WO2022162778A1 - State prediction device and state prediction method - Google Patents

State prediction device and state prediction method Download PDF

Info

Publication number
WO2022162778A1
WO2022162778A1 PCT/JP2021/002800 JP2021002800W WO2022162778A1 WO 2022162778 A1 WO2022162778 A1 WO 2022162778A1 JP 2021002800 W JP2021002800 W JP 2021002800W WO 2022162778 A1 WO2022162778 A1 WO 2022162778A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
output
input
cell
target system
Prior art date
Application number
PCT/JP2021/002800
Other languages
French (fr)
Japanese (ja)
Inventor
拓未 池田
利明 上嶋
博樹 溝添
Original Assignee
株式会社日立情報通信エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立情報通信エンジニアリング filed Critical 株式会社日立情報通信エンジニアリング
Priority to PCT/JP2021/002800 priority Critical patent/WO2022162778A1/en
Priority to JP2022577871A priority patent/JPWO2022162778A1/ja
Publication of WO2022162778A1 publication Critical patent/WO2022162778A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a state prediction device and a state prediction method.
  • Patent Document 1 database data is divided into multiple groups of wide-area macro data, small-area micro data, and industry data, and the data items are used as explanatory variables.
  • a demand forecasting device is disclosed that obtains forecast data for the number of vehicles.
  • a single prediction model using multiple regression analysis can only handle modeling of relatively simple targets.
  • the predictive model would become extremely complicated, making it difficult for learning to converge.
  • the present invention was made to solve the above problems, and aims to model a complex target while ensuring the ease of convergence of prediction model learning.
  • the present invention has the configuration described in the claims.
  • the present invention is a state prediction device for calculating a predicted value of output data indicating the state of the target system corresponding to input data to the target system, wherein the processing steps of the target system are: Raw data obtained by dividing the target system into a plurality of blocks from the upstream process to the downstream process, and observing the input data input to each block and the output data output from the block.
  • an acquisition unit a teacher data generation unit that extracts input data and output data for each block from the raw data and generates teacher data for each block; machine learning is performed for each local model by applying teacher data of the block to a local model that calculates output data to be output from the block in response to input data to the block; a prediction model construction unit that constructs a prediction model of the target system by cascading the plurality of cells after machine learning from the upstream process toward the downstream process; a predicted value calculation unit that calculates a predicted value of output data that is input and output from the target system, wherein the input data to the input layer cell located most upstream among the plurality of cells is the It is input data to the prediction model, and the output data from the input layer cell is the input data to other cells in the hierarchy downstream of the input layer cell, and is the input data to the output layer cell located most downstream is output data from another cell in a layer upstream of the output layer cell, and output data from the output layer cell is output data from the prediction model. do.
  • the functional block diagram of a state prediction apparatus. The figure which shows an example of the prediction model which the prediction model construction part builds.
  • the figure which shows the prediction model of a manufacturing system. 4 is a flowchart showing the flow of processing of the state prediction device;
  • FIG. 1 is a diagram showing the hardware configuration of the state prediction device 100.
  • the state prediction device 100 includes a processor 101, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, a HDD (Hard Disk Drive) 104, an input I/F 105, an output I/F 106, and a communication I/F 107. , which are connected to each other via a bus 108, using a computer.
  • the state prediction device 100 is also provided with an RTC (Real Time Clock) 109 .
  • RTC Real Time Clock
  • the processor 101 may be either a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit), and any type of device can be used as long as it executes arithmetic functions.
  • the hardware configuration of the state prediction device 100 is not limited to the above, and may be configured by a combination of a control circuit and a storage device.
  • An input device 111 such as a mouse, keyboard, touch panel, etc. is connected to the input I/F 105 .
  • a display 112 such as an LCD is connected to the output I/F 106 .
  • output elements such as sensors and output terminals of the target system 200 whose state is predicted by the state prediction device 100, and input elements such as operation terminals and input terminals of the target system 200 are connected for communication. .
  • the target system 200 is a system in which the processing process of the target system 200 is divided into a plurality of blocks from the upstream process to the downstream process, and input data and output data to each block can be observed. Therefore, a “block” corresponds to some process of the target system 200 .
  • the target system 200 may be a document management system, a sales management system, a store management system, a factory work management system, a manufacturing management system, various plant facilities such as chemical plants, water treatment plants, oil refinery plants, food It may be a manufacturing plant or a plant growing plant.
  • the state prediction device 100 acquires observation values and control values representing the state of the target system 200 from the output elements of the target system 200 .
  • the state prediction device 100 may calculate a predicted value of the state of the target system 200 and output a control signal based on this predicted value. Thereby, the state prediction device 100 can also be configured as a control support device for the target system 200 .
  • FIG. 2 is a functional block diagram of the state prediction device 100.
  • data including observed values, measured values, and control values acquired from the target system 200 is referred to as raw data (RAW data).
  • RAW data data including observed values, measured values, and control values acquired from the target system 200
  • a calculated value calculated based on an observed value, a measured value, or a control value may be used.
  • the state prediction device 100 includes a RAW data acquisition unit 120, a RAW data storage unit 122, a teacher data generation unit 124, a teacher data storage unit 126, a prediction model construction unit 128, a prediction model storage unit 130, and a prediction value calculation unit 132. Further, when adding a control support function for the target system 200 to the state prediction device 100, the control support unit 134 is included. Each unit is configured as an instance by processor 101 executing software that realizes the function of state prediction device 100 . The function of each part will be described later.
  • FIG. 3 shows an example of a prediction model constructed by the prediction model construction unit 128.
  • the predictive model 10 includes a plurality of cells and is configured by cascading these cells.
  • the example of FIG. 3 includes three cells, a first cell (Cell#1), a second cell (Cell#2) and a third cell (Cell#3).
  • These multiple cells include input layer cells whose explanatory variables are input parameters from the outside of the prediction model 10, and output layer cells whose objective variables are outputs of the prediction model 10.
  • the predictive model 10 may have multiple input layer cells and multiple output layer cells. Since the output from the output layer cell corresponds to the output from the prediction model 10, if there is one output layer cell, the output of the target system 200 as a whole will be one, and if there are multiple output layer cells, The target system 200 as a whole has a plurality of outputs.
  • the first cell (Cell #1) and the second cell (Cell #2) are input layer cells
  • the third cell (Cell #3) is an output layer cell
  • each input layer A cell is directly connected to an output layer cell.
  • the first and second of the input layer cells are parallel in the overall connection of predictive model 10 and they are not connected.
  • the outputs of the first and second cells are the inputs of the third cell.
  • the output of the third cell corresponds to the output of predictive model 10 . Therefore, the entire system of the prediction model 10 is configured by cascade-connecting two layers, an input layer and an output layer, and including cells in a parallel relationship in the input layer.
  • each of the first to third cells contains one local model.
  • a local model is a prediction model for each block that calculates output data output from each block corresponding to input data to the block of the target system 200 .
  • a multiple regression model is particularly used as a local model to perform linear analysis.
  • the first cell contains a local model consisting of a multiple regression model that uses the input parameters X 1 and X 2 as explanatory variables and obtains the objective variable y 1 .
  • the second cell contains a local model consisting of a multiple regression model with input parameters X 3 , X 4 and X 5 as explanatory variables and objective variable y 2 .
  • the third cell contains a multiple regression model in which y 1 and y 2 are explanatory variables x 1 and x 2 of Equation (1) and objective variable y 3 is obtained.
  • y3 corresponds to the output parameter Y of the prediction model 10 ;
  • X 1 , X 2 , X 3 , X 4 , and X 5 are time-series data, and moving average values are used as explanatory variables for the multiple regression model included in each cell.
  • the following formula (1) shows the prototype of the multiple regression model contained in each of the first, second and third cells. ... (1) however, x 1 , x 2 , ..., x m : explanatory variables ⁇ 1 , ⁇ 2 , ... ⁇ m , ⁇ : partial regression variable y: objective variable
  • the first term x1 in equation ( 1 ) is the input parameter X1 of the prediction model 10
  • the second term x2 is the input parameter X2 of the prediction model 10
  • the first term x 1 of the formula (1) is the input parameter X 3 of the prediction model 10
  • the second term x 2 is the input parameter X 4 of the prediction model 10
  • the third term x 3 of the prediction model 10 The input parameter X is 5 .
  • the first term x1 in equation ( 1 ) is the output parameter y1 of the first cell
  • the second term x2 is the output parameter y2 of the second cell. Therefore, in the third cell, the first and second terms of equation ( 1 ) are moving average values of the output parameters y1 and y2, respectively .
  • FIG. 4 is a diagram showing a production system 200a for the product G as an example of the target system 200. As shown in FIG. 4
  • the manufacturing system 200a has a first system from the first mixing process to the second mixing process and a second system from the filter 1 to the second mixing process. Connect with two mixing steps.
  • Each of the first mixing step, tank 1 (storage step), second mixing step, filter 1, filter 2, and tank 2 (storage step) corresponds to a block.
  • material A and additive B are added in the first mixing step to obtain intermediate product D.
  • a portion of the intermediate product D is temporarily stored in the tank 1 on the first system and introduced into the second mixing step.
  • the second system puts the material C into the filter 1, applies the filter pressure value P to the filter 1, and obtains the intermediate product E.
  • a part of the intermediate product D obtained in the first mixing step and the intermediate product E are put into the filter 2 .
  • An intermediate product F is produced from the filter 2, temporarily stored in the tank 2, and then introduced into the second mixing step.
  • the intermediate product D and the intermediate product F are introduced and mixed to produce the product G.
  • the manufacturing system 200a is a system that obtains the product G by inputting the characteristic value of the material A, the characteristic value of the additive B, the characteristic value of the material C, and the filter pressure value P.
  • the "characteristic value” includes, for example, concentration, viscosity, pH, flow rate, flow velocity, impurity concentration, temperature, differential pressure in the case of a filter, remaining tank amount, and the like.
  • the point where the fluctuation data occurs is regarded as one node, one cell is given to each node, and these cells are cascaded from the upstream process to the downstream process to predict the target system 200 Build a model 10 .
  • FIG. 5 is a diagram showing the prediction model 10a of the manufacturing system 200a.
  • the first cell (Cell#1) and the second cell (Cell#2) are assigned to the first mixing process and tank 1 on the first system, respectively.
  • the third cell (Cell#3), the fourth cell (Cell#4) and the fifth cell (Cell#5) are assigned to the filter 1, the filter 2 and the tank 2 on the second system, respectively.
  • the sixth cell (Cell#6) is assigned to the second mixing step.
  • connection between the first cell and the second cell and the connection between the third cell and the fourth cell are connections in the first hierarchy, and are called cascade 1.
  • the connection between the second cell and the sixth cell and the connection between the fourth cell and the fifth cell are connections in the second hierarchy, and are called cascade 2.
  • FIG. The connection between the 5th cell and the 6th cell is the connection of the third hierarchy and is called cascade 3 .
  • one or more intermediate layer cells may be included between the first and third cells, which are the input layer cells, and the sixth cell, which is the output layer cell.
  • the first intermediate layer corresponds to the second and fourth cells
  • the second intermediate layer corresponds to the fifth cell.
  • FIG. 6 is a flowchart showing the flow of processing of the state prediction device 100 according to this embodiment.
  • FIG. 7 is a diagram showing an example of control using the state prediction device 100. As shown in FIG.
  • the state prediction device 100 acquires data necessary for constructing the prediction model 10a from the target system 200 (S1).
  • Data obtained from the target system 200 is called RAW data. It is assumed that RAW data is added with time data when the RAW data is detected. When the time data is not added, the time data is received from the RTC 109 , the time data is added to the RAW data, and stored in the RAW data storage unit 122 .
  • the RAW data also includes output parameters for each input layer cell and input and output parameter data for each intermediate layer cell.
  • the teacher data generation unit 124 reads data from the RAW data storage unit 122 and generates teacher data for machine learning (S2).
  • the teacher data generation unit 124 extracts input parameters and output parameters for each block within the window width for which the moving average value is calculated, and generates a teacher model for each block.
  • the window width may be specified by the length of time ⁇ t for calculating the moving average value from the reference time t0 with the time when the input data is input to the prediction model 10a as the reference time t0, or by the number of samplings (formula ( It may be specified by the value of n in 1).
  • the teacher data generation unit 124 stores the generated teacher data for each block in the teacher data storage unit 126 .
  • the prediction model construction unit 128 applies the teacher data stored in the teacher data storage unit 126 to the multiple regression model of formula (1) described above on a cell-by-cell basis, and the error calculated by the multiple regression model is included in the teacher data.
  • Machine learning is performed on the RAW data obtained until it falls within the allowable range, and a prediction model is constructed (S3).
  • the predictive model construction unit 128 performs, for example, holdout verification and k-fold cross-validation, and trains and verifies in cell units until the error of the local model falls within the allowable range.
  • a plurality of cells are cascaded from the upstream process to the downstream process, and the prediction model 10 representing the overall state of the target system 200, that is, the input to the target system 200
  • a prediction model 10 is constructed that calculates the predicted value of the output parameter for the parameter.
  • the prediction model construction unit 128 stores the prediction model in the prediction model storage unit 130.
  • input parameters (prediction conditions) to be input to the prediction model are input from the input device 111 or the target system 200 .
  • the predicted value calculation unit 132 applies the input parameters (prediction conditions) to the prediction model and performs calculations to obtain predicted values of the state of the target system 200 at a future time point prior to the reference time point t0 (S4). You may display on the display 112 as an example of the output of a predicted value.
  • the RAW data acquisition unit 120 obtains the characteristic values (viscosity, concentration, etc.), the characteristic value (input amount) of the additive B at the reference time to, and the characteristic value and filter pressure value P of the material C input to the filter 1, and the predicted value calculation unit 132
  • a prediction model is used to calculate the impurity concentration predicted to be observed at a future predicted point in the second mixing step, that is, at t1 after 30 minutes (corresponding to the predicted value obtained in S4).
  • the first mixing step A new virtual value obtained by increasing or decreasing the characteristic value (viscosity, concentration, etc.) of material A and the current characteristic value (input amount) of additive B are output to the predicted value calculation unit 132 as input parameters, and predicted The value calculator 132 recalculates and calculates a new predicted impurity concentration of the product from the second mixing step (S7).
  • the element that generates the variable data is treated as one node, one cell is assigned to each node, and the cells are cascade-connected. Do modeling. Then, each cell trains and verifies a local model, which is then cascaded, so the local model becomes a relatively simple model, which facilitates convergence of learning.
  • the third mixing step as one node, creates one cell (seventh cell), and inserts one multiple regression model into the cell.
  • the prediction model can be easily expanded as the target is expanded. In this manner, the technique of cascading local models improves the expressiveness of the model and facilitates expanding the range of predictable objects.
  • the layer structure of the prediction model is not limited to the above.
  • the function used for the local model is not limited to the multiple regression model, and may be a simple regression model.
  • the multiple regression model instead of the moving average value, other statistics, such as the average value over a predetermined period, may be used. Also, instead of the statistics, the observed values themselves may be input to each term of the multiple regression analysis.
  • teacher data is generated in advance for each cell, one cell is assigned to each variation data, and machine learning is performed by applying the teacher data to each local model included in the cell.
  • the machine-learned cells may be cascade-connected to construct a prediction model, and the input data at the reference time t0 may be input to the prediction model to calculate the predicted value at the future time.
  • a multiple regression model may be used as the local model and a moving average may be used as each term.
  • FIG. 8 A modification of the prediction model described in this embodiment will be described with reference to FIGS. 8 to 13.
  • FIG. 8 A modification of the prediction model described in this embodiment will be described with reference to FIGS. 8 to 13.
  • the prediction model 10b shown in FIG. 8 in addition to the output parameter y 1 of the first cell and the output parameter y 2 of the second cell as explanatory variables of the third cell, the prediction model It differs from prediction model 10 in that it also includes input parameter X 6 to 10b.
  • the explanatory variables to the intermediate layer and the output layer are not limited to only the output parameters output from the immediately preceding cell, but the input parameters to the prediction model 10b, and the preceding cell ( Output parameters output from upstream) cells may additionally be used.
  • the output parameter y3 of the third cell is the output parameter Y of the prediction model 10c, and the explanatory variable It is different from the prediction model 10 in that
  • the output parameters of each layer of the input layer, the intermediate layer, and the output layer are not limited to being explanatory variables to the immediately following cells or output parameters of the prediction model 10c, but before each layer, or It may be used as an explanatory variable for other cells on the same layer as its own cell.
  • FIG. 9 corresponds to a variant in which the third cell is connected (feedbacked) counter-clockwise to the cascaded flow.
  • the output parameter y2 of the second cell becomes the second output parameter Y2 of the prediction model 10d.
  • the output parameters of the input layer and the intermediate layer may be used as the output parameters of the predictive model 10d as well as the explanatory variables to the immediately following cell.
  • the output parameter y1 of the first cell which is the input layer cell
  • the input parameter of the second cell which is also the input layer cell.
  • the output parameter y4 of one output layer cell is the input parameter of the other output layer cell (third cell).
  • the input parameters of the fourth cell also include the input parameters X6 of the prediction model 10e.
  • the output parameter y4 of the fourth cell in the middle layer cell is used as the input parameter of the fifth parameter, which is the middle layer parameter in the same layer.
  • the output parameter y5 of the fifth parameter is used as the input parameter of the sixth cell, which is the input layer cell.
  • the output parameter y_7 of the seventh cell which is the intermediate layer cell adjacent to the sixth cell on the downstream side, is the output parameter Y_3 of the prediction model 10f.
  • a simple regression model is used as the local model of the third cell.
  • the output parameter y5 of the 5th cell of the intermediate layer cells is used as the input parameter of the 8th cell further downstream than the 7th cell adjacent downstream.
  • the present invention is characterized by performing machine learning for each local model of each cell, and including one prediction model by cascading cells containing local models that have undergone machine learning.
  • a modification example in which an input parameter from the outside of a prediction model is input to a certain cell regardless of the hierarchy, or the output of a certain cell is output to the outside and further used as an output parameter of the prediction model. are included in the present invention.
  • a part of the cascade connection includes connections from downstream to upstream, connections not only to adjacent cells but also to cells in other non-adjacent layers located upstream or downstream, and connections to other cells in the same layer. Included variations are included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

This state prediction device for a target system: divides the processing steps of the target system into a plurality of blocks from an upstream step to a downstream step; generates teacher data for each block, including input data and output data for each block, from raw data obtained by observing the input data input to each block and the output data output from a given block; performs machine learning on local models included in cells that are allocated one-by-one to the respective blocks, by applying the teacher data for a given block to each local model; constructs a prediction model for the target system by connecting the plurality of cells after the machine learning, in a cascade from the upstream step to the downstream step; and calculates a predicted value for the output data output from the target system when the input data to the target system is input to the prediction model.

Description

状態予測装置及び状態予測方法State prediction device and state prediction method
 本発明は状態予測装置及び状態予測方法に関する。 The present invention relates to a state prediction device and a state prediction method.
 特許文献1には、データベースのデータを広域のマクロデータ、小域のミクロデータ、及び業界データの複数グループに分け、該データの項目を説明変数とし、重回帰分析により目的変数である最適な駐車台数の予測データを求める需要予測装置が開示されている。 In Patent Document 1, database data is divided into multiple groups of wide-area macro data, small-area micro data, and industry data, and the data items are used as explanatory variables. A demand forecasting device is disclosed that obtains forecast data for the number of vehicles.
特開平7-36854号公報JP-A-7-36854
 特許文献1では、最適な駐車台数の需要予測を、下式に示す重回帰方程式で予測している。
Y=aA+bB+cC+・・・+d
Y:目的変数(最適な駐車台数)
A,B,C,・・・:説明変数(人口、土地標準価格、駐車場構造など)
a,b,c,・・・,d:偏回帰係数
In Patent Literature 1, the demand forecast for the optimum number of parked vehicles is predicted by the multiple regression equation shown below.
Y=aA+bB+cC+...+d
Y: Objective variable (optimal parking number)
A, B, C, ...: Explanatory variables (population, standard land price, parking lot structure, etc.)
a, b, c, ..., d: partial regression coefficient
 特許文献1のように重回帰分析を使った単一の予測モデルは、比較的単純な対象のモデリングにしか対応できない。また、仮に一つの予測モデルで複雑な対象をモデリングすると予測モデルが非常に複雑になり、学習の収束が困難になるという課題がある。 A single prediction model using multiple regression analysis, such as Patent Document 1, can only handle modeling of relatively simple targets. In addition, if one predictive model were to model a complex target, the predictive model would become extremely complicated, making it difficult for learning to converge.
 本発明は上記課題を解決するためになされたものであり、予測モデルの学習の収束しやすさを確保しながら複雑な対象のモデリングをすることを目的とする。 The present invention was made to solve the above problems, and aims to model a complex target while ensuring the ease of convergence of prediction model learning.
 上記課題を解決するために、本発明は請求の範囲に記載の構成を備える。その一例をあげるならば、本発明は、対象システムへの入力データに対応した前記対象システムの状態を示す出力データの予測値を算出する状態予測装置であって、前記対象システムの処理工程を、前記対象システムにおける上流工程から下流工程に向かって複数のブロックに分割し、各ブロックに入力される入力データ及び当該ブロックから出力される出力データを観測して得られたローデータを取得するローデータ取得部と、前記ローデータから前記ブロック毎の入力データ及び出力データを抽出し、前記ブロック毎の教師データを生成する教師データ生成部と、前記ブロック毎に一つずつ割り当てられたセルに含まれる局所モデルであって、前記ブロックへの入力データに対応して当該ブロックから出力させる出力データを算出する局所モデルに対し、当該ブロックの教師データを適用して前記局所モデル毎に機械学習を行い、機械学習後の前記複数のセルを前記上流工程から前記下流工程に向ってカスケード接続して前記対象システムの予測モデルを構築する予測モデル構築部と、前記予測モデルに前記対象システムへの入力データを入力し、前記対象システムから出力される出力データの予測値を算出する予測値算出部と、を備え、前記複数のセルのうち、最も上流側に位置する入力層セルへの入力データは、前記予測モデルへの入力データであり、前記入力層セルからの出力データは、当該入力層セルの下流側の階層にある他のセルへの入力データであり、最も下流側に位置する出力層セルへの入力データは、当該出力層セルの上流側の階層にある他のセルからの出力データであり、当該出力層セルからの出力データは、前記予測モデルからの出力データである、ことを特徴とする。 In order to solve the above problems, the present invention has the configuration described in the claims. As an example, the present invention is a state prediction device for calculating a predicted value of output data indicating the state of the target system corresponding to input data to the target system, wherein the processing steps of the target system are: Raw data obtained by dividing the target system into a plurality of blocks from the upstream process to the downstream process, and observing the input data input to each block and the output data output from the block. an acquisition unit; a teacher data generation unit that extracts input data and output data for each block from the raw data and generates teacher data for each block; machine learning is performed for each local model by applying teacher data of the block to a local model that calculates output data to be output from the block in response to input data to the block; a prediction model construction unit that constructs a prediction model of the target system by cascading the plurality of cells after machine learning from the upstream process toward the downstream process; a predicted value calculation unit that calculates a predicted value of output data that is input and output from the target system, wherein the input data to the input layer cell located most upstream among the plurality of cells is the It is input data to the prediction model, and the output data from the input layer cell is the input data to other cells in the hierarchy downstream of the input layer cell, and is the input data to the output layer cell located most downstream is output data from another cell in a layer upstream of the output layer cell, and output data from the output layer cell is output data from the prediction model. do.
 本発明によれば、予測モデルの学習の収束しやすさを確保しながら複雑な対象のモデリングをすることができる。なお上記した以外の目的、構成、効果は以下の実施形態により明らかにされる。 According to the present invention, it is possible to model a complex target while ensuring the ease of convergence of prediction model learning. Objects, configurations, and effects other than those described above will be clarified by the following embodiments.
状態予測装置のハードウェア構成を示す図。The figure which shows the hardware constitutions of a state prediction apparatus. 状態予測装置の機能ブロック図。The functional block diagram of a state prediction apparatus. 予測モデル構築部が構築する予測モデルの一例を示す図。The figure which shows an example of the prediction model which the prediction model construction part builds. 対象システムの一例としての生成物の製造システムを示す図。The figure which shows the manufacturing system of a product as an example of a target system. 製造システムの予測モデルを示す図。The figure which shows the prediction model of a manufacturing system. 状態予測装置の処理の流れを示すフローチャート。4 is a flowchart showing the flow of processing of the state prediction device; 状態予測装置を用いた制御例を示す図。The figure which shows the example of control using a state prediction apparatus. 予測モデル構築部が構築する予測モデルの別例を示す図。The figure which shows another example of the prediction model which the prediction model construction part builds. 予測モデル構築部が構築する予測モデルの別例を示す図。The figure which shows another example of the prediction model which the prediction model construction part builds. 予測モデル構築部が構築する予測モデルの別例を示す図。The figure which shows another example of the prediction model which the prediction model construction part builds. 予測モデル構築部が構築する予測モデルの別例を示す図。The figure which shows another example of the prediction model which the prediction model construction part builds. 予測モデル構築部が構築する予測モデルの別例を示す図。The figure which shows another example of the prediction model which the prediction model construction part builds. 予測モデル構築部が構築する予測モデルの別例を示す図。The figure which shows another example of the prediction model which the prediction model construction part builds.
 以下、図面を参照して本実施形態について説明する。全図を通じて同一の構成には同一の符号を付し、重複説明を省略する。 The present embodiment will be described below with reference to the drawings. The same reference numerals are given to the same configurations throughout the drawings, and redundant explanations are omitted.
 図1は、状態予測装置100のハードウェア構成を示す図である。状態予測装置100は、プロセッサ101、RAM(Random Access Memory)102、ROM(Read Only Memory)103、HDD(Hard Disk Drive)104、入力I/F105、出力I/F106、及び通信I/F107を含み、これらがバス108を介して互いに接続されたコンピュータを用いて構成される。また、実施形態では時系列データを扱うので、状態予測装置100にRTC(Real time Clock)109も備える。 FIG. 1 is a diagram showing the hardware configuration of the state prediction device 100. As shown in FIG. The state prediction device 100 includes a processor 101, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, a HDD (Hard Disk Drive) 104, an input I/F 105, an output I/F 106, and a communication I/F 107. , which are connected to each other via a bus 108, using a computer. In addition, since the embodiment handles time-series data, the state prediction device 100 is also provided with an RTC (Real Time Clock) 109 .
 プロセッサ101は、GPU(Graphics Processing Unit)でもCPU(Central Processing Unit)でもよく、演算機能を実行するデバイスであれば種類を問わない。また、状態予測装置100のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。 The processor 101 may be either a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit), and any type of device can be used as long as it executes arithmetic functions. Moreover, the hardware configuration of the state prediction device 100 is not limited to the above, and may be configured by a combination of a control circuit and a storage device.
 入力I/F105には、マウス、キーボード、タッチパネル等の入力装置111が接続される。 An input device 111 such as a mouse, keyboard, touch panel, etc. is connected to the input I/F 105 .
 出力I/F106には、LCD等からなるディスプレイ112が接続される。 A display 112 such as an LCD is connected to the output I/F 106 .
 通信I/F107には、状態予測装置100が状態予測をする対象システム200のセンサや出力端子などの出力要素と、対象システム200の操作端や入力端子などの入力要素のそれぞれが通信接続される。 To the communication I/F 107, output elements such as sensors and output terminals of the target system 200 whose state is predicted by the state prediction device 100, and input elements such as operation terminals and input terminals of the target system 200 are connected for communication. .
 対象システム200は、対象システム200の処理工程を上流工程から下流工程に向かって複数のブロックに分割し、各ブロックへの入力データ及び出力データが観測可能なシステムである。従って、「ブロック」とは、対象システム200の一部の工程に相当する。例えば、対象システム200は、文書管理システム、販売管理システム、店舗管理システム、工場の作業管理システム、製造管理システムでもよいし、各種プラント設備、例えば、化学プラント、水処理プラント、石油精製プラント、食品製造プラント、植物育成プラントでもよい。 The target system 200 is a system in which the processing process of the target system 200 is divided into a plurality of blocks from the upstream process to the downstream process, and input data and output data to each block can be observed. Therefore, a “block” corresponds to some process of the target system 200 . For example, the target system 200 may be a document management system, a sales management system, a store management system, a factory work management system, a manufacturing management system, various plant facilities such as chemical plants, water treatment plants, oil refinery plants, food It may be a manufacturing plant or a plant growing plant.
 状態予測装置100は、対象システム200の出力要素から対象システム200の状態を表す観測値や制御値を取得する。 The state prediction device 100 acquires observation values and control values representing the state of the target system 200 from the output elements of the target system 200 .
 状態予測装置100は、対象システム200の状態の予測値を演算し、この予測値に基づく制御信号を出力してもよい。これにより、状態予測装置100は、対象システム200の制御支援装置として構成することもできる。 The state prediction device 100 may calculate a predicted value of the state of the target system 200 and output a control signal based on this predicted value. Thereby, the state prediction device 100 can also be configured as a control support device for the target system 200 .
 図2は、状態予測装置100の機能ブロック図である。以下の説明において、対象システム200から取得する観測値、計測値、また制御値を含むデータをローデータ(RAWデータ)と記載する。観測値、計測値、又は制御値を基に演算した計算値でもよい。 FIG. 2 is a functional block diagram of the state prediction device 100. FIG. In the following description, data including observed values, measured values, and control values acquired from the target system 200 is referred to as raw data (RAW data). A calculated value calculated based on an observed value, a measured value, or a control value may be used.
 状態予測装置100は、RAWデータ取得部120、RAWデータ記憶部122、教師データ生成部124、教師データ記憶部126、予測モデル構築部128、予測モデル記憶部130、予測値算出部132を含む。また状態予測装置100に対象システム200の制御支援機能を追加する場合は制御支援部134を含む。各部は、プロセッサ101が、状態予測装置100の機能を実現するソフトウェアを実行することによりインスタンスとして構成される。各部の機能は後述する。 The state prediction device 100 includes a RAW data acquisition unit 120, a RAW data storage unit 122, a teacher data generation unit 124, a teacher data storage unit 126, a prediction model construction unit 128, a prediction model storage unit 130, and a prediction value calculation unit 132. Further, when adding a control support function for the target system 200 to the state prediction device 100, the control support unit 134 is included. Each unit is configured as an instance by processor 101 executing software that realizes the function of state prediction device 100 . The function of each part will be described later.
 図3は、予測モデル構築部128が構築する予測モデルの一例を示す。予測モデル10は、複数のセルを含み、これら複数のセルをカスケード接続して構成される。図3の例では、3つのセル、第1セル(Cell#1)、第2セル(Cell#2)、第3セル(Cell#3)を含む。 FIG. 3 shows an example of a prediction model constructed by the prediction model construction unit 128. The predictive model 10 includes a plurality of cells and is configured by cascading these cells. The example of FIG. 3 includes three cells, a first cell (Cell#1), a second cell (Cell#2) and a third cell (Cell#3).
 これら複数のセルは、予測モデル10の外部からの入力パラメータを説明変数とする入力層セルと、セルから出力される目的変数が予測モデル10の出力となる出力層セルと、が含まれる。予測モデル10には、複数の入力層セル、複数の出力層セルがあってもよい。出力層セルからの出力は予測モデル10からの出力に相当するので、出力層セルが1つであれば、対象システム200全体としての出力が一つとなり、複数の出力層セルがある場合は、対象システム200全体としての出力は複数となる。 These multiple cells include input layer cells whose explanatory variables are input parameters from the outside of the prediction model 10, and output layer cells whose objective variables are outputs of the prediction model 10. The predictive model 10 may have multiple input layer cells and multiple output layer cells. Since the output from the output layer cell corresponds to the output from the prediction model 10, if there is one output layer cell, the output of the target system 200 as a whole will be one, and if there are multiple output layer cells, The target system 200 as a whole has a plurality of outputs.
 図3の予測モデル10では、第1セル(Cell#1)及び第2セル(Cell#2)が入力層セルであり、第3セル(Cell#3)が出力層セルであり、各入力層セルが出力層セルに直結される。入力層セルの第1セル及び第2セルは予測モデル10の全体の接続においては並列でありこれらは接続されない。そして、第1セルと第2セルの出力が第3セルの入力となる。第3セルの出力は予測モデル10の出力に相当する。よって、予測モデル10の全体系は、入力層及び出力層の2層をカスケード接続し、入力層の中に並列関係にあるセルを含んで構成される。 In the prediction model 10 of FIG. 3, the first cell (Cell #1) and the second cell (Cell #2) are input layer cells, the third cell (Cell #3) is an output layer cell, and each input layer A cell is directly connected to an output layer cell. The first and second of the input layer cells are parallel in the overall connection of predictive model 10 and they are not connected. The outputs of the first and second cells are the inputs of the third cell. The output of the third cell corresponds to the output of predictive model 10 . Therefore, the entire system of the prediction model 10 is configured by cascade-connecting two layers, an input layer and an output layer, and including cells in a parallel relationship in the input layer.
 また、第1セルから第3セルのそれぞれは、1つの局所モデルを含む。局所モデルは、対象システム200のブロックへの入力データに対応して各ブロックから出力される出力データを算出するブロック単位の予測モデルである。本実施形態では特に局所モデルとして重回帰モデルを用い、線形解析を行う。 Also, each of the first to third cells contains one local model. A local model is a prediction model for each block that calculates output data output from each block corresponding to input data to the block of the target system 200 . In this embodiment, a multiple regression model is particularly used as a local model to perform linear analysis.
 予測モデル10には、外部から5つの入力パラメータX,X,X,X,Xが入力され、Yを出力する。第1セルは、入力パラメータX,Xを説明変数とし、目的変数yを求める重回帰モデルからなる局所モデルを含む。第2セルは、入力パラメータX,X,Xを説明変数とし、目的変数yを求める重回帰モデルからなる局所モデルを含む。第3セルは、y,yを式(1)の説明変数x,xとし、目的変数yを求める重回帰モデルを含む。yは、予測モデル10の出力パラメータYに相当する。 Five input parameters X 1 , X 2 , X 3 , X 4 and X 5 are input to the prediction model 10 from the outside, and Y is output. The first cell contains a local model consisting of a multiple regression model that uses the input parameters X 1 and X 2 as explanatory variables and obtains the objective variable y 1 . The second cell contains a local model consisting of a multiple regression model with input parameters X 3 , X 4 and X 5 as explanatory variables and objective variable y 2 . The third cell contains a multiple regression model in which y 1 and y 2 are explanatory variables x 1 and x 2 of Equation (1) and objective variable y 3 is obtained. y3 corresponds to the output parameter Y of the prediction model 10 ;
 本実施形態では、X,X,X,X,Xは、時系列データであり、各セルに含まれる重回帰モデルの説明変数として移動平均値を用いる。下式(1)は、第1セル、第2セル、第3セルのそれぞれに含まれる重回帰モデルの原型を示す。
Figure JPOXMLDOC01-appb-M000001
・・・(1)
但し、
,x,・・・,x:説明変数
α,α,・・・α,β:偏回帰変数
y:目的変数
In this embodiment, X 1 , X 2 , X 3 , X 4 , and X 5 are time-series data, and moving average values are used as explanatory variables for the multiple regression model included in each cell. The following formula (1) shows the prototype of the multiple regression model contained in each of the first, second and third cells.
Figure JPOXMLDOC01-appb-M000001
... (1)
however,
x 1 , x 2 , ..., x m : explanatory variables α 1 , α 2 , ... α m , β: partial regression variable y: objective variable
 第1セルでは、式(1)の第1項xが予測モデル10の入力パラメータX1、第2項xが予測モデル10の入力パラメータXである。第2セルでは、式(1)の第1項xが予測モデル10の入力パラメータX、第2項xが予測モデル10の入力パラメータX、第3項xが予測モデル10の入力パラメータXである。 In the first cell, the first term x1 in equation ( 1 ) is the input parameter X1 of the prediction model 10 , and the second term x2 is the input parameter X2 of the prediction model 10 . In the second cell, the first term x 1 of the formula (1) is the input parameter X 3 of the prediction model 10, the second term x 2 is the input parameter X 4 of the prediction model 10, and the third term x 3 of the prediction model 10 The input parameter X is 5 .
 第3セルでは、式(1)の第1項xが第1セルの出力パラメータy、第2項xが第2セルの出力パラメータyである。よって、第3セルでは、式(1)の第1項、第2項は、出力パラメータy,yのそれぞれの移動平均値である。 In the third cell, the first term x1 in equation ( 1 ) is the output parameter y1 of the first cell, and the second term x2 is the output parameter y2 of the second cell. Therefore, in the third cell, the first and second terms of equation ( 1 ) are moving average values of the output parameters y1 and y2, respectively .
 図4は、対象システム200の一例としての生成物Gの製造システム200aを示す図である。 FIG. 4 is a diagram showing a production system 200a for the product G as an example of the target system 200. As shown in FIG.
 製造システム200aは第1混合工程から第2混合工程に至る第1系統と、フィルタ1から第2混合工程に至る第2系統とがあり、第1系統と第2系統は並列に設けられ、第2混合工程で接続する。第1混合工程、タンク1(の貯留工程)、第2混合工程、フィルタ1、フィルタ2、タンク2(の貯留工程)のそれぞれは、ブロックに相当する。 The manufacturing system 200a has a first system from the first mixing process to the second mixing process and a second system from the filter 1 to the second mixing process. Connect with two mixing steps. Each of the first mixing step, tank 1 (storage step), second mixing step, filter 1, filter 2, and tank 2 (storage step) corresponds to a block.
 第1系統は、材料Aと添加物Bを第1混合工程で投入して中間生成物Dを得る。中間生成物Dの一部は第1系統上にあるタンク1に一旦貯留され、第2混合工程に投入される。 In the first system, material A and additive B are added in the first mixing step to obtain intermediate product D. A portion of the intermediate product D is temporarily stored in the tank 1 on the first system and introduced into the second mixing step.
 第2系統は、材料Cをフィルタ1に投入し、フィルタ圧力値Pをフィルタ1に引加して中間生成物Eを得る。フィルタ2には、第1混合工程で得られた中間生成物Dの一部と中間生成物Eとが投入される。フィルタ2からは中間生成物Fが生成され、タンク2で一旦貯留されたのち、第2混合工程に投入される。 The second system puts the material C into the filter 1, applies the filter pressure value P to the filter 1, and obtains the intermediate product E. A part of the intermediate product D obtained in the first mixing step and the intermediate product E are put into the filter 2 . An intermediate product F is produced from the filter 2, temporarily stored in the tank 2, and then introduced into the second mixing step.
 したがって、第2混合工程には、中間生成物Dと中間生成物Fとが投入され、混合されて生成物Gが生成される。 Therefore, in the second mixing step, the intermediate product D and the intermediate product F are introduced and mixed to produce the product G.
 製造システム200aは、材料Aの特性値、添加物Bの特性値,材料Cの特性値、フィルタ圧力値Pを入力して生成物Gを得る系である。なお、上記「特性値」には、例えば濃度、粘度、pH、流量、流速、不純物濃度、温度、フィルタの場合は差圧、タンク残量等がある。この系をモデリングしようとすると、第1混合工程、タンク1、フィルタ1、フィルタ2、タンク2、第2混合工程のそれぞれで異なる生成物が異なる時間をかけて異なる変化をする。即ち、各工程が変動データを有し、前工程の変動データが次工程の変動データに影響を及ぼす。 The manufacturing system 200a is a system that obtains the product G by inputting the characteristic value of the material A, the characteristic value of the additive B, the characteristic value of the material C, and the filter pressure value P. The "characteristic value" includes, for example, concentration, viscosity, pH, flow rate, flow velocity, impurity concentration, temperature, differential pressure in the case of a filter, remaining tank amount, and the like. When trying to model this system, different products change differently over different times in each of the first mixing step, tank 1, filter 1, filter 2, tank 2, and second mixing step. That is, each process has variation data, and the variation data of the previous process affects the variation data of the next process.
 したがって、製造システム200aを一つの予測モデルを用いてモデリングしようとすると、4つの入力パラメータ、材料Aの特性値,添加物Bの特性値,材料Cの特性値,及びフィルタ圧力値Pから複数段階(複数の変動データ)を経て生成物Gの特性値を得る予測モデルを構築する必要があり、予測モデルが複雑になる。予測モデルが複雑になると機械学習において予測モデルによる出力(予測値)と教師データとの誤差を収束させる際に勾配消失問題が生じたり、過学習の問題を生じさせたりする可能性があり、実態に合った予測モデルの構築が困難になる。 Therefore, when modeling the manufacturing system 200a using one predictive model, four input parameters, the characteristic value of material A, the characteristic value of additive B, the characteristic value of material C, and the filter pressure value P It is necessary to construct a prediction model that obtains the characteristic value of the product G through (a plurality of variable data), which complicates the prediction model. As prediction models become more complex, problems such as vanishing gradients and overfitting may occur when converging the error between the output (predicted value) of the prediction model and the training data in machine learning. It becomes difficult to build a prediction model that fits.
 そこで、本実施形態では、変動データが発生する箇所を一つのノードと見立て、各ノードに1つのセルを与え、それらのセルを上流工程から下流工程に向かってカスケード接続して対象システム200の予測モデル10を構築する。 Therefore, in the present embodiment, the point where the fluctuation data occurs is regarded as one node, one cell is given to each node, and these cells are cascaded from the upstream process to the downstream process to predict the target system 200 Build a model 10 .
 図5は、製造システム200aの予測モデル10aを示す図である。 FIG. 5 is a diagram showing the prediction model 10a of the manufacturing system 200a.
 予測モデル10aでは、第1系統上にある第1混合工程とタンク1のそれぞれに第1セル(Cell#1)、第2セル(Cell#2)を割り当てる。また、第2系統上にあるフィルタ1、フィルタ2、及びタンク2のそれぞれに第3セル(Cell#3)、第4セル(Cell#4)、第5セル(Cell#5)を割り当てる。第2混合工程には第6セル(Cell#6)を割り当てる。 In the prediction model 10a, the first cell (Cell#1) and the second cell (Cell#2) are assigned to the first mixing process and tank 1 on the first system, respectively. Also, the third cell (Cell#3), the fourth cell (Cell#4) and the fifth cell (Cell#5) are assigned to the filter 1, the filter 2 and the tank 2 on the second system, respectively. The sixth cell (Cell#6) is assigned to the second mixing step.
 第1セルと第2セルとの接続、第3セルと第4セルとの接続は第1階層の接続であり、カスケード1と称する。第2セルと第6セルとの接続、第4セルと第5セルとの接続は第2階層の接続であり、カスケード2と称する。第5セルと第6セルとの接続は第3階層の接続でありカスケード3と称する。 The connection between the first cell and the second cell and the connection between the third cell and the fourth cell are connections in the first hierarchy, and are called cascade 1. The connection between the second cell and the sixth cell and the connection between the fourth cell and the fifth cell are connections in the second hierarchy, and are called cascade 2. FIG. The connection between the 5th cell and the 6th cell is the connection of the third hierarchy and is called cascade 3 .
 予測モデル10aのように、入力層セルである第1セル、第3セルと、出力層セルである第6セルとの間に、中間層セルを1層以上含んでもよい。予測モデル10aでは中間層の第1階層が第2セル、第4セル、中間層の第2階層が第5セルに相当する。 As in the predictive model 10a, one or more intermediate layer cells may be included between the first and third cells, which are the input layer cells, and the sixth cell, which is the output layer cell. In the predictive model 10a, the first intermediate layer corresponds to the second and fourth cells, and the second intermediate layer corresponds to the fifth cell.
 図6、図7を参照して本実施形態に係る状態予測装置100の処理について説明する。図6は、本実施形態に係る状態予測装置100の処理の流れを示すフローチャートである。図7は、状態予測装置100を用いた制御例を示す図である。 The processing of the state prediction device 100 according to this embodiment will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a flowchart showing the flow of processing of the state prediction device 100 according to this embodiment. FIG. 7 is a diagram showing an example of control using the state prediction device 100. As shown in FIG.
 状態予測装置100は、対象システム200から予測モデル10aの構築に必要なデータを取得する(S1)。対象システム200から取得したデータをRAWデータという。RAWデータには、RAWデータが検知された時刻データが付加されているものとする。時刻データが付加されていない場合は、RTC109から時刻データを受け取ってRAWデータに時刻データを付加し、RAWデータ記憶部122に記憶する。RAWデータには、入力パラメータX,X,X,X,X及び出力パラメータYの他、各入力層セルの出力パラメータ、各中間層セルの入力パラメータと出力パラメータのデータも含まれる。 The state prediction device 100 acquires data necessary for constructing the prediction model 10a from the target system 200 (S1). Data obtained from the target system 200 is called RAW data. It is assumed that RAW data is added with time data when the RAW data is detected. When the time data is not added, the time data is received from the RTC 109 , the time data is added to the RAW data, and stored in the RAW data storage unit 122 . In addition to input parameters X 1 , X 2 , X 3 , X 4 and X 5 and output parameter Y, the RAW data also includes output parameters for each input layer cell and input and output parameter data for each intermediate layer cell. be
 教師データ生成部124は、RAWデータ記憶部122からデータを読み出して、機械学習用の教師データを生成する(S2)。教師データ生成部124は、移動平均値を算出するウィンドウ幅内の各ブロックへの入力パラメータ及び出力パラメータを抽出し、ブロック毎の教師モデルを生成する。ウィンドウ幅は、予測モデル10aに入力データが入力される時点を基準時点tとし基準時点tから移動平均値を算出する時間の長さΔtで指定してもよいし、サンプリング数(式(1)のnの値)で指定してもよい。 The teacher data generation unit 124 reads data from the RAW data storage unit 122 and generates teacher data for machine learning (S2). The teacher data generation unit 124 extracts input parameters and output parameters for each block within the window width for which the moving average value is calculated, and generates a teacher model for each block. The window width may be specified by the length of time Δt for calculating the moving average value from the reference time t0 with the time when the input data is input to the prediction model 10a as the reference time t0, or by the number of samplings (formula ( It may be specified by the value of n in 1).
 そして教師データ生成部124は、生成したブロック毎の教師データを教師データ記憶部126に記憶する。 Then, the teacher data generation unit 124 stores the generated teacher data for each block in the teacher data storage unit 126 .
 なお、上記の説明では、全てのブロックでウィンドウ幅Δtが同じとして説明したが、ウィンドウ幅Δtはブロック単位で異なる値を指定してもよい。式(1)において、nの値がウィンドウ幅に相当する。各セルに局所モデルが含まれるので、その局所モデルのnの値を変えることにより、セル毎(ブロック毎)にウィンドウ幅を変更することが可能となる。n=1とおけば、移動平均を用いない重回帰モデルが実現する。 In the above description, all blocks have the same window width Δt, but a different window width Δt may be specified for each block. In equation (1), the value of n corresponds to the window width. Since each cell contains a local model, it is possible to change the window width for each cell (for each block) by changing the value of n of the local model. By setting n=1, a multiple regression model that does not use a moving average is realized.
 予測モデル構築部128は、セル単位で既述の式(1)の重回帰モデルに教師データ記憶部126に記憶された教師データを適用し、重回帰モデルで算出された誤差が教師データに含まれるRAWデータに対して許容範囲に収まるまで機械学習を行い、予測モデルを構築する(S3)。予測モデル構築部128は、例えばホールドアウト検証やk-分割交差検証を行い、セル単位で局所モデルの誤差が許容範囲に収まるまで訓練と検証を行う。全ての局所モデルの機械学習が終了すると、複数のセルを上流工程から下流工程に沿ってカスケード接続することで、対象システム200の全体の状態を表す予測モデル10、即ち、対象システム200への入力パラメータに対する出力パラメータの予測値を算出する予測モデル10を構築する。 The prediction model construction unit 128 applies the teacher data stored in the teacher data storage unit 126 to the multiple regression model of formula (1) described above on a cell-by-cell basis, and the error calculated by the multiple regression model is included in the teacher data. Machine learning is performed on the RAW data obtained until it falls within the allowable range, and a prediction model is constructed (S3). The predictive model construction unit 128 performs, for example, holdout verification and k-fold cross-validation, and trains and verifies in cell units until the error of the local model falls within the allowable range. When the machine learning of all the local models is completed, a plurality of cells are cascaded from the upstream process to the downstream process, and the prediction model 10 representing the overall state of the target system 200, that is, the input to the target system 200 A prediction model 10 is constructed that calculates the predicted value of the output parameter for the parameter.
 予測モデル構築部128は、予測モデルを予測モデル記憶部130に記憶する。 The prediction model construction unit 128 stores the prediction model in the prediction model storage unit 130.
 予測モデルを用いて対象システム200の稼働支援を行う場合は、入力装置111又は対象システム200から予測モデルに入力する入力パラメータ(予測条件)を入力する。予測値算出部132は、予測モデルに入力パラメータ(予測条件)を適用して演算を行い、対象システム200の基準時点tよりも先の将来時点における状態の予測値を得る(S4)。予測値の出力の一例としてディスプレイ112に表示してもよい。 When the prediction model is used to support the operation of the target system 200 , input parameters (prediction conditions) to be input to the prediction model are input from the input device 111 or the target system 200 . The predicted value calculation unit 132 applies the input parameters (prediction conditions) to the prediction model and performs calculations to obtain predicted values of the state of the target system 200 at a future time point prior to the reference time point t0 (S4). You may display on the display 112 as an example of the output of a predicted value.
 予測値に基づいて対象システム200の制御を行う場合(S5:Yes)、RAWデータ取得部120は、基準時点t(現在)の第1混合工程に投入される材料Aの特性値(粘度、濃度等)と、添加物Bの基準時点tの特性値(投入量)、及びフィルタ1に投入される材料Cの特性値及びフィルタ圧力値Pの値を取得し、予測値算出部132が予測モデルを用いて第2混合工程の将来の予測時点、すなわち30分後のt1において観測されると予測される不純物濃度を算出する(S4で求めた予測値に相当する)。 When controlling the target system 200 based on the predicted value ( S5 : Yes), the RAW data acquisition unit 120 obtains the characteristic values (viscosity, concentration, etc.), the characteristic value (input amount) of the additive B at the reference time to, and the characteristic value and filter pressure value P of the material C input to the filter 1, and the predicted value calculation unit 132 A prediction model is used to calculate the impurity concentration predicted to be observed at a future predicted point in the second mixing step, that is, at t1 after 30 minutes (corresponding to the predicted value obtained in S4).
 制御支援部134は、tにおける不純物濃度の予測値が許容範囲を逸脱している、即ち図7では上限値を超えていれば(S6:Yes)、許容範囲に収まるように第1混合工程に投入される材料Aの特性値(粘度、濃度等)と、添加物Bの現在の特性値(投入量)を増減した新たな仮想値を入力パラメータとして予測値算出部132に出力し、予測値算出部132が再演算を行い、第2混合工程からの生成物の不純物濃度の新たな予測値を算出する(S7)。 If the predicted value of the impurity concentration at t1 is out of the allowable range, that is, if it exceeds the upper limit in FIG. 7 (S6: Yes), the first mixing step A new virtual value obtained by increasing or decreasing the characteristic value (viscosity, concentration, etc.) of material A and the current characteristic value (input amount) of additive B are output to the predicted value calculation unit 132 as input parameters, and predicted The value calculator 132 recalculates and calculates a new predicted impurity concentration of the product from the second mixing step (S7).
 新たな予測値が許容範囲に収まっていれば(S8:Yes)、仮想値に基づく制御信号を対象システム200に出力する(S9)。(図7の制御ありに相当する。) If the new predicted value is within the allowable range (S8: Yes), a control signal based on the virtual value is output to the target system 200 (S9). (Corresponds to "with control" in FIG. 7.)
 一方、制御支援をしない場合(S5:No)、及びtにおける不純物濃度の予測値が許容範囲に収まっていれば(S6:No、図7の制御なしに相当する)、処理を終了する。 On the other hand, if control support is not provided (S5: No), and if the predicted value of the impurity concentration at t1 is within the allowable range (S6: No, corresponding to no control in FIG. 7), the process ends.
 本実施形態によれば、対象システム200に複数の変動データが含まれる場合に、変動データが生じる要素を一つのノードとし、各ノードに一つのセルを割り当て、セルをカスケード接続することで全体のモデリングを行う。そして各セルで局所モデルを訓練及び検証を行い、これをカスケード接続するので、局所モデルは比較的単純なモデルとなり、学習が収束しやすくなる。 According to the present embodiment, when the target system 200 includes a plurality of variable data, the element that generates the variable data is treated as one node, one cell is assigned to each node, and the cells are cascade-connected. Do modeling. Then, each cell trains and verifies a local model, which is then cascaded, so the local model becomes a relatively simple model, which facilitates convergence of learning.
 更に、モデリングの対象を拡張したい場合、例えば上記の例では、第2混合工程の後に第3混合工程があるとして、第1混合工程及びフィルタ1から第3混合工程までのモデリングを行いたい場合には、第3混合工程を1ノードと見立てて1つのセル(第7セル)をつくり、そのセルに1つの重回帰モデルをいれる。そして、この第3混合工程の局所モデルの機械学習を行って第2混合工程の第6セルに第7セルをカスケード接続することで対象の拡張に伴って予測モデルの拡張も容易に行える。このように、局所モデルをカスケード接続する手法により、モデルの表現力が向上し、予測可能な対象の範囲を拡大しやすくなる。 Furthermore, if you want to expand the modeling target, for example, if you want to model the first mixing process and filter 1 to the third mixing process assuming that the third mixing process is after the second mixing process in the above example, regards the third mixing step as one node, creates one cell (seventh cell), and inserts one multiple regression model into the cell. By performing machine learning on the local model of the third mixing step and cascade-connecting the seventh cell to the sixth cell of the second mixing step, the prediction model can be easily expanded as the target is expanded. In this manner, the technique of cascading local models improves the expressiveness of the model and facilitates expanding the range of predictable objects.
 加えて、予測モデルを修正する際には、修正したいノードの局所モデルを修正すればよいので、複雑なモデルを一つの予測モデルを使ってモデリングし、複雑な予測モデルを修正する場合に比べて、修正が簡単にできる。 In addition, when modifying a prediction model, you only need to modify the local model of the node you want to modify. , can be easily modified.
 上記は本発明の実施形態を示したに過ぎず、本発明は上記実施形態に限定されない。例えば、予測モデルの層構造は上記に限定されない。 The above merely shows the embodiments of the present invention, and the present invention is not limited to the above embodiments. For example, the layer structure of the prediction model is not limited to the above.
 また局所モデルに用いる関数は、重回帰モデルに限定されず、単回帰モデルでもよい。 Also, the function used for the local model is not limited to the multiple regression model, and may be a simple regression model.
 また重回帰モデルにおいて移動平均値ではなく、その他の統計量、例えば所定期間の平均値を用いてもよい。また統計量に代えて、重回帰分析の各項に観測値そのものを入力してもよい。 Also, in the multiple regression model, instead of the moving average value, other statistics, such as the average value over a predetermined period, may be used. Also, instead of the statistics, the observed values themselves may be input to each term of the multiple regression analysis.
 また上記状態予測装置100の処理フローにおいて予めセル単位の教師データを生成しておき、変動データ毎にセルを一つずつ割り当て、前記セルに含まれる局所モデル毎に教師データを適用して機械学習し、機械学習されたセルをカスケード接続して予測モデルを構築し、予測モデルに基準時点tの入力データを入力し、将来時点の予測値を算出してもよい。その際、上記と同様、局所モデルに重回帰モデルを用い、各項に移動平均を用いてもよい。 In addition, in the processing flow of the state prediction device 100, teacher data is generated in advance for each cell, one cell is assigned to each variation data, and machine learning is performed by applying the teacher data to each local model included in the cell. Then, the machine-learned cells may be cascade-connected to construct a prediction model, and the input data at the reference time t0 may be input to the prediction model to calculate the predicted value at the future time. At that time, as in the above case, a multiple regression model may be used as the local model and a moving average may be used as each term.
 図8から図13を参照して、本実施形態で説明した予測モデルの変形例について説明する。 A modification of the prediction model described in this embodiment will be described with reference to FIGS. 8 to 13. FIG.
 図8に示す予測モデル10bでは、図3で説明した予測モデル10に対し、第3セルの説明変数に第1セルの出力パラメータy、第2セルの出力パラメータyに加えて、予測モデル10bへの入力パラメータXも含む点が予測モデル10とは異なる。このように本発明は、中間層や出力層への説明変数は、直前のセルから出力された出力パラメータのみに限定されず、予測モデル10bへの入力パラメータ、また直前のセルよりも更に前(上流)のセルから出力された出力パラメータを追加して用いられてもよい。 In the prediction model 10b shown in FIG. 8, in addition to the output parameter y 1 of the first cell and the output parameter y 2 of the second cell as explanatory variables of the third cell, the prediction model It differs from prediction model 10 in that it also includes input parameter X 6 to 10b. Thus, in the present invention, the explanatory variables to the intermediate layer and the output layer are not limited to only the output parameters output from the immediately preceding cell, but the input parameters to the prediction model 10b, and the preceding cell ( Output parameters output from upstream) cells may additionally be used.
 図9に示す予測モデル10cでは、図3で説明した予測モデル10に対し、第3セルの出力パラメータyが予測モデル10cの出力パラメータYであると共に、入力層の第2セルへの説明変数となる点が予測モデル10とは異なる。このように本発明は、入力層、中間層、出力層の各層の出力パラメータは、直後のセルへの説明変数又は予測モデル10cの出力パラメータになることに限定されず、各層よりも前、又は自身のセルと同一階層の他のセルの説明変数として用いられてもよい。図9は、第3セルがカスケード接続された流れに逆行して接続(フィードバック)される変形例に相当する。 In the prediction model 10c shown in FIG. 9, in contrast to the prediction model 10 described in FIG. 3, the output parameter y3 of the third cell is the output parameter Y of the prediction model 10c, and the explanatory variable It is different from the prediction model 10 in that Thus, in the present invention, the output parameters of each layer of the input layer, the intermediate layer, and the output layer are not limited to being explanatory variables to the immediately following cells or output parameters of the prediction model 10c, but before each layer, or It may be used as an explanatory variable for other cells on the same layer as its own cell. FIG. 9 corresponds to a variant in which the third cell is connected (feedbacked) counter-clockwise to the cascaded flow.
 図10に示す予測モデル10dでは、第2セルの出力パラメータyは予測モデル10dの二つめの出力パラメータYとなる。このように本発明は、入力層、中間層の出力パラメータは、直後のセルへの説明変数だけはなく、予測モデル10dの出力パラメータとして用いられてもよい。 In the prediction model 10d shown in FIG. 10, the output parameter y2 of the second cell becomes the second output parameter Y2 of the prediction model 10d. In this way, according to the present invention, the output parameters of the input layer and the intermediate layer may be used as the output parameters of the predictive model 10d as well as the explanatory variables to the immediately following cell.
 また、図10に示す予測モデル10dのように、入力層セルである第1セルの出力パラメータyを、同じく入力層セルである第2セルの入力パラメータとして用いてもよい。 Also, like the prediction model 10d shown in FIG. 10, the output parameter y1 of the first cell, which is the input layer cell, may be used as the input parameter of the second cell, which is also the input layer cell.
 図11に示す予測モデル10eでは、出力層セルが二つある場合に、一方の出力層セル(第4セル)の出力パラメータyが、他方の出力層セル(第3セル)の入力パラメータとなる例である。また第4セルの入力パラメータは、予測モデル10eの入力パラメータXも含む。 In the prediction model 10e shown in FIG. 11, when there are two output layer cells, the output parameter y4 of one output layer cell ( fourth cell) is the input parameter of the other output layer cell (third cell). This is an example. The input parameters of the fourth cell also include the input parameters X6 of the prediction model 10e.
 図12に示す予測モデル10fでは、中間層セルの第4セルの出力パラメータyは、同一階層の中層パラメータである第5パラメータの入力パラメータとして用いられる。 In the prediction model 10f shown in FIG. 12, the output parameter y4 of the fourth cell in the middle layer cell is used as the input parameter of the fifth parameter, which is the middle layer parameter in the same layer.
 その第5パラメータの出力パラメータyは、入力層セルである第6セルの入力パラメータとして用いられる。 The output parameter y5 of the fifth parameter is used as the input parameter of the sixth cell, which is the input layer cell.
 更に第6セルに下流側において隣接する中間層セルである第7セルの出力パラメータyは、予測モデル10fの出力パラメータYである。 Furthermore, the output parameter y_7 of the seventh cell, which is the intermediate layer cell adjacent to the sixth cell on the downstream side, is the output parameter Y_3 of the prediction model 10f.
 また、予測モデル10fでは、第3セルの局所モデルとして単回帰モデルを用いる。 Also, in the prediction model 10f, a simple regression model is used as the local model of the third cell.
 図13に示す予測モデル10gでは、中間層セルの第5セルの出力パラメータyが、下流で隣接する第7セルよりも更に下流の第8セルの入力パラメータとして用いられる。 In the predictive model 10g shown in FIG. 13, the output parameter y5 of the 5th cell of the intermediate layer cells is used as the input parameter of the 8th cell further downstream than the 7th cell adjacent downstream.
 このように、本発明は、各セルの局所モデル毎に機械学習を行い、機械学習済みの局所モデルを含むセルをカスケード接続して一つの予測モデルを含むことを特徴とする。この特徴に対して、階層を問わずあるセルに対して予測モデルの外部からの入力パラメータが入力される、あるいは、あるセルの出力を外部に出力して予測モデルの出力パラメータとして更に用いる変形例は本発明に含まれる。 In this way, the present invention is characterized by performing machine learning for each local model of each cell, and including one prediction model by cascading cells containing local models that have undergone machine learning. For this feature, a modification example in which an input parameter from the outside of a prediction model is input to a certain cell regardless of the hierarchy, or the output of a certain cell is output to the outside and further used as an output parameter of the prediction model. are included in the present invention.
 更にカスケード接続の一部に、下流から上流につなげる接続や、隣接するセルだけではなく上流又は下流に位置する隣接しない他の階層のセルへの接続、更に同一階層の他のセルへの接続が含まれる変形例は、本発明に含まれる。 Furthermore, a part of the cascade connection includes connections from downstream to upstream, connections not only to adjacent cells but also to cells in other non-adjacent layers located upstream or downstream, and connections to other cells in the same layer. Included variations are included in the present invention.
10、10a、10b、10c、10d、10e、10f、10g:予測モデル
100   :状態予測装置
101   :プロセッサ
105   :入力I/F
106   :出力I/F
107   :通信I/F
108   :バス
109   :RTC
111   :入力装置
112   :ディスプレイ
120   :RAWデータ取得部
122   :RAWデータ記憶部
124   :教師データ生成部
126   :教師データ記憶部
128   :予測モデル構築部
130   :予測モデル記憶部
132   :予測値算出部
134   :制御支援部
200   :対象システム
200a  :製造システム
10, 10a, 10b, 10c, 10d, 10e, 10f, 10g: prediction model 100: state prediction device 101: processor 105: input I/F
106: Output I/F
107: Communication I/F
108: Bus 109: RTC
111 : Input device 112 : Display 120 : RAW data acquisition unit 122 : RAW data storage unit 124 : Teacher data generation unit 126 : Teacher data storage unit 128 : Prediction model construction unit 130 : Prediction model storage unit 132 : Prediction value calculation unit 134 : Control support unit 200 : Target system 200a : Manufacturing system

Claims (15)

  1.  対象システムへの入力データに対応した前記対象システムの状態を示す出力データの予測値を算出する状態予測装置であって、
     前記対象システムの処理工程を、前記対象システムにおける上流工程から下流工程に向かって複数のブロックに分割し、各ブロックに入力される入力データ及び当該ブロックから出力される出力データを観測して得られたローデータを取得するローデータ取得部と、
     前記ローデータから前記ブロック毎の入力データ及び出力データを抽出し、前記ブロック毎の教師データを生成する教師データ生成部と、
     前記ブロック毎に一つずつ割り当てられたセルに含まれる局所モデルであって、前記ブロックへの入力データに対応して当該ブロックから出力させる出力データを算出する局所モデルに対し、当該ブロックの教師データを適用して前記局所モデル毎に機械学習を行い、機械学習後の前記複数のセルを前記上流工程から前記下流工程に向ってカスケード接続して前記対象システムの予測モデルを構築する予測モデル構築部と、
     前記予測モデルに前記対象システムへの入力データを入力し、前記対象システムから出力される出力データの予測値を算出する予測値算出部と、を備え、
     前記複数のセルのうち、最も上流側に位置する入力層セルへの入力データは、前記予測モデルへの入力データであり、前記入力層セルからの出力データは、当該入力層セルの下流側の階層にある他のセルへの入力データであり、
     最も下流側に位置する出力層セルへの入力データは、当該出力層セルの上流側の階層にある他のセルからの出力データであり、当該出力層セルからの出力データは、前記予測モデルからの出力データである、
     ことを特徴とする状態予測装置。
    A state prediction device for calculating a predicted value of output data indicating a state of a target system corresponding to input data to the target system,
    Obtained by dividing the processing process of the target system into a plurality of blocks from the upstream process to the downstream process in the target system and observing the input data input to each block and the output data output from the block a raw data acquisition unit that acquires raw data obtained from
    a teacher data generation unit that extracts input data and output data for each block from the raw data and generates teacher data for each block;
    A local model included in a cell assigned to each block, and for calculating output data to be output from the block in response to input data to the block, teacher data of the block is applied to perform machine learning for each of the local models, and the plurality of cells after machine learning are cascaded from the upstream process toward the downstream process to build a prediction model of the target system. When,
    a predicted value calculation unit that inputs input data to the target system into the prediction model and calculates a predicted value of output data output from the target system;
    Among the plurality of cells, the input data to the most upstream input layer cell is the input data to the prediction model, and the output data from the input layer cell is the data downstream of the input layer cell. Input data to other cells in the hierarchy,
    The input data to the most downstream output layer cell is the output data from other cells in the layer upstream of the output layer cell, and the output data from the output layer cell is from the prediction model. is the output data of
    A state prediction device characterized by:
  2.  請求項1に記載の状態予測装置であって、
     前記予測モデル構築部は、前記局所モデルとして重回帰モデルを用い、当該重回帰モデルの説明変数として移動平均値を用いる、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    The prediction model construction unit uses a multiple regression model as the local model and uses a moving average value as an explanatory variable of the multiple regression model,
    A state prediction device characterized by:
  3.  請求項1に記載の状態予測装置であって、
     前記予測モデル構築部は、前記入力層セルと、前記出力層セルとの間にカスケード接続される少なくとも一つ以上の中間層セルを更に含む前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    The prediction model building unit builds the prediction model further including at least one or more intermediate layer cells cascaded between the input layer cells and the output layer cells.
    A state prediction device characterized by:
  4.  請求項1に記載の状態予測装置であって、
     前記予測モデル構築部は、前記入力層セルと前記出力層セルとを直結した前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    The prediction model building unit builds the prediction model that directly connects the input layer cells and the output layer cells.
    A state prediction device characterized by:
  5.  請求項2に記載の状態予測装置であって、
     前記ローデータは時系列データであって、
     前記教師データ生成部は、前記移動平均値を求めるウィンドウ幅に含まれるローデータを抽出して前記教師データを生成する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 2,
    The raw data is time-series data,
    The teacher data generation unit extracts raw data included in a window width for obtaining the moving average value to generate the teacher data.
    A state prediction device characterized by:
  6.  請求項5に記載の状態予測装置であって、
     前記教師データ生成部は、前記ブロック毎に指定された前記ウィンドウ幅に含まれる前記ローデータを抽出して、前記ブロック毎の教師データを生成する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 5,
    The teacher data generation unit extracts the raw data included in the window width specified for each block and generates teacher data for each block.
    A state prediction device characterized by:
  7.  請求項1に記載の状態予測装置であって、
     前記予測モデル構築部は、前記入力層セルからの出力データを、前記入力層セルよりも下流において隣接する階層のセルへの入力データ、前記対象システムからの出力データ、及び他の前記入力層セルへの入力データの少なくとも一つとして更に用いて前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    The predictive model construction unit converts the output data from the input layer cell into input data to a cell in an adjacent layer downstream from the input layer cell, output data from the target system, and other input layer cells. constructing the predictive model further used as at least one of the input data to
    A state prediction device characterized by:
  8.  請求項1に記載の状態予測装置であって、
     前記予測モデル構築部は、前記出力層セルへの入力データとして、前記出力層セルよりも上流において隣接する階層のセルからの出力データ、前記対象システムへの入力データ、及び他の出力層からの出力データの少なくとも一つを用いて前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    The predictive model construction unit uses, as input data to the output layer cell, output data from cells in adjacent layers upstream of the output layer cell, input data to the target system, and input data from other output layers. constructing the predictive model using at least one of the output data;
    A state prediction device characterized by:
  9.  請求項1に記載の状態予測装置であって、
     前記予測モデル構築部は、前記出力層セルからの出力データを、前記出力層セルよりも上流の他のセルへの入力データとして用いて前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    The prediction model building unit builds the prediction model using output data from the output layer cell as input data to other cells upstream of the output layer cell.
    A state prediction device characterized by:
  10.  請求項3に記載の状態予測装置であって、
     前記予測モデル構築部は、前記中間層セルの入力データとして、前記対象システムへの入力データを追加して前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 3,
    The predictive model building unit builds the predictive model by adding input data to the target system as input data of the intermediate layer cell.
    A state prediction device characterized by:
  11.  請求項3に記載の状態予測装置であって、
     前記予測モデル構築部は、前記中間層セルの出力データを、前記対象システムからの出力データとして出力する前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 3,
    The prediction model building unit builds the prediction model that outputs the output data of the intermediate layer cell as the output data from the target system.
    A state prediction device characterized by:
  12.  請求項3に記載の状態予測装置であって、
     前記予測モデル構築部は、前記中間層セルの出力データを、当該中間層セルよりも上流の他のセル、当該中間層セルと同一階層の他の中間層セル、及び当該中間層セルの下流で隣接するセルよりも更に下流の階層のセル、の少なくとも一つのセルへの入力データとして用いて前記予測モデルを構築する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 3,
    The prediction model construction unit stores the output data of the intermediate layer cell in other cells upstream of the intermediate layer cell, in other intermediate layer cells in the same layer as the intermediate layer cell, and in the downstream of the intermediate layer cell. Constructing the prediction model using as input data to at least one cell in a layer further downstream than the adjacent cell,
    A state prediction device characterized by:
  13.  請求項1に記載の状態予測装置であって、
     前記予測値に基づいて前記対象システムの制御支援を行う制御支援部を更に備え、
     前記制御支援部は、前記対象システムの出力データの許容範囲と前記予測値とを比較し、前記予測値が前記許容範囲から逸脱すると判断すると、前記予測モデルに仮想的に入力する仮想値を設定して前記予測値算出部に引き渡し、
     前記予測値算出部は、前記予測モデルに前記仮想値を適用して再演算して新たな予測値を算出し、
     前記制御支援部は前記新たな予測値が前記許容範囲に収まると判断すると前記仮想値を前記対象システムに対して出力する、
     ことを特徴とする状態予測装置。
    The state prediction device according to claim 1,
    further comprising a control support unit that supports control of the target system based on the predicted value;
    The control support unit compares the allowable range of the output data of the target system with the predicted value, and when determining that the predicted value deviates from the allowable range, sets a virtual value to be virtually input to the prediction model. and handed over to the predicted value calculation unit,
    The predicted value calculation unit applies the virtual value to the prediction model and recalculates to calculate a new predicted value;
    When the control support unit determines that the new predicted value falls within the allowable range, it outputs the virtual value to the target system.
    A state prediction device characterized by:
  14.  対象システムへの入力データに対応した前記対象システムの状態を示す出力データの予測値を算出する状態予測方法であって、
     前記対象システムの処理工程を、前記対象システムにおける上流工程から下流工程に向かって複数のブロックに分割し、各ブロックに入力される入力データ及び当該ブロックから出力される出力データを観測して得られたローデータを取得するステップと、
     前記ローデータから前記ブロック毎の入力データ及び出力データを抽出し、前記ブロック毎の教師データを生成するステップと、
     前記ブロック毎に一つずつ割り当てられたセルに含まれる局所モデルであって、前記ブロックへの入力データに対応して当該ブロックから出力される出力データを算出する局所モデルに対し、当該ブロックの教師データを適用して前記局所モデル毎に機械学習を行い、機械学習後の前記複数のセルを前記上流工程から前記下流工程に向ってカスケード接続して前記対象システムの予測モデルを構築するステップと、
     前記予測モデルに、前記対象システムへの入力データを入力し、前記対象システムから出力される出力データの予測値を算出するステップと、を含み、
     前記複数のセルのうち、最も上流側に位置する入力層セルへの入力データは、前記予測モデルへの入力データであり、前記入力層セルからの出力データは、当該入力層セルの下流側の階層にある他のセルへの入力データであり、
     最も下流側に位置する出力層セルへの入力データは、当該出力層セルの上流側の階層にある他のセルからの出力データであり、当該出力層セルからの出力データは、前記予測モデルからの出力データである、
     ことを特徴とする状態予測方法。
    A state prediction method for calculating a predicted value of output data indicating a state of a target system corresponding to input data to the target system,
    Obtained by dividing the processing process of the target system into a plurality of blocks from the upstream process to the downstream process in the target system and observing the input data input to each block and the output data output from the block obtaining raw data from
    a step of extracting input data and output data for each block from the raw data and generating teacher data for each block;
    A local model included in a cell assigned to each block and calculating output data output from the block in response to input data to the block. Applying data to perform machine learning for each of the local models, and constructing a prediction model of the target system by cascading the plurality of cells after machine learning from the upstream process toward the downstream process;
    inputting input data to the target system into the prediction model and calculating a predicted value of output data output from the target system;
    Among the plurality of cells, the input data to the most upstream input layer cell is the input data to the prediction model, and the output data from the input layer cell is the data downstream of the input layer cell. Input data to other cells in the hierarchy,
    The input data to the most downstream output layer cell is the output data from other cells in the layer upstream of the output layer cell, and the output data from the output layer cell is from the prediction model. is the output data of
    A state prediction method characterized by:
  15.  請求項14に記載の状態予測方法であって、
     前記局所モデルは、重回帰モデルであって、前記重回帰モデルの説明変数として移動平均値を用いる、
     ことを特徴とする状態予測方法。
    The state prediction method according to claim 14,
    The local model is a multiple regression model, and uses a moving average value as an explanatory variable of the multiple regression model,
    A state prediction method characterized by:
PCT/JP2021/002800 2021-01-27 2021-01-27 State prediction device and state prediction method WO2022162778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/002800 WO2022162778A1 (en) 2021-01-27 2021-01-27 State prediction device and state prediction method
JP2022577871A JPWO2022162778A1 (en) 2021-01-27 2021-01-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002800 WO2022162778A1 (en) 2021-01-27 2021-01-27 State prediction device and state prediction method

Publications (1)

Publication Number Publication Date
WO2022162778A1 true WO2022162778A1 (en) 2022-08-04

Family

ID=82653202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002800 WO2022162778A1 (en) 2021-01-27 2021-01-27 State prediction device and state prediction method

Country Status (2)

Country Link
JP (1) JPWO2022162778A1 (en)
WO (1) WO2022162778A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181436A (en) * 1997-12-19 1999-07-06 Mitsubishi Chemical Corp Production of coke
JP2016086519A (en) * 2014-10-24 2016-05-19 日本電信電話株式会社 Nonlinear prediction method and device of power consumption
JP2020123675A (en) * 2019-01-30 2020-08-13 日立金属株式会社 Semiconductor manufacturing apparatus management system and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181436A (en) * 1997-12-19 1999-07-06 Mitsubishi Chemical Corp Production of coke
JP2016086519A (en) * 2014-10-24 2016-05-19 日本電信電話株式会社 Nonlinear prediction method and device of power consumption
JP2020123675A (en) * 2019-01-30 2020-08-13 日立金属株式会社 Semiconductor manufacturing apparatus management system and method therefor

Also Published As

Publication number Publication date
JPWO2022162778A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
Abdi et al. Forecasting of short-term traffic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm
Meng et al. Data-driven soft sensor modeling based on twin support vector regression for cane sugar crystallization
Koller et al. A dynamic optimization framework for integration of design, control and scheduling of multi-product chemical processes under disturbance and uncertainty
Yue et al. Multivariate nonparametric control chart with variable sampling interval
CN106597574A (en) Weather temperature prediction method and device based on time-varying cloud model
Davis et al. Efficient surrogate model development: optimum model form based on input function characteristics
Santos Arteaga et al. A new approach for solving intuitionistic fuzzy data envelopment analysis problems
Zhang et al. A novel variable selection algorithm for multi-layer perceptron with elastic net
Wang et al. Coupled fuzzy-interval model and method for structural response analysis with non-probabilistic hybrid uncertainties
Peng et al. A collaborative design platform for new alloy material development
Jia et al. Self-tuning final product quality control of batch processes using kernel latent variable model
Hao et al. Building surrogate models for engineering problems by integrating limited simulation data and monotonic engineering knowledge
Kodippili et al. Data-driven prediction of forging outcome: Effect of preform shape on plastic strain in a magnesium alloy forging
WO2022162778A1 (en) State prediction device and state prediction method
JP2018163396A (en) Piecewise linear approximation function generation apparatus and method
Pistikopoulos et al. Towards the integration of process design, control and scheduling: Are we getting closer?
Shirai et al. Application of an autonomous distributed system to the production process
Schär et al. Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX)
Yazdi Implementing designer’s preferences using fuzzy logic and Genetic Algorithm in structural optimization
Pehlivanoglu Direct and indirect design prediction in genetic algorithm for inverse design problems
CN114202063A (en) Fuzzy neural network greenhouse temperature prediction method based on genetic algorithm optimization
Jafarian et al. Artificial neural network approach to the fuzzy Abel integral equation problem
Savage et al. Surrogate modelling and optimization for complex liquefied natural gas refrigeration cycles
Olenev Identification of an aggregate production function for Polish economy
Ivashnova The model of projection of a fuzzy individual professional educational trajectory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922802

Country of ref document: EP

Kind code of ref document: A1