WO2022162920A1 - Network node and communication method - Google Patents

Network node and communication method Download PDF

Info

Publication number
WO2022162920A1
WO2022162920A1 PCT/JP2021/003425 JP2021003425W WO2022162920A1 WO 2022162920 A1 WO2022162920 A1 WO 2022162920A1 JP 2021003425 W JP2021003425 W JP 2021003425W WO 2022162920 A1 WO2022162920 A1 WO 2022162920A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnb
information
unit
scheduling
network
Prior art date
Application number
PCT/JP2021/003425
Other languages
French (fr)
Japanese (ja)
Inventor
淳 巳之口
政宏 澤田
敬浩 青木
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/003425 priority Critical patent/WO2022162920A1/en
Priority to JP2022577992A priority patent/JPWO2022162920A1/ja
Publication of WO2022162920A1 publication Critical patent/WO2022162920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present invention relates to a network node and communication method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • the CNC Central Network Controller
  • SMF Session Management function
  • TSN-AF Application Function
  • PCF Policy Control Function
  • SMF transmits the scheduling assistance information to gNB (next generation Node-B) as TSCAI (Time-Sensitive Communication Assistance Information).
  • the gNB refers to the scheduling assistance information, and appropriately determines the scheduling of radio part communication using configured grant for UL and semi-persistent scheduling for DL.
  • the transmission line between gNB-RU (Remote Unit) and gNB-DU (Distributed Unit), the transmission line between gNB-DU and gNB-CU-UP (Central Unit - User Plane), Scheduling of transmission paths between gNB-CU-UP and UPF (User plane function) could not be controlled based on information from CNC.
  • the present invention has been made in view of the above points, and aims to improve the utilization efficiency of user data transmission lines in a wireless communication system.
  • a transmission unit that transmits scheduling support information to gNB-DU (next generation Node B Distributed Unit), and the radio side scheduling information generated by the gNB-DU based on the scheduling support information is received.
  • a receiving unit, and the transmitting unit transmits schedule information based on the wireless side scheduling information to the gNB-DU and gNB-CU-UP (next generation Node B - Central Unit - User Plane) on the data transmission path
  • a network node is provided that transmits to a transport that is placed between.
  • FIG. 1 is a diagram for explaining an example of a communication system; FIG. It is a figure showing an example of network composition in an embodiment of the invention.
  • FIG. 2 is a diagram showing an example of transmission lines in the embodiment of the present invention;
  • FIG. 4 is a sequence diagram for explaining example (1) of PDU session establishment in the embodiment of the present invention;
  • FIG. 4 is a sequence diagram for explaining example (2) of PDU session establishment in the embodiment of the present invention;
  • FIG. 4 is a sequence diagram for explaining example (3) of PDU session establishment in the embodiment of the present invention;
  • FIG. 10 is a sequence diagram for explaining example (4) of PDU session establishment in the embodiment of the present invention;
  • FIG. 10 is a sequence diagram for explaining example (5) of PDU session establishment in the embodiment of the present invention; It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention.
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention;
  • FIG. 2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention;
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and subsequent systems (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, NR-PDCCH, NR-PDSCH, NR-PUCCH, NR-PUSCH, and the like.
  • NR- even a signal used for NR is not necessarily specified as "NR-".
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex etc.) method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • "configuring" wireless parameters and the like may mean that predetermined values are preset (Pre-configure), and the base station 10 or A wireless parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram for explaining an example of a communication system.
  • a communication system consists of a UE, which is a terminal 20 , and a plurality of network nodes 30 .
  • one network node 30 corresponds to each function, but one network node 30 may realize a plurality of functions, or a plurality of network nodes 30 may realize one function.
  • the "connection" described below may be a logical connection or a physical connection.
  • a RAN Radio Access Network
  • AMF Access and Mobility Management Function
  • UPF User plane function
  • the AMF is a network node 30 having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
  • the UPF is a network node 30 that has functions such as a PDU (Protocol Data Unit) session point to the outside that interconnects with a DN (Data Network), packet routing and forwarding, and user plane QoS (Quality of Service) handling.
  • PDU Protocol Data Unit
  • DN Data Network
  • packet routing and forwarding and user plane QoS (Quality of Service) handling.
  • UPF and DN constitute a network slice.
  • a plurality of network slices are constructed in the wireless communication network according to the embodiment of the present invention.
  • AMF is UE, RAN, SMF (Session Management function), NSSF (Network Slice Selection Function), NEF (Network Exposure Function), NRF (Network Repository Function), UDM (Unified Data Management), AUSF (Authentication Server Function), PCF (Policy Control Function) and AF (Application Function) are connected.
  • AMF, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF are interconnected via respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf. network node 30 .
  • the SMF is a network node 30 that has functions such as session management, UE IP (Internet Protocol) address allocation and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function.
  • a NEF is a network node 30 that has the function of notifying other NFs (Network Functions) of capabilities and events. NSSF selects the network slice to which the UE connects, determines the allowed NSSAI (Network Slice Selection Assistance Information), determines the NSSAI to be set, determines the AMF set to which the UE connects. be.
  • a PCF is a network node 30 having a function of performing network policy control.
  • AF is a network node 30 having the function of controlling an application server.
  • An NRF is a network node 30 that has the ability to discover NF instances that provide services.
  • a UDM is a network node 30 that manages subscriber data and authentication data. The UDM is connected to a UDR (User Data Repository) that holds the data.
  • UDR User Data Repository
  • PLMN Public There is an implicit assumption that the mobile operator supporting the Land Mobile Network
  • the notification of the traffic characteristics to the transmission path is only based on the DSCP (Differentiated Services Code Point) value.
  • the existing specifications in the NR network do not have the concept of a transmission network operator, there is no method for the transmission network operator to accept traffic from multiple PLMNs for each call, and a transmission line that acquires traffic characteristics off-path is used.
  • each part of the transmission path is configured so that it can be regarded as one UPF (hereinafter referred to as "transport") from the outside.
  • a transport may act as one network node, or the transport may also be composed of multiple network nodes.
  • FIG. 2 is a diagram showing an example of a network configuration according to the embodiment of the present invention.
  • gNB-CU-CP next generation Node B - Central Unit - Control Plane
  • the SMF shall be able to set up the transport between the gNB-CU-UP and the UPF.
  • the transport consists of the following three parts 1)-3).
  • tSMF Traffic Management Function
  • a portion located on the edge side as a transmission line is referred to as "aUPF".
  • the transport can connect gNB-DU, gNB-CU-UP and UPF in one PLMN and gNB-DU, gNB-CU-UP and UPF in another PLMN.
  • the requesting PLMN can be distinguished by the instructions sent from the gNB-CU-CP or SMF to the transport. Also, the indication to send from gNB-CU-CP to gNB-CU-UP or from SMF to UPF includes the existing network instance.
  • the network instance shall newly encode the name of the transmission network operator that provides the transport and the transmission service type provided by the transmission network operator.
  • FIG. 3 is a diagram showing an example of transmission lines in the embodiment of the present invention.
  • the transport corresponds to the transmission path between the core U-plane and the RANU plane and the transmission path between the RANU plane and the RAN lower layer.
  • one PLMN and another PLMN can use transport provided by the same transport network operator.
  • a given PLMN may utilize multiple transports provided by multiple transport network operators.
  • the transport provided by transport network operator B accommodates the time-synchronized signaling traffic of a PLMN.
  • the CNC Central Network Controller
  • SMF Send scheduling assistance information to the Session Management function
  • SMF transmits the scheduling assistance information to gNB (next generation Node-B) as TSCAI (Time-Sensitive Communication Assistance Information).
  • the gNB refers to the scheduling information and appropriately determines the scheduling of radio part communication using configured grant for UL and semi-persistent scheduling for DL.
  • the transmission line between gNB-RU (Remote Unit) and gNB-DU (Distributed Unit), the transmission line between gNB-DU and gNB-CU-UP (Central Unit - User Plane), Scheduling of transmission paths between gNB-CU-UP and UPF (User plane function) could not be controlled based on information from CNC. Therefore, for example, in the case of a transmission line in which transmission is performed in a time-division manner, a delay occurs due to unnecessary waiting between the wireless part and the wired part.
  • the communication procedure in the embodiment of the present invention may be executed as A)-E) shown below.
  • SMF sets the appropriate network instance values, for example based on S-NSSAI (Single-Network Slice Selection Assistance Information) and DNN (Data Network Name).
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • DNN Data Network Name
  • the SMF selects the appropriate UPF and advertises the network instance value.
  • the UPF selects the appropriate interface.
  • the interface may be TEID.
  • the SMF selects an appropriate transport to be installed between the UPF and the gNB-CU-UP and informs the requesting PLMN information to the tSMF.
  • the tSMF sets up the interface for the PLMN with aUPF and bUPF and responds to the SMF.
  • SMF informs the gNB-CU-CP of the network instance value.
  • the gNB-CU-CP selects the appropriate gNB-CU-UP and informs it of the network instance value.
  • the gNB-CU-UP selects the appropriate interface.
  • the interface may be TEID.
  • the gNB-CU-CP selects the appropriate transport installed between the gNB-CU-UP and gNB-DU and informs the requesting PLMN information to tSMF.
  • the tSMF sets up the interface for the PLMN with aUPF and bUPF and responds to the gNB-CU-CP.
  • the gNB-CU-CP configures the gNB-DU's UL interface.
  • the gNB-DU may determine the schedule by internal MAC (Medium Access Control) function to obtain schedule assistance information.
  • gNB-DU is a node that manages the transmission path between gNB-DU and gNB-CU (for example, OLT (Optical Line Terminal) in the case of PON (Passive Optical Network)) to notify the determined traffic characteristics good.
  • OLT Optical Line Terminal
  • PON Passive Optical Network
  • the gNB-CU-CP configures the transport DL interface that is installed between the gNB-CU-UP and the gNB-DU.
  • the SMF may then inform the transport of the traffic characteristics determined by the gNB-DU MAC function.
  • the SMF configures the transport DL interface that is installed between the UPF and the gNB-CU-UP.
  • the SMF may then inform the transport of the traffic characteristics determined by the gNB-DU MAC function.
  • the communication procedure in the embodiment of the present invention may be executed as 1)-10) shown below.
  • the communication procedures A) to E) above and the communication procedures 1) to 10) shown below may be executed in parallel.
  • the traffic pattern may be, for example, stream definition and gate opening/closing timing at a 5GS (5G System) bridge entrance/exit for each stream. CNC notifies the traffic pattern to SMF via TSN-AF and PCF.
  • 5GS 5G System
  • SMF configures TSCAI and notifies RAN based on the traffic pattern.
  • the RAN (specifically the MAC function of the gNB-DU) decides the scheduling of the radio part.
  • the gNB-DU notifies the management node (for example, OLT in the case of PON) of the transmission line between the gNB-RU and the gNB-DU of the determined wireless communication schedule.
  • the management node may also have a standardized API to support various wireline transmission technologies.
  • cooperation between radio communication scheduling and PON scheduling may be implemented as DBA (Dynamic Bandwidth Allocation).
  • gNB-CU-CP which receives notification of the radio schedule after determination from gNB-DU, based on the radio schedule, the transmission path between gNB-DU and gNB-CU-UP, gNB-CU-UP and UPF, respectively.
  • the gNB-CU-CP informs the respective management node, eg the tSMF of the transport, of the scheduling information.
  • gNB-CU-CP when notifying the schedule information to the management node of the transmission path between gNB-CU-UP and UPF, for example, tSMF of the transport, may notify via SMF .
  • the gNB-CU-CP may notify the management node of the scheduling of the wireless communication part, and each management node may correct the time difference due to the distance and use it as schedule information for itself.
  • the management node may also have a standardized API to support various wireline transmission technologies.
  • Each management node performs scheduling on each transmission path.
  • gNB-DU monitors whether the queue status in the device is appropriate for both DL/UL, and if necessary, sends radio scheduling modification information to gNB-CU-CP.
  • gNB-CU-CP receives radio schedule modification information from gNB-DU, based on the modification information, the transmission path between gNB-DU and gNB-CU-UP, gNB-CU-UP and UPF derives schedule correction information necessary for communication on the transmission path between them, respectively.
  • the gNB-CU-CP informs the respective management node, eg tSMF of the transport, of the schedule modification information.
  • gNB-CU-CP notifies the management node of the transmission path between gNB-CU-UP and UPF, for example, tSMF of transport, the schedule correction information, even if notified via SMF good.
  • the gNB-CU-CP may notify the management node of the scheduling correction information for the wireless communication part, and each management node may correct the time difference due to the distance and use it as the schedule correction information to be used by itself.
  • the management node may also have a standardized API to support various wireline transmission technologies.
  • Each management node modifies the scheduling on each transmission path.
  • FIG. 4 is a sequence diagram for explaining example (1) of PDU session establishment according to the embodiment of the present invention.
  • the TEID corresponding to UL of UPF 30B is 1
  • the TEID corresponding to DL of bUPF 30D is 2
  • the TEID corresponding to UL is 3
  • the TEID corresponding to DL of aUPF 30E is 4, and the TEID corresponding to UL is 5. do.
  • step S101 the UE 20 transmits UL information transfer to the gNB-DU 10C.
  • the gNB-DU 10C then sends a UL-RRC message transfer to the gNB-CU-CP 10A (S102).
  • gNB-CU-CP 10A sends a UL-NAS message transfer to AMF 30F (S103).
  • AMF 30F transmits a PDU session establishment request to SMF 30A (S104).
  • FIG. 5 is a sequence diagram for explaining example (2) of PDU session establishment according to the embodiment of the present invention.
  • step S1041 is executed.
  • SMF 30A transmits a policy control request including S-NSSAI and DNN to PCF 30J.
  • PCF 30J transmits a query request to UDR 30K (S1042).
  • UDR 30K transmits a query response to PCF 30J (S1043).
  • PCF 30J transmits a policy control response including TSCAI to SMF 30A. That is, SMF 30A acquires TSCAI using S-NSSAI and DNN as keys.
  • TSCAI may consist of TSCAI for UL and TSCAI for DL.
  • step S105 SMF 30A transmits a PDU session establishment response to AMF 30F. Subsequently, the SMF 30A executes UPF selection and transport selection (S106). Subsequently, SMF 30A transmits a PFCP (Packet Forwarding Control Protocol) session establishment request to UPF 30B (S107).
  • the PFCP session establishment request in step S107 includes the appropriate network instance selected by SMF based on the S-NSSAI and DNN.
  • the network instance is assumed to encode the name of the transport network operator that provides the transport and the type of transmission service provided by the transport network operator (for example, deterministic communication with slot allocation, etc.).
  • UPF 30B transmits a PFCP session establishment response to SMF 30A (S108).
  • the UPF 30B selects an appropriate local F-TEID (Fully Qualified TEID) based on the network instance and includes it in the PFCP session establishment response.
  • F-TEID Frly Qualified TEID
  • step S109 the SMF 30A transmits a PFCP session establishment request to the tSMF 30C.
  • the SMF 30A also assumes the use of the other company's transmission network, sets the DL source interface and UL destination interface to PLMN specific core (PLMN specific core), and sets the DL destination interface and UL source interface. is set as PLMN specific access, and the company MCC (Mobile Country Code)/MNC (Mobile Network Code) is set as additional information in each setting.
  • the PFCP session establishment request in step S109 includes information that sets 1 to the TEID corresponding to the outer header corresponding to UL.
  • the SMF 30A sets the transport as one UPF.
  • the tSMF 30C sets each of the multiple UPFs in the transport.
  • tSMF30C behaves as UPF to SMF30A and as SMF to transport.
  • the PLMN-specific core may indicate the UPF in the PLMN
  • the PLMN-specific access may indicate the gNB-CU-UP in the PLMN.
  • step S110 the tSMF 30C transmits a PFCP session establishment request to the bUPF 30D.
  • the tSMF 30C sets the PLMN-specific core in the DL source interface and the UL destination interface, and sets information that sets the TEID corresponding to the UL outer header to 1.
  • the bUPF 30D transmits to the tSMF 30C a PFCP session establishment response in which the F-TEID corresponding to the DL is set to 2 and the F-TEID corresponding to the UL is set to 3 (S111).
  • the bUPF 30D selects the appropriate TEID for DL relative to the UPF based on the PLMN-ID.
  • the tSMF 30C transmits a PFCP session establishment request to the aUPF 30E.
  • the tSMF 30C sets PLMN-specific access to the DL destination interface and the UL source interface, and sets information that sets the TEID corresponding to the UL outer header to 3.
  • the aUPF 30E transmits to the tSMF 30C a PFCP session establishment response in which the F-TEID corresponding to DL is set to 4 and the F-TEID corresponding to UL is set to 5 (S113).
  • the aUPF 30E selects the appropriate TEID for UL relative to the gNB based on the PLMN-ID.
  • step S114 the tSMF 30C transmits a PFCP session change request with 4 as the TEID corresponding to the DL external header to the bUPF 30D.
  • bUPF 30D transmits a PFCP session change response to tSMF 30C (S115).
  • tSMF 30C transmits to SMF 30A a PFCP session establishment response in which the F-TEID corresponding to DL is set to 2 and the F-TEID corresponding to UL is set to 5 (S116).
  • tSMC30C, bUPF30D and aUPF30E appear as one UPF from the outside.
  • step S117 the SMF 30A transmits a PFCP session change request with 2 as the TEID corresponding to the DL outer header to the UPF 30B.
  • UPF 30B transmits a PFCP session change response to SMF 30A (S118).
  • the SMF 30A transmits to the AMF 30F a message transfer request including the UL endpoint IP address, GTP (GPRS Tunneling Protocol)-TEID information of 5, and the network instance (S119).
  • the message transfer request may further include TSCAI-based schedule information acquired by SMF 30A.
  • the message transfer request requests resource configuration for a PDU session.
  • AMF 30F transmits a message transfer response to SMF 30A (S120).
  • FIG. 6 is a sequence diagram for explaining example (3) of PDU session establishment according to the embodiment of the present invention.
  • the TEID corresponding to the DL of gNB-CU-UP10A is 6
  • the TEID corresponding to the UL is 7
  • the TEID corresponding to the DL of bUPF30H is 8
  • the TEID corresponding to the UL is 9, and the DL of aUPF30I.
  • 10 be the TEID
  • 11 be the TEID corresponding to the UL
  • 12 be the TEID corresponding to the DL of the gNB-DU.
  • the AMF 30F sends to the gNB-CU-CP 10A a PDU session resource configuration request including the UL endpoint IP address, information with GTP-TEID set to 5, and network instance.
  • the gNB-CU-CP 10A may select the appropriate gNB-CU-UP 10B and transport network operator.
  • the network instance may be a suitable network instance selected by the gNB-CU-CP 10A based on the S-NSSAI and DNN.
  • the network instance is assumed to encode the name of the transport network operator that provides the transport and the type of transmission service provided by the transport network operator (for example, deterministic communication with slot allocation, etc.).
  • the PDU session resource configuration request may further include schedule information based on the TSCAI acquired by the SMF 30A.
  • the gNB-CU-CP 10A sends a bearer setup request including the UL transport layer address, information with GTP-TEID set to 5, and network instance to the gNB-CU-UP 10B (S122).
  • a network instance encodes the name of a transport network operator that provides transport and the type of transmission service provided by the transport network operator (for example, deterministic communication with slot allocation).
  • gNB-CU-UP 10B sets GTP-TEID to 6 as the transport layer address corresponding to DL, and sets GTP-TEID to 7 as the transport layer address corresponding to UL gNB-CU- Send to CP 10A (S123).
  • step S123 the gNB-CU-UP 10B selects an appropriate local GTP-TEID based on the network instance on the UL and includes it in the bearer setup response.
  • step S124 the gNB-CU-CP 10A sends a PFCP session establishment request to the tSMF 30G.
  • the PLMN specific core is set for the DL source interface and the UL destination interface
  • the PLMN specific access is set for the DL destination interface and the UL source interface.
  • the PFCP session establishment request in step S124 includes information that sets 7 as the TEID corresponding to the outer header corresponding to UL.
  • the gNB-CU-CP 10A configures the transport as one UPF. Based on this setting, the tSMF 30G sets each of the multiple UPFs in the transport. tSMF30G behaves as UPF towards gNB-CU-CP10A and as SMF towards transport.
  • step S125 the tSMF 30G transmits a PFCP session establishment request to the bUPF 30H.
  • the tSMF 30G sets the PLMN-specific core in the DL source interface and the UL destination interface, and sets the information that the TEID corresponding to the UL outer header is 7.
  • the bUPF 30H transmits to the tSMF 30G a PFCP session establishment response in which the F-TEID corresponding to DL is set to 8 and the F-TEID corresponding to UL is set to 9 (S126).
  • the bUPF 30H selects the appropriate TEID for DL relative to the gNB-CU-UP based on the PLMN-ID.
  • step S127 the tSMF 30G transmits a PFCP session establishment request to the aUPF 30I.
  • the tSMF 30G sets PLMN-specific access to the DL destination interface and the UL source interface, and sets information that the TEID corresponding to the UL outer header is 9.
  • the aUPF 30I transmits to the tSMF 30G a PFCP session establishment response in which the F-TEID corresponding to DL is set to 10 and the F-TEID corresponding to UL is set to 11 (S128).
  • the aUPF 30I selects the appropriate TEID for UL relative to the gNB-DU based on the PLMN-ID.
  • step S129 the tSMF 30G transmits a PFCP session change request with 10 as the TEID corresponding to the DL external header to the bUPF 30H.
  • bUPF 30H transmits a PFCP session change response to tSMF 30G (S130).
  • the tSMF 30G transmits to the gNB-CU-CP 10A a PFCP session establishment response in which the F-TEID corresponding to DL is set to 8 and the F-TEID corresponding to UL is set to 11 (S131).
  • tSMC30G, bUPF30H and aUPF30I appear as one UPF from the outside.
  • step S132 the gNB-CU-CP 10A transmits a PFCP session change request with 8 as the TEID corresponding to the DL external header to the gNB-CU-UP 10B. Subsequently, gNB-CU-UP 10B sends a PFCP session change response to gNB-CU-CP 10A (S133). Subsequently, the gNB-CU-CP 10A transmits a UE context change request including the UL transport layer address and information to set the GTP-TEID to 11 to the gNB-DU 10C (S134). The UE context change request may further include schedule assistance information based on TSCAI acquired by SMF 30A.
  • the gNB-DU 10C sends a UE context change response including the DL transport layer address and GTP-TEID to 12 to the gNB-CU-CP 10A (S135).
  • the UE context change response is based on the TSCAI-based schedule support information acquired by SMF 30A in gNB-DU 10C, and further includes "TSC traffic characteristics information (TSC Traffic Characteristics)" as the radio side scheduling information actually established. may contain.
  • FIG. 7 is a sequence diagram for explaining example (4) of PDU session establishment according to the embodiment of the present invention.
  • the steps shown in FIG. 7 may be performed in parallel with step S135.
  • the gNB-DU 10C notifies the TSC traffic characteristic information to the management node 30L (for example, OLT in the case of PON) of the transmission line between the gNB-RU and the gNB-DU 10C.
  • the management node appropriately schedules the transmission path between the gNB-RU and the gNB-DU 10C based on the TSC traffic characteristics information.
  • the management node 30L of the transmission line between the gNB-RU and the gNB-DU10C transmits a response to the gNB-DU10C (S1352).
  • step S132 and step S133 are changed to a bearer context change request and a bearer context change response, the change amount of gNB-CU-UP can be suppressed.
  • the gNB-CU-CP 10A transmits a PFCP session change request with 12 as the TEID corresponding to the outer header of the DL to the tSMF 30G.
  • the PFCP session modification request may further include TSC information generated based on TSC traffic characteristic information. Note that the TSC information may be the same as the TSC traffic characteristic information.
  • the tSMF 30G Based on the TSC information, the tSMF 30G appropriately schedules transmission paths between the aUPF 30I and the bUPF 30H. Subsequently, the tSMF 30G transmits a PFCP session change request with 12 as the TEID corresponding to the external header of the DL to the aUPF 30I (S137).
  • aUPF 30I transmits a PFCP session change response to tSMF 30G (S138).
  • tSMF 30G sends a PFCP session change response to gNB-CU-CP 10A (S139).
  • step S140 the gNB-CU-CP 10A sends a DL-RRC message transfer indicating that the PDU session establishment has been accepted to the gNB-DU 10C. Subsequently, the gNB-DU 10C transmits RRCReconfiguration indicating that the PDU session establishment has been accepted to the UE 20 (S141). Subsequently, the UE 20 transmits RRCReconfigurationComplete to the gNB-DU 10C (S142). Subsequently, the gNB-DU 10C sends a UL-RRC message transfer indicating that the RRC reconfiguration is completed to the gNB-CU-CP 10A (S143).
  • the gNB-CU-CP 10A sends a PDU session resource setting response indicating that the DL endpoint IP address and the GTP-TEID is 6 to the AMF 30F (S144).
  • the PDU session resource configuration response may further include TSC traffic characteristic information.
  • FIG. 8 is a sequence diagram for explaining example (5) of PDU session establishment according to the embodiment of the present invention.
  • the AMF 30F transmits to the SMF 30A a PDU session update request indicating that the endpoint IP address of the DL and the GTP-TEID is 6.
  • the PDU session resource update request may further include TSC traffic characteristic information.
  • the SMF 30A transmits to the tSMF 30C a PFCP session change request with 6 as the TEID corresponding to the external header of the DL (S146).
  • the PFCP session modification request may further include TSC information generated based on TSC traffic characteristic information. Note that the TSC information may be the same as the TSC traffic characteristic information.
  • the tSMF 30C Based on the TSC information, the tSMF 30C appropriately schedules transmission paths between the aUPF 30E and the bUPF 30D. Subsequently, the tSMF 30C transmits a PFCP session change request with 6 as the TEID corresponding to the DL external header to the aUPF 30I (S147). Subsequently, aUPF 30I transmits a PFCP session change response to tSMF 30G (S148). Subsequently, tSMF 30C transmits a PFCP session change response to SMF 30A (S149). Subsequently, SMF 30A transmits a PDU session update response to AMF 30F (S150).
  • the PLMN can provide subscribers with advanced services that do not tend to generate large amounts of traffic using the services of the transmission network operator.
  • by enriching the content of the traffic characteristics provided to the transmission line in the off-path it can be expected to effectively utilize mainly the optical transmission line.
  • the PLMN can select another company's transmission line for each call according to traffic characteristics.
  • a transport network operator can respond to call-by-call transport service provision requests from multiple PLMNs.
  • the transport network can obtain traffic characteristics off-path.
  • the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT.
  • DS-TT Device-Side TSN Translator
  • NW-TT Network-Side TSN Translator
  • the base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and terminal 20 may have only part of the functions in the embodiment.
  • FIG. 9 is a diagram showing an example of the functional configuration of base station 10 according to the embodiment of the present invention.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the network node 30 may have functional configurations similar to those of the base station 10 .
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the transmitter 110 also transmits inter-network-node messages to other network nodes.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals. Also, the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 20 .
  • the receiving unit 120 also receives inter-network node messages from other network nodes.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 .
  • the content of the setting information is, for example, information related to the PDU session.
  • the control unit 140 performs control related to communication by the PDU session, as described in the embodiment. Also, the control unit 140 controls communication with the terminal 20 based on the UE capability report regarding radio parameters received from the terminal 20 .
  • a functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110
  • a functional unit related to signal reception in control unit 140 may be included in receiving unit 120 .
  • FIG. 10 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention.
  • the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals and the like transmitted from the base station 10 .
  • the transmission unit 210 as D2D communication, to the other terminal 20, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 .
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, information related to the PDU session.
  • the control unit 240 performs control related to communication by the PDU session, as described in the embodiment.
  • a functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210
  • a functional unit related to signal reception in control unit 240 may be included in receiving unit 220 .
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 9 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • a transmission unit that transmits scheduling assistance information to gNB-DU (next generation Node B Distributed Unit), and the gNB-DU based on the scheduling assistance information and a receiving unit that receives the radio-side scheduling information generated by the transmitting unit, the schedule information based on the radio-side scheduling information is transmitted to the gNB-DU and gNB-CU-UP (next generation Node B - Central Unit - User Plane).
  • the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
  • DS-TT Device-Side TSN Translator
  • NW-TT Network-Side TSN Translator
  • a transmitting unit that transmits scheduling assistance information to AMF (Access and Mobility Management Function), and gNB-DU (next generation Node B Distributed Unit) based on the scheduling assistance information
  • AMF Access and Mobility Management Function
  • gNB-DU next generation Node B Distributed Unit
  • UPF User Plane Function
  • gNB-CU-UP next generation Node B - Central Unit - User Plane
  • the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
  • DS-TT Device-Side TSN Translator
  • NW-TT Network-Side TSN Translator
  • a receiving unit that receives scheduling support information, a control unit that determines radio-side scheduling information based on the scheduling support information, and a gNB-RU ( A network node is provided having a transmitter for transmitting to a management node of a data transmission path between next generation Node B - Remote Unit.
  • the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
  • DS-TT Device-Side TSN Translator
  • NW-TT Network-Side TSN Translator
  • a transmission procedure for transmitting scheduling assistance information to gNB-DU (next generation Node B Distributed Unit), and the radio side generated by the gNB-DU based on the scheduling assistance information
  • a reception procedure for receiving scheduling information and schedule information based on the radio side scheduling information are transmitted between the gNB-DU and the gNB-CU-UP (next generation Node B - Central Unit - User Plane) on the data transmission path.
  • a communication method is provided in which a network node performs a step of transmitting to a transport located in a network node.
  • the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
  • DS-TT Device-Side TSN Translator
  • NW-TT Network-Side TSN Translator
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the network node 30 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the network node 30 according to the embodiment of the invention and the software operated by the processor of the terminal 20 according to the embodiment of the invention are respectively stored in random access memory (RAM), flash memory, read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • a specific operation performed by the network node 30 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with terminal 20 may be network node 30 and other network nodes other than network node 30 (eg, but not limited to MME or S-GW).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions of the network node 30 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • TSCAI is an example of scheduling assistance information.
  • the TSC traffic characteristic information is an example of radio side scheduling information.
  • base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 30 network node 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Abstract

This network node has a transmission unit which transmits scheduling support information to a next generation Node B Distributed Unit (gNB-DU), and a receiving unit which, on the basis of the aforementioned scheduling support information, receives the wireless-side scheduling information generated by the gNB-DU, wherein the transmission unit transmits the scheduling information based on the wireless-side scheduling information to a transport arranged between the gNB-DU and a next generation Node B - Central Unit - User Plane (gNB-CU-UP) on a data transmission path.

Description

ネットワークノード及び通信方法Network node and communication method
 本発明は、無線通信システムにおけるネットワークノード及び通信方法に関する。 The present invention relates to a network node and communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 NR (New Radio) (also called "5G"), which is the successor system to LTE (Long Term Evolution), requires a large-capacity system, high data transmission speed, low latency, and the simultaneous use of many terminals. Techniques satisfying connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
 NRネットワークにおける既存仕様では、TSN(Time-Sensitive Networking)機能を有効にする場合、CNC(Central Network Controller)が、TSN-AF(Application Function)及びPCF(Policy Control Function)経由でSMF(Session Management function)にスケジューリング支援情報を送信する。SMFは、当該スケジューリング支援情報をgNB(next generation Node-B)にTSCAI(Time-Sensitive Communication Assistance Information)として送信する。gNBは、当該スケジューリング支援情報を参照し、ULの場合設定済グラント(Configured grant)、DLの場合準持続的スケジューリング(Semi-persistent scheduling)を用いて適切に無線部分の通信のスケジューリングを決定する。 In the existing specifications in the NR network, when enabling the TSN (Time-Sensitive Networking) function, the CNC (Central Network Controller) performs the SMF (Session Management function) via TSN-AF (Application Function) and PCF (Policy Control Function) ) to send scheduling assistance information. SMF transmits the scheduling assistance information to gNB (next generation Node-B) as TSCAI (Time-Sensitive Communication Assistance Information). The gNB refers to the scheduling assistance information, and appropriately determines the scheduling of radio part communication using configured grant for UL and semi-persistent scheduling for DL.
 一方、NRネットワークにおいて、gNB-RU(Remote Unit)とgNB-DU(Distributed Unit)の間の伝送路、gNB-DUとgNB-CU-UP(Central Unit - User Plane)との間の伝送路、gNB-CU-UPとUPF(User plane function)との間の伝送路のスケジューリングは、CNCからの情報に基づいて制御することができなかった。 On the other hand, in the NR network, the transmission line between gNB-RU (Remote Unit) and gNB-DU (Distributed Unit), the transmission line between gNB-DU and gNB-CU-UP (Central Unit - User Plane), Scheduling of transmission paths between gNB-CU-UP and UPF (User plane function) could not be controlled based on information from CNC.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることを目的とする。 The present invention has been made in view of the above points, and aims to improve the utilization efficiency of user data transmission lines in a wireless communication system.
 開示の技術によれば、スケジューリング支援情報をgNB-DU(next generation Node B Distributed Unit)に送信する送信部と、前記スケジューリング支援情報に基づいて前記gNB-DUが生成した無線側スケジューリング情報を受信する受信部とを有し、前記送信部は、前記無線側スケジューリング情報に基づいたスケジュール情報を、データ伝送路において前記gNB-DUとgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信するネットワークノードが提供される。 According to the disclosed technique, a transmission unit that transmits scheduling support information to gNB-DU (next generation Node B Distributed Unit), and the radio side scheduling information generated by the gNB-DU based on the scheduling support information is received. a receiving unit, and the transmitting unit transmits schedule information based on the wireless side scheduling information to the gNB-DU and gNB-CU-UP (next generation Node B - Central Unit - User Plane) on the data transmission path A network node is provided that transmits to a transport that is placed between.
 開示の技術によれば、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることができる。 According to the disclosed technology, it is possible to improve the usage efficiency of user data transmission lines in a wireless communication system.
通信システムの例を説明するための図である。1 is a diagram for explaining an example of a communication system; FIG. 本発明の実施の形態におけるネットワーク構成の例を示す図である。It is a figure showing an example of network composition in an embodiment of the invention. 本発明の実施の形態における伝送路の例を示す図である。FIG. 2 is a diagram showing an example of transmission lines in the embodiment of the present invention; FIG. 本発明の実施の形態におけるPDUセッション確立の例(1)を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining example (1) of PDU session establishment in the embodiment of the present invention; 本発明の実施の形態におけるPDUセッション確立の例(2)を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining example (2) of PDU session establishment in the embodiment of the present invention; 本発明の実施の形態におけるPDUセッション確立の例(3)を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining example (3) of PDU session establishment in the embodiment of the present invention; 本発明の実施の形態におけるPDUセッション確立の例(4)を説明するためのシーケンス図である。FIG. 10 is a sequence diagram for explaining example (4) of PDU session establishment in the embodiment of the present invention; 本発明の実施の形態におけるPDUセッション確立の例(5)を説明するためのシーケンス図である。FIG. 10 is a sequence diagram for explaining example (5) of PDU session establishment in the embodiment of the present invention; 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention; FIG. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention; FIG.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. In addition, the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technologies are appropriately used for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE, but is not limited to existing LTE. In addition, the term “LTE” used in this specification has a broad meaning including LTE-Advanced and LTE-Advanced and subsequent systems (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH、NR-PDCCH、NR-PDSCH、NR-PUCCH、NR-PUSCH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 Further, in the embodiments of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel). This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, NR-PDCCH, NR-PDSCH, NR-PUCCH, NR-PUSCH, and the like. However, even a signal used for NR is not necessarily specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex etc.) method may be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" wireless parameters and the like may mean that predetermined values are preset (Pre-configure), and the base station 10 or A wireless parameter notified from the terminal 20 may be set.
 図1は、通信システムの例を説明するための図である。図1に示されるように、通信システムは、端末20であるUE、複数のネットワークノード30から構成される。以下、機能ごとに1つのネットワークノード30が対応するものとするが、複数の機能を1つのネットワークノード30が実現してもよいし、複数のネットワークノード30が1つの機能を実現してもよい。また、以下に記載する「接続」は、論理的な接続であってもよいし、物理的な接続であってもよい。 FIG. 1 is a diagram for explaining an example of a communication system. As shown in FIG. 1 , a communication system consists of a UE, which is a terminal 20 , and a plurality of network nodes 30 . Hereinafter, one network node 30 corresponds to each function, but one network node 30 may realize a plurality of functions, or a plurality of network nodes 30 may realize one function. . Also, the "connection" described below may be a logical connection or a physical connection.
 RAN(Radio Access Network)は、無線アクセス機能を有するネットワークノード30であり、基地局10を含んでもよく、UE、AMF(Access and Mobility Management Function)及びUPF(User plane function)と接続される。AMFは、RANインタフェースの終端、NAS(Non-Access Stratum)の終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノード30である。UPFは、DN(Data Network)と相互接続する外部に対するPDU(Protocol Data Unit)セッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoS(Quality of Service)ハンドリング等の機能を有するネットワークノード30である。UPF及びDNは、ネットワークスライスを構成する。本発明の実施の形態における無線通信ネットワークでは、複数のネットワークスライスが構築されている。 A RAN (Radio Access Network) is a network node 30 having a radio access function, may include a base station 10, and is connected with a UE, an AMF (Access and Mobility Management Function) and a UPF (User plane function). The AMF is a network node 30 having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management. The UPF is a network node 30 that has functions such as a PDU (Protocol Data Unit) session point to the outside that interconnects with a DN (Data Network), packet routing and forwarding, and user plane QoS (Quality of Service) handling. UPF and DN constitute a network slice. A plurality of network slices are constructed in the wireless communication network according to the embodiment of the present invention.
 AMFは、UE、RAN、SMF(Session Management function)、NSSF(Network Slice Selection Function)、NEF(Network Exposure Function)、NRF(Network Repository Function)、UDM(Unified Data Management)、AUSF(Authentication Server Function)、PCF(Policy Control Function)、AF(Application Function)と接続される。AMF、SMF、NSSF、NEF、NRF、UDM、AUSF、PCF、AFは、各々のサービスに基づくインタフェース、Namf、Nsmf、Nnssf、Nnef、Nnrf、Nudm、Nausf、Npcf、Nafを介して相互に接続されるネットワークノード30である。 AMF is UE, RAN, SMF (Session Management function), NSSF (Network Slice Selection Function), NEF (Network Exposure Function), NRF (Network Repository Function), UDM (Unified Data Management), AUSF (Authentication Server Function), PCF (Policy Control Function) and AF (Application Function) are connected. AMF, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF are interconnected via respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf. network node 30 .
 SMFは、セッション管理、UEのIP(Internet Protocol)アドレス割り当て及び管理、DHCP(Dynamic Host Configuration Protocol)機能、ARP(Address Resolution Protocol)プロキシ、ローミング機能等の機能を有するネットワークノード30である。NEFは、他のNF(Network Function)に能力及びイベントを通知する機能を有するネットワークノード30である。NSSFは、UEが接続するネットワークスライスの選択、許可されるNSSAI(Network Slice Selection Assistance Information)の決定、設定されるNSSAIの決定、UEが接続するAMFセットの決定等の機能を有するネットワークノード30である。PCFは、ネットワークのポリシ制御を行う機能を有するネットワークノード30である。AFは、アプリケーションサーバを制御する機能を有するネットワークノード30である。NRFは、サービスを提供するNFインスタンスを発見する機能を有するネットワークノード30である。UDMは、加入者データ及び認証データを管理するネットワークノード30である。UDMは、当該データを保持するUDR(User Data Repository)と接続される。 The SMF is a network node 30 that has functions such as session management, UE IP (Internet Protocol) address allocation and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function. A NEF is a network node 30 that has the function of notifying other NFs (Network Functions) of capabilities and events. NSSF selects the network slice to which the UE connects, determines the allowed NSSAI (Network Slice Selection Assistance Information), determines the NSSAI to be set, determines the AMF set to which the UE connects. be. A PCF is a network node 30 having a function of performing network policy control. AF is a network node 30 having the function of controlling an application server. An NRF is a network node 30 that has the ability to discover NF instances that provide services. A UDM is a network node 30 that manages subscriber data and authentication data. The UDM is connected to a UDR (User Data Repository) that holds the data.
 NRネットワークにおける既存仕様では、gNB-DU(next generation Node B - Distributed Unit)、gNB-CU-UP(next generation Node B - Central Unit - User Plane)及びUPF(User plane function)を所有するPLMN(Public Land Mobile Network)に対応する移動体通信事業者が、gNB-DUとgNB-CU-UPの間及びgNB-CU-UPとUPFの間のユーザデータ伝送路を所有するとの暗黙の前提がある。また、伝送路へのトラヒック特性の通知もDSCP(Differentiated Services Code Point)値によるのみである。 In the existing specifications in the NR network, PLMN (Public There is an implicit assumption that the mobile operator supporting the Land Mobile Network) owns the user data transmission path between gNB-DU and gNB-CU-UP and between gNB-CU-UP and UPF. Also, the notification of the traffic characteristics to the transmission path is only based on the DSCP (Differentiated Services Code Point) value.
 すなわち、NRネットワークにおける既存仕様において、伝送網事業者の概念がなく、伝送網事業者が複数PLMNからのトラヒックを呼毎に受け入れる方法がなく、トラヒック特性をオフパスで取得する伝送路を使用することができない。 In other words, the existing specifications in the NR network do not have the concept of a transmission network operator, there is no method for the transmission network operator to accept traffic from multiple PLMNs for each call, and a transmission line that acquires traffic characteristics off-path is used. can't
 そこで、伝送路各部分を外部からは1つのUPF(以下、「トランスポート」という。)としてみなせるよう構成する。トランスポートは、1つのネットワークノードとして動作してもよいし、トランスポートは、さらに複数のネットワークノードから構成されてもよい。 Therefore, each part of the transmission path is configured so that it can be regarded as one UPF (hereinafter referred to as "transport") from the outside. A transport may act as one network node, or the transport may also be composed of multiple network nodes.
 図2は、本発明の実施の形態におけるネットワーク構成の例を示す図である。図2に示されるように、gNB-CU-CP(next generation Node B - Central Unit - Control Plane)は、gNB-DUとgNB-CU-UPとの間にトランスポートを設定できるものとする。また、SMFは、gNB-CU-UPとUPFとの間にトランスポートを設定できるものとする。 FIG. 2 is a diagram showing an example of a network configuration according to the embodiment of the present invention. As shown in Figure 2, gNB-CU-CP (next generation Node B - Central Unit - Control Plane) shall be able to set up transport between gNB-DU and gNB-CU-UP. Also, the SMF shall be able to set up the transport between the gNB-CU-UP and the UPF.
 図2に示されるように、トランスポートは、以下に示される1)-3)の3部分から構成される。 As shown in Figure 2, the transport consists of the following three parts 1)-3).
1)gNB-CU-CP又はSMFから指示を受けて、TEID(Tunnel Endpoint Identifier)を管理し、トラヒック特性をトランスポート内部に展開する部分。以下、「tSMF」という。 1) A part that receives instructions from gNB-CU-CP or SMF, manages TEID (Tunnel Endpoint Identifier), and deploys traffic characteristics inside the transport. Hereinafter, it is referred to as "tSMF".
2)伝送路としてエッジ側に位置する部分。以下、「aUPF」という。 2) A portion located on the edge side as a transmission line. Hereinafter, it is referred to as "aUPF".
3)伝送路として中央側に位置する部分。以下、「bUPF」という。 3) A portion located on the central side as a transmission line. Hereinafter, it is referred to as "bUPF".
 図2に示されるように、トランスポートには、あるPLMNにおけるgNB-DU、gNB-CU-UP及びUPFと、他のPLMNにおけるgNB-DU、gNB-CU-UP及びUPFが接続可能である。 As shown in Figure 2, the transport can connect gNB-DU, gNB-CU-UP and UPF in one PLMN and gNB-DU, gNB-CU-UP and UPF in another PLMN.
 gNB-CU-CP又はSMFからトランスポートに送信する指示によって、要求元PLMNを区別可能とする。また、gNB-CU-CPからgNB-CU-UPに送信する指示又はSMFからUPFに送信する指示は、既存のネットワークインスタンスを含む。ネットワークインスタンスは、トランスポートを提供する伝送網事業者名及び当該伝送網事業者が提供する伝送サービス種別を新規にエンコードしたものとする。 The requesting PLMN can be distinguished by the instructions sent from the gNB-CU-CP or SMF to the transport. Also, the indication to send from gNB-CU-CP to gNB-CU-UP or from SMF to UPF includes the existing network instance. The network instance shall newly encode the name of the transmission network operator that provides the transport and the transmission service type provided by the transmission network operator.
 図3は、本発明の実施の形態における伝送路の例を示す図である。図3において、トランスポートは、コアUプレーンとRANUプレーンの間の伝送路と、RANUプレーンとRAN下位レイヤの間の伝送路とに対応する。図3に示されるように、あるPLMN及び他のPLMNが、同一の伝送網事業者が提供するトランスポートを利用することができる。また、あるPLMNは、複数の伝送網事業者が提供する複数のトランスポートを利用してもよい。例えば、図3に示されるように、伝送網事業者Bが提供するトランスポートは、あるPLMNの時刻同期信号トラヒックを収容する。 FIG. 3 is a diagram showing an example of transmission lines in the embodiment of the present invention. In FIG. 3, the transport corresponds to the transmission path between the core U-plane and the RANU plane and the transmission path between the RANU plane and the RAN lower layer. As shown in Figure 3, one PLMN and another PLMN can use transport provided by the same transport network operator. Also, a given PLMN may utilize multiple transports provided by multiple transport network operators. For example, as shown in FIG. 3, the transport provided by transport network operator B accommodates the time-synchronized signaling traffic of a PLMN.
 ここで、NRネットワークにおける既存仕様では、TSN(Time-Sensitive Networking)機能を有効にする場合、CNC(Central Network Controller)が、TSN-AF(Application Function)及びPCF(Policy Control Function)経由でSMF(Session Management function)にスケジューリング支援情報を送信する。SMFは、当該スケジューリング支援情報をgNB(next generation Node-B)にTSCAI(Time-Sensitive Communication Assistance Information)として送信する。gNBは、当該スケジューリング情報を参照し、ULの場合設定済グラント(Configured grant)、DLの場合準持続的スケジューリング(Semi-persistent scheduling)を用いて適切に無線部分の通信のスケジューリングを決定する。 Here, in the existing specifications in the NR network, when enabling the TSN (Time-Sensitive Networking) function, the CNC (Central Network Controller) is SMF ( Send scheduling assistance information to the Session Management function). SMF transmits the scheduling assistance information to gNB (next generation Node-B) as TSCAI (Time-Sensitive Communication Assistance Information). The gNB refers to the scheduling information and appropriately determines the scheduling of radio part communication using configured grant for UL and semi-persistent scheduling for DL.
 一方、NRネットワークにおいて、gNB-RU(Remote Unit)とgNB-DU(Distributed Unit)の間の伝送路、gNB-DUとgNB-CU-UP(Central Unit - User Plane)との間の伝送路、gNB-CU-UPとUPF(User plane function)との間の伝送路のスケジューリングは、CNCからの情報に基づいて制御することができなかった。そのため、例えば、時分割で伝送が行われる伝送路の場合、無線部分と有線部分との間で不必要な待ち合わせが発生することで遅延が発生していた。 On the other hand, in the NR network, the transmission line between gNB-RU (Remote Unit) and gNB-DU (Distributed Unit), the transmission line between gNB-DU and gNB-CU-UP (Central Unit - User Plane), Scheduling of transmission paths between gNB-CU-UP and UPF (User plane function) could not be controlled based on information from CNC. Therefore, for example, in the case of a transmission line in which transmission is performed in a time-division manner, a delay occurs due to unnecessary waiting between the wireless part and the wired part.
 本発明の実施の形態における通信手順は、以下に示されるA)-E)のように実行されてもよい。 The communication procedure in the embodiment of the present invention may be executed as A)-E) shown below.
A)PDUセッション確立時に、SMFは、例えばS-NSSAI(Single-Network Slice Selection Assistance Information)及びDNN(Data Network Name)に基づいて、適切なネットワークインスタンス値を設定する。SMFは、適切なUPFを選択し当該ネットワークインスタンス値を通知する。当該UPFは適切なインタフェースを選択する。当該インタフェースとは、TEIDであってもよい。SMFは、UPFとgNB-CU-UPとの間に設置される適切なトランスポートを選択し、要求元PLMN情報をtSMFに通知する。tSMFは、aUPF及びbUPFで当該PLMN向けにインタフェースを設定し、SMFに応答する。 A) At PDU session establishment, SMF sets the appropriate network instance values, for example based on S-NSSAI (Single-Network Slice Selection Assistance Information) and DNN (Data Network Name). The SMF selects the appropriate UPF and advertises the network instance value. The UPF selects the appropriate interface. The interface may be TEID. The SMF selects an appropriate transport to be installed between the UPF and the gNB-CU-UP and informs the requesting PLMN information to the tSMF. The tSMF sets up the interface for the PLMN with aUPF and bUPF and responds to the SMF.
B)SMFは、gNB-CU-CPにネットワークインスタンス値を通知する。gNB-CU-CPは、適切なgNB-CU-UPを選択し、当該ネットワークインスタンス値を通知する。当該gNB-CU-UPは適切なインタフェースを選択する。当該インタフェースとは、TEIDであってもよい。gNB-CU-CPは、gNB-CU-UPとgNB-DUとの間に設置される適切なトランスポートを選択し、要求元PLMN情報をtSMFに通知する。tSMFは、aUPF及びbUPFで当該PLMN向けにインタフェースを設定し、gNB-CU-CPに応答する。 B) SMF informs the gNB-CU-CP of the network instance value. The gNB-CU-CP selects the appropriate gNB-CU-UP and informs it of the network instance value. The gNB-CU-UP selects the appropriate interface. The interface may be TEID. The gNB-CU-CP selects the appropriate transport installed between the gNB-CU-UP and gNB-DU and informs the requesting PLMN information to tSMF. The tSMF sets up the interface for the PLMN with aUPF and bUPF and responds to the gNB-CU-CP.
C)gNB-CU-CPは、gNB-DUのULインタフェースを設定する。このときgNB-DUはスケジュール支援情報を得るため内部MAC(Medium Access Control)機能がスケジュールを確定してもよい。gNB-DUは、gNB-DUとgNB-CUの間の伝送路を管理するノード(例えば、PON(Passive Optical Network)の場合のOLT(Optical Line Terminal))に確定したトラヒック特性を通知してもよい。 C) The gNB-CU-CP configures the gNB-DU's UL interface. At this time, the gNB-DU may determine the schedule by internal MAC (Medium Access Control) function to obtain schedule assistance information. gNB-DU is a node that manages the transmission path between gNB-DU and gNB-CU (for example, OLT (Optical Line Terminal) in the case of PON (Passive Optical Network)) to notify the determined traffic characteristics good.
D)gNB-CU-CPは、gNB-CU-UPとgNB-DUとの間に設置されるトランスポートのDLインタフェースを設定する。このときSMFは、トランスポートにgNB-DUのMAC機能が確定したトラヒック特性を通知してもよい。 D) The gNB-CU-CP configures the transport DL interface that is installed between the gNB-CU-UP and the gNB-DU. The SMF may then inform the transport of the traffic characteristics determined by the gNB-DU MAC function.
E)SMFは、UPFとgNB-CU-UPとの間に設置されるトランスポートのDLインタフェースを設定する。このときSMFは、トランスポートにgNB-DUのMAC機能が確定したトラヒック特性を通知してもよい。 E) The SMF configures the transport DL interface that is installed between the UPF and the gNB-CU-UP. The SMF may then inform the transport of the traffic characteristics determined by the gNB-DU MAC function.
 さらに、本発明の実施の形態における通信手順は、以下に示される1)-10)のように実行されてもよい。上記A)-E)の通信手順と、以下に示される1)-10)の通信手順とは、並行して実行されてもよい。 Furthermore, the communication procedure in the embodiment of the present invention may be executed as 1)-10) shown below. The communication procedures A) to E) above and the communication procedures 1) to 10) shown below may be executed in parallel.
1)CNCがトラヒックパターンを決定する。当該トラヒックパターンとは、例えば、ストリームの定義とストリームごとの5GS(5G System)ブリッジ出入口でのゲート開閉タイミングであってもよい。CNCは、当該トラヒックパターンを、TSN-AF及びPCFを介してSMFに通知する。 1) CNC determines the traffic pattern. The traffic pattern may be, for example, stream definition and gate opening/closing timing at a 5GS (5G System) bridge entrance/exit for each stream. CNC notifies the traffic pattern to SMF via TSN-AF and PCF.
2)SMFは、当該トラヒックパターンに基づいて、TSCAIを構成しRANに通知する。 2) SMF configures TSCAI and notifies RAN based on the traffic pattern.
3)RAN(具体的にはgNB-DUのMAC機能)は、無線通信部分のスケジューリングを決定する。 3) The RAN (specifically the MAC function of the gNB-DU) decides the scheduling of the radio part.
4)gNB-DUは、gNB-RUとgNB-DUの間の伝送路の管理ノード(例えば、PONの場合のOLT)に、決定した無線通信スケジュールを通知する。また、多様な有線伝送技術をサポートするため、当該管理ノードは標準化されたAPIを有するとしてもよい。なお、ULに関して、無線通信のスケジューリングとPONのスケジューリングとの連携は、DBA(Dynamic Bandwidth Allocation)として実装されてもよい。 4) The gNB-DU notifies the management node (for example, OLT in the case of PON) of the transmission line between the gNB-RU and the gNB-DU of the determined wireless communication schedule. The management node may also have a standardized API to support various wireline transmission technologies. Regarding UL, cooperation between radio communication scheduling and PON scheduling may be implemented as DBA (Dynamic Bandwidth Allocation).
5)gNB-DUから確定後の無線スケジュールの通知を受信したgNB-CU-CPは、当該無線スケジュールに基づいて、gNB-DUとgNB-CU-UPの間の伝送路、gNB-CU-UPとUPFの間での伝送路での通信に必要なスケジュールをそれぞれ導出する。gNB-CU-CPは、それぞれの管理ノード、例えばトランスポートのtSMFに当該スケジュール情報を通知する。なお、gNB-CU-CPは、gNB-CU-UPとUPFの間での伝送路の管理ノード、例えばトランスポートのtSMFに当該スケジュール情報を通知する際、SMFを経由して通知してもよい。なお、gNB-CU-CPは、無線通信部分のスケジューリングを当該管理ノードに通知し、各々の管理ノードが距離による時刻差分等を補正して自らが使用するスケジュール情報としてもよい。また、多様な有線伝送技術をサポートするため、当該管理ノードは標準化されたAPIを有するとしてもよい。 5) gNB-CU-CP, which receives notification of the radio schedule after determination from gNB-DU, based on the radio schedule, the transmission path between gNB-DU and gNB-CU-UP, gNB-CU-UP and UPF, respectively. The gNB-CU-CP informs the respective management node, eg the tSMF of the transport, of the scheduling information. In addition, gNB-CU-CP, when notifying the schedule information to the management node of the transmission path between gNB-CU-UP and UPF, for example, tSMF of the transport, may notify via SMF . The gNB-CU-CP may notify the management node of the scheduling of the wireless communication part, and each management node may correct the time difference due to the distance and use it as schedule information for itself. The management node may also have a standardized API to support various wireline transmission technologies.
6)各々の管理ノードは、各々の伝送路でスケジューリングを行う。 6) Each management node performs scheduling on each transmission path.
7)gNB-DUは、DL/UL共に装置内のキューの状態が適切か監視し、必要に応じgNB-CU-CPに無線スケジューリング修正情報を送信する。 7) gNB-DU monitors whether the queue status in the device is appropriate for both DL/UL, and if necessary, sends radio scheduling modification information to gNB-CU-CP.
8)gNB-DUから無線スケジュールの修正情報を受信したgNB-CU-CPは、当該修正情報に基づいて、gNB-DUとgNB-CU-UPの間の伝送路、gNB-CU-UPとUPFの間での伝送路での通信に必要なスケジュール修正情報をそれぞれ導出する。gNB-CU-CPは、それぞれの管理ノード、例えばトランスポートのtSMFに当該スケジュール修正情報を通知する。なお、gNB-CU-CPは、gNB-CU-UPとUPFの間での伝送路の管理ノード、例えばトランスポートのtSMFに当該スケジュール修正情報を通知する際、SMFを経由して通知しても良い。 なお、gNB-CU-CPは、無線通信部分のスケジューリングの修正情報を当該管理ノードに通知し、各々の管理ノードが距離による時刻差分等を補正して自らが使用するスケジュール修正情報としてもよい。また、多様な有線伝送技術をサポートするため、当該管理ノードは標準化されたAPIを有するとしてもよい。 8) gNB-CU-CP receives radio schedule modification information from gNB-DU, based on the modification information, the transmission path between gNB-DU and gNB-CU-UP, gNB-CU-UP and UPF derives schedule correction information necessary for communication on the transmission path between them, respectively. The gNB-CU-CP informs the respective management node, eg tSMF of the transport, of the schedule modification information. In addition, when gNB-CU-CP notifies the management node of the transmission path between gNB-CU-UP and UPF, for example, tSMF of transport, the schedule correction information, even if notified via SMF good. In addition, the gNB-CU-CP may notify the management node of the scheduling correction information for the wireless communication part, and each management node may correct the time difference due to the distance and use it as the schedule correction information to be used by itself. The management node may also have a standardized API to support various wireline transmission technologies.
9)各々の管理ノードは、各々の伝送路でスケジューリングを修正する。 9) Each management node modifies the scheduling on each transmission path.
10)上記1)-9)により、無線スケジュールと有線伝送路各部のスケジュールが整合される。 10) Through 1) to 9) above, the wireless schedule and the schedule of each part of the wired transmission line are matched.
 図4は、本発明の実施の形態におけるPDUセッション確立の例(1)を説明するためのシーケンス図である。図4において、UPF30BのULに対応するTEIDは1、bUPF30DのDLに対応するTEIDは2、ULに対応するTEIDは3、aUPF30EのDLに対応するTEIDは4、ULに対応するTEIDは5とする。 FIG. 4 is a sequence diagram for explaining example (1) of PDU session establishment according to the embodiment of the present invention. In FIG. 4, the TEID corresponding to UL of UPF 30B is 1, the TEID corresponding to DL of bUPF 30D is 2, the TEID corresponding to UL is 3, the TEID corresponding to DL of aUPF 30E is 4, and the TEID corresponding to UL is 5. do.
 ステップS101において、UE20は、UL情報転送をgNB-DU10Cに送信する。続いて、gNB-DU10Cは、UL-RRCメッセージ転送をgNB-CU-CP10Aに送信する(S102)。続いて、gNB-CU-CP10Aは、UL-NASメッセージ転送をAMF30Fに送信する(S103)。続いて、AMF30Fは、PDUセッション確立要求をSMF30Aに送信する(S104)。 In step S101, the UE 20 transmits UL information transfer to the gNB-DU 10C. The gNB-DU 10C then sends a UL-RRC message transfer to the gNB-CU-CP 10A (S102). Subsequently, gNB-CU-CP 10A sends a UL-NAS message transfer to AMF 30F (S103). Subsequently, AMF 30F transmits a PDU session establishment request to SMF 30A (S104).
 図5は、本発明の実施の形態におけるPDUセッション確立の例(2)を説明するためのシーケンス図である。図4に示されるステップS104に続き、ステップS1041が実行される。ステップS1041において、SMF30Aは、S-NSSAI及びDNNを含むポリシ制御要求をPCF30Jに送信する。続いて、PCF30Jは、クエリ要求をUDR30Kに送信する(S1042)。続いて、UDR30Kは、クエリ応答をPCF30Jに送信する(S1043)。続いて、PCF30Jは、TSCAIを含むポリシ制御応答をSMF30Aに送信する。すなわち、SMF30Aは、S-NSSAI及びDNNをキーとして、TSCAIを取得する。TSCAIは、UL向けTSCAI、DL向けTSCAIから構成されていてもよい。 FIG. 5 is a sequence diagram for explaining example (2) of PDU session establishment according to the embodiment of the present invention. Following step S104 shown in FIG. 4, step S1041 is executed. In step S1041, SMF 30A transmits a policy control request including S-NSSAI and DNN to PCF 30J. Subsequently, PCF 30J transmits a query request to UDR 30K (S1042). Subsequently, UDR 30K transmits a query response to PCF 30J (S1043). Subsequently, PCF 30J transmits a policy control response including TSCAI to SMF 30A. That is, SMF 30A acquires TSCAI using S-NSSAI and DNN as keys. TSCAI may consist of TSCAI for UL and TSCAI for DL.
 図4に戻る。ステップS105において、SMF30Aは、PDUセッション確立応答をAMF30Fに送信する。続いて、SMF30Aは、UPF選択及びトランスポート選択を実行する(S106)。続いて、SMF30Aは、PFCP(Packet Forwarding Control Protocol)セッション確立要求をUPF30Bに送信する(S107)。ステップS107におけるPFCPセッション確立要求は、SMFがS-NSSAI及びDNNに基づいて選択した適切なネットワークインスタンスを含む。当該ネットワークインスタンスは、トランスポートを提供する伝送網事業者名及び当該伝送網事業者が提供する伝送サービス種別(例えば、スロット割り当てあり決定的通信等)をエンコードしたものとする。続いて、UPF30Bは、PFCPセッション確立応答をSMF30Aに送信する(S108)。ステップS108においてUPF30Bは、ネットワークインスタンスに基づいて適切なローカルF-TEID(Fully Qualified TEID)を選択し、PFCPセッション確立応答に含める。図4ではF-TEID=1とする例を示す。 Return to Figure 4. In step S105, SMF 30A transmits a PDU session establishment response to AMF 30F. Subsequently, the SMF 30A executes UPF selection and transport selection (S106). Subsequently, SMF 30A transmits a PFCP (Packet Forwarding Control Protocol) session establishment request to UPF 30B (S107). The PFCP session establishment request in step S107 includes the appropriate network instance selected by SMF based on the S-NSSAI and DNN. The network instance is assumed to encode the name of the transport network operator that provides the transport and the type of transmission service provided by the transport network operator (for example, deterministic communication with slot allocation, etc.). Subsequently, UPF 30B transmits a PFCP session establishment response to SMF 30A (S108). In step S108, the UPF 30B selects an appropriate local F-TEID (Fully Qualified TEID) based on the network instance and includes it in the PFCP session establishment response. FIG. 4 shows an example in which F-TEID=1.
 ステップS109において、SMF30Aは、PFCPセッション確立要求をtSMF30Cに送信する。ステップS109におけるPFCPセッション確立要求において、SMF30Aは、他社伝送網の使用も想定し、DLソースインタフェース及びULデスティネーションインタフェースにPLMN特定コア(PLMN specific core)と設定し、DLデスティネーションインタフェース及びULソースインタフェースにPLMN特定アクセス(PLMN specific access)と設定し、各々の設定に自社MCC(Mobile Country Code)/MNC(Mobile Network Code)を付加情報として設定する。また、ステップS109におけるPFCPセッション確立要求は、ULに対応する外部ヘッダに対応するTEIDを1とする情報を含む。SMF30Aは、トランスポートを1つのUPFとみなして設定する。tSMF30Cは、当該設定に基づいて、トランスポート内の複数のUPFにそれぞれ設定する。tSMF30Cは、SMF30Aに対してUPFとして振る舞い、トランスポート内に対してSMFとして振る舞う。なお、PLMN特定コアとは、当該PLMNにおけるUPFを示し、PLMN特定アクセスとは、当該PLMNにおけるgNB-CU-UPを示してもよい。 In step S109, the SMF 30A transmits a PFCP session establishment request to the tSMF 30C. In the PFCP session establishment request in step S109, the SMF 30A also assumes the use of the other company's transmission network, sets the DL source interface and UL destination interface to PLMN specific core (PLMN specific core), and sets the DL destination interface and UL source interface. is set as PLMN specific access, and the company MCC (Mobile Country Code)/MNC (Mobile Network Code) is set as additional information in each setting. Also, the PFCP session establishment request in step S109 includes information that sets 1 to the TEID corresponding to the outer header corresponding to UL. The SMF 30A sets the transport as one UPF. Based on this setting, the tSMF 30C sets each of the multiple UPFs in the transport. tSMF30C behaves as UPF to SMF30A and as SMF to transport. Note that the PLMN-specific core may indicate the UPF in the PLMN, and the PLMN-specific access may indicate the gNB-CU-UP in the PLMN.
 ステップS110において、tSMF30Cは、PFCPセッション確立要求をbUPF30Dに送信する。ステップS110におけるPFCPセッション確立要求において、tSMF30Cは、DLソースインタフェース及びULデスティネーションインタフェースにPLMN特定コアを設定し、UL外部ヘッダに対応するTEIDを1とする情報を設定する。続いて、bUPF30Dは、DLに対応するF-TEIDを2、ULに対応するF-TEIDを3と設定したPFCPセッション確立応答をtSMF30Cに送信する(S111)。bUPF30Dは、PLMN-IDに基づいて、UPFに相対する適当なDL用TEIDを選択する。 In step S110, the tSMF 30C transmits a PFCP session establishment request to the bUPF 30D. In the PFCP session establishment request in step S110, the tSMF 30C sets the PLMN-specific core in the DL source interface and the UL destination interface, and sets information that sets the TEID corresponding to the UL outer header to 1. Subsequently, the bUPF 30D transmits to the tSMF 30C a PFCP session establishment response in which the F-TEID corresponding to the DL is set to 2 and the F-TEID corresponding to the UL is set to 3 (S111). The bUPF 30D selects the appropriate TEID for DL relative to the UPF based on the PLMN-ID.
 ステップS112において、tSMF30Cは、PFCPセッション確立要求をaUPF30Eに送信する。ステップS112におけるPFCPセッション確立要求において、tSMF30Cは、DLデスティネーションインタフェース及びULソースインタフェースにPLMN特定アクセスを設定し、UL外部ヘッダに対応するTEIDを3とする情報を設定する。続いて、aUPF30Eは、DLに対応するF-TEIDを4、ULに対応するF-TEIDを5と設定したPFCPセッション確立応答をtSMF30Cに送信する(S113)。aUPF30Eは、PLMN-IDに基づいて、gNBに相対する適当なUL用TEIDを選択する。 At step S112, the tSMF 30C transmits a PFCP session establishment request to the aUPF 30E. In the PFCP session establishment request in step S112, the tSMF 30C sets PLMN-specific access to the DL destination interface and the UL source interface, and sets information that sets the TEID corresponding to the UL outer header to 3. Subsequently, the aUPF 30E transmits to the tSMF 30C a PFCP session establishment response in which the F-TEID corresponding to DL is set to 4 and the F-TEID corresponding to UL is set to 5 (S113). The aUPF 30E selects the appropriate TEID for UL relative to the gNB based on the PLMN-ID.
 ステップS114において、tSMF30Cは、DL外部ヘッダに対応するTEIDを4としたPFCPセッション変更要求をbUPF30Dに送信する。続いて、bUPF30Dは、PFCPセッション変更応答をtSMF30Cに送信する(S115)。続いて、tSMF30Cは、DLに対応するF-TEIDを2、ULに対応するF-TEIDを5と設定したPFCPセッション確立応答をSMF30Aに送信する(S116)。tSMC30C、bUPF30D及びaUPF30Eは、外部からは1つのUPFに見える。 In step S114, the tSMF 30C transmits a PFCP session change request with 4 as the TEID corresponding to the DL external header to the bUPF 30D. Subsequently, bUPF 30D transmits a PFCP session change response to tSMF 30C (S115). Subsequently, tSMF 30C transmits to SMF 30A a PFCP session establishment response in which the F-TEID corresponding to DL is set to 2 and the F-TEID corresponding to UL is set to 5 (S116). tSMC30C, bUPF30D and aUPF30E appear as one UPF from the outside.
 ステップS117において、SMF30Aは、DL外部ヘッダに対応するTEIDを2としたPFCPセッション変更要求をUPF30Bに送信する。続いて、UPF30Bは、PFCPセッション変更応答をSMF30Aに送信する(S118)。続いて、SMF30Aは、ULのエンドポイントIPアドレスと、GTP(GPRS Tunnelling Protocol)-TEIDを5とする情報及びネットワークインスタンスを含むメッセージ転送要求をAMF30Fに送信する(S119)。当該メッセージ転送要求は、さらに、SMF30Aが取得したTSCAIに基づくスケジュール情報を含んでもよい。当該メッセージ転送要求は、PDUセッションのリソース設定を要求する。続いて、AMF30Fは、メッセージ転送応答をSMF30Aに送信する(S120)。 In step S117, the SMF 30A transmits a PFCP session change request with 2 as the TEID corresponding to the DL outer header to the UPF 30B. Subsequently, UPF 30B transmits a PFCP session change response to SMF 30A (S118). Subsequently, the SMF 30A transmits to the AMF 30F a message transfer request including the UL endpoint IP address, GTP (GPRS Tunneling Protocol)-TEID information of 5, and the network instance (S119). The message transfer request may further include TSCAI-based schedule information acquired by SMF 30A. The message transfer request requests resource configuration for a PDU session. Subsequently, AMF 30F transmits a message transfer response to SMF 30A (S120).
 図6は、本発明の実施の形態におけるPDUセッション確立の例(3)を説明するためのシーケンス図である。図6において、gNB-CU-UP10AのDLに対応するTEIDは6、ULに対応するTEIDは7、bUPF30HのDLに対応するTEIDは8、ULに対応するTEIDは9、aUPF30IのDLに対応するTEIDは10、ULに対応するTEIDは11、gNB-DUのDLに対応するTEIDは12とする。 FIG. 6 is a sequence diagram for explaining example (3) of PDU session establishment according to the embodiment of the present invention. In FIG. 6, the TEID corresponding to the DL of gNB-CU-UP10A is 6, the TEID corresponding to the UL is 7, the TEID corresponding to the DL of bUPF30H is 8, the TEID corresponding to the UL is 9, and the DL of aUPF30I. Let 10 be the TEID, 11 be the TEID corresponding to the UL, and 12 be the TEID corresponding to the DL of the gNB-DU.
 ステップS121において、AMF30Fは、ULのエンドポイントIPアドレスと、GTP-TEIDを5とする情報及びネットワークインスタンスを含むPDUセッションリソース設定要求をgNB-CU-CP10Aに送信する。ここで、gNB-CU-CP10Aは、適切なgNB-CU-UP10B及び伝送網事業者を選択してもよい。なお、ネットワークインスタンスは、gNB-CU-CP10AがS-NSSAI及びDNNに基づいて選択した適切なネットワークインスタンスであってもよい。当該ネットワークインスタンスは、トランスポートを提供する伝送網事業者名及び当該伝送網事業者が提供する伝送サービス種別(例えば、スロット割り当てあり決定的通信等)をエンコードしたものとする。当該PDUセッションリソース設定要求は、さらに、SMF30Aが取得したTSCAIに基づくスケジュール情報を含んでもよい。 In step S121, the AMF 30F sends to the gNB-CU-CP 10A a PDU session resource configuration request including the UL endpoint IP address, information with GTP-TEID set to 5, and network instance. Here, the gNB-CU-CP 10A may select the appropriate gNB-CU-UP 10B and transport network operator. Note that the network instance may be a suitable network instance selected by the gNB-CU-CP 10A based on the S-NSSAI and DNN. The network instance is assumed to encode the name of the transport network operator that provides the transport and the type of transmission service provided by the transport network operator (for example, deterministic communication with slot allocation, etc.). The PDU session resource configuration request may further include schedule information based on the TSCAI acquired by the SMF 30A.
 続いて、gNB-CU-CP10Aは、ULのトランスポートレイヤアドレスと、GTP-TEIDを5とする情報及びネットワークインスタンスを含むベアラ設定要求をgNB-CU-UP10Bに送信する(S122)。ネットワークインスタンスは、トランスポートを提供する伝送網事業者名及び当該伝送網事業者が提供する伝送サービス種別(例えば、スロット割り当てあり決定的通信等)をエンコードしたものとする。続いて、gNB-CU-UP10Bは、DLに対応するトランスポートレイヤアドレスとしてGTP-TEIDを6、ULに対応するトランスポートレイヤアドレスとしてGTP-TEIDを7と設定したベアラ設定応答をgNB-CU-CP10Aに送信する(S123)。ステップS123においてgNB-CU-UP10Bは、ULでのネットワークインスタンスに基づいて適切なローカルGTP-TEIDを選択し、ベアラ設定応答に含める。図6ではDLをGTP-TEID=6、ULをGTP-TEID=7とする例を示す。 Next, the gNB-CU-CP 10A sends a bearer setup request including the UL transport layer address, information with GTP-TEID set to 5, and network instance to the gNB-CU-UP 10B (S122). A network instance encodes the name of a transport network operator that provides transport and the type of transmission service provided by the transport network operator (for example, deterministic communication with slot allocation). Subsequently, gNB-CU-UP 10B sets GTP-TEID to 6 as the transport layer address corresponding to DL, and sets GTP-TEID to 7 as the transport layer address corresponding to UL gNB-CU- Send to CP 10A (S123). In step S123 the gNB-CU-UP 10B selects an appropriate local GTP-TEID based on the network instance on the UL and includes it in the bearer setup response. FIG. 6 shows an example in which DL has GTP-TEID=6 and UL has GTP-TEID=7.
 ステップS124において、gNB-CU-CP10Aは、PFCPセッション確立要求をtSMF30Gに送信する。ステップS124におけるPFCPセッション確立要求において、DLソースインタフェース及びULデスティネーションインタフェースにPLMN特定コアが設定され、DLデスティネーションインタフェース及びULソースインタフェースにPLMN特定アクセスが設定される。また、ステップS124におけるPFCPセッション確立要求は、ULに対応する外部ヘッダに対応するTEIDを7とする情報を含む。gNB-CU-CP10Aは、トランスポートを1つのUPFとみなして設定する。tSMF30Gは、当該設定に基づいて、トランスポート内の複数のUPFにそれぞれ設定する。tSMF30Gは、gNB-CU-CP10Aに対してUPFとして振る舞い、トランスポート内に対してSMFとして振る舞う。 In step S124, the gNB-CU-CP 10A sends a PFCP session establishment request to the tSMF 30G. In the PFCP session establishment request in step S124, the PLMN specific core is set for the DL source interface and the UL destination interface, and the PLMN specific access is set for the DL destination interface and the UL source interface. Also, the PFCP session establishment request in step S124 includes information that sets 7 as the TEID corresponding to the outer header corresponding to UL. The gNB-CU-CP 10A configures the transport as one UPF. Based on this setting, the tSMF 30G sets each of the multiple UPFs in the transport. tSMF30G behaves as UPF towards gNB-CU-CP10A and as SMF towards transport.
 ステップS125において、tSMF30Gは、PFCPセッション確立要求をbUPF30Hに送信する。ステップS125におけるPFCPセッション確立要求において、tSMF30Gは、DLソースインタフェース及びULデスティネーションインタフェースにPLMN特定コアを設定し、UL外部ヘッダに対応するTEIDを7とする情報を設定する。続いて、bUPF30Hは、DLに対応するF-TEIDを8、ULに対応するF-TEIDを9と設定したPFCPセッション確立応答をtSMF30Gに送信する(S126)。bUPF30Hは、PLMN-IDに基づいて、gNB-CU-UPに相対する適当なDL用TEIDを選択する。 In step S125, the tSMF 30G transmits a PFCP session establishment request to the bUPF 30H. In the PFCP session establishment request in step S125, the tSMF 30G sets the PLMN-specific core in the DL source interface and the UL destination interface, and sets the information that the TEID corresponding to the UL outer header is 7. Subsequently, the bUPF 30H transmits to the tSMF 30G a PFCP session establishment response in which the F-TEID corresponding to DL is set to 8 and the F-TEID corresponding to UL is set to 9 (S126). The bUPF 30H selects the appropriate TEID for DL relative to the gNB-CU-UP based on the PLMN-ID.
 ステップS127において、tSMF30Gは、PFCPセッション確立要求をaUPF30Iに送信する。ステップS127におけるPFCPセッション確立要求において、tSMF30Gは、DLデスティネーションインタフェース及びULソースインタフェースにPLMN特定アクセスを設定し、UL外部ヘッダに対応するTEIDを9とする情報を設定する。続いて、aUPF30Iは、DLに対応するF-TEIDを10、ULに対応するF-TEIDを11と設定したPFCPセッション確立応答をtSMF30Gに送信する(S128)。aUPF30Iは、PLMN-IDに基づいて、gNB-DUに相対する適当なUL用TEIDを選択する。 In step S127, the tSMF 30G transmits a PFCP session establishment request to the aUPF 30I. In the PFCP session establishment request in step S127, the tSMF 30G sets PLMN-specific access to the DL destination interface and the UL source interface, and sets information that the TEID corresponding to the UL outer header is 9. Subsequently, the aUPF 30I transmits to the tSMF 30G a PFCP session establishment response in which the F-TEID corresponding to DL is set to 10 and the F-TEID corresponding to UL is set to 11 (S128). The aUPF 30I selects the appropriate TEID for UL relative to the gNB-DU based on the PLMN-ID.
 ステップS129において、tSMF30Gは、DL外部ヘッダに対応するTEIDを10としたPFCPセッション変更要求をbUPF30Hに送信する。続いて、bUPF30Hは、PFCPセッション変更応答をtSMF30Gに送信する(S130)。続いて、tSMF30Gは、DLに対応するF-TEIDを8、ULに対応するF-TEIDを11と設定したPFCPセッション確立応答をgNB-CU-CP10Aに送信する(S131)。tSMC30G、bUPF30H及びaUPF30Iは、外部からは1つのUPFに見える。 In step S129, the tSMF 30G transmits a PFCP session change request with 10 as the TEID corresponding to the DL external header to the bUPF 30H. Subsequently, bUPF 30H transmits a PFCP session change response to tSMF 30G (S130). Subsequently, the tSMF 30G transmits to the gNB-CU-CP 10A a PFCP session establishment response in which the F-TEID corresponding to DL is set to 8 and the F-TEID corresponding to UL is set to 11 (S131). tSMC30G, bUPF30H and aUPF30I appear as one UPF from the outside.
 ステップS132において、gNB-CU-CP10Aは、DL外部ヘッダに対応するTEIDを8としたPFCPセッション変更要求をgNB-CU-UP10Bに送信する。続いて、gNB-CU-UP10Bは、PFCPセッション変更応答をgNB-CU-CP10Aに送信する(S133)。続いて、gNB-CU-CP10Aは、ULのトランスポートレイヤアドレスと、GTP-TEIDを11とする情報を含むUEコンテキスト変更要求をgNB-DU10Cに送信する(S134)。当該UEコンテキスト変更要求は、さらに、SMF30Aが取得したTSCAIに基づくスケジュール支援情報を含んでもよい。続いて、gNB-DU10Cは、DLのトランスポートレイヤアドレスと、GTP-TEIDを12とする情報を含むUEコンテキスト変更応答をgNB-CU-CP10Aに送信する(S135)。当該UEコンテキスト変更応答は、gNB-DU10Cにおいて、SMF30Aが取得したTSCAIに基づくスケジュール支援情報に基づいて、実際に確立された無線側スケジューリング情報として、「TSCトラヒック特性情報(TSC Traffic Characteristics)」をさらに含んでもよい。 In step S132, the gNB-CU-CP 10A transmits a PFCP session change request with 8 as the TEID corresponding to the DL external header to the gNB-CU-UP 10B. Subsequently, gNB-CU-UP 10B sends a PFCP session change response to gNB-CU-CP 10A (S133). Subsequently, the gNB-CU-CP 10A transmits a UE context change request including the UL transport layer address and information to set the GTP-TEID to 11 to the gNB-DU 10C (S134). The UE context change request may further include schedule assistance information based on TSCAI acquired by SMF 30A. Subsequently, the gNB-DU 10C sends a UE context change response including the DL transport layer address and GTP-TEID to 12 to the gNB-CU-CP 10A (S135). The UE context change response is based on the TSCAI-based schedule support information acquired by SMF 30A in gNB-DU 10C, and further includes "TSC traffic characteristics information (TSC Traffic Characteristics)" as the radio side scheduling information actually established. may contain.
 図7は、本発明の実施の形態におけるPDUセッション確立の例(4)を説明するためのシーケンス図である。ステップS135と並行して、図7に示されるステップが実行されてもよい。ステップS1351において、gNB-DU10Cは、gNB-RUとgNB-DU10Cの間の伝送路の管理ノード30L(例えば、PONの場合のOLT)に、TSCトラヒック特性情報を通知する。当該管理ノードは、当該TSCトラヒック特性情報に基づいて、gNB-RUとgNB-DU10Cの間の伝送路のスケジューリングを適切に実行する。続いて、gNB-RUとgNB-DU10Cの間の伝送路の管理ノード30Lは、応答をgNB-DU10Cに送信する(S1352)。 FIG. 7 is a sequence diagram for explaining example (4) of PDU session establishment according to the embodiment of the present invention. The steps shown in FIG. 7 may be performed in parallel with step S135. In step S1351, the gNB-DU 10C notifies the TSC traffic characteristic information to the management node 30L (for example, OLT in the case of PON) of the transmission line between the gNB-RU and the gNB-DU 10C. The management node appropriately schedules the transmission path between the gNB-RU and the gNB-DU 10C based on the TSC traffic characteristics information. Subsequently, the management node 30L of the transmission line between the gNB-RU and the gNB-DU10C transmits a response to the gNB-DU10C (S1352).
 図6に戻る。なお、ステップS132及びステップS133を、ベアラコンテキスト変更要求及びベアラコンテキスト変更応答に変更すると、gNB-CU-UPの変更量を抑制することができる。 Return to Figure 6. Note that if step S132 and step S133 are changed to a bearer context change request and a bearer context change response, the change amount of gNB-CU-UP can be suppressed.
 ステップS136において、gNB-CU-CP10Aは、DLの外部ヘッダに対応するTEIDを12としたPFCPセッション変更要求をtSMF30Gに送信する。当該PFCPセッション変更要求は、TSCトラヒック特性情報に基づいて生成したTSC情報をさらに含んでもよい。なお、当該TSC情報は、TSCトラヒック特性情報と同一であってもよい。tSMF30Gは、当該TSC情報に基づいて、aUPF30IとbUPF30Hの間の伝送路のスケジューリングを適切に実行する。続いて、tSMF30Gは、DLの外部ヘッダに対応するTEIDを12としたPFCPセッション変更要求をaUPF30Iに送信する(S137)。続いて、aUPF30Iは、PFCPセッション変更応答をtSMF30Gに送信する(S138)。続いて、tSMF30Gは、PFCPセッション変更応答をgNB-CU-CP10Aに送信する(S139)。 In step S136, the gNB-CU-CP 10A transmits a PFCP session change request with 12 as the TEID corresponding to the outer header of the DL to the tSMF 30G. The PFCP session modification request may further include TSC information generated based on TSC traffic characteristic information. Note that the TSC information may be the same as the TSC traffic characteristic information. Based on the TSC information, the tSMF 30G appropriately schedules transmission paths between the aUPF 30I and the bUPF 30H. Subsequently, the tSMF 30G transmits a PFCP session change request with 12 as the TEID corresponding to the external header of the DL to the aUPF 30I (S137). Subsequently, aUPF 30I transmits a PFCP session change response to tSMF 30G (S138). Subsequently, tSMF 30G sends a PFCP session change response to gNB-CU-CP 10A (S139).
 ステップS140において、gNB-CU-CP10Aは、PDUセッション確立が受け付けられたことを示すDL-RRCメッセージ転送をgNB-DU10Cに送信する。続いて、gNB-DU10Cは、PDUセッション確立が受け付けられたことを示すRRCReconfigurationをUE20に送信する(S141)。続いて、UE20は、RRCReconfigurationCompleteをgNB-DU10Cに送信する(S142)。続いて、gNB-DU10Cは、RRC再設定が完了したことを示すUL-RRCメッセージ転送をgNB-CU-CP10Aに送信する(S143)。続いて、gNB-CU-CP10Aは、DLのエンドポイントIPアドレスと、GTP-TEIDが6であることを示すPDUセッションリソース設定応答をAMF30Fに送信する(S144)。当該PDUセッションリソース設定応答は、TSCトラヒック特性情報をさらに含んでもよい。 In step S140, the gNB-CU-CP 10A sends a DL-RRC message transfer indicating that the PDU session establishment has been accepted to the gNB-DU 10C. Subsequently, the gNB-DU 10C transmits RRCReconfiguration indicating that the PDU session establishment has been accepted to the UE 20 (S141). Subsequently, the UE 20 transmits RRCReconfigurationComplete to the gNB-DU 10C (S142). Subsequently, the gNB-DU 10C sends a UL-RRC message transfer indicating that the RRC reconfiguration is completed to the gNB-CU-CP 10A (S143). Subsequently, the gNB-CU-CP 10A sends a PDU session resource setting response indicating that the DL endpoint IP address and the GTP-TEID is 6 to the AMF 30F (S144). The PDU session resource configuration response may further include TSC traffic characteristic information.
 図8は、本発明の実施の形態におけるPDUセッション確立の例(5)を説明するためのシーケンス図である。ステップS145において、AMF30Fは、DLのエンドポイントIPアドレスと、GTP-TEIDが6であることを示すPDUセッション更新要求をSMF30Aに送信する。当該PDUセッションリソース更新要求は、TSCトラヒック特性情報をさらに含んでもよい。続いて、SMF30Aは、DLの外部ヘッダに対応するTEIDを6としたPFCPセッション変更要求をtSMF30Cに送信する(S146)。当該PFCPセッション変更要求は、TSCトラヒック特性情報に基づいて生成したTSC情報をさらに含んでもよい。なお、当該TSC情報は、TSCトラヒック特性情報と同一であってもよい。tSMF30Cは、当該TSC情報に基づいて、aUPF30EとbUPF30Dの間の伝送路のスケジューリングを適切に実行する。続いて、tSMF30Cは、DLの外部ヘッダに対応するTEIDを6としたPFCPセッション変更要求をaUPF30Iに送信する(S147)。続いて、aUPF30Iは、PFCPセッション変更応答をtSMF30Gに送信する(S148)。続いて、tSMF30Cは、PFCPセッション変更応答をSMF30Aに送信する(S149)。続いて、SMF30Aは、PDUセッション更新応答をAMF30Fに送信する(S150)。 FIG. 8 is a sequence diagram for explaining example (5) of PDU session establishment according to the embodiment of the present invention. In step S145, the AMF 30F transmits to the SMF 30A a PDU session update request indicating that the endpoint IP address of the DL and the GTP-TEID is 6. The PDU session resource update request may further include TSC traffic characteristic information. Subsequently, the SMF 30A transmits to the tSMF 30C a PFCP session change request with 6 as the TEID corresponding to the external header of the DL (S146). The PFCP session modification request may further include TSC information generated based on TSC traffic characteristic information. Note that the TSC information may be the same as the TSC traffic characteristic information. Based on the TSC information, the tSMF 30C appropriately schedules transmission paths between the aUPF 30E and the bUPF 30D. Subsequently, the tSMF 30C transmits a PFCP session change request with 6 as the TEID corresponding to the DL external header to the aUPF 30I (S147). Subsequently, aUPF 30I transmits a PFCP session change response to tSMF 30G (S148). Subsequently, tSMF 30C transmits a PFCP session change response to SMF 30A (S149). Subsequently, SMF 30A transmits a PDU session update response to AMF 30F (S150).
 上述の実施例を適用することで、スロット割当有り決定的通信を可能とする等の高度な伝送能力を持っていたり、時刻同期サーバを介した中継等の付加価値を持っていたりする伝送路を提供する伝送網事業者の成長を促すことができる。PLMNは、トラヒックとして量が大きくなりにくい高度サービスを、伝送網事業者のサービスを用いて加入者に提供することが可能となる。加えて、オフパスで伝送路に提供するトラヒック特性の内容を充実させることで、主に光の伝送路を効果的に活用することも期待できる。 By applying the above-described embodiment, it is possible to create a transmission path that has advanced transmission capabilities such as enabling deterministic communication with slot allocation, or has added value such as relaying via a time synchronization server. It is possible to promote the growth of the transmission network operator that provides it. The PLMN can provide subscribers with advanced services that do not tend to generate large amounts of traffic using the services of the transmission network operator. In addition, by enriching the content of the traffic characteristics provided to the transmission line in the off-path, it can be expected to effectively utilize mainly the optical transmission line.
 また、PLMNは、トラヒック特性に応じ呼毎に他社伝送路を選択できる。伝送網事業者は、複数PLMNからの呼毎の伝送サービス提供要求に応えることができる。伝送網はトラヒック特性をオフパスで取得できる。 In addition, the PLMN can select another company's transmission line for each call according to traffic characteristics. A transport network operator can respond to call-by-call transport service provision requests from multiple PLMNs. The transport network can obtain traffic characteristics off-path.
 さらに、上述の実施例を適用することで、遅延を短縮することができる。有線部分の伝送路リソースを効率的に利用できる。また、副次的効果として、低ジッタ又は等時性の保証は本来的にはDS-TT(Device-Side TSN Translator)、NW-TT(Network-Side TSN Translator)の機能であるが、RANが常にTSCAIに沿ったスケジューリングを行う場合には、DS-TT、NW-TTなしでも低ジッタ等時性通信を行うことが可能となる。 Furthermore, by applying the above embodiment, the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT.
 すなわち、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることができる。 That is, in the wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, functional configuration examples of the base station 10 and the terminal 20 that execute the processes and operations described above will be described. The base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and terminal 20 may have only part of the functions in the embodiment.
 <基地局10>
 図9は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図9に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図9に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。ネットワークノード30は、基地局10と同様の機能構成を有してもよい。
<Base station 10>
FIG. 9 is a diagram showing an example of the functional configuration of base station 10 according to the embodiment of the present invention. As shown in FIG. 9, the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary. The network node 30 may have functional configurations similar to those of the base station 10 .
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal. The transmitter 110 also transmits inter-network-node messages to other network nodes. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals. Also, the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 20 . The receiving unit 120 also receives inter-network node messages from other network nodes.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、PDUセッションに係る情報等である。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 . The content of the setting information is, for example, information related to the PDU session.
 制御部140は、実施例において説明したように、PDUセッションによる通信に係る制御を行う。また、制御部140は、端末20から受信した無線パラメータに関するUE能力報告に基づいて、端末20との通信を制御する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 The control unit 140 performs control related to communication by the PDU session, as described in the embodiment. Also, the control unit 140 controls communication with the terminal 20 based on the UE capability report regarding radio parameters received from the terminal 20 . A functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and a functional unit related to signal reception in control unit 140 may be included in receiving unit 120 .
 <端末20>
 図10は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図10に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図10に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Terminal 20>
FIG. 10 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention. As shown in FIG. 10, the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals and the like transmitted from the base station 10 . Further, for example, the transmission unit 210, as D2D communication, to the other terminal 20, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 120 receives PSCCH, PSSCH, PSDCH, PSBCH, or the like from other terminals 20 .
 設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、PDUセッションに係る情報等である。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 . The setting unit 230 also stores preset setting information. The content of the setting information is, for example, information related to the PDU session.
 制御部240は、実施例において説明したように、PDUセッションによる通信に係る制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 The control unit 240 performs control related to communication by the PDU session, as described in the embodiment. A functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and a functional unit related to signal reception in control unit 240 may be included in receiving unit 220 .
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図9及び図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 9 and 10) used to describe the above embodiments show blocks in functional units. These functional blocks (components) are implemented by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, the terminal 20, etc. according to the embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図9に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図10に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 In addition, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, control unit 140 of base station 10 shown in FIG. 9 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 . Also, for example, the control unit 240 of the terminal 20 shown in FIG. Although it has been explained that the above-described various processes are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may also be called a register, cache, main memory (main storage device), or the like. The storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. The storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be implemented by the communication device 1004 . The transceiver may be physically or logically separate implementations for the transmitter and receiver.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、スケジューリング支援情報をgNB-DU(next generation Node B Distributed Unit)に送信する送信部と、前記スケジューリング支援情報に基づいて前記gNB-DUが生成した無線側スケジューリング情報を受信する受信部とを有し、前記送信部は、前記無線側スケジューリング情報に基づいたスケジュール情報を、データ伝送路において前記gNB-DUとgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信するネットワークノードが提供される。
(Summary of embodiment)
As described above, according to the embodiment of the present invention, a transmission unit that transmits scheduling assistance information to gNB-DU (next generation Node B Distributed Unit), and the gNB-DU based on the scheduling assistance information and a receiving unit that receives the radio-side scheduling information generated by the transmitting unit, the schedule information based on the radio-side scheduling information is transmitted to the gNB-DU and gNB-CU-UP (next generation Node B - Central Unit - User Plane).
 上記の構成により、遅延を短縮することができる。有線部分の伝送路リソースを効率的に利用できる。また、副次的効果として、低ジッタ又は等時性の保証は本来的にはDS-TT(Device-Side TSN Translator)、NW-TT(Network-Side TSN Translator)の機能であるが、RANが常にTSCAIに沿ったスケジューリングを行う場合には、DS-TT、NW-TTなしでも低ジッタ等時性通信を行うことが可能となる。すなわち、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることができる。 With the above configuration, the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
 前記無線側スケジューリング情報に基づいて、前記gNB-DUと前記gNB-CU-UPとの間のデータ伝送路におけるスケジュールを生成する制御部をさらに有し、前記生成したスケジュールを前記トランスポートに送信してもよい。当該構成により、遅延を短縮することができ、有線部分の伝送路リソースを効率的に利用できる。 Based on the radio side scheduling information, further comprising a control unit for generating a schedule in a data transmission path between the gNB-DU and the gNB-CU-UP, transmitting the generated schedule to the transport may With this configuration, the delay can be shortened, and the transmission line resources of the wired portion can be efficiently used.
 また、本発明の実施の形態によれば、スケジューリング支援情報をAMF(Access and Mobility Management Function)に送信する送信部と、前記スケジューリング支援情報に基づいてgNB-DU(next generation Node B Distributed Unit)が生成した無線側スケジューリング情報を前記AMFから受信する受信部とを有し、前記送信部は、前記無線側スケジューリング情報を、データ伝送路においてUPF(User Plane Function)とgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信するネットワークノードが提供される。 Further, according to the embodiment of the present invention, a transmitting unit that transmits scheduling assistance information to AMF (Access and Mobility Management Function), and gNB-DU (next generation Node B Distributed Unit) based on the scheduling assistance information a receiving unit that receives the generated radio-side scheduling information from the AMF, and the transmitting unit transmits the radio-side scheduling information to UPF (User Plane Function) and gNB-CU-UP (next generation Node B - Central Unit - User Plane) is provided for the network node to send to the transport.
 上記の構成により、遅延を短縮することができる。有線部分の伝送路リソースを効率的に利用できる。また、副次的効果として、低ジッタ又は等時性の保証は本来的にはDS-TT(Device-Side TSN Translator)、NW-TT(Network-Side TSN Translator)の機能であるが、RANが常にTSCAIに沿ったスケジューリングを行う場合には、DS-TT、NW-TTなしでも低ジッタ等時性通信を行うことが可能となる。すなわち、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることができる。 With the above configuration, the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
 また、本発明の実施の形態によれば、スケジューリング支援情報を受信する受信部と、前記スケジューリング支援情報に基づいて無線側スケジューリング情報を決定する制御部と、前記無線側スケジューリング情報をgNB-RU(next generation Node B - Remote Unit)との間のデータ伝送路の管理ノードに送信する送信部を有するネットワークノードが提供される。 Further, according to the embodiment of the present invention, a receiving unit that receives scheduling support information, a control unit that determines radio-side scheduling information based on the scheduling support information, and a gNB-RU ( A network node is provided having a transmitter for transmitting to a management node of a data transmission path between next generation Node B - Remote Unit.
 上記の構成により、遅延を短縮することができる。有線部分の伝送路リソースを効率的に利用できる。また、副次的効果として、低ジッタ又は等時性の保証は本来的にはDS-TT(Device-Side TSN Translator)、NW-TT(Network-Side TSN Translator)の機能であるが、RANが常にTSCAIに沿ったスケジューリングを行う場合には、DS-TT、NW-TTなしでも低ジッタ等時性通信を行うことが可能となる。すなわち、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることができる。 With the above configuration, the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
 また、本発明の実施の形態によれば、スケジューリング支援情報をgNB-DU(next generation Node B Distributed Unit)に送信する送信手順と、前記スケジューリング支援情報に基づいて前記gNB-DUが生成した無線側スケジューリング情報を受信する受信手順と、前記無線側スケジューリング情報に基づいたスケジュール情報を、データ伝送路において前記gNB-DUとgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信する手順とをネットワークノードが実行する通信方法が提供される。 Further, according to the embodiment of the present invention, a transmission procedure for transmitting scheduling assistance information to gNB-DU (next generation Node B Distributed Unit), and the radio side generated by the gNB-DU based on the scheduling assistance information A reception procedure for receiving scheduling information and schedule information based on the radio side scheduling information are transmitted between the gNB-DU and the gNB-CU-UP (next generation Node B - Central Unit - User Plane) on the data transmission path. A communication method is provided in which a network node performs a step of transmitting to a transport located in a network node.
 上記の構成により、遅延を短縮することができる。有線部分の伝送路リソースを効率的に利用できる。また、副次的効果として、低ジッタ又は等時性の保証は本来的にはDS-TT(Device-Side TSN Translator)、NW-TT(Network-Side TSN Translator)の機能であるが、RANが常にTSCAIに沿ったスケジューリングを行う場合には、DS-TT、NW-TTなしでも低ジッタ等時性通信を行うことが可能となる。すなわち、無線通信システムにおいて、ユーザデータ伝送路の使用効率を向上させることができる。 With the above configuration, the delay can be shortened. It is possible to efficiently use the transmission line resources of the wired part. Also, as a secondary effect, guaranteeing low jitter or isochronism is originally a function of DS-TT (Device-Side TSN Translator) and NW-TT (Network-Side TSN Translator), but RAN When scheduling is always performed according to TSCAI, low-jitter isochronous communication can be performed without DS-TT and NW-TT. That is, in a wireless communication system, it is possible to improve the usage efficiency of the user data transmission path.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ネットワークノード30及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってネットワークノード30が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art can understand various modifications, modifications, alternatives, replacements, and the like. be. Although specific numerical examples have been used to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. may apply (unless inconsistent) to the matters set forth in Boundaries of functional or processing units in functional block diagrams do not necessarily correspond to boundaries of physical components. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. As for the processing procedures described in the embodiments, the processing order may be changed as long as there is no contradiction. Although the network node 30 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the network node 30 according to the embodiment of the invention and the software operated by the processor of the terminal 20 according to the embodiment of the invention are respectively stored in random access memory (RAM), flash memory, read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Also, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.In addition, RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本明細書においてネットワークノード30によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。ネットワークノード30を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、ネットワークノード30及びネットワークノード30以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記においてネットワークノード30以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation performed by the network node 30 in this specification may be performed by its upper node in some cases. In a network of one or more network nodes, including network node 30, various operations performed for communication with terminal 20 may be network node 30 and other network nodes other than network node 30 ( (eg, but not limited to MME or S-GW). Although the above example illustrates the case where there is one network node other than the network node 30, the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in no way restrictive names. is not.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "base station device", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", Terms such as "cell group," "carrier," and "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage. point to
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal", etc. may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述のネットワークノード30が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) For the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions of the network node 30 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station may have the functions that the above-described user terminal has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 なお、本開示において、TSCAIは、スケジューリング支援情報の一例である。TSCトラヒック特性情報は、無線側スケジューリング情報の一例である。 In addition, in the present disclosure, TSCAI is an example of scheduling assistance information. The TSC traffic characteristic information is an example of radio side scheduling information.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    ネットワークノード
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 30 network node 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Claims (5)

  1.  スケジューリング支援情報をgNB-DU(next generation Node B Distributed Unit)に送信する送信部と、
     前記スケジューリング支援情報に基づいて前記gNB-DUが生成した無線側スケジューリング情報を受信する受信部とを有し、
     前記送信部は、前記無線側スケジューリング情報に基づいたスケジュール情報を、データ伝送路において前記gNB-DUとgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信するネットワークノード。
    A transmission unit that transmits scheduling assistance information to gNB-DU (next generation Node B Distributed Unit);
    A receiving unit that receives radio side scheduling information generated by the gNB-DU based on the scheduling assistance information,
    The transmission unit, the schedule information based on the wireless side scheduling information, in the data transmission path gNB-DU and gNB-CU-UP (next generation Node B - Central Unit - User Plane) is installed between Network node to send to transport.
  2.  前記無線側スケジューリング情報に基づいて、前記gNB-DUと前記gNB-CU-UPとの間のデータ伝送路におけるスケジュールを生成する制御部をさらに有し、
     前記生成したスケジュールを前記トランスポートに送信する請求項1記載のネットワークノード。
    Based on the radio side scheduling information, further comprising a control unit that generates a schedule in the data transmission path between the gNB-DU and the gNB-CU-UP,
    2. The network node of claim 1, transmitting the generated schedule to the transport.
  3.  スケジューリング支援情報をAMF(Access and Mobility Management Function)に送信する送信部と、
     前記スケジューリング支援情報に基づいてgNB-DU(next generation Node B Distributed Unit)が生成した無線側スケジューリング情報を前記AMFから受信する受信部とを有し、
     前記送信部は、前記無線側スケジューリング情報を、データ伝送路においてUPF(User Plane Function)とgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信するネットワークノード。
    A transmission unit that transmits scheduling assistance information to an AMF (Access and Mobility Management Function);
    A receiving unit that receives wireless side scheduling information generated by gNB-DU (next generation Node B Distributed Unit) based on the scheduling support information from the AMF,
    The transmitting unit transmits the radio-side scheduling information to a transport installed between UPF (User Plane Function) and gNB-CU-UP (next generation Node B-Central Unit-User Plane) on a data transmission path. Network node to send.
  4.  スケジューリング支援情報を受信する受信部と、
     前記スケジューリング支援情報に基づいて無線側スケジューリング情報を決定する制御部と、
     前記無線側スケジューリング情報をgNB-RU(next generation Node B - Remote Unit)との間のデータ伝送路の管理ノードに送信する送信部を有するネットワークノード。
    a receiver that receives scheduling assistance information;
    a control unit that determines radio-side scheduling information based on the scheduling support information;
    A network node having a transmission unit that transmits the radio side scheduling information to a management node of a data transmission path between gNB-RU (next generation Node B-Remote Unit).
  5.  スケジューリング支援情報をgNB-DU(next generation Node B Distributed Unit)に送信する送信手順と、
     前記スケジューリング支援情報に基づいて前記gNB-DUが生成した無線側スケジューリング情報を受信する受信手順と、
     前記無線側スケジューリング情報に基づいたスケジュール情報を、データ伝送路において前記gNB-DUとgNB-CU-UP(next generation Node B - Central Unit - User Plane)との間に設置されるトランスポートに送信する手順とをネットワークノードが実行する通信方法。
    A transmission procedure for transmitting scheduling assistance information to gNB-DU (next generation Node B Distributed Unit);
    A reception procedure for receiving radio side scheduling information generated by the gNB-DU based on the scheduling assistance information;
    Send schedule information based on the radio side scheduling information to a transport installed between the gNB-DU and the gNB-CU-UP (next generation Node B-Central Unit-User Plane) on the data transmission path A communication method in which network nodes perform procedures.
PCT/JP2021/003425 2021-01-29 2021-01-29 Network node and communication method WO2022162920A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/003425 WO2022162920A1 (en) 2021-01-29 2021-01-29 Network node and communication method
JP2022577992A JPWO2022162920A1 (en) 2021-01-29 2021-01-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003425 WO2022162920A1 (en) 2021-01-29 2021-01-29 Network node and communication method

Publications (1)

Publication Number Publication Date
WO2022162920A1 true WO2022162920A1 (en) 2022-08-04

Family

ID=82653222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003425 WO2022162920A1 (en) 2021-01-29 2021-01-29 Network node and communication method

Country Status (2)

Country Link
JP (1) JPWO2022162920A1 (en)
WO (1) WO2022162920A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098651A (en) * 2016-12-13 2018-06-21 Kddi株式会社 Radio network system and communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098651A (en) * 2016-12-13 2018-06-21 Kddi株式会社 Radio network system and communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2 (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.300, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.4.0, 6 January 2021 (2021-01-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 149, XP051999690 *
CATT: "Discussion on TSC Assistance Information", 3GPP DRAFT; R3-193467 TSC ASSISTANCE INFO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Ljubljana, Slovenia; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051769683 *

Also Published As

Publication number Publication date
JPWO2022162920A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7245266B2 (en) Network node, network system and notification method
WO2020145300A1 (en) User device, network node, and communication system
JP7204403B2 (en) network node
CN113994625A (en) Network node
JP7169827B2 (en) Terminal and communication method
CN112690039B (en) network node
EP3911022B1 (en) Network node, and user device
WO2022113370A1 (en) Network node and communication method
WO2022162920A1 (en) Network node and communication method
WO2022091188A1 (en) Network node and communication method
JP7313423B2 (en) Base station, communication method, and wireless communication system
WO2023195368A1 (en) Network node and communication method
WO2022162921A1 (en) Network node, communication method and transport
WO2022239160A1 (en) User equipment and communication method
WO2022157899A1 (en) Network node, wireless communication system, and communication method
WO2023084635A1 (en) Network node and communication method
WO2021220971A1 (en) Terminal and communication method
EP4195780A1 (en) Terminal, network node, and communication method
WO2023013076A1 (en) Network node and communication method
WO2023013078A1 (en) Network node and communication method
WO2022097290A1 (en) Terminal and communication system
WO2023275997A1 (en) Network node and communication method
US20220361045A1 (en) Communication device and communication method
WO2020255686A1 (en) Base station device, and user plane device
US20220303832A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922934

Country of ref document: EP

Kind code of ref document: A1