WO2022163904A1 - Novel protein variant and method for producing l-lysine using same - Google Patents

Novel protein variant and method for producing l-lysine using same Download PDF

Info

Publication number
WO2022163904A1
WO2022163904A1 PCT/KR2021/003261 KR2021003261W WO2022163904A1 WO 2022163904 A1 WO2022163904 A1 WO 2022163904A1 KR 2021003261 W KR2021003261 W KR 2021003261W WO 2022163904 A1 WO2022163904 A1 WO 2022163904A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
substituted
acid sequence
set forth
Prior art date
Application number
PCT/KR2021/003261
Other languages
French (fr)
Korean (ko)
Inventor
권나라
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210013690A external-priority patent/KR20220110411A/en
Priority claimed from KR1020210013694A external-priority patent/KR20220110413A/en
Priority claimed from KR1020210013691A external-priority patent/KR20220110412A/en
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to PCT/KR2021/007122 priority Critical patent/WO2022163951A1/en
Publication of WO2022163904A1 publication Critical patent/WO2022163904A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Definitions

  • the present application relates to a novel protein variant, a Corynebacterium glutamicum strain comprising the variant, and a method for producing L- lysine using the strain.
  • One object of the present application is to provide a protein variant selected from the group consisting of the following (1) to (15):
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • a transcriptional anti-termination protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 13 in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
  • a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine;
  • a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
  • Another object of the present application is to provide a polynucleotide encoding the variant of the present application.
  • Another object of the present application is to include two or more protein variants selected from the group consisting of the following (1) to (15) or a polynucleotide encoding the variant, and having L-lysine-producing ability, Corynebacter Leum glutamicum ( Corynebacterium glutamicum ) To provide a strain:
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • a transcriptional anti-termination protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 13 in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
  • a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine;
  • a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
  • Another object of the present application is to provide a method for producing L-lysine, comprising culturing the Corynebacterium glutamicum strain of the present application in a medium.
  • One aspect of the present application is to provide a protein variant selected from the group consisting of the following (1) to (15):
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • a transcriptional anti-termination protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 13 in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
  • a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine;
  • a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
  • the variant of the present application has an amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, and 57 It may include, or may consist essentially of, the amino acid sequence.
  • the variant of the present application is SEQ ID NO: 3 in the amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57, respectively, Based on the amino acid sequence of 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59, 220, 43, 33, 210, 199, respectively,
  • the amino acids corresponding to positions 272, 304, 169, 294, 358, 130, 382, 209, 592, or 170 are cysteine, leucine, serine, aspartic acid, methionine, isoleucine, glutamine.
  • valine valine, lysine, serine, aspartic acid, cysteine, leucine, phenylalanine, or lysine, wherein SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53 , and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7 with the amino acid sequence set forth in SEQ ID NO: % or 99.9% or more homology or identity.
  • Table 1 Each amino acid sequence of the variants of the present application, positions, and correspondences to amino acid types corresponding to positions are shown in Table 1 below.
  • variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
  • amino acid sequence The amino acid sequence as a reference for counting positions location type of amino acid
  • SEQ ID NO: 1 SEQ ID NO: 3 220 cysteine 2 SEQ ID NO: 5 SEQ ID NO: 7 43 leucine 3 SEQ ID NO: 9 SEQ ID NO: 11 33 serine 4 SEQ ID NO: 13 SEQ ID NO: 15 210 aspartic acid 5 SEQ ID NO: 17 SEQ ID NO: 19 199 methionine 6 SEQ ID NO: 21 SEQ ID NO: 23 272 isoleucine 7 SEQ ID NO: 25 SEQ ID NO: 27 304 glutamine 8 SEQ ID NO: 29 SEQ ID NO: 31 169 valine 9 SEQ ID NO: 33 SEQ ID NO: 35 294 lysine 10 SEQ ID NO: 37 SEQ ID NO: 39 358 serine 11 SEQ ID NO: 41 SEQ ID NO: 43 130 aspartic acid 12 SEQ ID NO: 45 SEQ ID NO: 47 382 cysteine 13 SEQ ID NO: 49 SEQ ID NO: 51 209 leucine 14
  • sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
  • conservative substitution means substituting an amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
  • variant means that one or more amino acids are conservatively substituted and/or modified so that they differ from the amino acid sequence before the mutation of the variant, but have functions or properties. refers to a polypeptide that is maintained. Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the polypeptide before the mutation. In addition, some variants may include variants in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, have been removed.
  • variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein.
  • variant may be used interchangeably with terms such as mutant, modified, mutant polypeptide, mutated protein, mutant and mutant (in English, modified, modified polypeptide, modified protein, mutant, mutein, divergent, etc.) and, as long as it is a term used in a mutated sense, it is not limited thereto.
  • the variant is at position 220, 43 of the amino acid sequence of SEQ ID NO: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59; phenylalanine, proline, amino acids corresponding to positions 33, 210, 199, 272, 304, 169, 294, 358, 130, 382, 209, 592, or 170, respectively; Cysteine, asparagine, valine, threonine, arginine, alanine, glutamic acid, proline, glycine, glycine, proline, tyrosine, or glutamic acid to cysteine, leucine, serine, aspartic acid, methionine, isoleucine, glutamine, valine, lysine, serine, aspartic acid , cysteine, leucine, phenylalanine, or the amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41,
  • amino acid sequence The amino acid sequence as a reference for counting positions mutation position Type of amino acid before substitution
  • amino acid sequence One SEQ ID NO: 1 SEQ ID NO: 3 220 phenylalanine cysteine 2 SEQ ID NO: 5 SEQ ID NO: 7 43 proline leucine 3 SEQ ID NO: 9 SEQ ID NO: 11 33 cysteine serine 4 SEQ ID NO: 13 SEQ ID NO: 15 210 asparagine aspartic acid 5 SEQ ID NO: 17 SEQ ID NO: 19 199 valine methionine 6 SEQ ID NO: 21 SEQ ID NO: 23 272 threonine isoleucine 7 SEQ ID NO: 25 SEQ ID NO: 27 304 arginine glutamine 8 SEQ ID NO: 29 SEQ ID NO: 31 169 alanine valine 9 SEQ ID NO: 33 SEQ ID NO: 35 294 glutamic acid lysine 10 SEQ ID NO: 37 SEQ ID NO: 39 358 proline serine 11 SEQ ID NO: 41
  • variants may include deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide.
  • a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the mutant, either co-translationally or post-translationally.
  • the variants may also be conjugated with other sequences or linkers for identification, purification, or synthesis.
  • the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or base sequences and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
  • a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
  • the variant of the present application is an integral membrane transport protein; DNA polymerase III subunits gamma and tau; a polypeptide comprising the amino acid sequence of SEQ ID NO: 11 and/or a protein encoded by the NCgl3069 gene; transcription antitermination protein; ABC transporter ATP-binding protein; malate dehydrogenase; primosome assembly protein; type II citrate synthase; membrane protein (TerC); mycothione reductase; Co/Zn/Cd efflux system component; DAHP synthase (3-deoxy-D-arabinoheptulosonate-7-phosphate synthase; DAHP synthase); N-succinyldiaminopimelate aminotransferase; Helicase; and/or a polypeptide comprising the amino acid sequence of SEQ ID NO: 59 and/or a protein encoded by the NCgl1098 gene.
  • the term "integral membrane transport protein” refers to the formation of macromolecules, small molecules, and ions, such as other proteins across biological membranes. It is a membrane protein that is involved in migration and is attached to a biological membrane.
  • the integral membrane transport protein of the present application can be used interchangeably as an integral membrane transport protein.
  • the internal membrane transport protein is a known data
  • GenBank of NCBI which is the base, for example, it can be GenBank Accession No. YP_227155.1, WP_011015489.1.
  • it can be a polypeptide having an intrinsic membrane transport protein activity encoded by the NCgl2816 gene. However, it is not limited thereto.
  • DNA polymerase III subunits gamma and tau is a major enzyme responsible for DNA replication
  • the DNA polymerase III tau subunit is a core (alpha ( alpha), epsilon, and theta (consisting of chains) bind to dimerization of the core
  • DNA polymerase III gamma subunit is a clamp loader that obtains beta subunit to lagging strand.
  • the DNA polymerase III gamma and tau subunit of the present application may be used interchangeably as DNA polymerase III gamma and tau subunits, or DNA polymerase III subunit gamma/tau.
  • Polymerase III gamma and tau subunits can be sequenced from GenBank of NCBI, which is a known database, for example, GenBank Accession No. YP_224542.1, WP_011013499.1. Specifically, the dnaZX gene (or NCgl0239 gene) encoded by DNA polymerase III gamma and tau subunit activity, but is not limited thereto.
  • transcription antitermination protein is a transcription complex, capable of interacting with the termination factor Rho and RNA polymerase, transcription termination and/or anti-termination It is a polypeptide that is a transcriptional elongation factor involved in Specifically, the transcriptional anti-termination protein of the present application may be used interchangeably as a transcription termination/antitermination protein, NusG protein, or NusG.
  • the transcriptional anti-termination protein can be sequenced from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be WP_011013678.1, YP_224775.1. Specifically, it may be a polypeptide having transcriptional anti-termination protein activity encoded by the nusG gene (or NCgl0458 gene), but is not limited thereto.
  • the term "ABC transporter ATP-binding protein” is a transmembrane protein that uses the energy obtained by hydrolyzing ATP to move and/or transport various substrates across the membrane, and Polypeptides with biological functions such as repair of unrelated DNA and RNA.
  • the ABC transporter ATP-binding protein of the present application may be used in combination as the ABC transporter ATP-binding protein.
  • the ABC transporter ATP-binding protein may have its sequence obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be WP_011013802.1, YP_224957.1. Specifically, it may be a polypeptide having an ABC transporter ATP-binding protein activity encoded by the NCgl0636 gene, but is not limited thereto.
  • N-succinyldiaminopimelate aminotransferase refers to L-glutamate and N-succinyl-2-amino-6-ketopimelate as substrates, 2-oxoglutarate and N-succinyl-L,L It is an enzyme involved in the lysine biosynthetic pathway to produce -2,6-diaminopimelate.
  • the N-succinyldiaminopimelate aminotransferase of the present application can be used in combination with N-succinyldiaminopimelate aminotransferase.
  • N-succinyldiaminopimelate aminotransferase sequence can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. WP_011014123.1, YP_225395.1.
  • NCgl1058 It may be a polypeptide having N-succinyldiaminopimelate aminotransferase activity encoded by the gene (or dapC gene), but is not limited thereto.
  • malate dehydrogenase is an enzyme that reversibly catalyzes the oxidation of malate (malic acid) to oxaloacetic acid and the reduction of NAD+ to NADH in this process.
  • the malate dehydrogenase of the application can be used interchangeably with malate dehydrogenase, MDH, or malate dehydrogenase
  • the malate dehydrogenase sequence can be obtained from NCBI's GenBank, a known database. and may be, for example, GenBank Accession No. WP_011015079.1, YP_226625.1. Specifically, it may be a polypeptide having malate dehydrogenase activity encoded by NCgl2297 gene (or mdh gene), but is not limited thereto. does not
  • primosome assembly protein refers to a protein having a helicase activity and involved in the DNA replication process.
  • the primosome assembly protein of the present application may be used interchangeably as primosome assembly protein, PriA protein, PriA, or primosomal protein N'.
  • sequence of the primosome assembly protein can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be WP_011014474.1, YP_225886.1. Specifically, it may be a polypeptide having a primosome assembly protein activity encoded by the NCgl1540 gene (or priA gene), but is not limited thereto.
  • helicase is a polypeptide capable of separating a DNA double helix or a strand of a self-associated RNA molecule.
  • the helicase of the present application may be used in combination with a helicase.
  • the helicase sequence can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It can be WP_011014500.1, YP_225922.1. Specifically, it may be a polypeptide having a helicase activity encoded by the NCgl1575 gene, but is not limited thereto.
  • Type II citrate synthase of the present application may be used in combination with integral type II citrate synthase, citrate synthase, or citrate synthase.
  • the type II citrate synthase may have its sequence obtained from GenBank of NCBI, which is a known database, for example, GenBank Accession No. It may be YP_225121.1 or WP_011013914.1. Specifically, it may be a polypeptide having a type II citrate synthase activity encoded by the gltA gene (or NCgl0795 gene), but is not limited thereto.
  • the membrane protein of the present application may be used interchangeably as a membrane protein, a membrane protein, TerC, or a TerC protein.
  • the sequence of the membrane protein can be obtained from GenBank of NCBI, which is a known database, for example, GenBank Accession No. It may be YP_226209.1 or WP_011014789.1. Specifically, it may be a polypeptide having a membrane protein activity encoded by the terC gene (or NCgl1892 gene), but is not limited thereto.
  • Mycothione reductase of the present application may be used in combination with mycothione reductase, or mycothione reductase.
  • the mycothione reductase sequence can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be YP_226245.1 or WP_011014816.1. Specifically, it may be a polypeptide having mycothione reductase activity encoded by the mtr gene (or NCgl1928 gene), but is not limited thereto.
  • the Co/Zn/Cd efflux system component of the present application may be used in combination as a Co/Zn/Cd efflux system component.
  • the Co/Zn/Cd efflux system component can obtain its sequence from NCBI's GenBank, a known database, for example, GenBank Accession No. It may be YP_226309.1, WP_011014862.1. Specifically, it may be a polypeptide having a Co/Zn/Cd efflux system component activity encoded by the NCgl1992 gene, but is not limited thereto.
  • DAHP synthase of the present application is 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthase, 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthase, 3-deoxy-D-arabinoheptulosonate -7-phosphate synthase, or DAHP synthase may be used in combination.
  • the sequence of the DAHP synthase can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be YP_226420.1, WP_011014936.1. Specifically, it may be a polypeptide having DAHP synthase activity encoded by the aroG gene (or NCgl2098 gene), but is not limited thereto.
  • the mutant of the present application may have an activity to increase L-lysine production capacity compared to the wild-type polypeptide.
  • SEQ ID NO: 8 Protein encoded by the NCgl3069 gene SEQ ID NO: 11 SEQ ID NO: 12 transcriptional anti-termination protein SEQ ID NO: 15 SEQ ID NO: 16 ABC transporter ATP-binding protein SEQ ID NO: 19 SEQ ID NO: 20 malate dehydrogenase SEQ ID NO: 23 SEQ ID NO: 24 primosome assembly protein SEQ ID NO: 27 SEQ ID NO: 28 Type II citrate synthase SEQ ID NO: 31 SEQ ID NO: 32 membrane protein SEQ ID NO: 35 SEQ ID NO: 36 mycothion reductase SEQ ID NO: 39 SEQ ID NO: 40 Co/Zn/Cd effluent system components SEQ ID NO: 43 SEQ ID NO: 44 DAHP synthase SEQ ID NO: 47 SEQ
  • corresponding to refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a polypeptide. Identifying an amino acid at a corresponding position may be determining a specific amino acid in a sequence that refers to a specific sequence.
  • corresponding region generally refers to a similar or corresponding position in a related protein or reference protein.
  • any amino acid sequence is aligned with SEQ ID NO: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59, and based on Each amino acid residue in the amino acid sequence is a number of amino acid residues corresponding to those of SEQ ID NO: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59 You can number by referring to the location.
  • a sequence alignment algorithm such as that described in this application can identify the position of an amino acid, or a position at which modifications, such as substitutions, insertions, or deletions, occur compared to a query sequence (also referred to as a "reference sequence").
  • Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needle program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277), etc., but is not limited thereto, and a sequence alignment program, pairwise sequence comparison algorithm, etc. known in the art may be appropriately used.
  • Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
  • polynucleotide refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are linked in a long chain by covalent bonds, and more specifically, encoding the variant. polynucleotide fragments.
  • the polynucleotide encoding the variant of the present application is a base encoding the amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57 sequence may be included.
  • the polynucleotide of the present application has or comprises the sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 can do.
  • the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58.
  • the polynucleotide of the present application is each in the nucleic acid sequence set forth in SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 659, 128, 97, 628, based on the nucleic acid sequence of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, or 60;
  • the bases corresponding to positions 595, 815, 911, 506, 880, 1072, 389, 1144, 626, 1775, or 508, respectively, are G, T, A, G, A, T, A, T, A, T, T, T, T, or A, wherein SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50 , 54, or 58 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or 99.9% or more nu
  • a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added is also It is obvious that they are included within the scope of the present application.
  • Table 4 below shows the correspondence of each nucleic acid sequence, position, and base type corresponding to the position of the polynucleotide of the present application.
  • nucleic acid sequence Nucleic acid sequence as a reference for counting positions location base type One SEQ ID NO: 2 SEQ ID NO: 4 659 G 2 SEQ ID NO: 6 SEQ ID NO: 8 128 T 3 SEQ ID NO: 10 SEQ ID NO: 12 97 A 4 SEQ ID NO: 14 SEQ ID NO: 16 628 G 5 SEQ ID NO: 18 SEQ ID NO: 20 595 A 6 SEQ ID NO: 22 SEQ ID NO: 24 815 T 7 SEQ ID NO: 26 SEQ ID NO: 28 911 A 8 SEQ ID NO: 30 SEQ ID NO: 32 506 T 9 SEQ ID NO: 34 SEQ ID NO: 36 880 A 10 SEQ ID NO: 38 SEQ ID NO: 40 1072 T 11 SEQ ID NO: 42 SEQ ID NO: 44 389 A 12 SEQ ID NO: 46 SEQ ID NO: 48 1144 T 13 SEQ ID NO: 50 SEQ ID NO: 52 626 T 14 SEQ ID NO: 54 SEQ ID NO: 56 1775 T 15 SEQ ID NO: 58 SEQ ID
  • the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
  • the polynucleotide of the present application has 70 homology or identity to the sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 % or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the base sequence, or SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 at least 70%, at least 75%, at least 80% homology or identity to the sequence of 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the base sequence may consist of or consist essentially of, but is not limited thereto.
  • 220 times, 43 times of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57 codons encoding amino acids corresponding to positions 33, 210, 199, 272, 304, 169, 294, 358, 130, 382, 209, 592, and 170, respectively may be one of codons encoding cysteine, leucine, serine, aspartic acid, methionine, isoleucine, glutamine, valine, lysine, serine, aspartic acid, cysteine, leucine, phenylalanine, and lysine, respectively.
  • the polynucleotide may be included without limitation as long as it can hybridize under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a sequence complementary to all or part of the polynucleotide sequence of the present application.
  • the “stringent condition” refers to a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
  • polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other, and polynucleotides having lower homology or identity do not hybridize, or 60 ° C., which is a washing condition of conventional Southern hybridization, 1 ⁇ SSC, 0.1% SDS, specifically 60°C, 0.1 ⁇ SSC, 0.1% SDS, more specifically 68°C, 0.1 ⁇ SSC, 0.1% SDS at a salt concentration and temperature equivalent to once, specifically twice The conditions for washing to 3 times can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization.
  • the term “complementary” is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the overall sequence.
  • a polynucleotide having homology or identity with the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55°C and using the above-described conditions.
  • the Tm value may be 60 °C, 63 °C, or 65 °C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Appropriate stringency for hybridizing the polynucleotide depends on the length of the polynucleotide and the degree of complementarity, and the variables are well known in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; see F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
  • Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application.
  • the vector may be an expression vector for expressing the polynucleotide in a host cell, but is not limited thereto.
  • vector refers to a DNA preparation comprising the base sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host.
  • suitable expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation.
  • the vector After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited, and any vector known in the art may be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used.
  • pBluescript II-based pGEM-based, pTZ-based, pCL-based, pET-based and the like
  • pDZ pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like
  • pC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion.
  • the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted.
  • the selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
  • the term "transformation” refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
  • the polynucleotide includes DNA and/or RNA encoding a target polypeptide.
  • the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant of the present application and the polynucleotide sequence are functionally linked.
  • Corynebacterium glutamicum ( Corynebacterium glutamicum ) comprising the mutant of the present application or the polynucleotide of the present application It is to provide a strain.
  • One example is one or more (eg, one or more or two or more) protein variants selected from the group consisting of (1) to (15) or a polynucleotide encoding the variant, Corynebacterium Glutamicum strain ( Corynebacterium glutamicum ) can be provided:
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
  • N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, wherein proline, which is the amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
  • a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine;
  • a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
  • An example is a protein variant of the following (a) and (b) or a polynucleotide encoding the variant (eg, (a) a polypeptide encoding the variant, (b) a polypeptide encoding the variant, and / or (a) ) and (b) can provide a Corynebacterium glutamicum strain comprising a polypeptide encoding:
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
  • a helicase variant consisting of the amino acid sequence shown in SEQ ID NO: 53, wherein tyrosine, which is an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine.
  • One example is a protein variant of the following (A) and (B) or a polynucleotide encoding the variant (eg, (A) a polypeptide encoding the variant, (B) a polypeptide encoding the variant, and / or (A) ) and (B) a polypeptide encoding), it is possible to provide a Corynebacterium glutamicum strain comprising:
  • (A) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine, and
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
  • a protein variant of the following (I) and (II) or a polynucleotide encoding the variant can provide a Corynebacterium glutamicum strain:
  • an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
  • DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
  • (6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
  • a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
  • a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
  • a DAHP synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 45, wherein glycine, which is an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine.
  • the strain of the present application may include a vector comprising the mutant polypeptide of the present application, a polynucleotide encoding the polypeptide, or the polynucleotide of the present application.
  • strain or microorganism
  • strain includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially.
  • a specific mechanism is weakened or enhanced as a microorganism, and may be a microorganism including genetic modification for the production of a desired polypeptide, protein or product.
  • the strain of the present application includes any one or more (eg, one or more or two or more) of the variant of the present application, the polynucleotide of the present application, and a vector including the polynucleotide of the present application; a strain modified to express a variant of the present application or a polynucleotide of the present application; a strain expressing the variant of the present application or the polynucleotide of the present application (eg, a recombinant strain); Or it may be a strain having the mutant activity of the present application (eg, a recombinant strain), but is not limited thereto.
  • the strain of the present application may be a strain having L-lysine-producing ability.
  • the strain of the present application naturally comprises (i) an integral membrane transport protein; (ii) DNA polymerase III subunits gamma and tau; (iii) a polypeptide comprising the amino acid sequence of SEQ ID NO: 11 and/or a protein encoded by the NCgl3069 gene; (iv) transcription antitermination protein; (v) ABC transporter ATP-binding protein; (vi) malate dehydrogenase; (vii) primosome assembly protein; (viii) type II citrate synthase; (ix) membrane protein (TerC); (x) mycothione reductase; (xi) Co/Zn/Cd efflux system component; (xii) DAHP synthase (3-deoxy-D-arabinoheptulosonate-7-phosphate synthase; DAHP synthase); (xiii) N-succinyldiaminopimelate aminotransferase; (xiv) helicase; and
  • the strain of the present application is transformed with a vector containing the polynucleotide of the present application or a polynucleotide encoding the variant of the present application, and expresses the variant of the present application as a cell or microorganism
  • the strains of the application may include all microorganisms capable of producing L-lysine, including the variants of the present application.
  • the strain of the present application is a recombinant strain in which the protein variant is expressed by introducing a polynucleotide encoding the variant of the present application into a natural wild-type microorganism or a microorganism producing L-lysine, and L-lysine-producing ability is increased.
  • the strain of the present application has an increased L-lysine-producing ability compared to a strain (eg, Corynebacterium glutamicum) that does not include a protein variant or a polynucleotide encoding the variant of the present application (eg, Corynebacterium glutamicum). It may be a recombinant strain.
  • the recombinant strain having an increased ability to produce L-amino acids is a natural wild-type microorganism or a microorganism in which one or more proteins selected from the group consisting of (i) to (xv) are unmodified (that is, (i) to (xv) above.
  • a microorganism expressing one or more wild-type proteins selected from the group consisting of; for example, SEQ ID NOs: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, Or 59 polypeptide and / or microorganism comprising a polynucleotide encoding the same) compared to the L-lysine-producing ability may be increased compared to the microorganism, but is not limited thereto.
  • the non-modified microorganism which is the target strain to compare whether the increase in the L-lysine production ability, is ATCC13032 strain and / or Corynebacterium glutamicum CJ3P (US 9556463 B2; the entire document is incorporated herein by reference) ), but is not limited thereto.
  • the recombinant strain with increased production capacity has an L-lysine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, about 7% compared to the parent strain or unmodified microorganism before mutation.
  • the recombinant strain with increased production capacity has an L-lysine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, 1.16 times or more, compared to the parent strain or unmodified microorganism before mutation. , 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, or about 1.3 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
  • the term “about” is a range including all of ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc. not limited
  • the term "unmodified microorganism” does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed.
  • the unmodified microorganism may refer to a strain in which the transcriptional anti-termination protein variant described herein is not introduced or before it is introduced.
  • the "unmodified microorganism” may be used interchangeably with "strain before modification", “microbe before modification”, “unmodified strain”, “unmodified strain”, "unmodified microorganism” or "reference microorganism”.
  • the microorganism of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ( Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Cory Nebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ), Corynebacterium stationis , Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halo Tolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium pol
  • the term “weakened” of a polypeptide is a concept that includes both reduced or no activity compared to intrinsic activity.
  • the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, attenuation, and the like.
  • the attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide possessed by the original microorganism due to mutation of the polynucleotide encoding the polypeptide, etc.
  • the overall polypeptide activity level and/or concentration (expression amount) in the cell is lower than that of the native strain due to (translation) inhibition, etc., when the expression of the polynucleotide is not made at all, and/or when the expression of the polynucleotide is Even if there is no activity of the polypeptide, it may also be included.
  • the “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. “Inactivation, deficiency, reduction, downregulation, reduction, attenuation” of the activity of a polypeptide compared to the intrinsic activity means that the activity of the specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation is lowered.
  • Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by application of various methods well known in the art (eg, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
  • the attenuation of the polypeptide of the present application is
  • an antisense oligonucleotide eg, antisense RNA
  • an antisense oligonucleotide that complementarily binds to the transcript of said gene encoding the polypeptide
  • deletion of a part or all of the gene encoding the polypeptide may be the removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
  • the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
  • the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another start codon having a lower polypeptide expression rate than the intrinsic start codon It may be substituted with a sequence, but is not limited thereto.
  • the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above is a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide.
  • a combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
  • the expression of a gene may be inhibited or attenuated, but is not limited thereto.
  • antisense oligonucleotide eg, antisense RNA
  • antisense RNA an antisense oligonucleotide that complementarily binds to the transcript of the gene encoding the polypeptide
  • Weintraub, H. et al. Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
  • RTE reverse transcription engineering
  • the term “enhancement” of a polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity.
  • the reinforcement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
  • activation, enhancement, up-regulation, overexpression, and increase may include all of those exhibiting an activity that was not originally possessed, or exhibiting an improved activity compared to an intrinsic activity or an activity prior to modification.
  • intrinsic activity refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”.
  • Enhancement”, “up-regulation”, “overexpression” or “increase” in the activity of a polypeptide compared to its intrinsic activity means that the activity and/or concentration (expression) of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation. amount), which means improved.
  • the enrichment can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from the increase in the level of activity, expression level, or the amount of product excreted from the polypeptide.
  • the enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
  • modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide eg, modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide that has been modified to enhance the activity of the polypeptide;
  • the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introduction into the host cell of a vector to which the polynucleotide encoding the polypeptide is operably linked, which can replicate and function independently of the host it may be Alternatively, the polynucleotide encoding the polypeptide may be achieved by introducing one copy or two or more copies into a chromosome in a host cell.
  • the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto.
  • the vector is the same as described above.
  • Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity.
  • the expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation.
  • the original promoter may be replaced with a strong promoter, but is not limited thereto.
  • Examples of known strong promoters include CJ1 to CJ7 promoters (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.
  • Modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another start codon having a higher expression rate of the polypeptide compared to the intrinsic start codon. It may be a substitution, but is not limited thereto.
  • the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide;
  • a combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
  • the replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
  • the vector used may further include a selection marker for confirming whether or not the chromosome is inserted.
  • the selection marker is the same as described above.
  • the introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be the introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
  • the foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
  • the method used for the introduction may be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
  • Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
  • Selecting an exposed site by analyzing the tertiary structure of the polypeptide and modifying or chemically modifying it for example, compares the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored to determine the degree of sequence similarity. Accordingly, it may be to determine a template protein candidate, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
  • Such enhancement of polypeptide activity is to increase the activity or concentration of the corresponding polypeptide relative to the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or increase the amount of product produced from the polypeptide.
  • the present invention is not limited thereto.
  • Modification of some or all of the polynucleotide in the microorganism of the present application is (a) homologous recombination using a vector for chromosomal insertion in the microorganism or engineered nuclease (e.g., CRISPR) -Cas9) and/or (b) induced by light and/or chemical treatment such as ultraviolet and radiation, but not limited thereto.
  • the method for modifying part or all of the gene may include a method by DNA recombination technology.
  • a part or all of the gene may be deleted.
  • the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
  • Corynebacterium glutamicum strain comprising a mutant of the present application or a polynucleotide of the present application (eg, one selected from the group consisting of (1) to (15) above) It provides a method for producing L-amino acids, comprising the step of culturing in a medium (for example, one or more or two or more) protein variants or a strain comprising a polynucleotide encoding the variant.
  • it may provide a method for producing L- amino acids, comprising the step of culturing the Corynebacterium glutamicum strain of the present application in a medium.
  • the L-amino acid production method of the present application is a medium of the Corynebacterium glutamicum (or Corynebacterium glutamicum comprising the mutant of the present application or the polynucleotide of the present application or the vector of the present application) of the present application. It may include the step of culturing in
  • L-amino acid of the present application may be L-lysine.
  • the term "culture” means growing the Corynebacterium glutamicum strain of the present application in an appropriately controlled environmental condition.
  • the culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain.
  • the culture may be a batch, continuous and/or fed-batch, but is not limited thereto.
  • the term "medium” refers to a material in which nutrients required for culturing the Corynebacterium glutamicum strain of the present application are mixed as a main component, and nutrients including water essential for survival and growth and growth factors.
  • any medium and other culture conditions used for culturing the Corynebacterium glutamicum strain of the present application may be used without particular limitation as long as it is a medium used for culturing conventional microorganisms, but the Corynebacterium glutamicum of the present application Lium glutamicum strain can be cultured while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid and / or vitamin and the like.
  • the culture medium for the Corynebacterium sp. strain can be found in the literature ["Manual of Methods for General Bacteriology” by the American Society for Bacteriology (Washington D.C., USA, 1981)].
  • the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included.
  • natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine
  • organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract
  • the phosphorus may include potassium monobasic phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto.
  • potassium monobasic phosphate dipotassium phosphate
  • sodium-containing salt corresponding thereto.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium.
  • an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation.
  • oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without injection of gas or without injection of gas to maintain anaerobic and microaerobic conditions, which are limited thereto it is not
  • the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
  • the L-amino acid produced by the culture of the present application may be secreted into the medium or may remain in the cell.
  • the L-amino acid production method of the present application includes the steps of preparing the Corynebacterium glutamicum strain of the present application, preparing a medium for culturing the strain, or a combination thereof (regardless of the order, in any order) ), for example, prior to the culturing step, may further include.
  • the method for producing L-amino acids of the present application may further include recovering L-amino acids from the culture medium (the culture medium) or the Corynebacterium glutamicum strain.
  • the recovering step may be further included after the culturing step.
  • the recovery may be to collect the desired L-amino acid using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
  • a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
  • chromatography such as island chromatography, HPLC, or a combination thereof may be used, and a desired L-amino acid may be recovered from a medium or a microorganism using a suitable method known in the art.
  • the L-amino acid production method of the present application may include an additional purification step.
  • the purification may be performed using a suitable method known in the art.
  • the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step. may be performed, but is not limited thereto.
  • variants, polynucleotides, vectors, strains, and the like are as described in the other aspects above.
  • Corynebacterium glutamicum strain comprising a variant of the present application, a polynucleotide encoding the variant, a vector including the polynucleotide or the polynucleotide of the present application; the culture medium; Or to provide a composition for producing L- amino acids comprising a combination of two or more of them.
  • composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and such excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
  • excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
  • the present invention is not limited thereto.
  • composition of the present application variants, polynucleotides, vectors, strains, media and L-amino acids are the same as those described in the other aspects above.

Abstract

The present application relates to a novel protein variant, a Corynebacterium glutamicum strain comprising the variant, and a method for producing L-lysine using the strain.

Description

신규한 단백질 변이체 및 이를 이용한 L-라이신 생산 방법Novel protein variant and L-lysine production method using the same
본 출원은 신규한 단백질 변이체, 상기 변이체를 포함하는 코리네박테리움 글루타미쿰 균주 및 상기 균주를 이용한 L- 라이신 생산 방법에 관한 것이다.The present application relates to a novel protein variant, a Corynebacterium glutamicum strain comprising the variant, and a method for producing L- lysine using the strain.
L-아미노산 및 기타 유용물질을 생산하기 위하여, 고효율 생산 미생물 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 예를 들어, L-라이신 생합성에 관여하는 효소를 코딩하는 유전자의 발현을 증가시키거나 또는 생합성에 불필요한 유전자를 제거하는 것과 같은 목적 물질 특이적 접근 방법이 주로 이용되고 있다(WO2008-082181 A1).In order to produce L-amino acids and other useful substances, various studies are being conducted for the development of high-efficiency production microorganisms and fermentation process technology. For example, a target substance-specific approach such as increasing the expression of a gene encoding an enzyme involved in L-lysine biosynthesis or removing a gene unnecessary for biosynthesis is mainly used (WO2008-082181 A1).
다만, L-라이신의 수요 증가에 따라 효과적인 L-라이신의 생산능 증가를 위한 연구가 여전히 필요한 실정이다.However, as the demand for L-lysine increases, there is still a need for research to increase the effective production capacity of L-lysine.
본 출원의 하나의 목적은 하기 (1) 내지 (15)로 이루어지는 군에서 선택되는 단백질 변이체를 제공하는 것이다: One object of the present application is to provide a protein variant selected from the group consisting of the following (1) to (15):
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 13 in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
(13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; (13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, in which proline, an amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
(14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체; 및(14) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine; and
(15) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체.(15) A protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
본 출원의 다른 하나의 목적은 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present application is to provide a polynucleotide encoding the variant of the present application.
본 출원의 또 다른 하나의 목적은 하기 (1) 내지 (15)로 이루어지는 군에서 선택된 2종 이상의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하고, L-라이신 생산능을 가진, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주를 제공하는 것이다: Another object of the present application is to include two or more protein variants selected from the group consisting of the following (1) to (15) or a polynucleotide encoding the variant, and having L-lysine-producing ability, Corynebacter Leum glutamicum ( Corynebacterium glutamicum ) To provide a strain:
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 13 in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
(13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; (13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, in which proline, an amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
(14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체; 및(14) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine; and
(15) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체.(15) A protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
본 출원의 또 다른 하나의 목적은 본 출원의 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함하는, L-라이신 생산 방법을 제공하는 것이다.Another object of the present application is to provide a method for producing L-lysine, comprising culturing the Corynebacterium glutamicum strain of the present application in a medium.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.A detailed description of this is as follows. Meanwhile, each description and embodiment disclosed in the present application may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in this application fall within the scope of this application. In addition, it cannot be seen that the scope of the present application is limited by the specific descriptions described below. In addition, a number of papers and patent documents are referenced throughout this specification and their citations are indicated. The disclosure contents of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly describe the level of the technical field to which the present invention pertains and the content of the present invention.
본 출원의 하나의 양태는 본 출원의 하나의 목적은 하기 (1) 내지 (15)로 이루어지는 군에서 선택되는 단백질 변이체를 제공하는 것이다: One aspect of the present application is to provide a protein variant selected from the group consisting of the following (1) to (15):
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 13 in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
(13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; (13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, in which proline, an amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
(14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체; 및(14) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine; and
(15) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체.(15) A protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
본 출원의 변이체는 서열번호 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 및 57로 이루어지는 군에서 선택된 서열번호로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application has an amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, and 57 It may include, or may consist essentially of, the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 또는 57로 기재된 아미노산 서열에서 각각 서열번호 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 또는 59의 아미노산 서열을 기준으로 각각 220번, 43번, 33번, 210번, 199번, 272번, 304번, 169번, 294번, 358번, 130번, 382번, 209번, 592번, 또는 170번 위치에 상응하는 아미노산은 시스테인, 류신, 세린, 아스파르트산, 메티오닌, 이소류신, 글루타민, 발린, 라이신, 세린, 아스파르트산, 시스테인, 류신, 페닐알라닌, 또는 라이신이고, 상기 서열번호 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 및 57로 이루어지는 군에서 선택된 서열번호로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 본 출원의 변이체의 각 아미노산 서열, 위치, 및 위치에 상응하는 아미노산 종류에 대한 대응관계를 하기 표 1에 나타내었다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, the variant of the present application is SEQ ID NO: 3 in the amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57, respectively, Based on the amino acid sequence of 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59, 220, 43, 33, 210, 199, respectively, The amino acids corresponding to positions 272, 304, 169, 294, 358, 130, 382, 209, 592, or 170 are cysteine, leucine, serine, aspartic acid, methionine, isoleucine, glutamine. , valine, lysine, serine, aspartic acid, cysteine, leucine, phenylalanine, or lysine, wherein SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53 , and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7 with the amino acid sequence set forth in SEQ ID NO: % or 99.9% or more homology or identity. Each amino acid sequence of the variants of the present application, positions, and correspondences to amino acid types corresponding to positions are shown in Table 1 below. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
  아미노산 서열amino acid sequence 위치를 카운팅하기 위해 기준이 되는 아미노산 서열The amino acid sequence as a reference for counting positions 위치location 아미노산 종류type of amino acid
1One 서열번호 1SEQ ID NO: 1 서열번호 3SEQ ID NO: 3 220220 시스테인cysteine
22 서열번호 5SEQ ID NO: 5 서열번호 7SEQ ID NO: 7 4343 류신leucine
33 서열번호 9SEQ ID NO: 9 서열번호 11SEQ ID NO: 11 3333 세린serine
44 서열번호 13SEQ ID NO: 13 서열번호 15SEQ ID NO: 15 210210 아스파르트산aspartic acid
55 서열번호 17SEQ ID NO: 17 서열번호 19SEQ ID NO: 19 199199 메티오닌methionine
66 서열번호 21SEQ ID NO: 21 서열번호 23SEQ ID NO: 23 272272 이소류신isoleucine
77 서열번호 25SEQ ID NO: 25 서열번호 27SEQ ID NO: 27 304304 글루타민glutamine
88 서열번호 29SEQ ID NO: 29 서열번호 31SEQ ID NO: 31 169169 발린valine
99 서열번호 33SEQ ID NO: 33 서열번호 35SEQ ID NO: 35 294294 라이신lysine
1010 서열번호 37SEQ ID NO: 37 서열번호 39SEQ ID NO: 39 358358 세린serine
1111 서열번호 41SEQ ID NO: 41 서열번호 43SEQ ID NO: 43 130130 아스파르트산aspartic acid
1212 서열번호 45SEQ ID NO: 45 서열번호 47SEQ ID NO: 47 382382 시스테인cysteine
1313 서열번호 49SEQ ID NO: 49 서열번호 51SEQ ID NO: 51 209209 류신leucine
1414 서열번호 53SEQ ID NO: 53 서열번호 55SEQ ID NO: 55 592592 페닐알라닌phenylalanine
1515 서열번호 57SEQ ID NO: 57 서열번호 59SEQ ID NO: 59 170170 라이신lysine
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다. 상기 “보존적 치환(conservative substitution)”은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution. The term “conservative substitution” means substituting an amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 이러한 변이체는 일반적으로 상기 폴리펩티드의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 동정(identify)될 수 있다. 즉, 변이체의 능력은 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이체를 포함할 수 있다. 다른 변이체는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 “변이체”는 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 및 변이체 등의 용어(영문 표현으로는 modification, modified polypeptide, modified protein, mutant, mutein, divergent 등)가 혼용되어 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 본 출원의 목적상 상기 변이체는 서열번호 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 또는 59의 아미노산 서열의 220번째, 43번째, 33번째, 210번째, 199번째, 272번째, 304번째, 169번째, 294번째, 358번째, 130번째, 382번째, 209번째, 592번째, 또는 170번째 위치에 각각 상응하는 아미노산인 페닐알라닌, 프롤린, 시스테인, 아스파라긴, 발린, 트레오닌, 아르기닌, 알라닌, 글루탐산, 프롤린, 글리신, 글리신, 프롤린, 티로신, 또는 글루탐산이 시스테인, 류신, 세린, 아스파르트산, 메티오닌, 이소류신, 글루타민, 발린, 라이신, 세린, 아스파르트산, 시스테인, 류신, 페닐알라닌, 또는 라이신으로 각각 치환된, 서열번호 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 또는 57로 기재된 아미노산 서열을 포함하는 폴리펩티드일 수 있다. 본 출원의 변이체의 각 아미노산 서열, 변이 위치, 위치에 상응하는 치환 전 아미노산, 및 치환 후 아미노산 종류에 대한 대응관계를 하기 표 2에 나타내었다.As used herein, the term "variant" means that one or more amino acids are conservatively substituted and/or modified so that they differ from the amino acid sequence before the mutation of the variant, but have functions or properties. refers to a polypeptide that is maintained. Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the polypeptide before the mutation. In addition, some variants may include variants in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, have been removed. Other variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein. The term “variant” may be used interchangeably with terms such as mutant, modified, mutant polypeptide, mutated protein, mutant and mutant (in English, modified, modified polypeptide, modified protein, mutant, mutein, divergent, etc.) and, as long as it is a term used in a mutated sense, it is not limited thereto. For the purposes of the present application, the variant is at position 220, 43 of the amino acid sequence of SEQ ID NO: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59; phenylalanine, proline, amino acids corresponding to positions 33, 210, 199, 272, 304, 169, 294, 358, 130, 382, 209, 592, or 170, respectively; Cysteine, asparagine, valine, threonine, arginine, alanine, glutamic acid, proline, glycine, glycine, proline, tyrosine, or glutamic acid to cysteine, leucine, serine, aspartic acid, methionine, isoleucine, glutamine, valine, lysine, serine, aspartic acid , cysteine, leucine, phenylalanine, or the amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57, respectively, substituted with It may be a polypeptide comprising Table 2 below shows the correspondence between amino acid sequences, mutation positions, amino acids before substitution corresponding to the positions, and types of amino acids after substitution of the variants of the present application.
  아미노산 서열amino acid sequence 위치를 카운팅하기 위해 기준이 되는 아미노산 서열The amino acid sequence as a reference for counting positions 변이 위치mutation position 치환 전 아미노산 종류Type of amino acid before substitution 치환된 아미노산 종류Substituted Amino Acid Types
1One 서열번호 1SEQ ID NO: 1 서열번호 3SEQ ID NO: 3 220220 페닐알라닌phenylalanine 시스테인cysteine
22 서열번호 5SEQ ID NO: 5 서열번호 7SEQ ID NO: 7 4343 프롤린proline 류신leucine
33 서열번호 9SEQ ID NO: 9 서열번호 11SEQ ID NO: 11 3333 시스테인cysteine 세린serine
44 서열번호 13SEQ ID NO: 13 서열번호 15SEQ ID NO: 15 210210 아스파라긴asparagine 아스파르트산aspartic acid
55 서열번호 17SEQ ID NO: 17 서열번호 19SEQ ID NO: 19 199199 발린valine 메티오닌methionine
66 서열번호 21SEQ ID NO: 21 서열번호 23SEQ ID NO: 23 272272 트레오닌threonine 이소류신isoleucine
77 서열번호 25SEQ ID NO: 25 서열번호 27SEQ ID NO: 27 304304 아르기닌arginine 글루타민glutamine
88 서열번호 29SEQ ID NO: 29 서열번호 31SEQ ID NO: 31 169169 알라닌alanine 발린valine
99 서열번호 33SEQ ID NO: 33 서열번호 35SEQ ID NO: 35 294294 글루탐산glutamic acid 라이신lysine
1010 서열번호 37SEQ ID NO: 37 서열번호 39SEQ ID NO: 39 358358 프롤린proline 세린serine
1111 서열번호 41SEQ ID NO: 41 서열번호 43SEQ ID NO: 43 130130 글리신glycine 아스파르트산aspartic acid
1212 서열번호 45SEQ ID NO: 45 서열번호 47SEQ ID NO: 47 382382 글리신glycine 시스테인cysteine
1313 서열번호 49SEQ ID NO: 49 서열번호 51SEQ ID NO: 51 209209 프롤린proline 류신leucine
1414 서열번호 53SEQ ID NO: 53 서열번호 55SEQ ID NO: 55 592592 티로신tyrosine 페닐알라닌phenylalanine
1515 서열번호 57SEQ ID NO: 57 서열번호 59SEQ ID NO: 59 170170 글루탐산glutamic acid 라이신lysine
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이체의 N-말단에는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이동(translocation)에 관여하는 시그널(또는 리더) 서열이 컨쥬게이트 될 수 있다. 또한 상기 변이체는 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다. In addition, variants may include deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide. For example, a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the mutant, either co-translationally or post-translationally. The variants may also be conjugated with other sequences or linkers for identification, purification, or synthesis.
본 출원의 단백질의 변이체를 포함하는, 코리네박테리움 글루타미쿰 균주를 배양하는 경우, 기존 비변형 폴리펩티드를 갖는 미생물에 비해 고수율의 L-라이신 생산이 가능하다. In the case of culturing a Corynebacterium glutamicum strain comprising a variant of the protein of the present application, it is possible to produce a high yield of L-lysine compared to a microorganism having an existing unmodified polypeptide.
본 출원에서 용어, ‘상동성 (homology)’ 또는 ‘동일성 (identity)’은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.As used herein, the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or base sequences and may be expressed as a percentage. The terms homology and identity can often be used interchangeably.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.Whether any two polynucleotide or polypeptide sequences have homology, similarity or identity can be determined, for example, by Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444, using a known computer algorithm such as the "FASTA" program. or, as performed in the Needleman program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) (version 5.0.0 or later), Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) can be used to determine (GCG program package (Devereux, J., et al, Nucleic Acids) Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop , [ED.,] Academic Press, San Diego, 1994, and [CARILLO ETA/.] (1988) SIAM J Applied Math 48: 1073).For example, BLAST of the National Center for Biotechnology Information Database, or ClustalW can be used to determine homology, similarity or identity.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.Homology, similarity or identity of polynucleotides or polypeptides is described, for example, in Smith and Waterman, Adv. Appl. Math (1981) 2:482, see, for example, Needleman et al. (1970), J Mol Biol. can be determined by comparing sequence information using a GAP computer program such as 48:443. In summary, a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids). Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
본 출원의 일 예로, 본 출원의 변이체는 내재성 막 수송 단백질(integral membrane transport protein); DNA 중합효소 Ⅲ 감마 및 타우 서브유닛(DNA polymerase Ⅲ subunits gamma and tau); 서열번호 11의 아미노산 서열을 포함하는 폴리펩티드 및/또는 NCgl3069 유전자에 의해 코딩되는 단백질; 전사 안티터미네이션 단백질 (Transcription antitermination protein); ABC 트랜스포터 ATP-결합 단백질(ABC transporter ATP-binding protein); 말레이트 디하이드로게나제(malate dehydrogenase); 프리모솜 조립 단백질(primosome assembly protein); 타입 II 시트레이트 신타아제(type II citrate synthase); 막 단백질 (membrane protein, TerC); 미코티온 리덕타제(mycothione reductase); Co/Zn/Cd 유출 시스템 컴포넌트(Co/Zn/Cd efflux system component); DAHP 신타아제(3-deoxy-D-arabinoheptulosonate-7-phosphate synthase; DAHP synthase); N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제(N-succinyldiaminopimelate aminotransferase); 헬리카제(Helicase); 및/또는 서열번호 59의 아미노산 서열을 포함하는 폴리펩티드 및/또는 NCgl1098 유전자에 의해 코딩되는 단백질의 활성을 가질 수 있다. As an example of the present application, the variant of the present application is an integral membrane transport protein; DNA polymerase III subunits gamma and tau; a polypeptide comprising the amino acid sequence of SEQ ID NO: 11 and/or a protein encoded by the NCgl3069 gene; transcription antitermination protein; ABC transporter ATP-binding protein; malate dehydrogenase; primosome assembly protein; type II citrate synthase; membrane protein (TerC); mycothione reductase; Co/Zn/Cd efflux system component; DAHP synthase (3-deoxy-D-arabinoheptulosonate-7-phosphate synthase; DAHP synthase); N-succinyldiaminopimelate aminotransferase; Helicase; and/or a polypeptide comprising the amino acid sequence of SEQ ID NO: 59 and/or a protein encoded by the NCgl1098 gene.
본 출원에서 용어, "내재성 막 수송 단백질(integral membrane transport protein)”는 생물학적 막(biological membrane)을 가로지르는 다른 단백질과 같은 거대분자(macromolecules), 소분자(small molecules), 및 이온(ions)의 이동에 관여하는, 생물학적 막에 부착되는 막 단백질이다. 구체적으로, 본 출원의 내재성 막 수송 단백질은 integral membrane transport protein로 혼용하여 사용될 수 있다. 본 출원에서 상기 내재성 막 수송 단백질은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_227155.1, WP_011015489.1 일 수 있다. 구체적으로 NCgl2816 유전자에 의해 코딩되는 내재성 막 수송 단백질 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다. As used herein, the term "integral membrane transport protein" refers to the formation of macromolecules, small molecules, and ions, such as other proteins across biological membranes. It is a membrane protein that is involved in migration and is attached to a biological membrane.Specifically, the integral membrane transport protein of the present application can be used interchangeably as an integral membrane transport protein.In the present application, the internal membrane transport protein is a known data The sequence can be obtained from GenBank of NCBI, which is the base, for example, it can be GenBank Accession No. YP_227155.1, WP_011015489.1. Specifically, it can be a polypeptide having an intrinsic membrane transport protein activity encoded by the NCgl2816 gene. However, it is not limited thereto.
본 출원에서 용어, "DNA 중합효소 Ⅲ 감마 및 타우 서브유닛(DNA polymerase Ⅲ subunits gamma and tau)”는 DNA 복제를 담당하는 주요 효소로서, DNA 중합효소 Ⅲ 타우 (tau) 서브유닛은 코어 (알파(alpha), 엡실론(epsilon), 및 세타(theta) 사슬로 구성됨)와 결합하여 코어를 이합체화시키는 역할을 하고, DNA 중합효소 Ⅲ 감마 서브유닛은 베타 서브유닛을 지연 가닥 (lagging strand)에 얻는 클램프 로더 역할을 하는 폴리펩티드이다. 구체적으로, 본 출원의 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛은 DNA polymerase Ⅲ gamma and tau subunits, 또는 DNA polymerase Ⅲ subunit gamma/tau로 혼용하여 사용될 수 있다. 본 출원에서 상기 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_224542.1, WP_011013499.1일 수 있다. 구체적으로 dnaZX 유전자 (또는 NCgl0239 유전자)에 의해 코딩되는 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다. As used herein, the term "DNA polymerase Ⅲ subunits gamma and tau" is a major enzyme responsible for DNA replication, and the DNA polymerase Ⅲ tau subunit is a core (alpha ( alpha), epsilon, and theta (consisting of chains) bind to dimerization of the core, and DNA polymerase III gamma subunit is a clamp loader that obtains beta subunit to lagging strand. Specifically, the DNA polymerase Ⅲ gamma and tau subunit of the present application may be used interchangeably as DNA polymerase Ⅲ gamma and tau subunits, or DNA polymerase Ⅲ subunit gamma/tau. Polymerase III gamma and tau subunits can be sequenced from GenBank of NCBI, which is a known database, for example, GenBank Accession No. YP_224542.1, WP_011013499.1. Specifically, the dnaZX gene (or NCgl0239 gene) encoded by DNA polymerase III gamma and tau subunit activity, but is not limited thereto.
본 출원에서 용어, "전사 안티터미네이션 단백질(transcription antitermination protein)"는 전사 복합체(transcription complex)이며, 종결 인자(termination factor) Rho 및 RNA 중합효소와 상호작용할 수 있으며, 전사 종결 및/또는 항-종결에 관여하는 전사 신장 인자(transcriptional elongation factor)인 폴리펩티드이다. 구체적으로, 본 출원의 전사 안티터미네이션 단백질은 transcription termination/antitermination protein, NusG 단백질, 또는 NusG 로 혼용하여 사용될 수 있다. 본 출원에서 상기 전사 안티터미네이션 단백질 는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. WP_011013678.1, YP_224775.1일 수 있다. 구체적으로 nusG 유전자 (또는 NCgl0458 유전자)에 의해 코딩되는 전사 안티터미네이션 단백질 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다. As used herein, the term "transcription antitermination protein" is a transcription complex, capable of interacting with the termination factor Rho and RNA polymerase, transcription termination and/or anti-termination It is a polypeptide that is a transcriptional elongation factor involved in Specifically, the transcriptional anti-termination protein of the present application may be used interchangeably as a transcription termination/antitermination protein, NusG protein, or NusG. In the present application, the transcriptional anti-termination protein can be sequenced from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be WP_011013678.1, YP_224775.1. Specifically, it may be a polypeptide having transcriptional anti-termination protein activity encoded by the nusG gene (or NCgl0458 gene), but is not limited thereto.
본 출원에서 용어, "ABC 트랜스포터 ATP-결합 단백질(ABC transporter ATP-binding protein)"는 막관통단백질로 ATP를 가수분해한 에너지를 사용하여 다양한 기질을 막을 넘기며 이동시키고/이동시키거나, 수송과 관련이 없는 DNA, RNA의 수리와 같은 생물학적인 기능을 하는 폴리펩티드이다. 구체적으로, 본 출원의 ABC 트랜스포터 ATP-결합 단백질은 ABC transporter ATP-binding protein로 혼용하여 사용될 수 있다. 본 출원에서 상기 ABC 트랜스포터 ATP-결합 단백질은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. WP_011013802.1, YP_224957.1일 수 있다. 구체적으로 NCgl0636 유전자에 의해 코딩되는 ABC 트랜스포터 ATP-결합 단백질 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "ABC transporter ATP-binding protein" is a transmembrane protein that uses the energy obtained by hydrolyzing ATP to move and/or transport various substrates across the membrane, and Polypeptides with biological functions such as repair of unrelated DNA and RNA. Specifically, the ABC transporter ATP-binding protein of the present application may be used in combination as the ABC transporter ATP-binding protein. In the present application, the ABC transporter ATP-binding protein may have its sequence obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be WP_011013802.1, YP_224957.1. Specifically, it may be a polypeptide having an ABC transporter ATP-binding protein activity encoded by the NCgl0636 gene, but is not limited thereto.
본 출원에서 용어, " N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제”는 L-glutamate 및 N-succinyl-2-amino-6-ketopimelate를 기질로 하여, 2-oxoglutarate 및 N-succinyl-L,L-2,6-diaminopimelate을 생산하는 라이신 생합성 경로에 관여하는 효소이다. 구체적으로, 본 출원의 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제는 N-succinyldiaminopimelate aminotransferase로 혼용하여 사용될 수 있다. 본 출원에서 상기 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. WP_011014123.1, YP_225395.1 일 수 있다. 구체적으로 NCgl1058 유전자 (또는 dapC 유전자)에 의해 코딩되는 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다. As used herein, the term "N-succinyldiaminopimelate aminotransferase" refers to L-glutamate and N-succinyl-2-amino-6-ketopimelate as substrates, 2-oxoglutarate and N-succinyl-L,L It is an enzyme involved in the lysine biosynthetic pathway to produce -2,6-diaminopimelate. Specifically, the N-succinyldiaminopimelate aminotransferase of the present application can be used in combination with N-succinyldiaminopimelate aminotransferase. The N-succinyldiaminopimelate aminotransferase sequence can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. WP_011014123.1, YP_225395.1. Specifically, NCgl1058 It may be a polypeptide having N-succinyldiaminopimelate aminotransferase activity encoded by the gene (or dapC gene), but is not limited thereto.
본 출원에서 용어, "말레이트 디하이드로게나제”는 말레이트(malate, 말산)을 옥살아세트산으로 산화시키고, 이 과정에서 NAD+를 NADH로 환원시키는 반응을 가역적으로 촉매하는 효소이다. 구체적으로, 본 출원의 말레이트 디하이드로게나제는 malate dehydrogenase, MDH, 또는 말산 탈수소효소로 혼용하여 사용될 수 있다. 본 출원에서 상기 말레이트 디하이드로게나제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. WP_011015079.1, YP_226625.1 일 수 있다. 구체적으로 NCgl2297 유전자 (또는 mdh 유전자)에 의해 코딩되는 말레이트 디하이드로게나제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term “malate dehydrogenase” is an enzyme that reversibly catalyzes the oxidation of malate (malic acid) to oxaloacetic acid and the reduction of NAD+ to NADH in this process. The malate dehydrogenase of the application can be used interchangeably with malate dehydrogenase, MDH, or malate dehydrogenase In the present application, the malate dehydrogenase sequence can be obtained from NCBI's GenBank, a known database. and may be, for example, GenBank Accession No. WP_011015079.1, YP_226625.1. Specifically, it may be a polypeptide having malate dehydrogenase activity encoded by NCgl2297 gene (or mdh gene), but is not limited thereto. does not
본 출원에서 용어, "프리모솜 조립 단백질”은 헬리카제(helicase) 활성을 가지는 단백질로 DNA replication 과정에 관여하는 단백질을 의미한다. 구체적으로, 본 출원의 프리모솜 조립 단백질은 primosome assembly protein, PriA 단백질, PriA, 또는 primosomal protein N'로 혼용하여 사용될 수 있다. 본 출원에서 상기 프리모솜 조립 단백질은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. WP_011014474.1, YP_225886.1 일 수 있다. 구체적으로 NCgl1540 유전자 (또는 priA 유전자)에 의해 코딩되는 프리모솜 조립 단백질 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "primosome assembly protein" refers to a protein having a helicase activity and involved in the DNA replication process. Specifically, the primosome assembly protein of the present application may be used interchangeably as primosome assembly protein, PriA protein, PriA, or primosomal protein N'. In the present application, the sequence of the primosome assembly protein can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be WP_011014474.1, YP_225886.1. Specifically, it may be a polypeptide having a primosome assembly protein activity encoded by the NCgl1540 gene (or priA gene), but is not limited thereto.
본 출원에서 용어, " 헬리카제(helicase)" 는 DNA 이중 나선 또는 자체 결합된 RNA 분자의 가닥을 분리할 수 있는 폴리펩티드이다. 구체적으로, 본 출원의 헬리카제는 helicase로 혼용하여 사용될 수 있다. 본 출원에서 상기 헬리카제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. WP_011014500.1, YP_225922.1일 수 있다. 구체적으로 NCgl1575 유전자에 의해 코딩되는 헬리카제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다. As used herein, the term "helicase" is a polypeptide capable of separating a DNA double helix or a strand of a self-associated RNA molecule. Specifically, the helicase of the present application may be used in combination with a helicase. In the present application, the helicase sequence can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It can be WP_011014500.1, YP_225922.1. Specifically, it may be a polypeptide having a helicase activity encoded by the NCgl1575 gene, but is not limited thereto.
본 출원의 타입 II 시트레이트 신타아제는 integral type II citrate synthase, 시트레이트 신타아제, 또는 citrate synthase로 혼용하여 사용될 수 있다. 본 출원에서 상기 타입 II 시트레이트 신타아제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_225121.1, WP_011013914.1 일 수 있다. 구체적으로 gltA 유전자(또는 NCgl0795 유전자)에 의해 코딩되는 타입 II 시트레이트 신타아제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.Type II citrate synthase of the present application may be used in combination with integral type II citrate synthase, citrate synthase, or citrate synthase. In the present application, the type II citrate synthase may have its sequence obtained from GenBank of NCBI, which is a known database, for example, GenBank Accession No. It may be YP_225121.1 or WP_011013914.1. Specifically, it may be a polypeptide having a type II citrate synthase activity encoded by the gltA gene (or NCgl0795 gene), but is not limited thereto.
본 출원의 막 단백질은 멤브레인 단백질, membrane protein, TerC, 또는 TerC 단백질로 혼용하여 사용될 수 있다. 본 출원에서 상기 막 단백질은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_226209.1, WP_011014789.1 일 수 있다. 구체적으로 terC 유전자(또는 NCgl1892 유전자)에 의해 코딩되는 막 단백질 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.The membrane protein of the present application may be used interchangeably as a membrane protein, a membrane protein, TerC, or a TerC protein. In the present application, the sequence of the membrane protein can be obtained from GenBank of NCBI, which is a known database, for example, GenBank Accession No. It may be YP_226209.1 or WP_011014789.1. Specifically, it may be a polypeptide having a membrane protein activity encoded by the terC gene (or NCgl1892 gene), but is not limited thereto.
본 출원의 미코티온 리덕타제는 미코티온 환원효소, 또는 mycothione reductase로 혼용하여 사용될 수 있다. 본 출원에서 상기 미코티온 리덕타제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_226245.1, WP_011014816.1 일 수 있다. 구체적으로 mtr 유전자(또는 NCgl1928 유전자)에 의해 코딩되는 미코티온 리덕타제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.Mycothione reductase of the present application may be used in combination with mycothione reductase, or mycothione reductase. In the present application, the mycothione reductase sequence can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be YP_226245.1 or WP_011014816.1. Specifically, it may be a polypeptide having mycothione reductase activity encoded by the mtr gene (or NCgl1928 gene), but is not limited thereto.
본 출원의 Co/Zn/Cd 유출 시스템 컴포넌트는 Co/Zn/Cd efflux system component로 혼용하여 사용될 수 있다. 본 출원에서 상기 Co/Zn/Cd 유출 시스템 컴포넌트는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_226309.1, WP_011014862.1일 수 있다. 구체적으로 NCgl1992 유전자에 의해 코딩되는 Co/Zn/Cd 유출 시스템 컴포넌트 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.The Co/Zn/Cd efflux system component of the present application may be used in combination as a Co/Zn/Cd efflux system component. In the present application, the Co/Zn/Cd efflux system component can obtain its sequence from NCBI's GenBank, a known database, for example, GenBank Accession No. It may be YP_226309.1, WP_011014862.1. Specifically, it may be a polypeptide having a Co/Zn/Cd efflux system component activity encoded by the NCgl1992 gene, but is not limited thereto.
본 출원의 DAHP 신타아제는 3-디옥시-D-아라비노헵툴로손산 7-인산 생성효소, 3-디옥시-D-아라비노헵툴로손산 7-인산 신타아제, 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, 또는 DAHP synthase로 혼용하여 사용될 수 있다. 본 출원에서 상기 DAHP 신타아제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 예를 들면 GenBank Accession No. YP_226420.1, WP_011014936.1 일 수 있다. 구체적으로 aroG 유전자(또는 NCgl2098 유전자)에 의해 코딩되는 DAHP 신타아제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.DAHP synthase of the present application is 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthase, 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthase, 3-deoxy-D-arabinoheptulosonate -7-phosphate synthase, or DAHP synthase may be used in combination. In the present application, the sequence of the DAHP synthase can be obtained from GenBank of NCBI, a known database, for example, GenBank Accession No. It may be YP_226420.1, WP_011014936.1. Specifically, it may be a polypeptide having DAHP synthase activity encoded by the aroG gene (or NCgl2098 gene), but is not limited thereto.
본 출원의 일 예로, 본 출원의 변이체는 야생형 폴리펩티드에 비해 L-라이신 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the mutant of the present application may have an activity to increase L-lysine production capacity compared to the wild-type polypeptide.
상기 내재성 막 수송 단백질; DNA 중합효소 Ⅲ 감마 및 타우 서브유닛; NCgl3069 유전자에 의해 코딩되는 단백질; 전사 안티터미네이션 단백질; ABC 트랜스포터 ATP-결합 단백질; 말레이트 디하이드로게나제; 프리모솜 조립 단백질; 타입 II 시트레이트 신타아제; 막 단백질; 미코티온 리덕타제; Co/Zn/Cd 유출 시스템 컴포넌트; DAHP 신타아제; N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제; 헬리카제; 및/또는 또는 서열번호 59의 아미노산 서열을 포함하는 폴리펩티드 및/또는 NCgl1098 유전자에 의해 코딩되는 단백질의 야생형 폴리펩티드의 아미노산 서열 및 이를 코딩하는 핵산 서열의 일 예를 하기 표 3에 기재하였다. said endogenous membrane transport protein; DNA polymerase III gamma and tau subunits; a protein encoded by the NCgl3069 gene; transcriptional anti-termination protein; ABC transporter ATP-binding protein; malate dehydrogenase; primosome assembly protein; type II citrate synthase; membrane protein; mycothion reductase; Co/Zn/Cd effluent system components; DAHP synthase; N-succinyldiaminopimelate aminotransferase; helicase; and/or an amino acid sequence of a wild-type polypeptide of a polypeptide comprising the amino acid sequence of SEQ ID NO: 59 and/or a protein encoded by the NCgl1098 gene and an example of a nucleic acid sequence encoding the same are shown in Table 3 below.
단백질protein 아미노산 서열amino acid sequence 단백질을 코딩하는 핵산 서열a nucleic acid sequence encoding a protein
내재성 막 수송 단백질endogenous membrane transport protein 서열번호 3SEQ ID NO: 3 서열번호 4SEQ ID NO: 4
DNA 중합효소 Ⅲ 감마 및 타우 서브유닛DNA Polymerase III Gamma and Tau Subunits 서열번호 7SEQ ID NO: 7 서열번호 8SEQ ID NO: 8
NCgl3069 유전자에 의해 코딩되는 단백질Protein encoded by the NCgl3069 gene 서열번호 11SEQ ID NO: 11 서열번호 12SEQ ID NO: 12
전사 안티터미네이션 단백질transcriptional anti-termination protein 서열번호 15SEQ ID NO: 15 서열번호 16SEQ ID NO: 16
ABC 트랜스포터 ATP-결합 단백질ABC transporter ATP-binding protein 서열번호 19SEQ ID NO: 19 서열번호 20SEQ ID NO: 20
말레이트 디하이드로게나제malate dehydrogenase 서열번호 23SEQ ID NO: 23 서열번호 24SEQ ID NO: 24
프리모솜 조립 단백질primosome assembly protein 서열번호 27SEQ ID NO: 27 서열번호 28SEQ ID NO: 28
타입 II 시트레이트 신타아제Type II citrate synthase 서열번호 31SEQ ID NO: 31 서열번호 32SEQ ID NO: 32
막 단백질membrane protein 서열번호 35SEQ ID NO: 35 서열번호 36SEQ ID NO: 36
미코티온 리덕타제mycothion reductase 서열번호 39SEQ ID NO: 39 서열번호 40SEQ ID NO: 40
Co/Zn/Cd 유출 시스템 컴포넌트Co/Zn/Cd effluent system components 서열번호 43SEQ ID NO: 43 서열번호 44SEQ ID NO: 44
DAHP 신타아제DAHP synthase 서열번호 47SEQ ID NO: 47 서열번호 48SEQ ID NO: 48
N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제N-succinyldiaminopimelate aminotransferase 서열번호 51SEQ ID NO: 51 서열번호 52SEQ ID NO: 52
헬리카제helicase 서열번호 55SEQ ID NO: 55 서열번호 56SEQ ID NO: 56
NCgl1098 유전자에 의해 코딩되는 단백질Protein encoded by the NCgl1098 gene 서열번호 59SEQ ID NO: 59 서열번호 60SEQ ID NO: 60
본 출원에서 용어, "상응하는(corresponding to)"은, 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 상응하는 위치의 아미노산을 확인하는 것은 특정 서열을 참조하는 서열의 특정 아미노산을 결정하는 것일 수 있다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 참조 (reference) 단백질에서의 유사하거나 대응되는 위치를 지칭한다. As used herein, the term “corresponding to” refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a polypeptide. Identifying an amino acid at a corresponding position may be determining a specific amino acid in a sequence that refers to a specific sequence. As used herein, "corresponding region" generally refers to a similar or corresponding position in a related protein or reference protein.
예를 들어, 임의의 아미노산 서열을 서열번호 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 또는 59과 정렬(align)하고, 이를 토대로 상기 아미노산 서열의 각 아미노산 잔기는 서열번호 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 또는 59의 아미노산 잔기와 상응하는 아미노산 잔기의 숫자 위치를 참조하여 넘버링 할 수 있다. 예를 들어, 본 출원에 기재된 것과 같은 서열 정렬 알고리즘은, 쿼리 시퀀스("참조 서열"이라고도 함)와 비교하여 아미노산의 위치, 또는 치환, 삽입 또는 결실 등의 변형이 발생하는 위치를 확인할 수 있다.For example, any amino acid sequence is aligned with SEQ ID NO: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59, and based on Each amino acid residue in the amino acid sequence is a number of amino acid residues corresponding to those of SEQ ID NO: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, or 59 You can number by referring to the location. For example, a sequence alignment algorithm such as that described in this application can identify the position of an amino acid, or a position at which modifications, such as substitutions, insertions, or deletions, occur compared to a query sequence (also referred to as a "reference sequence").
이러한 정렬에는 예를 들어 Needleman-Wunsch 알고리즘 (Needleman 및 Wunsch, 1970, J. Mol. Biol. 48: 443-453), EMBOSS 패키지의 Needle 프로그램 (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) 등을 이용할 수 있으나, 이에 제한되지 않고 당업계에 알려진 서열 정렬 프로그램, 쌍 서열(pairwise sequence) 비교 알고리즘 등을 적절히 사용할 수 있다.Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needle program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277), etc., but is not limited thereto, and a sequence alignment program, pairwise sequence comparison algorithm, etc. known in the art may be appropriately used.
본 출원의 다른 하나의 양태는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.As used herein, the term "polynucleotide" refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are linked in a long chain by covalent bonds, and more specifically, encoding the variant. polynucleotide fragments.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 또는 57으로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 또는 58의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 또는 58의 서열로 이루어지거나, 필수적으로 구성될 수 있다. 또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 또는 58로 기재된 핵산 서열에서 각각 서열번호 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 또는 60의 핵산 서열을 기준으로 659번, 128번, 97번, 628번, 595번, 815번, 911번, 506번, 880번, 1072번, 389번, 1144번, 626번, 1775번, 또는 508번 위치에 각각 상응하는 염기는 G, T, A ,G, A, T, A, T, A, T, A, T, T, T, 또는 A이고, 상기 서열번호 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 또는 58로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다. 본 출원의 폴리뉴클레오티드의 각 핵산 서열, 위치, 및 위치에 상응하는 염기 종류에 대한 대응관계를 하기 표 4 에 나타내었다.The polynucleotide encoding the variant of the present application is a base encoding the amino acid sequence set forth in SEQ ID NO: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57 sequence may be included. In one example of the present application, the polynucleotide of the present application has or comprises the sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 can do. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58. can In another example, the polynucleotide of the present application is each in the nucleic acid sequence set forth in SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 659, 128, 97, 628, based on the nucleic acid sequence of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, or 60; The bases corresponding to positions 595, 815, 911, 506, 880, 1072, 389, 1144, 626, 1775, or 508, respectively, are G, T, A, G, A, T, A, T, A, T, A, T, T, T, or A, wherein SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50 , 54, or 58 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or 99.9% or more nucleic acid sequences having homology or identity. In addition, if the sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added is also It is obvious that they are included within the scope of the present application. Table 4 below shows the correspondence of each nucleic acid sequence, position, and base type corresponding to the position of the polynucleotide of the present application.
  핵산 서열nucleic acid sequence 위치를 카운팅하기 위해 기준이 되는 핵산 서열Nucleic acid sequence as a reference for counting positions 위치location 염기 종류base type
1One 서열번호 2SEQ ID NO: 2 서열번호 4SEQ ID NO: 4 659659 GG
22 서열번호 6SEQ ID NO: 6 서열번호 8SEQ ID NO: 8 128128 TT
33 서열번호 10SEQ ID NO: 10 서열번호 12SEQ ID NO: 12 9797 AA
44 서열번호 14SEQ ID NO: 14 서열번호 16SEQ ID NO: 16 628628 GG
55 서열번호 18SEQ ID NO: 18 서열번호 20SEQ ID NO: 20 595595 AA
66 서열번호 22SEQ ID NO: 22 서열번호 24SEQ ID NO: 24 815815 TT
77 서열번호 26SEQ ID NO: 26 서열번호 28SEQ ID NO: 28 911911 AA
88 서열번호 30SEQ ID NO: 30 서열번호 32SEQ ID NO: 32 506506 TT
99 서열번호 34SEQ ID NO: 34 서열번호 36SEQ ID NO: 36 880880 AA
1010 서열번호 38SEQ ID NO: 38 서열번호 40SEQ ID NO: 40 10721072 TT
1111 서열번호 42SEQ ID NO: 42 서열번호 44SEQ ID NO: 44 389389 AA
1212 서열번호 46SEQ ID NO: 46 서열번호 48SEQ ID NO: 48 11441144 TT
1313 서열번호 50SEQ ID NO: 50 서열번호 52SEQ ID NO: 52 626626 TT
1414 서열번호 54SEQ ID NO: 54 서열번호 56SEQ ID NO: 56 17751775 TT
1515 서열번호 58SEQ ID NO: 58 서열번호 60SEQ ID NO: 60 508508 AA
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 또는 58의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 또는 58의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 또는 57의 220번, 43번, 33번, 210번, 199번, 272번, 304번, 169번, 294번, 358번, 130번, 382번, 209번, 592번, 및 170번 위치에 각각 상응하는 아미노산을 코딩하는 코돈은, 각각 시스테인, 류신, 세린, 아스파르트산, 메티오닌, 이소류신, 글루타민, 발린, 라이신, 세린, 아스파르트산, 시스테인, 류신, 페닐알라닌, 및 라이신을 코딩하는 코돈 중 하나일 수 있다.또한, 본 출원의 폴리뉴클레오티드는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화할 수 있는 서열이라면 제한없이 포함될 수 있다. 상기 “엄격한 조건(stringent condition)”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(J. Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1×SSC, 0.1% SDS, 구체적으로 60℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70 homology or identity to the sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 % or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the base sequence, or SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, or 58 at least 70%, at least 75%, at least 80% homology or identity to the sequence of 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the base sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, 220 times, 43 times of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, or 57 codons encoding amino acids corresponding to positions 33, 210, 199, 272, 304, 169, 294, 358, 130, 382, 209, 592, and 170, respectively may be one of codons encoding cysteine, leucine, serine, aspartic acid, methionine, isoleucine, glutamine, valine, lysine, serine, aspartic acid, cysteine, leucine, phenylalanine, and lysine, respectively. The polynucleotide may be included without limitation as long as it can hybridize under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a sequence complementary to all or part of the polynucleotide sequence of the present application. The “stringent condition” refers to a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8). For example, polynucleotides with high homology or identity, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other, and polynucleotides having lower homology or identity do not hybridize, or 60 ° C., which is a washing condition of conventional Southern hybridization, 1×SSC, 0.1% SDS, specifically 60°C, 0.1×SSC, 0.1% SDS, more specifically 68°C, 0.1×SSC, 0.1% SDS at a salt concentration and temperature equivalent to once, specifically twice The conditions for washing to 3 times can be enumerated.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, “상보적”은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization. The term “complementary” is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the overall sequence.
구체적으로, 본 출원의 폴리뉴클레오티드와 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.Specifically, a polynucleotide having homology or identity with the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55°C and using the above-described conditions. In addition, the Tm value may be 60 °C, 63 °C, or 65 °C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
상기 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(예컨대, J.Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조). Appropriate stringency for hybridizing the polynucleotide depends on the length of the polynucleotide and the degree of complementarity, and the variables are well known in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; see F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
본 출원의 또 다른 하나의 양태는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다. 상기 벡터는 상기 폴리뉴클레오티드를 숙주세포에서 발현시키기 위한 발현 벡터일 수 있으나, 이에 제한되지 않는다.Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application. The vector may be an expression vector for expressing the polynucleotide in a host cell, but is not limited thereto.
본 출원에서 "벡터"는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.In the present application, "vector" refers to a DNA preparation comprising the base sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host. may include The expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.The vector used in the present application is not particularly limited, and any vector known in the art may be used. Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used. , pBluescript II-based, pGEM-based, pTZ-based, pCL-based, pET-based and the like can be used. Specifically, pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.For example, a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion. The insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto. It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted. The selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.As used herein, the term "transformation" refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell. The transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell. In addition, the polynucleotide includes DNA and/or RNA encoding a target polypeptide. The polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression. The expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replication. In addition, the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이체를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.In addition, the term “operably linked” as used herein means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant of the present application and the polynucleotide sequence are functionally linked.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주를 제공하는 것이다.Another aspect of the present application, Corynebacterium glutamicum ( Corynebacterium glutamicum ) comprising the mutant of the present application or the polynucleotide of the present application It is to provide a strain.
일 예는 (1) 내지 (15)로 이루어지는 군에서 선택된 1종 이상(예를 들면, 1종 이상 또는 2종 이상)의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는, 코리네박테리움 글루타미쿰 균주(Corynebacterium glutamicum)를 제공할 수 있다: One example is one or more (eg, one or more or two or more) protein variants selected from the group consisting of (1) to (15) or a polynucleotide encoding the variant, Corynebacterium Glutamicum strain ( Corynebacterium glutamicum ) can be provided:
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence shown in SEQ ID NO: 13, in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
(13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; (13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, wherein proline, which is the amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
(14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체; 및(14) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine; and
(15) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체.(15) A protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
일 예는 하기 (a) 및 (b)의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드(예를 들면, (a) 변이체를 코딩하는 폴리펩티드, (b) 변이체를 코딩하는 폴리펩티드, 및/또는 (a)와 (b)를 코딩하는 폴리펩티드)를 포함하는, 코리네박테리움 글루타미쿰 균주를 제공할 수 있다: An example is a protein variant of the following (a) and (b) or a polynucleotide encoding the variant (eg, (a) a polypeptide encoding the variant, (b) a polypeptide encoding the variant, and / or (a) ) and (b) can provide a Corynebacterium glutamicum strain comprising a polypeptide encoding:
(a) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체 및(a) a protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 57, in which glutamic acid, an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine; and
(b) 하기 (1) 내지 (14)로 이루어지는 군에서 선택된 1종 이상의 단백질 변이체: (b) at least one protein variant selected from the group consisting of (1) to (14):
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence shown in SEQ ID NO: 13, in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
(13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; 및(13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, wherein proline, which is the amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine; and
(14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체.(14) A helicase variant consisting of the amino acid sequence shown in SEQ ID NO: 53, wherein tyrosine, which is an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine.
일 예는 하기 (A) 및 (B)의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드(예를 들면, (A) 변이체를 코딩하는 폴리펩티드, (B) 변이체를 코딩하는 폴리펩티드, 및/또는 (A)와 (B)를 코딩하는 폴리펩티드)를 포함하는, 코리네박테리움 글루타미쿰 균주를 제공할 수 있다: One example is a protein variant of the following (A) and (B) or a polynucleotide encoding the variant (eg, (A) a polypeptide encoding the variant, (B) a polypeptide encoding the variant, and / or (A) ) and (B) a polypeptide encoding), it is possible to provide a Corynebacterium glutamicum strain comprising:
(A) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체 및(A) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine, and
(B) 하기 (1) 내지 (13)으로 이루어지는 군에서 선택된 1종 이상의 단백질 변이체: (B) at least one protein variant selected from the group consisting of (1) to (13):
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence shown in SEQ ID NO: 13, in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체; 및(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine; and
(13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체.(13) An N-succinyldiaminopimelate aminotransferase mutant consisting of the amino acid sequence shown in SEQ ID NO: 49, wherein proline, which is the amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine.
일 예는 하기 (I) 및 (II)의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드(예를 들면, (I) 변이체를 코딩하는 폴리펩티드, (II) 변이체를 코딩하는 폴리펩티드, 및/또는 (I)와 (II)를 코딩하는 폴리펩티드)를 포함하는, 코리네박테리움 글루타미쿰 균주를 제공할 수 있다: One example is a protein variant of the following (I) and (II) or a polynucleotide encoding the variant (e.g., (I) a polypeptide encoding a variant, (II) a polypeptide encoding a variant, and/or (I) ) and a polypeptide encoding (II)), can provide a Corynebacterium glutamicum strain:
(I) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체 및(I) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49 in which proline, which is the amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine, and
(II) 하기 (1) 내지 (12)로 이루어지는 군에서 선택된 1종 이상의 단백질 변이체: (II) at least one protein variant selected from the group consisting of the following (1) to (12):
(1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
(2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
(3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
(4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence shown in SEQ ID NO: 13, in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
(5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
(6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
(7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
(8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
(9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
(10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
(11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체; 및(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid; and
(12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체.(12) A DAHP synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 45, wherein glycine, which is an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine.
본 출원의 균주는 본 출원의 변이형 폴리펩티드, 상기 폴리펩티드를 암호화하는 폴리뉴클레오티드, 또는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 포함할 수 있다.The strain of the present application may include a vector comprising the mutant polypeptide of the present application, a polynucleotide encoding the polypeptide, or the polynucleotide of the present application.
본 출원에서 용어, "균주(또는, 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.As used herein, the term "strain (or microorganism)" includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially. As a result, a specific mechanism is weakened or enhanced as a microorganism, and may be a microorganism including genetic modification for the production of a desired polypeptide, protein or product.
본 출원의 균주는 본 출원의 변이체, 본 출원의 폴리뉴클레오티드, 및 본 출원의 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상(예를 들면, 하나 이상 또는 둘 이상)을 포함하는 균주; 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 발현하도록 변형된 균주; 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 본 출원의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.The strain of the present application includes any one or more (eg, one or more or two or more) of the variant of the present application, the polynucleotide of the present application, and a vector including the polynucleotide of the present application; a strain modified to express a variant of the present application or a polynucleotide of the present application; a strain expressing the variant of the present application or the polynucleotide of the present application (eg, a recombinant strain); Or it may be a strain having the mutant activity of the present application (eg, a recombinant strain), but is not limited thereto.
본 출원의 균주는 L-라이신 생산능을 가진 균주일 수 있다.The strain of the present application may be a strain having L-lysine-producing ability.
본 출원의 균주는 자연적으로 (i) 내재성 막 수송 단백질(integral membrane transport protein); (ii) DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 (DNA polymerase Ⅲ subunits gamma and tau); (iii) 서열번호 11의 아미노산 서열을 포함하는 폴리펩티드 및/또는 NCgl3069 유전자에 의해 코딩되는 단백질; (iv) 전사 안티터미네이션 단백질(Transcription antitermination protein); (v) ABC 트랜스포터 ATP-결합 단백질(ABC transporter ATP-binding protein); (vi) 말레이트 디하이드로게나제(malate dehydrogenase); (vii) 프리모솜 조립 단백질(primosome assembly protein); (viii) 타입 II 시트레이트 신타아제(type II citrate synthase); (ix) 막 단백질 (membrane protein, TerC); (x) 미코티온 리덕타제(mycothione reductase); (xi) Co/Zn/Cd 유출 시스템 컴포넌트(Co/Zn/Cd efflux system component); (xii) DAHP 신타아제(3-deoxy-D-arabinoheptulosonate-7-phosphate synthase; DAHP synthase); (xiii) N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제(N-succinyldiaminopimelate aminotransferase); (xiv) 헬리카제(Helicase); 및/또는 (xv) 서열번호 59의 아미노산 서열을 포함하는 폴리펩티드 및/또는 NCgl1098 유전자에 의해 코딩되는 단백질의 활성 및/또는 L-라이신 생산능을 가지고 있는 미생물, 또는 상기 (i) 내지 (xv)로 이루어지는 군에서 선택되는 1종 이상(예를 들면, 1종 이상 또는 2종 이상)의 단백질의 활성 및/또는 L-라이신 생산능이 없는 모균주에 본 출원의 변이체 또는 이를 코딩하는 폴리뉴클레오티드 (또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입되거나 및/또는 L-라이신 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다. The strain of the present application naturally comprises (i) an integral membrane transport protein; (ii) DNA polymerase III subunits gamma and tau; (iii) a polypeptide comprising the amino acid sequence of SEQ ID NO: 11 and/or a protein encoded by the NCgl3069 gene; (iv) transcription antitermination protein; (v) ABC transporter ATP-binding protein; (vi) malate dehydrogenase; (vii) primosome assembly protein; (viii) type II citrate synthase; (ix) membrane protein (TerC); (x) mycothione reductase; (xi) Co/Zn/Cd efflux system component; (xii) DAHP synthase (3-deoxy-D-arabinoheptulosonate-7-phosphate synthase; DAHP synthase); (xiii) N-succinyldiaminopimelate aminotransferase; (xiv) helicase; and/or (xv) a polypeptide comprising the amino acid sequence of SEQ ID NO: 59 and/or a microorganism having an activity and/or L-lysine-producing ability of a protein encoded by the NCgl1098 gene, or the above (i) to (xv) A mutant of the present application or a polynucleotide encoding the same in the parent strain without the activity and/or L-lysine-producing ability of one or more (for example, one or more or two or more) proteins selected from the group consisting of (or The vector including the polynucleotide) may be introduced and/or a microorganism to which L-lysine-producing ability is imparted, but is not limited thereto.
일 예로, 본 출원의 균주는 본 출원의 폴리뉴클레오티드 또는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어, 본 출원의 변이체를 발현하는 세포 또는 미생물로서, 본 출원의 목적상 본 출원의 균주는 본 출원의 변이체를 포함하여 L-라이신을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 균주는 천연의 야생형 미생물 또는 L-라이신을 생산하는 미생물에 본 출원의 변이체를 코딩하는 폴리뉴클레오티드가 도입됨으로써 단백질 변이체가 발현되어, L-라이신 생산능이 증가된 재조합 균주일 수 있다. 일 예에서, 본 출원의 균주는 본 출원의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하지 않는 균주(예를 들면, 코리네박테리움 글루타미쿰)과 비교하여, L-라이신 생산능이 증가된 재조합 균주일 수 있다. 상기 L-아미노산 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 상기 (i) 내지 (xv)로 이루어지는 군에서 선택되는 1종 이상의 단백질이 비변형된 미생물 (즉, 상기 (i) 내지 (xv)로 이루어지는 군에서 선택되는 1종 이상의 야생형 단백질을 발현하는 미생물; 예를 들면 서열번호 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 또는 59의 폴리펩티드 및/또는 이를 코딩하는 폴리뉴클레오티드를 포함하는 미생물)에 비하여 L-라이신 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 L-라이신 생산능의 증가 여부를 비교하는 대상 균주인, 비변형 미생물은 ATCC13032 균주 및/또는 코리네박테리움 글루타미쿰 CJ3P(US 9556463 B2; 문헌 전체가 본 명세서에 참조로서 포함됨)일 수 있으나, 이에 제한되지 않는다. As an example, the strain of the present application is transformed with a vector containing the polynucleotide of the present application or a polynucleotide encoding the variant of the present application, and expresses the variant of the present application as a cell or microorganism, The strains of the application may include all microorganisms capable of producing L-lysine, including the variants of the present application. For example, the strain of the present application is a recombinant strain in which the protein variant is expressed by introducing a polynucleotide encoding the variant of the present application into a natural wild-type microorganism or a microorganism producing L-lysine, and L-lysine-producing ability is increased. can In one example, the strain of the present application has an increased L-lysine-producing ability compared to a strain (eg, Corynebacterium glutamicum) that does not include a protein variant or a polynucleotide encoding the variant of the present application (eg, Corynebacterium glutamicum). It may be a recombinant strain. The recombinant strain having an increased ability to produce L-amino acids is a natural wild-type microorganism or a microorganism in which one or more proteins selected from the group consisting of (i) to (xv) are unmodified (that is, (i) to (xv) above. ) a microorganism expressing one or more wild-type proteins selected from the group consisting of; for example, SEQ ID NOs: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, Or 59 polypeptide and / or microorganism comprising a polynucleotide encoding the same) compared to the L-lysine-producing ability may be increased compared to the microorganism, but is not limited thereto. For example, the non-modified microorganism, which is the target strain to compare whether the increase in the L-lysine production ability, is ATCC13032 strain and / or Corynebacterium glutamicum CJ3P (US 9556463 B2; the entire document is incorporated herein by reference) ), but is not limited thereto.
일 예로, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-라이신 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 30% 이상, 약 31% 이상, 약 32% 이상, 약 33% 이상, 약 34% 이상, 또는 약 35% 이상(상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 또는 약 35% 이하일 수 있음) 증가된 것일 수 있다. 다른 예에서, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-라이신 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.25배 이상, 또는 약 1.3배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다. 상기 용어 “약(about)”은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.For example, the recombinant strain with increased production capacity has an L-lysine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, about 7% compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 30% or more, about 31% or more, about 32% or more, about 33% or more, about 34% or more, or about 35% or more (the upper limit is not particularly limited, For example, it may be about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, or about 35% or less). In another example, the recombinant strain with increased production capacity has an L-lysine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, 1.16 times or more, compared to the parent strain or unmodified microorganism before mutation. , 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, or about 1.3 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased. The term “about” is a range including all of ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc. not limited
본 출원에서 용어, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 전사 안티터미네이션 단백질 변이체가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 “변형 전 균주”, “변형 전 미생물”, “비변이 균주”, “비변형 균주”, “비변이 미생물” 또는 “기준 미생물”과 혼용될 수 있다.As used herein, the term "unmodified microorganism" does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed. For example, the unmodified microorganism may refer to a strain in which the transcriptional anti-termination protein variant described herein is not introduced or before it is introduced. The "unmodified microorganism" may be used interchangeably with "strain before modification", "microbe before modification", "unmodified strain", "unmodified strain", "unmodified microorganism" or "reference microorganism".
본 출원의 또 다른 일 예로, 본 출원의 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있다.As another example of the present application, the microorganism of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ( Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Cory Nebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ), Corynebacterium stationis , Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halo Tolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans ( Corynebacterium imitans ) imitans ), Corynebacterium testudinoris ) or Corynebacterium flavescens ).
본 출원에서 용어, 폴리펩티드의 “약화”는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다. As used herein, the term “weakened” of a polypeptide is a concept that includes both reduced or no activity compared to intrinsic activity. The attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, attenuation, and the like.
상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “불활성화, 결핍, 감소, 하향조절, 저하, 감쇠”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다. The attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide possessed by the original microorganism due to mutation of the polynucleotide encoding the polypeptide, etc. When the overall polypeptide activity level and/or concentration (expression amount) in the cell is lower than that of the native strain due to (translation) inhibition, etc., when the expression of the polynucleotide is not made at all, and/or when the expression of the polynucleotide is Even if there is no activity of the polypeptide, it may also be included. The “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. “Inactivation, deficiency, reduction, downregulation, reduction, attenuation” of the activity of a polypeptide compared to the intrinsic activity means that the activity of the specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation is lowered.
이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by application of various methods well known in the art (eg, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
구체적으로, 본 출원의 폴리펩티드의 약화는Specifically, the attenuation of the polypeptide of the present application is
1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;1) deletion of all or part of a gene encoding a polypeptide;
2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;2) modification of the expression control region (or expression control sequence) to reduce the expression of the gene encoding the polypeptide;
3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);3) modification of the amino acid sequence constituting the polypeptide such that the activity of the polypeptide is eliminated or attenuated (eg, deletion/substitution/addition of one or more amino acids on the amino acid sequence);
4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형 (예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);4) modification of the gene sequence encoding the polypeptide such that the activity of the polypeptide is eliminated or attenuated (eg, one or more nucleobases on the nucleotide sequence of the polypeptide gene to encode a polypeptide modified such that the activity of the polypeptide is eliminated or attenuated) deletion/replacement/addition of);
5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;5) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide;
6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;6) introduction of an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to the transcript of said gene encoding the polypeptide;
7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;7) adding a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the polypeptide to form a secondary structure that cannot be attached to the ribosome;
8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는8) addition of a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE); or
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8) above, but is not particularly limited thereto.
예컨대, for example,
상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.1) The deletion of a part or all of the gene encoding the polypeptide may be the removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.In addition, the above 2) modification of the expression control region (or expression control sequence), deletion, insertion, non-conservative or conservative substitution, or a combination thereof, mutation in the expression control region (or expression control sequence) occurs, or weaker replacement with an active sequence. The expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
또한, 상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.In addition, 3) the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another start codon having a lower polypeptide expression rate than the intrinsic start codon It may be substituted with a sequence, but is not limited thereto.
또한, 상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.In addition, the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above is a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide. Or a combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto. For example, by introducing a mutation in the polynucleotide sequence to form a stop codon, the expression of a gene may be inhibited or attenuated, but is not limited thereto.
상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.6) The introduction of an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to the transcript of the gene encoding the polypeptide is described, for example, in Weintraub, H. et al., Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.7) Addition of a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the polypeptide to form a secondary structure that cannot be attached to the ribosome is mRNA translation It may make it impossible or slow it down.
상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.8) the addition of a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE) is an antisense complementary to the transcript of the gene encoding the polypeptide It may be to attenuate activity by making nucleotides.
본 출원에서 용어, 폴리펩티드 활성의 “강화”는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “강화”, “상향조절”, “과발현” 또는 “증가”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다. As used herein, the term “enhancement” of a polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity. The reinforcement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase. Herein, activation, enhancement, up-regulation, overexpression, and increase may include all of those exhibiting an activity that was not originally possessed, or exhibiting an improved activity compared to an intrinsic activity or an activity prior to modification. The “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. “Enhancement”, “up-regulation”, “overexpression” or “increase” in the activity of a polypeptide compared to its intrinsic activity means that the activity and/or concentration (expression) of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation. amount), which means improved.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.The enrichment can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from the increase in the level of activity, expression level, or the amount of product excreted from the polypeptide.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).The enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
구체적으로, 본 출원의 폴리펩티드의 강화는Specifically, the enrichment of the polypeptide of the present application is
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가; 1) increasing the intracellular copy number of a polynucleotide encoding the polypeptide;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체; 2) replacing the gene expression control region on the chromosome encoding the polypeptide with a sequence with strong activity;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형; 3) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;4) modification of the amino acid sequence of said polypeptide to enhance polypeptide activity;
5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);5) modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide (eg, modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide that has been modified to enhance the activity of the polypeptide);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입; 6) introduction of a foreign polypeptide exhibiting the activity of the polypeptide or a foreign polynucleotide encoding the same;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화; 7) codon optimization of the polynucleotide encoding the polypeptide;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는8) by analyzing the tertiary structure of the polypeptide to select an exposed site for modification or chemical modification; or
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8) above, but is not particularly limited thereto.
보다 구체적으로,More specifically,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.1) The increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introduction into the host cell of a vector to which the polynucleotide encoding the polypeptide is operably linked, which can replicate and function independently of the host it may be Alternatively, the polynucleotide encoding the polypeptide may be achieved by introducing one copy or two or more copies into a chromosome in a host cell. The introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto. The vector is the same as described above.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.2) Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity. The expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation. As an example, the original promoter may be replaced with a strong promoter, but is not limited thereto.
공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.Examples of known strong promoters include CJ1 to CJ7 promoters (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.3) Modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another start codon having a higher expression rate of the polypeptide compared to the intrinsic start codon. It may be a substitution, but is not limited thereto.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.The modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide; A combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto. The replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto. In this case, the vector used may further include a selection marker for confirming whether or not the chromosome is inserted. The selection marker is the same as described above.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.6) The introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be the introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell. The foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide. The method used for the introduction may be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.7) Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.8) Selecting an exposed site by analyzing the tertiary structure of the polypeptide and modifying or chemically modifying it, for example, compares the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored to determine the degree of sequence similarity. Accordingly, it may be to determine a template protein candidate, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.Such enhancement of polypeptide activity is to increase the activity or concentration of the corresponding polypeptide relative to the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or increase the amount of product produced from the polypeptide. However, the present invention is not limited thereto.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형(예컨대, 상술한 단백질 변이체를 코딩하기 위한 변형)은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다. Modification of some or all of the polynucleotide in the microorganism of the present application (eg, modification for encoding the protein variant described above) is (a) homologous recombination using a vector for chromosomal insertion in the microorganism or engineered nuclease (e.g., CRISPR) -Cas9) and/or (b) induced by light and/or chemical treatment such as ultraviolet and radiation, but not limited thereto. The method for modifying part or all of the gene may include a method by DNA recombination technology. For example, by injecting a nucleotide sequence or a vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination, a part or all of the gene may be deleted. The injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
본 출원의 미생물에서, 변이체, 폴리뉴클레오티드 및 L-라이신 등은 상기 다른 양태에서 기재한 바와 같다.In the microorganism of the present application, variants, polynucleotides, L-lysine, and the like are as described in the other aspects above.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 글루타미쿰 균주(예를 들면, 상기 (1) 내지 (15)로 이루어지는 군에서 선택된 1종 이상(예를 들면, 1종 이상 또는 2종 이상)의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 균주)를 배지에서 배양하는 단계를 포함하는, L-아미노산 생산방법을 제공한다. Another aspect of the present application is a Corynebacterium glutamicum strain comprising a mutant of the present application or a polynucleotide of the present application (eg, one selected from the group consisting of (1) to (15) above) It provides a method for producing L-amino acids, comprising the step of culturing in a medium (for example, one or more or two or more) protein variants or a strain comprising a polynucleotide encoding the variant.
일 예에서, 본 출원의 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함하는, L-아미노산 생산방법을 제공할 수 있다.In one example, it may provide a method for producing L- amino acids, comprising the step of culturing the Corynebacterium glutamicum strain of the present application in a medium.
본 출원의 L-아미노산 생산방법은 본 출원의 코리네박테리움 글루타미쿰 (또는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터를 포함하는 코리네박테리움 글루타미쿰) 균주를 배지에서 배양하는 단계를 포함할 수 있다.The L-amino acid production method of the present application is a medium of the Corynebacterium glutamicum (or Corynebacterium glutamicum comprising the mutant of the present application or the polynucleotide of the present application or the vector of the present application) of the present application. It may include the step of culturing in
더불어, 본 출원의 L-아미노산은 L- 라이신일 수 있다.In addition, the L-amino acid of the present application may be L-lysine.
본 출원에서, 용어 "배양"은 본 출원의 코리네박테리움 글루타미쿰 균주를 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term "culture" means growing the Corynebacterium glutamicum strain of the present application in an appropriately controlled environmental condition. The culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be a batch, continuous and/or fed-batch, but is not limited thereto.
본 출원에서 용어, "배지"는 본 출원의 코리네박테리움 글루타미쿰 균주를 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 코리네박테리움 글루타미쿰 균주의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 코리네박테리움 글루타미쿰 균주를 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다. As used herein, the term "medium" refers to a material in which nutrients required for culturing the Corynebacterium glutamicum strain of the present application are mixed as a main component, and nutrients including water essential for survival and growth and growth factors. Specifically, any medium and other culture conditions used for culturing the Corynebacterium glutamicum strain of the present application may be used without particular limitation as long as it is a medium used for culturing conventional microorganisms, but the Corynebacterium glutamicum of the present application Lium glutamicum strain can be cultured while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid and / or vitamin and the like.
구체적으로, 코리네박테리움 속 균주에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)]에서 찾아 볼 수 있다.Specifically, the culture medium for the Corynebacterium sp. strain can be found in the literature ["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)].
본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 라이신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.In the present application, the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included. In addition, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.Examples of the nitrogen source include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The phosphorus may include potassium monobasic phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto. As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
또한, 본 출원의 코리네박테리움 글루타미쿰 균주의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.In addition, during the culture of the Corynebacterium glutamicum strain of the present application, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium. In addition, during culturing, an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation. In addition, in order to maintain the aerobic state of the medium, oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without injection of gas or without injection of gas to maintain anaerobic and microaerobic conditions, which are limited thereto it is not
본 출원의 배양에서 배양온도는 20 내지 45℃ 구체적으로는 25 내지 40℃ 를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다. In the culture of the present application, the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
본 출원의 배양에 의하여 생산된 L-아미노산은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.The L-amino acid produced by the culture of the present application may be secreted into the medium or may remain in the cell.
본 출원의 L-아미노산 생산방법은, 본 출원의 코리네박테리움 글루타미쿰 균주를 준비하는 단계, 상기 균주를 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다. The L-amino acid production method of the present application includes the steps of preparing the Corynebacterium glutamicum strain of the present application, preparing a medium for culturing the strain, or a combination thereof (regardless of the order, in any order) ), for example, prior to the culturing step, may further include.
본 출원의 L-아미노산 생산방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 코리네박테리움 글루타미쿰 균주로부터 L-아미노산을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.The method for producing L-amino acids of the present application may further include recovering L-amino acids from the culture medium (the culture medium) or the Corynebacterium glutamicum strain. The recovering step may be further included after the culturing step.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 L-아미노산을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-아미노산을 회수할 수 있다.The recovery may be to collect the desired L-amino acid using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. . For example, centrifugation, filtration, treatment with a crystallized protein precipitating agent (salting out method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity Various chromatography such as island chromatography, HPLC, or a combination thereof may be used, and a desired L-amino acid may be recovered from a medium or a microorganism using a suitable method known in the art.
또한, 본 출원의 L-아미노산 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 L-아미노산 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.In addition, the L-amino acid production method of the present application may include an additional purification step. The purification may be performed using a suitable method known in the art. In one example, when the L-amino acid production method of the present application includes both the recovery step and the purification step, the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step. may be performed, but is not limited thereto.
본 출원의 방법에서, 변이체, 폴리뉴클레오티드, 벡터 및 균주 등은 상기 다른 양태에서 기재한 바와 같다.In the method of the present application, variants, polynucleotides, vectors, strains, and the like are as described in the other aspects above.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체, 상기 변이체를 코딩하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 벡터 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 글루타미쿰 균주; 이를 배양한 배지; 또는 이들 중 2종 이상의 조합을 포함하는 L-아미노산 생산용 조성물을 제공하는 것이다.Another aspect of the present application is a Corynebacterium glutamicum strain comprising a variant of the present application, a polynucleotide encoding the variant, a vector including the polynucleotide or the polynucleotide of the present application; the culture medium; Or to provide a composition for producing L- amino acids comprising a combination of two or more of them.
본 출원의 조성물은 아미노산 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.The composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and such excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc. However, the present invention is not limited thereto.
본 출원의 조성물에서, 변이체, 폴리뉴클레오티드, 벡터, 균주, 배지 및 L-아미노산 등은 상기 다른 양태에서 기재한 바와 같다.In the composition of the present application, variants, polynucleotides, vectors, strains, media and L-amino acids are the same as those described in the other aspects above.

Claims (5)

  1. 하기 (1) 내지 (15)로 이루어지는 군에서 선택되는 단백질 변이체: Protein variants selected from the group consisting of the following (1) to (15):
    (1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
    (2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
    (3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
    (4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence shown in SEQ ID NO: 13, in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
    (5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
    (6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
    (7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
    (8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
    (9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
    (10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
    (11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
    (12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
    (13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; (13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, in which proline, an amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
    (14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체; 및(14) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine; and
    (15) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체.(15) A protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
  2. 제1항의 변이체를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding the variant of claim 1 .
  3. 하기 (1) 내지 (15)로 이루어지는 군에서 선택된 2종 이상의 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는, 코리네박테리움 글루타미쿰 균주:A Corynebacterium glutamicum strain comprising two or more protein variants selected from the group consisting of the following (1) to (15) or a polynucleotide encoding the variant:
    (1) 서열번호 3의 220번째 위치에 상응하는 아미노산인 페닐알라닌이 시스테인으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 내재성 막 수송 단백질 변이체;(1) an endogenous membrane transport protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 1 in which phenylalanine, an amino acid corresponding to position 220 of SEQ ID NO: 3, is substituted with cysteine;
    (2) 서열번호 7의 43번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 5로 기재된 아미노산 서열로 이루어진 DNA 중합효소 Ⅲ 감마 및 타우 서브유닛 변이체;(2) DNA polymerase III gamma and tau subunit variants consisting of the amino acid sequence set forth in SEQ ID NO: 5 in which proline, an amino acid corresponding to position 43 of SEQ ID NO: 7, is substituted with leucine;
    (3) 서열번호 11의 33번째 위치에 상응하는 아미노산인 시스테인이 세린으로 치환된, 서열번호 9로 기재된 아미노산 서열로 이루어진 단백질 변이체;(3) a protein variant consisting of the amino acid sequence shown in SEQ ID NO: 9, in which cysteine, an amino acid corresponding to position 33 of SEQ ID NO: 11, is substituted with serine;
    (4) 서열번호 15의 210번째 위치에 상응하는 아미노산인 아스파라긴이 아스파르트산으로 치환된, 서열번호 13로 기재된 아미노산 서열로 이루어진 전사 안티터미네이션 단백질 변이체;(4) a transcriptional anti-termination protein variant consisting of the amino acid sequence shown in SEQ ID NO: 13, in which asparagine, an amino acid corresponding to position 210 of SEQ ID NO: 15, is substituted with aspartic acid;
    (5) 서열번호 19의 199번째 위치에 상응하는 아미노산인 발린이 메티오닌으로 치환된, 서열번호 17로 기재된 아미노산 서열로 이루어진 ABC 트랜스포터 ATP-결합 단백질 변이체;(5) an ABC transporter ATP-binding protein variant consisting of the amino acid sequence shown in SEQ ID NO: 17 in which valine, an amino acid corresponding to position 199 of SEQ ID NO: 19, is substituted with methionine;
    (6) 서열번호 23의 272번째 위치에 상응하는 아미노산인 트레오닌이 이소류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진 말레이트 디하이드로게나제 변이체;(6) a malate dehydrogenase variant consisting of the amino acid sequence set forth in SEQ ID NO: 21 in which threonine, an amino acid corresponding to position 272 of SEQ ID NO: 23, is substituted with isoleucine;
    (7) 서열번호 27의 304번째 위치에 상응하는 아미노산인 아르기닌이 글루타민으로 치환된, 서열번호 25로 기재된 아미노산 서열로 이루어진 프리모솜 조립 단백질 변이체;(7) a primosome assembly protein variant consisting of the amino acid sequence shown in SEQ ID NO: 25, in which arginine, an amino acid corresponding to position 304 of SEQ ID NO: 27, is substituted with glutamine;
    (8) 서열번호 31의 169번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 29로 기재된 아미노산 서열로 이루어진 타입 II 시트레이트 신타아제 변이체;(8) a type II citrate synthase variant consisting of the amino acid sequence shown in SEQ ID NO: 29, in which alanine, an amino acid corresponding to position 169 of SEQ ID NO: 31, is substituted with valine;
    (9) 서열번호 35의 294번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 33로 기재된 아미노산 서열로 이루어진 막 단백질 변이체;(9) a membrane protein variant consisting of the amino acid sequence set forth in SEQ ID NO: 33 in which glutamic acid, an amino acid corresponding to position 294 of SEQ ID NO: 35, is substituted with lysine;
    (10) 서열번호 39의 358번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 37로 기재된 아미노산 서열로 이루어진 미코티온 리덕타제 변이체;(10) a mycothione reductase variant consisting of the amino acid sequence set forth in SEQ ID NO: 37 in which proline, which is the amino acid corresponding to position 358 of SEQ ID NO: 39, is substituted with serine;
    (11) 서열번호 43의 130번째 위치에 상응하는 아미노산인 글리신이 아스파르트산으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진 Co/Zn/Cd 유출 시스템 컴포넌트 변이체;(11) a Co/Zn/Cd efflux system component variant consisting of the amino acid sequence set forth in SEQ ID NO: 41 in which glycine, an amino acid corresponding to position 130 of SEQ ID NO: 43, is substituted with aspartic acid;
    (12) 서열번호 47의 382번째 위치에 상응하는 아미노산인 글리신이 시스테인으로 치환된, 서열번호 45으로 기재된 아미노산 서열로 이루어진 DAHP 신타아제 변이체;(12) a DAHP synthase variant consisting of the amino acid sequence set forth in SEQ ID NO: 45 in which glycine, an amino acid corresponding to position 382 of SEQ ID NO: 47, is substituted with cysteine;
    (13) 서열번호 51의 209번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 49로 기재된 아미노산 서열로 이루어진 N-숙시닐디아미노피멜레이트 아미노트랜스퍼라제 변이체; (13) an N-succinyldiaminopimelate aminotransferase variant consisting of the amino acid sequence set forth in SEQ ID NO: 49, in which proline, an amino acid corresponding to position 209 of SEQ ID NO: 51, is substituted with leucine;
    (14) 서열번호 55의 592번째 위치에 상응하는 아미노산인 티로신이 페닐알라닌으로 치환된, 서열번호 53으로 기재된 아미노산 서열로 이루어진 헬리카제 변이체; 및(14) a helicase variant consisting of the amino acid sequence set forth in SEQ ID NO: 53 in which tyrosine, an amino acid corresponding to position 592 of SEQ ID NO: 55, is substituted with phenylalanine; and
    (15) 서열번호 59의 170번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 57로 기재된 아미노산 서열로 이루어진 단백질 변이체.(15) A protein variant consisting of the amino acid sequence shown in SEQ ID NO: 57, wherein glutamic acid, which is an amino acid corresponding to position 170 of SEQ ID NO: 59, is substituted with lysine.
  4. 제3항에 있어서, 상기 단백질 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하지 않는 코리네박테리움 글루타미쿰과 비교하여 L-라이신 생산능이 증가된, 균주.The strain of claim 3, wherein the L-lysine-producing ability is increased compared to Corynebacterium glutamicum that does not include the protein variant or the polynucleotide encoding the variant.
  5. 제3항 또는 제4항의 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함하는, L-라이신 생산 방법.A method for producing L-lysine, comprising the step of culturing the Corynebacterium glutamicum strain of claim 3 or 4 in a medium.
PCT/KR2021/003261 2021-01-29 2021-03-16 Novel protein variant and method for producing l-lysine using same WO2022163904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/007122 WO2022163951A1 (en) 2021-01-29 2021-06-08 Novel protein variant and method for producing l-lysine using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020210013690A KR20220110411A (en) 2021-01-29 2021-01-29 Novel protein variant and a method for producing L-lysine using the same
KR10-2021-0013691 2021-01-29
KR10-2021-0013690 2021-01-29
KR1020210013694A KR20220110413A (en) 2021-01-29 2021-01-29 Novel protein variant and a method for producing L-lysine using the same
KR1020210013691A KR20220110412A (en) 2021-01-29 2021-01-29 Novel protein variant and a method for producing L-lysine using the same
KR20210013693 2021-01-29
KR10-2021-0013694 2021-01-29
KR10-2021-0013693 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163904A1 true WO2022163904A1 (en) 2022-08-04

Family

ID=82654688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003261 WO2022163904A1 (en) 2021-01-29 2021-03-16 Novel protein variant and method for producing l-lysine using same

Country Status (1)

Country Link
WO (1) WO2022163904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056694A4 (en) * 2021-01-29 2024-01-24 Cj Cheiljedang Corp Novel type ii citrate synthase variant, and method for producing l-lysine using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838038B1 (en) * 2006-12-29 2008-06-12 씨제이제일제당 (주) - - a microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR20100000665A (en) * 2008-06-25 2010-01-06 씨제이제일제당 (주) A corynebacterium having enhanced l-lysine productivity and a method of producing l-lysine using the corynebacterium
KR101582008B1 (en) * 2013-10-15 2015-12-31 씨제이제일제당 (주) The genes for biofilm inhibition and the method for producing L-Lysine using inactivating mutants of these genes
KR101851467B1 (en) * 2016-11-21 2018-04-25 대상 주식회사 Mutant strain with enhanced amino acid production via reduced flux of nucleic acid and method for preparing of amino acid using the same
KR102147776B1 (en) * 2019-09-20 2020-08-26 대상 주식회사 A microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method for producing L-lysine using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838038B1 (en) * 2006-12-29 2008-06-12 씨제이제일제당 (주) - - a microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR20100000665A (en) * 2008-06-25 2010-01-06 씨제이제일제당 (주) A corynebacterium having enhanced l-lysine productivity and a method of producing l-lysine using the corynebacterium
KR101582008B1 (en) * 2013-10-15 2015-12-31 씨제이제일제당 (주) The genes for biofilm inhibition and the method for producing L-Lysine using inactivating mutants of these genes
KR101851467B1 (en) * 2016-11-21 2018-04-25 대상 주식회사 Mutant strain with enhanced amino acid production via reduced flux of nucleic acid and method for preparing of amino acid using the same
KR102147776B1 (en) * 2019-09-20 2020-08-26 대상 주식회사 A microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method for producing L-lysine using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 25 May 2020 (2020-05-25), ANONYMOUS : "MHS family MFS transporter [Corynebacterium glutamicum] ", XP055953709, retrieved from NCBI Database accession no. WP_011015489 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056694A4 (en) * 2021-01-29 2024-01-24 Cj Cheiljedang Corp Novel type ii citrate synthase variant, and method for producing l-lysine using same

Similar Documents

Publication Publication Date Title
WO2022163934A1 (en) Novel d-alanine—d-alanine ligase a variant, and method for producing l-glutamic acid using same
WO2022163904A1 (en) Novel protein variant and method for producing l-lysine using same
WO2022055094A1 (en) Recombinant microorganism for producing l-glutamic acid, and l-glutamic acid production method using same
WO2022163920A1 (en) Novel cysteine sulfinate desulfinase variant and method for producing l-valine using same
WO2022163922A1 (en) Novel asparagine synthase variant, and method for producing l-valine using same
WO2022163935A1 (en) Novel glucosamine-6-phosphate deaminase variant, and method for producing l-glutamic acid using same
WO2022163917A1 (en) Novel protein variant and method for producing l-valine using same
WO2022050671A1 (en) L-valine-producing microorganisms and l-valine producing method using same
WO2021261733A1 (en) Novel modified l-threonine dehydratase and method for producing l-isoleucine using same
WO2022163936A1 (en) Novel excinuclease abc subunit a variant, and method for producing l-glutamic acid using same
WO2022191630A1 (en) Novel citrate synthase variant and method for producing l-valine using same
WO2022163919A1 (en) Novel urease accessory protein variant and method for producing l-valine using same
WO2022163933A1 (en) Novel abc transporter atp-binding protein variant, and method for producing l-glutamic acid using same
WO2022163937A1 (en) Novel abc transporter atp-binding protein variant, and method for producing l-glutamic acid using same
WO2022191635A1 (en) Novel citrate synthase variant and method for producing l-amino acids using same
WO2022163924A1 (en) Novel 5,10-methylenetetrahydrofolate reductase variant and method for producing l-valine using same
WO2022163926A1 (en) Novel proline dehydrogenase variant and method for producing l-valine using same
WO2022163941A1 (en) Novel spermidine synthase variant and method for producing l-glutamic acid using same
WO2022154173A1 (en) Novel abc transporter atp-binding protein variant and method for producing l-lysine using same
WO2022154189A1 (en) Novel phytoene synthase variant and method for producing xmp or gmp using same
WO2022154188A1 (en) Novel polyketide synthase variant and method for producing xmp or gmp using same
WO2022163925A1 (en) Novel protein variant and method for producing l-valine using same
WO2022163918A1 (en) Novel tetrahydrodipicolinate n-succinyltransferase variant, and method for producing l-valine using same
WO2022163940A1 (en) Novel galactoside o-acetyltransferase variant, and method for producing l-glutamic acid using same
WO2022163938A1 (en) Novel ribonuclease p variant, and method for producing l-glutamic acid using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923336

Country of ref document: EP

Kind code of ref document: A1