WO2022163377A1 - Photosensitizer - Google Patents

Photosensitizer Download PDF

Info

Publication number
WO2022163377A1
WO2022163377A1 PCT/JP2022/001035 JP2022001035W WO2022163377A1 WO 2022163377 A1 WO2022163377 A1 WO 2022163377A1 JP 2022001035 W JP2022001035 W JP 2022001035W WO 2022163377 A1 WO2022163377 A1 WO 2022163377A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
photosensitizer
carbon atoms
cation
Prior art date
Application number
PCT/JP2022/001035
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 白石
双葉 川上
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to JP2022578229A priority Critical patent/JPWO2022163377A1/ja
Publication of WO2022163377A1 publication Critical patent/WO2022163377A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention involves a photosensitizer containing a metal complex having a specific structure, which is sensitive to light in the visible to infrared region, a conjugate formed by combining this with an antibody, and light irradiation using the same. Regarding treatment methods.
  • Phthalocyanines, porphyrins, and analogues thereof are used in fields such as bioimaging, for example, due to their ability to emit high fluorescence when irradiated with visible light.
  • active species such as radicals and singlet oxygen are generated from the excited state by light irradiation.
  • photosensitizers Such compounds are called "photosensitizers", and cytotoxic active oxygen that induces apoptosis, necrosis or autophagy of nearby cells by irradiation with light of a specific wavelength.
  • Excitation light in the near-infrared (NIR) region itself is said to be harmless to cells, but when using current non-targeted photosensitizers, it is taken up by normal cells, which can cause serious side effects. be. Therefore, conventional photodynamic therapy, in which cells are killed in combination with non-ionized physical energy using the above-mentioned photosensitizer, may be of limited use.
  • a compound having a drug action is chemically bound to a protein or the like to be specifically bound to the surface of a specific cell, and the compound is accumulated in the target cell during use to provide more effective treatment.
  • photosensitizers used in light-based therapeutic methods are units for specifically binding to specific cell surfaces with the aim of localizing them on target cells, such as Antibodies and their fragments are used.
  • Patent Document 4 discloses a method for killing cells, wherein an antibody to which one or more IR-700 molecules, which are photosensitizers, is bound to a cell containing a cell surface protein is used.
  • a method which involves binding a therapeutically effective amount specifically to a cell surface protein, irradiating with light of a wavelength of 660-740 nm, and killing the cells with another agent after irradiation.
  • Patent Document 5 in a method for inducing cytotoxicity in a subject suffering from a pathological condition, a drug containing a photosensitizer unit of a phthalocyanine derivative bound to a probe that specifically binds to the target cell is administered to induce cell death.
  • a method is disclosed comprising illuminating said cells with a suitable excitation light in an amount suitable for induction.
  • near-infrared light is irradiated to a complex in which a compound in which an IR-700 molecule, which is a photosensitizer, is bound to an antibody or the like is specifically bound to a specific target cell.
  • a method is disclosed in which a portion of the IR-700 molecule is bound and dissociated by the reaction, thereby changing from a hydrophilic molecule to a hydrophobic molecule, thereby aggregating the complex and removing a specific target cell. ing.
  • a portion of the IR-700 molecule is hydrolyzed by irradiation with near-infrared light, and is changed to be hydrophobic, thereby causing the aggregation.
  • the problem to be solved by the present invention is a photosensitizer having a specific structure, and in the case of causing a rapid change from hydrophilic to hydrophobic by light irradiation as described above, it has higher sensitivity than before. It is the provision of a photosensitizer.
  • a photosensitizer for example, in a method of use in which an antibody conjugate, in which the photosensitizer and an antibody are bound, agglutinates a complex formed by specifically binding to a specific target cell by irradiation with visible light to infrared light. , to provide a photosensitizer having higher sensitivity than conventional ones.
  • the present invention has general formula (1) or A photosensitizer containing a metal complex represented by the general formula (2).
  • R 1 to R 8 are substituents on the cyclic ligand, and R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 are bonded to each other.
  • Y is a nitrogen atom, CR 9 or may be directly bonded
  • R 9 is a hydrogen atom or an aromatic hydrocarbon having 6 to 14 carbon atoms
  • M is selected from the group of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn
  • L 1 and L 2 are axially coordinated to metal M and represented by formula (3) and only L 1 when M is Al, Ga, In, Fe, Co or Mn.
  • Formula (2) represents the case where the central metal M is cationic, R 1 to R 8 , Y, L 1 and L 2 are the same as in Formula (1), and M is P, Sb or Bi. is selected from the group X 2 - represents a monovalent counter anion corresponding to the central metal cation;
  • D represents an oxygen atom or a sulfur atom
  • E represents alkylene having 1 to 8 carbon atoms, alkenylene having 2 to 8 carbon atoms, alkynylene having 2 to 8 carbon atoms or arylene having 6 to 14 carbon atoms.
  • a + is a monovalent onium cation
  • X 1 ⁇ represents a monovalent counter anion corresponding to the onium cation.
  • R 10 and R 11 in formula (4) are alkyl groups having 1 to 3 carbon atoms or groups selected from the group represented by the following formula (5). However, when both R 10 and R 11 are alkyl groups having 1 to 3 carbon atoms, it has a monovalent counter anion X 3 — corresponding to the ammonio group.
  • L 3 is methylene, ethylene or propylene
  • X 4 - is an anion selected from the group represented by carboxylic acid, sulfinic acid, sulfonic acid, phosphoric acid and phosphonic acid.
  • R 10 and R 11 have formula (5), either one of X 4 - has a hydrogen ion or a monovalent metal cation.
  • the present invention is an antibody conjugate in which the photosensitizer containing an antibody is bound to at least one of the substituents on the cyclic ligand.
  • the present invention is a method of using the photosensitizer, characterized in that detachment of the axial ligand is accelerated by irradiation with light of 500 to 1500 nm.
  • the photosensitizer of the present invention is sensitive to light in the visible to infrared region with a wavelength of 500 nm to 1500 nm to efficiently generate protons, and the action of the protons promotes desorption of the axial ligand. can be done.
  • the agglutination action is more efficient than that of conventional photosensitizers. can be done.
  • the photosensitizer of the present invention has the general formula It contains a metal complex represented by (1) or general formula (2).
  • R 1 to R 8 are substituents on the cyclic ligand, and R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 are bonded to each other.
  • Y is a nitrogen atom, CR 9 or may be directly bonded
  • R 9 is a hydrogen atom or an aromatic hydrocarbon having 6 to 14 carbon atoms
  • M is selected from the group of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn
  • L 1 and L 2 are axially coordinated to metal M and represented by formula (3) and only L 1 when M is Al, Ga, In, Fe, Co or Mn.
  • Formula (2) represents the case where the central metal M is cationic, R 1 to R 8 , Y, L 1 and L 2 are the same as in formula (1), and M is P, Sb or Bi. is selected from the group X 2 - represents a monovalent counter anion corresponding to the central metal cation;
  • D represents an oxygen atom or a sulfur atom
  • E represents alkylene having 1 to 8 carbon atoms, alkenylene having 2 to 8 carbon atoms, alkynylene having 2 to 8 carbon atoms or arylene having 6 to 14 carbon atoms.
  • ammonio group represented by formula (4) in the main chain of these groups, and further an ether group, a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone group, It may contain a silyl group or a phenylene group, A + is a monovalent onium cation, and X 1 - represents a monovalent counter anion corresponding to the onium cation.
  • R 10 and R 11 in formula (4) are a methyl group, an ethyl group, or a group selected from the group represented by the following formula (5). However, when both R 10 and R 11 are a methyl group or an ethyl group, it has a monovalent counter anion X 3 — corresponding to the ammonio group.
  • L 3 is methylene, ethylene or propylene
  • X 4 - is an anion selected from the group represented by carboxylic acid, sulfinic acid, sulfonic acid, phosphoric acid and phosphonic acid.
  • R 10 and R 11 have formula (5), either one of X 4 - has a hydrogen ion or a monovalent metal cation.
  • the cyclic ligand having a ring structure in which pyrrole rings are connected directly or by ⁇ conjugation is a ligand moiety for the central metal element in the metal complex constituting the photosensitizer of the present invention, and has four is a compound in which the pyrrole rings of are bonded directly or through one carbon atom or nitrogen atom while maintaining a ⁇ bond to form a ring structure.
  • Porphyrins, polyphyrazines, coroles, phthalocyanines, and chlorins are specific examples of compounds useful as cyclic ligands from the viewpoint of availability of raw materials and ease of synthesis. Porphyrins and phthalocyanines are preferred.
  • the axial ligand having an onium salt structure in the present invention is a ligand coordinated to the central metal of the metal complex of the present invention, and , represents a ligand coordinated in the vertical direction, and the axial ligand has an onium salt structure.
  • Y may be a nitrogen atom, CR 9 or a direct bond.
  • the direct bond means that the pyrrole rings are directly bonded to form a ring structure connected by ⁇ conjugation.
  • R 9 is a hydrogen atom or an aromatic hydrocarbon having 6-14 carbon atoms.
  • M represented by formula (1) is the central metal of the metal complex having the cyclic ligand and is selected from the group consisting of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn, Al, Si, Ge and Sn are preferred from the viewpoint of photoreactivity.
  • M represented by formula (2) has a cyclic ligand, represents a central metal that forms a cationic metal complex, is selected from the group of P, Sb and Bi, and P is preferable from the viewpoint of photoreactivity. .
  • R 1 to R 8 are substituents on the cyclic ligands and are each independently an aryl group having 6 to 30 carbon atoms or a heteroaryl group having 4 to 30 carbon atoms. , an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms or an alkynyl group having 2 to 30 carbon atoms, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, an alkylcarbonyl group having 2 to 19 carbon atoms, an arylcarbonyl group having 7 to 11 carbon atoms, an alkoxycarbonyl group having 2 to 19 carbon atoms, an aryloxycarbonyl group having 7 to 11 carbon atoms, and an arylthiocarbonyl group having 7 to 11 carbon atoms group, acyloxy group having 2 to 19 carbon atoms, arylthio group having 6 to 20 carbon
  • the aryl group having 6 to 30 carbon atoms includes monocyclic aryl groups such as phenyl group and biphenylyl group, naphthyl, anthracenyl, phenanthrenyl, pyrenyl, chrysenyl, naphthacenyl, benzanthracenyl, anthraquinolyl, fluorenyl, naphthoquinone and anthraquinone. and condensed polycyclic aryl groups such as
  • heteroaryl groups having 4 to 30 carbon atoms include cyclic groups containing 1 to 3 heteroatoms such as oxygen, nitrogen and sulfur, which may be the same or different.
  • is a monocyclic heteroaryl group such as thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl; , carbazolyl, acridinyl, phenothiazinyl, phenazinyl, xanthenyl, thianthrenyl, phenoxazinyl, phenoxathiinyl, chromanyl, isochromanyl, dibenzothienyl, xanthonyl, thioxanthonyl, dibenzofuranyl, and other fused polycyclic heteroaryl groups.
  • alkyl groups having 1 to 30 carbon atoms include linear alkyl groups such as methyl, ethyl, propyl, butyl, hexadecyl and octadecyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl and isohexyl. and cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Alkenyl groups having 2 to 30 carbon atoms include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl and the like.
  • alkynyl groups having 2 to 30 carbon atoms examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-1-propynyl, 1-methyl-2-propynyl and the like. mentioned.
  • the alkoxy groups having 1 to 18 carbon atoms include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, dodecyloxy and the like.
  • aryloxy groups having 6 to 10 carbon atoms include phenoxy and naphthyloxy.
  • Alkylcarbonyl groups having 2 to 19 carbon atoms include acetyl, trifluoroacetyl, propionyl, butanoyl, 2-methylpropionyl, heptanoyl, 2-methylbutanoyl, 3-methylbutanoyl, octanoyl and the like.
  • Arylcarbonyl groups having 7 to 11 carbon atoms include benzoyl, 4-tert-butylbenzoyl, naphthoyl and the like.
  • the alkoxycarbonyl group having 2 to 19 carbon atoms includes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl and the like.
  • the aryloxycarbonyl group having 7 to 11 carbon atoms includes phenoxycarbonyl, naphthoxycarbonyl and the like.
  • the arylthiocarbonyl group having 7 to 11 carbon atoms includes phenylthiocarbonyl, naphthoxythiocarbonyl and the like.
  • Acyloxy groups having 2 to 19 carbon atoms include acetoxy, ethylcarbonyloxy, propylcarbonyloxy, isobutylcarbonyloxy, sec-butylcarbonyloxy, tert-butylcarbonyloxy, octadecylcarbonyloxy and the like.
  • Arylthio groups having 6 to 20 carbon atoms include phenylthio, biphenylylthio, methylphenylthio, chlorophenylthio, bromophenylthio, fluorophenylthio, hydroxyphenylthio, methoxyphenylthio, naphthylthio, 4-[4-(phenylthio) benzoyl]phenylthio, 4-[4-(phenylthio)phenoxy]phenylthio, 4-[4-(phenylthio)phenyl]phenylthio, 4-(phenylthio)phenylthio, 4-benzoylphenylthio, 4-benzoyl-chlorophenylthio, 4- benzoyl-methylthiophenylthio, 4-(methylthiobenzoyl)phenylthio, 4-(p-tert-butylbenzoyl)phenylthio and the like.
  • alkylthio groups having 1 to 18 carbon atoms include methylthio, ethylthio, propylthio, tert-butylthio, neopentylthio and dodecylthio.
  • the alkylsulfinyl group having 1 to 18 carbon atoms includes methylsulfinyl, ethylsulfinyl, propylsulfinyl, tert-pentylsulfinyl, octylsulfinyl and the like.
  • the arylsulfinyl group having 6 to 10 carbon atoms includes phenylsulfinyl, tolylsulfinyl, naphthylsulfinyl and the like.
  • alkylsulfonyl groups having 1 to 18 carbon atoms include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl and octylsulfonyl.
  • the arylsulfonyl groups having 6 to 10 carbon atoms include phenylsulfonyl, tolylsulfonyl, naphthylsulfonyl and the like.
  • Halogen groups include fluoro, chloro, bromo and iodo.
  • X 2 - is a monovalent counter anion corresponding to the central metal cation.
  • L 1 and L 2 are axial ligands represented by formula (3) that coordinate to the metal, and in formula (3), X 1 - is a monovalent It is the monovalent counter anion for the onium cation A + .
  • X 1 - and X 2 - are not restricted except that they are halogen anions and monovalent polyatomic anions such as F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , BY a ⁇ , PY a ⁇ , SbY a ⁇ , (Rf) b PF 6-b ⁇ , R 12 c BY 4-c ⁇ , R 12 c GaY 4-c ⁇ , R 13 SO 3 ⁇ , (R 13 SO 2 ) 3 C ⁇ and (R An anion represented by 13 SO 2 ) 2 N- is exemplified.
  • P represents a phosphorus atom
  • B a boron atom
  • Sb an antimony atom
  • F a fluorine atom
  • Ga gallium atom
  • Y represents a halogen atom (preferably a fluorine atom).
  • S represents a sulfur atom
  • O represents an oxygen atom
  • C represents a carbon atom
  • N represents a nitrogen atom.
  • Rf represents an alkyl group (preferably an alkyl group having 1 to 8 carbon atoms) in which 80 mol % or more of the hydrogen atoms are substituted with fluorine atoms.
  • Alkyl groups to be Rf by fluorine substitution include straight-chain alkyl groups (methyl, ethyl, propyl, butyl, pentyl, octyl, etc.), branched-chain alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, etc.) and cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.) and the like.
  • the ratio of hydrogen atoms of these alkyl groups substituted with fluorine atoms in Rf is preferably 80 mol% or more, more preferably 90 mol%, based on the number of moles of hydrogen atoms possessed by the original alkyl groups. % or more, particularly preferably 100%.
  • the substitution ratio with fluorine atoms is within these preferred ranges, the photosensitivity of the sulfonium salt is further improved.
  • Rf include CF 3 ⁇ , CF 3 CF 2 ⁇ , (CF 3 ) 2 CF ⁇ , CF 3 CF 2 CF 2 ⁇ , CF 3 CF 2 CF 2 ⁇ , (CF 3 ) 2 CFCF 2 ⁇ , CF 3 CF 2 (CF 3 )CF — and (CF 3 ) 3 C — .
  • the b Rf's are independent of each other and therefore may be the same or different.
  • R 12 represents a phenyl group in which some of the hydrogen atoms have been replaced with at least one element or electron-withdrawing group. Examples of such single elements include halogen atoms and include fluorine, chlorine, and bromine atoms. Electron-withdrawing groups include a trifluoromethyl group, a nitro group, a cyano group, and the like. Among these, a phenyl group in which one hydrogen atom is substituted with a fluorine atom or a trifluoromethyl group is preferred.
  • the c R 12 are independent of each other and therefore may be the same or different.
  • R 13 represents an alkyl group having 1 to 20 carbon atoms, a perfluoroalkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and the alkyl group and perfluoroalkyl group are linear or branched. or cyclic, and the aryl group may be unsubstituted or substituted.
  • a represents an integer of 4 to 6; b is an integer of 1-5, preferably 2-4, more preferably 2 or 3; c is an integer of 1 to 4, preferably 4;
  • Examples of anions represented by (Rf) b PF 6-b - include (CF 3 CF 2 ) 2 PF 4 - , (CF 3 CF 2 ) 3 PF 3 - , ((CF 3 ) 2 CF) 2 PF 4 ⁇ , ((CF 3 ) 2 CF) 3 PF 3 ⁇ , (CF 3 CF 2 CF 2 ) 2 PF 4 ⁇ , (CF 3 CF 2 CF 2 ) 3 PF 3 ⁇ , ((CF 3 ) 2 CFCF 2 ) 2PF 4 ⁇ , ((CF 3 ) 2 CFCF 2 ) 3 PF 3 ⁇ , (CF 3 CF 2 CF 2 ) 2 PF 4 ⁇ and ( CF 3 CF 2 CF 2 CF 2 ) 3 PF 3 ⁇ Anions such as Of these, (CF 3 CF 2 ) 3 PF 3 ⁇ , (CF 3 CF 2 CF 2 ) 3 PF 3 ⁇ , ((CF 3 CF 2
  • Examples of anions represented by R 12 c BY 4-c - include (C 6 F 5 ) 4 B - , ((CF 3 ) 2 C 6 H 3 ) 4 B - , (CF 3 C 6 H 4 ) 4 Anions represented by B ⁇ , (C 6 F 5 ) 2 BF 2 ⁇ , C 6 F 5 BF 3 ⁇ and (C 6 H 3 F 2 ) 4 B ⁇ are exemplified. Among these, anions represented by (C 6 F 5 ) 4 B — and ((CF 3 ) 2 C 6 H 3 ) 4 B — are preferred.
  • Examples of anions represented by R 12 c GaY 4-c - include (C 6 F 5 ) 4 Ga - , ((CF 3 ) 2 C 6 H 3 ) 4 Ga - , (CF 3 C 6 H 4 ) 4 Examples include anions represented by Ga ⁇ , (C 6 F 5 ) 2 GaF 2 ⁇ , C 6 F 5 GaF 3 ⁇ and (C 6 H 3 F 2 ) 4 Ga ⁇ .
  • anions represented by (C 6 F 5 ) 4 Ga — and ((CF 3 ) 2 C 6 H 3 ) 4 Ga — are preferred.
  • Anions represented by R 13 SO 3 — include trifluoromethanesulfonate anion, pentafluoroethanesulfonate anion, heptafluoropropanesulfonate anion, nonafluorobutanesulfonate anion, pentafluorophenylsulfonate anion, and p-toluene.
  • Examples include sulfonate anion, benzenesulfonate anion, camphorsulfonate anion, methanesulfonate anion, ethanesulfonate anion, propanesulfonate anion and butanesulfonate anion.
  • trifluoromethanesulfonate anion trifluoromethanesulfonate anion, nonafluorobutanesulfonate anion, methanesulfonate anion, butanesulfonate anion, camphorsulfonate anion, benzenesulfonate anion and p-toluenesulfonate anion are preferred.
  • Anions represented by (R 13 SO 2 ) 3 C - include (CF 3 SO 2 ) 3 C - , (C 2 F 5 SO 2 ) 3 C - , (C 3 F 7 SO 2 ) 3 C - and anions represented by (C 4 F 9 SO 2 ) 3 C-.
  • Anions represented by (R 13 SO 2 ) 2 N ⁇ include (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ , (C 3 F 7 SO 2 ) 2 N ⁇ and anions represented by (C 4 F 9 SO 2 ) 2 N-.
  • the monovalent polyatomic anions include BY a ⁇ , PY a ⁇ , SbY a ⁇ , (Rf) b PF 6-b ⁇ , R 12 c BY 4-c ⁇ , R 12 c GaY 4-c ⁇ , R
  • perhalate anions ClO 4 - , BrO 4 - etc.
  • halogenated sulfones acid anions FSO 3 - , ClSO 3 - etc.
  • sulfate anions CH 3 SO 4 - , CF 3 SO 4 - , HSO 4 - etc.
  • carbonate anions HCO 3 - , CH 3 CO 3 - etc.
  • aluminum acid anions AlCl 4 ⁇ , AlF 4 ⁇ , ( t- C 4 F 9 O) 4 Al ⁇ etc.
  • L 1 and L 2 represented by formulas (1) and (2) are axial ligands represented by formula (3) that coordinate to the central metal M, and depending on the type of M, the axial ligand different number of If M is Al, Ga, In, Fe, Co or Mn, it has only L1. When there are two axial ligands (L 1 and L 2 ), they may be the same or different.
  • D is directly bonded to the central metal M and represents an oxygen atom or a sulfur atom.
  • E is a divalent group that bonds D and the onium cation A + and is alkylene having 1 to 8 carbon atoms, alkenylene having 2 to 8 carbon atoms, alkynylene having 2 to 8 carbon atoms, or carbon Representing arylene of numbers 6 to 14, containing at least one ammonio group represented by formula (4) in the main chain of these groups, further ether group, sulfide group, ketone group, amide group, ester group, thioester group , a urea group, a sulfone group, a silyl group or a phenylene group.
  • the main chain is the main skeleton that connects D and the onium cation A + .
  • alkylene having 1 to 8 carbon atoms examples include linear alkylene such as methylene, ethylene, trimethylene, tetramethylene, hexamethylene, octamethylene, 1-methylethyl, 1-methylethylidene, 1,1-dimethylethylene, 1,2-dimethyl
  • Examples include branched alkylenes such as ethylene and 1-methylpropylidene, and cyclic alkylenes such as cyclopropylene, cyclobutylene, cyclopentylene, cyclopentylidene, cyclohexylene and cyclohexylidene.
  • alkenylene having 2 to 8 carbon atoms examples include vinylene, 1-propenylene, 2-propenylene, 1-butenylene, 2-butenylene, 3-butenylene, 1-hexenylene, cyclohexenylene, 1,3-butadienylene, 1,3- Hexadienylene, 2,4,6-octatrienylene and the like are included.
  • alkynylene having 2 to 8 carbon atoms include ethynylene, 1-propynylene, 2-propynylene, 1-butynylene, 2-butynylene, 3-butynylene, 1,3-butadienylene, hexane-1-en-3-ynylene, and the like. be done.
  • Arylenes having 6 to 14 carbon atoms include phenylene, naphthylene, anthracenylene, and biphenylene.
  • the main chain contains at least one ammonio group represented by formula (4), which improves the water solubility of the entire compound.
  • R 10 and R 11 in formula (4) are alkyl groups having 1 to 3 carbon atoms or groups selected from the group represented by formula (5). However, when both R 10 and R 11 are alkyl groups having 1 to 3 carbon atoms, it has a monovalent counter anion X 3 — corresponding to the ammonio group.
  • the anions X 3 - mentioned here are the same as those exemplified for the above X 1 - or X 2 - .
  • ammonio group represented by formula (4) include the following. * indicates the binding position.
  • those having carboxylic acid or sulfonic acid are preferable from the viewpoint of ease of synthesis, and sulfonic acid and salts thereof having a high degree of dissociation are more preferable from the viewpoint of improving water solubility.
  • the main chain may further contain an ether group, a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone group, a silyl group or a phenylene group.
  • an ether group a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone group, a silyl group or a phenylene group.
  • * indicates the binding position.
  • a + is a monovalent onium cation bound to the metal via D and E as axial ligands.
  • a + in the present invention decomposes the energy received by the cyclic ligand by light absorption according to a photochemical process (electron transfer, energy transfer, etc.) to generate protons, and ammonio represented by the above formula (4) base is not included.
  • a monovalent onium cation is a cation that is produced by coordinating a proton or a cation-type atomic group (such as an alkyl group) to a compound containing an element having a lone pair of electrons, and is a monovalent onium cation. Examples include the following cations.
  • pyrilinium cations (4-methylpyrilinium cations and 2,6-diphenylpyrilinium cations, etc.); Chromenium cations (2,4-dimethylchromenium cations, etc.); isochromenium cations (1,3-dimethylisochromenium cations, etc.); pyridinium cations (N-methylpyridinium cation, N-methoxypyridinium cation, N-butoxypyridinium cation, N-benzyloxypyridinium cation, N-benzylpyridinium cation, etc.); imidazolium cations (such as N,N'-dimethylimidazolium cations and 1-ethyl-3-methylimidazolium cations); quinolium cations (such as N-methylquinolium cations and N-benzylquinolium cations); isoquinolium cations (N-methylisoquino
  • sulfonium cation ⁇ triphenylsulfonium cation, diphenylmethylsulfonium cation, phenyldimethylsulfonium cation, 4-(phenylthio)phenyldiphenylsulfonium cation, and 4-hydroxyphenylmethylbenzylsulfonium cation, etc. ⁇ ; sulfoxonium cations (such as triphenylsulfoxonium); Thianthrenium cations [5-(4-methoxyphenyl)thianthrenium, 5-phenylthianthrenium and 5-tolylthianthrenium cations]; thiophenium cations (2-naphthyltetrahydrothiophenium, etc.); iodonium cations [such as diphenyliodonium cation, di-p-tolyliodonium cation and 4-isopropylphenyl(p-tolyl)
  • onium cations sulfonium cations, iodonium cations, and diazonium cations are preferred from the viewpoint of photoresponsiveness.
  • preferred axial ligands L 1 and L 2 represented by formula (3) containing sulfonium cations include the following.
  • preferred axial ligands L 1 and L 2 represented by formula (3) containing iodonium cations include the following.
  • preferred axial ligands L 1 and L 2 represented by formula (3) containing diazonium cations include the following.
  • the photosensitizer (target product) represented by the general formula (1) of the present invention can be produced by a known method. That is, the metal complex precursor (a) having the target aromatic heterocyclic compound as a cyclic ligand and an onium structure formed by forming a ring structure in which pyrrole rings are connected directly or by ⁇ conjugation, and the target A desired compound can be obtained by synthesizing axial ligand precursors (b) each having an anion and combining them. As an example, the manufacturing method is shown by the following chemical formula.
  • the metal complex precursor (a) can be produced in various ways by known methods (methods for synthesizing porphyrins and phthalocyanines are described, for example, in KARL M. Kadis H Kevin M. Smith Roger Guilard, The Porphyrin Handbook VOL.1-10, ACADEMIC PRESS (2000) and VOL.
  • M is the same as the central metal M and represents the valence m.
  • X represents a halogen atom and has the same number of halogen atoms as the valence of the metal M.
  • L 5 and L 6 are halogen atoms or hydroxyl [Onium] is the same as A in formula (3), and X 1 is the same as X 1 in formula (3).
  • the photosensitizer (object) represented by the general formula (2) of the present invention is a cationic metal complex
  • the target compound can be obtained by combining with the ligand precursor (b).
  • the target is achieved by exchanging in the presence of an equal amount or more of an alkali metal salt, alkaline earth metal salt, etc. of the X2 anion, which is the raw material.
  • a metal complex is obtained.
  • M is the same as the central metal M and represents the valence m.
  • X represents a halogen atom and has the same number of halogen atoms as the valence of the metal M.
  • L 5 and L 6 are halogen atoms or hydroxyl [Onium] is the same as A in formula (3), X 1 is the same as X 1 in formula (3), M' represents an alkali metal or alkaline earth metal, X2 is the same as X2 in formula ( 2 ).
  • the onium cation structure used in the axial ligand precursor (b) of the present invention can be produced by a metathesis method.
  • the metathesis method is, for example, Shin Experimental Chemistry Course 14-I (1978, Maruzen) p-448; Advance in Polymer Science, 62, 1-48 (1984); Shin Experimental Chemistry Course 14-III (1978, Maruzen) ) pp1838-1846; Organosulfur Chemistry (Synthetic Reaction Edition, 1982, Kagaku Dojin), Chapter 8, pp237-280; Nihon Kagaku Zasshi, 87, (5), 74 (1966); JP-A-64-45357 , JP-A-61-212554, JP-A-61-100557, JP-A-5-4996, JP-A-7-82244, JP-A-7-82245, JP-A-58-210904, JP-A-6- No.
  • halogen ion salts of onium cations such as F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ; OH ⁇ salts; ClO 4 ⁇ salts; FSO 3 ⁇ , ClSO 3 ⁇ , CH 3 Salts with sulfonate ions such as SO 3 ⁇ , C 6 H 5 SO 3 ⁇ , CF 3 SO 3 ⁇ ; salts with sulfate ions such as HSO 4 ⁇ , SO 4 2- ; HCO 3 ⁇ , CO 3 2- , salts with carbonate ions such as H 2 PO 4 ⁇ , HPO 4 2- , PO 4 3- , and the like salts with phosphate ions, etc., to form the desired onium salt.
  • halogen ion salts of onium cations such as F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ; OH ⁇ salts; ClO 4 ⁇ salts; FSO 3 ⁇ , ClSO
  • Organic solvents include hydrocarbons (hexane, heptane, toluene, xylene, etc.), cyclic ethers (tetrahydrofuran, dioxane, etc.), chlorinated solvents (chloroform, dichloromethane, etc.), alcohols (methanol, ethanol, isopropyl alcohol, etc.), ketones ( acetone, methyl ethyl ketone and methyl isobutyl ketone), nitriles (such as acetonitrile) and polar organic solvents (such as dimethylsulfoxide, dimethylformamide and N-methylpyrrolidone). These solvents may be used alone or in combination of two or more.
  • the desired photosensitizer thus obtained can be purified by a method such as column chromatography using silica gel or the like, recrystallization, or washing with water or a solvent, if necessary.
  • Purification by recrystallization involves dissolving the desired photosensitizer in a small amount of water or an organic solvent, and separation from the water or organic solvent involves direct application to a water or organic solvent solution containing the desired photosensitizer. (or after concentration), another poor solvent is added to precipitate the desired photosensitizer.
  • the poor solvents used here include chain ethers (diethyl ether, dipropyl ether, etc.), esters (ethyl acetate, butyl acetate, etc.), aliphatic hydrocarbons (hexane, cyclohexane, etc.) and aromatic hydrocarbons (toluene and xylene, etc.).
  • Purification can also be carried out by utilizing the difference in solubility due to temperature. Purification can be carried out by recrystallization (a method of utilizing the difference in solubility due to cooling, a method of precipitating by adding a poor solvent, or a combination thereof).
  • the photosensitizer is an oily substance (when it does not crystallize), it can be purified by a method of washing the oily substance with water or a poor solvent.
  • the structure of the photosensitizer thus obtained can be analyzed by general analytical methods such as nuclear magnetic resonance spectra of 1 H, 13 C, 19 F, 31 P, infrared absorption spectra, mass spectrometry, or It can be identified by elemental analysis or the like.
  • the photosensitizer of the present invention changes from a water-soluble form to a hydrophobic form by light irradiation and is applied to a method of use for the purpose of aggregation.
  • At least one of R 8 is preferably represented by the following general formula (6).
  • (G) represents a biomolecule (probe), and L4 represents a divalent group that bonds (G) to a photosensitizer molecule. ]
  • (G) represents a biomolecule (hereinafter referred to as probe), including natural or synthetic molecules for use in biological systems.
  • probes include proteins, peptides, small molecules, ligands, enzyme substrates, hormones, antibodies, antigens, haptens, avidin, streptavidin, biotin, oligosaccharides, polysaccharides, nucleic acids, deoxynucleic acids, ribonucleic acids, nucleotide triphosphates, etc. is mentioned.
  • L 4 is a divalent group that binds the probe (G) and the photosensitizer molecule of the present invention, and is not particularly limited, from carbon, oxygen, nitrogen, sulfur and phosphorus atoms Consists of a selected straight chain, branched chain, or cyclic chain having 1 to 60 atoms, and a part of the chain may contain a double bond, a triple bond, or a bonding group represented by the following chemical formula. . * indicates the binding position.
  • L4 is the same as in formula ( 6 ), and (G') is a reactive group for binding the probe (G) in formula (6).
  • Specific examples of (G') include an activated ester group (here, a carboxylic acid ester having a good leaving group, such as a succinimidyloxy group and a sulfosuccinimidyloxy group).
  • halogenated acyl group halogenated alkyl group, amino group, acid anhydride, carboxylic acid, carbodiimide group, hydroxy group, iodoacetamide group, isocyanate group, isothiocyanate group, maleimide group, phosphoramidite group, sulfonic acid ester group, thiol group and the like.
  • the carboxyl group, amino group, thiol group, etc. contained in (G) may be reacted with the reactive group (G') to bond.
  • the amino group of (G) reacts with the succinimidyl oxyester group of (G') to form an amide bond, and the thiol group of (G) and the maleimide group of (G') to form a sulfide bond.
  • the probe (G) and the photosensitizer of the present invention are bound.
  • the decomposable onium salt bound to the axial ligand decomposes, and the action of protons generated thereby causes elimination of the axial ligand.
  • the wavelength of the light to be irradiated is not particularly limited as long as it is within the range of wavelengths that can be absorbed by the present photosensitizer. In particular, from the viewpoint of the effect on cells and photoresponsiveness, it is more preferable to irradiate with light of 650 to 1200 nm, which is in the near-infrared region.
  • Aggregation of the photosensitizer of the present invention occurs due to a change from hydrophilicity to hydrophobicity due to detachment of the axial ligand upon irradiation with light. That is, for example, when used in a therapeutic method for killing specific target cells (e.g., cancer cells) by light irradiation, the photosensitizer of the present invention and a probe for binding to specific target cells ( (preferably an antibody) is introduced in advance, and by administering this, a complex that specifically binds to the target cell is formed, and for example, by irradiation with near-infrared light, the axial ligand is detached.
  • specific target cells e.g., cancer cells
  • a probe for binding to specific target cells preferably an antibody
  • the photosensitizer of the present invention When the photosensitizer of the present invention is bound to an antibody, it acts on a protein or the like for specific binding to a specific cell surface, so that it can be accumulated in target cells. Therefore, the photosensitizer-bound antibody conjugate of the present invention can be used for molecular target therapy, as is the case with antibody conjugates conjugated with compounds having other drug actions.
  • monoclonal antibodies are preferably used.
  • Basiliximab and the like are specifically exemplified.
  • it can be suitably used for affinity chromatography, light irradiation molecule inactivation method (CALI and FALI), etc., which are analytical methods and purification methods that utilize the specific binding of antibodies.
  • % means % by weight.
  • the structure of the metal complex precursor (a) is shown below.
  • reagents purchased from Aldrich Co. were used for all of the metal complex precursors other than the above production examples.
  • Production Example 6 Synthesis of Axial Ligand Precursor (b-1/PF 6 ) Production Example 5 was carried out except that 10.6 g of K(C 2 F 5 ) 3 PF 3 was replaced with 4.0 g of KPF 6 . Following the method described in Example 5, 4.9 g (58% yield) of a pale yellow solid was obtained. 1 H, 19 F and 31 P-NMR confirmed that this slightly yellow solid was the axial ligand precursor (b-1/PF 6 ).
  • Production Example 11 Synthesis of Axial Ligand Precursor (b-3/TfO) Described in Production Example 10 except that 0.66 g of silver trifluoroacetate was replaced with 0.77 g of silver trifluoromethanesulfonate. 0.49 g (59% yield) of a white solid was obtained according to the method of 1 H, 19 F-NMR confirmed that this white solid was the axial ligand precursor (b-3/TfO).
  • Production Example 16 Synthesis of Axial Ligand Precursor (b-7/TfO) Described in Production Example 15 except that 0.66 g of silver trifluoroacetate was replaced with 0.77 g of silver trifluoromethanesulfonate. 0.22 g (28% yield) of a pale yellow solid was obtained according to the method of . 1 H, 19 F-NMR confirmed that this white solid was the axial ligand precursor (b-7/TfO).
  • reaction mixture was poured into 100 mL of 10% sodium trifluoromethanesulfonate aqueous solution. After stirring at room temperature for 2 hours, the mixture was extracted with 50 mL of dichloromethane, washed with water 5 times, and concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 6.1 g of a slightly yellow solid (yield 86%). 1 H, 19 F-NMR confirmed that this slightly yellow solid was (Intermediate-16).
  • Production Example 21 Synthesis of axial ligand precursor (b-11/CF 3 CO 2 )
  • axial ligand precursor (b-3/Cl) instead of 0.5 g of axial ligand precursor (b-3/Cl), 0.39 g of a pale yellow solid (yield 44%) was obtained according to the method described in Production Example 10, except that the compound (b-11/Br) was 0.9 g. 1 H, 19 F-NMR confirmed that this pale yellow solid was an axial ligand precursor (b-11/CF 3 CO 2 ).
  • Synthesis method (I) (for metal complexes with two axial ligands) Examples 1-17, 23-32, 38-43
  • the metal complex precursor (a) and the axial ligand precursor (b) were mixed in a reaction vessel at a molar ratio of 1:2 in an acetonitrile solvent at room temperature, reacted for 6 hours while blowing nitrogen, and acetonitrile was distilled off under reduced pressure.
  • the desired product photosensitizer
  • Synthesis method (III) (in the case of a metal complex with one axial ligand) Examples 33-37
  • the metal complex precursor (a) and the axial ligand precursor (b) were mixed in a reaction vessel at a molar ratio of 1:1 in an acetonitrile solvent at room temperature, reacted for 6 hours while blowing nitrogen, and acetonitrile was distilled off under reduced pressure.
  • the desired product (photosensitizer) was obtained.
  • H-3 1:1 (molar ratio) mixture of H-1 and triphenylsulfonium bromide
  • H-4 1:1 (molar ratio) mixture of H-2 and diphenyliodonium chloride
  • the photosensitizers of the present invention exhibit good solubility even in hydrophilic solvents, particularly buffer solvents used in the biotechnology field. Further, as shown in Examples 44 to 86, the photosensitizer of the present invention is hydrophobized by light irradiation and can be effectively aggregated. Although the photosensitizers of Comparative Examples 1 and 2 are excellent in solubility, there is almost no aggregation effect due to hydrophobization, and as in Comparative Examples 3 and 4, the photosensitizer and the onium salt structure are separately blended. It can be seen that, when there is no solubility, it is not suitable for hydrophobization by light irradiation.
  • Production Example-26 Synthesis of Metal Complex Precursor (a-11) According to Production Example 1, instead of octaethylporphyrin, 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin (manufactured by Tokyo Kasei) and tetrachlorosilane to synthesize the title compound (a-11).
  • Examples 87-91 Synthesis of Intermediate I According to the synthesis method (I), the metal complex precursor (a-10) and the axial ligand precursor (b) were mixed in an acetonitrile solvent at a molar ratio of 1:2 at room temperature in a reaction vessel, and nitrogen was blown into the reaction vessel. The mixture was allowed to react for several hours, and acetonitrile was distilled off under reduced pressure to obtain the desired intermediate I.
  • Examples 92-96 Synthesis of Intermediate I According to the synthesis method (I), the metal complex precursor (a-11) and the axial ligand precursor (b) were mixed in an acetonitrile solvent at a molar ratio of 1:2 at room temperature in a reaction vessel, and nitrogen was blown into the reaction vessel. The mixture was allowed to react for several hours, and acetonitrile was distilled off under reduced pressure to obtain the desired intermediate I.
  • Photosensitizers (PS-Ra and PS-Rb) having reactive groups on the side chains obtained in Examples 87-96 were used, and biotin was labeled as a probe according to the following flow, which is a known method.
  • Sensitizers (PS-Ba) and (PS-Bb) were synthesized.
  • Table 5 shows the structures of the synthesized photosensitizers (PS-Ba1-5 and PS-Bb1-5).
  • Examples 97-101 0.1 mmol of (PS-Ra) was dissolved in 10 mL of dimethylsulfoxide in a reaction vessel, and 0.1 mmol of N-biotinyl-3,6-dioxaoctane-1,8-diamine (manufactured by Tokyo Kasei) and diphosphate were added thereto. 10 mL of sodium buffer solution (pH 8.4) was added and stirred at room temperature for 24 hours. The reaction mixture was concentrated and washed with acetonitrile and methanol to obtain the desired product (PS-Ba).
  • Examples 102-106 0.1 mmol of (PS-Rb) was dissolved in 10 mL of dimethylsulfoxide in a reaction vessel, and 0.1 mmol of N-biotinyl-3,6-dioxaoctane-1,8-diamine (manufactured by Tokyo Kasei) and diphosphate were added thereto. 10 mL of sodium buffer solution (pH 8.4) was added and stirred at room temperature for 24 hours. The reaction solution was concentrated and washed with acetonitrile and methanol to obtain the desired product (PS-Bb).
  • the photosensitizers bound to the probes of the present invention exhibit good solubility even in hydrophilic solvents, especially buffer solvents used in the biotechnology field. Furthermore, as shown in Examples 107 to 116, the photosensitizer bound to the probe of the present invention is hydrophobized by light irradiation and can be effectively aggregated. That is, even if the photosensitizer of the present invention is in the form of binding various probes, it can be aggregated with a change in hydrophilicity and hydrophobicity by light irradiation without impairing its effect.
  • the photosensitizers (PS-Ra) and (PS-Rb) having a reactive group on the side chain, which are precursors thereof, can also obtain an aggregating effect by light irradiation.
  • the photosensitizer of the present invention uses light (particularly in the visible region to the infrared region) to agglutinate a complex specifically bound to a specific target cell by light irradiation. , and is suitably used for therapeutic purposes as a pharmaceutical (photodynamic therapy, photoimmunotherapy, etc.). In addition, it can be suitably used for affinity chromatography, light irradiation molecule inactivation method (CALI and FALI), etc., which are analytical methods and purification methods that utilize specific binding of antibodies.
  • CALI and FALI light irradiation molecule inactivation method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)

Abstract

Provided is a photosensitizer which has a specific structure, and has higher sensitivity than existing photosensitizers when light irradiation causes a rapid change from hydrophilicity to hydrophobicity. The present invention pertains to: a photosensitizer containing a metal complex which is represented by general formula (1) or general formula (2) and has a cyclic ligand that forms a ring structure in which pyrrole rings are linked directly or via π conjugation, and an axial ligand having an onium salt structure; an antibody conjugate to which said photosensitizer binds; a method of using said photosensitizer, the method being characterized in that the detachment of an axial ligand is promoted through irradiation with light having a wavelength of 500-1,500 nm; and a usage method in which said photosensitizer is used for therapeutic purpose.

Description

光増感剤Photosensitizer
本発明は可視~赤外領域の光線に感光する、特定の構造を有する金属錯体を含有する光増感剤、これと抗体とが結合してなる結合体、及びこれを用いた光照射を伴う治療方法に関する。 The present invention involves a photosensitizer containing a metal complex having a specific structure, which is sensitive to light in the visible to infrared region, a conjugate formed by combining this with an antibody, and light irradiation using the same. Regarding treatment methods.
フタロシアニンやポルフィリン及びその類縁体化合物は、例えば可視光照射により高い蛍光を発する特長から、生体イメージングなどの分野で利用されている。また光照射により、励起状態からラジカルや一重項酸素等の活性種を生じさせることが知られており、これを用いた光線力学療法と呼ばれる、体内で特定の細胞を破壊するために上記化合物を体内に摂取又は注射によって投与し、これに光を照射することからなる治療法がある。そのような上記化合物は「光増感剤」と呼ばれており、特定の波長の光を照射することにより付近の細胞のアポトーシス、ネクローシス或いは自食作用などを誘発する細胞障害性の活性酸素を生じる(特許文献1~3参照)。 Phthalocyanines, porphyrins, and analogues thereof are used in fields such as bioimaging, for example, due to their ability to emit high fluorescence when irradiated with visible light. In addition, it is known that active species such as radicals and singlet oxygen are generated from the excited state by light irradiation. There is a therapeutic method in which the substance is administered into the body by ingestion or injection and irradiated with light. Such compounds are called "photosensitizers", and cytotoxic active oxygen that induces apoptosis, necrosis or autophagy of nearby cells by irradiation with light of a specific wavelength. (See Patent Documents 1 to 3).
近赤外(NIR)領域の励起光自体は細胞に対し無害であるとされるが、現行の非標的光増感剤を用いる場合、正常細胞にも取り込まれるためこれが重大な副作用を引き起こすことがある。したがって上記光増感剤を用いた非イオン化の物理エネルギーと組み合わせて細胞を死滅させる従来の光線力学療法では、使用法として限定的となりうる。 Excitation light in the near-infrared (NIR) region itself is said to be harmless to cells, but when using current non-targeted photosensitizers, it is taken up by normal cells, which can cause serious side effects. be. Therefore, conventional photodynamic therapy, in which cells are killed in combination with non-ionized physical energy using the above-mentioned photosensitizer, may be of limited use.
上記のような副作用を回避するため、特に治療法において分子標的療法が注目されている。特定の細胞表面に特異的に結合させるためのタンパク質等に薬物作用を有する化合物を化学結合で結合し、使用時において目的となる細胞に集積させることでより効果的に治療を行うものである。上記考えに基づき、近年では光を用いる治療法において該方法に用いられる光増感剤は、標的細胞に局在化することを狙って特定の細胞表面に特異的に結合させるためのユニット、例えば抗体やそのフラグメントを導入したものを利用している。 In order to avoid side effects such as those described above, attention has been focused on molecular target therapy, particularly in therapeutic methods. A compound having a drug action is chemically bound to a protein or the like to be specifically bound to the surface of a specific cell, and the compound is accumulated in the target cell during use to provide more effective treatment. Based on the above idea, in recent years photosensitizers used in light-based therapeutic methods are units for specifically binding to specific cell surfaces with the aim of localizing them on target cells, such as Antibodies and their fragments are used.
例えば特許文献4では、細胞を死滅させる方法であって、細胞表面タンパク質を含む細胞に対し、光増感剤であるIR-700分子が1つ又は複数結合した抗体を用いて、該抗体を該細胞表面タンパク質に特異的に治療に有効な量を結合させ、660~740nmの波長の光を照射することを含み、照射後に別の薬剤を用いて該細胞を死滅させる方法が開示されている。特許文献5では、病態を患っている対象に細胞毒性を誘発する方法において、対象細胞に特異的に結合するプローブに結合したフタロシアニン誘導体の光増感剤ユニットを含む薬剤を投与し、細胞死の誘発に適した量で適切な励起光を前記細胞に照射することを含む方法が開示されている。 For example, Patent Document 4 discloses a method for killing cells, wherein an antibody to which one or more IR-700 molecules, which are photosensitizers, is bound to a cell containing a cell surface protein is used. A method is disclosed which involves binding a therapeutically effective amount specifically to a cell surface protein, irradiating with light of a wavelength of 660-740 nm, and killing the cells with another agent after irradiation. In Patent Document 5, in a method for inducing cytotoxicity in a subject suffering from a pathological condition, a drug containing a photosensitizer unit of a phthalocyanine derivative bound to a probe that specifically binds to the target cell is administered to induce cell death. A method is disclosed comprising illuminating said cells with a suitable excitation light in an amount suitable for induction.
さらに特許文献6では、光増感剤であるIR-700分子と抗体等とが結合した化合物が標的となる特定の細胞に特異的に結合してなる複合体に対し、近赤外光を照射することによりIR-700分子の一部が結合解離し、これにより親水性分子から疎水性分子へと変化することによって該複合体が凝集し、標的となる特定の細胞を除去せしめる方法が開示されている。本方法によれば、近赤外光照射によってIR-700分子の一部が加水分解によって脱離することで疎水性へと変化することで上記凝集をもたらす。 Furthermore, in Patent Document 6, near-infrared light is irradiated to a complex in which a compound in which an IR-700 molecule, which is a photosensitizer, is bound to an antibody or the like is specifically bound to a specific target cell. A method is disclosed in which a portion of the IR-700 molecule is bound and dissociated by the reaction, thereby changing from a hydrophilic molecule to a hydrophobic molecule, thereby aggregating the complex and removing a specific target cell. ing. According to this method, a portion of the IR-700 molecule is hydrolyzed by irradiation with near-infrared light, and is changed to be hydrophobic, thereby causing the aggregation.
特表平09-504811号公報Japanese Patent Publication No. 09-504811 特許第2532368号Patent No. 2532368 特表2014-522881号公報Japanese Patent Application Publication No. 2014-522881 特許第6127045号Patent No. 6127045 特許第6741599号Patent No. 6741599 特表2017-524002号公報Japanese translation of PCT publication No. 2017-524002
本発明が解決しようとする課題は、特定の構造を有する光増感剤であって、上記のように光照射によって親水性から疎水性へ急激な変化をもたらす場合において、従来よりも高感度な光増感剤の提供である。
例えば該光増感剤と抗体とが結合した抗体結合体が、標的となる特定の細胞に特異的に結合してなる複合体を、可視光~赤外光照射によって凝集させるような使用方法において、従来よりも高感度な光増感剤の提供である。
The problem to be solved by the present invention is a photosensitizer having a specific structure, and in the case of causing a rapid change from hydrophilic to hydrophobic by light irradiation as described above, it has higher sensitivity than before. It is the provision of a photosensitizer.
For example, in a method of use in which an antibody conjugate, in which the photosensitizer and an antibody are bound, agglutinates a complex formed by specifically binding to a specific target cell by irradiation with visible light to infrared light. , to provide a photosensitizer having higher sensitivity than conventional ones.
本発明者らは、前記問題点を解決すべく鋭意研究した結果、特定の構造を有する光増感剤が、上記課題に対し優れた効果を有することを見出すに至った。
 すなわち本発明は、ピロール環が直接又はπ共役により繋がった環構造を形成した環状配位子を有し、かつオニウム塩構造を有してなる軸配位子を有する、一般式(1)又は一般式(2)で表される金属錯体を含有する光増感剤である。
As a result of intensive studies aimed at solving the above problems, the present inventors have found that a photosensitizer having a specific structure has excellent effects on the above problems.
That is, the present invention has general formula (1) or A photosensitizer containing a metal complex represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(1)中、R~Rは環状配位子上の置換基であり、RとR、RとR、RとR、RとRで互いに結合して縮合多環芳香族構造を形成していてもよく、Yは窒素原子、CR又は直接結合していてもよく、Rは水素原子又は炭素数6~14の芳香族炭化水素であり、MはAl、Ga、In、Si、Ge、Sn、Fe、Ti、Co及びMnの群から選ばれ、L及びLは金属Mに配位する式(3)で表される軸配位子であり、MがAl、Ga、In、Fe、Co又はMnの場合はLのみを有する。 In formula (1), R 1 to R 8 are substituents on the cyclic ligand, and R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 are bonded to each other. may form a condensed polycyclic aromatic structure, Y is a nitrogen atom, CR 9 or may be directly bonded, R 9 is a hydrogen atom or an aromatic hydrocarbon having 6 to 14 carbon atoms, M is selected from the group of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn, and L 1 and L 2 are axially coordinated to metal M and represented by formula (3) and only L 1 when M is Al, Ga, In, Fe, Co or Mn.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(2)は中心金属Mがカチオン性である場合を表しており、R~R、Y、L及びLは式(1)と同じであり、MはP、Sb及びBiの群から選ばれ、X は中心金属カチオンに対応する1価の対アニオンを表す。 Formula (2) represents the case where the central metal M is cationic, R 1 to R 8 , Y, L 1 and L 2 are the same as in Formula (1), and M is P, Sb or Bi. is selected from the group X 2 - represents a monovalent counter anion corresponding to the central metal cation;
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(3)中、Dは酸素原子又は硫黄原子を表し、Eは炭素数1~8のアルキレン、炭素数2~8のアルケニレン、炭素数2~8のアルキニレン又は炭素数6~14のアリーレンを表し、これらの基の主鎖に少なくとも1つの下記式(4)で表されるアンモニオ基を含み、さらにエーテル基、スルフィド基、ケトン基、アミド基、エステル基、チオエステル基、ウレア基、スルホン基、シリル基又はフェニレン基を含んでいてもよく、Aは1価のオニウムカチオンであり、X はオニウムカチオンに対応する1価の対アニオンを表す。 In formula (3), D represents an oxygen atom or a sulfur atom, E represents alkylene having 1 to 8 carbon atoms, alkenylene having 2 to 8 carbon atoms, alkynylene having 2 to 8 carbon atoms or arylene having 6 to 14 carbon atoms. and containing at least one ammonio group represented by the following formula (4) in the main chain of these groups, and further an ether group, a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone group , a silyl group or a phenylene group, A + is a monovalent onium cation, and X 1 represents a monovalent counter anion corresponding to the onium cation.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(4)中R10、R11は炭素数1~3のアルキル基又は下式(5)で表される群より選ばれる基である。ただしR10、R11が共に炭素数1~3のアルキル基である場合、該アンモニオ基に対応する1価の対アニオンX を有する。 R 10 and R 11 in formula (4) are alkyl groups having 1 to 3 carbon atoms or groups selected from the group represented by the following formula (5). However, when both R 10 and R 11 are alkyl groups having 1 to 3 carbon atoms, it has a monovalent counter anion X 3 corresponding to the ammonio group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(5)中Lはメチレン、エチレン又はプロピレンであり、X はカルボン酸、スルフィン酸、スルホン酸、リン酸及びホスホン酸で表される群より選ばれるアニオンである。ただしR10、R11が共に式(5)を有する場合、X のどちらか一方は水素イオン又は1価の金属カチオンを有する。 In formula (5), L 3 is methylene, ethylene or propylene, and X 4 - is an anion selected from the group represented by carboxylic acid, sulfinic acid, sulfonic acid, phosphoric acid and phosphonic acid. However, when both R 10 and R 11 have formula (5), either one of X 4 - has a hydrogen ion or a monovalent metal cation.
更に本発明は、環状配位子上の置換基の少なくとも1つに抗体を含む該光増感剤が結合してなる抗体結合体である。 Furthermore, the present invention is an antibody conjugate in which the photosensitizer containing an antibody is bound to at least one of the substituents on the cyclic ligand.
更に本発明は、500~1500nmの光照射により軸配位子の脱離を促進させることを特徴とする該光増感剤の使用方法である。 Further, the present invention is a method of using the photosensitizer, characterized in that detachment of the axial ligand is accelerated by irradiation with light of 500 to 1500 nm.
本発明の光増感剤は、波長500nm~1500nmの可視光~赤外光領域の光に感光して効率よくプロトンを発生させ、該プロトンの作用により軸配位子の脱離を促進させることができる。これにより標的となる特定の細胞に特異的に結合してなる複合体を可視光~赤外光照射によって凝集させるような使用方法において、従来の光増感剤よりも効率よく凝集作用をもたらすことができる。 The photosensitizer of the present invention is sensitive to light in the visible to infrared region with a wavelength of 500 nm to 1500 nm to efficiently generate protons, and the action of the protons promotes desorption of the axial ligand. can be done. As a result, in a method of use in which a complex specifically bound to a specific target cell is agglutinated by irradiation with visible light to infrared light, the agglutination action is more efficient than that of conventional photosensitizers. can be done.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明の光増感剤は、ピロール環が直接又はπ共役により繋がった環構造を形成した環状配位子を有し、かつオニウム塩構造を有してなる軸配位子を有する、一般式(1)又は一般式(2)で表される金属錯体を含有する。 The photosensitizer of the present invention has the general formula It contains a metal complex represented by (1) or general formula (2).
式(1)中、R~Rは環状配位子上の置換基であり、RとR、RとR、RとR、RとRで互いに結合して縮合多環芳香族構造を形成していてもよく、Yは窒素原子、CR又は直接結合していてもよく、Rは水素原子又は炭素数6~14の芳香族炭化水素であり、MはAl、Ga、In、Si、Ge、Sn、Fe、Ti、Co及びMnの群から選ばれ、L及びLは金属Mに配位する式(3)で表される軸配位子であり、MがAl、Ga、In、Fe、Co又はMnの場合はLのみを有する。 In formula (1), R 1 to R 8 are substituents on the cyclic ligand, and R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 are bonded to each other. may form a condensed polycyclic aromatic structure, Y is a nitrogen atom, CR 9 or may be directly bonded, R 9 is a hydrogen atom or an aromatic hydrocarbon having 6 to 14 carbon atoms, M is selected from the group of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn, and L 1 and L 2 are axially coordinated to metal M and represented by formula (3) and only L 1 when M is Al, Ga, In, Fe, Co or Mn.
式(2)は中心金属Mがカチオン性である場合を表しており、R~R、Y、L及びLは式(1)と同じであり、MはP、Sb及びBiの群から選ばれ、X は中心金属カチオンに対応する1価の対アニオンを表す。 Formula (2) represents the case where the central metal M is cationic, R 1 to R 8 , Y, L 1 and L 2 are the same as in formula (1), and M is P, Sb or Bi. is selected from the group X 2 - represents a monovalent counter anion corresponding to the central metal cation;
式(3)中、Dは酸素原子又は硫黄原子を表し、Eは炭素数1~8のアルキレン、炭素数2~8のアルケニレン、炭素数2~8のアルキニレン又は炭素数6~14のアリーレンを表し、これらの基の主鎖に少なくとも1つの式(4)で表されるアンモニオ基を含み、さらにエーテル基、スルフィド基、ケトン基、アミド基、エステル基、チオエステル基、ウレア基、スルホン基、シリル基又はフェニレン基を含んでいてもよく、Aは1価のオニウムカチオンであり、X はオニウムカチオンに対応する1価の対アニオンを表す。 In formula (3), D represents an oxygen atom or a sulfur atom, E represents alkylene having 1 to 8 carbon atoms, alkenylene having 2 to 8 carbon atoms, alkynylene having 2 to 8 carbon atoms or arylene having 6 to 14 carbon atoms. and at least one ammonio group represented by formula (4) in the main chain of these groups, and further an ether group, a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone group, It may contain a silyl group or a phenylene group, A + is a monovalent onium cation, and X 1 - represents a monovalent counter anion corresponding to the onium cation.
式(4)中R10、R11はメチル基、エチル基又は下式(5)で表される群より選ばれる基である。ただしR10、R11が共にメチル基又はエチル基である場合、該アンモニオ基に対応する1価の対アニオンX を有する。 R 10 and R 11 in formula (4) are a methyl group, an ethyl group, or a group selected from the group represented by the following formula (5). However, when both R 10 and R 11 are a methyl group or an ethyl group, it has a monovalent counter anion X 3 corresponding to the ammonio group.
式(5)中Lはメチレン、エチレン又はプロピレンであり、X はカルボン酸、スルフィン酸、スルホン酸、リン酸及びホスホン酸で表される群より選ばれるアニオンである。ただしR10、R11が共に式(5)を有する場合、X のどちらか一方は水素イオン又は1価の金属カチオンを有する。 In formula (5), L 3 is methylene, ethylene or propylene, and X 4 - is an anion selected from the group represented by carboxylic acid, sulfinic acid, sulfonic acid, phosphoric acid and phosphonic acid. However, when both R 10 and R 11 have formula (5), either one of X 4 - has a hydrogen ion or a monovalent metal cation.
ピロール環が直接又はπ共役により繋がった環構造を形成した環状配位子とは、本発明の光増感剤を構成する金属錯体における、中心金属元素に対する配位子部分であって、4個のピロール環が直接結合、1個の炭素原子又は窒素原子を介してπ結合を維持しながら結合し環構造を形成する化合物のことである。原料の入手しやすさ及び合成の容易さの観点から、環状配位子として有用な化合物の具体例としては、ポルフィリン、ポリフィラジン、コロール、フタロシアニン、クロリンを例示できる。好ましくは、ポルフィリン及びフタロシアニンである。 The cyclic ligand having a ring structure in which pyrrole rings are connected directly or by π conjugation is a ligand moiety for the central metal element in the metal complex constituting the photosensitizer of the present invention, and has four is a compound in which the pyrrole rings of are bonded directly or through one carbon atom or nitrogen atom while maintaining a π bond to form a ring structure. Porphyrins, polyphyrazines, coroles, phthalocyanines, and chlorins are specific examples of compounds useful as cyclic ligands from the viewpoint of availability of raw materials and ease of synthesis. Porphyrins and phthalocyanines are preferred.
本発明におけるオニウム塩構造を有してなる軸配位子とは、本発明の金属錯体の中心金属に配位している配位子であって、環状配位子が配位する平面に対し、垂直方向に配位する配位子のことを表し、該軸配位子にはオニウム塩構造を有してなるものである。 The axial ligand having an onium salt structure in the present invention is a ligand coordinated to the central metal of the metal complex of the present invention, and , represents a ligand coordinated in the vertical direction, and the axial ligand has an onium salt structure.
式(1)及び式(2)中、Yは窒素原子、CR又は直接結合していてもよい。ここで直接結合とは、ピロール環が直接結合しつつπ共役によって繋がった環構造を形成していることを示している。Rは水素原子又は炭素数6~14の芳香族炭化水素である。 In formulas (1) and (2), Y may be a nitrogen atom, CR 9 or a direct bond. Here, the direct bond means that the pyrrole rings are directly bonded to form a ring structure connected by π conjugation. R 9 is a hydrogen atom or an aromatic hydrocarbon having 6-14 carbon atoms.
式(1)で表されるMは上記環状配位子を有する金属錯体の中心金属であり、Al、Ga、In、Si、Ge、Sn、Fe、Ti、Co及びMnの群から選ばれ、Al、Si、Ge及びSnが光反応性の観点で好ましい。
式(2)で表されるMは環状配位子を有し、カチオン性金属錯体を形成する中心金属を表し、P、Sb及びBiの群から選ばれ、Pが光反応性の観点で好ましい。
M represented by formula (1) is the central metal of the metal complex having the cyclic ligand and is selected from the group consisting of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn, Al, Si, Ge and Sn are preferred from the viewpoint of photoreactivity.
M represented by formula (2) has a cyclic ligand, represents a central metal that forms a cationic metal complex, is selected from the group of P, Sb and Bi, and P is preferable from the viewpoint of photoreactivity. .
式(1)及び(2)中、R~Rは環状配位子上の置換基であり、互いに独立して、炭素数6~30のアリール基、炭素数4~30のヘテロアリール基、炭素数1~30のアルキル基、炭素数2~30のアルケニル基又は炭素数2~30のアルキニル基、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数2~19のアルキルカルボニル基、炭素数7~11のアリールカルボニル基、炭素数2~19のアルコキシカルボニル基、炭素数7~11のアリールオキシカルボニル基、炭素数7~11のアリールチオカルボニル基、炭素数2~19のアシロキシ基、炭素数6~20のアリールチオ基、炭素数1~18のアルキルチオ基、炭素数1~18のアルキルスルフィニル基、炭素数6~10のアリールスルフィニル基、炭素数1~18のアルキルスルホニル基、炭素数の6~10のアリールスルホニル基、アルキレンオキシ基、アミノ基、シアノ基、ニトロ基及びハロゲン基が挙げられ、RとR、RとR、RとR、RとRで互いに結合して縮合多環芳香族構造を形成していてもよい。 In formulas (1) and (2), R 1 to R 8 are substituents on the cyclic ligands and are each independently an aryl group having 6 to 30 carbon atoms or a heteroaryl group having 4 to 30 carbon atoms. , an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms or an alkynyl group having 2 to 30 carbon atoms, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, an alkylcarbonyl group having 2 to 19 carbon atoms, an arylcarbonyl group having 7 to 11 carbon atoms, an alkoxycarbonyl group having 2 to 19 carbon atoms, an aryloxycarbonyl group having 7 to 11 carbon atoms, and an arylthiocarbonyl group having 7 to 11 carbon atoms group, acyloxy group having 2 to 19 carbon atoms, arylthio group having 6 to 20 carbon atoms, alkylthio group having 1 to 18 carbon atoms, alkylsulfinyl group having 1 to 18 carbon atoms, arylsulfinyl group having 6 to 10 carbon atoms, carbon alkylsulfonyl groups having 1 to 18 carbon atoms, arylsulfonyl groups having 6 to 10 carbon atoms, alkyleneoxy groups, amino groups, cyano groups , nitro groups and halogen groups; , R 5 and R 6 , R 7 and R 8 may be bonded to each other to form a condensed polycyclic aromatic structure.
上記において炭素数6~30のアリール基としては、フェニル基、ビフェニリル基などの単環式アリール基及びナフチル、アントラセニル、フェナンスレニル、ピレニル、クリセニル、ナフタセニル、ベンズアントラセニル、アントラキノリル、フルオレニル、ナフトキノン、アントラキノンなどの縮合多環式アリール基が挙げられる。 In the above, the aryl group having 6 to 30 carbon atoms includes monocyclic aryl groups such as phenyl group and biphenylyl group, naphthyl, anthracenyl, phenanthrenyl, pyrenyl, chrysenyl, naphthacenyl, benzanthracenyl, anthraquinolyl, fluorenyl, naphthoquinone and anthraquinone. and condensed polycyclic aryl groups such as
炭素数4~30のヘテロアリール基としては、酸素、窒素、硫黄などの複素原子を1~3個含む環状のものが挙げられ、これらは同一であっても異なっていてもよく、具体例としてはチエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニルなどの単環式ヘテロアリール基及びインドリル、ベンゾフラニル、イソベンゾフラニル、ベンゾチエニル、イソベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、ジベンゾチエニル、キサントニル、チオキサントニル、ジベンゾフラニルなどの縮合多環式ヘテロアリール基が挙げられる。 Examples of heteroaryl groups having 4 to 30 carbon atoms include cyclic groups containing 1 to 3 heteroatoms such as oxygen, nitrogen and sulfur, which may be the same or different. is a monocyclic heteroaryl group such as thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl; , carbazolyl, acridinyl, phenothiazinyl, phenazinyl, xanthenyl, thianthrenyl, phenoxazinyl, phenoxathiinyl, chromanyl, isochromanyl, dibenzothienyl, xanthonyl, thioxanthonyl, dibenzofuranyl, and other fused polycyclic heteroaryl groups.
炭素数1~30のアルキル基としてはメチル、エチル、プロピル、ブチル、ヘキサデシル、オクダデシルなどの直鎖アルキル基、イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシルなどの分岐アルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどのシクロアルキル基が挙げられる。 Examples of alkyl groups having 1 to 30 carbon atoms include linear alkyl groups such as methyl, ethyl, propyl, butyl, hexadecyl and octadecyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl and isohexyl. and cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
炭素数2~30のアルケニル基としては、ビニル、アリル、1-プロペニル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニルなどが挙げられる。 Alkenyl groups having 2 to 30 carbon atoms include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl and the like.
炭素数2~30のアルキニル基としては、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-メチル-1-プロピニル、1-メチル-2-プロピニルなどが挙げられる。 Examples of alkynyl groups having 2 to 30 carbon atoms include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-1-propynyl, 1-methyl-2-propynyl and the like. mentioned.
炭素数1~18のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ドデシルオキシなどが挙げられる。 The alkoxy groups having 1 to 18 carbon atoms include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, dodecyloxy and the like.
炭素数6~10のアリールオキシ基としては、フェノキシ、ナフチルオキシなどが挙げられる。 Examples of aryloxy groups having 6 to 10 carbon atoms include phenoxy and naphthyloxy.
炭素数2~19のアルキルカルボニル基としては、アセチル、トリフルオロアセチル、プロピオニル、ブタノイル、2-メチルプロピオニル、ヘプタノイル、2-メチルブタノイル、3-メチルブタノイル、オクタノイルなどが挙げられる。 Alkylcarbonyl groups having 2 to 19 carbon atoms include acetyl, trifluoroacetyl, propionyl, butanoyl, 2-methylpropionyl, heptanoyl, 2-methylbutanoyl, 3-methylbutanoyl, octanoyl and the like.
炭素数7~11のアリールカルボニル基としては、ベンゾイル、4-tert-ブチルベンゾイル、ナフトイルなどが挙げられる。 Arylcarbonyl groups having 7 to 11 carbon atoms include benzoyl, 4-tert-butylbenzoyl, naphthoyl and the like.
炭素数2~19のアルコキシカルボニル基としては、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニルなどが挙げられる。 The alkoxycarbonyl group having 2 to 19 carbon atoms includes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl and the like.
炭素数7~11のアリールオキシカルボニル基としては、フェノキシカルボニル、ナフトキシカルボニルなどが挙げられる。 The aryloxycarbonyl group having 7 to 11 carbon atoms includes phenoxycarbonyl, naphthoxycarbonyl and the like.
炭素数7~11のアリールチオカルボニル基としては、フェニルチオカルボニル、ナフトキシチオカルボニルなどが挙げられる。 The arylthiocarbonyl group having 7 to 11 carbon atoms includes phenylthiocarbonyl, naphthoxythiocarbonyl and the like.
炭素数2~19のアシロキシ基としては、アセトキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、イソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ、tert-ブチルカルボニルオキシ、オクタデシルカルボニルオキシなどが挙げられる。 Acyloxy groups having 2 to 19 carbon atoms include acetoxy, ethylcarbonyloxy, propylcarbonyloxy, isobutylcarbonyloxy, sec-butylcarbonyloxy, tert-butylcarbonyloxy, octadecylcarbonyloxy and the like.
炭素数6~20のアリールチオ基としては、フェニルチオ、ビフェニリルチオ、メチルフェニルチオ、クロロフェニルチオ、ブロモフェニルチオ、フルオロフェニルチオ、ヒドロキシフェニルチオ、メトキシフェニルチオ、ナフチルチオ、4-[4-(フェニルチオ)ベンゾイル]フェニルチオ、4-[4-(フェニルチオ)フェノキシ]フェニルチオ、4-[4-(フェニルチオ)フェニル]フェニルチオ、4-(フェニルチオ)フェニルチオ、4-ベンゾイルフェニルチオ、4-ベンゾイル-クロロフェニルチオ、4-ベンゾイル-メチルチオフェニルチオ、4-(メチルチオベンゾイル)フェニルチオ、4-(p-tert-ブチルベンゾイル)フェニルチオなどが挙げられる。 Arylthio groups having 6 to 20 carbon atoms include phenylthio, biphenylylthio, methylphenylthio, chlorophenylthio, bromophenylthio, fluorophenylthio, hydroxyphenylthio, methoxyphenylthio, naphthylthio, 4-[4-(phenylthio) benzoyl]phenylthio, 4-[4-(phenylthio)phenoxy]phenylthio, 4-[4-(phenylthio)phenyl]phenylthio, 4-(phenylthio)phenylthio, 4-benzoylphenylthio, 4-benzoyl-chlorophenylthio, 4- benzoyl-methylthiophenylthio, 4-(methylthiobenzoyl)phenylthio, 4-(p-tert-butylbenzoyl)phenylthio and the like.
炭素数1~18のアルキルチオ基としては、メチルチオ、エチルチオ、プロピルチオ、tert-ブチルチオ、ネオペンチルチオ、ドデシルチオなどが挙げられる。 Examples of alkylthio groups having 1 to 18 carbon atoms include methylthio, ethylthio, propylthio, tert-butylthio, neopentylthio and dodecylthio.
炭素数1~18のアルキルスルフィニル基としては、メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、tert-ペンチルスルフィニル、オクチルスルフィニルなどが挙げられる。 The alkylsulfinyl group having 1 to 18 carbon atoms includes methylsulfinyl, ethylsulfinyl, propylsulfinyl, tert-pentylsulfinyl, octylsulfinyl and the like.
炭素数6~10のアリールスルフィニル基としては、フェニルスルフィニル、トリルスルフィニル、ナフチルスルフィニルなどが挙げられる。 The arylsulfinyl group having 6 to 10 carbon atoms includes phenylsulfinyl, tolylsulfinyl, naphthylsulfinyl and the like.
炭素数1~18のアルキルスルホニル基としては、メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、オクチルスルホニルなどが挙げられる。 Examples of alkylsulfonyl groups having 1 to 18 carbon atoms include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl and octylsulfonyl.
炭素数の6~10のアリールスルホニル基としては、フェニルスルホニル、トリルスルホニル、ナフチルスルホニルなどが挙げられる。 The arylsulfonyl groups having 6 to 10 carbon atoms include phenylsulfonyl, tolylsulfonyl, naphthylsulfonyl and the like.
ハロゲン基としては、フルオロ、クロロ、ブロモ、ヨードが挙げられる。 Halogen groups include fluoro, chloro, bromo and iodo.
 これら環状配位子上の置換基R~Rのうち、好ましくは炭素数1~6のアルキル基、炭素数6~14のアリール基、ヒドロキシ基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、炭素数7~11のアリールカルボニル基、炭素数1~6のアルキルチオ基、炭素数6~14のアリールチオ基、炭素数6~10のアリールオキシ基、クロロ基、フルオロ基であり、さらに好ましくは炭素数1~6のアルキル基、炭素数6~14のアリール基、炭素数4~14のヘテロアリール基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、ベンゾイル基、炭素数6~10のアリールオキシ基、フルオロ基である。 Among the substituents R 1 to R 8 on these cyclic ligands, preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, a carbon an alkylcarbonyl group having 2 to 6 carbon atoms, an arylcarbonyl group having 7 to 11 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, an arylthio group having 6 to 14 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, a chloro group, a fluoro group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a heteroaryl group having 4 to 14 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 2 to 6 carbon atoms are an alkylcarbonyl group, a benzoyl group, an aryloxy group having 6 to 10 carbon atoms, and a fluoro group.
式(2)において、X は中心金属カチオンに対応する1価の対アニオンである。
式(1)及び(2)中、L及びLは金属に配位する式(3)で表される軸配位子であり、式(3)において、X は、1価のオニウムカチオンAに対する1価の対アニオンである。
及びX はハロゲンアニオン及び一価の多原子アニオンであるということ以外には制限がないが、例えばF、Cl、Br、I、BY 、PY 、SbY 、(Rf)PF6-b 、R12 BY4-c 、R12 GaY4-c 、R13SO 、(R13SO及び(R13SOで表されるアニオンが例示される。
In formula (2), X 2 - is a monovalent counter anion corresponding to the central metal cation.
In formulas (1) and (2), L 1 and L 2 are axial ligands represented by formula (3) that coordinate to the metal, and in formula (3), X 1 - is a monovalent It is the monovalent counter anion for the onium cation A + .
X 1 - and X 2 - are not restricted except that they are halogen anions and monovalent polyatomic anions such as F , Cl , Br , I , BY a , PY a , SbY a , (Rf) b PF 6-b , R 12 c BY 4-c , R 12 c GaY 4-c , R 13 SO 3 , (R 13 SO 2 ) 3 C and (R An anion represented by 13 SO 2 ) 2 N- is exemplified.
 Pはリン原子、Bはホウ素原子、Sbはアンチモン原子、Fはフッ素原子、Gaはガリウム原子を表す。
 Yはハロゲン原子(フッ素原子が好ましい。)を表す。
 Sは硫黄原子、Oは酸素原子、Cは炭素原子、Nは窒素原子を表す。
P represents a phosphorus atom, B a boron atom, Sb an antimony atom, F a fluorine atom, and Ga a gallium atom.
Y represents a halogen atom (preferably a fluorine atom).
S represents a sulfur atom, O represents an oxygen atom, C represents a carbon atom, and N represents a nitrogen atom.
 Rfは、水素原子の80モル%以上がフッ素原子で置換されたアルキル基(炭素数1~8のアルキル基が好ましい。)を表す。フッ素置換によりRfとするアルキル基としては、直鎖アルキル基(メチル、エチル、プロピル、ブチル、ペンチル及びオクチル等)、分枝鎖アルキル基(イソプロピル、イソブチル、sec-ブチル及びtert-ブチル等)及びシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)等が挙げられる。Rfにおいてこれらのアルキル基の水素原子がフッ素原子に置換されている割合は、もとのアルキル基が有していた水素原子のモル数に基づいて、80モル%以上が好ましく、さらに好ましくは90%以上、特に好ましくは100%である。フッ素原子による置換割合がこれら好ましい範囲にあると、スルホニウム塩の光感応性がさらに良好となる。特に好ましいRfとしては、CF 、CFCF 、(CFCF、CFCFCF 、CFCFCFCF 、(CFCFCF 、CFCF(CF)CF及び(CFが挙げられる。b個のRfは、相互に独立であり、従って、互いに同一でも異なっていてもよい。 Rf represents an alkyl group (preferably an alkyl group having 1 to 8 carbon atoms) in which 80 mol % or more of the hydrogen atoms are substituted with fluorine atoms. Alkyl groups to be Rf by fluorine substitution include straight-chain alkyl groups (methyl, ethyl, propyl, butyl, pentyl, octyl, etc.), branched-chain alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, etc.) and cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.) and the like. The ratio of hydrogen atoms of these alkyl groups substituted with fluorine atoms in Rf is preferably 80 mol% or more, more preferably 90 mol%, based on the number of moles of hydrogen atoms possessed by the original alkyl groups. % or more, particularly preferably 100%. When the substitution ratio with fluorine atoms is within these preferred ranges, the photosensitivity of the sulfonium salt is further improved. Particularly preferred examples of Rf include CF 3 , CF 3 CF 2 , (CF 3 ) 2 CF , CF 3 CF 2 CF 2 , CF 3 CF 2 CF 2 CF 2 , (CF 3 ) 2 CFCF 2 , CF 3 CF 2 (CF 3 )CF and (CF 3 ) 3 C . The b Rf's are independent of each other and therefore may be the same or different.
 R12は、水素原子の一部が少なくとも1個の元素又は電子求引基で置換されたフェニル基を表す。そのような1個の元素の例としては、ハロゲン原子が含まれ、フッ素原子、塩素原子及び臭素原子等が挙げられる。電子求引基としては、トリフルオロメチル基、ニトロ基及びシアノ基等が挙げられる。これらのうち、1個の水素原子がフッ素原子又はトリフルオロメチル基で置換されたフェニル基が好ましい。c個のR12は相互に独立であり、従って、互いに同一でも異なっていてもよい。 R 12 represents a phenyl group in which some of the hydrogen atoms have been replaced with at least one element or electron-withdrawing group. Examples of such single elements include halogen atoms and include fluorine, chlorine, and bromine atoms. Electron-withdrawing groups include a trifluoromethyl group, a nitro group, a cyano group, and the like. Among these, a phenyl group in which one hydrogen atom is substituted with a fluorine atom or a trifluoromethyl group is preferred. The c R 12 are independent of each other and therefore may be the same or different.
 R13は、炭素数1~20のアルキル基、炭素数1~20のパーフルオロアルキル基又は炭素数6~20のアリール基を表し、アルキル基及びパーフルオロアルキル基は直鎖、分枝鎖状又は環状のいずれでもよく、アリール基は無置換であっても、置換基を有していてもよい。 R 13 represents an alkyl group having 1 to 20 carbon atoms, a perfluoroalkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and the alkyl group and perfluoroalkyl group are linear or branched. or cyclic, and the aryl group may be unsubstituted or substituted.
 aは4~6の整数を表す。
 bは、1~5の整数であり、好ましくは2~4、さらに好ましくは2又は3である。
 cは、1~4の整数であり、好ましくは4である。
a represents an integer of 4 to 6;
b is an integer of 1-5, preferably 2-4, more preferably 2 or 3;
c is an integer of 1 to 4, preferably 4;
(Rf)PF6-b で表されるアニオンとしては、(CFCFPF 、(CFCFPF 、((CFCF)PF 、((CFCF)PF 、(CFCFCFPF 、(CFCFCFPF 、((CFCFCFPF 、((CFCFCFPF 、(CFCFCFCFPF 及び(CFCFCFCFPF で表されるアニオン等が挙げられる。これらのうち、(CFCFPF 、(CFCFCFPF 、((CFCF)PF 、((CFCF)PF 、((CFCFCFPF 及び((CFCFCFPF で表されるアニオンが好ましい。 Examples of anions represented by (Rf) b PF 6-b - include (CF 3 CF 2 ) 2 PF 4 - , (CF 3 CF 2 ) 3 PF 3 - , ((CF 3 ) 2 CF) 2 PF 4 , ((CF 3 ) 2 CF) 3 PF 3 , (CF 3 CF 2 CF 2 ) 2 PF 4 , (CF 3 CF 2 CF 2 ) 3 PF 3 , ((CF 3 ) 2 CFCF 2 ) 2PF 4 , ((CF 3 ) 2 CFCF 2 ) 3 PF 3 , (CF 3 CF 2 CF 2 CF 2 ) 2 PF 4 and ( CF 3 CF 2 CF 2 CF 2 ) 3 PF 3 Anions such as Of these, (CF 3 CF 2 ) 3 PF 3 , (CF 3 CF 2 CF 2 ) 3 PF 3 , ((CF 3 ) 2 CF) 3 PF 3 , ((CF 3 ) 2 CF) 2 The anions represented by PF 4 - , ((CF 3 ) 2 CFCF 2 ) 3 PF 3 - and ((CF 3 ) 2 CFCF 2 ) 2 PF 4 - are preferred.
 R12 BY4-c で表されるアニオンとしては、(C、((CF、(CF、(CBF 、CBF 及び(Cで表されるアニオン等が挙げられる。これらのうち、(C及び((CFで表されるアニオンが好ましい。 Examples of anions represented by R 12 c BY 4-c - include (C 6 F 5 ) 4 B - , ((CF 3 ) 2 C 6 H 3 ) 4 B - , (CF 3 C 6 H 4 ) 4 Anions represented by B , (C 6 F 5 ) 2 BF 2 , C 6 F 5 BF 3 and (C 6 H 3 F 2 ) 4 B are exemplified. Among these, anions represented by (C 6 F 5 ) 4 B and ((CF 3 ) 2 C 6 H 3 ) 4 B are preferred.
 R12 GaY4-c で表されるアニオンとしては、(CGa、((CFGa、(CFGa、(CGaF 、CGaF 及び(CGaで表されるアニオン等が挙げられる。これらのうち、(CGa及び((CFGaで表されるアニオンが好ましい。 Examples of anions represented by R 12 c GaY 4-c - include (C 6 F 5 ) 4 Ga - , ((CF 3 ) 2 C 6 H 3 ) 4 Ga - , (CF 3 C 6 H 4 ) 4 Examples include anions represented by Ga , (C 6 F 5 ) 2 GaF 2 , C 6 F 5 GaF 3 and (C 6 H 3 F 2 ) 4 Ga . Among these, anions represented by (C 6 F 5 ) 4 Ga and ((CF 3 ) 2 C 6 H 3 ) 4 Ga are preferred.
 R13SO で表されるアニオンとしては、トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ヘプタフルオロプロパンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、ペンタフルオロフェニルスルホン酸アニオン、p-トルエンスルホン酸アニオン、ベンゼンスルホン酸アニオン、カンファースルホン酸アニオン、メタンスルホン酸アニオン、エタンスルホン酸アニオン、プロパンスルホン酸アニオン及びブタンスルホン酸アニオン等が挙げられる。これらのうち、トリフルオロメタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ブタンスルホン酸アニオン、カンファースルホン酸アニオン、ベンゼンスルホン酸アニオン及びp-トルエンスルホン酸アニオンが好ましい。 Anions represented by R 13 SO 3 include trifluoromethanesulfonate anion, pentafluoroethanesulfonate anion, heptafluoropropanesulfonate anion, nonafluorobutanesulfonate anion, pentafluorophenylsulfonate anion, and p-toluene. Examples include sulfonate anion, benzenesulfonate anion, camphorsulfonate anion, methanesulfonate anion, ethanesulfonate anion, propanesulfonate anion and butanesulfonate anion. Among these, trifluoromethanesulfonate anion, nonafluorobutanesulfonate anion, methanesulfonate anion, butanesulfonate anion, camphorsulfonate anion, benzenesulfonate anion and p-toluenesulfonate anion are preferred.
(R13SOで表されるアニオンとしては、(CFSO、(CSO、(CSO及び(CSOで表されるアニオン等が挙げられる。 Anions represented by (R 13 SO 2 ) 3 C - include (CF 3 SO 2 ) 3 C - , (C 2 F 5 SO 2 ) 3 C - , (C 3 F 7 SO 2 ) 3 C - and anions represented by (C 4 F 9 SO 2 ) 3 C-.
 (R13SOで表されるアニオンとしては、(CFSO、(CSO、(CSO及び(CSOで表されるアニオン等が挙げられる。 Anions represented by (R 13 SO 2 ) 2 N include (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , (C 3 F 7 SO 2 ) 2 N and anions represented by (C 4 F 9 SO 2 ) 2 N-.
 一価の多原子アニオンとしては、BY 、PY 、SbY 、(Rf)PF6-b 、R12 BY4-c 、R12 GaY4-c 、R13SO 、(R13SO又は(R13SOで表されるアニオン以外に、過ハロゲン酸アニオン(ClO 、BrO 等)、ハロゲン化スルホン酸アニオン(FSO 、ClSO 等)、硫酸アニオン(CHSO 、CFSO 、HSO 等)、炭酸アニオン(HCO 、CHCO 等)、アルミン酸アニオン(AlCl 、AlF 、(t-O)Al等)、ヘキサフルオロビスマス酸アニオン(BiF )、カルボン酸アニオン(CHCOO、CFCOO、CCOO、CHCOO、CCOO、CFCOO等)、アリールホウ酸アニオン(B(C 、CHCHCHCHB(C 等)、チオシアン酸アニオン(SCN)及び硝酸アニオン(NO )等が使用できる。 The monovalent polyatomic anions include BY a , PY a , SbY a , (Rf) b PF 6-b , R 12 c BY 4-c , R 12 c GaY 4-c , R In addition to the anions represented by 13 SO 3 - , (R 13 SO 2 ) 3 C - or (R 13 SO 2 ) 2 N - , perhalate anions (ClO 4 - , BrO 4 - etc.), halogenated sulfones acid anions (FSO 3 - , ClSO 3 - etc.), sulfate anions (CH 3 SO 4 - , CF 3 SO 4 - , HSO 4 - etc.), carbonate anions (HCO 3 - , CH 3 CO 3 - etc.), aluminum acid anions (AlCl 4 , AlF 4 , ( t- C 4 F 9 O) 4 Al etc.), hexafluorobismuthate anions (BiF 6 ), carboxylate anions (CH 3 COO , CF 3 COO , C 6 H 5 COO , CH 3 C 6 H 4 COO , C 6 F 5 COO , CF 3 C 6 H 4 COO , etc.), arylborate anions (B(C 6 H 5 ) 4 , CH 3 CH 2 CH 2 CH 2 B(C 6 H 5 ) 3 - , etc.), thiocyanate anion (SCN ), nitrate anion (NO 3 ), and the like can be used.
 これらのアニオンのうち、F、Cl、Br、I、BF 、SbF 、PF 、(Rf)PF6-b 、R12 BY4-c 、R12 GaY4-c 、R13SO 、(R13SO、(R13SO及びカルボン酸イオン(CHCOO、CFCOO、CCOO、CHCOO、CCOO、CFCOO等)で示されるアニオンが好ましく、Cl、Br、I、BF 、PF 、(CFCFPF 、((CFCF)PF 、(CFCFCFPF 、トリフルオロメタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、CHCOO、CFCOO、(CFSO及び(CFSOが水や極性溶媒(ジメチルスルホキシド等)への溶解性の観点で更に好ましい。なお、同一分子内に2つ以上のアニオンが存在する場合、同一でも異なっていても良い。 Among these anions, F , Cl , Br , I , BF 4 , SbF 6 , PF 6 , (Rf) b PF 6-b , R 12 c BY 4-c , R 12 c GaY 4-c , R 13 SO 3 , (R 13 SO 2 ) 3 C , (R 13 SO 2 ) 2 N and carboxylate ions (CH 3 COO , CF 3 COO , C 6 H 5 COO , CH 3 C 6 H 4 COO , C 6 F 5 COO , CF 3 C 6 H 4 COO etc.) are preferred, and Cl , Br , I , BF 4 , PF 6 , (CF 3 CF 2 ) 3 PF 3 , ((CF 3 ) 2 CF) 3 PF 3 , (CF 3 CF 2 CF 2 ) 3 PF 3 , trifluoromethanesulfonate anion, nonafluoro The butanesulfonate anions, CH 3 COO , CF 3 COO , (CF 3 SO 2 ) 3 C and (CF 3 SO 2 ) 2 N are soluble in water and polar solvents (such as dimethyl sulfoxide). is more preferable. When two or more anions are present in the same molecule, they may be the same or different.
 式(1)及び式(2)で表されるL及びLは、中心金属Mに配位する式(3)で表される軸配位子であり、Mの種類により軸配位子の数が異なる。MがAl、Ga、In、Fe、Co又はMnの場合はLのみを有する。軸配位子が2つの場合(L及びL)は、同一でも異なっていても良い。 L 1 and L 2 represented by formulas (1) and (2) are axial ligands represented by formula (3) that coordinate to the central metal M, and depending on the type of M, the axial ligand different number of If M is Al, Ga, In, Fe, Co or Mn, it has only L1. When there are two axial ligands (L 1 and L 2 ), they may be the same or different.
式(3)中、Dは中心金属Mと直接結合し、酸素原子又は硫黄原子を表す。 In formula (3), D is directly bonded to the central metal M and represents an oxygen atom or a sulfur atom.
式(3)中、EはDとオニウムカチオンAとを結合する2価の基であり、炭素数1~8のアルキレン、炭素数2~8のアルケニレン、炭素数2~8のアルキニレン又は炭素数6~14のアリーレンを表し、これらの基の主鎖に少なくとも1つの式(4)で表されるアンモニオ基を含み、さらにエーテル基、スルフィド基、ケトン基、アミド基、エステル基、チオエステル基、ウレア基、スルホン基、シリル基又はフェニレン基を含んでいてもよい。
ここで主鎖とはDとオニウムカチオンAとを結合する主骨格のことである。
炭素数1~8のアルキレンとしてはメチレン、エチレン、トリメチレン、テトラメチレン、ヘキサメチレン、オクタメチレン等直鎖アルキレン、1-メチルエチル、1-メチルエチリデン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、1-メチルプロピリデン等の分岐アルキレン、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロペンチリデン、シクロヘキシレン、シクロヘキシリデン等環状アルキレンが挙げられる。
炭素数2~8のアルケニレンとしては、ビニレン、1-プロペニレン、2-プロペニレン、1-ブテニレン、2-ブテニレン、3-ブテニレン、1-ヘキセニレン、シクロヘキセニレン、1,3-ブタジエニレン、1,3-ヘキサジエニレン、2,4,6-オクタトリエニレン等が挙げられる。
炭素数2~8のアルキニレンとしては、エチニレン、1-プロピニレン、2-プロピニレン、1-ブチニレン、2-ブチニレン、3-ブチニレン、1、3-ブタジイニレン、ヘキサン-1-エン-3-イニレン等が挙げられる。
炭素数6~14のアリーレンとしては、フェニレン、ナフチレン、アントラセニレン、及びビフェニレンが挙げられる。
In formula (3), E is a divalent group that bonds D and the onium cation A + and is alkylene having 1 to 8 carbon atoms, alkenylene having 2 to 8 carbon atoms, alkynylene having 2 to 8 carbon atoms, or carbon Representing arylene of numbers 6 to 14, containing at least one ammonio group represented by formula (4) in the main chain of these groups, further ether group, sulfide group, ketone group, amide group, ester group, thioester group , a urea group, a sulfone group, a silyl group or a phenylene group.
Here, the main chain is the main skeleton that connects D and the onium cation A + .
Examples of alkylene having 1 to 8 carbon atoms include linear alkylene such as methylene, ethylene, trimethylene, tetramethylene, hexamethylene, octamethylene, 1-methylethyl, 1-methylethylidene, 1,1-dimethylethylene, 1,2-dimethyl Examples include branched alkylenes such as ethylene and 1-methylpropylidene, and cyclic alkylenes such as cyclopropylene, cyclobutylene, cyclopentylene, cyclopentylidene, cyclohexylene and cyclohexylidene.
Examples of alkenylene having 2 to 8 carbon atoms include vinylene, 1-propenylene, 2-propenylene, 1-butenylene, 2-butenylene, 3-butenylene, 1-hexenylene, cyclohexenylene, 1,3-butadienylene, 1,3- Hexadienylene, 2,4,6-octatrienylene and the like are included.
Examples of alkynylene having 2 to 8 carbon atoms include ethynylene, 1-propynylene, 2-propynylene, 1-butynylene, 2-butynylene, 3-butynylene, 1,3-butadienylene, hexane-1-en-3-ynylene, and the like. be done.
Arylenes having 6 to 14 carbon atoms include phenylene, naphthylene, anthracenylene, and biphenylene.
主鎖には少なくとも1つ式(4)で表されるアンモニオ基を含み、化合物全体の水溶性を向上させる。 The main chain contains at least one ammonio group represented by formula (4), which improves the water solubility of the entire compound.
式(4)中R10、R11は炭素数1~3のアルキル基又は式(5)で表される群より選ばれる基である。ただしR10、R11が共に炭素数1~3のアルキル基である場合、該アンモニオ基に対応する1価の対アニオンX を有する。ここで挙げられるアニオンX としては、上記のX 又はX で例示されるものと同じである。 R 10 and R 11 in formula (4) are alkyl groups having 1 to 3 carbon atoms or groups selected from the group represented by formula (5). However, when both R 10 and R 11 are alkyl groups having 1 to 3 carbon atoms, it has a monovalent counter anion X 3 corresponding to the ammonio group. The anions X 3 - mentioned here are the same as those exemplified for the above X 1 - or X 2 - .
 式(4)で表されるアンモニオ基について具体例として以下のものが挙げられる。
*は結合位置を示す。
Specific examples of the ammonio group represented by formula (4) include the following.
* indicates the binding position.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
これらのうち、合成の容易さからカルボン酸、スルホン酸を有するものが好ましく、さらに水溶性向上の観点から、解離度が高いスルホン酸及びその塩がさらに好ましい。 Among these, those having carboxylic acid or sulfonic acid are preferable from the viewpoint of ease of synthesis, and sulfonic acid and salts thereof having a high degree of dissociation are more preferable from the viewpoint of improving water solubility.
主鎖にはさらに、エーテル基、スルフィド基、ケトン基、アミド基、エステル基、チオエステル基、ウレア基、スルホン基、シリル基又はフェニレン基を含んでいてもよく、そのEの具体例としては、以下のものが挙げられる。*は結合位置を示す。 The main chain may further contain an ether group, a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone group, a silyl group or a phenylene group. The following are mentioned. * indicates the binding position.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
式(3)中、Aは軸配位子としてD及びEを介して金属と結合している1価のオニウムカチオンである。本発明におけるAは環状配位子が光吸収により受け取ったエネルギーを光化学プロセス(電子移動又はエネルギー移動等)に従って分解し、プロトンを発生するものであり、上記式(4)で表されるアンモニオ基は含まれない。
1価のオニウムカチオンとは、非共有電子対を持つ元素を含んだ化合物にプロトン又は陽イオン型の原子団(アルキル基等)が配位して生じる陽イオンを意味し、1価のオニウムカチオンとしては以下のカチオンが挙げられる。
In formula (3), A + is a monovalent onium cation bound to the metal via D and E as axial ligands. A + in the present invention decomposes the energy received by the cyclic ligand by light absorption according to a photochemical process (electron transfer, energy transfer, etc.) to generate protons, and ammonio represented by the above formula (4) base is not included.
A monovalent onium cation is a cation that is produced by coordinating a proton or a cation-type atomic group (such as an alkyl group) to a compound containing an element having a lone pair of electrons, and is a monovalent onium cation. Examples include the following cations.
ピリリニウムカチオン(4-メチルピリリニウムカチオン及び2,6-ジフェニルピリリニウムカチオン等);
クロメニウムカチオン(2,4-ジメチルクロメニウムカチオン等);
イソクロメニウムカチオン(1,3-ジメチルイソクロメニウムカチオン等);
ピリジニウムカチオン(N-メチルピリジニウムカチオン、N-メトキシピリジニウムカチオン、N-ブトキシピリジニウムカチオン、N-ベンジルオキシピリジニウムカチオン、及びN-ベンジルピリジニウムカチオン等)。
 イミダゾリウムカチオン(N,N'-ジメチルイミダゾリウムカチオン及び1-エチル-3-メチルイミダゾリウムカチオン等);
キノリウムカチオン(N-メチルキノリウムカチオンカチオン及びN-ベンジルキノリウムカチオン等);
イソキノリウムカチオン(N-メチルイソキノリウム等);
チアゾニムカチオン(ベンジルベンゾチアゾニウムカチオン等);
アクリジウムカチオン(ベンジルアクリジウムカチオン及びフェナシルアクリジウム等);
ジアゾニウムカチオン(フェニルジアゾニウムカチオン、2,4,6-トリメトキシフェニルジアゾニウムカチオン、2,4,6-トリエトキシフェニルジアゾニウムカチオン及び4-アニリノフェニルジアゾニウムカチオン等);
 ホスホニウムカチオン[4級ホスホニウムカチオン(テトラフェニルホスホニウムカチオン、テトラ-p-トリルホスホニウムカチオン、トリフェニルベンジルホスホニウムカチオン、トリフェニルブチルカチオン、テトラエチルホスホニウムカチオン及びテトラブチルホスホニウムカチオン等)等]。
 スルホニウムカチオン{トリフェニルスルホニウムカチオン、ジフェニルメチルスルホニウムカチオン、フェニルジメチルスルホニウムカチオン、4-(フェニルチオ)フェニルジフェニルスルホニウムカチオン、及び4-ヒドロキシフェニルメチルベンジルスルホニウムカチオン等};
スルホキソニウムカチオン(トリフェニルスルホキソニウム等);
チアンスレニウムカチオン[5-(4-メトキシフェニル)チアンスレニウム、5-フェニルチアンスレニウム及び5-トリルチアンスレニウムカチオン等];
チオフェニウムカチオン(2-ナフチルテトラヒドロチオフェニウム等);
ヨードニウムカチオン[ジフェニルヨードニウムカチオン、ジ-p-トリルヨードニウムカチオン及び4-イソプロピルフェニル(p-トリル)ヨードニウムカチオン等]。
pyrilinium cations (4-methylpyrilinium cations and 2,6-diphenylpyrilinium cations, etc.);
Chromenium cations (2,4-dimethylchromenium cations, etc.);
isochromenium cations (1,3-dimethylisochromenium cations, etc.);
pyridinium cations (N-methylpyridinium cation, N-methoxypyridinium cation, N-butoxypyridinium cation, N-benzyloxypyridinium cation, N-benzylpyridinium cation, etc.);
imidazolium cations (such as N,N'-dimethylimidazolium cations and 1-ethyl-3-methylimidazolium cations);
quinolium cations (such as N-methylquinolium cations and N-benzylquinolium cations);
isoquinolium cations (N-methylisoquinolium, etc.);
thiazonium cations (such as benzylbenzothiazonium cations);
acridium cations (such as benzyl acridium cation and phenacylacridium cation);
diazonium cations (phenyldiazonium cation, 2,4,6-trimethoxyphenyldiazonium cation, 2,4,6-triethoxyphenyldiazonium cation and 4-anilinophenyldiazonium cation, etc.);
Phosphonium cations [quaternary phosphonium cations (tetraphenylphosphonium cation, tetra-p-tolylphosphonium cation, triphenylbenzylphosphonium cation, triphenylbutyl cation, tetraethylphosphonium cation, tetrabutylphosphonium cation, etc.) and the like].
sulfonium cation {triphenylsulfonium cation, diphenylmethylsulfonium cation, phenyldimethylsulfonium cation, 4-(phenylthio)phenyldiphenylsulfonium cation, and 4-hydroxyphenylmethylbenzylsulfonium cation, etc.};
sulfoxonium cations (such as triphenylsulfoxonium);
Thianthrenium cations [5-(4-methoxyphenyl)thianthrenium, 5-phenylthianthrenium and 5-tolylthianthrenium cations];
thiophenium cations (2-naphthyltetrahydrothiophenium, etc.);
iodonium cations [such as diphenyliodonium cation, di-p-tolyliodonium cation and 4-isopropylphenyl(p-tolyl)iodonium cation];
上記オニウムカチオンの中でも、光応答性の面からスルホニウムカチオン、ヨードニウムカチオン、ジアゾニウムカチオンが好ましい。 Among the above onium cations, sulfonium cations, iodonium cations, and diazonium cations are preferred from the viewpoint of photoresponsiveness.
スルホニウムカチオンを含む、式(3)で表される好ましい軸配位子L及びLの具体例としては以下のものが挙げられる。 Specific examples of preferred axial ligands L 1 and L 2 represented by formula (3) containing sulfonium cations include the following.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
ヨードニウムカチオンを含む、式(3)で表される好ましい軸配位子L及びLの具体例としては以下のものが挙げられる。 Specific examples of preferred axial ligands L 1 and L 2 represented by formula (3) containing iodonium cations include the following.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
ジアゾニウムカチオンを含む、式(3)で表される好ましい軸配位子L及びLの具体例としては以下のものが挙げられる。 Specific examples of preferred axial ligands L 1 and L 2 represented by formula (3) containing diazonium cations include the following.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
本発明の一般式(1)で表される光増感剤(目的物)は公知の方法により製造できる。すなわち、ピロール環が直接又はπ共役により繋がった環構造を形成してなる、目的の芳香族複素環化合物を環状配位子とする金属錯体前駆体(a)と、オニウム構造を含み、目的のアニオンを有する軸配位子前駆体(b)をそれぞれ合成し、これらを結合させることで目的の化合物を得ることができる。一例として以下の化学式にて製造方法を示す。(ここでは芳香族複素環化合物をポルフィリンとする。)なお、金属錯体前駆体(a)は公知の方法で種々製造することができる(ポルフィリン類及びフタロシアニン類化合物の合成法については、例えば、KARL M. KADIS H KEVIN M. SMITH ROGER GUILARD著、THE PORPHYRIN HANDBOOK VOL.1~10、ACADEMIC PRESS(2000)及びVOL.11~20、(2003)に記述されている方法を用いることができる。)。 The photosensitizer (target product) represented by the general formula (1) of the present invention can be produced by a known method. That is, the metal complex precursor (a) having the target aromatic heterocyclic compound as a cyclic ligand and an onium structure formed by forming a ring structure in which pyrrole rings are connected directly or by π conjugation, and the target A desired compound can be obtained by synthesizing axial ligand precursors (b) each having an anion and combining them. As an example, the manufacturing method is shown by the following chemical formula. (Here, the aromatic heterocyclic compound is defined as porphyrin.) The metal complex precursor (a) can be produced in various ways by known methods (methods for synthesizing porphyrins and phthalocyanines are described, for example, in KARL M. Kadis H Kevin M. Smith Roger Guilard, The Porphyrin Handbook VOL.1-10, ACADEMIC PRESS (2000) and VOL.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Mは中心金属Mと同じであり、価数mを表す。Xはハロゲン原子を示し、金属Mの価数と同数のハロゲン原子を有する。L及びLはハロゲン原子若しくはヒドロキシ基を示す。[Onium]は式(3)中のAと同じであり、Xは式(3)中のXと同じである。) (In the formula, M is the same as the central metal M and represents the valence m. X represents a halogen atom and has the same number of halogen atoms as the valence of the metal M. L 5 and L 6 are halogen atoms or hydroxyl [Onium] is the same as A in formula (3), and X 1 is the same as X 1 in formula (3).)
本発明の一般式(2)で表される光増感剤(目的物)がカチオン性金属錯体の場合、カチオン性金属錯体前駆体(a’)とオニウム構造を含み、目的のアニオンを有する軸配位子前駆体(b)とを結合させることで目的の化合物を得ることができる。その際、中心金属カチオンの対アニオンであるXを導入のため、その原料となるXアニオンのアルカリ金属塩、アルカリ土類金属塩等を等量以上存在下で交換することで目的となる金属錯体が得られる。 When the photosensitizer (object) represented by the general formula (2) of the present invention is a cationic metal complex, an axis containing the cationic metal complex precursor (a′) and an onium structure and having an anion of interest The target compound can be obtained by combining with the ligand precursor (b). At that time, in order to introduce X2, which is the counter anion of the central metal cation, the target is achieved by exchanging in the presence of an equal amount or more of an alkali metal salt, alkaline earth metal salt, etc. of the X2 anion, which is the raw material. A metal complex is obtained.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Mは中心金属Mと同じであり、価数mを表す。Xはハロゲン原子を示し、金属Mの価数と同数のハロゲン原子を有する。L及びLはハロゲン原子若しくはヒドロキシ基を示す。[Onium]は式(3)中のAと同じであり、Xは式(3)中のXと同じであり、M’はアルカリ金属、アルカリ土類金属又を表し、Xは式(2)中のXと同じである。) (In the formula, M is the same as the central metal M and represents the valence m. X represents a halogen atom and has the same number of halogen atoms as the valence of the metal M. L 5 and L 6 are halogen atoms or hydroxyl [Onium] is the same as A in formula (3), X 1 is the same as X 1 in formula (3), M' represents an alkali metal or alkaline earth metal, X2 is the same as X2 in formula ( 2 ).)
本発明の軸配位子前駆体(b)に用いるオニウムカチオン構造は、複分解法によって製造できる。複分解法は例えば、新実験化学講座14-I巻(1978年、丸善)p-448;Advance in Polymer Science,62,1-48(1984);新実験化学講座14-III巻(1978年、丸善)pp1838-1846;有機硫黄化学(合成反応編、1982年、化学同人)、第8章、pp237-280;日本化学雑誌,87,(5),74(1966);特開昭64-45357号、特開昭61-212554号、特開昭61-100557号、特開平5-4996号、特開平7-82244号、特開平7-82245号、特開昭58-210904号、特開平6-184170号などに記載されているが、まずオニウムカチオンのF、Cl、Br、Iなどのハロゲンイオン塩;OH塩;ClO 塩;FSO 、ClSO 、CHSO 、CSO 、CFSO などのスルホン酸イオン類との塩;HSO 、SO 2-などの硫酸イオン類との塩;HCO 、CO 2-、などの炭酸イオン類との塩;HPO 、HPO 2-、PO 3-などのリン酸イオン類との塩などを製造し、これを目的のオニウム塩を構成するアニオンのアルカリ金属塩、アルカリ土類金属塩又は4級アンモニウム塩と、必要により、KPF、KBF、NaB(Cなどの他のアニオン成分とを理論量以上含む溶媒及び水溶液中に加えて複分解させる。溶媒としては、水や有機溶剤を使用できる。有機溶剤としては、炭化水素(ヘキサン、ヘプタン、トルエン、キシレン等)、環状エーテル(テトラヒドロフラン及びジオキサン等)、塩素系溶剤(クロロホルム及びジクロロメタン等)、アルコール(メタノール、エタノール及びイソプロピルアルコール等)、ケトン(アセトン、メチルエチルケトン及びメチルイソブチルケトン等)、ニトリル(アセトニトリル等)及び極性有機溶剤(ジメチルスルホキシド、ジメチルホルムアミド及びN-メチルピロリドン等)が含まれる。これらの溶剤は、単独で使用してもよく、また2種以上を併用してもよい。 The onium cation structure used in the axial ligand precursor (b) of the present invention can be produced by a metathesis method. The metathesis method is, for example, Shin Experimental Chemistry Course 14-I (1978, Maruzen) p-448; Advance in Polymer Science, 62, 1-48 (1984); Shin Experimental Chemistry Course 14-III (1978, Maruzen) ) pp1838-1846; Organosulfur Chemistry (Synthetic Reaction Edition, 1982, Kagaku Dojin), Chapter 8, pp237-280; Nihon Kagaku Zasshi, 87, (5), 74 (1966); JP-A-64-45357 , JP-A-61-212554, JP-A-61-100557, JP-A-5-4996, JP-A-7-82244, JP-A-7-82245, JP-A-58-210904, JP-A-6- No. 184170, etc., first, halogen ion salts of onium cations such as F , Cl , Br , I ; OH salts; ClO 4 salts; FSO 3 , ClSO 3 , CH 3 Salts with sulfonate ions such as SO 3 , C 6 H 5 SO 3 , CF 3 SO 3 ; salts with sulfate ions such as HSO 4 , SO 4 2- ; HCO 3 , CO 3 2- , salts with carbonate ions such as H 2 PO 4 , HPO 4 2- , PO 4 3- , and the like salts with phosphate ions, etc., to form the desired onium salt. Solvents and aqueous solutions containing anionic alkali metal salts, alkaline earth metal salts or quaternary ammonium salts and, if necessary, other anionic components such as KPF 6 , KBF 4 and NaB(C 6 F 5 ) 4 in a theoretical amount or more. Add it inside and make it double decompose. Water or an organic solvent can be used as the solvent. Organic solvents include hydrocarbons (hexane, heptane, toluene, xylene, etc.), cyclic ethers (tetrahydrofuran, dioxane, etc.), chlorinated solvents (chloroform, dichloromethane, etc.), alcohols (methanol, ethanol, isopropyl alcohol, etc.), ketones ( acetone, methyl ethyl ketone and methyl isobutyl ketone), nitriles (such as acetonitrile) and polar organic solvents (such as dimethylsulfoxide, dimethylformamide and N-methylpyrrolidone). These solvents may be used alone or in combination of two or more.
得られた目的の光増感剤は、必要によりシリカゲル等を用いるカラムクロマトグラフィーや再結晶、又は水や溶媒による洗浄等の方法で精製することができる。
再結晶による精製は、目的の光増感剤を少量の水又は有機溶剤で溶解し、その水又は有機溶剤からの分離は、目的の光増感剤を含む水又は有機溶剤溶液に対して直接(又は濃縮した後)、別の貧溶剤を加えて目的の光増感剤を析出させることにより行うことができる。ここで用いる貧溶剤としては、鎖状エーテル(ジエチルエーテル及びジプロピルエーテル等)、エステル(酢酸エチル及び酢酸ブチル等)、脂肪族炭化水素(へキサン及びシクロヘキサン等)及び芳香族炭化水素(トルエン及びキシレン等)が含まれる。また、温度による溶解度差を利用して、精製を行うこともできる。精製は、再結晶(冷却による溶解度の差を利用する方法、貧溶剤を加えて析出させる方法及びこれらの併用)によって精製することができる。また、光増感剤が油状物である場合(結晶化しない場合)、油状物を水又は貧溶媒で洗浄する方法により精製できる。
The desired photosensitizer thus obtained can be purified by a method such as column chromatography using silica gel or the like, recrystallization, or washing with water or a solvent, if necessary.
Purification by recrystallization involves dissolving the desired photosensitizer in a small amount of water or an organic solvent, and separation from the water or organic solvent involves direct application to a water or organic solvent solution containing the desired photosensitizer. (or after concentration), another poor solvent is added to precipitate the desired photosensitizer. The poor solvents used here include chain ethers (diethyl ether, dipropyl ether, etc.), esters (ethyl acetate, butyl acetate, etc.), aliphatic hydrocarbons (hexane, cyclohexane, etc.) and aromatic hydrocarbons (toluene and xylene, etc.). Purification can also be carried out by utilizing the difference in solubility due to temperature. Purification can be carried out by recrystallization (a method of utilizing the difference in solubility due to cooling, a method of precipitating by adding a poor solvent, or a combination thereof). Moreover, when the photosensitizer is an oily substance (when it does not crystallize), it can be purified by a method of washing the oily substance with water or a poor solvent.
このようにして得られた光増感剤の構造は、一般的な分析手法、例えば、H、13C、19F、31Pなどの各核磁気共鳴スペクトル、赤外吸収スペクトル、質量分析あるいは元素分析などによって同定することができる。 The structure of the photosensitizer thus obtained can be analyzed by general analytical methods such as nuclear magnetic resonance spectra of 1 H, 13 C, 19 F, 31 P, infrared absorption spectra, mass spectrometry, or It can be identified by elemental analysis or the like.
本発明の光増感剤は、特に光照射により水溶性形態から疎水性形態へ変化し、凝集させることを目的とした使用法に適用するため、環状配位子の置換基であるR~Rのうち少なくとも1つは下記一般式(6)であることが好ましい。 In particular, the photosensitizer of the present invention changes from a water-soluble form to a hydrophobic form by light irradiation and is applied to a method of use for the purpose of aggregation. At least one of R 8 is preferably represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
〔式(6)中(G)は生体分子(プローブ)を表し、Lは(G)と光増感剤分子とを結合する2価の基を表す。〕 [In formula (6), (G) represents a biomolecule (probe), and L4 represents a divalent group that bonds (G) to a photosensitizer molecule. ]
 式(6)中、(G)は生体分子(以下プローブという。)を表し、生物系における使用のための天然又は合成分子を含む。好ましいプローブとしては、タンパク質、ペプチド、小分子、リガンド、酵素基質、ホルモン、抗体、抗原、ハプテン、アビジン、ストレプトアビジン、ビオチン、オリゴ糖、多糖、核酸、デオキシ核酸、リボ核酸、ヌクレオチド三リン酸等が挙げられる。 In formula (6), (G) represents a biomolecule (hereinafter referred to as probe), including natural or synthetic molecules for use in biological systems. Preferred probes include proteins, peptides, small molecules, ligands, enzyme substrates, hormones, antibodies, antigens, haptens, avidin, streptavidin, biotin, oligosaccharides, polysaccharides, nucleic acids, deoxynucleic acids, ribonucleic acids, nucleotide triphosphates, etc. is mentioned.
式(6)中、Lは上記プローブ(G)と本発明の光増感剤分子とを結合する2価の基であり、特に制限はないが炭素、酸素、窒素、硫黄及びリン原子から選択される、原子数1~60個を有する直鎖又は分岐鎖、環状鎖からなり、鎖の一部に二重結合、三重結合、又は下記化学式で表される結合基を含んでいても良い。*は結合位置を示す。 In formula (6), L 4 is a divalent group that binds the probe (G) and the photosensitizer molecule of the present invention, and is not particularly limited, from carbon, oxygen, nitrogen, sulfur and phosphorus atoms Consists of a selected straight chain, branched chain, or cyclic chain having 1 to 60 atoms, and a part of the chain may contain a double bond, a triple bond, or a bonding group represented by the following chemical formula. . * indicates the binding position.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
上記プローブ(G)の導入のため、環状配位子の置換基であるR~Rのうち少なくとも1つは、下記一般式(7)で表される基を導入しておくことが簡便で好ましい。 In order to introduce the probe (G), it is convenient to introduce a group represented by the following general formula (7) into at least one of R 1 to R 8 which are substituents of the cyclic ligand. is preferred.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
〔式(7)中、Lは式(6)と同じであり、(G’)は式(6)中の上記プローブ(G)を結合するための反応性基を表す。〕 [In formula (7), L4 is the same as in formula ( 6 ), and (G') represents a reactive group for binding the probe (G) in formula (6). ]
式(7)中、Lは式(6)と同じであり、(G’)は式(6)中の上記プローブ(G)を結合するための反応性基である。具体的な(G’)としては、活性化エステル基(ここでは良好な脱離基を有するカルボン酸エステルであって、脱離基として例えばスクシンイミジルオキシ基、スルホスクシンイミジルオキシ基、1-ベンゾトリアゾリル基、4-ニトロフェニルオキシ、ペンタフルオロフェニルオキシ基等が挙げられる。)、ハロゲン化アシル基、ハロゲン化アルキル基、アミノ基、酸無水物、カルボン酸、カルボジイミド基、ヒドロキシ基、ヨードアセトアミド基、イソシアナート基、イソチオシアナート基、マレイミド基、ホスホロアミダイト基、スルホン酸エステル基、チオール基等が挙げられる。 In formula (7), L4 is the same as in formula ( 6 ), and (G') is a reactive group for binding the probe (G) in formula (6). Specific examples of (G') include an activated ester group (here, a carboxylic acid ester having a good leaving group, such as a succinimidyloxy group and a sulfosuccinimidyloxy group). , 1-benzotriazolyl group, 4-nitrophenyloxy, pentafluorophenyloxy group, etc.), halogenated acyl group, halogenated alkyl group, amino group, acid anhydride, carboxylic acid, carbodiimide group, hydroxy group, iodoacetamide group, isocyanate group, isothiocyanate group, maleimide group, phosphoramidite group, sulfonic acid ester group, thiol group and the like.
上記プローブ(G)を導入するには、(G)に含まれるカルボキシル基、アミノ基、チオール基等と上記反応性基(G’)を反応させて結合させればよい。一例を示すと、(G)のアミノ基と(G’)のスクシンイミジルオキシエステル基との反応により、アミド結合が形成され、(G)のチオール基と(G’)のマレイミド基とでスルフィド結合が形成される。このようにしてプローブ(G)と本発明の光増感剤とが結合される。 In order to introduce the probe (G), the carboxyl group, amino group, thiol group, etc. contained in (G) may be reacted with the reactive group (G') to bond. As an example, the amino group of (G) reacts with the succinimidyl oxyester group of (G') to form an amide bond, and the thiol group of (G) and the maleimide group of (G') to form a sulfide bond. Thus, the probe (G) and the photosensitizer of the present invention are bound.
本発明の光増感剤は光照射によって、軸配位子に結合した分解性オニウム塩が分解し、これで生じるプロトンの作用により軸配位子の脱離が起こる。照射する光の波長は本光増感剤が吸収しうる波長の範囲であれば特に制限はないが、具体的には500~1500nmの可視光~赤外光領域の光を照射することが好ましく、特に細胞への影響と光応答性の観点から、近赤外領域である650~1200nmの光を照射することがさらに好ましい。 When the photosensitizer of the present invention is irradiated with light, the decomposable onium salt bound to the axial ligand decomposes, and the action of protons generated thereby causes elimination of the axial ligand. The wavelength of the light to be irradiated is not particularly limited as long as it is within the range of wavelengths that can be absorbed by the present photosensitizer. In particular, from the viewpoint of the effect on cells and photoresponsiveness, it is more preferable to irradiate with light of 650 to 1200 nm, which is in the near-infrared region.
本発明の光増感剤は、光照射による軸配位子の脱離により、親水性から疎水性へと変化することにより凝集が起こる。すなわち、例えば標的となる特定の細胞(例えば癌細胞)を光照射によって死滅させる治療方法に使用する場合では、本発明の光増感剤と、標的となる特定の細胞と結合するためのプローブ(好ましくは抗体)を導入しておき、これを投与することで標的細胞と特異的な結合をした複合体を形成し、例えば近赤外光を照射することにより、上記軸配位子の脱離による親疎水性変化を伴って凝集し、標的細胞を破壊させることができる。
本発明の光増感剤は抗体と結合させることで、特定の細胞表面に特異的に結合させるためのタンパク質等に作用するため、目的となる細胞に集積させることができる。よって、本発明の光増感剤が結合した抗体結合体は、他薬物作用を有する化合物を結合した抗体結合体と同様分子標的療法にも利用できる。特に癌細胞を標的に本発明の増感剤を適用する場合、モノクローナル抗体が好ましく用いられ、セツキシマブ、パニツムマブ、ザルツムマブ、ニモツズマブ、マツズマブ、トラスツズマブ、ペルツズマブ、トシツモマブ、リツキシマブ、ダクリズマブ、ゲムツズマブ、アレムツズマブ、J591及びバシリキシマブ等が具体的に例示される。また、その他抗体の特異的結合を利用した分析法や精製法である、アフィニティークロマトグラフィー、光照射分子不活性化法(CALIおよびFALI)等にも好適に利用できる。
Aggregation of the photosensitizer of the present invention occurs due to a change from hydrophilicity to hydrophobicity due to detachment of the axial ligand upon irradiation with light. That is, for example, when used in a therapeutic method for killing specific target cells (e.g., cancer cells) by light irradiation, the photosensitizer of the present invention and a probe for binding to specific target cells ( (preferably an antibody) is introduced in advance, and by administering this, a complex that specifically binds to the target cell is formed, and for example, by irradiation with near-infrared light, the axial ligand is detached. It aggregates with a change in hydrophilicity and hydrophobicity due to , and can destroy target cells.
When the photosensitizer of the present invention is bound to an antibody, it acts on a protein or the like for specific binding to a specific cell surface, so that it can be accumulated in target cells. Therefore, the photosensitizer-bound antibody conjugate of the present invention can be used for molecular target therapy, as is the case with antibody conjugates conjugated with compounds having other drug actions. In particular, when applying the sensitizer of the present invention to target cancer cells, monoclonal antibodies are preferably used. Basiliximab and the like are specifically exemplified. In addition, it can be suitably used for affinity chromatography, light irradiation molecule inactivation method (CALI and FALI), etc., which are analytical methods and purification methods that utilize the specific binding of antibodies.
 以下、実施例により本発明を更に説明するが、本発明はこれに限定されることは意図するものではない。なお、以下特記しない限り、%は重量%を意味する。 The present invention will be further described below with reference to Examples, but the present invention is not intended to be limited to these. In addition, unless otherwise specified below, % means % by weight.
製造例1 金属錯体前駆体(a-1)の合成
 オクタエチルポルフィリナトシリコン(IV)ジクロリド(a-1)の合成
 J.W.Buchler,et.al.,Chem.Ber.1973,106,2710に従い、オクタエチルポルフィリンとテトラクロロシランより表題の化合物(a-1)を合成した。
Production Example 1 Synthesis of Metal Complex Precursor (a-1) Synthesis of Octaethyl Porphyrinatosilicon (IV) Dichloride (a-1). W. Buchler, et. al. , Chem. Ber. 1973, 106, 2710, the title compound (a-1) was synthesized from octaethylporphyrin and tetrachlorosilane.
製造例2 金属錯体前駆体(a-4)の合成
 フタロシアナトゲルマニウム(IV)ジクロリドの合成
 反応容器にn-ペンタノール150g、1,2-ジシアノベンゼン23g、四塩化ゲルマニウム10gを加え、そこへDBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)27g加えて混合した。これを昇温し140℃で還流下12時間反応させた。室温まで冷却し、反応液をメタノール/水=1/2(重量比)1500gへ撹拌しながら徐々に滴下し、スラリーを得た。これをろ過し、ろ過物をメタノール/水=1/2(重量比)100gで5回洗浄し乾燥させ18.9gの暗青色固体を得た。H-NMRよりこの暗青色固体が金属錯体前駆体(a-4)であることを確認した。
Production Example 2 Synthesis of Metal Complex Precursor (a-4) Synthesis of Phthalocyanatogermanium (IV) Dichloride 150 g of n-pentanol, 23 g of 1,2-dicyanobenzene and 10 g of germanium tetrachloride were added to a reaction vessel. 27 g of DBU (1,8-diazabicyclo[5.4.0]-7-undecene) was added and mixed. The mixture was heated to 140° C. and reacted under reflux for 12 hours. After cooling to room temperature, the reaction solution was gradually added dropwise to 1,500 g of methanol/water=1/2 (weight ratio) while stirring to obtain a slurry. This was filtered, and the filtrate was washed five times with 100 g of methanol/water=1/2 (weight ratio) and dried to obtain 18.9 g of a dark blue solid. 1 H-NMR confirmed that this dark blue solid was the metal complex precursor (a-4).
上記金属錯体前駆体(a)の構造について下記に示す。なお、上記製造例以外の金属錯体前駆体は、すべてアルドリッチ社より購入した試薬を用いた。 The structure of the metal complex precursor (a) is shown below. In addition, reagents purchased from Aldrich Co. were used for all of the metal complex precursors other than the above production examples.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
製造例3 軸配位子前駆体(b-1/Cl)の合成
(1)中間体-1:3,5-ジメチル-4-ヒドロキシフェニルジフェニルスルホニウムクロリド塩の合成
反応容器に2,6-ジメチルフェノール7.3g、メタンスルホン酸50g、五酸化二リン7gを加え撹拌した。そこへジフェニルスルホキシド10gを加え45℃で6時間反応した。20%食塩水100mLに氷浴で冷却しながら反応液を撹拌下徐々に添加した。ジクロロメタン100mLをさらに加えて1時間撹拌した。静置後水層を分液により除去し、有機層を水50mLで5回洗浄し、濃縮した。アセトンにて再結晶を行い、白色固体15.2gを得た。H-NMRよりこの白色固体が(中間体-1)であることを確認した。
(2)中間体-2:4-クロロエトキシ-3,5-ジメチルフェニルジフェニルスルホニウムクロリド塩の合成
反応容器に(中間体-1)3.4g、THF20mL、炭酸カリウム1.5g、1-ブロモ-2-クロロエタン14gを加え、60℃で6時間反応させた。反応後エバポレーターにて減圧濃縮を行い、残渣にジクロロメタン50mLを加えて抽出を行い、水50mLにて水洗を5回行った。その後有機層をエバポレーターにて減圧濃縮し、ジクロロメタン-ヘキサンで再結晶を行い白色固体3.2gを得た。H-NMRよりこの白色固体が(中間体-2)であることを確認した。
(3)軸配位子前駆体(b-1/Cl)の合成
反応容器に(中間体-2)4.1g、アセトニトリル20mL、N,N-ジメチルエタノールアミン1.8gを加え、60℃で12時間反応させた。反応後エバポレーターにて減圧濃縮を行い、残渣にジクロロメタン50mLを加えて抽出を行い、水50mLにて水洗を5回行った。その後有機層をエバポレーターにて減圧濃縮し、ジクロロメタン-ヘキサンで再結晶を行い微黄色固体2.5g(収率51%)を得た。H-NMRよりこの微黄色固体が軸配位子前駆体(b-1/Cl)であることを確認した。
Production Example 3 Synthesis of Axial Ligand Precursor (b-1/Cl) (1) Intermediate-1: Synthesis of 3,5-dimethyl-4-hydroxyphenyldiphenylsulfonium chloride salt 2,6-dimethyl 7.3 g of phenol, 50 g of methanesulfonic acid and 7 g of diphosphorus pentoxide were added and stirred. 10 g of diphenyl sulfoxide was added thereto and reacted at 45° C. for 6 hours. The reaction solution was gradually added to 100 mL of 20% saline solution with stirring while being cooled in an ice bath. An additional 100 mL of dichloromethane was added and stirred for 1 hour. After standing, the aqueous layer was removed by liquid separation, and the organic layer was washed with 50 mL of water five times and concentrated. Recrystallization was performed with acetone to obtain 15.2 g of a white solid. This white solid was confirmed to be (Intermediate-1) by 1 H-NMR.
(2) Intermediate-2: Synthesis of 4-chloroethoxy-3,5-dimethylphenyldiphenylsulfonium chloride salt Into a reaction vessel (Intermediate-1) 3.4 g, THF 20 mL, potassium carbonate 1.5 g, 1-bromo- 14 g of 2-chloroethane was added and reacted at 60° C. for 6 hours. After the reaction, concentration under reduced pressure was performed using an evaporator, extraction was performed by adding 50 mL of dichloromethane to the residue, and washing with water was performed 5 times with 50 mL of water. After that, the organic layer was concentrated under reduced pressure using an evaporator and recrystallized with dichloromethane-hexane to obtain 3.2 g of a white solid. This white solid was confirmed to be (Intermediate-2) by 1 H-NMR.
(3) Synthesis of Axial Ligand Precursor (b-1/Cl) 4.1 g of (Intermediate-2), 20 mL of acetonitrile, and 1.8 g of N,N-dimethylethanolamine were added to a reaction vessel and heated at 60°C. The reaction was allowed to proceed for 12 hours. After the reaction, concentration under reduced pressure was performed using an evaporator, extraction was performed by adding 50 mL of dichloromethane to the residue, and washing with water was performed five times with 50 mL of water. After that, the organic layer was concentrated under reduced pressure using an evaporator and recrystallized with dichloromethane-hexane to obtain 2.5 g of a slightly yellow solid (yield: 51%). It was confirmed by 1 H-NMR that this slightly yellow solid was the axial ligand precursor (b-1/Cl).
製造例4 軸配位子前駆体(b-1/Br)の合成
酢酸銀0.5gを100mLの水に溶解させた酢酸銀水溶液へ、軸配位子前駆体(b-1/Cl)0.5g、アセトニトリル10mLを加え溶解させた溶液を少しずつ加え、1時間撹拌した。生じた沈殿を遠心分離により除去し、溶液部分に臭化カリウム0.5gを加え、室温で6時間撹拌した。ジクロロメタン50mLを加えて抽出を行い、水50mLで水洗を5回行った。その後有機層をエバポレーターにて減圧濃縮し、ジクロロメタン-ヘキサンで再結晶を行い微黄色固体0.35g(収率60%)を得た。H-NMRよりこの微黄色固体が軸配位子前駆体(b-1/Br)であることを確認した。
Production Example 4 Synthesis of Axial Ligand Precursor (b-1/Br) 0.5 g of silver acetate was dissolved in 100 mL of water. A solution prepared by adding and dissolving .5 g and 10 mL of acetonitrile was added little by little, and the mixture was stirred for 1 hour. The resulting precipitate was removed by centrifugation, 0.5 g of potassium bromide was added to the solution portion, and the mixture was stirred at room temperature for 6 hours. Extraction was performed by adding 50 mL of dichloromethane, and washing was performed 5 times with 50 mL of water. After that, the organic layer was concentrated under reduced pressure using an evaporator and recrystallized with dichloromethane-hexane to obtain 0.35 g of a slightly yellow solid (yield 60%). It was confirmed by 1 H-NMR that this slightly yellow solid was the axial ligand precursor (b-1/Br).
製造例5 軸配位子前駆体(b-1/(CPF)の合成
反応容器に軸配位子前駆体(b-1/Cl)4.9gを加えジクロロメタン100mLで溶解させた。そこへあらかじめK(CPF10.6gを水100mLへ溶解させた水溶液を投入し、6時間撹拌した。分液にて水層を除去した。水50mLにて水洗を5回行い、有機層を濃縮した。ジクロロメタン-ヘキサンで再結晶を行い微黄色固体5.7g(収率44%)を得た。H、19F及び31P-NMRよりこの微黄色固体が軸配位子前駆体(b-1/(CPF)であることを確認した。
Production Example 5 Synthesis of Axial Ligand Precursor (b-1/(C 2 F 5 ) 3 PF 3 ) 4.9 g of axial ligand precursor (b-1/Cl) was added to a reaction vessel, and 100 mL of dichloromethane was added. Dissolved. An aqueous solution prepared by previously dissolving 10.6 g of K(C 2 F 5 ) 3 PF 3 in 100 mL of water was added thereto and stirred for 6 hours. The aqueous layer was removed by liquid separation. It was washed with 50 mL of water five times, and the organic layer was concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 5.7 g of a slightly yellow solid (yield 44%). 1 H, 19 F and 31 P-NMR confirmed that this slightly yellow solid was the axial ligand precursor (b-1/(C 2 F 5 ) 3 PF 3 ).
製造例6 軸配位子前駆体(b-1/PF)の合成
製造例5において、K(CPF10.6gの代わりにKPF4.0gとする以外は製造例5に記載の方法に従い、微黄色固体4.9g(収率58%)を得た。H、19F及び31P-NMRよりこの微黄色固体が軸配位子前駆体(b-1/PF)であることを確認した。
Production Example 6 Synthesis of Axial Ligand Precursor (b-1/PF 6 ) Production Example 5 was carried out except that 10.6 g of K(C 2 F 5 ) 3 PF 3 was replaced with 4.0 g of KPF 6 . Following the method described in Example 5, 4.9 g (58% yield) of a pale yellow solid was obtained. 1 H, 19 F and 31 P-NMR confirmed that this slightly yellow solid was the axial ligand precursor (b-1/PF 6 ).
製造例7 軸配位子前駆体(b-2/I)の合成
 (1)中間体-3:4-フェニルチオフェニル-2-ブロモエチルエーテルの合成
 反応容器に4-フェニルチオフェノール4.0g、THF50mL、炭酸カリウム3.0g、1,2-ジブロモエタン15gを加え、60℃で6時間反応させた。反応後エバポレーターにて減圧濃縮を行った。残渣にジクロロメタン50mLを加えて抽出を行い、水50mLにて水洗を5回行った。その後有機層をエバポレーターにて減圧濃縮し、シリカゲルカラムクロマトグラフィーにて精製し淡黄色油状物5.2g(収率84%)を得た。H-NMRよりこの淡黄色油状物が(中間体-3)であることを確認した。
(2)中間体-4:4-(2-ブロモエトキシ)フェニルフェニルメチルスルホニウムヨーダイドの合成
反応容器に(中間体-3)3.1g、クロロホルム20mL、ヨードメタン1.6gを加え、50℃で5時間反応させた。反応後水30mLにて水洗を5回行い、その後有機層をエバポレーターにて減圧濃縮し、シリカゲルカラムクロマトグラフィーにて精製し淡黄色固体3.1g(収率69%)を得た。H-NMRよりこの淡黄色固体が(中間体-4)であることを確認した。
(3)中間体-5:4-(2-[N-{3-(エトキシジメチルシリル)プロピル}アミノ]エトキシ)フェニルフェニルメチルスルホニウムヨーダイドの合成
反応容器に(中間体-4)4.5g、アセトン50mL、炭酸ナトリウム5g、3-アミノプロピルジメチルエトキシシラン1.6gを加え、還流下18時間反応させた。反応混合物を水100mLに投入した。ジクロロメタン50mLで抽出し、さらに水洗を5回行い濃縮した。シリカゲルカラムクロマトグラフィーにて精製し淡黄色固体2.7g(収率51%)を得た。H-NMRよりこの淡黄色固体が(中間体-5)であることを確認した。
  (4)軸配位子前駆体(b-2/I)の合成
反応容器に(中間体-5)5.3g、アセトン20mL、炭酸ナトリウム5g、ヨードメタン5.0gを加え、還流下5時間反応させた。反応後析出している固体を濾別し、濾液を50%ヨウ素酸水溶液100mLへ添加した。室温下3時間撹拌し、ジクロロメタン50mLにて抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、さらに水洗5回行い濃縮した。ジクロロメタン-ヘキサンで再結晶を行い淡黄色固体2.5g(収率38%)を得た。H-NMRよりこの淡黄色固体が軸配位子前駆体(b-2/I)であることを確認した。
Production Example 7 Synthesis of Axial Ligand Precursor (b-2/I) (1) Intermediate-3: Synthesis of 4-phenylthiophenyl-2-bromoethyl ether 4.0 g of 4-phenylthiophenol in a reaction vessel , THF 50 mL, potassium carbonate 3.0 g, and 1,2-dibromoethane 15 g were added and reacted at 60° C. for 6 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. 50 mL of dichloromethane was added to the residue for extraction, and the extract was washed with 50 mL of water five times. After that, the organic layer was concentrated under reduced pressure using an evaporator and purified by silica gel column chromatography to obtain 5.2 g of pale yellow oil (yield: 84%). 1 H-NMR confirmed that this pale yellow oil was (Intermediate-3).
(2) Intermediate-4: Synthesis of 4-(2-bromoethoxy)phenylphenylmethylsulfonium iodide 3.1 g of (Intermediate-3), 20 mL of chloroform, and 1.6 g of iodomethane were added to a reaction vessel and heated at 50°C. It was reacted for 5 hours. After the reaction, the mixture was washed with 30 mL of water five times, and then the organic layer was concentrated under reduced pressure using an evaporator and purified by silica gel column chromatography to obtain 3.1 g of a pale yellow solid (yield: 69%). It was confirmed by 1 H-NMR that this pale yellow solid was (Intermediate-4).
(3) Intermediate-5: Synthesis of 4-(2-[N-{3-(ethoxydimethylsilyl)propyl}amino]ethoxy)phenylphenylmethylsulfonium iodide Into a reaction vessel (Intermediate-4) 4.5 g , 50 mL of acetone, 5 g of sodium carbonate, and 1.6 g of 3-aminopropyldimethylethoxysilane were added and reacted under reflux for 18 hours. The reaction mixture was poured into 100 mL of water. The extract was extracted with 50 mL of dichloromethane, washed with water five times, and concentrated. Purification by silica gel column chromatography gave 2.7 g of pale yellow solid (yield 51%). It was confirmed by 1 H-NMR that this pale yellow solid was (Intermediate-5).
(4) Synthesis of Axial Ligand Precursor (b-2/I) 5.3 g of (Intermediate-5), 20 mL of acetone, 5 g of sodium carbonate, and 5.0 g of iodomethane were added to a reaction vessel and reacted under reflux for 5 hours. let me A solid precipitated after the reaction was filtered off, and the filtrate was added to 100 mL of a 50% aqueous iodic acid solution. The mixture was stirred at room temperature for 3 hours and extracted with 50 mL of dichloromethane. The organic layer was washed with a saturated sodium bicarbonate aqueous solution, washed with water five times, and concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 2.5 g of pale yellow solid (yield 38%). 1 H-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-2/I).
製造例8 軸配位子前駆体(b-2/PF)の合成
 製造例5において軸配位子前駆体(b-1/Cl)4.9gを軸配位子前駆体(b-2/I)6.6gに、K(CPF10.6gの代わりにKPF4.0gとする以外製造例5に記載の方法に従い、微黄色固体6.1g(収率88%)を得た。H、19F及び31P-NMRよりこの微黄色固体が軸配位子前駆体(b-2/PF)であることを確認した。
Production Example 8 Synthesis of Axial Ligand Precursor (b-2/PF 6 ) / I ) 6.6 g , 6.1 g of slightly yellow solid ( yield: 88%) was obtained. 1 H, 19 F and 31 P-NMR confirmed that this slightly yellow solid was the axial ligand precursor (b-2/PF 6 ).
製造例9 軸配位子前駆体(b-3/Cl)の合成
(1)中間体-6:N-(4-ジメチルスルホニオ)フェニルメチル-N-(2-ブロモエチル)ジメチルアンモニウムジブロミドの合成
  反応容器に4-メチルチオ-α-ブロモトルエン2.2g、THF20mLを加え、氷浴下で2-(ジメチルアミノ)エチルブロミド1.5gを滴下した。滴下後室温で20時間撹拌した。その後ブロモメタン(2MTHF溶液)15mLを加え、さらに40℃で6時間反応させた。反応後エバポレーターにて減圧濃縮を行った。得られた粗結晶は中間体-6としてこのまま用いた。なお、H-NMRより主成分が中間体-6であることを確認した。
  (2)中間体-7:4-[{8-(エトキシジメチルシリル)-2,2,5,5-テトラメチルビスアゾニア}オクチル]フェニルジメチルスルホニウムトリブロミドの合成
 反応容器に(中間体-6)4.6gをアセトン50mL、3-ジメチルアミノプロピルジメチルエトキシシラン1.9gを加え、室温下18時間反応させた。反応混合物を水100mLに投入した。酢酸エチル30mLで有機物を抽出した後、水層を濃縮し、白色固体2.9g(収率45%)を得た。H-NMRよりこの微黄色固体が中間体-7であることを確認した。
  (3)軸配位子前駆体(b-3/Cl)の合成
  酢酸銀0.5gを100mLの水に溶解させた酢酸銀水溶液へ、(中間体-7)0.6g、アセトニトリル10mLを加え溶解させた溶液を少しずつ加え、1時間撹拌した。生じた沈殿を遠心分離により除去し、溶液部分に塩化カリウム0.5gを加え、室温で6時間撹拌した。ジクロロメタン50mLを加えて抽出を行い、1N塩酸50mLを加えて2時間撹拌し、さらに水50mLで水洗を5回行った。その後有機層をエバポレーターにて減圧濃縮し、酢酸エチル-メタノールで再結晶を行い白色固体0.28g(収率57%)を得た。H-NMRよりこの微黄色固体が軸配位子前駆体(b-3/Cl)であることを確認した。
Production Example 9 Synthesis of axial ligand precursor (b-3/Cl) (1) Intermediate-6: N-(4-dimethylsulfonio)phenylmethyl-N-(2-bromoethyl)dimethylammonium dibromide Synthesis 2.2 g of 4-methylthio-α-bromotoluene and 20 mL of THF were added to a reaction vessel, and 1.5 g of 2-(dimethylamino)ethyl bromide was added dropwise in an ice bath. After dropping, the mixture was stirred at room temperature for 20 hours. After that, 15 mL of bromomethane (2MTHF solution) was added and further reacted at 40° C. for 6 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. The obtained crude crystal was used as intermediate-6 as it was. It was confirmed by 1 H-NMR that the main component was Intermediate-6.
(2) Intermediate-7: Synthesis of 4-[{8-(ethoxydimethylsilyl)-2,2,5,5-tetramethylbisazonia}octyl]phenyldimethylsulfonium tribromide 6) 4.6 g was added to 50 mL of acetone and 1.9 g of 3-dimethylaminopropyldimethylethoxysilane, and reacted at room temperature for 18 hours. The reaction mixture was poured into 100 mL of water. After extracting the organic matter with 30 mL of ethyl acetate, the aqueous layer was concentrated to obtain 2.9 g of white solid (yield 45%). This slightly yellow solid was confirmed to be Intermediate-7 by 1 H-NMR.
(3) Synthesis of Axial Ligand Precursor (b-3/Cl) 0.6 g of (Intermediate-7) and 10 mL of acetonitrile were added to an aqueous silver acetate solution prepared by dissolving 0.5 g of silver acetate in 100 mL of water. The dissolved solution was added portionwise and stirred for 1 hour. The resulting precipitate was removed by centrifugation, 0.5 g of potassium chloride was added to the solution portion, and the mixture was stirred at room temperature for 6 hours. 50 mL of dichloromethane was added for extraction, 50 mL of 1N hydrochloric acid was added, the mixture was stirred for 2 hours, and further washed with 50 mL of water five times. After that, the organic layer was concentrated under reduced pressure using an evaporator and recrystallized with ethyl acetate-methanol to obtain 0.28 g of a white solid (yield: 57%). It was confirmed by 1 H-NMR that this slightly yellow solid was the axial ligand precursor (b-3/Cl).
製造例10 軸配位子前駆体(b-3/CFCO)の合成
  反応容器に軸配位子前駆体(b-3/Cl)0.5gをメタノール10mLに溶解し、そこへトリフルオロ酢酸銀0.66gを加え室温で24時間撹拌した。水10mLを加え、生じた沈殿を遠心分離により除去し、有機層を濃縮した。酢酸エチル-メタノールで再結晶を行い、白色固体0.63g(収率88%)を得た。H、19F-NMRよりこの白色固体が軸配位子前駆体(b-3/CFCO)であることを確認した。
Production Example 10 Synthesis of Axial Ligand Precursor (b-3/CF 3 CO 2 ) 0.5 g of axial ligand precursor (b-3/Cl) was dissolved in 10 mL of methanol in a reaction vessel. 0.66 g of silver fluoroacetate was added and stirred at room temperature for 24 hours. 10 mL of water was added, the resulting precipitate was removed by centrifugation, and the organic layer was concentrated. Recrystallization was performed with ethyl acetate-methanol to obtain 0.63 g of a white solid (yield 88%). 1 H, 19 F-NMR confirmed that this white solid was an axial ligand precursor (b-3/CF 3 CO 2 ).
製造例11 軸配位子前駆体(b-3/TfO)の合成
 製造例10において、トリフルオロ酢酸銀0.66gの代わりにトリフルオロメタンスルホン酸銀0.77gとする以外は製造例10に記載の方法に従い、白色固体0.49g(収率59%)を得た。H、19F-NMRよりこの白色固体が軸配位子前駆体(b-3/TfO)であることを確認した。
Production Example 11 Synthesis of Axial Ligand Precursor (b-3/TfO) Described in Production Example 10 except that 0.66 g of silver trifluoroacetate was replaced with 0.77 g of silver trifluoromethanesulfonate. 0.49 g (59% yield) of a white solid was obtained according to the method of 1 H, 19 F-NMR confirmed that this white solid was the axial ligand precursor (b-3/TfO).
製造例12 軸配位子前駆体(b-4/Cl)の合成
(1)中間体-8:4-カルボキシフェニルジフェニルスルホニウムクロリドの合成
 反応容器(A)に4-ヨード安息香酸10gを加えTHF150mLで溶解させた。そこへ水素化ナトリウム1.8gを添加した。これを10分間撹拌した後-40℃に冷却した。これにジイソプロピルマグネシウムブロミド15%THF溶液30mLを滴下した。-10℃にて3時間撹拌した。別の反応容器(B)にジフェニルスルホキシド16gを加え、THF50mLにて溶解させた。これを-40℃に冷却しそこへ塩化トリメチルシリル15gを滴下した。-40℃で30分撹拌した後反応容器(A)へチューブを介して添加した。-20℃で3時間撹拌し、-70℃へ冷却した。そこへ20%塩酸水溶液100mLを添加した。混合物を室温まで加温しジエチルエーテル300mLと20%塩酸水溶液200mLを追加した。これを1時間撹拌し静置した。分液により水層をジエチルエーテルとジクロロメタンで抽出し、有機層と合わせ濃縮した。シリカゲルカラムクロマトグラフィーにて精製し、白色固体15gを得た。H-NMRよりこの白色固体が中間体-8であることを確認した。
(2)中間体-9:4-(2-ジメチルアミノエチルオキシカルボニル)フェニルジフェニルスルホニウムクロリドの合成
反応容器に(中間体-8)3.4g、DMF30mLを加え、そこへ1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩3.8gをさらに加えた。これを1時間撹拌し、そこへジメチルアミノエタノール1.0gを滴下した。滴下後12時間撹拌し、これを水100mLに投入した。ジクロロメタン50mLで抽出し、有機層を1N塩酸で洗浄し、さらに炭酸水素ナトリウム水溶液で洗浄し、次いで水洗を5回行い濃縮した。得られた粗結晶は中間体-9としてこのまま用いた。なお、H-NMRより主成分が中間体-9であることを確認した。
(3)軸配位子前駆体(b-4/Cl)の合成
反応容器に(中間体-9)4.1gをアセトン50mL、2-クロロエチルジメチルエトキシシラン1.9gを加え、還流下18時間反応させた。反応後エバポレーターにて減圧濃縮を行った。残渣にジクロロメタン50mLを加えて抽出を行い、有機層を1N塩酸で洗浄し、さらに水洗を5回行い濃縮した。ジクロロメタン-ヘキサンで再結晶を行い淡黄色固体2.7g(収率49%)を得た。H-NMRよりこの淡黄色固体が軸配位子前駆体(b-4/Cl)であることを確認した。
Production Example 12 Synthesis of Axial Ligand Precursor (b-4/Cl) (1) Intermediate-8: Synthesis of 4-carboxyphenyldiphenylsulfonium chloride 10 g of 4-iodobenzoic acid was added to reaction vessel (A) and 150 mL of THF. dissolved in 1.8 g of sodium hydride was added thereto. It was stirred for 10 minutes and then cooled to -40°C. 30 mL of a 15% THF solution of diisopropylmagnesium bromide was added dropwise thereto. The mixture was stirred at -10°C for 3 hours. 16 g of diphenyl sulfoxide was added to another reaction vessel (B) and dissolved in 50 mL of THF. This was cooled to -40°C and 15 g of trimethylsilyl chloride was added dropwise. After stirring at -40°C for 30 minutes, the mixture was added to the reaction vessel (A) through a tube. Stir at -20°C for 3 hours and cool to -70°C. 100 mL of 20% hydrochloric acid aqueous solution was added thereto. The mixture was warmed to room temperature and 300 mL of diethyl ether and 200 mL of 20% aqueous hydrochloric acid were added. This was stirred for 1 hour and allowed to stand. By liquid separation, the aqueous layer was extracted with diethyl ether and dichloromethane, and the extract was combined with the organic layer and concentrated. Purification by silica gel column chromatography gave 15 g of a white solid. This white solid was confirmed to be Intermediate-8 by 1 H-NMR.
(2) Intermediate-9: Synthesis of 4-(2-dimethylaminoethyloxycarbonyl)phenyldiphenylsulfonium chloride 3.4 g of (Intermediate-8) and 30 mL of DMF were added to a reaction vessel, and 1-ethyl-3- An additional 3.8 g of (3-dimethylaminopropyl)carbodiimide hydrochloride was added. This was stirred for 1 hour, and 1.0 g of dimethylaminoethanol was added dropwise thereto. After dropping, the mixture was stirred for 12 hours, and then poured into 100 mL of water. After extraction with 50 mL of dichloromethane, the organic layer was washed with 1N hydrochloric acid, further washed with an aqueous sodium hydrogencarbonate solution, washed with water five times, and concentrated. The obtained crude crystal was used as intermediate-9 as it was. It was confirmed by 1 H-NMR that the main component was Intermediate-9.
(3) Synthesis of Axial Ligand Precursor (b-4/Cl) 4.1 g of (Intermediate-9) was added to a reaction vessel, and 50 mL of acetone and 1.9 g of 2-chloroethyldimethylethoxysilane were added, and the mixture was refluxed for 18 hours. reacted over time. After the reaction, concentration under reduced pressure was performed using an evaporator. 50 mL of dichloromethane was added to the residue for extraction, and the organic layer was washed with 1N hydrochloric acid, further washed with water five times, and concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 2.7 g of pale yellow solid (yield 49%). 1 H-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-4/Cl).
製造例13 軸配位子前駆体(b-5/Br)の合成
(1)中間体-10:4-{N-(2-ブロモエチル)ジメチルアンモニオ}メチルフェニルジフェニルスルホニウムジブロミドの合成
反応容器に4-(ブロモメチル)フェニルジフェニルスルホニウムブロミド4.4g、THF50mLを加え、室温下で2-(ジメチルアミノ)エチルブロミド1.5gを滴下した。滴下後室温で20時間撹拌した。反応後エバポレーターにて減圧濃縮を行った。得られた淡褐色固体をジエチルエーテルで洗浄し、乾燥することで淡黄色固体3.9g(収率67%)を得た。H-NMRよりこの淡黄色固体が中間体-10であることを確認した。
(2)軸配位子前駆体(b-5/Br)の合成
反応容器に(中間体-10)0.6gをアセトン10mL、2-ジメチルアミノエチルジメチルエトキシシラン0.2gを加え、還流下8時間反応させた。反応後エバポレーターにて減圧濃縮を行った。残渣にジクロロメタン50mLで抽出し、1N塩酸20mLを加えて2時間撹拌し、さらに水洗を5回行い濃縮した。得られた固体をジエチルエーテルで洗浄し、淡黄色固体0.45g(収率61%)を得た。H-NMRよりこの淡黄色固体が軸配位子前駆体(b-5/Br)であることを確認した。
Production Example 13 Synthesis of Axial Ligand Precursor (b-5/Br) (1) Intermediate-10: Synthesis of 4-{N-(2-bromoethyl)dimethylammonio}methylphenyldiphenylsulfonium dibromide Reactor 4.4 g of 4-(bromomethyl)phenyldiphenylsulfonium bromide and 50 mL of THF were added to the solution, and 1.5 g of 2-(dimethylamino)ethyl bromide was added dropwise at room temperature. After dropping, the mixture was stirred at room temperature for 20 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. The light brown solid obtained was washed with diethyl ether and dried to obtain 3.9 g of a light yellow solid (yield 67%). This pale yellow solid was confirmed to be Intermediate-10 by 1 H-NMR.
(2) Synthesis of Axial Ligand Precursor (b-5/Br) 0.6 g of (Intermediate-10), 10 mL of acetone, and 0.2 g of 2-dimethylaminoethyldimethylethoxysilane were added to a reactor and refluxed. The reaction was allowed to proceed for 8 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. The residue was extracted with 50 mL of dichloromethane, 20 mL of 1N hydrochloric acid was added, and the mixture was stirred for 2 hours, washed with water 5 times, and concentrated. The obtained solid was washed with diethyl ether to obtain 0.45 g of pale yellow solid (61% yield). 1 H-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-5/Br).
製造例14 軸配位子前駆体(b-6/PF)の合成
(1)中間体-11:(3-カルボキシプロピル-1-オン-フェニル)ジフェニルスルホニウムクロリドの合成
反応容器にトリフェニルスルホニウムクロリド9.0g、ジクロロメタン50mL、塩化アルミニウム4.0gを加え撹拌した。これを氷浴にて冷却し、無水コハク酸9.0gを滴下した。その後室温で8時間撹拌し、反応液を氷水100mLに投入した。さらにジクロロメタン50mLを追加し、さらに1時間撹拌した。静置後水層を除去し有機層を5回水洗を行った後濃縮した。シリカゲルカラムクロマトグラフィーにて精製し、白色固体13.8gを得た。H-NMRよりこの白色固体が中間体-11であることを確認した。
(2)中間体-12:4-{3-(N-ジメチルアミノエチル)カルバモイルプロピル-1-オン}フェニルジフェニルスルホニウムクロリドの合成
製造例12(2)において、(中間体-8)3.4gの代わりに(中間体-11)4.0g、ジメチルアミノエタノール1.0gの代わりにN,N-ジメチルエチレンジアミン1.1gとする以外は製造例12(2)に記載の方法に従い、得られた粗結晶は中間体-12としてこのまま用いた。なお、H-NMRより主成分が中間体-12であることを確認した。
(3)軸配位子前駆体(b-6/PF)の合成
反応容器に(中間体-12)4.7gをアセトン50mL、3-ブロモプロピルジメチルエトキシシラン2.3gを加え、還流下18時間反応させた。反応後エバポレーターにて減圧濃縮を行った。残渣にジクロロメタン50mLを加えて抽出を行い、有機層を1N塩酸で洗浄し、分液操作にて水層を除去した。KPF4.0gを水50mLにて溶解させた水溶液50mLを加え、3時間撹拌した。有機層をさらに5回水洗を行い濃縮した。ジクロロメタン-ヘキサンで再結晶を行い淡黄色固体2.7g(収率32%)を得た。H、19F及び31P-NMRよりこの淡黄色固体が軸配位子前駆体(b-6/PF)であることを確認した。
Production Example 14 Synthesis of Axial Ligand Precursor (b-6/PF 6 ) (1) Intermediate-11: Synthesis of (3-carboxypropyl-1-one-phenyl)diphenylsulfonium Chloride 9.0 g of chloride, 50 mL of dichloromethane, and 4.0 g of aluminum chloride were added and stirred. This was cooled in an ice bath, and 9.0 g of succinic anhydride was added dropwise. After stirring at room temperature for 8 hours, the reaction solution was poured into 100 mL of ice water. An additional 50 mL of dichloromethane was added, and the mixture was further stirred for 1 hour. After allowing to stand, the aqueous layer was removed, and the organic layer was washed with water five times and then concentrated. Purification by silica gel column chromatography gave 13.8 g of a white solid. This white solid was confirmed to be Intermediate-11 by 1 H-NMR.
(2) Intermediate-12: Synthesis of 4-{3-(N-dimethylaminoethyl)carbamoylpropyl-1-one}phenyldiphenylsulfonium chloride In Production Example 12 (2), (Intermediate-8) 3.4 g Instead of (Intermediate-11) 4.0 g, N,N-dimethylethylenediamine 1.1 g instead of 1.0 g of dimethylaminoethanol was obtained according to the method described in Production Example 12 (2). The crude crystal was used as intermediate-12 as it is. It was confirmed by 1 H-NMR that the main component was Intermediate-12.
(3) Synthesis of Axial Ligand Precursor (b-6/PF 6 ) 4.7 g of (Intermediate-12), 50 mL of acetone, and 2.3 g of 3-bromopropyldimethylethoxysilane were added to a reactor and refluxed. The reaction was allowed to proceed for 18 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. 50 mL of dichloromethane was added to the residue for extraction, the organic layer was washed with 1N hydrochloric acid, and the aqueous layer was removed by liquid separation. 50 mL of an aqueous solution prepared by dissolving 4.0 g of KPF 6 in 50 mL of water was added and stirred for 3 hours. The organic layer was further washed with water five times and concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 2.7 g of pale yellow solid (yield 32%). 1 H, 19 F and 31 P-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-6/PF 6 ).
製造例15 軸配位子前駆体(b-7/CFCO)の合成
反応容器に(中間体-5)0.5g、メタノール20mL、ジイソプロピルエチルアミン1.6g、1,3-プロパンスルトン1.2gを加え、還流下20時間反応させた。反応後エバポレーターにて減圧濃縮を行った。再度メタノール10mLに溶解し、そこへ1N塩酸5mLを添加して、室温下3時間撹拌した。ジクロロメタン10mLにて抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、さらに水洗5回行い濃縮した。得られた固体をメタノール10mLに溶解し、そこへトリフルオロ酢酸銀0.66gを加え室温で24時間撹拌した。水10mLを加え、生じた沈殿を遠心分離により除去し、有機層を濃縮した。ジクロロメタン-メタノールで再結晶を行い淡黄色固体0.4g(収率53%)を得た。H、19F-NMRよりよりこの淡黄色固体が軸配位子前駆体(b-7/CFCO)であることを確認した。
Production Example 15 Synthesis of Axial Ligand Precursor (b-7/CF 3 CO 2 ) 0.5 g of (Intermediate-5), 20 mL of methanol, 1.6 g of diisopropylethylamine, and 1,3-propanesultone were placed in a reaction vessel. .2 g was added and reacted under reflux for 20 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. It was dissolved again in 10 mL of methanol, 5 mL of 1N hydrochloric acid was added thereto, and the mixture was stirred at room temperature for 3 hours. Extracted with 10 mL of dichloromethane. The organic layer was washed with a saturated sodium bicarbonate aqueous solution, washed with water five times, and concentrated. The resulting solid was dissolved in 10 mL of methanol, 0.66 g of silver trifluoroacetate was added, and the mixture was stirred at room temperature for 24 hours. 10 mL of water was added, the resulting precipitate was removed by centrifugation, and the organic layer was concentrated. Recrystallization was performed with dichloromethane-methanol to obtain 0.4 g of pale yellow solid (yield 53%). 1 H, 19 F-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-7/CF 3 CO 2 ).
製造例16 軸配位子前駆体(b-7/TfO)の合成
 製造例15において、トリフルオロ酢酸銀0.66gの代わりにトリフルオロメタンスルホン酸銀0.77gとする以外は製造例15に記載の方法に従い、淡黄色固体0.22g(収率28%)を得た。H、19F-NMRよりこの白色固体が軸配位子前駆体(b-7/TfO)であることを確認した。
Production Example 16 Synthesis of Axial Ligand Precursor (b-7/TfO) Described in Production Example 15 except that 0.66 g of silver trifluoroacetate was replaced with 0.77 g of silver trifluoromethanesulfonate. 0.22 g (28% yield) of a pale yellow solid was obtained according to the method of . 1 H, 19 F-NMR confirmed that this white solid was the axial ligand precursor (b-7/TfO).
製造例17 軸配位子前駆体(b-8/Br)の合成
(1)中間体-13:(2-メトキシ-4-ヒドロキシフェニル)フェニルヨードニウムブロミドの合成
 反応容器にヨードシルベンゼン22g、3-メトキシフェノール12.4g、氷酢酸700g、無水酢酸70gを溶解混合し、氷浴にて冷却した。5℃を超えないように濃硫酸12gを滴下し、室温でさらに3時間反応させた。20%臭化カリウム水溶液200mLに氷浴で冷却しながら反応液を撹拌下徐々に添加した。ジクロロメタン100mLをさらに加えて1時間撹拌した。静置後水層を分液により除去し、有機層を水50mLで5回洗浄し、濃縮した。シリカゲルカラムクロマトグラフィーで分離精製を行い、白色固体23.2g(収率57%)を得た。H-NMRよりこの白色固体が(中間体-13)であることを確認した。
(2)中間体-14:2-メトキシ-4-(3-ブロモ-1-プロポキシ)フェニルフェニルヨードニウムブロミドの合成
 反応容器に(中間体-13)4.1g、THF20mL、炭酸カリウム1.5g、1,3-ジブロモプロパン20gを加え、室温で18時間反応させた。エバポレーターで反応液を濃縮し、得られた油状物をジクロロメタン50mLに溶解させた。水50mLにて水洗を5回行い、有機層を濃縮した。ジクロロメタン-ヘキサンで再結晶を行い白色固体3.8g(収率72%)を得た。H-NMRよりこの白色固体が(中間体-14)であることを確認した。
(3)軸配位子前駆体(b-8/Br)の合成
 製造例3(3)において、(中間体-2)4.1gの代わりに(中間体-14)5.3gとする以外は製造例3(3)に記載の方法に従い、微黄色固体4.0g(収率65%)を得た。H-NMRよりこの微黄色固体が軸配位子前駆体(b-8/Br)であることを確認した。
Production Example 17 Synthesis of Axial Ligand Precursor (b-8/Br) (1) Intermediate-13: Synthesis of (2-methoxy-4-hydroxyphenyl)phenyliodonium bromide - 12.4 g of methoxyphenol, 700 g of glacial acetic acid and 70 g of acetic anhydride were dissolved and mixed, and cooled in an ice bath. 12 g of concentrated sulfuric acid was added dropwise so that the temperature did not exceed 5° C., and the mixture was allowed to react at room temperature for an additional 3 hours. The reaction solution was slowly added to 200 mL of a 20% potassium bromide aqueous solution with stirring while being cooled in an ice bath. An additional 100 mL of dichloromethane was added and stirred for 1 hour. After standing, the aqueous layer was removed by liquid separation, and the organic layer was washed with 50 mL of water five times and concentrated. Separation and purification were performed by silica gel column chromatography to obtain 23.2 g of a white solid (yield 57%). This white solid was confirmed to be (Intermediate-13) by 1 H-NMR.
(2) Intermediate-14: Synthesis of 2-methoxy-4-(3-bromo-1-propoxy)phenylphenyliodonium bromide 20 g of 1,3-dibromopropane was added and reacted at room temperature for 18 hours. The reaction solution was concentrated by an evaporator, and the resulting oil was dissolved in 50 mL of dichloromethane. It was washed with 50 mL of water five times, and the organic layer was concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 3.8 g of a white solid (yield 72%). This white solid was confirmed to be (Intermediate-14) by 1 H-NMR.
(3) Synthesis of Axial Ligand Precursor (b-8/Br) Except for using 5.3 g of (Intermediate-14) instead of 4.1 g of (Intermediate-2) in Production Example 3(3). obtained 4.0 g of a slightly yellow solid (yield 65%) according to the method described in Production Example 3(3). It was confirmed by 1 H-NMR that this slightly yellow solid was the axial ligand precursor (b-8/Br).
製造例18 軸配位子前駆体(b-9/Br)の合成
(1)中間体-15:{4-(2-ブロモエチルジメチルアンモニオメチル)フェニル}(2,4,6-トリメトキシフェニル)ヨードニウムジブロミド
 製造例13(1)において、4-(ブロモメチル)フェニルジフェニルスルホニウムブロミド4.4gの代わりに{4-(ブロモメチル)フェニル}(2,4,6-トリメトキシフェニル)ヨードニウムブロミド5.4gとする以外は製造例13(1)に記載の方法に従い、微黄色固体4.9g(収率70%)を得た。H-NMRよりこの微黄色固体が中間体-15であることを確認した。
(2)軸配位子前駆体(b-9/Br)の合成
製造例13(2)において、(中間体-10)0.6gの代わりに(中間体-15)0.7g、1N塩酸20mLの代わりに10%臭化水素酸20mLとする以外は製造例13(2)に記載の方法に従い、微黄色固体0.54g(収率64%)を得た。H-NMRよりこの微黄色固体が軸配位子前駆体(b-9/Br)であることを確認した。
Production Example 18 Synthesis of Axial Ligand Precursor (b-9/Br) (1) Intermediate-15: {4-(2-bromoethyldimethylammoniomethyl)phenyl}(2,4,6-trimethoxy Phenyl)iodonium dibromide In Production Example 13 (1), {4-(bromomethyl)phenyl}(2,4,6-trimethoxyphenyl)iodonium bromide 5 instead of 4.4 g of 4-(bromomethyl)phenyldiphenylsulfonium bromide 4.9 g (yield 70%) of a slightly yellow solid was obtained according to the method described in Production Example 13(1) except that the amount was 4 g. This slightly yellow solid was confirmed to be Intermediate-15 by 1 H-NMR.
(2) Synthesis of axial ligand precursor (b-9/Br) In Production Example 13(2), instead of 0.6 g of (Intermediate-10), 0.7 g of (Intermediate-15), 1N hydrochloric acid According to the method described in Production Example 13(2) except that 20 mL of 10% hydrobromic acid was used instead of 20 mL, 0.54 g of a pale yellow solid was obtained (yield 64%). It was confirmed by 1 H-NMR that this slightly yellow solid was the axial ligand precursor (b-9/Br).
製造例19 軸配位子前駆体(b-10/TfO)の合成
 (1)中間体-16:[4-{N-3-(エトキシジメチルシリル)プロピル-N-メチルアミノメチル}フェニル](2,4,6-トリメトキシフェニル)ヨードニウムトリフラートの合成
 反応容器に{4-(ブロモメチル)フェニル}(2,4,6-トリメトキシフェニル)ヨードニウムブロミド5.4g、アセトン50mL、炭酸ナトリウム5g、3-N-メチルアミノプロピルジメチルエトキシシラン1.8gを加え、還流下18時間反応させた。反応混合物を、10%トリフルオロメタンスルホン酸ナトリウム水溶液100mLへ投入した。室温下で2時間撹拌後、ジクロロメタン50mLで抽出し、さらに水洗を5回行い濃縮した。ジクロロメタン-ヘキサンにて再結晶を行い微黄色固体6.1g(収率86%)を得た。H、19F-NMRよりこの微黄色固体が(中間体-16)であることを確認した。
(2)軸配位子前駆体(b-10/TfO)の合成
反応容器に(中間体-16)0.7g、メタノール20mL、ジイソプロピルエチルアミン0.8g、1,3-プロパンスルトン0.6gを加え、還流下20時間反応させた。反応後エバポレーターにて減圧濃縮を行った。再度メタノール10mLに溶解し、そこへ1N塩酸5mLを添加して、室温下3時間撹拌した。ジクロロメタン10mLにて抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、さらに水洗5回行い濃縮した。得られた固体をジエチルエーテルで洗浄し、乾燥することで淡黄色固体0.4g(収率50%)を得た。H、19F-NMRよりよりこの淡黄色固体が軸配位子前駆体(b-10/TfO)であることを確認した。
Production Example 19 Synthesis of Axial Ligand Precursor (b-10/TfO) (1) Intermediate-16: [4-{N-3-(ethoxydimethylsilyl)propyl-N-methylaminomethyl}phenyl] ( Synthesis of 2,4,6-trimethoxyphenyl)iodonium triflate In a reaction vessel {4-(bromomethyl)phenyl}(2,4,6-trimethoxyphenyl)iodonium bromide 5.4 g, acetone 50 mL, sodium carbonate 5 g, 3 -N-methylaminopropyldimethylethoxysilane (1.8 g) was added and reacted under reflux for 18 hours. The reaction mixture was poured into 100 mL of 10% sodium trifluoromethanesulfonate aqueous solution. After stirring at room temperature for 2 hours, the mixture was extracted with 50 mL of dichloromethane, washed with water 5 times, and concentrated. Recrystallization was performed with dichloromethane-hexane to obtain 6.1 g of a slightly yellow solid (yield 86%). 1 H, 19 F-NMR confirmed that this slightly yellow solid was (Intermediate-16).
(2) Synthesis of Axial Ligand Precursor (b-10/TfO) A reaction vessel was charged with 0.7 g of (Intermediate-16), 20 mL of methanol, 0.8 g of diisopropylethylamine, and 0.6 g of 1,3-propanesultone. Then, the mixture was reacted under reflux for 20 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. It was dissolved again in 10 mL of methanol, 5 mL of 1N hydrochloric acid was added thereto, and the mixture was stirred at room temperature for 3 hours. Extracted with 10 mL of dichloromethane. The organic layer was washed with a saturated sodium bicarbonate aqueous solution, washed with water five times, and concentrated. The obtained solid was washed with diethyl ether and dried to obtain 0.4 g of a pale yellow solid (yield 50%). 1 H, 19 F-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-10/TfO).
製造例20 軸配位子前駆体(b-11/Br)の合成
 (1)中間体-17:(2,6-ジメトキシ-4-ヒドロキシフェニル)フェニルヨードニウムブロミドの合成
製造例17(1)において、3-メトキシフェノール12.4gの代わりに3,5-ジメトキシフェノール15.4gとする以外は製造例17(1)に記載の方法に従い、白色固体23.6g(収率54%)を得た。H-NMRよりこの白色固体が(中間体-17)であることを確認した。
 (2)中間体-18:{2,6-ジメトキシ-4-(2-ブロモエトキシ)フェニル}フェニルヨードニウムブロミドの合成
  製造例17(2)において、(中間体-13)4.1gの代わりに(中間体-17)4.4g、1,3-ジブロモプロパン20gの代わりに1,2-ジブロモエタン18gとする以外は製造例17(2)に記載の方法に従い、白色固体2.4g(収率44%)を得た。H-NMRよりこの白色固体が(中間体-18)であることを確認した。
 (3)中間体-19:(2,6-ジメトキシ-4-[2-{N-(3-ジメチルエトキシシリルプロピル)アミノ}エトキシ]フェニル)フェニルヨードニウムブロミドの合成
 製造例7(3)において、(中間体-4)4.5gの代わりに(中間体-18)5.4gとする以外は製造例7(3)に記載の方法に従い、微黄色固体2.3g(収率37%)を得た。H-NMRよりこの微黄色固体が(中間体-19)であることを確認した。
 (4)軸配位子前駆体(b-11/Br)の合成
  反応容器に(中間体-19)0.6g、メタノール20mL、ジイソプロピルエチルアミン1.6g、1,3-プロパンスルトン1.2gを加え、還流下20時間反応させた。反応後エバポレーターにて減圧濃縮を行った。再度メタノール10mLに溶解し、そこへ10%臭化水素酸水溶液5mLを添加して、室温下3時間撹拌した。ジクロロメタン10mLにて抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、さらに水洗5回行い濃縮した。ジクロロメタン-メタノールで再結晶を行い淡黄色固体0.49g(収率57%)を得た。H-NMRよりこの淡黄色固体が軸配位子前駆体(b-11/Br)であることを確認した。
Production Example 20 Synthesis of axial ligand precursor (b-11/Br) (1) Intermediate-17: Synthesis of (2,6-dimethoxy-4-hydroxyphenyl)phenyliodonium bromide In Production Example 17 (1) , 23.6 g of a white solid (yield 54%) was obtained according to the method described in Production Example 17 (1) except that 15.4 g of 3,5-dimethoxyphenol was used instead of 12.4 g of 3-methoxyphenol. . This white solid was confirmed to be (Intermediate-17) by 1 H-NMR.
(2) Intermediate-18: Synthesis of {2,6-dimethoxy-4-(2-bromoethoxy)phenyl}phenyliodonium bromide In Production Example 17 (2), (Intermediate-13) instead of 4.1 g (Intermediate-17) 4.4 g, white solid 2.4 g (yield rate of 44%) was obtained. This white solid was confirmed to be (Intermediate-18) by 1 H-NMR.
(3) Intermediate-19: Synthesis of (2,6-dimethoxy-4-[2-{N-(3-dimethylethoxysilylpropyl)amino}ethoxy]phenyl)phenyliodonium bromide In Production Example 7 (3), (Intermediate-4) Instead of 4.5g (Intermediate-18) 5.4g, according to the method described in Production Example 7 (3), 2.3g of slightly yellow solid (yield 37%) Obtained. It was confirmed by 1 H-NMR that this slightly yellow solid was (Intermediate-19).
(4) Synthesis of Axial Ligand Precursor (b-11/Br) 0.6 g of (Intermediate-19), 20 mL of methanol, 1.6 g of diisopropylethylamine, and 1.2 g of 1,3-propanesultone were placed in a reaction vessel. Then, the mixture was reacted under reflux for 20 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. It was dissolved again in 10 mL of methanol, 5 mL of 10% hydrobromic acid aqueous solution was added thereto, and the mixture was stirred at room temperature for 3 hours. Extracted with 10 mL of dichloromethane. The organic layer was washed with a saturated sodium bicarbonate aqueous solution, washed with water five times, and concentrated. Recrystallization was performed with dichloromethane-methanol to obtain 0.49 g of pale yellow solid (yield 57%). It was confirmed by 1 H-NMR that this pale yellow solid was the axial ligand precursor (b-11/Br).
製造例21 軸配位子前駆体(b-11/CFCO)の合成
製造例10において、軸配位子前駆体(b-3/Cl)0.5gの代わりに軸配位子前駆体(b-11/Br)0.9gとする以外は製造例10に記載の方法に従い、淡黄色固体0.39g(収率44%)を得た。H、19F-NMRよりこの淡黄色固体が軸配位子前駆体(b-11/CFCO)であることを確認した。
Production Example 21 Synthesis of axial ligand precursor (b-11/CF 3 CO 2 ) In Production Example 10, instead of 0.5 g of axial ligand precursor (b-3/Cl), 0.39 g of a pale yellow solid (yield 44%) was obtained according to the method described in Production Example 10, except that the compound (b-11/Br) was 0.9 g. 1 H, 19 F-NMR confirmed that this pale yellow solid was an axial ligand precursor (b-11/CF 3 CO 2 ).
製造例22 軸配位子前駆体(b-11/TfO)の合成
製造例10において、軸配位子前駆体(b-3/Cl)0.5gの代わりに軸配位子前駆体(b-11/Br)0.9g、トリフルオロ酢酸銀0.66gの代わりにトリフルオロメタンスルホン酸銀0.77gとする以外は製造例10に記載の方法に従い、淡黄色固体0.31g(収率33%)を得た。H、19F-NMRよりこの淡黄色固体が軸配位子前駆体(b-11/TfO)であることを確認した。
Production Example 22 Synthesis of axial ligand precursor (b-11/TfO) In Production Example 10, the axial ligand precursor (b -11/Br) 0.9 g, and 0.31 g of a pale yellow solid (yield 33 %) was obtained. 1 H, 19 F-NMR confirmed that this pale yellow solid was the axial ligand precursor (b-11/TfO).
製造例23 軸配位子前駆体(b-12/PF)の合成
  (1)中間体-20:4-(2-ブロモエトキシ)-2,6-ジメトキシアニリンの合成
  反応容器に2,6-ジメトキシ-4-ヒドロキシアニリン8.5g、THF100mL、炭酸カリウム7.5g、1,2-ジブロモエタン50gを加え、50℃で6時間反応させた。反応後エバポレーターにて減圧濃縮を行った。残渣を酢酸エチル50mLで抽出し、有機層を水洗後濃縮した。シリカゲルカラムクロマトグラフィーにて精製を行い、黄色油状物5.8g(収率42%)を得た。H-NMRよりこの黄色油状物が中間体-20であることを確認した。
  (2)中間体-21:4-[2-{3-(エトキシジメチルシリル)プロピルジメチルアンモニオ}エトキシ]-2,6-ジメトキシアニリンブロミドの合成
 (もしくは、N-(3-エトキシジメチルシリル)プロピル-N-2-{(4-アミノ-3,5-ジメトキシ)フェノキシ}エチル-ジメチルアンモニウムブロミド)
 製造例9(2)において、(中間体-6)4.6gの代わりに(中間体-20)2.8gとする以外は製造例9(2)に記載の方法に従い黄色固体3.1g(収率67%)を得た。H-NMRよりこの黄色固体が中間体-21であることを確認した。
  (3)軸配位子前駆体(b-12/PF)の合成
反応容器に(中間体-21)4.6g、水10mL、35%塩酸2mLを加え撹拌しながら塩氷浴にて冷却した。0℃にてあらかじめ亜硝酸ナトリウム0.7gを水5mLに溶解させた水溶液を撹拌下でゆっくりと加えた。そのまま0℃で1時間撹拌した。温度を保ちながらあらかじめKPF2.0gを水50mLへ溶解させた水溶液を投入し、さらに6時間撹拌した。そこへジクロロメタン50mLを加え抽出し、分液操作で水層を除去した。水洗を5回行いエバポレーターで濃縮した。メタノール-ジエチルエーテルで再結晶を行い微黄色固体2.5g(収率38%)を得た。H、19F及び31P-NMRよりこの微黄色固体が軸配位子前駆体(b-12/PF)であることを確認した。
Production Example 23 Synthesis of Axial Ligand Precursor (b-12/PF 6 ) (1) Intermediate-20: Synthesis of 4-(2-bromoethoxy)-2,6-dimethoxyaniline 8.5 g of dimethoxy-4-hydroxyaniline, 100 mL of THF, 7.5 g of potassium carbonate and 50 g of 1,2-dibromoethane were added and reacted at 50° C. for 6 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. The residue was extracted with 50 mL of ethyl acetate, and the organic layer was washed with water and concentrated. Purification was performed by silica gel column chromatography to obtain 5.8 g of a yellow oil (yield 42%). This yellow oil was confirmed to be Intermediate-20 by 1 H-NMR.
(2) Intermediate-21: Synthesis of 4-[2-{3-(ethoxydimethylsilyl)propyldimethylammonio}ethoxy]-2,6-dimethoxyaniline bromide (or N-(3-ethoxydimethylsilyl) Propyl-N-2-{(4-amino-3,5-dimethoxy)phenoxy}ethyl-dimethylammonium bromide)
In Production Example 9 (2), 3.1 g of a yellow solid ( Yield 67%) was obtained. This yellow solid was confirmed to be Intermediate-21 by 1 H-NMR.
(3) Synthesis of Axial Ligand Precursor (b-12/PF 6 ) 4.6 g of (Intermediate-21), 10 mL of water, and 2 mL of 35% hydrochloric acid are added to a reaction vessel and cooled in a salt ice bath while stirring. did. An aqueous solution prepared by previously dissolving 0.7 g of sodium nitrite in 5 mL of water at 0° C. was slowly added with stirring. The mixture was stirred at 0° C. for 1 hour. An aqueous solution prepared by previously dissolving 2.0 g of KPF 6 in 50 mL of water was added while maintaining the temperature, and the mixture was further stirred for 6 hours. 50 mL of dichloromethane was added thereto for extraction, and the aqueous layer was removed by a liquid separation operation. It was washed with water five times and concentrated by an evaporator. Recrystallization was performed with methanol-diethyl ether to obtain 2.5 g of a slightly yellow solid (yield 38%). 1 H, 19 F and 31 P-NMR confirmed that this slightly yellow solid was the axial ligand precursor (b-12/PF 6 ).
製造例24 軸配位子前駆体(b-13/PF)の合成
  (1)中間体-22:4-(2-[N-{3-(エトキシジメチルシリル)プロピル}アミノ]エトキシ)-3,5-ジメトキシアニリンの合成
製造例7(3)において、(中間体-4)4.5gの代わりに(中間体-20)2.8g、3-アミノプロピルジメチルエトキシシラン1.6gの代わりに3-アミノプロピルジメチルイソプロポキシシラン1.8gとする以外は製造例7(3)に記載の方法に従い、黄色固体2.3g(収率62%)を得た。H-NMRよりこの黄色固体が(中間体-22)であることを確認した。
  (2)軸配位子前駆体(b-13/PF)の合成
反応容器に(中間体-22)0.4g、メタノール20mL、ジイソプロピルエチルアミン1.6g、1,3-プロパンスルトン1.2gを加え、還流下20時間反応させた。反応後エバポレーターにて減圧濃縮を行った。得られた固体を別の反応容器に仕込み、水10mL、35%塩酸2mLを加え撹拌しながら塩氷浴にて冷却した。0℃にてあらかじめ亜硝酸ナトリウム0.7gを水5mLに溶解させた水溶液を撹拌下でゆっくりと加えた。そのまま0℃で1時間撹拌した。温度を保ちながらあらかじめKPF2.0gを水50mLへ溶解させた水溶液を投入し、さらに6時間撹拌した。そこへジクロロメタン50mLを加え抽出し、分液操作で水層を除去した。水洗を5回行いエバポレーターで濃縮した。メタノール-ジエチルエーテルで再結晶を行い微黄色固体0.27g(収率36%)を得た。H、19F及び31P-NMRよりこの微黄色固体が軸配位子前駆体(b-13/PF)であることを確認した。
Production Example 24 Synthesis of Axial Ligand Precursor (b-13/PF 6 ) (1) Intermediate-22: 4-(2-[N-{3-(ethoxydimethylsilyl)propyl}amino]ethoxy)- Synthesis of 3,5-dimethoxyaniline In Production Example 7 (3), 2.8 g of (Intermediate-20) instead of 4.5 g of (Intermediate-4) and 1.6 g of 3-aminopropyldimethylethoxysilane 2.3 g of a yellow solid (yield 62%) was obtained according to the method described in Production Example 7(3) except that 1.8 g of 3-aminopropyldimethylisopropoxysilane was used. 1 H-NMR confirmed that this yellow solid was (Intermediate-22).
(2) Synthesis of Axial Ligand Precursor (b-13/PF 6 ) In a reaction vessel, 0.4 g of (Intermediate-22), 20 mL of methanol, 1.6 g of diisopropylethylamine, and 1.2 g of 1,3-propanesultone were placed. was added and reacted under reflux for 20 hours. After the reaction, concentration under reduced pressure was performed using an evaporator. The obtained solid was charged into another reaction vessel, and 10 mL of water and 2 mL of 35% hydrochloric acid were added and cooled in a salt ice bath while stirring. An aqueous solution prepared by previously dissolving 0.7 g of sodium nitrite in 5 mL of water at 0° C. was slowly added with stirring. The mixture was stirred at 0° C. for 1 hour. An aqueous solution prepared by previously dissolving 2.0 g of KPF 6 in 50 mL of water was added while maintaining the temperature, and the mixture was further stirred for 6 hours. 50 mL of dichloromethane was added thereto for extraction, and the aqueous layer was removed by a liquid separation operation. It was washed with water five times and concentrated by an evaporator. Recrystallization was performed with methanol-diethyl ether to obtain 0.27 g of a slightly yellow solid (yield 36%). 1 H, 19 F and 31 P-NMR confirmed that this slightly yellow solid was the axial ligand precursor (b-13/PF 6 ).
<実施例1~43>(本発明の光増感剤の合成)
 本発明の光増感剤の合成は下記合成法(I~III)に基づき合成を行った。実施例1~43で合成した光増感剤(PSと略す)の構造及び用いた合成方法については表1に示すとおりである。
<Examples 1 to 43> (Synthesis of the photosensitizer of the present invention)
Synthesis of the photosensitizer of the present invention was carried out based on the following synthesis methods (I to III). The structures of the photosensitizers (abbreviated as PS) synthesized in Examples 1 to 43 and the synthetic methods used are shown in Table 1.
合成方法(I)(軸配位子が2つの金属錯体の場合)
実施例1~17、23~32、38~43
 反応容器に金属錯体前駆体(a)と軸配位子前駆体(b)とをアセトニトリル溶媒中モル比1:2で室温下混合し、窒素を吹き込みながら6時間反応させ、アセトニトリルを減圧下留去することで目的物(光増感剤)を得た。
Synthesis method (I) (for metal complexes with two axial ligands)
Examples 1-17, 23-32, 38-43
The metal complex precursor (a) and the axial ligand precursor (b) were mixed in a reaction vessel at a molar ratio of 1:2 in an acetonitrile solvent at room temperature, reacted for 6 hours while blowing nitrogen, and acetonitrile was distilled off under reduced pressure. The desired product (photosensitizer) was obtained.
合成方法(II)(軸配位子が2つでカチオン性金属錯体であり、対アニオンX を有する場合)
実施例18~22
反応容器に金属錯体前駆体(a)と軸配位子前駆体(b)とをアセトニトリル溶媒中モル比1:2で室温下混合し、窒素を吹き込みながら6時間反応させ、アセトニトリルを減圧留去後ジクロロメタンに溶解させた。そこへアニオンX のアルカリ金属塩(リチウム、ナトリウム又はカリウム塩)の水溶液を投入し、1時間撹拌を行った。静置後水層を除去し、有機層の水洗を5回行い、濃縮した。ジクロロメタン-ヘキサン精製して目的物(光増感剤)を得た。
Synthesis method (II) (where there are two axial ligands, a cationic metal complex, and a counter anion X 2 - )
Examples 18-22
The metal complex precursor (a) and the axial ligand precursor (b) were mixed in a reaction vessel at a molar ratio of 1:2 in an acetonitrile solvent at room temperature, reacted for 6 hours while blowing nitrogen, and acetonitrile was distilled off under reduced pressure. Then dissolved in dichloromethane. An aqueous solution of an alkali metal salt (lithium, sodium or potassium salt) of the anion X 2 - was added thereto and stirred for 1 hour. After allowing to stand, the aqueous layer was removed, and the organic layer was washed with water five times and concentrated. Purification with dichloromethane-hexane gave the desired product (photosensitizer).
合成方法(III)(軸配位子が1つの金属錯体の場合)
実施例33~37
反応容器に金属錯体前駆体(a)と軸配位子前駆体(b)とをアセトニトリル溶媒中モル比1:1で室温下混合し、窒素を吹き込みながら6時間反応させ、アセトニトリルを減圧下留去することで目的物(光増感剤)を得た。
Synthesis method (III) (in the case of a metal complex with one axial ligand)
Examples 33-37
The metal complex precursor (a) and the axial ligand precursor (b) were mixed in a reaction vessel at a molar ratio of 1:1 in an acetonitrile solvent at room temperature, reacted for 6 hours while blowing nitrogen, and acetonitrile was distilled off under reduced pressure. The desired product (photosensitizer) was obtained.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
(評価-1:溶解性試験)
<実施例44~86及び比較例1~4>
  実施例1~43で得られた光増感剤ならびに比較のための化合物を用いて下記条件での溶解性について評価を行った。その結果を表2に示す。
  DMSO溶液調製:
(a)光増感剤10mgをDMSO1mLに溶解し、1%DMSO溶液とする。
(b)光増感剤1mgをDMSO1mLに溶解し、0.1%DMSO溶液とする。
次いでこれらをA:水10mLで希釈、B:0.1Mリン酸緩衝液10mLで希釈を行い、目視により溶解性を評価した。その結果を表2及び表3に示す。
 ◎:透明
 〇:僅かにカスミあり
 △:カスミがあり、わずかに沈降が見られる
 ×:直ちに沈降する
(評価-2:光応答性試験)
実施例1~43で得られた光増感剤ならびに比較のための化合物を用いて、それぞれ1×10-6Mの0.1%DMSO含有水溶液を調製し、これに対し光源として照射装置LIGHTNINGCUREスポット光源LC8(浜松ホトニクス製)を用いて、赤外透過フィルター(HOYA製)R64(620nm以下カット)を通して露光を行い、外観変化について評価した。これを光応答性の結果として表2及び表3に示す。
 ◎:凝集物あり、液相は透明
 〇:凝集物あり、液相は懸濁
 ×:凝集物なし
 [使用した原材料]
PS-1~PS-43(表1に記載の光増感剤)
H-1:比較用光増感剤-1(特表H09-504811号公報に記載の化合物)
(Evaluation-1: solubility test)
<Examples 44 to 86 and Comparative Examples 1 to 4>
Using the photosensitizers obtained in Examples 1 to 43 and the compounds for comparison, solubility was evaluated under the following conditions. Table 2 shows the results.
DMSO solution preparation:
(a) 10 mg of photosensitizer is dissolved in 1 mL of DMSO to make a 1% DMSO solution.
(b) 1 mg of photosensitizer is dissolved in 1 mL of DMSO to make a 0.1% DMSO solution.
Then, these were diluted with A: 10 mL of water and B: diluted with 10 mL of 0.1 M phosphate buffer, and the solubility was visually evaluated. The results are shown in Tables 2 and 3.
◎: Transparent 〇: Slightly misty △: Slightly misty, slight sedimentation ×: Immediate sedimentation (Evaluation-2: Photoresponsive test)
Using the photosensitizers obtained in Examples 1 to 43 and a compound for comparison, 1×10 −6 M 0.1% DMSO-containing aqueous solutions were prepared, and an irradiation device LIGHTNINGCURE was used as a light source. Using a spot light source LC8 (manufactured by Hamamatsu Photonics), exposure was performed through an infrared transmission filter (manufactured by HOYA) R64 (620 nm or less cut), and changes in appearance were evaluated. This is shown in Tables 2 and 3 as results of photoresponsivity.
◎: Aggregates present, liquid phase transparent 〇: Aggregates present, liquid phase suspended ×: No aggregates [Raw materials used]
PS-1 to PS-43 (photosensitizers described in Table 1)
H-1: Comparative photosensitizer-1 (compound described in Japanese Patent Application Publication No. H09-504811)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
H-2:比較用光増感剤-2(特表2014-522811号公報に記載の化合物) H-2: Comparative photosensitizer-2 (compound described in JP-A-2014-522811)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
H-3:H-1とトリフェニルスルホニウムブロミドの1:1(モル比)混合物
H-4:H-2とジフェニルヨードニウムクロリドの1:1(モル比)混合物
H-3: 1:1 (molar ratio) mixture of H-1 and triphenylsulfonium bromide H-4: 1:1 (molar ratio) mixture of H-2 and diphenyliodonium chloride
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 ※光応答性試験に適切な溶解性を示さず、評価行えず。 *Cannot be evaluated because it does not show appropriate solubility in the photoresponse test.
表2及び表3から、実施例44~86に示す通り本発明の光増感剤は親水性溶媒、特にバイオ分野で用いられる緩衝溶媒下においても良好な溶解性を示すことが分かる。さらに、実施例44~86に示す通り本発明の光増感剤は光照射を行うことによって疎水化が起こり、効果的に凝集させることができる。比較例1及び2の光増感剤では溶解性に優れるものの、疎水化による凝集効果がほとんどなく、また、比較例3及び4のように、光増感剤とオニウム塩構造が別々で配合される場合は溶解性が伴わず、光照射による疎水化には適さないことがわかる。 From Tables 2 and 3, as shown in Examples 44 to 86, it can be seen that the photosensitizers of the present invention exhibit good solubility even in hydrophilic solvents, particularly buffer solvents used in the biotechnology field. Further, as shown in Examples 44 to 86, the photosensitizer of the present invention is hydrophobized by light irradiation and can be effectively aggregated. Although the photosensitizers of Comparative Examples 1 and 2 are excellent in solubility, there is almost no aggregation effect due to hydrophobization, and as in Comparative Examples 3 and 4, the photosensitizer and the onium salt structure are separately blended. It can be seen that, when there is no solubility, it is not suitable for hydrophobization by light irradiation.
<プローブに結合した光増感剤>
(側鎖に反応性基を有する金属錯体前駆体の合成)
<Photosensitizer bound to probe>
(Synthesis of Metal Complex Precursor Having Reactive Group in Side Chain)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
製造例-25 金属錯体前駆体(a-10)の合成
 反応容器にn-ペンタノール200g、4-{4-(メトキシカルボニル)ブトキシ}フタロニトリル2.3g、1,2-ジシアノベンゼン23g、テトラクロロシラン10gを加え、そこへDBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)27g加えて混合した。これを昇温し140℃で還流下12時間反応させた。室温まで冷却し、反応液をメタノール/水=1/2(重量比)1500gへ撹拌しながら徐々に滴下し、スラリーを得た。これをろ過し、ろ過物をメタノール/水=1/2(重量比)100gで5回洗浄し乾燥させた。カラムクロマトグラフィーにて分離、精製し、青緑色固体を得た。H-NMRよりこの固体が金属錯体前駆体(a-10)であることを確認した。
Production Example-25 Synthesis of Metal Complex Precursor (a-10) In a reaction vessel, 200 g of n-pentanol, 2.3 g of 4-{4-(methoxycarbonyl)butoxy}phthalonitrile, 23 g of 1,2-dicyanobenzene, tetra 10 g of chlorosilane was added, and 27 g of DBU (1,8-diazabicyclo[5.4.0]-7-undecene) was added and mixed. The mixture was heated to 140° C. and reacted under reflux for 12 hours. After cooling to room temperature, the reaction solution was gradually added dropwise to 1,500 g of methanol/water=1/2 (weight ratio) while stirring to obtain a slurry. This was filtered, and the filtrate was washed 5 times with 100 g of methanol/water=1/2 (weight ratio) and dried. It was separated and purified by column chromatography to obtain a bluish-green solid. It was confirmed by 1 H-NMR that this solid was the metal complex precursor (a-10).
製造例-26 金属錯体前駆体(a-11)の合成
製造例1に従い、オクタエチルポルフィリンの代わりに5-(4-メトキシカルボニルフェニル)-10,15,20-トリフェニルポルフィリン(東京化成製)とテトラクロロシランより表題の化合物(a-11)を合成した。
Production Example-26 Synthesis of Metal Complex Precursor (a-11) According to Production Example 1, instead of octaethylporphyrin, 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin (manufactured by Tokyo Kasei) and tetrachlorosilane to synthesize the title compound (a-11).
(側鎖に反応性基を有する光増感剤(PS-Ra)の合成例)
本発明の側鎖に反応性基を有する光増感剤(PS-Ra)の合成について下記フローに基づき行った。合成した光増感剤(PS-Ra1~5)の構造について表4に示す。
(Synthesis example of a photosensitizer (PS-Ra) having a reactive group in the side chain)
Synthesis of the photosensitizer (PS-Ra) having a reactive group in the side chain of the present invention was performed based on the following flow. Table 4 shows the structures of the synthesized photosensitizers (PS-Ra1 to 5).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
実施例87~91
中間体Iの合成:
 合成法(I)に従い、反応容器に金属錯体前駆体(a-10)と軸配位子前駆体(b)とをアセトニトリル溶媒中モル比1:2で室温下混合し、窒素を吹き込みながら6時間反応させ、アセトニトリルを減圧下留去することで目的物である中間体Iを得た。       
Examples 87-91
Synthesis of Intermediate I:
According to the synthesis method (I), the metal complex precursor (a-10) and the axial ligand precursor (b) were mixed in an acetonitrile solvent at a molar ratio of 1:2 at room temperature in a reaction vessel, and nitrogen was blown into the reaction vessel. The mixture was allowed to react for several hours, and acetonitrile was distilled off under reduced pressure to obtain the desired intermediate I.
中間体IIの合成:
 反応容器に(中間体I)と5-アミノ吉草酸ナトリウムをアセトニトリル溶媒下、モル比1:1で混合し、40℃で48時間撹拌した。反応後溶媒を減圧留去することで目的物である(中間体II)を得た。
Synthesis of Intermediate II:
(Intermediate I) and sodium 5-aminovalerate were mixed in a reaction vessel at a molar ratio of 1:1 in acetonitrile solvent and stirred at 40° C. for 48 hours. After the reaction, the solvent was distilled off under reduced pressure to obtain the desired product (Intermediate II).
PS-Raの合成:
 反応容器に(中間体II)1ミリモルを加え、ジメチルスルホキシドに溶解し、ピリジン1ミリモルおよび炭酸ジ(N-スクシンイミジル)1ミリモルを加え、50℃で6時間反応させた。反応後濃縮し、IPA/水で洗浄を行い、目的物である(PS-Ra)を得た。
Synthesis of PS-Ra:
1 mmol of (Intermediate II) was added to a reaction vessel, dissolved in dimethylsulfoxide, 1 mmol of pyridine and 1 mmol of di(N-succinimidyl) carbonate were added, and the mixture was reacted at 50° C. for 6 hours. After the reaction, the mixture was concentrated and washed with IPA/water to obtain the desired product (PS-Ra).
(側鎖に反応性基を有する光増感剤(PS-Rb)の合成)
本発明の側鎖に反応性基を有する光増感剤(PS-Rb)の合成について、公知の方法である下記フローに基づき行った。合成した光増感剤(PS-Rb1~5)の構造について表4に示す。
(Synthesis of photosensitizer (PS-Rb) having reactive group in side chain)
Synthesis of the photosensitizer (PS-Rb) having a reactive group in the side chain of the present invention was performed based on the following flow, which is a known method. Table 4 shows the structures of the synthesized photosensitizers (PS-Rb1 to 5).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
実施例92~96
中間体Iの合成:
 合成法(I)に従い、反応容器に金属錯体前駆体(a-11)と軸配位子前駆体(b)とをアセトニトリル溶媒中モル比1:2で室温下混合し、窒素を吹き込みながら6時間反応させ、アセトニトリルを減圧下留去することで目的物である中間体Iを得た。       
Examples 92-96
Synthesis of Intermediate I:
According to the synthesis method (I), the metal complex precursor (a-11) and the axial ligand precursor (b) were mixed in an acetonitrile solvent at a molar ratio of 1:2 at room temperature in a reaction vessel, and nitrogen was blown into the reaction vessel. The mixture was allowed to react for several hours, and acetonitrile was distilled off under reduced pressure to obtain the desired intermediate I.
中間体IIの合成:
 反応容器に(中間体I)と12-アミノ-4,7,10-トリオキサドデカン酸ナトリウムをアセトニトリル溶媒下、モル比1:1で混合し、40℃で48時間撹拌した。反応後溶媒を減圧留去することで目的物である(中間体II)を得た。
Synthesis of Intermediate II:
(Intermediate I) and sodium 12-amino-4,7,10-trioxadodecanoate were mixed in a reaction vessel at a molar ratio of 1:1 in acetonitrile solvent and stirred at 40° C. for 48 hours. After the reaction, the solvent was distilled off under reduced pressure to obtain the desired product (Intermediate II).
PS-Raの合成:
 反応容器に(中間体II)1ミリモルを加え、ジメチルスルホキシドに溶解し、ピリジン1ミリモルおよび炭酸ジ(N-スクシンイミジル)1ミリモルを加え、50℃で10時間反応させた。反応後濃縮し、エタノール/水で洗浄を行い、目的物である(PS-Rb)を得た。
Synthesis of PS-Ra:
1 mmol of (Intermediate II) was added to a reaction vessel, dissolved in dimethylsulfoxide, 1 mmol of pyridine and 1 mmol of di(N-succinimidyl) carbonate were added, and the mixture was reacted at 50° C. for 10 hours. After the reaction, it was concentrated and washed with ethanol/water to obtain the desired product (PS-Rb).
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
(プローブに結合した光増感剤の例)
 実施例87~96で得られた側鎖に反応性基を有する光増感剤(PS-RaおよびPS-Rb)を用い、公知の方法である下記フローに従い、プローブとしてビオチンを標識した光増感剤(PS-Ba)および(PS-Bb)を合成した。合成した光増感剤(PS-Ba1~5およびPS-Bb1~5)の構造について表5に示す。
(Example of photosensitizer bound to probe)
Photosensitizers (PS-Ra and PS-Rb) having reactive groups on the side chains obtained in Examples 87-96 were used, and biotin was labeled as a probe according to the following flow, which is a known method. Sensitizers (PS-Ba) and (PS-Bb) were synthesized. Table 5 shows the structures of the synthesized photosensitizers (PS-Ba1-5 and PS-Bb1-5).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
実施例97~101
反応容器に(PS-Ra)0.1mmolをジメチルスルホキシド10mLに溶解し、そこへN-ビオチニル-3,6-ジオキサオクタン-1,8-ジアミン(東京化成製)0.1mmolとリン酸二ナトリウム緩衝液(pH8.4)10mLを加え室温下で24時間撹拌した。反応液を濃縮し、アセトニトリル、メタノールで洗浄し目的物である(PS-Ba)を得た。
Examples 97-101
0.1 mmol of (PS-Ra) was dissolved in 10 mL of dimethylsulfoxide in a reaction vessel, and 0.1 mmol of N-biotinyl-3,6-dioxaoctane-1,8-diamine (manufactured by Tokyo Kasei) and diphosphate were added thereto. 10 mL of sodium buffer solution (pH 8.4) was added and stirred at room temperature for 24 hours. The reaction mixture was concentrated and washed with acetonitrile and methanol to obtain the desired product (PS-Ba).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
実施例102~106
反応容器に(PS-Rb)0.1mmolをジメチルスルホキシド10mLに溶解し、そこへN-ビオチニル-3,6-ジオキサオクタン-1,8-ジアミン(東京化成製)0.1mmolとリン酸二ナトリウム緩衝液(pH8.4)10mLを加え室温下で24時間撹拌した。反応液を濃縮し、アセトニトリル、メタノールで洗浄し目的物である(PS-Bb)を得た。
Examples 102-106
0.1 mmol of (PS-Rb) was dissolved in 10 mL of dimethylsulfoxide in a reaction vessel, and 0.1 mmol of N-biotinyl-3,6-dioxaoctane-1,8-diamine (manufactured by Tokyo Kasei) and diphosphate were added thereto. 10 mL of sodium buffer solution (pH 8.4) was added and stirred at room temperature for 24 hours. The reaction solution was concentrated and washed with acetonitrile and methanol to obtain the desired product (PS-Bb).
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
(評価-1:溶解性試験)
<実施例107~116>
  実施例97~106で得られたプローブに結合した光増感剤を用いて下記条件での溶解性について評価を行った。その結果を表6に示す。
  DMSO溶液調製:
(a)光増感剤10mgをDMSO1mLに溶解し、1%DMSO溶液とする。
(b)光増感剤1mgをDMSO1mLに溶解し、0.1%DMSO溶液とする。
次いでこれらをA:水10mLで希釈、B:0.1Mリン酸緩衝液10mLで希釈を行い、目視により溶解性を評価した。その結果を表2及び表3に示す。
 ◎:透明
 〇:僅かにカスミあり
 △:カスミがあり、わずかに沈降が見られる
 ×:直ちに沈降する
(評価-2:光応答性試験)
実施例97~106で得られたプローブに結合した光増感剤を用いて、それぞれ1×10-6Mの0.1%DMSO含有水溶液を調製し、これに対し光源として照射装置LIGHTNINGCUREスポット光源LC8(浜松ホトニクス製)を用いて、赤外透過フィルター(HOYA製)R64(620nm以下カット)を通して露光を行い、外観変化について評価した。これを光応答性の結果として表6に示す。
 ◎:凝集物あり、液相は透明
 〇:凝集物あり、液相は懸濁
 ×:凝集物なし
(Evaluation-1: solubility test)
<Examples 107 to 116>
Using the photosensitizers bound to the probes obtained in Examples 97-106, solubility was evaluated under the following conditions. Table 6 shows the results.
DMSO solution preparation:
(a) 10 mg of photosensitizer is dissolved in 1 mL of DMSO to make a 1% DMSO solution.
(b) 1 mg of photosensitizer is dissolved in 1 mL of DMSO to make a 0.1% DMSO solution.
Then, these were diluted with A: 10 mL of water and B: diluted with 10 mL of 0.1 M phosphate buffer, and the solubility was visually evaluated. The results are shown in Tables 2 and 3.
◎: Transparent 〇: Slightly misty △: Slightly misty, slight sedimentation ×: Immediate sedimentation (Evaluation-2: Photoresponsive test)
Using the photosensitizers bound to the probes obtained in Examples 97 to 106, 1×10 −6 M 0.1% DMSO-containing aqueous solutions were prepared, and a LIGHTNINGCURE spot light source was used as the light source for the irradiation device. Using LC8 (manufactured by Hamamatsu Photonics), exposure was performed through an infrared transmission filter (manufactured by HOYA) R64 (620 nm or less cut), and changes in appearance were evaluated. This is shown in Table 6 as a result of photoresponsivity.
◎: Aggregates present, liquid phase transparent 〇: Aggregates present, liquid phase suspended ×: No aggregates
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
表6から、実施例107~116に示す通り本発明のプローブに結合した光増感剤は親水性溶媒、特にバイオ分野で用いられる緩衝溶媒下においても良好な溶解性を示すことが分かる。さらに、実施例107~116に示す通り本発明のプローブに結合した光増感剤は光照射を行うことによって疎水化が起こり、効果的に凝集させることができる。すなわち、本発明の光増感剤は種々のプローブを結合した形態であってもその効果を損なうことなく、光照射により親疎水性変化を伴って凝集させることができる。なお、その前駆体である反応性基を側鎖に有する光増感剤(PS-Ra)および(PS-Rb)についても光照射による凝集効果を得ることができる。 From Table 6, it can be seen that the photosensitizers bound to the probes of the present invention, as shown in Examples 107-116, exhibit good solubility even in hydrophilic solvents, especially buffer solvents used in the biotechnology field. Furthermore, as shown in Examples 107 to 116, the photosensitizer bound to the probe of the present invention is hydrophobized by light irradiation and can be effectively aggregated. That is, even if the photosensitizer of the present invention is in the form of binding various probes, it can be aggregated with a change in hydrophilicity and hydrophobicity by light irradiation without impairing its effect. The photosensitizers (PS-Ra) and (PS-Rb) having a reactive group on the side chain, which are precursors thereof, can also obtain an aggregating effect by light irradiation.
本発明の光増感剤は、光(特に可視領域~赤外領域)を利用して、標的となる特定の細胞に特異的に結合してなる複合体を光照射によって凝集させるような使用方法、医薬品として治療を目的とした使用(光線力学療法や光免疫療法等)等に好適に用いられる。また、抗体の特異的結合を利用した分析法や精製法である、アフィニティークロマトグラフィー、光照射分子不活性化法(CALIおよびFALI)等にも好適に利用できる。 The photosensitizer of the present invention uses light (particularly in the visible region to the infrared region) to agglutinate a complex specifically bound to a specific target cell by light irradiation. , and is suitably used for therapeutic purposes as a pharmaceutical (photodynamic therapy, photoimmunotherapy, etc.). In addition, it can be suitably used for affinity chromatography, light irradiation molecule inactivation method (CALI and FALI), etc., which are analytical methods and purification methods that utilize specific binding of antibodies.

Claims (10)

  1. ピロール環が直接又はπ共役により繋がった環構造を形成した環状配位子を有し、かつオニウム塩構造を有してなる軸配位子を有する、一般式(1)又は一般式(2)で表される金属錯体を含有する光増感剤。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、R~Rは環状配位子上の置換基であり、RとR、RとR、RとR、RとRで互いに結合して縮合多環芳香族構造を形成していてもよく、Yは窒素原子、CR又は直接結合していてもよく、Rは水素原子又は炭素数6~14の芳香族炭化水素であり、MはAl、Ga、In、Si、Ge、Sn、Fe、Ti、Co及びMnの群から選ばれ、L及びLは金属Mに配位する式(3)で表される軸配位子であり、MがAl、Ga、In、Fe、Co又はMnの場合はLのみを有する。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)は中心金属Mがカチオン性である場合を表しており、R~R、Y、L及びLは式(1)と同じであり、MはP、Sb及びBiの群から選ばれ、X は中心金属カチオンに対応する1価の対アニオンを表す。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)中、Dは酸素原子又は硫黄原子を表し、Eは炭素数1~8のアルキレン、炭素数2~8のアルケニレン、炭素数2~8のアルキニレン又は炭素数6~14のアリーレンを表し、これらの基の主鎖に少なくとも1つの下記式(4)で表されるアンモニオ基を含み、さらにエーテル基、スルフィド基、ケトン基、アミド基、エステル基、チオエステル基、ウレア基、スルホン基、シリル基又はフェニレン基を含んでいてもよく、Aは1価のオニウムカチオンであり、X はオニウムカチオンに対応する1価の対アニオンを表す。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式(4)中R10、R11は炭素数1~3のアルキル基及び下記式(5)で表される群より選ばれる基である。ただしR10、R11が共に炭素数1~3のアルキル基である場合、該アンモニオ基に対応する1価の対アニオンX を有する。〕
    Figure JPOXMLDOC01-appb-C000005
    〔式(5)中Lはメチレン、エチレン又はプロピレンであり、X はカルボン酸、スルフィン酸、スルホン酸、リン酸及びホスホン酸で表される群より選ばれるアニオンである。ただしR10、R11が共に式(5)である場合、X のどちらか一方は水素イオン又は1価の金属カチオンを有する。〕
    general formula (1) or general formula (2), which has a cyclic ligand forming a ring structure in which pyrrole rings are connected directly or by π-conjugation, and an axial ligand having an onium salt structure; Photosensitizer containing a metal complex represented by.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 1 to R 8 are substituents on a cyclic ligand, and R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 are may form a condensed polycyclic aromatic structure, Y is a nitrogen atom, CR 9 or may be directly bonded, and R 9 is a hydrogen atom or an aromatic hydrocarbon having 6 to 14 carbon atoms. , M is selected from the group of Al, Ga, In, Si, Ge, Sn, Fe, Ti, Co and Mn, and L 1 and L 2 are coordinated to the metal M and have an axial orientation represented by formula (3) L 1 only if M is Al, Ga, In, Fe, Co or Mn. ]
    Figure JPOXMLDOC01-appb-C000002
    [Formula (2) represents the case where the central metal M is cationic, R 1 to R 8 , Y, L 1 and L 2 are the same as in formula (1), and M is P, Sb and Bi and X 2 - represents a monovalent counter anion corresponding to the central metal cation. ]
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), D represents an oxygen atom or a sulfur atom, E is an alkylene having 1 to 8 carbon atoms, an alkenylene having 2 to 8 carbon atoms, an alkynylene having 2 to 8 carbon atoms, or an arylene having 6 to 14 carbon atoms and contains at least one ammonio group represented by the following formula (4) in the main chain of these groups, and further an ether group, a sulfide group, a ketone group, an amide group, an ester group, a thioester group, a urea group, a sulfone groups, silyl groups or phenylene groups, A + is a monovalent onium cation and X 1 - represents a monovalent counter anion corresponding to the onium cation. ]
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (4), R 10 and R 11 are groups selected from the group represented by an alkyl group having 1 to 3 carbon atoms and the following formula (5). However, when both R 10 and R 11 are alkyl groups having 1 to 3 carbon atoms, it has a monovalent counter anion X 3 corresponding to the ammonio group. ]
    Figure JPOXMLDOC01-appb-C000005
    [In formula (5), L 3 is methylene, ethylene or propylene, and X 4 - is an anion selected from the group represented by carboxylic acid, sulfinic acid, sulfonic acid, phosphoric acid and phosphonic acid. However, when both R 10 and R 11 have formula (5), either one of X 4 - has a hydrogen ion or a monovalent metal cation. ]
  2. 式(3)中のAが、スルホニウムカチオン、ジアゾニウムカチオン又はヨードニウムカチオンである請求項1に記載の光増感剤。 2. The photosensitizer according to claim 1, wherein A + in formula (3) is a sulfonium cation, a diazonium cation or an iodonium cation.
  3. 環状配位子が、ポルフィリン骨格又はフタロシアニン骨格である請求項1又は2に記載の光増感剤。 3. The photosensitizer according to claim 1, wherein the cyclic ligand is a porphyrin skeleton or a phthalocyanine skeleton.
  4.  式(1)中のMが、Al、Si、Ge、Sn又はPであり、式(2)中のMが、Pである請求項1~3のいずれかに記載の光増感剤。 The photosensitizer according to any one of claims 1 to 3, wherein M in formula (1) is Al, Si, Ge, Sn or P, and M in formula (2) is P.
  5.  環状配位子上の置換基の少なくとも1つが、下記式(6)で表される基を含む請求項1~4のいずれかに記載の光増感剤。
    Figure JPOXMLDOC01-appb-C000006
    〔式(6)中(G)は生体分子(プローブ)を表し、Lは(G)と光増感剤分子とを結合する2価の基を表す。〕
    The photosensitizer according to any one of claims 1 to 4, wherein at least one of the substituents on the cyclic ligand contains a group represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000006
    [In formula (6), (G) represents a biomolecule (probe), and L4 represents a divalent group that bonds (G) to a photosensitizer molecule. ]
  6. 環状配位子上の置換基の少なくとも1つが、下記式(7)で表される基を含む請求項5に記載の光増感剤。
    Figure JPOXMLDOC01-appb-C000007
    〔式(7)中、Lは式(6)と同じであり、(G’)は式(6)中の上記プローブ(G)を結合するための反応性基を表す。〕
    6. The photosensitizer according to claim 5, wherein at least one of the substituents on the cyclic ligand contains a group represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000007
    [In formula (7), L4 is the same as in formula ( 6 ), and (G') represents a reactive group for binding the probe (G) in formula (6). ]
  7. (G)が抗体である、請求項5又は6に記載の光増感剤。 7. The photosensitizer according to claim 5 or 6, wherein (G) is an antibody.
  8. 請求項7に記載の光増感剤が結合してなる抗体結合体。 An antibody conjugate to which the photosensitizer according to claim 7 is bound.
  9. 500~1500nmの光照射により軸配位子の脱離を促進させることを特徴とする請求項1~7のいずれかに記載の光増感剤の使用方法。 8. A method of using the photosensitizer according to any one of claims 1 to 7, wherein the release of the axial ligand is accelerated by irradiation with light of 500 to 1500 nm.
  10.  請求項1~7のいずれかに記載の光増感剤を治療目的で使用する、使用方法。 A method of using the photosensitizer according to any one of claims 1 to 7 for therapeutic purposes.
PCT/JP2022/001035 2021-02-01 2022-01-14 Photosensitizer WO2022163377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578229A JPWO2022163377A1 (en) 2021-02-01 2022-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-014253 2021-02-01
JP2021014253 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022163377A1 true WO2022163377A1 (en) 2022-08-04

Family

ID=82653392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001035 WO2022163377A1 (en) 2021-02-01 2022-01-14 Photosensitizer

Country Status (2)

Country Link
JP (1) JPWO2022163377A1 (en)
WO (1) WO2022163377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801299A (en) * 2023-11-10 2024-04-02 深圳大学 Supermolecule photosensitizer with high-efficiency photodynamic curative effect and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2283980A (en) * 1993-11-10 1995-05-24 Sandoz Ltd Cationic aluminium-phthalocyanine dyestuffs
WO2005099689A1 (en) * 2004-04-01 2005-10-27 Case Western Reserve University Topical delivery of phthalocyanines
RU2282646C1 (en) * 2005-05-31 2006-08-27 Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") Photosensitizing agents for photodynamic therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2283980A (en) * 1993-11-10 1995-05-24 Sandoz Ltd Cationic aluminium-phthalocyanine dyestuffs
WO2005099689A1 (en) * 2004-04-01 2005-10-27 Case Western Reserve University Topical delivery of phthalocyanines
RU2282646C1 (en) * 2005-05-31 2006-08-27 Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") Photosensitizing agents for photodynamic therapy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAIDI SYED, AGARWAL RAJESH, EICHLER GUIDO, RIHTER BORIS D., KENNEY MALCOLM E., MUKHTAR HASAN: " Photodynamic Effects of New Silicon Phthalocyanines: In vitro Studies Utilizing Rat Hepatic Microsomes and Human Erythrocyte Ghosts as Model Membrane Sources", PHOTOCHEMISTRY AND PHOTOBIOLOGY, vol. 58, no. 2, 1 August 1993 (1993-08-01), US , pages 204 - 210, XP055953514, ISSN: 0031-8655, DOI: 10.1111/j.1751-1097.1993.tb09550.x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801299A (en) * 2023-11-10 2024-04-02 深圳大学 Supermolecule photosensitizer with high-efficiency photodynamic curative effect and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2022163377A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
Hussain et al. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide (III) complex formation
KR20200064059A (en) Programmable dendritic drugs
Banfi et al. Synthesis and photo-physical properties of a series of BODIPY dyes
Dilber et al. Non-aggregated zwitterionic Zinc (II) phthalocyanine complexes in water with high singlet oxygen quantum yield
BR9910669B1 (en) platinum complex, platinum complex inclusion complex, processes for preparing them and pharmaceutical composition for therapy of oncological diseases.
Çakır et al. New peripherally and non-peripherally tetra-substituted water soluble zinc phthalocyanines: Synthesis, photophysics and photochemistry
WO2022163377A1 (en) Photosensitizer
US9611281B2 (en) BODIPY derivatives and methods of synthesis and use thereof
CN113307818B (en) Fluorescent probe with fluorescence imaging and photodynamic functions, nano preparation thereof and preparation method
EP4001285A1 (en) Near-infrared (nir) absorbing photosensitizers
Monro et al. Synthesis, characterization and photobiological studies of Ru (II) dyads derived from α‐oligothiophene derivatives of 1, 10‐phenanthroline
CN112920210A (en) Red light activatable photodynamic therapy-chemotherapy combined prodrug and preparation and application thereof
Jiang et al. Tetracationic and tetraanionic manganese porphyrins: electrochemical and spectroelectrochemical characterization
Gao et al. Highly efficient singlet oxygen generation of AIE luminogens enable mitochondria-targeted photodynamic therapy
WO2016180297A1 (en) Metal bridge site fused ring compound, and intermediate, preparation method and use thereof
CN112409365B (en) 3-sulfopropane sulfydryl modified phthalocyanine, preparation method thereof and application thereof in pharmaceutical field
US8440641B2 (en) Phthalocyanine salt formulations
WO2020260424A1 (en) Ruthenium (ii) complexes and conjugates thereof for use as photosensitizer agent in photodynamic therapy
US10723694B2 (en) Propargyl-functionalized macrocyclic compounds
JP7440725B2 (en) Compound decomposition method and compound
CN115109027B (en) Degradable fluorescent molecule for photodynamic therapy, preparation method and application
Liu et al. pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs
Saka et al. Synthesis, characterization, photophysical and photochemical properties of tetra-2-[2-(benzothiazolylthio)] ethoxy substituted phthalocyanine derivatives
Li Silicon phthalocyanines for photodynamic therapy studies
Chiyumba Photodynamic Anticancer and Antimicrobial Activities of π-Extended BODIPY Dyes and Cationic Mitochondria-Targeted Porphyrins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745602

Country of ref document: EP

Kind code of ref document: A1