WO2022163745A1 - Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropane - Google Patents

Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropane Download PDF

Info

Publication number
WO2022163745A1
WO2022163745A1 PCT/JP2022/003032 JP2022003032W WO2022163745A1 WO 2022163745 A1 WO2022163745 A1 WO 2022163745A1 JP 2022003032 W JP2022003032 W JP 2022003032W WO 2022163745 A1 WO2022163745 A1 WO 2022163745A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
tetrafluoropropane
production method
chloro
chlorine
Prior art date
Application number
PCT/JP2022/003032
Other languages
French (fr)
Japanese (ja)
Inventor
厚史 藤森
聡史 河口
英史 塩田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280011803.XA priority Critical patent/CN116802170A/en
Priority to JP2022578466A priority patent/JPWO2022163745A1/ja
Publication of WO2022163745A1 publication Critical patent/WO2022163745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for producing 3-chloro-1,1,2,2-tetrafluoropropane and a method for producing 1-chloro-2,3,3-trifluoropropene.
  • 3-chloro-1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 2 Cl.
  • HCFC-244ca hereinafter also referred to as 244ca) is a new detergent, refrigerant, blowing agent, solvent, and aerosols, or their synthetic raw materials.
  • HCFO-1233yd hereinafter also referred to as 1233yd.
  • TFPO 2,2,3,3-tetrafluoropropanol
  • N,N-dimethylformamide is used as a chlorinating agent in the presence of
  • a method for the preparation of 244ca is described by reacting with thionyl chloride.
  • the method for producing 244ca described in Patent Document 2 uses thionyl chloride as a chlorinating agent, so that the reaction product contains by-products such as hydrogen chloride and sulfur dioxide, and is neutralized with a large amount of aqueous alkaline solution. Therefore, a method for producing 244ca suitable for industrial-scale mass production has been investigated.
  • An object of the present invention is to provide an industrially advantageous method for producing high-purity 244ca.
  • the solvent is carbon tetrachloride, 1,1,2-trichloro-1,2,2-trifluoroethane, 1-chloro-1,1,2,2-tetrafluoropropane, 1,3-dichloro -1,1,2,2-tetrafluoropropane, 1,3,3-trichloro-1,1,2,2-tetrafluoropropane, 1,3,3,3-tetrachloro-1,1,2, 2-tetrafluoropropane, 3-chloro-1,1,2,2-tetrafluoropropane, 1,1-dichloro-2,2,3,3-tetrafluoropropane, 1,1,1-trichloro-2, At least selected from the group consisting of 2,3,3-tetrafluoropropane, 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5,6,6-octafluorohexane 1, the production method according to [9].
  • [16] 3-chloro-1,1,2,2-tetrafluoropropane obtained by the production method according to any one of [1] to [15] is subjected to dehydrofluorination in the presence of a base or a catalyst.
  • 1,3-dichloro-2,3,3-trifluoropropene is added to the 1-chloro-2,3,3-trifluoropropene in the reaction product obtained by the dehydrofluorination reaction;
  • the production method according to [16] containing 10% by mass or less.
  • chlorine refers to molecular state chlorine (Cl 2 ).
  • Pressure means gauge pressure unless otherwise stated.
  • a compound When a compound has isomers, it indicates one or a mixture of two or more selected from the isomers, unless otherwise specified. For example, when Z and E isomers are present, all mean Z isomers only, E isomers only, or mixtures of Z and E isomers in any proportion.
  • (E) or (Z) is attached to the end of a compound name or compound abbreviation, the (E) isomer or (Z) isomer of the respective compound is indicated. For example, 1233yd(Z) indicates the Z isomer and 1233yd(E) indicates the E isomer.
  • the method for producing 244ca of the present invention (hereinafter also simply referred to as the “production method of the present invention”) comprises 1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 3 .HFC-254cb. , also referred to as 254cb) with chlorine.
  • the reaction for obtaining 244ca by the chlorination reaction of 254cb is the reaction represented by the following formula (1) (hereinafter also referred to as reaction (1)).
  • the production method of the present invention has the advantage that 244ca can be selectively obtained in the chlorination reaction of 254cb with almost no other chlorinated products.
  • 254cb is used as a raw material.
  • 254cb is a known compound known as a raw material or intermediate for producing fluorine-containing compounds.
  • Methods for obtaining 254cb are not particularly limited, and include known methods described in International Publication No. 2018/139654 and the like.
  • hydrogen is added to 1-chloro-1,1,2,2-tetrafluoropropane (CCIF 2 —CF 2 —CH 3 , HCFC-244cc, hereinafter also referred to as 244cc) in the presence of a catalyst, It can be produced by reacting at temperatures above 200°C.
  • a hydrogenation catalyst is used for the above reaction in which 244cc is reacted with hydrogen and reduced.
  • a palladium catalyst is preferred as the hydrogenation catalyst.
  • the palladium catalyst may be a catalyst composed of palladium, or a metal catalyst containing palladium, as well as simple palladium.
  • a palladium alloy catalyst is preferable as the metal catalyst containing palladium.
  • Palladium alloy catalysts include palladium/platinum alloy catalysts and palladium/rhodium alloy catalysts.
  • the palladium catalyst may be a metal catalyst containing palladium or a mixture with other metals.
  • a catalyst in which the palladium catalyst is supported on a carrier (hereinafter also referred to as a palladium-supported catalyst) may be used, or a composite catalyst in which the palladium catalyst and another metal are separately supported on a carrier may be used.
  • Examples of the carrier for the palladium-supported catalyst include activated carbon, metal oxides (alumina, zirconia, silica, etc.), and activated carbon is preferred from the viewpoint of activity, durability, and reaction selectivity.
  • Examples of activated carbon include those obtained from plant raw materials (wood, charcoal, fruit shells, coconut shells, etc.) and mineral raw materials (peat, lignite, coal, etc.). The activated carbon obtained is preferred, and coconut shell activated carbon is particularly preferred.
  • the reduction reaction for reacting 244cc with hydrogen is preferably carried out in the gas phase.
  • a reaction tube is filled with a catalyst-carrying carrier to form a catalyst layer, and 244 cc gas and hydrogen gas are passed through the catalyst layer.
  • the temperature of the catalyst layer during the reaction is above 200°C, preferably 210 to 350°C, more preferably 250 to 300°C.
  • the ratio of 244cc and hydrogen is adjusted accordingly.
  • a diluent gas such as nitrogen gas or rare gas may be added to the 244 cc gas and hydrogen gas for the reaction.
  • 254cb From the reaction product obtained by reacting 244cc with hydrogen, 254cb can be isolated by a normal separation method, for example, by distillation, and used as a raw material for the production method of the present invention.
  • 254cb which is the raw material for the production method of the present invention, may be a mixture with other compounds. That is, the starting material for the production method of the present invention should only contain 254cb, and for example, a mixture of 254cb and other compounds may be used as the starting material.
  • Other compounds that can be contained in the raw materials applied to the production method of the present invention include impurities such as raw materials for producing 254cb and by-products produced in addition to 254cb when producing 254cb.
  • impurities such as raw materials for producing 254cb and by-products produced in addition to 254cb when producing 254cb.
  • by-products generated from the impurities may be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption.
  • the impurity is preferably a compound that is inactive in the production method of the present invention.
  • 254cb is preferably contained as a main component in the raw materials used for the chlorination reaction.
  • the content of 254cb is preferably 50% by mass or more, more preferably 75% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more, relative to the total mass of the raw materials used in the chlorination reaction. 100 mass % is mentioned as an upper limit.
  • a reactor is used to bring 254cb into contact with chlorine to produce 244ca through a chlorination reaction.
  • 254cb obtained by the method described above can be used.
  • the method of obtaining 254cb is not limited to this.
  • the production method of the present invention can be carried out in either a liquid phase or a gas phase, and is preferably carried out in a liquid phase reaction because it is more advantageous for industrial implementation.
  • 1 ,3,3-trichloro-1,1,2,2-tetrafluoropropane (CCIF 2 —CF 2 —CHCl 2 , HCFC-224ca, hereinafter also referred to as 224ca), 1,3,3,3-tetrachloro -1,1,2,2-tetrafluoropropane (CClF 2 -CF 2 -CCl 3 ; HCFC-214cb; hereinafter also referred to as 214cb), 1,1,1-trichloro-2,2,3,3- tetrafluoropropane (CHF 2 —CF 2 —CCl 3 ; HCFC-224cb; hereinafter also referred to as 224cb), 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5, Chlorinated products such as 6,6-octafluorohexane may be produced as a by-product.
  • a chlorinated product other than 244ca which is a by-product of the chlorination reaction of 254cb, can be subjected to a hydrogen reduction reaction to produce 244ca as the target product or 254cb as the raw material.
  • 254cb can be produced by reacting 244cc with hydrogen in the presence of a catalyst, which can be reused as a raw material.
  • 244ca can be produced by reacting 234cc or 234cb with hydrogen in the presence of a catalyst.
  • 244ca which is the product of the production method of the present invention, is a useful compound as a raw material for producing 1233yd.
  • 1233yd is a compound that can be used in a variety of applications as a detergent, refrigerant, blowing agent, solvent, or aerosol. If the raw material containing 244ca contains 234cc, by-products may be produced, which may cause the selectivity of 1233yd to decrease. Therefore, the chlorination reaction of 254cb is preferably carried out under conditions under which the amount of 234cc produced relative to the total amount of reaction products is small.
  • the content of 234cc is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total amount of 244ca and 234cc in the reaction product. It is preferably 3 mass % or less, more preferably 1 mass % or less. Within the above range, the production of by-products is suppressed during the production of 1233yd.
  • the shape and structure of the reactor are not particularly limited as long as it can introduce and react 254cb and chlorine.
  • Such reactors include glass reactors, SUS reactors, glass lined reactors, resin lined reactors, and the like.
  • the reactor is usually provided with a temperature control section for controlling the temperature inside the reactor. Any temperature control unit may be used as long as it can control the reaction temperature between 254cb and chlorine. An oil bath etc. are mentioned as such a thing.
  • the temperature control unit may be provided integrally with the reactor.
  • the production method of the present invention can be carried out in either the liquid phase or the gas phase, and the liquid phase reaction is preferred because it is more advantageous for industrial implementation.
  • the gas phase reaction means reacting gaseous 254cb with gaseous chlorine
  • the liquid phase reaction means reacting liquid 254cb with gaseous chlorine.
  • reaction conditions in the liquid phase in the production method of the present invention are first described in detail, and then the reaction conditions in the gas phase are described in detail.
  • the ratio of 254cb and chlorine for example, the ratio of 254cb and chlorine supplied to the reactor, is selected from the viewpoint of activating the reaction, suppressing the generation of by-products, and the selectivity of 244ca.
  • chlorine (Cl 2 ) is preferably 0.01 to 3 mol, more preferably 0.1 to 2 mol, even more preferably 0.2 to 1.6, relative to 1 mol of 254cb, 0.5 to 1.5 molar is most preferred.
  • the reaction temperature (temperature inside the reactor) in the production method of the present invention is preferably -20 to 100°C, more preferably 5 to 60°C, when the reaction is carried out in the liquid phase. Within the above numerical range, the reaction can be activated and the production of by-products can be suppressed.
  • the chlorination reaction when carried out in a liquid phase reaction may be carried out in any of semi-continuous, batch, and continuous processes.
  • the reaction time the normal time adopted by each method can be applied, and it can be adjusted as appropriate according to the progress of the reaction. For example, 1 second to 100 hours is preferable, and 1 second to 10 hours is more preferable.
  • the reaction time is expressed as the contact time of 254cb and chlorine in the reactor.
  • the raw material may be supplied to the reactor by a method of supplying each component, a method of supplying each component as a mixture, or a combination of these methods.
  • the chlorine gas may be diluted with an inert gas such as nitrogen gas, if necessary.
  • the reaction time is the residence time of 254cb and chlorine in the reactor.
  • the raw materials are preferably fed into the reaction system individually or as a mixture of the components at a constant rate.
  • the raw material supply may be intermittent or continuous.
  • the chlorination reaction is carried out batchwise, it is preferable that the raw materials are fed together with a solvent and the like into a reactor prior to the reaction and subjected to the reaction.
  • the raw materials are continuously supplied and the reaction product is continuously withdrawn.
  • a method overflow method, etc. in which raw materials are continuously supplied into the reaction system from the bottom of a reactor charged with a solvent, and reaction products are continuously taken out from the top of the reactor.
  • the chlorination reaction When the chlorination reaction is performed continuously, it is preferable to feed the raw material and withdraw the product so that the raw material 254cb and chlorine stay in the reactor for 1 second to 100 hours, and the residence time is 1. Seconds to 50 hours are more preferred, and 1 second to 10 hours are particularly preferred.
  • the usual methods and apparatuses can be used in any of the semi-continuous, batch, and continuous methods, and the reaction is preferably carried out with stirring.
  • the reaction pressure in the production method of the present invention corresponds to the pressure inside the reactor.
  • the pressure in the reactor is preferably 0 to 1 MPa, more preferably 0.05 to 0.5 MPa, for efficient production.
  • the reaction is preferably carried out under pressurized conditions.
  • the production method of the present invention is preferably carried out under light irradiation.
  • the wavelength of light used for irradiation is preferably 200 to 750 nm, more preferably 250 to 730 nm. Light with a wavelength of 200 nm or more can sufficiently suppress the production reaction of by-products, and light with a wavelength of 750 nm or less allows the reaction to proceed sufficiently.
  • the light used for irradiation may include light with a wavelength of less than 200 nm or light with a wavelength of more than 750 nm.
  • light sources capable of efficiently irradiating light with a wavelength of 200 to 750 nm include, for example, fluorescent lamps, LED lights, incandescent lamps, high-pressure mercury lamps, and halogen lamps.
  • a light source that generates a large amount of heat is not preferable because it becomes difficult to keep the internal temperature of the reactor low. If the internal temperature is high, the internal pressure rises, and it is necessary to increase the pressure resistance of the reactor, which is disadvantageous in terms of cost. Also, if the internal temperature is high, side reactions tend to occur.
  • a fluorescent lamp or an LED light is preferable as a light source that generates little heat.
  • a jacketed light source is inserted into the reaction liquid and the raw material in the reaction liquid is irradiated with light from inside the reaction liquid.
  • the material of the jacket preferably transmits at least light of a wavelength useful for the above reaction, is inert to the components contained in the reaction solution, and is resistant to corrosion by these components.
  • the jacket preferably has cooling means depending on the reaction temperature.
  • 254cb and chlorine may be separately supplied to the reactor, or may be supplied in a premixed state.
  • a solvent may be used when the production method of the present invention is carried out in a liquid phase.
  • the solvent is a solvent capable of dissolving raw material components containing 254cb and chlorine, inert to the raw material components, and facilitating separation from the target product containing 244ca by distillation or the like. is preferred.
  • solvents examples include carbon tetrachloride and 1,1,2-trichloro-1,2,2-trifluoroethane.
  • 244ca may also be used as a solvent, and by-products 244cc, 234cc, 224ca, 214cb, 234cb, 224cb, 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5 , 6,6-octafluorohexane may be used as a solvent.
  • the solvent one type of these compounds may be used alone, or two or more types may be used in combination.
  • the solvent is preferably carbon tetrachloride, which is low-cost and easy to separate from the target product, and 244ca, which does not require separation.
  • the amount of the solvent is not particularly limited as long as it can dissolve the generated 244ca, preferably 1 to 4000% by mass, more preferably 50 to 3000% by mass with respect to the raw material 254cb.
  • a gas inert to the above reaction may be supplied to the reactor because it is effective in adjusting the flow rate, suppressing by-products, suppressing deactivation of the catalyst, and the like.
  • diluent gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas.
  • the ratio of 254cb and chlorine for example, the ratio of 254cb and chlorine supplied to the reactor, is selected from the viewpoint of activating the reaction, suppressing the generation of by-products, and the selectivity of 244ca.
  • chlorine (Cl 2 ) is preferably 0.01 to 3 mol, more preferably 0.1 to 2 mol, even more preferably 0.2 to 1.6, relative to 1 mol of 254cb, 0.5 to 1.5 molar is most preferred.
  • the reaction time is preferably 1 second to 1 hour
  • the reaction pressure is preferably 0 to 1 MPa
  • the reaction temperature is preferably 50 to 200°C from the viewpoint of reactivity.
  • the wavelength of light used for irradiation is preferably 200 to 750 nm.
  • the reaction product obtained by performing the chlorination reaction in the liquid phase reaction or the gas phase reaction contains the target product 244ca, unreacted raw materials, solvents, by-products such as chlorinated products that are not the target product, and the like. .
  • a conventional separation method can be employed. For example, after removing chlorine by washing with an alkali, distillation removes the solvent and by-products. and the like.
  • 244ca can be purified to a higher purity by distillation, and 244ca with a desired purity can be obtained by repeating the distillation.
  • the content of 234cc is preferably 10% by mass or less with respect to the total amount of 244ca and 234cc in the reaction product, and 5 mass % or less, more preferably 3 mass % or less, and particularly preferably 1 mass % or less.
  • 244ca is separated by distillation, when a component with a boiling point lower than that of 244ca forms an azeotropic or pseudo-azeotropic composition with water, 244ca is distilled by entraining water with the low boiling point component. , can be recovered without water.
  • Specific examples of components having a boiling point lower than 244ca include 244cc, 254cb, fluoromethane, difluoromethane, 1,1,1,2-tetrafluoroethane, fluoroethane, 1,2-difluoroethane, 1233yd(E), and the like. be done.
  • (Production of 1233 yd) 244ca is a useful compound as a starting material for producing 1233yd.
  • 1233yd is a compound that can be used in a variety of applications as a detergent, refrigerant, blowing agent, solvent, or aerosol.
  • 1233yd can be produced by subjecting 244ca to a dehydrofluorination reaction.
  • a method for producing 1233yd includes a method for producing 1233yd by subjecting 244ca obtained by the production method of the present invention to a dehydrofluorination reaction in the presence of either a base or a catalyst.
  • Known methods such as International Publication No. 2016/136744 can be used as the procedure for the dehydrofluorination reaction.
  • the base used in the dehydrofluorination reaction of 244ca includes metal hydroxides, metal oxides, and metal carbonates. Among them, metal hydroxides are preferable from the viewpoint of reaction time and reaction yield. Potassium hydroxide or sodium hydroxide is particularly preferred.
  • a phase transfer catalyst is preferably used as the catalyst used in the dehydrofluorination reaction of 244ca. Examples of the phase transfer catalyst include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc. Among them, quaternary ammonium salts are preferred. is particularly preferably tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB), methyltri-n-octylammonium chloride (TOMAC).
  • TBAC tetra-n-butylammonium chloride
  • TBAB
  • the dehydrofluorination reaction of 244ca may be carried out in either a liquid phase reaction or a gas phase reaction.
  • the liquid-phase reaction is a dehydrofluorination reaction of 244ca in a liquid state or dissolved in a liquid.
  • the gas phase reaction refers to a dehydrofluorination reaction of 244ca in a gaseous state.
  • 1233yd when 1233yd is produced using a reaction raw material containing 244ca, which has a low 234cc content, the amount of by-products of 1223yd can be reduced, so the steps required for purifying 1233yd can be simplified and economical. is also advantageous. Since 1223yd is azeotropic with 1233yd, it is a compound that is difficult to separate from 1233yd by distillation, but according to the above method, 1233yd with a purity of 90% or more can be provided by an industrially advantageous method.
  • the content of 1223yd is preferably 10% by mass or less, more preferably 5% by mass or less, and further 3% by mass or less with respect to the total amount of 1233yd and 1223yd.
  • 1% by mass or less is particularly preferable, and 0.5% by mass or less is most preferable.
  • unreacted 244ca, by-products, etc. may be included in the reaction products.
  • a separation and purification method such as general distillation. Examples thereof include a separation and purification method by distillation or the like, a water washing treatment by washing with water, and a solid adsorption treatment by contacting with a solid adsorbent.
  • separation from 1233yd is possible by combining these.
  • solid adsorbents include activated carbon, zeolite, silica, and alumina. Two or more kinds of solid adsorbents may be used in combination. Zeolites are preferred because they have high adsorption properties for by-products and the like.
  • Examples 1 to 6 are examples of liquid phase reaction
  • Example 7 is an example of gas phase reaction
  • Example 8 is an example of a method for producing 1233yd.
  • 254cb for example, according to the method described in WO 2018/139654, using a reactor equipped with a U-shaped reaction tube having a catalyst layer filled with a catalyst-supporting carrier and a salt bath in which it is immersed, can be manufactured.
  • 244 cc was supplied together with hydrogen to a palladium catalyst-supporting activated carbon in which 2.0 parts by mass of palladium was supported with respect to 100 parts by mass of activated carbon as a catalyst-supporting carrier, and reacted.
  • the recovered reaction composition contained 244cc, 263eb, 263ca, etc. 254cb was obtained by distillation from the reaction composition.
  • Example 1 244ca was produced by chlorinating 254cb obtained in the above production example.
  • a stainless steel autoclave (internal volume: 2.0 liters) equipped with a jacket and a quartz tube that transmits light from a light source was cooled to 20°C.
  • a wavelength Chlorine gas was introduced into the reactor at a flow rate of 7.1 g per hour while irradiating with visible light of 200 to 750 nm.
  • the reaction pressure at this time was 0.0 to 0.2 MPaG.
  • the above flow rate of chlorine gas was introduced for 5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
  • reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 1 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 2 The same reactor used in Example 1 was maintained at 20° C., and 1530 g of carbon tetrachloride (CCl 4 ) as a solvent and 116 g of 254cb were charged into the reactor. Thereafter, chlorine gas was supplied into the reactor at a flow rate of 14.2 g per hour while irradiating visible light with a wavelength of 200 to 750 nm from an LED lamp (LHT42N-G-E39 manufactured by Mitsubishi Electric Corporation, output 40 W). The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 2.5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
  • CCl 4 carbon tetrachloride
  • reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 2 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 3 The same reactor as used in Example 1 was kept at 20° C., 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb were placed therein, and then an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40 W ), while irradiating visible light with a wavelength of 200 to 750 nm, chlorine gas was introduced into the reactor at a flow rate of 3.6 g per hour. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 10 hours, that is, chlorine was introduced at a rate of 0.5 mol per 1 mol of 254cb, and light irradiation was continued until the temperature in the reactor became constant at 20°C.
  • CCl 4 carbon tetrachloride
  • 254cb 254cb
  • reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 3 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 4 The same reactor as used in Example 1 was kept at 50° C., 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb were placed therein, and then an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40 W ), while irradiating visible light with a wavelength of 200 to 750 nm, chlorine gas was introduced into the reactor at a flow rate of 7.1 g per hour. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
  • CCl 4 carbon tetrachloride
  • 254cb 254cb
  • reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 4 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 5 The same reactor as used in Example 1 was kept at 0° C., 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb were charged therein, and then an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40 W ), while irradiating visible light with a wavelength of 200 to 750 nm, chlorine gas was introduced into the reactor at a flow rate of 7.1 g per hour. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
  • CCl 4 carbon tetrachloride
  • 254cb 254cb
  • reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 5 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 6 A solenoid valve was provided at the bottom of the reactor used in Example 1 to keep the internal temperature of the reactor at 20° C., and 1530 g of carbon tetrachloride (CCl 4 ) was put therein. After that, from an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40W), while irradiating visible light with a wavelength of 200 to 750 nm, 254cb is 11.6 g per hour, and chlorine gas is added at a flow rate of 3.6 g per hour. introduced inside. The reaction pressure at this time was 0.0 to 0.2 MPaG. A reaction crude liquid was withdrawn through an electromagnetic valve provided at the bottom of the reactor to keep the reactor liquid level constant. Light irradiation was continued for 10 hours at the above flow rate.
  • LED lamp Mitsubishi Electric LHT42N-G-E39, output 40W
  • reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing still, the reaction composition 6 was recovered from the separated lower layer and subjected to GC analysis.
  • the reaction conditions of Examples 1-6 and the GC analysis results of the resulting reaction compositions are shown in Table 1.
  • the conversion rate of 254cb is the ratio of the amount of 254cb consumed in the reaction to the amount of 254cb supplied to the reactor, and is a molar conversion value (unit: mol %).
  • the selectivity of each compound is the ratio of each compound to the total amount of the reaction composition, and is a molar conversion value (unit: mol %).
  • the target 244 ca can be obtained with high selectivity.
  • Example 7 A gas phase reactor (manufactured by Swagelok) consisting of a cylindrical reaction tube made of SUS316 with an inner diameter of 21.4 mm and a length of 50 cm was filled with activated carbon as a catalyst to a height of 40 cm, and the reactor was heated in an electric furnace. The temperature was kept at 100°C. 254cb was fed to the gas phase reactor from a cylinder maintained at a temperature of 50°C via a mass flow controller and a preheater. The temperature in the line from the cylinder through the mass flow controller to the preheater was kept at 50°C to prevent the 254cb from condensing.
  • the gas phase reactor was supplied with a contact time of 20 seconds and a molar ratio of chlorine/254cb of 1:1 to obtain a generated gas.
  • the conversion rate of 254cb was 93.2%
  • the selectivities of 244ca and 234cc were 80.9% and 5.9%, respectively
  • 244cc, 234cb, 224ca The selectivities for 224cb and 214cb were 1.5%, 4.4%, 1.5%, 2.9% and 2.9%, respectively.
  • Example 8 989.40 g of the raw material composition containing 244ca obtained in Example 6 above as a main component, tetra-n-butylammonium bromide (TBAB)9. 89 g was charged and the flask was heated to 50°C. While maintaining the reaction temperature at 50° C., 1396.01 g of a 40% by mass potassium hydroxide (KOH) aqueous solution was added dropwise over 30 minutes. After that, stirring was continued for 52 hours, and the organic layer was recovered.
  • the reaction time in this example is the total time of the time required for the dropping and the time for stirring after the dropping, that is, 52.5 hours.
  • Table 2 shows the results of analysis using a gas chromatogram after washing the recovered organic layer with water.
  • 244ca can be efficiently produced with high purity by reacting 254cb with chlorine.
  • the production method of the present invention is a method that allows a large-volume reaction without using special operations or reactors, and by this method, 244ca can be mass-produced on an industrial scale.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2021-013256 filed on January 29, 2021 are cited here and incorporated as disclosure of the specification of the present invention. It is.

Abstract

Provided is an efficient method for producing 244ca at high purity. This method for producing 3-chloro-1,1,2,2-tetrafluoropropane involves reacting 1,1,2,2-tetrafluoropropane with chlorine to obtain 3-chloro-1,1,2,2-tetrafluoropropane.

Description

3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法および1-クロロ-2,3,3-トリフルオロプロペンの製造方法Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropene
 本発明は、3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法および1-クロロ-2,3,3-トリフルオロプロペンの製造方法に関する。 The present invention relates to a method for producing 3-chloro-1,1,2,2-tetrafluoropropane and a method for producing 1-chloro-2,3,3-trifluoropropene.
 3-クロロ-1,1,2,2-テトラフルオロプロパン(CHF-CF-CHCl。HCFC-244ca。以下、244caともいう。)は、新しい洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール、またはそれらの合成原料として用いられる。
 たとえば、特許文献1には、244caは、1-クロロ-2,3,3-トリフルオロプロペン(CHF-CF=CHCl。HCFO-1233yd。以下、1233ydともいう。)を製造するための合成原料として用いられることが記載されている。
 244caの製造方法として、特許文献2には、2,2,3,3-テトラフルオロプロパノール(以下、TFPOともいう。)を合成原料として、N,N-ジメチルホルムアミドの存在下で塩素化剤として塩化チオニルと反応させる244caの製造方法が記載されている。
3-chloro-1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 2 Cl. HCFC-244ca, hereinafter also referred to as 244ca) is a new detergent, refrigerant, blowing agent, solvent, and aerosols, or their synthetic raw materials.
For example, in Patent Document 1, 244ca is a synthetic raw material for producing 1-chloro-2,3,3-trifluoropropene (CHF 2 -CF=CHCl. HCFO-1233yd, hereinafter also referred to as 1233yd.) It is described to be used as
As a method for producing 244ca, in Patent Document 2, 2,2,3,3-tetrafluoropropanol (hereinafter also referred to as TFPO) is used as a synthetic raw material, and N,N-dimethylformamide is used as a chlorinating agent in the presence of A method for the preparation of 244ca is described by reacting with thionyl chloride.
特許第6132042号公報Japanese Patent No. 6132042 国際公開第2018/131394号WO2018/131394
 特許文献2に記載の244caの製造方法は、塩素化剤として塩化チオニルを用いたことで、反応生成物中に副生した塩化水素や二酸化硫黄等が含まれ、多量のアルカリ水溶液で中和する必要があるため、工業的規模の大量生産に適した244caの製造方法の検討がなされている。
 本発明は、工業的に有利で、高純度な244caの製造方法を提供することを目的とする。
The method for producing 244ca described in Patent Document 2 uses thionyl chloride as a chlorinating agent, so that the reaction product contains by-products such as hydrogen chloride and sulfur dioxide, and is neutralized with a large amount of aqueous alkaline solution. Therefore, a method for producing 244ca suitable for industrial-scale mass production has been investigated.
An object of the present invention is to provide an industrially advantageous method for producing high-purity 244ca.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of intensive studies aimed at solving the above problems, the inventors found that the above problems can be solved with the following configuration.
[1] 1,1,2,2-テトラフルオロプロパンと塩素とを反応させて3-クロロ-1,1,2,2-テトラフルオロプロパンを得る、3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法。
[2] 上記1,1,2,2-テトラフルオロプロパンと上記塩素との反応において、反応生成物中に1,3-ジクロロ-1,1,2,2-テトラフルオロプロパンを、上記3-クロロ-1,1,2,2-テトラフルオロプロパンおよび上記1,3-ジクロロ-1,1,2,2-テトラフルオロプロパンの合計量に対して10質量%以下含む、[1]に記載の製造方法。
[3] 上記1,1,2,2-テトラフルオロプロパンの1モルに対して、上記塩素を0.01~3モル用いる、[1]または[2]に記載の製造方法。
[4] 上記1,1,2,2-テトラフルオロプロパンと上記塩素との反応を液相で行う、[1]~[3]のいずれかに記載の製造方法。
[5] 上記反応の反応温度が、-20~100℃である、[4]に記載の製造方法。
[6] 上記反応の反応時間が、1秒間~100時間である、[4]または[5]に記載の製造方法。
[7] 上記反応の圧力が、ゲージ圧で0~1MPaである、[4]~[6]のいずれかに記載の製造方法。
[8] 上記1,1,2,2-テトラフルオロプロパンを反応器に連続的に供給し、反応生成物を反応器から連続的に抜き出す、[4]~[7]のいずれかに記載の製造方法。
[9] 上記反応を溶媒の存在下にて行う、[4]~[8]のいずれかに記載の製造方法。
[10] 上記溶媒が、四塩化炭素、1,1,2-トリクロロ-1,2,2-トリフルオロエタン、1-クロロ-1,1,2,2-テトラフルオロプロパン、1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン、1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパン、1,3,3,3-テトラクロロ-1,1,2,2-テトラフルオロプロパン、3-クロロ-1,1,2,2-テトラフルオロプロパン、1,1-ジクロロ-2,2,3,3-テトラフルオロプロパン、1,1,1-トリクロロ-2,2,3,3-テトラフルオロプロパン、1,3,3,4,4,6-ヘキサクロロ-1,1,2,2,5,5,6,6-オクタフルオロヘキサンからなる群から選ばれる少なくとも1種である、[9]に記載の製造方法。
[11] 上記溶媒を、上記1,1,2,2-テトラフルオロプロパンの質量に対して1~4000質量%で用いる、[9]または[10]に記載の製造方法。
[12] 上記1,1,2,2-テトラフルオロプロパンと上記塩素との反応を気相で行う、[1]~[3]のいずれかに記載の製造方法。
[13] 上記反応の反応温度が、50~200℃である、[12]に記載の製造方法。
[14] 上記反応の反応時間が、1秒間~1時間である、[12]または[13]に記載の製造方法。
[15] 上記反応の圧力が、ゲージ圧で0~1MPaである、[12]~[14]のいずれかに記載の製造方法。
[16] [1]~[15]のいずれかに記載の製造方法により得られた3-クロロ-1,1,2,2-テトラフルオロプロパンを、塩基または触媒の存在下に脱フッ化水素反応させることを特徴とする、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
[17] 脱フッ化水素反応により得られた反応生成物中に、1,3-ジクロロ-2,3,3-トリフルオロプロペンを、上記1-クロロ-2,3,3-トリフルオロプロペンに対して10質量%以下含む、[16]に記載の製造方法。
[1] 3-chloro-1,1,2,2, which reacts 1,1,2,2-tetrafluoropropane with chlorine to give 3-chloro-1,1,2,2-tetrafluoropropane; - A process for the production of tetrafluoropropane.
[2] In the reaction of the 1,1,2,2-tetrafluoropropane and the chlorine, the reaction product contains 1,3-dichloro-1,1,2,2-tetrafluoropropane, the 3- [1], containing 10% by mass or less relative to the total amount of chloro-1,1,2,2-tetrafluoropropane and the 1,3-dichloro-1,1,2,2-tetrafluoropropane Production method.
[3] The production method according to [1] or [2], wherein 0.01 to 3 mol of chlorine is used per 1 mol of 1,1,2,2-tetrafluoropropane.
[4] The production method according to any one of [1] to [3], wherein the reaction of the 1,1,2,2-tetrafluoropropane and the chlorine is carried out in a liquid phase.
[5] The production method according to [4], wherein the reaction temperature of the above reaction is -20 to 100°C.
[6] The production method according to [4] or [5], wherein the reaction time is 1 second to 100 hours.
[7] The production method according to any one of [4] to [6], wherein the reaction pressure is 0 to 1 MPa in gauge pressure.
[8] The 1,1,2,2-tetrafluoropropane according to any one of [4] to [7], wherein the 1,1,2,2-tetrafluoropropane is continuously supplied to the reactor, and the reaction product is continuously withdrawn from the reactor. Production method.
[9] The production method according to any one of [4] to [8], wherein the reaction is carried out in the presence of a solvent.
[10] the solvent is carbon tetrachloride, 1,1,2-trichloro-1,2,2-trifluoroethane, 1-chloro-1,1,2,2-tetrafluoropropane, 1,3-dichloro -1,1,2,2-tetrafluoropropane, 1,3,3-trichloro-1,1,2,2-tetrafluoropropane, 1,3,3,3-tetrachloro-1,1,2, 2-tetrafluoropropane, 3-chloro-1,1,2,2-tetrafluoropropane, 1,1-dichloro-2,2,3,3-tetrafluoropropane, 1,1,1-trichloro-2, At least selected from the group consisting of 2,3,3-tetrafluoropropane, 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5,6,6-octafluorohexane 1, the production method according to [9].
[11] The production method according to [9] or [10], wherein the solvent is used in an amount of 1 to 4000% by mass based on the mass of the 1,1,2,2-tetrafluoropropane.
[12] The production method according to any one of [1] to [3], wherein the 1,1,2,2-tetrafluoropropane and chlorine are reacted in a gas phase.
[13] The production method according to [12], wherein the reaction temperature is 50 to 200°C.
[14] The production method according to [12] or [13], wherein the reaction time is 1 second to 1 hour.
[15] The production method according to any one of [12] to [14], wherein the reaction pressure is 0 to 1 MPa in gauge pressure.
[16] 3-chloro-1,1,2,2-tetrafluoropropane obtained by the production method according to any one of [1] to [15] is subjected to dehydrofluorination in the presence of a base or a catalyst. A method for producing 1-chloro-2,3,3-trifluoropropene, characterized by reacting.
[17] 1,3-dichloro-2,3,3-trifluoropropene is added to the 1-chloro-2,3,3-trifluoropropene in the reaction product obtained by the dehydrofluorination reaction; The production method according to [16], containing 10% by mass or less.
 本発明によれば、高純度で、効率的な244caの製造方法を提供することができる。 According to the present invention, it is possible to provide a highly pure and efficient method for producing 244ca.
 本明細書において、化合物名は化合物名の後の括弧内に示した略称で記すことがある。
 本明細書において塩素は、分子状態の塩素(Cl)をいう。圧力は特に記載しない限り、ゲージ圧を意味する。
In the present specification, compound names may be abbreviated as shown in parentheses after the compound name.
As used herein, chlorine refers to molecular state chlorine (Cl 2 ). Pressure means gauge pressure unless otherwise stated.
 化合物に異性体が存在する場合においては、特に明記しない限りは、該異性体から選ばれる1種または2種以上の混合物であることを示す。たとえば、Z異性体およびE異性体が存在する場合は、Z異性体のみ、E異性体のみ、または、Z異性体とE異性体の任意の割合の混合物の全ての意味を示す。化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、それぞれの化合物の(E)異性体または(Z)異性体を示す。例えば、1233yd(Z)はZ異性体を示し、1233yd(E)はE異性体を示す。 When a compound has isomers, it indicates one or a mixture of two or more selected from the isomers, unless otherwise specified. For example, when Z and E isomers are present, all mean Z isomers only, E isomers only, or mixtures of Z and E isomers in any proportion. When (E) or (Z) is attached to the end of a compound name or compound abbreviation, the (E) isomer or (Z) isomer of the respective compound is indicated. For example, 1233yd(Z) indicates the Z isomer and 1233yd(E) indicates the E isomer.
 本発明の244caの製造方法(以下、単に「本発明の製造方法」ともいう。)は、1,1,2,2-テトラフルオロプロパン(CHF-CF-CH。HFC-254cb。以下、254cbともいう。)を塩素と反応させる塩素化反応により行われる。254cbの塩素化反応により244caを得る反応は、下式(1)で示される反応(以下、反応(1)ともいう。)である。 The method for producing 244ca of the present invention (hereinafter also simply referred to as the “production method of the present invention”) comprises 1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 3 .HFC-254cb. , also referred to as 254cb) with chlorine. The reaction for obtaining 244ca by the chlorination reaction of 254cb is the reaction represented by the following formula (1) (hereinafter also referred to as reaction (1)).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の製造方法は、驚くべきことに254cbの塩素化反応において、他の塩素化体はほとんど生成せず、244caを選択的に得られる利点がある。 Surprisingly, the production method of the present invention has the advantage that 244ca can be selectively obtained in the chlorination reaction of 254cb with almost no other chlorinated products.
 以下では、まず、本発明の製造方法で用いられる成分について詳述し、その後、製造方法の手順について詳述する。 In the following, first, the components used in the production method of the present invention are detailed, and then the procedure of the production method is detailed.
 (254cbの製造方法)
 本発明の製造方法においては、原料として、254cbが用いられる。254cbは、含フッ素化合物の製造原料または中間体として知られる公知の化合物である。
 254cbの入手方法は特に制限されず、国際公開第2018/139654号等に記載の公知の方法が挙げられる。具体的には、1-クロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CH。HCFC-244cc。以下、244ccともいう。)に触媒の存在下で水素を、200℃を超える温度で反応させることで製造可能である。
(Manufacturing method of 254cb)
In the production method of the present invention, 254cb is used as a raw material. 254cb is a known compound known as a raw material or intermediate for producing fluorine-containing compounds.
Methods for obtaining 254cb are not particularly limited, and include known methods described in International Publication No. 2018/139654 and the like. Specifically, hydrogen is added to 1-chloro-1,1,2,2-tetrafluoropropane (CCIF 2 —CF 2 —CH 3 , HCFC-244cc, hereinafter also referred to as 244cc) in the presence of a catalyst, It can be produced by reacting at temperatures above 200°C.
 244ccを水素と反応させて還元させる上記反応には、水素化触媒が用いられる。水素化触媒としては、パラジウム触媒が好ましい。パラジウム触媒は、パラジウム単体のみならず、パラジウムからなる触媒であってもよく、パラジウムを含む金属触媒であってもよい。パラジウムを含む金属触媒としては、パラジウム合金触媒が好ましい。パラジウム合金触媒としては、パラジウム/白金合金触媒やパラジウム/ロジウム合金触媒等が挙げられる。また、パラジウム触媒としては、パラジウムを含む金属触媒および他の金属との混合物であってもよい。 A hydrogenation catalyst is used for the above reaction in which 244cc is reacted with hydrogen and reduced. A palladium catalyst is preferred as the hydrogenation catalyst. The palladium catalyst may be a catalyst composed of palladium, or a metal catalyst containing palladium, as well as simple palladium. A palladium alloy catalyst is preferable as the metal catalyst containing palladium. Palladium alloy catalysts include palladium/platinum alloy catalysts and palladium/rhodium alloy catalysts. Moreover, the palladium catalyst may be a metal catalyst containing palladium or a mixture with other metals.
 また、上記パラジウム触媒を担体に担持した触媒(以下、パラジウム担持触媒ともいう。)を用いてもよく、上記パラジウム触媒および他の金属を、別々に担体に担持させた複合触媒を用いてもよい。 In addition, a catalyst in which the palladium catalyst is supported on a carrier (hereinafter also referred to as a palladium-supported catalyst) may be used, or a composite catalyst in which the palladium catalyst and another metal are separately supported on a carrier may be used. .
 パラジウム担持触媒における担体としては、活性炭、金属酸化物(アルミナ、ジルコニア、シリカ等)等が挙げられ、活性、耐久性、反応選択性の点から、活性炭が好ましい。活性炭としては、植物原料(木材、木炭、果実殻、ヤシ殻等)、鉱物質原料(泥炭、亜炭、石炭等)等から得られたものが挙げられ、触媒耐久性の点から、植物原料から得られた活性炭が好ましく、ヤシ殻活性炭が特に好ましい。 Examples of the carrier for the palladium-supported catalyst include activated carbon, metal oxides (alumina, zirconia, silica, etc.), and activated carbon is preferred from the viewpoint of activity, durability, and reaction selectivity. Examples of activated carbon include those obtained from plant raw materials (wood, charcoal, fruit shells, coconut shells, etc.) and mineral raw materials (peat, lignite, coal, etc.). The activated carbon obtained is preferred, and coconut shell activated carbon is particularly preferred.
 244ccを水素と反応させる還元反応は気相で行うことが好ましい。具体的には、反応管に触媒担持担体を充填して触媒層を形成し、該触媒層に244ccガスと水素ガスを流通させることで行われる。反応時の触媒層の温度は、200℃を超える温度であり、210~350℃が好ましく、250~300℃がより好ましい。244ccと水素の割合は適宜調整される。244ccガスと水素ガスに、窒素ガス、希ガス等からなる希釈ガスを加えて反応に供してもよい。 The reduction reaction for reacting 244cc with hydrogen is preferably carried out in the gas phase. Specifically, a reaction tube is filled with a catalyst-carrying carrier to form a catalyst layer, and 244 cc gas and hydrogen gas are passed through the catalyst layer. The temperature of the catalyst layer during the reaction is above 200°C, preferably 210 to 350°C, more preferably 250 to 300°C. The ratio of 244cc and hydrogen is adjusted accordingly. A diluent gas such as nitrogen gas or rare gas may be added to the 244 cc gas and hydrogen gas for the reaction.
 244ccを水素と反応させて得られる反応生成物から、通常の分離方法により、例えば、蒸留により254cbを単離して、本発明の製造方法の原料として使用できる。 From the reaction product obtained by reacting 244cc with hydrogen, 254cb can be isolated by a normal separation method, for example, by distillation, and used as a raw material for the production method of the present invention.
 本発明の製造方法の原料である254cbは、他の化合物との混合物であってもよい。つまり、本発明の製造方法の原料には、254cbが含まれていればよく、例えば、254cbと他の化合物との混合物を原料として用いてもよい。 254cb, which is the raw material for the production method of the present invention, may be a mixture with other compounds. That is, the starting material for the production method of the present invention should only contain 254cb, and for example, a mixture of 254cb and other compounds may be used as the starting material.
 本発明の製造方法に適用される原料に含まれうる他の化合物は、254cbの製造原料や254cbを製造する際に254cb以外に生成する副生成物等の不純物が挙げられる。なお、原料中に上記不純物が含まれる場合、不純物から生成する副生成物は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により除去してもよい。不純物としては、本発明の製造方法において不活性な化合物であることが好ましい。 Other compounds that can be contained in the raw materials applied to the production method of the present invention include impurities such as raw materials for producing 254cb and by-products produced in addition to 254cb when producing 254cb. When the raw material contains the above impurities, by-products generated from the impurities may be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption. The impurity is preferably a compound that is inactive in the production method of the present invention.
 塩素化反応に用いられる原料中において、254cbは主成分として含まれることが好ましい。塩素化反応に用いられる原料の全質量に対して、254cbの含有量は50質量%以上が好ましく、75質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。上限としては、100質量%が挙げられる。 254cb is preferably contained as a main component in the raw materials used for the chlorination reaction. The content of 254cb is preferably 50% by mass or more, more preferably 75% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more, relative to the total mass of the raw materials used in the chlorination reaction. 100 mass % is mentioned as an upper limit.
 (製造方法)
 本発明の製造方法においては、反応器を用いて、254cbと塩素とを接触させ、塩素化反応により244caを製造する。出発物質である254cbとしては、前述の方法で得られた254cbを用いることができる。なお、254cbの入手方法はこれに限定されない。本発明の製造方法は、液相および気相のいずれでも行うことができ、より工業的に実施が有利である点から液相反応で行うことが好ましい。
(Production method)
In the production method of the present invention, a reactor is used to bring 254cb into contact with chlorine to produce 244ca through a chlorination reaction. As the starting material 254cb, 254cb obtained by the method described above can be used. However, the method of obtaining 254cb is not limited to this. The production method of the present invention can be carried out in either a liquid phase or a gas phase, and is preferably carried out in a liquid phase reaction because it is more advantageous for industrial implementation.
 ここで、254cbの塩素化反応においては、副反応が生起して、244cc、1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CHCl。HCFC-234cc。以下、234ccともいう。)、1,1-ジクロロ-2,2,3,3-テトラフルオロプロパン(CHCl-CF-CHF。HCFC-234cb。以下、234cbともいう。)、1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CHCl。HCFC-224ca。以下、224caともいう。)、1,3,3,3-テトラクロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CCl。HCFC-214cb。以下、214cbともいう。)、1,1,1-トリクロロ-2,2,3,3-テトラフルオロプロパン(CHF-CF-CCl。HCFC-224cb。以下、224cbともいう)、1,3,3,4,4,6-ヘキサクロロ-1,1,2,2,5,5,6,6-オクタフルオロヘキサン等の塩素化体が副生することがある。 Here, in the chlorination reaction of 254cb, a side reaction occurs to form 244cc, 1,3-dichloro-1,1,2,2-tetrafluoropropane (CClF 2 —CF 2 —CH 2 Cl. HCFC- 234cc. Hereinafter also referred to as 234cc.), 1,1-dichloro-2,2,3,3-tetrafluoropropane (CHCl.sub.2-- CF.sub.2 --CHF.sub.2.HCFC - 234cb . Hereinafter also referred to as 234cb.), 1 ,3,3-trichloro-1,1,2,2-tetrafluoropropane (CCIF 2 —CF 2 —CHCl 2 , HCFC-224ca, hereinafter also referred to as 224ca), 1,3,3,3-tetrachloro -1,1,2,2-tetrafluoropropane (CClF 2 -CF 2 -CCl 3 ; HCFC-214cb; hereinafter also referred to as 214cb), 1,1,1-trichloro-2,2,3,3- tetrafluoropropane (CHF 2 —CF 2 —CCl 3 ; HCFC-224cb; hereinafter also referred to as 224cb), 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5, Chlorinated products such as 6,6-octafluorohexane may be produced as a by-product.
 254cbの塩素化反応で副生した244ca以外の塩素化体は、水素還元反応により目的生成物である244caまたは原料である254cbを製造することができる。例えば、本発明の製造方法で244ccが副生した場合、244ccと水素を触媒の存在下で反応させることで254cbが製造でき、原料として再利用できる。また、本発明の製造方法で234ccまたは234cbが副生した場合、234ccまたは234cbと水素を触媒の存在下で反応させることで244caが製造できる。 A chlorinated product other than 244ca, which is a by-product of the chlorination reaction of 254cb, can be subjected to a hydrogen reduction reaction to produce 244ca as the target product or 254cb as the raw material. For example, when 244cc is by-produced in the production method of the present invention, 254cb can be produced by reacting 244cc with hydrogen in the presence of a catalyst, which can be reused as a raw material. Further, when 234cc or 234cb is by-produced in the production method of the present invention, 244ca can be produced by reacting 234cc or 234cb with hydrogen in the presence of a catalyst.
 本発明の製造方法である254cbの塩素化反応においては、244caの選択率を高めるために、上記副反応を抑制する条件で行うことが好ましい。 In the chlorination reaction of 254cb, which is the production method of the present invention, it is preferable to carry out under conditions that suppress the above side reactions in order to increase the selectivity of 244ca.
 本発明の製造方法の生成物である244caは、1233ydを製造するための原料として有用な化合物である。1233ydは、洗浄剤、冷媒、発泡剤、溶剤、またはエアゾールとして種々の用途に用いることができる化合物である。244caを含む原料が234ccを含む場合、副生成物が生成し、1233ydの選択率が低下する原因になりうるので、244caを含む原料に対する234ccの含有量は少ないほうが好ましい。したがって、254cbの塩素化反応は、反応生成物全量に対する234ccの生成量が少なくなる条件で行うことが好ましい。 244ca, which is the product of the production method of the present invention, is a useful compound as a raw material for producing 1233yd. 1233yd is a compound that can be used in a variety of applications as a detergent, refrigerant, blowing agent, solvent, or aerosol. If the raw material containing 244ca contains 234cc, by-products may be produced, which may cause the selectivity of 1233yd to decrease. Therefore, the chlorination reaction of 254cb is preferably carried out under conditions under which the amount of 234cc produced relative to the total amount of reaction products is small.
 本発明の製造方法において反応生成物中に234ccを含む場合、234ccの含有量は、反応生成物中の244caと234ccの合計量に対して、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましく、1質量%以下が特に好ましい。上記範囲内であれば、1233yd製造時に副生成物の生成が抑制される。 When 234cc is included in the reaction product in the production method of the present invention, the content of 234cc is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total amount of 244ca and 234cc in the reaction product. It is preferably 3 mass % or less, more preferably 1 mass % or less. Within the above range, the production of by-products is suppressed during the production of 1233yd.
 反応器としては、形状および構造は特に限定されず、254cbと塩素とを導入して反応させることができるものであればよい。このようなものとしては、ガラス製反応器、SUS製反応器、ガラスライニング反応器、樹脂ライニング反応器等が挙げられる。反応器は、通常、反応器内の温度を調整する温度調整部を備える。温度調整部としては、254cbと塩素との反応温度を調整することができるものであればよい。このようなものとしては、オイルバス等が挙げられる。なお、温度調整部は、反応器に一体的に設けられていてもよい。 The shape and structure of the reactor are not particularly limited as long as it can introduce and react 254cb and chlorine. Such reactors include glass reactors, SUS reactors, glass lined reactors, resin lined reactors, and the like. The reactor is usually provided with a temperature control section for controlling the temperature inside the reactor. Any temperature control unit may be used as long as it can control the reaction temperature between 254cb and chlorine. An oil bath etc. are mentioned as such a thing. In addition, the temperature control unit may be provided integrally with the reactor.
 本発明の製造方法は、液相および気相のいずれでも行うことができ、より工業的に実施が有利である点から液相反応で行うことが好ましい。気相反応で行うとは、ガス状態の254cbとガス状態の塩素とを反応させることをいい、液相反応で行うとは、液体状態の254cbとガス状態の塩素とを反応させることをいう。 The production method of the present invention can be carried out in either the liquid phase or the gas phase, and the liquid phase reaction is preferred because it is more advantageous for industrial implementation. The gas phase reaction means reacting gaseous 254cb with gaseous chlorine, and the liquid phase reaction means reacting liquid 254cb with gaseous chlorine.
 以下では、まず、本発明の製造方法における液相での反応条件について詳述し、その後、気相での反応条件について詳述する。 In the following, the reaction conditions in the liquid phase in the production method of the present invention are first described in detail, and then the reaction conditions in the gas phase are described in detail.
 (液相反応で行う塩素化反応について)
 液相反応の具体的な手段としては、液体状態の254cbとガス状態の塩素とを反応器内に供給し、反応器内にて、254cbと塩素とを接触させて、244caを得る手順が挙げられる。さらに、該反応は光照射下に行うことが好ましい。
(Regarding the chlorination reaction performed in a liquid phase reaction)
As a specific means of the liquid phase reaction, a procedure of supplying 254cb in a liquid state and chlorine in a gaseous state into a reactor and bringing 254cb and chlorine into contact in the reactor to obtain 244ca can be mentioned. be done. Furthermore, the reaction is preferably carried out under light irradiation.
 本発明の製造方法において、254cbと塩素の割合、例えば、上記反応器に供給される254cbと塩素の割合は、反応を活性化する観点、副生成物の生成を抑制する観点、244caの選択率および収率を上げる観点から、254cbの1モルに対して塩素(Cl)0.01~3モルが好ましく、0.1~2モルがより好ましく、0.2~1.6がさらに好ましく、0.5~1.5モルが最も好ましい。 In the production method of the present invention, the ratio of 254cb and chlorine, for example, the ratio of 254cb and chlorine supplied to the reactor, is selected from the viewpoint of activating the reaction, suppressing the generation of by-products, and the selectivity of 244ca. And from the viewpoint of increasing the yield, chlorine (Cl 2 ) is preferably 0.01 to 3 mol, more preferably 0.1 to 2 mol, even more preferably 0.2 to 1.6, relative to 1 mol of 254cb, 0.5 to 1.5 molar is most preferred.
 本発明の製造方法における反応温度(反応器内の温度)は、液相で行う場合、-20~100℃が好ましく、5~60℃がより好ましい。上記数値範囲であれば反応を活性化し、副生成物の生成を抑制できる。 The reaction temperature (temperature inside the reactor) in the production method of the present invention is preferably -20 to 100°C, more preferably 5 to 60°C, when the reaction is carried out in the liquid phase. Within the above numerical range, the reaction can be activated and the production of by-products can be suppressed.
 液相反応で行う場合の塩素化反応は、半連続式、バッチ式、連続式のいずれの方法で行ってもよい。反応時間は、各方式により採用される通常の時間が適用でき、反応の進捗状況により適宜調整できる。例えば、1秒間~100時間が好ましく、1秒間~10時間がより好ましい。反応時間は、254cbと塩素の反応器内の接触時間で表される。反応器への原料の供給は、成分毎に供給する方法でもよいし、各成分を混合物として供給する方法でもよく、これらの方法を併用してもよい。塩素を塩素ガスとして反応器に供給する場合、塩素ガスを必要に応じて窒素ガス等の不活性ガスで希釈して行ってもよい。本発明の製造方法を連続式で行う場合、反応時間は、反応器内での254cbと塩素の滞留時間である。 The chlorination reaction when carried out in a liquid phase reaction may be carried out in any of semi-continuous, batch, and continuous processes. As the reaction time, the normal time adopted by each method can be applied, and it can be adjusted as appropriate according to the progress of the reaction. For example, 1 second to 100 hours is preferable, and 1 second to 10 hours is more preferable. The reaction time is expressed as the contact time of 254cb and chlorine in the reactor. The raw material may be supplied to the reactor by a method of supplying each component, a method of supplying each component as a mixture, or a combination of these methods. When supplying chlorine as chlorine gas to the reactor, the chlorine gas may be diluted with an inert gas such as nitrogen gas, if necessary. When the production process of the present invention is carried out continuously, the reaction time is the residence time of 254cb and chlorine in the reactor.
 塩素化反応を半連続式で行う場合において、原料は反応系中に、成分毎に、または各成分の混合物として、一定の速度で供給するのが好ましい。原料の供給は、断続的であってもよいし、連続的であってもよい。
 塩素化反応をバッチ式で行う場合においては、原料は反応前に反応器に溶媒などとともに仕込まれ、反応に供するのが好ましい。
When the chlorination reaction is carried out in a semi-continuous manner, the raw materials are preferably fed into the reaction system individually or as a mixture of the components at a constant rate. The raw material supply may be intermittent or continuous.
When the chlorination reaction is carried out batchwise, it is preferable that the raw materials are fed together with a solvent and the like into a reactor prior to the reaction and subjected to the reaction.
 塩素化反応を連続式で行う場合は、原料を連続的に供給し、反応生成物を連続的に抜き出す。例えば、溶媒を仕込んだ反応器の下部から、原料を反応系中に連続的に供給し、反応生成物は、反応器上部から連続的に取り出す方法(オーバーフロー法等)が好ましい。本発明の製造方法は、244caの選択率を高める観点、および、234ccの生成量を抑制する観点から、連続式で反応させることが好ましい。 When the chlorination reaction is performed continuously, the raw materials are continuously supplied and the reaction product is continuously withdrawn. For example, it is preferable to use a method (overflow method, etc.) in which raw materials are continuously supplied into the reaction system from the bottom of a reactor charged with a solvent, and reaction products are continuously taken out from the top of the reactor. In the production method of the present invention, from the viewpoint of increasing the selectivity of 244ca and suppressing the amount of 234cc produced, it is preferable to carry out the reaction in a continuous manner.
 塩素化反応を連続式で行う場合は、反応器に原料である254cbと塩素が1秒間~100時間滞留するように原料の供給と生成物の抜き出しを行うことが好ましく、上記滞留時間は、1秒間~50時間がより好ましく、1秒間~10時間が特に好ましい。 When the chlorination reaction is performed continuously, it is preferable to feed the raw material and withdraw the product so that the raw material 254cb and chlorine stay in the reactor for 1 second to 100 hours, and the residence time is 1. Seconds to 50 hours are more preferred, and 1 second to 10 hours are particularly preferred.
 液相反応で行う塩素化反応においては、半連続式、バッチ式、連続式のいずれの方法においても、通常の方法および装置等を用いることができ、反応は、撹拌しながら行うことが好ましい。 In the chlorination reaction carried out in a liquid phase reaction, the usual methods and apparatuses can be used in any of the semi-continuous, batch, and continuous methods, and the reaction is preferably carried out with stirring.
 本発明の製造方法における反応圧力は、反応器内の圧力に相当する。反応器内の圧力は、効率よく製造できるため、0~1MPaが好ましく、0.05~0.5MPaがより好ましい。反応は、生産性を向上させるため、加圧条件で反応を行うことが好ましい。 The reaction pressure in the production method of the present invention corresponds to the pressure inside the reactor. The pressure in the reactor is preferably 0 to 1 MPa, more preferably 0.05 to 0.5 MPa, for efficient production. In order to improve productivity, the reaction is preferably carried out under pressurized conditions.
 本発明の製造方法は、反応速度を上げる観点から、光照射下で行うことが好ましい。照射に用いる光の波長は、200~750nmが好ましく、250~730nmがより好ましい。200nm以上の波長をもつ光であれば副生成物の生成反応が十分に抑制でき、750nm以下の波長をもつ光であれば反応が十分進行する。なお、照射に用いる光には、200nm未満の波長の光や750nmを超える波長の光が含まれていてもよい。 From the viewpoint of increasing the reaction rate, the production method of the present invention is preferably carried out under light irradiation. The wavelength of light used for irradiation is preferably 200 to 750 nm, more preferably 250 to 730 nm. Light with a wavelength of 200 nm or more can sufficiently suppress the production reaction of by-products, and light with a wavelength of 750 nm or less allows the reaction to proceed sufficiently. The light used for irradiation may include light with a wavelength of less than 200 nm or light with a wavelength of more than 750 nm.
 光照射を行う場合の光源のうち、200~750nmの波長の光照射を効率よく行える光源としては、例えば、蛍光灯、LEDライト、白熱灯、高圧水銀灯、ハロゲンランプ等が挙げられる。発熱が大きい光源は、反応器の内温を低く保つのが困難になるため好ましくない。内温が高いと内圧が上昇し、反応器の耐圧を上げる必要がありコスト面で不利である。また、内温が高いと、副反応が起こり易くなる。発熱が小さい光源としては、蛍光灯やLEDライトが好ましい。 Among light sources for light irradiation, light sources capable of efficiently irradiating light with a wavelength of 200 to 750 nm include, for example, fluorescent lamps, LED lights, incandescent lamps, high-pressure mercury lamps, and halogen lamps. A light source that generates a large amount of heat is not preferable because it becomes difficult to keep the internal temperature of the reactor low. If the internal temperature is high, the internal pressure rises, and it is necessary to increase the pressure resistance of the reactor, which is disadvantageous in terms of cost. Also, if the internal temperature is high, side reactions tend to occur. A fluorescent lamp or an LED light is preferable as a light source that generates little heat.
 光照射の方法は、反応時間を通して、254cbと塩素を含む原料、必要に応じて用いられる上記溶媒、および244caを含む生成物を含む反応系の全体に、均一に光を照射できる方法を採用すればよく、特に制限されない。 As for the method of light irradiation, a method that can uniformly irradiate the entire reaction system containing raw materials containing 254cb and chlorine, the above-mentioned solvent used as necessary, and a product containing 244ca throughout the reaction time should be adopted. There is no particular limitation.
 光照射の具体的な方法としては、ジャケットを装着した光源を、反応液中に挿入し、反応液内部から反応液中の原料に対して光を照射する方法等が挙げられる。該ジャケットの材質は、少なくとも上記反応に有用な波長の光を透過し、反応液に含まれる成分に対して不活性であり、またこれらの成分により腐食されにくい材質であることが好ましい。また、光源が熱を発生する場合には、反応温度によっては、上記ジャケットは冷却手段を有することが好ましい。 As a specific method of light irradiation, there is a method in which a jacketed light source is inserted into the reaction liquid and the raw material in the reaction liquid is irradiated with light from inside the reaction liquid. The material of the jacket preferably transmits at least light of a wavelength useful for the above reaction, is inert to the components contained in the reaction solution, and is resistant to corrosion by these components. Also, in the case where the light source generates heat, the jacket preferably has cooling means depending on the reaction temperature.
 本発明の製造方法を液相で行う場合、254cbと塩素は、それぞれ別々に反応器に供給されてもよく、予め混合された状態で供給されてもよい。
 本発明の製造方法を液相で行う場合、溶媒を用いてもよい。該溶媒としては、254cbと塩素を含む原料成分を溶解することが可能であり、かつ原料成分に対して不活性であって、蒸留等によって244caを含む目的生成物との分離が容易である溶媒が好ましい。
When the production method of the present invention is carried out in the liquid phase, 254cb and chlorine may be separately supplied to the reactor, or may be supplied in a premixed state.
A solvent may be used when the production method of the present invention is carried out in a liquid phase. The solvent is a solvent capable of dissolving raw material components containing 254cb and chlorine, inert to the raw material components, and facilitating separation from the target product containing 244ca by distillation or the like. is preferred.
 溶媒の例としては、四塩化炭素、1,1,2-トリクロロ-1,2,2-トリフルオロエタンを挙げることができる。また244caを溶媒として用いてもよく、副生する244cc、234cc、224ca、214cb、234cb、224cb、1,3,3,4,4,6-ヘキサクロロ-1,1,2,2,5,5,6,6-オクタフルオロヘキサンを溶媒として用いてもよい。溶媒としては、これらの化合物の1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of solvents include carbon tetrachloride and 1,1,2-trichloro-1,2,2-trifluoroethane. 244ca may also be used as a solvent, and by-products 244cc, 234cc, 224ca, 214cb, 234cb, 224cb, 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5 , 6,6-octafluorohexane may be used as a solvent. As the solvent, one type of these compounds may be used alone, or two or more types may be used in combination.
 溶媒は、低コストで、目的生成物と分離が容易である、四塩化炭素、分離の必要性のない244caが好ましい。 The solvent is preferably carbon tetrachloride, which is low-cost and easy to separate from the target product, and 244ca, which does not require separation.
 溶媒の量は、生成する244caを溶解できる量であれば特に制限されず、原料である254cbに対して1~4000質量%が好ましく、50~3000質量%がより好ましい。 The amount of the solvent is not particularly limited as long as it can dissolve the generated 244ca, preferably 1 to 4000% by mass, more preferably 50 to 3000% by mass with respect to the raw material 254cb.
 (気相反応で行う塩素化について)
 気相反応の具体的な手順としては、ガス状態に加熱された254cbとガス状態の塩素とを反応器内に供給し、反応器内にて、ガス状態の254cbと塩素とを接触させて、244caを得る手順が挙げられる。
 流量の調整、副生成物の抑制、触媒の失活の抑制等に有効である点から、上記反応に不活性なガス(希釈ガス)を反応器に供給してもよい。希釈ガスの具体例としては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガスが挙げられる。
(Regarding chlorination by gas phase reaction)
As a specific procedure of the gas phase reaction, 254cb heated to a gaseous state and chlorine in gaseous state are supplied into a reactor, and 254cb in gaseous state and chlorine are brought into contact with each other in the reactor, Procedures for obtaining 244ca are included.
A gas inert to the above reaction (dilution gas) may be supplied to the reactor because it is effective in adjusting the flow rate, suppressing by-products, suppressing deactivation of the catalyst, and the like. Specific examples of diluent gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas.
 本発明の製造方法において、254cbと塩素の割合、例えば、上記反応器に供給される254cbと塩素の割合は、反応を活性化する観点、副生成物の生成を抑制する観点、244caの選択率および収率を上げる観点から、254cbの1モルに対して塩素(Cl)0.01~3モルが好ましく、0.1~2モルがより好ましく、0.2~1.6がさらに好ましく、0.5~1.5モルが最も好ましい。 In the production method of the present invention, the ratio of 254cb and chlorine, for example, the ratio of 254cb and chlorine supplied to the reactor, is selected from the viewpoint of activating the reaction, suppressing the generation of by-products, and the selectivity of 244ca. And from the viewpoint of increasing the yield, chlorine (Cl 2 ) is preferably 0.01 to 3 mol, more preferably 0.1 to 2 mol, even more preferably 0.2 to 1.6, relative to 1 mol of 254cb, 0.5 to 1.5 molar is most preferred.
 塩素化反応を気相で行う場合、反応性の観点から反応時間は1秒間~1時間が好ましく、反応圧力は0~1MPaが好ましく、反応温度は50~200℃が好ましい。また、反応速度を上げる観点から、光照射下で行うことが好ましい。照射に用いる光の波長は、200~750nmが好ましい。 When the chlorination reaction is carried out in the gas phase, the reaction time is preferably 1 second to 1 hour, the reaction pressure is preferably 0 to 1 MPa, and the reaction temperature is preferably 50 to 200°C from the viewpoint of reactivity. Moreover, from the viewpoint of increasing the reaction rate, it is preferable to perform the reaction under light irradiation. The wavelength of light used for irradiation is preferably 200 to 750 nm.
 液相反応または気相反応で塩素化反応を行って得られる反応生成物は、目的生成物である244ca、未反応原料、溶媒、目的生成物でない塩素化体等の副生成物等を含有する。 The reaction product obtained by performing the chlorination reaction in the liquid phase reaction or the gas phase reaction contains the target product 244ca, unreacted raw materials, solvents, by-products such as chlorinated products that are not the target product, and the like. .
 244caを含む生成物から、目的生成物である244caを分離する方法としては通常の分離方法が採用でき、例えば、アルカリで洗浄することにより塩素を除去した後、蒸留によって溶媒および副生成物を除去する方法等が挙げられる。また、蒸留により244caをより高純度に精製でき、蒸留を繰り返し行うことで所望の純度の244caが得られる。
 本発明の製造方法において分離工程後の反応生成物中に234ccを含む場合、234ccの含有量は、反応生成物中の244caと234ccの合計量に対して、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましく、1質量%以下が特に好ましい。上記範囲内であれば、1233yd製造時に副生成物の生成が抑制される。
 また、蒸留により244caを分離する場合、244caより低沸点の成分が水と共沸または擬共沸組成を形成する場合には、水を低沸点成分に同伴させて留出させることで、244caを、水を除いた状態で回収することができる。244caより低沸点の成分としては、具体的に244cc、254cb、フルオロメタン、ジフルオロメタン、1,1,1,2-テトラフルオロエタン、フルオロエタン、1,2-ジフルオロエタン、1233yd(E)等が挙げられる。
As a method for separating the target product 244ca from the product containing 244ca, a conventional separation method can be employed. For example, after removing chlorine by washing with an alkali, distillation removes the solvent and by-products. and the like. In addition, 244ca can be purified to a higher purity by distillation, and 244ca with a desired purity can be obtained by repeating the distillation.
In the production method of the present invention, when 234cc is contained in the reaction product after the separation step, the content of 234cc is preferably 10% by mass or less with respect to the total amount of 244ca and 234cc in the reaction product, and 5 mass % or less, more preferably 3 mass % or less, and particularly preferably 1 mass % or less. Within the above range, the production of by-products is suppressed during the production of 1233yd.
Further, when 244ca is separated by distillation, when a component with a boiling point lower than that of 244ca forms an azeotropic or pseudo-azeotropic composition with water, 244ca is distilled by entraining water with the low boiling point component. , can be recovered without water. Specific examples of components having a boiling point lower than 244ca include 244cc, 254cb, fluoromethane, difluoromethane, 1,1,1,2-tetrafluoroethane, fluoroethane, 1,2-difluoroethane, 1233yd(E), and the like. be done.
(1233ydの製造)
 244caは、1233ydを製造するための原料として有用な化合物である。1233ydは、洗浄剤、冷媒、発泡剤、溶剤、またはエアゾールとして種々の用途に用いることができる化合物である。244caを脱フッ化水素反応させると1233ydが製造できる。1233ydの製造方法としては、本発明の製造方法で得た244caを、塩基および触媒のいずれかの存在下に脱フッ化水素反応させて、1233ydを製造する方法が挙げられる。
 脱フッ化水素反応の手順としては、国際公開第2016/136744号等の公知の方法が挙げられる。
(Production of 1233 yd)
244ca is a useful compound as a starting material for producing 1233yd. 1233yd is a compound that can be used in a variety of applications as a detergent, refrigerant, blowing agent, solvent, or aerosol. 1233yd can be produced by subjecting 244ca to a dehydrofluorination reaction. A method for producing 1233yd includes a method for producing 1233yd by subjecting 244ca obtained by the production method of the present invention to a dehydrofluorination reaction in the presence of either a base or a catalyst.
Known methods such as International Publication No. 2016/136744 can be used as the procedure for the dehydrofluorination reaction.
 244caの脱フッ化水素反応において使用される塩基としては、金属水酸化物、金属酸化物、または金属炭酸塩が挙げられ、なかでも反応時間および反応収率の点から金属水酸化物が好ましく、特に水酸化カリウム又は水酸化ナトリウムが好ましい。244caの脱フッ化水素反応において使用される触媒としては、相関移動触媒を使用することが好ましい。相関移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテル等が挙げられ、なかでも第4級アンモニウム塩が好ましく、第4級アンモニウム塩としては、特にテトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)が好ましい。 The base used in the dehydrofluorination reaction of 244ca includes metal hydroxides, metal oxides, and metal carbonates. Among them, metal hydroxides are preferable from the viewpoint of reaction time and reaction yield. Potassium hydroxide or sodium hydroxide is particularly preferred. A phase transfer catalyst is preferably used as the catalyst used in the dehydrofluorination reaction of 244ca. Examples of the phase transfer catalyst include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc. Among them, quaternary ammonium salts are preferred. is particularly preferably tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB), methyltri-n-octylammonium chloride (TOMAC).
 244caの脱フッ化水素反応は、液相反応または気相反応のどちらで行ってもよい。液相反応とは、液体状態または液体に溶解している244caを脱フッ化水素反応させることをいう。また、気相反応とは、気体状態の244caを脱フッ化水素反応させることをいう。
 本発明の製造方法で得た244caを用いて製造された1233ydは純度が高く、1,3-ジクロロ-2,3,3-トリフルオロプロペン(CClF2-CF=CHCl。HCFO-1223yd。以下、1223ydともいう。)等の副生成物の含有量が少ないことから種々の用途に用いうる。
 特に、234ccの含有量が少ない、244caを含む反応原料を用いて1233ydを製造した場合には、1223ydの副生量を少なくできることから、1233ydの精製に要する工程を簡略化することができ、経済的にも有利である。1223ydは1233ydと共沸することから、蒸留により1233ydと分離することが困難な化合物であるが、上記の方法によれば、純度90%以上の1233ydを工業的に有利な方法で提供できる。
The dehydrofluorination reaction of 244ca may be carried out in either a liquid phase reaction or a gas phase reaction. The liquid-phase reaction is a dehydrofluorination reaction of 244ca in a liquid state or dissolved in a liquid. Further, the gas phase reaction refers to a dehydrofluorination reaction of 244ca in a gaseous state.
1233yd produced using 244ca obtained by the production method of the present invention has a high purity and is 1,3-dichloro-2,3,3-trifluoropropene (CClF 2 —CF=CHCl. HCFO-1223yd. Also called 1223yd.), it can be used for various purposes.
In particular, when 1233yd is produced using a reaction raw material containing 244ca, which has a low 234cc content, the amount of by-products of 1223yd can be reduced, so the steps required for purifying 1233yd can be simplified and economical. is also advantageous. Since 1223yd is azeotropic with 1233yd, it is a compound that is difficult to separate from 1233yd by distillation, but according to the above method, 1233yd with a purity of 90% or more can be provided by an industrially advantageous method.
 本発明の製造方法で得られる溶剤組成物において、1233ydと1223ydの合計量に対して、1223ydの含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましく、1質量%以下が特に好ましく、0.5質量%以下が最も好ましい。 In the solvent composition obtained by the production method of the present invention, the content of 1223yd is preferably 10% by mass or less, more preferably 5% by mass or less, and further 3% by mass or less with respect to the total amount of 1233yd and 1223yd. Preferably, 1% by mass or less is particularly preferable, and 0.5% by mass or less is most preferable.
 本発明の製造方法においては、目的生成物の1233yd以外に、未反応の244ca、副生成物等が反応生成物に含まれうる。これらを含む反応生成物から、1233ydを回収する際には、一般的な蒸留等による分離精製方法を採用することが好ましい。例えば、蒸留等による分離精製方法や水で洗浄する水洗処理、固体吸着剤と接触させる固体吸着処理が挙げられる。また、これらの組み合わせにより1233ydとの分離が可能である。固体吸着剤としては、活性炭、ゼオライト、シリカ、アルミナ等が挙げられる。固体吸着剤は、2種以上併用してもよい。副生成物等と高い吸着性を有するため、ゼオライトが好ましい。 In the production method of the present invention, in addition to the target product 1233yd, unreacted 244ca, by-products, etc. may be included in the reaction products. When recovering 1233yd from a reaction product containing these, it is preferable to employ a separation and purification method such as general distillation. Examples thereof include a separation and purification method by distillation or the like, a water washing treatment by washing with water, and a solid adsorption treatment by contacting with a solid adsorbent. Moreover, separation from 1233yd is possible by combining these. Examples of solid adsorbents include activated carbon, zeolite, silica, and alumina. Two or more kinds of solid adsorbents may be used in combination. Zeolites are preferred because they have high adsorption properties for by-products and the like.
 以下、本発明を具体的に説明するが、本発明はこれらの実施例によって限定されない。実施例における244caの製造方法のうち、例1~6が液相反応の実施例であり、例7が気相反応の実施例であり、例8が1233ydの製造方法の実施例である。 The present invention will be specifically described below, but the present invention is not limited by these examples. Among the methods for producing 244ca in Examples, Examples 1 to 6 are examples of liquid phase reaction, Example 7 is an example of gas phase reaction, and Example 8 is an example of a method for producing 1233yd.
(分析条件)
 実施例の各種化合物の製造において、得られた反応組成物の組成分析は、ガスクロマトグラフィー(GC)を用いて行った。カラムは、DB-1301(商品名、アジレント・テクノロジー株式会社製、長さ60m×内径250μm×厚み1μm)を用いた。
(Analysis conditions)
Composition analysis of the reaction composition obtained in the production of various compounds of Examples was performed using gas chromatography (GC). As the column, DB-1301 (trade name, manufactured by Agilent Technologies, Inc., length 60 m×inner diameter 250 μm×thickness 1 μm) was used.
(254cbの製造例)
 254cbは例えば、国際公開第2018/139654号に記載の方法に従い、触媒担持担体を充填した触媒層を有するU字型の反応管と、これを浸漬する塩浴を備えた反応装置を用いて、製造することができる。具体的には、244ccを水素と共に触媒担持担体として活性炭の100質量部に対して、2.0質量部のパラジウムを担持させた、パラジウム触媒担持活性炭に供給し、反応させた。
(Production example of 254cb)
254cb, for example, according to the method described in WO 2018/139654, using a reactor equipped with a U-shaped reaction tube having a catalyst layer filled with a catalyst-supporting carrier and a salt bath in which it is immersed, can be manufactured. Specifically, 244 cc was supplied together with hydrogen to a palladium catalyst-supporting activated carbon in which 2.0 parts by mass of palladium was supported with respect to 100 parts by mass of activated carbon as a catalyst-supporting carrier, and reacted.
 塩浴の温度を調整して250℃に加熱した触媒層に、244ccガス、水素ガスを、総量のモル比が水素/244cc=2/1となるように流通させて、反応管の出口から反応組成物を回収した。触媒層に対する接触時間は20秒とし、線速度uは2cm/秒とした。 244 cc gas and hydrogen gas were passed through the catalyst layer heated to 250°C by adjusting the temperature of the salt bath so that the total molar ratio was hydrogen/244 cc = 2/1, and the reaction was carried out from the outlet of the reaction tube. The composition was recovered. The contact time with the catalyst layer was 20 seconds, and the linear velocity u was 2 cm/second.
 回収した反応組成物は、244cc、263eb、263ca等を含有していた。該反応組成物より、蒸留により254cbを得た。 The recovered reaction composition contained 244cc, 263eb, 263ca, etc. 254cb was obtained by distillation from the reaction composition.
 (例1)
 上記製造例で得られた254cbを、塩素化して244caを製造した。
(Example 1)
244ca was produced by chlorinating 254cb obtained in the above production example.
 まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製オートクレーブ(内容積2.0リットル)を、20℃に冷却した。このオートクレーブ(以下、反応器と示す。)内に、四塩化炭素(CCl)を1530g、254cbを116g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)から、波長200~750nmの可視光を照射しながら塩素ガスを毎時7.1gの流量で反応器内に導入した。この際の反応圧力は、0.0~0.2MPaGで実施した。上記流量塩素ガスを5時間導入し、すなわち、254cbの1モルに対して0.5モルの割合の塩素を導入した。 First, a stainless steel autoclave (internal volume: 2.0 liters) equipped with a jacket and a quartz tube that transmits light from a light source was cooled to 20°C. After putting 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb into this autoclave (hereinafter referred to as a reactor), a wavelength Chlorine gas was introduced into the reactor at a flow rate of 7.1 g per hour while irradiating with visible light of 200 to 750 nm. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物1を回収し、GC分析を行った。 After the reaction was completed, the obtained reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 1 was recovered from the separated lower layer and subjected to GC analysis.
 (例2)
 例1で用いたものと同じ反応器を20℃に保ち、反応器内に、溶媒として1530gの四塩化炭素(CCl)を入れ、254cbを116g入れた。その後に、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)から、波長200~750nmの可視光を照射しながら、毎時14.2gの流量で塩素ガスを反応器内に供給した。この際の反応圧力は、0.0~0.2MPaGで実施した。上記流量塩素ガスを2.5時間導入し、すなわち、254cbの1モルに対して0.5モルの割合の塩素を導入した。
(Example 2)
The same reactor used in Example 1 was maintained at 20° C., and 1530 g of carbon tetrachloride (CCl 4 ) as a solvent and 116 g of 254cb were charged into the reactor. Thereafter, chlorine gas was supplied into the reactor at a flow rate of 14.2 g per hour while irradiating visible light with a wavelength of 200 to 750 nm from an LED lamp (LHT42N-G-E39 manufactured by Mitsubishi Electric Corporation, output 40 W). The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 2.5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物2を回収し、GC分析を行った。 After the reaction was completed, the obtained reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 2 was recovered from the separated lower layer and subjected to GC analysis.
 (例3)
 例1で用いたものと同じ反応器を20℃に保ち、そこに四塩化炭素(CCl)を1530gと254cbを116g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)から、波長200~750nmの可視光を照射しながら、塩素ガスを毎時3.6gの流量で反応器内に導入した。この際の反応圧力は、0.0~0.2MPaGで実施した。上記流量塩素ガスを10時間導入し、すなわち、254cbの1モルに対して0.5モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。
(Example 3)
The same reactor as used in Example 1 was kept at 20° C., 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb were placed therein, and then an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40 W ), while irradiating visible light with a wavelength of 200 to 750 nm, chlorine gas was introduced into the reactor at a flow rate of 3.6 g per hour. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 10 hours, that is, chlorine was introduced at a rate of 0.5 mol per 1 mol of 254cb, and light irradiation was continued until the temperature in the reactor became constant at 20°C.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物3を回収し、GC分析を行った。 After the reaction was completed, the obtained reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 3 was recovered from the separated lower layer and subjected to GC analysis.
 (例4)
 例1で用いたものと同じ反応器を50℃に保ち、そこに四塩化炭素(CCl)を1530gと254cbを116g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)から、波長200~750nmの可視光を照射しながら、塩素ガスを毎時7.1gの流量で反応器内に導入した。この際の反応圧力は、0.0~0.2MPaGで実施した。上記流量塩素ガスを5時間導入し、すなわち、254cbの1モルに対して0.5モルの割合の塩素を導入した。
(Example 4)
The same reactor as used in Example 1 was kept at 50° C., 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb were placed therein, and then an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40 W ), while irradiating visible light with a wavelength of 200 to 750 nm, chlorine gas was introduced into the reactor at a flow rate of 7.1 g per hour. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物4を回収し、GC分析を行った。 After the reaction was completed, the obtained reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 4 was recovered from the separated lower layer and subjected to GC analysis.
 (例5)
 例1で用いたものと同じ反応器を0℃に保ち、そこに四塩化炭素(CCl)を1530gと254cbを116g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)から、波長200~750nmの可視光を照射しながら、塩素ガスを毎時7.1gの流量で反応器内に導入した。この際の反応圧力は、0.0~0.2MPaGで実施した。上記流量塩素ガスを5時間導入し、すなわち、254cbの1モルに対して0.5モルの割合の塩素を導入した。
(Example 5)
The same reactor as used in Example 1 was kept at 0° C., 1530 g of carbon tetrachloride (CCl 4 ) and 116 g of 254cb were charged therein, and then an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40 W ), while irradiating visible light with a wavelength of 200 to 750 nm, chlorine gas was introduced into the reactor at a flow rate of 7.1 g per hour. The reaction pressure at this time was 0.0 to 0.2 MPaG. The above flow rate of chlorine gas was introduced for 5 hours, ie, 0.5 moles of chlorine per mole of 254cb was introduced.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物5を回収し、GC分析を行った。 After the reaction was completed, the obtained reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing, the reaction composition 5 was recovered from the separated lower layer and subjected to GC analysis.
 (例6)
 例1で用いた反応器の下部に電磁弁を備え反応器内温を20℃に保ち、そこに四塩化炭素(CCl)を1530g入れた。その後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)から、波長200~750nmの可視光を照射しながら254cbを毎時11.6g、塩素ガスを毎時3.6gの流量で反応器内に導入した。この際の反応圧力は、0.0~0.2MPaGで実施した。反応器下部に備えた電磁弁より反応粗液を抜き出し、反応器液面を一定に保った。上記流量で10時間光照射を継続した。
(Example 6)
A solenoid valve was provided at the bottom of the reactor used in Example 1 to keep the internal temperature of the reactor at 20° C., and 1530 g of carbon tetrachloride (CCl 4 ) was put therein. After that, from an LED lamp (Mitsubishi Electric LHT42N-G-E39, output 40W), while irradiating visible light with a wavelength of 200 to 750 nm, 254cb is 11.6 g per hour, and chlorine gas is added at a flow rate of 3.6 g per hour. introduced inside. The reaction pressure at this time was 0.0 to 0.2 MPaG. A reaction crude liquid was withdrawn through an electromagnetic valve provided at the bottom of the reactor to keep the reactor liquid level constant. Light irradiation was continued for 10 hours at the above flow rate.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物6を回収し、GC分析を行った。 After the reaction was completed, the obtained reaction liquid was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate for neutralization, and then a liquid separation operation was performed. After standing still, the reaction composition 6 was recovered from the separated lower layer and subjected to GC analysis.
 例1~6の反応条件、および得られた反応組成物のGC分析結果を、表1に示す。
 表1中、254cbの転化率は、反応器に供給した254cb量に対する、反応で消費された254cb量の割合であり、モル換算値(単位:モル%)である。また、各化合物の選択率は、反応組成物の全量に対する各化合物の割合であり、モル換算値(単位:モル%)である。
The reaction conditions of Examples 1-6 and the GC analysis results of the resulting reaction compositions are shown in Table 1.
In Table 1, the conversion rate of 254cb is the ratio of the amount of 254cb consumed in the reaction to the amount of 254cb supplied to the reactor, and is a molar conversion value (unit: mol %). The selectivity of each compound is the ratio of each compound to the total amount of the reaction composition, and is a molar conversion value (unit: mol %).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1からわかるように、例1~6によれば、高選択率で目的とする244caを得ることができる。 As can be seen from Table 1, according to Examples 1 to 6, the target 244 ca can be obtained with high selectivity.
 (例7)
 内径21.4mm、長さ50cmのSUS316製の円筒形反応管からなる気相反応器(スウェージロック社製)に触媒として活性炭を高さ40cmになるように充填し、電気炉にて、反応器の温度を100℃に保った。この気相反応器に、254cbを温度50℃に保ったシリンダーから、マスフローコントローラー、予備加熱器を経由して供給した。シリンダーから、マスフローコントローラーを経て予備加熱器までのラインにおける温度は254cbが凝縮するのを防ぐため50℃に保たれた。
(Example 7)
A gas phase reactor (manufactured by Swagelok) consisting of a cylindrical reaction tube made of SUS316 with an inner diameter of 21.4 mm and a length of 50 cm was filled with activated carbon as a catalyst to a height of 40 cm, and the reactor was heated in an electric furnace. The temperature was kept at 100°C. 254cb was fed to the gas phase reactor from a cylinder maintained at a temperature of 50°C via a mass flow controller and a preheater. The temperature in the line from the cylinder through the mass flow controller to the preheater was kept at 50°C to prevent the 254cb from condensing.
 上記気相反応器に接触時間20秒、塩素/254cbのモル比が1対1になるように供給し、生成ガスを得た。回収した生成ガスのGC分析を行った結果、254cbの転化率は93.2%であり、244ca、234ccの選択率はそれぞれ80.9%と5.9%であり、244cc、234cb、224ca、224cb、214cbの選択率はそれぞれ1.5%、4.4%、1.5%、2.9%、2.9%であった。 The gas phase reactor was supplied with a contact time of 20 seconds and a molar ratio of chlorine/254cb of 1:1 to obtain a generated gas. As a result of GC analysis of the recovered product gas, the conversion rate of 254cb was 93.2%, the selectivities of 244ca and 234cc were 80.9% and 5.9%, respectively, and 244cc, 234cb, 224ca, The selectivities for 224cb and 214cb were 1.5%, 4.4%, 1.5%, 2.9% and 2.9%, respectively.
 (例8)
 撹拌機、ジムロート冷却器を設置した2リットル四つ口フラスコに、上記例6で得られた244caを主成分として含有する原料組成物989.40g、テトラ-n-ブチルアンモニウムブロミド(TBAB)9.89gを入れ、フラスコを50℃に加熱した。反応温度を50℃に維持し、40質量%水酸化カリウム(KOH)水溶液1396.01gを30分かけて滴下した。その後、52時間撹拌を続け、有機層を回収した。なお、本例における反応時間は、上記滴下に要した時間と滴下後撹拌を行った時間の合計時間、すなわち52.5時間である。
(Example 8)
989.40 g of the raw material composition containing 244ca obtained in Example 6 above as a main component, tetra-n-butylammonium bromide (TBAB)9. 89 g was charged and the flask was heated to 50°C. While maintaining the reaction temperature at 50° C., 1396.01 g of a 40% by mass potassium hydroxide (KOH) aqueous solution was added dropwise over 30 minutes. After that, stirring was continued for 52 hours, and the organic layer was recovered. The reaction time in this example is the total time of the time required for the dropping and the time for stirring after the dropping, that is, 52.5 hours.
 回収した有機層を水洗した後、ガスクロマトグラムを用いて分析した結果を表2に示す。 Table 2 shows the results of analysis using a gas chromatogram after washing the recovered organic layer with water.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法によれば、254cbと塩素とを反応させ、高純度で、効率的に244caを製造できる。本発明の製造方法は、特別な操作や反応装置も用いることなく、大容量での反応を実施できる方法であり、該方法により244caを工業的規模で大量に生産できる。
 なお、2021年1月29日に出願された日本国特願2021-013256号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the production method of the present invention, 244ca can be efficiently produced with high purity by reacting 254cb with chlorine. The production method of the present invention is a method that allows a large-volume reaction without using special operations or reactors, and by this method, 244ca can be mass-produced on an industrial scale.
In addition, the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2021-013256 filed on January 29, 2021 are cited here and incorporated as disclosure of the specification of the present invention. It is.

Claims (17)

  1.  1,1,2,2-テトラフルオロプロパンと塩素とを反応させて3-クロロ-1,1,2,2-テトラフルオロプロパンを得る、3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法。 3-chloro-1,1,2,2-tetrafluoro, which reacts 1,1,2,2-tetrafluoropropane with chlorine to give 3-chloro-1,1,2,2-tetrafluoropropane Propane production method.
  2.  前記1,1,2,2-テトラフルオロプロパンと前記塩素との反応において、反応生成物中に1,3-ジクロロ-1,1,2,2-テトラフルオロプロパンを、前記3-クロロ-1,1,2,2-テトラフルオロプロパンおよび前記1,3-ジクロロ-1,1,2,2-テトラフルオロプロパンの合計量に対して10質量%以下含む、請求項1に記載の製造方法。 In the reaction between the 1,1,2,2-tetrafluoropropane and the chlorine, the reaction product contains 1,3-dichloro-1,1,2,2-tetrafluoropropane and the 3-chloro-1 , 1,2,2-tetrafluoropropane and 1,3-dichloro-1,1,2,2-tetrafluoropropane in an amount of 10% by mass or less based on the total amount.
  3.  前記1,1,2,2-テトラフルオロプロパンの1モルに対して、前記塩素を0.01~3モル用いる、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein 0.01 to 3 mol of the chlorine is used with respect to 1 mol of the 1,1,2,2-tetrafluoropropane.
  4.  前記1,1,2,2-テトラフルオロプロパンと前記塩素との反応を液相で行う、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the reaction of the 1,1,2,2-tetrafluoropropane and the chlorine is carried out in a liquid phase.
  5.  前記反応の反応温度が、-20~100℃である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the reaction temperature of the reaction is -20 to 100°C.
  6.  前記反応の反応時間が、1秒間~100時間である、請求項4または5に記載の製造方法。 The production method according to claim 4 or 5, wherein the reaction time is 1 second to 100 hours.
  7.  前記反応の圧力が、ゲージ圧で0~1MPaである、請求項4~6のいずれか一項に記載の製造方法。 The production method according to any one of claims 4 to 6, wherein the reaction pressure is 0 to 1 MPa in gauge pressure.
  8.  前記1,1,2,2-テトラフルオロプロパンを反応器に連続的に供給し、反応生成物を反応器から連続的に抜き出す、請求項4~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 4 to 7, wherein the 1,1,2,2-tetrafluoropropane is continuously supplied to the reactor, and the reaction product is continuously withdrawn from the reactor.
  9.  前記反応を溶媒の存在下にて行う、請求項4~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 4 to 8, wherein the reaction is carried out in the presence of a solvent.
  10.  前記溶媒が、四塩化炭素、1,1,2-トリクロロ-1,2,2-トリフルオロエタン、1-クロロ-1,1,2,2-テトラフルオロプロパン、1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン、1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパン、1,3,3,3-テトラクロロ-1,1,2,2-テトラフルオロプロパン、3-クロロ-1,1,2,2-テトラフルオロプロパン、1,1-ジクロロ-2,2,3,3-テトラフルオロプロパン、1,1,1-トリクロロ-2,2,3,3-テトラフルオロプロパン、1,3,3,4,4,6-ヘキサクロロ-1,1,2,2,5,5,6,6-オクタフルオロヘキサンからなる群から選ばれる少なくとも1種である、請求項9に記載の製造方法。 the solvent is carbon tetrachloride, 1,1,2-trichloro-1,2,2-trifluoroethane, 1-chloro-1,1,2,2-tetrafluoropropane, 1,3-dichloro-1, 1,2,2-tetrafluoropropane, 1,3,3-trichloro-1,1,2,2-tetrafluoropropane, 1,3,3,3-tetrachloro-1,1,2,2-tetra Fluoropropane, 3-chloro-1,1,2,2-tetrafluoropropane, 1,1-dichloro-2,2,3,3-tetrafluoropropane, 1,1,1-trichloro-2,2,3 ,3-tetrafluoropropane, at least one selected from the group consisting of 1,3,3,4,4,6-hexachloro-1,1,2,2,5,5,6,6-octafluorohexane A manufacturing method according to claim 9.
  11.  前記溶媒を、前記1,1,2,2-テトラフルオロプロパンの質量に対して1~4000質量%で用いる、請求項9または10に記載の製造方法。 The production method according to claim 9 or 10, wherein the solvent is used in an amount of 1 to 4000% by mass with respect to the mass of the 1,1,2,2-tetrafluoropropane.
  12.  前記1,1,2,2-テトラフルオロプロパンと前記塩素との反応を気相で行う、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the reaction of the 1,1,2,2-tetrafluoropropane and the chlorine is carried out in a gas phase.
  13.  前記反応の反応温度が、50~200℃である、請求項12に記載の製造方法。 The production method according to claim 12, wherein the reaction temperature is 50 to 200°C.
  14.  前記反応の反応時間が、1秒間~1時間である、請求項12または13に記載の製造方法。 The production method according to claim 12 or 13, wherein the reaction time is 1 second to 1 hour.
  15.  前記反応の圧力が、ゲージ圧で0~1MPaである、請求項12~14のいずれか一項に記載の製造方法。 The production method according to any one of claims 12 to 14, wherein the reaction pressure is 0 to 1 MPa in gauge pressure.
  16.  請求項1~15のいずれか一項に記載の製造方法により得られた3-クロロ-1,1,2,2-テトラフルオロプロパンを、塩基または触媒の存在下に脱フッ化水素反応させることを特徴とする、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 Dehydrofluorinating 3-chloro-1,1,2,2-tetrafluoropropane obtained by the production method according to any one of claims 1 to 15 in the presence of a base or a catalyst. A method for producing 1-chloro-2,3,3-trifluoropropene, characterized by
  17.  脱フッ化水素反応により得られた反応生成物中に、1,3-ジクロロ-2,3,3-トリフルオロプロペンを、前記1-クロロ-2,3,3-トリフルオロプロペンに対して10質量%以下含む、請求項16に記載の製造方法。 1,3-dichloro-2,3,3-trifluoropropene is added to the reaction product obtained by the dehydrofluorination reaction by 10% relative to the 1-chloro-2,3,3-trifluoropropene 17. The production method according to claim 16, comprising at most % by mass.
PCT/JP2022/003032 2021-01-29 2022-01-27 Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropane WO2022163745A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280011803.XA CN116802170A (en) 2021-01-29 2022-01-27 Method for producing 3-chloro-1, 2-tetrafluoropropane and method for producing 1-chloro-2, 3-trifluoropropene
JP2022578466A JPWO2022163745A1 (en) 2021-01-29 2022-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013256 2021-01-29
JP2021-013256 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163745A1 true WO2022163745A1 (en) 2022-08-04

Family

ID=82654719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003032 WO2022163745A1 (en) 2021-01-29 2022-01-27 Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropane

Country Status (3)

Country Link
JP (1) JPWO2022163745A1 (en)
CN (1) CN116802170A (en)
WO (1) WO2022163745A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300142A (en) * 1989-02-02 1990-12-12 Asahi Glass Co Ltd Production of chlorinated tetrafluoropropanes
JP2016164152A (en) * 2015-02-27 2016-09-08 ダイキン工業株式会社 Manufacturing method of 1-chloro-2,3,3-trifluoropropene
WO2017018412A1 (en) * 2015-07-27 2017-02-02 旭硝子株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300142A (en) * 1989-02-02 1990-12-12 Asahi Glass Co Ltd Production of chlorinated tetrafluoropropanes
JP2016164152A (en) * 2015-02-27 2016-09-08 ダイキン工業株式会社 Manufacturing method of 1-chloro-2,3,3-trifluoropropene
WO2017018412A1 (en) * 2015-07-27 2017-02-02 旭硝子株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene

Also Published As

Publication number Publication date
JPWO2022163745A1 (en) 2022-08-04
CN116802170A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
KR101793150B1 (en) Process for Producing 2,3,3,3-Tetrafluoropropene
US10125068B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP7081596B2 (en) Methods for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3-tetrafluoropropene. Production method
CN107848917B (en) Method for producing 1-chloro-2, 3, 3-trifluoropropene
US20060217577A1 (en) Novel catalytic method for the production of fluoroalkylenes from chlorofluorohydrocarbons
KR20080018847A (en) Integrated hfc-1234ze manufacture process
US8395001B2 (en) Processes for producing 2-chloro-1,1,1,2-tetrafluoropropane and 2,3,3,3-tetrafluoropropene
TW201010967A (en) Production method and purification method of 1,2,3,4-tetrachlorohexafluorobutane
JP2017014160A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
JP2017001990A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
WO2018079726A1 (en) Production method for tetrafluoropropenes
WO2022163745A1 (en) Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropane
US20160340277A1 (en) Process for the manufacture of fluorinated olefins
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
WO2022014488A1 (en) Method for producing 1-chloro-2, 3, 3-trifluoropropene
WO2018079727A1 (en) Production method for 2,3,3,3-tetrafluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578466

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011803.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745964

Country of ref document: EP

Kind code of ref document: A1