을 위한 나노탐침으로서, A nanoprobe for pH measurement, comprising:광섬유;optical fiber;상기 광섬유의 일 끝에 나노선 물질 용액이 성장하여 형성된 나노선; 및 a nanowire formed by growing a nanowire material solution at one end of the optical fiber; and상기 나노선의 일부에 표지된 pH 반응성 형광 물질을 포함하는, 나노탐침. A nanoprobe comprising a pH-responsive fluorescent material labeled on a part of the nanowire.
- 제 9항에 있어서, 10. The method of claim 9,상기 나노선 물질 용액은 소수성 고분자 용액인, 나노탐침. The nanowire material solution is a hydrophobic polymer solution, nanoprobe.
- 제 10항에 있어서, 11. The method of claim 10,상기 소수성 고분자 용액은 적어도 PVBN3, PVB-alkyne, PVB-COOH로 이루어진 군으로부터 선택되는, 나노탐침. The hydrophobic polymer solution is at least PVBN 3 , PVB-alkyne, PVB-COOH, nanoprobes selected from the group consisting of.
- 제 9항에 있어서, 10. The method of claim 9,상기 광섬유의 일 끝은 테이퍼진 선단을 갖는, 나노탐침. One end of the optical fiber has a tapered tip, a nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 pH 반응성 형광 물질은 상기 나노선과 결합 가능한 작용기를 갖는 플루오레세인 분자인, 나노탐침.The pH-responsive fluorescent material is a fluorescein molecule having a functional group capable of binding to the nanowire, nanoprobe.
- 제 13항에 있어서, 14. The method of claim 13,상기 플루오레세인은 적어도 DBCO-FAM, Azide-FAM, Amine-FAM으로 이루어진 군으로부터 선택되는, 나노탐침. The fluorescein is at least selected from the group consisting of DBCO-FAM, Azide-FAM, Amine-FAM, nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 pH 반응성 형광 물질에 의한 상기 나노선의 젖음(또는 표지된) 길이는 100 내지 900nm로 제어되는, 나노탐침. The wetting (or labeled) length of the nanowire by the pH-responsive fluorescent material is controlled to be 100 to 900 nm, the nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 pH 반응성 형광 물질에 의한 상기 나노선의 젖음(또는 표지된) 길이는 100 내지 500nm로 제어되는, 나노탐침. The wetting (or labeled) length of the nanowire by the pH-responsive fluorescent material is controlled to be 100 to 500 nm, the nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 나노탐침은 직경이 균일한 것을 특징으로 하는, 나노탐침.The nanoprobe is characterized in that the diameter is uniform, the nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 나노탐침은 직경이 10nm 내지 900nm인 것을 특징으로 하는, 나노탐침.The nanoprobe is characterized in that the diameter of 10nm to 900nm, nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 나노탐침은 직경이 10nm 내지 400nm인 것을 특징으로 하는, 나노탐침.The nanoprobe is characterized in that the diameter of 10nm to 400nm, the nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 나노탐침은 길이가 1μm 내지 10μm인 것을 특징으로 하는, 나노탐침.The nanoprobe is characterized in that the length of 1μm to 10μm, nanoprobe.
- 제 9항에 있어서, 10. The method of claim 9,상기 나노탐침은 길이가 1μm 내지 5μm인 것을 특징으로 하는, 나노탐침.The nanoprobe is characterized in that the length of 1μm to 5μm, nanoprobe.
- 단일 세포 내의 pH를 측정하는 방법으로서, A method for measuring pH in a single cell, comprising:(a) 광섬유의 테이퍼진 선단에 성장시킨 나노선(nanowire)에 pH에 반응할 수 있는 pH 반응성 형광 물질을 결합하여 형성된 나노탐침을 단일 세포 내에 삽입하는 것;(a) inserting a nanoprobe formed by combining a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on a tapered tip of an optical fiber into a single cell;(b) 상기 나노탐침에 상기 광섬유를 통해 광을 입사하는 것; (b) incident light to the nanoprobe through the optical fiber;(c) 상기 광에 의해 상기 pH 반응성 형광 물질이 여기되어 형광을 발생시키는 것;(c) excitation of the pH-responsive fluorescent material by the light to generate fluorescence;(d) 상기 세포의 pH에 따라 상기 형광 물질로부터 발생하는 형광 신호를 상기 광섬유를 통해 획득하는 것; 및(d) acquiring a fluorescent signal generated from the fluorescent material through the optical fiber according to the pH of the cell; and(e) 상기 형광 신호를 분석하여 세포 내의 pH 값을 얻는 것을 포함하는, 단일 세포 내의 pH 측정 방법.(e) analyzing the fluorescence signal to obtain an intracellular pH value, a method for measuring pH in a single cell.
- 제 22항에 있어서, 23. The method of claim 22,상기 광섬유를 통해 취득된 형광 신호는 광결합기를 경유하여 분광계에 전달되는 것을 특징으로 하는, 단일 세포 내의 pH 측정 방법.A method for measuring pH in a single cell, characterized in that the fluorescence signal acquired through the optical fiber is transmitted to a spectrometer via an optical coupler.
- 제 22항에 있어서, 23. The method of claim 22,상기 pH 값의 측정은 상기 분광계에서의 형광의 스펙트럼 데이터로부터 얻어지는 것을 특징으로 하는, 단일 세포 내의 pH 측정 방법.The method for measuring pH in a single cell, characterized in that the measurement of the pH value is obtained from spectral data of fluorescence in the spectrometer.
- 제 22항에 있어서, 23. The method of claim 22,상기 광섬유를 통해 입사되는 광은 근적외선 또는 가시광선 영역의 광인 것을 특징으로 하는, 단일 세포 내의 pH 측정 방법.Light incident through the optical fiber is light in the near-infrared or visible region, characterized in that the pH measuring method in a single cell.
- 제 22항에 있어서, 23. The method of claim 22,상기 광섬유를 통해 입사되는 광은 300nm 내지 1000nm 파장인 것을 특징으로 하는, 단일 세포 내의 pH 측정 방법.Light incident through the optical fiber is characterized in that the wavelength of 300nm to 1000nm, pH measuring method in a single cell.
- 제 22항에 있어서, 23. The method of claim 22,상기 광섬유를 통해 입사되는 광은 400nm 내지 700nm 파장인 것을 특징으로 하는, 단일 세포 내의 pH 측정 방법.Light incident through the optical fiber is characterized in that the wavelength of 400nm to 700nm, pH measuring method in a single cell.
- 단일 세포 내의 pH를 측정하기 위한 장치로서, A device for measuring pH in a single cell, comprising:광섬유의 테이퍼진 선단에 성장시킨 나노선에 pH에 반응할 수 있는 pH 반응성 형광 물질을 결합하여 형성되는 나노탐침;a nanoprobe formed by combining a pH-responsive fluorescent material capable of responding to pH to a nanowire grown on the tapered tip of an optical fiber;상기 단일 생세포 내에 상기 나노탐침을 삽입하도록 나노탐침의 3차원 이동제어가 가능한 조작기;a manipulator capable of three-dimensional movement control of the nanoprobe to insert the nanoprobe into the single living cell;상기 광섬유에 광을 인가하는 광원;a light source for applying light to the optical fiber;상기 광섬유를 통해 입사된 광을 상기 나노탐침에 전달하고 상기 나노탐침에서 발생된 형광 신호를 추가의 광섬유를 통해 분광계에 전달하도록 광섬유들을 연결하는 광결합기; 및 an optical coupler connecting the optical fibers to transmit the light incident through the optical fiber to the nanoprobe and to transmit the fluorescence signal generated from the nanoprobe to the spectrometer through an additional optical fiber; and상기 나노탐침에서 발생된 형광 신호로부터 스펙트럼 데이터를 분석하여 pH 값을 얻는 분광계를 포함하는, 단일 세포내 pH 측정 장치.A single intracellular pH measuring device comprising a spectrometer for obtaining a pH value by analyzing spectral data from the fluorescence signal generated by the nanoprobe.
- 제 1항 내지 제 3항 중 어느 한 항에 따른 나노선 물질 용액을 제조하는 방법으로서, A method for preparing a nanowire material solution according to any one of claims 1 to 3, comprising:무수 DMF 용매(0.7mL) 중 PVC(0.014g, 131mmol)와 아지드화 나트륨(0.010g, 220mmol)의 혼합물을 70°C의 호박색 바이알(amber vial) 내에서 섞고 알루미늄 호일로 덮어 빛을 차단하는 단계;Mix a mixture of PVC (0.014 g, 131 mmol) and sodium azide (0.010 g, 220 mmol) in anhydrous DMF solvent (0.7 mL) in an amber vial at 70 °C and cover with aluminum foil to block light. step;2시간 반응 후, 메탄올(0.5mL)을 첨가하고, 혼합 용액을 10,000rpm에서 1분간 원심분리하여 과량의 미반응 시약을 제거하고 아지드 작용성 폴리머(azide-functionalized polymer)를 침전시키는 단계; 및 After 2 hours of reaction, methanol (0.5 mL) is added, and the mixed solution is centrifuged at 10,000 rpm for 1 minute to remove excess unreacted reagent and to precipitate an azide-functionalized polymer; and얻어진 침전물을 진공 하에 1시간 동안 건조시킨 다음 NMP 용매(50 μL)를 첨가하여 용해시키는 단계를 포함하는 방법. A method comprising the step of drying the obtained precipitate under vacuum for 1 hour and then dissolving it by adding NMP solvent (50 μL).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0014230 | 2021-02-01 | ||
KR20210014230 | 2021-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022164262A1 true WO2022164262A1 (en) | 2022-08-04 |
Family
ID=82653696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/001600 WO2022164262A1 (en) | 2021-02-01 | 2022-01-28 | Nanoprobe for measuring intracellular ph, and method and apparatus for measuring ph in single cell using same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102706187B1 (en) |
WO (1) | WO2022164262A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009161427A (en) * | 2007-12-14 | 2009-07-23 | National Institute For Materials Science | NANOSCALE pH SENSOR |
JP2010203875A (en) * | 2009-03-03 | 2010-09-16 | National Institute For Materials Science | Surface increasing raman scattering reactive nanoscale ph sensor |
KR101749071B1 (en) * | 2016-03-07 | 2017-06-21 | 포항공과대학교 산학협력단 | Method for quantitative probing of metal ions in single living cells and nanowire-based waveguide probe therefor |
US20180045675A1 (en) * | 2015-02-25 | 2018-02-15 | The Regents Of The University Of California | Single-cell intracellular nano-ph probes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2681304B1 (en) * | 2011-03-03 | 2020-05-27 | The Regents of The University of California | Method of patterning cells on a substrate |
WO2015161161A1 (en) | 2014-04-17 | 2015-10-22 | Drexel University | A method and apparatus for measuring biological activity with single cell resolution |
-
2022
- 2022-01-28 KR KR1020220013182A patent/KR102706187B1/en active IP Right Grant
- 2022-01-28 WO PCT/KR2022/001600 patent/WO2022164262A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009161427A (en) * | 2007-12-14 | 2009-07-23 | National Institute For Materials Science | NANOSCALE pH SENSOR |
JP2010203875A (en) * | 2009-03-03 | 2010-09-16 | National Institute For Materials Science | Surface increasing raman scattering reactive nanoscale ph sensor |
US20180045675A1 (en) * | 2015-02-25 | 2018-02-15 | The Regents Of The University Of California | Single-cell intracellular nano-ph probes |
KR101749071B1 (en) * | 2016-03-07 | 2017-06-21 | 포항공과대학교 산학협력단 | Method for quantitative probing of metal ions in single living cells and nanowire-based waveguide probe therefor |
Non-Patent Citations (1)
Title |
---|
YANG QINGBO, XIAOBEI ZHANG,YANG SONG,KE LI,HONGLAN SHI,HAI XIAO,YINFA MA: "Label‐free in situ pH monitoring in a single living cell using an optical nanoprobe", MEDICAL DEVICES & SENSORS, vol. 3, no. 3, 12 March 2020 (2020-03-12), pages e10079, XP055954334, DOI: 10.1002/mds3.10079 * |
Also Published As
Publication number | Publication date |
---|---|
KR102706187B1 (en) | 2024-09-13 |
KR20220111204A (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3370060B1 (en) | Apparatus and method for illuminating a sample | |
JP6776252B2 (en) | Intracellular nano pH probe in a single cell | |
Huang et al. | A lysosome-targeted fluorescent sensor for the detection of glutathione in cells with an extremely fast response | |
US20070212681A1 (en) | Cell canaries for biochemical pathogen detection | |
Goda et al. | Photoconductive stimulation of neurons cultured on silicon wafers | |
Søndergaard et al. | Design, calibration and application of broad-range optical nanosensors for determining intracellular pH | |
KR100979727B1 (en) | A method of dectecting cancer cells using gold hollow nanoparticle and optical imaging technology | |
Benhammouda et al. | Mitochondria endoplasmic reticulum contact sites (MERCs): proximity ligation assay as a tool to study organelle interaction | |
Chen et al. | A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron | |
Neto et al. | Seeing is believing: noninvasive microscopic imaging modalities for tissue engineering and regenerative medicine | |
WO2022164262A1 (en) | Nanoprobe for measuring intracellular ph, and method and apparatus for measuring ph in single cell using same | |
Dahal et al. | NIR-emitting styryl dyes with large Stokes’ shifts for imaging application: From cellular plasma membrane, mitochondria to zebrafish neuromast | |
Dani et al. | New resolving power for light microscopy: applications to neurobiology | |
Verma et al. | Detection and identification of amino acids and proteins using their intrinsic fluorescence in the visible light spectrum | |
Wen et al. | Advances in protein analysis in single live cells: Principle, instrumentation and applications | |
Wong | Calcium imaging and multielectrode recordings of global patterns of activity in the developing nervous system | |
US20220244278A1 (en) | NANO-PROBE FOR MEASURING pH IN SINGLE CELLS, AND METHOD AND APPARATUS FOR MEASURING pH IN SINGLE CELLS USING THE SAME | |
Porterfield et al. | Noninvasive approaches to measuring respiratory patterns using a PtTFPP-based phase-lifetime self-referencing oxygen optrode | |
CN114113017B (en) | Solid-state nanopore-based functional protein photoelectric combined detection method | |
WO2018053421A9 (en) | Rapid culture free pathogen detection via optical spectroscopy | |
Wu et al. | Dual-functional gold nanorods micro pattern guiding cell alignment and cellular microenvironment monitoring | |
Chen et al. | Application of probes in live cell imaging | |
Burdyga et al. | Simultaneous assessment of cAMP signaling events in different cellular compartments using FRET-based reporters | |
JP4839073B2 (en) | Low light analysis method | |
Li et al. | Label-free optical imaging of ion channel activity on living cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22746288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22746288 Country of ref document: EP Kind code of ref document: A1 |