WO2022162776A1 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
WO2022162776A1
WO2022162776A1 PCT/JP2021/002785 JP2021002785W WO2022162776A1 WO 2022162776 A1 WO2022162776 A1 WO 2022162776A1 JP 2021002785 W JP2021002785 W JP 2021002785W WO 2022162776 A1 WO2022162776 A1 WO 2022162776A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
heat exchanger
blower
indoor heat
refrigeration system
Prior art date
Application number
PCT/JP2021/002785
Other languages
French (fr)
Japanese (ja)
Inventor
歩 江上
達也 ▲雑▼賀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022577869A priority Critical patent/JP7412608B2/en
Priority to PCT/JP2021/002785 priority patent/WO2022162776A1/en
Publication of WO2022162776A1 publication Critical patent/WO2022162776A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present disclosure relates to refrigeration systems.
  • refrigerators capable of starting defrosting operation at an appropriate timing have been known (see Patent Document 1, for example).
  • This refrigerator measures heat exchange between the refrigerant and air based on the measurement results of the temperature of the refrigerant flowing through a heat exchanger that constitutes a part of the refrigeration cycle and the intake temperature and blowout temperature of the air that passes through the heat exchanger.
  • a temperature efficiency which expresses the efficiency, is calculated.
  • This refrigerator combines the amount of frost on the heat exchanger predicted based on the calculated change trend of the temperature efficiency from the start of the cooling operation, and the temperature efficiency threshold preset according to the model of the refrigerator.
  • Optimal defrosting start timing is determined from. This refrigerator starts the defrosting operation when the temperature efficiency reaches or exceeds the threshold.
  • An object of the present disclosure is to provide a refrigeration system that can appropriately set the timing of defrosting operation by a method other than temperature efficiency.
  • the refrigeration system of the present disclosure includes a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger that are annularly connected, a defrosting section that removes frost adhering to the indoor heat exchanger, and an indoor heat exchanger.
  • a controller for switching between a blower for sending air, a cooling operation for cooling a target space, and a defrosting operation for controlling a defrosting section to remove frost adhering to an indoor heat exchanger is provided.
  • the control device starts defrosting operation based on the current value of the blower.
  • the defrosting operation is started based on the current value of the blower. Thereby, the timing of defrosting operation can be set appropriately.
  • FIG. 1 is a schematic diagram showing an example of a configuration of a refrigeration system according to Embodiment 1;
  • FIG. FIG. 2 is a schematic diagram showing an example of a configuration of a refrigerant circuit in the refrigeration system of FIG. 1;
  • 3 is a hardware configuration diagram showing an example of the configuration of a control device 3 in FIG. 2;
  • FIG. 4 is a diagram showing the relationship between the static pressure around the blower 22 and the rotation speed of the blower 22.
  • FIG. 4 is a diagram showing the relationship between the current value of the blower 22 and the rotation speed of the blower 22;
  • FIG. 4 is a diagram showing an example of current values of the blower 22 during cooling operation and defrosting operation;
  • FIG. 3 is a diagram showing an example of sensors arranged near an indoor heat exchanger 21.
  • FIG. 4 is a flowchart representing a procedure for determining the start and end of defrosting in Embodiment 1.
  • FIG. FIG. 9 is a flow chart showing the details of the processing in step S103 of FIG. 8;
  • FIG. 9 is a flowchart showing details of the process of step S104 of FIG. 8 in Embodiment 1.
  • FIG. FIG. 7 is a diagram showing defrosting start timing and defrosting end timing according to a second defrosting timing determination method in Embodiment 1;
  • FIG. 9 is a flow chart showing details of the process of step S104 of FIG. 8 in Embodiment 2.
  • FIG. 10 is a diagram showing defrosting start timing and defrosting end timing according to a second defrosting timing determination method in Embodiment 2; 9 is a flow chart showing details of the process of step S104 of FIG. 8 in Embodiment 3.
  • FIG. FIG. 11 is a diagram showing defrosting start timing and defrosting end timing according to a second defrosting timing determination method in Embodiment 3;
  • FIG. 11 is a schematic diagram showing an example of a configuration of a refrigerant circuit in a refrigeration system 200 according to Embodiment 4;
  • Embodiments will be described below with reference to the drawings.
  • Embodiment 1. A refrigeration system according to Embodiment 1 will be described.
  • the refrigeration system according to Embodiment 1 cools the target space by circulating the refrigerant in the refrigerant circuit.
  • FIG. 1 is a schematic diagram showing an example configuration of a refrigeration system 100 according to Embodiment 1.
  • the refrigeration system 100 includes an outdoor unit 1, an indoor unit 2, and a control device 3.
  • the indoor unit 2 is provided in the target space SP to be cooled.
  • the outdoor unit 1 and the indoor unit 2 are connected by refrigerant pipes 5 .
  • a copper pipe, for example, is used as the refrigerant pipe 5 .
  • heat insulation treatment may be performed by, for example, wrapping a heat insulating material around the copper pipe.
  • a space temperature sensor 4 is provided in the target space SP.
  • the space temperature sensor 4 measures the space temperature indicating the temperature of the target space SP. That is, the space temperature sensor 4 measures the intake air temperature of the air sucked into the indoor unit 2 .
  • a thermocouple, a thermistor, or the like, for example, is used as the space temperature sensor 4 .
  • FIG. 2 is a schematic diagram showing an example of the configuration of the refrigerant circuit in the refrigeration system 100 of FIG.
  • the outdoor unit 1 includes a compressor 11 , an outdoor heat exchanger 12 , an expansion valve 13 and an outdoor unit controller 10 .
  • the indoor unit 2 includes an indoor heat exchanger 21 , a fan 22 , a defrosting section 23 and an indoor unit control section 20 .
  • the compressor 11, the outdoor heat exchanger 12, the expansion valve 13, and the indoor heat exchanger 21 are sequentially connected in a loop by the refrigerant pipes 5 to form a refrigerant circuit in which the refrigerant circulates.
  • the configuration of the outdoor unit 1 and the indoor unit 2 shown in FIG. 2 is an example, and is not limited to this.
  • the outdoor unit 1 may be provided with an accumulator, a supercooling heat exchanger, and the like.
  • the expansion valve 13 is provided in the outdoor unit 1 in the example of FIG. 2, it is not limited to this.
  • the expansion valve 13 may be provided in the indoor unit 2 or may be provided in the refrigerant pipe 5 connecting between the outdoor heat exchanger 12 and the indoor heat exchanger 21 .
  • refrigerant circulating in the refrigerant circuit for example, a single refrigerant such as R-22 or R-134a, a quasi-azeotropic refrigerant such as R-410A or R-404A, or a non-covalent refrigerant such as R-407C or R-449A.
  • Evaporative mixed refrigerants or natural refrigerants such as CO2 or propane are used.
  • the compressor 11 sucks a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant.
  • the compressor 11 may be, for example, an inverter compressor whose capacity, which is the output amount per unit time, is controlled by changing the operating frequency f, or may be one having a constant operating frequency f.
  • the operating frequency f when the compressor 11 is an inverter compressor is controlled by the controller 3 via the outdoor unit controller 10 .
  • the outdoor heat exchanger 12 exchanges heat between outdoor air supplied from an outdoor unit fan (not shown) and refrigerant discharged from the compressor 11, thereby dissipating the heat of the refrigerant to the outdoor air. Allow the refrigerant to condense. That is, the outdoor heat exchanger 12 functions as a condenser.
  • the outdoor heat exchanger 12 is not limited to such an air-cooling system, and for example, a water-cooling system in which heat is exchanged between water and a refrigerant may be used.
  • the expansion valve 13 expands the refrigerant.
  • the expansion valve 13 is configured by, for example, a valve whose degree of opening can be controlled, such as an electronic expansion valve.
  • the expansion valve 13 is an electronic expansion valve
  • the degree of opening of the expansion valve 13 is controlled by the control device 3 via the outdoor unit control section 10 .
  • the expansion valve 13 is not limited to an electronic expansion valve, and may be a mechanical expansion valve or a capillary.
  • the outdoor unit control unit 10 controls the compressor 11 and the expansion valve 13 based on commands from the control device 3 .
  • the outdoor unit control unit 10 is composed of a microcomputer or the like that executes various functions by executing software on an arithmetic device, or is composed of hardware such as a circuit device that realizes various functions.
  • the outdoor unit 1 includes a condensation temperature sensor 14, an evaporation temperature sensor 15 and a gas refrigerant temperature sensor 16.
  • the condensation temperature sensor 14 is provided on the discharge side of the compressor 11 and measures the condensation temperature CT of the refrigerant in the outdoor heat exchanger 12 .
  • the condensation temperature sensor 14 is not limited to a temperature sensor, and a pressure sensor, for example, may be used. In this case, the condensation temperature CT is obtained based on the high pressure measured by the condensation temperature sensor 14 and the type of refrigerant.
  • the condensation temperature sensor 14 may be provided at any position on the discharge side of the compressor 11 and on the upstream side of the expansion valve 13 .
  • the evaporation temperature sensor 15 is provided on the suction side of the compressor 11 and measures the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21 .
  • the evaporation temperature sensor 15 is not limited to a temperature sensor, and may be a pressure sensor, for example. In this case, the evaporation temperature ET is obtained based on the low pressure measured by the evaporation temperature sensor 15 and the type of refrigerant.
  • the evaporation temperature sensor 15 may be provided at any position on the suction side of the compressor 11 and on the downstream side of the indoor heat exchanger 21 .
  • the gas refrigerant temperature sensor 16 is provided on the suction side of the compressor 11 and measures the temperature of the gas refrigerant sucked into the compressor 11 .
  • a thermocouple, a thermistor, or the like, for example, is used as the gas refrigerant temperature sensor 16 .
  • the indoor heat exchanger 21 exchanges heat between the indoor air, which is the air in the target space supplied from the blower 22 , and the refrigerant flowing out from the expansion valve 13 of the outdoor unit 1 . Thereby, the cooling air supplied to the target space SP is generated. That is, the indoor heat exchanger 21 functions as an evaporator.
  • the blower 22 supplies air to the indoor heat exchanger 21 .
  • the rotation speed of the blower 22 is measured by the controller 3 via the indoor unit controller 20 .
  • the current value of the blower 22 specifically the current value of the fan motor that constitutes the blower 22 is calculated.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor is used.
  • the defrosting section 23 defrosts the indoor heat exchanger 21 .
  • a defrosting method of the defrosting unit 23 for example, a heater method of melting frost with heat of a heater or a water spraying method of spraying water on the indoor heat exchanger 21 and melting frost with the heat of water is used.
  • an off-cycle method or the like is used in which the frost is melted by stopping the refrigerating cycle operation and supplying ambient air to the frosted indoor heat exchanger 21 by the blower 22. may be ON/OFF of the defrosting section 23 is controlled by the control device 3 via the indoor unit control section 20 .
  • the indoor unit control section 20 controls the blower 22 and the defrosting section 23 based on commands from the control device 3 .
  • the indoor unit control unit 20 is composed of a microcomputer or the like that executes various functions by executing software on an arithmetic device, or is composed of hardware such as a circuit device that realizes various functions.
  • the control device 3 controls the driving frequency of the compressor 11 to control the amount of refrigerant discharged by the compressor 11 per unit time.
  • the control device 3 controls the degree of opening of the expansion valve 13 so that the degree of superheat of the refrigerant flowing out of the indoor unit 2 is within a desired range.
  • the control device 3 controls the blower 22 and the defrosting section 23 provided in the indoor unit 2 via the indoor unit control section 20 .
  • the control device 3 determines the optimal defrosting operation start timing, and controls each part so that the defrosting operation is performed at the determined defrosting start timing.
  • the control device 3 controls the entire refrigeration system 100 .
  • FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device 3 in FIG.
  • the control device 3 includes a processing circuit 31 , a memory 32 and an input/output section 33 .
  • the processing circuit 31 may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory 32 .
  • the processing circuit 31 is a CPU, the functions of the control device 3 are realized by software.
  • Software is written as a program and stored in the memory 32 .
  • the processing circuit 31 reads and executes a program stored in the memory 32 .
  • the memory 32 includes nonvolatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.). It is also called a processor, microcomputer, processor, or DSP (Digital Signal Processor).
  • cooling operation The operation when the cooling operation is performed by the refrigeration system 100 will be described.
  • a low-temperature, low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 exchanges heat with a medium such as air or water passing through the outdoor heat exchanger 12, condenses, becomes a high-pressure liquid refrigerant, and flows out of the outdoor heat exchanger 12. do.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 12 flows into the expansion valve 13 .
  • the high-pressure liquid refrigerant that has flowed into the expansion valve 13 is decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows out of the outdoor unit 1 .
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out of the outdoor unit 1 flows into the indoor unit 2 via the refrigerant pipe 5 .
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor unit 2 flows into the indoor heat exchanger 21 .
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 21 exchanges heat with indoor air, absorbs heat, evaporates, and flows out of the indoor heat exchanger 21 as a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 21 flows out of the indoor unit 2 .
  • the low-temperature, low-pressure gas refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 through the refrigerant pipe 5 and is sucked into the compressor 11 .
  • frost forms on the indoor heat exchanger 21 . If the cooling operation is continued while the indoor heat exchanger 21 is frosted, the amount of frost increases and the static pressure of the blower 22 increases.
  • FIG. 4 is a diagram showing the relationship between the static pressure around the blower 22 and the rotational speed of the blower 22. As shown in FIG. As shown in FIG. 4, the higher the static pressure (air pressure) around the blower 22, the lower the rotation speed of the blower 22. As shown in FIG. As the static pressure (air pressure) around the blower 22 decreases, the rotation speed of the blower 22 increases.
  • the air outlet of the housing of the indoor unit 2 is blocked, pressure loss occurs, and airflow becomes difficult.
  • the indoor heat exchanger 21 is blocked from frosting the air to be discharged to the outside, the static pressure around the fan 22 increases, and the rotation speed of the fan 22 decreases.
  • the air volume of the blower 22 decreases, making it difficult to draw in air from the outside and to exhaust the air inside the housing.
  • FIG. 5 is a diagram showing the relationship between the current value of the blower 22 and the rotation speed of the blower 22.
  • the current value of the fan 22 current consumption of the fan 22
  • frost builds up on the indoor heat exchanger 21
  • the air outlet of the housing of the indoor unit 2 is blocked, and when the static pressure around the blower 22 increases, the rotation speed of the blower 22 decreases.
  • the current value of the blower 22 increases due to the decrease in the rotational speed of the blower 22 .
  • FIG. 6 is a diagram showing an example of current values of the blower 22 during cooling operation and defrosting operation.
  • the horizontal axis indicates the time t
  • the vertical axis indicates the current value of the blower 22 when the defrosting operation time is Ta and the cooling operation time is Tb in the refrigeration system 100 .
  • the cooling operation time Tb is short, the cooling operation time will be short, so the inside of the refrigerator may not reach the target temperature.
  • the cooling operation time Tb When the cooling operation time Tb is long, the cooling operation time becomes long, so the amount of frost formed on the indoor heat exchanger 21 becomes excessive. That is, when the cooling operation time Tb is long, the heat transfer performance of the indoor heat exchanger 21 is lowered due to frost formation, and cooling may not be sufficient.
  • the defrosting start timing of the indoor heat exchanger 21 is optimized in order to prevent the decrease in cooling capacity as described above.
  • the control device 3 switches between the defrosting operation and the cooling operation using the first defrosting timing determination method when the current time is included in the determined time period.
  • the controller 3 uses ET (Exit Temperature) shift control to determine the defrost start timing, and records the current value of the blower 22 at that time as the defrost start threshold value THs. do.
  • ET Exit Temperature
  • the control device 3 uses the ET shift control to determine the defrosting end timing, and sets the current value of the blower at that time as the defrosting end threshold THe. Record.
  • the control device 3 switches between the defrosting operation and the cooling operation using the second defrosting timing determination method.
  • the control device 3 switches between the defrosting operation and the cooling operation using the defrosting start threshold THs and the defrosting end threshold THe obtained by the ET shift control.
  • the set time period is a time period when there are few people coming and going, such as at night.
  • RT-ET temperature difference between the blowout temperature of the air in the indoor heat exchanger 21, which is an evaporator
  • ET of the refrigerant in the indoor heat exchanger 21 to the threshold value TH1.
  • FIG. 7 is a diagram showing an example of sensors arranged near the indoor heat exchanger 21.
  • Evaporation temperature ET can be measured by using temperature sensor 41 on the inlet side of indoor heat exchanger 21 or by converting pressure detected by pressure sensor 43 on the outlet side into saturated gas temperature. .
  • the present embodiment it is possible to switch between the defrosting operation and the cooling operation by controlling the current value of the blower 22 during the daytime when many people come and go, and by ET shift control during the nighttime when few people come and go.
  • the defrosting operation cannot be performed at an accurate timing with the ET shift control, such as during the day when there are many people coming and going, the fan motor current value control becomes possible, so the optimum defrosting operation can always be performed.
  • the current value of the blower 22 measured during the ET shift control is set to the defrosting start threshold and A defrost end threshold can be set.
  • FIG. 8 is a flowchart representing the procedure for determining the start and end of defrosting in the first embodiment. The flowchart process of FIG. 8 is always executed while the refrigeration system 100 is in operation.
  • step S101 the control device 3 starts the cooling operation of the refrigeration system 100.
  • step S102 when the current time is included in the determined time zone, the process proceeds to step S103, and when the current time is not included in the determined time zone, the process proceeds to step S104. .
  • step S103 the control device 3 switches between the defrosting operation and the cooling operation using the first defrosting timing determination method.
  • step S104 the control device 3 switches between the defrosting operation and the cooling operation using the second defrosting timing determination method.
  • FIG. 9 is a flow chart showing the details of the processing in step S103 of FIG.
  • the control device 3 acquires the blowing temperature RT of the air in the indoor heat exchanger 21 and the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21 .
  • TH1 is, for example, 5°C.
  • step S504 the control device 3 ends the cooling operation of the refrigeration system 100, starts the defrosting operation, and acquires the current value Is of the blower 22.
  • step S505 the acquired current value Is of the blower 22 is recorded as the defrosting start threshold THs.
  • step S506 the control device 3 acquires the blowout temperature RT of the air in the indoor heat exchanger 21 and the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21.
  • step S508 the control device 3 ends the defrosting operation of the refrigeration system 100, starts the cooling operation, and acquires the current value Is of the blower 22.
  • step S509 the acquired current value of the blower 22 is recorded as the defrosting end threshold THe.
  • FIG. 10 is a flow chart showing the details of the process of step S104 in FIG. 8 in the first embodiment.
  • FIG. 11 is a diagram showing defrosting start timing and defrosting end timing according to the second defrosting timing determination method in the first embodiment.
  • step S1 the control device 3 determines whether or not the current value Is of the blower 22 exceeds the defrosting start threshold THs. When the current value Is of the blower 22 exceeds the defrosting start threshold THs, the process proceeds to step S2. When the current value Is of the blower 22 does not exceed the defrosting start threshold THs, the control device 3 continues the cooling operation of the refrigeration system 100 .
  • step S2 the control device 3 ends the cooling operation of the refrigeration system 100 and starts the defrosting operation of the refrigeration system 100.
  • step S3 when a certain period of time ⁇ t has passed since the defrosting operation started, the process proceeds to step S4.
  • the control device 3 allows the refrigeration system 100 to continue the defrosting operation when the predetermined time ⁇ t has not elapsed since the defrosting operation was started.
  • step S4 the control device 3 terminates the defrosting operation of the refrigeration system 100 and starts the cooling operation of the refrigeration system 100.
  • the temperature efficiency threshold is set in advance according to the type of refrigerator. Objects to be cooled are placed in the freezer, and it is assumed that workers enter and leave the freezer. Therefore, even if the type of refrigerator is the same, the actual use environment differs from refrigerator to refrigerator.
  • the defrosting start threshold value and the defrosting end threshold value that determine the switching timing between the defrosting operation and the cooling operation based on the current value of the blower are the switching timing between the defrosting operation and the cooling operation based on the ET shift control. Use the current value of the blower in This makes it possible to appropriately set the timing of the defrosting operation according to the actual use environment.
  • FIG. 12 is a flow chart showing details of the process of step S104 in FIG. 8 in the second embodiment.
  • FIG. 13 is a diagram showing defrosting start timing and defrosting end timing according to the second defrosting timing determination method in the second embodiment.
  • step S11 the control device 3 determines whether or not the current value Is of the blower 22 exceeds the defrosting start threshold THs. When the current value Is of the blower 22 exceeds the defrosting start threshold THs, the process proceeds to step S12. When the current value Is of the blower 22 does not exceed the defrosting start threshold THs, the control device 3 continues the cooling operation of the refrigeration system 100 .
  • step S ⁇ b>12 the control device 3 ends the cooling operation of the refrigeration system 100 and starts the defrosting operation of the refrigeration system 100 .
  • the control device 3 causes the off-cycle defrosting to be performed while the air blower 22 is being rotated.
  • step S13 the control device 3 determines whether or not the current value Is of the blower 22 is less than the defrosting end threshold THe.
  • the process proceeds to step S14.
  • the control device 3 continues the defrosting operation of the refrigeration system 100 .
  • the defrosting end threshold THe can be set by visually confirming the progress of defrosting of the indoor heat exchanger 21 during trial operation.
  • the refrigeration system 100 may be operated while changing the defrosting end threshold THe during trial operation, and the defrosting end threshold THe at which efficiency is maximized may be used in actual operation.
  • step S14 the control device 3 terminates the defrosting operation of the refrigeration system 100 and starts the cooling operation of the refrigeration system 100.
  • the defrost start threshold and the defrost end threshold it is possible to reliably return the cooling capacity of the refrigeration system to a state close to the initial state.
  • FIG. 14 is a flow chart showing details of the process of step S104 of FIG. 8 in the third embodiment.
  • FIG. 15 is a diagram showing defrosting start timing and defrosting end timing according to the second defrosting timing determination method in the third embodiment.
  • step S21 the control device 3 determines whether or not the current value Is of the blower 22 exceeds the defrosting start threshold THs. When the current value Is of the blower 22 exceeds the defrosting start threshold THs, the process proceeds to step S22. When the current value Is of the blower 22 does not exceed the defrosting start threshold THs, the control device 3 continues the cooling operation of the refrigeration system 100 .
  • step S22 the control device 3 terminates the cooling operation of the refrigeration system 100, starts the defrosting operation of the refrigeration system 100, and stops the rotation of the blower 22.
  • step S23 when the fixed time ⁇ t has passed, the process proceeds to step S4. If the fixed time ⁇ t has not passed, the control device 3 continues the defrosting operation of the refrigeration system 100 .
  • step S ⁇ b>24 the control device 3 starts rotating the blower 22 .
  • step S25 the control device 3 determines whether or not the current value Is of the blower 22 is less than the defrosting end threshold value THe. When the current value Is of the blower 22 is less than the defrosting end threshold value THe, the process proceeds to step S26. If the current value Is of the blower 22 is not less than the defrosting end threshold value THe, the process proceeds to step S27.
  • step S27 the control device 3 stops the rotation of the blower 22. After that, the process returns to step S23.
  • step S26 the control device 3 terminates the defrosting operation of the refrigeration system 100, stops the rotation of the blower 22, and starts the cooling operation of the refrigeration system 100.
  • FIG. 16 is a schematic diagram showing an example of the configuration of a refrigerant circuit in a refrigeration system 200 according to Embodiment 4.
  • a refrigeration system 200 includes an outdoor unit 201 , an indoor unit 202 and a control device 3 .
  • the outdoor unit 201 includes a compressor 11 , an outdoor heat exchanger 12 , an expansion valve 13 , a condensation temperature sensor 14 , an evaporation temperature sensor 15 , a gas refrigerant temperature sensor 16 and an outdoor unit controller 10 , similar to the outdoor unit 1 .
  • the outdoor unit 201 further includes a bypass circuit 17 and a bypass valve 18 .
  • the bypass circuit 17 branches from the refrigerant pipe 5 on the discharge side of the compressor 11 and is connected to the refrigerant pipe 5 between the expansion valve 13 and the indoor heat exchanger 21 .
  • the bypass circuit 17 is provided so that part of the refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 21 .
  • a bypass valve 18 is provided in the bypass circuit 17 .
  • the opening/closing of the bypass valve 18 is controlled by the control device 3 via the outdoor unit control section 10, and the opening/closing of the bypass valve 18 circulates or blocks the refrigerant flowing through the bypass circuit 17.
  • the indoor unit 202 includes an indoor heat exchanger 21, an air blower 22, and an indoor unit controller 20, similar to the indoor unit 2. Unlike the indoor unit 2 , the indoor unit 202 is not provided with the defrosting unit 23 .
  • the control device 3 opens the bypass valve 18 during the defrosting operation. As a result, part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 11 flows through the bypass valve 18 and flows into the indoor heat exchanger 21 of the indoor unit 202 . When the high-temperature gas refrigerant flows into the indoor heat exchanger 21, frost adhering to the indoor heat exchanger 21 is melted and removed by the heat of the refrigerant.
  • the indoor heat exchanger 21 can be defrosted by providing the bypass circuit 17 and the bypass valve 18 instead of the defrosting section 23 .
  • the defrosting unit 23 is removed, but the configuration is not limited to this, and the defrosting unit 23 may be used together.
  • bypass circuit 17 and the bypass valve 18 are used as the defrosting section 23 in the refrigeration system 200 of the present embodiment.
  • the high-temperature refrigerant flows into the indoor heat exchanger 21, so frost adhering to the indoor heat exchanger 21 can be removed.

Abstract

According to the present invention, when the current time is included in a predetermined time slot, a control device (3) initiates defrosting operation on the basis of the blow-out temperature of air in an indoor heat exchanger (21) and the evaporation temperature of a refrigerant in the indoor heat exchanger (21) during cooling operation, measures the electric current value of an air blower (22), and sets the measured electric current value as a defrosting initiation threshold. The control device (3) initiates defrosting operation on the basis of the electric current value of the air blower (22).

Description

冷凍システムrefrigeration system
 本開示は、冷凍システムに関する。 The present disclosure relates to refrigeration systems.
 従来から、除霜運転を適切なタイミングで開始することができる冷凍機が知られている(例えば、特許文献1参照)。この冷凍機は、冷凍サイクルの一部を構成する熱交換器を流れる冷媒の温度と、熱交換器を通過する空気の吸い込み温度および吹出温度との測定結果に基づいて冷媒と空気の熱交換の効率を表す温度効率を算出する。この冷凍機は、算出された温度効率の冷却運転開始からの変化傾向に基づいて予測された熱交換器への着霜量と、冷凍機の機種に応じて予め設定された温度効率の閾値とから最適除霜開始タイミングを判定する。この冷凍機は、温度効率が閾値以上になったときに除霜運転を開始する。 Conventionally, refrigerators capable of starting defrosting operation at an appropriate timing have been known (see Patent Document 1, for example). This refrigerator measures heat exchange between the refrigerant and air based on the measurement results of the temperature of the refrigerant flowing through a heat exchanger that constitutes a part of the refrigeration cycle and the intake temperature and blowout temperature of the air that passes through the heat exchanger. A temperature efficiency, which expresses the efficiency, is calculated. This refrigerator combines the amount of frost on the heat exchanger predicted based on the calculated change trend of the temperature efficiency from the start of the cooling operation, and the temperature efficiency threshold preset according to the model of the refrigerator. Optimal defrosting start timing is determined from. This refrigerator starts the defrosting operation when the temperature efficiency reaches or exceeds the threshold.
特開2007-225158号公報JP 2007-225158 A
 特許文献1では、除霜運転のタイミングを決定するために、温度効率を計算しなければならない。 In Patent Document 1, temperature efficiency must be calculated in order to determine the timing of defrosting operation.
 本開示の目的は、温度効率以外の方法で、除霜運転のタイミングを適切に設定することができる冷凍システムを提供することである。 An object of the present disclosure is to provide a refrigeration system that can appropriately set the timing of defrosting operation by a method other than temperature efficiency.
 本開示の冷凍システムは、環状に接続された圧縮機、室外熱交換器、膨張弁および室内熱交換器と、室内熱交換器に付着した霜を除去する除霜部と、室内熱交換器に空気を送る送風機と、対象空間を冷却する冷却運転と、除霜部を制御して室内熱交換器に付着した霜を除去する除霜運転とを切り替える制御装置と備える。制御装置は、送風機の電流値に基づいて、除霜運転を開始する。 The refrigeration system of the present disclosure includes a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger that are annularly connected, a defrosting section that removes frost adhering to the indoor heat exchanger, and an indoor heat exchanger. A controller for switching between a blower for sending air, a cooling operation for cooling a target space, and a defrosting operation for controlling a defrosting section to remove frost adhering to an indoor heat exchanger is provided. The control device starts defrosting operation based on the current value of the blower.
 本開示によれば、送風機の電流値に基づいて、除霜運転を開始する。これにより、除霜運転のタイミングを適切に設定することができる。 According to the present disclosure, the defrosting operation is started based on the current value of the blower. Thereby, the timing of defrosting operation can be set appropriately.
実施の形態1に係る冷凍システムの構成の一例を示す概略図である。1 is a schematic diagram showing an example of a configuration of a refrigeration system according to Embodiment 1; FIG. 図1の冷凍システムにおける冷媒回路の構成の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a configuration of a refrigerant circuit in the refrigeration system of FIG. 1; 図2の制御装置3の構成の一例を示すハードウェア構成図である。3 is a hardware configuration diagram showing an example of the configuration of a control device 3 in FIG. 2; FIG. 送風機22の周囲の静圧と送風機22の回転数との関係を示す図である。4 is a diagram showing the relationship between the static pressure around the blower 22 and the rotation speed of the blower 22. FIG. 送風機22の電流値と送風機22の回転数との関係を示す図である。4 is a diagram showing the relationship between the current value of the blower 22 and the rotation speed of the blower 22; FIG. 冷却運転時および除霜運転時の送風機22の電流値の一例を示す図である。4 is a diagram showing an example of current values of the blower 22 during cooling operation and defrosting operation; FIG. 室内熱交換器21の近傍に配置されるセンサの例を表わす図である。FIG. 3 is a diagram showing an example of sensors arranged near an indoor heat exchanger 21. FIG. 実施の形態1における、除霜開始および除霜終了の判定手順を表わすフローチャートである。4 is a flowchart representing a procedure for determining the start and end of defrosting in Embodiment 1. FIG. 図8のステップS103の処理の詳細を表わすフローチャートである。FIG. 9 is a flow chart showing the details of the processing in step S103 of FIG. 8; FIG. 実施の形態1における、図8のステップS104の処理の詳細を表わすフローチャートである。FIG. 9 is a flowchart showing details of the process of step S104 of FIG. 8 in Embodiment 1. FIG. 実施の形態1における第2の除霜タイミング決定方法による除霜開始タイミングおよび除霜終了タイミングを表わす図である。FIG. 7 is a diagram showing defrosting start timing and defrosting end timing according to a second defrosting timing determination method in Embodiment 1; 実施の形態2における、図8のステップS104の処理の詳細を表わすフローチャートである。FIG. 9 is a flow chart showing details of the process of step S104 of FIG. 8 in Embodiment 2. FIG. 実施の形態2における第2の除霜タイミング決定方法による除霜開始タイミングおよび除霜終了タイミングを表わす図である。FIG. 10 is a diagram showing defrosting start timing and defrosting end timing according to a second defrosting timing determination method in Embodiment 2; 実施の形態3における、図8のステップS104の処理の詳細を表わすフローチャートである。9 is a flow chart showing details of the process of step S104 of FIG. 8 in Embodiment 3. FIG. 実施の形態3における第2の除霜タイミング決定方法による除霜開始タイミングおよび除霜終了タイミングを表わす図である。FIG. 11 is a diagram showing defrosting start timing and defrosting end timing according to a second defrosting timing determination method in Embodiment 3; 実施の形態4に係る冷凍システム200における冷媒回路の構成の一例を示す概略図である。FIG. 11 is a schematic diagram showing an example of a configuration of a refrigerant circuit in a refrigeration system 200 according to Embodiment 4;
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 実施の形態1に関わる冷凍システムについて説明する。実施の形態1に係る冷凍システムは、冷媒回路に冷媒を循環させることにより、対象空間を冷却する。
Embodiments will be described below with reference to the drawings.
Embodiment 1.
A refrigeration system according to Embodiment 1 will be described. The refrigeration system according to Embodiment 1 cools the target space by circulating the refrigerant in the refrigerant circuit.
 図1は、実施の形態1に係る冷凍システムの100の構成の一例を示す概略図である。図1に示すように、冷凍システム100は、室外機1、室内機2および制御装置3を備える。室内機2は、冷却対象となる対象空間SPに設けられている。室外機1と室内機2とは、冷媒配管5で接続されている。冷媒配管5として、例えば銅配管が用いられる。周辺の空気との熱交換を抑制するために、銅配管の周囲に断熱材を巻くなどして断熱処理が施されても良い。 FIG. 1 is a schematic diagram showing an example configuration of a refrigeration system 100 according to Embodiment 1. FIG. As shown in FIG. 1, the refrigeration system 100 includes an outdoor unit 1, an indoor unit 2, and a control device 3. The indoor unit 2 is provided in the target space SP to be cooled. The outdoor unit 1 and the indoor unit 2 are connected by refrigerant pipes 5 . A copper pipe, for example, is used as the refrigerant pipe 5 . In order to suppress heat exchange with the surrounding air, heat insulation treatment may be performed by, for example, wrapping a heat insulating material around the copper pipe.
 対象空間SPには、空間温度センサ4が設けられている。空間温度センサ4は、対象空間SPの温度を示す空間温度を計測する。すなわち、空間温度センサ4は、室内機2に吸い込まれる空気の吸込み空気温度を計測する。空間温度センサ4として、例えば熱電対またはサーミスタ等が用いられる。 A space temperature sensor 4 is provided in the target space SP. The space temperature sensor 4 measures the space temperature indicating the temperature of the target space SP. That is, the space temperature sensor 4 measures the intake air temperature of the air sucked into the indoor unit 2 . A thermocouple, a thermistor, or the like, for example, is used as the space temperature sensor 4 .
 図2は、図1の冷凍システム100における冷媒回路の構成の一例を示す概略図である。 FIG. 2 is a schematic diagram showing an example of the configuration of the refrigerant circuit in the refrigeration system 100 of FIG.
 室外機1は、圧縮機11、室外熱交換器12、膨張弁13および室外機制御部10を備える。室内機2は、室内熱交換器21、送風機22、除霜部23および室内機制御部20を備える。圧縮機11、室外熱交換器12、膨張弁13および室内熱交換器21が冷媒配管5によって順次環状に接続されることにより、冷媒が循環する冷媒回路が形成される。 The outdoor unit 1 includes a compressor 11 , an outdoor heat exchanger 12 , an expansion valve 13 and an outdoor unit controller 10 . The indoor unit 2 includes an indoor heat exchanger 21 , a fan 22 , a defrosting section 23 and an indoor unit control section 20 . The compressor 11, the outdoor heat exchanger 12, the expansion valve 13, and the indoor heat exchanger 21 are sequentially connected in a loop by the refrigerant pipes 5 to form a refrigerant circuit in which the refrigerant circulates.
 図2に示す室外機1および室内機2の構成は一例であり、これに限られない。例えば、室外機1にアキュムレータおよび過冷却熱交換器等が設けられても良い。図2の例では、膨張弁13が室外機1に設けられているが、これに限られない。膨張弁13が室内機2に設けられても良いし、室外熱交換器12と室内熱交換器21との間を接続する冷媒配管5に設けられても良い。 The configuration of the outdoor unit 1 and the indoor unit 2 shown in FIG. 2 is an example, and is not limited to this. For example, the outdoor unit 1 may be provided with an accumulator, a supercooling heat exchanger, and the like. Although the expansion valve 13 is provided in the outdoor unit 1 in the example of FIG. 2, it is not limited to this. The expansion valve 13 may be provided in the indoor unit 2 or may be provided in the refrigerant pipe 5 connecting between the outdoor heat exchanger 12 and the indoor heat exchanger 21 .
 冷媒回路を循環する冷媒として、例えばR-22またはR-134aなどの単一冷媒、あるいはR-410AまたはR-404Aなどの疑似共沸混合冷媒、あるいはR―407CまたはR-449Aなどの非共沸混合冷媒、あるいはCO2またはプロパンなどの自然冷媒が用いられる。 As the refrigerant circulating in the refrigerant circuit, for example, a single refrigerant such as R-22 or R-134a, a quasi-azeotropic refrigerant such as R-410A or R-404A, or a non-covalent refrigerant such as R-407C or R-449A. Evaporative mixed refrigerants or natural refrigerants such as CO2 or propane are used.
 次に、室外機1の動作を説明する。
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数fを変化させることにより、単位時間当たりの送出量である容量が制御されるインバータ圧縮機でも良いし、運転周波数fが一定のものでも良い。圧縮機11がインバータ圧縮機である場合の運転周波数fは、室外機制御部10を介して制御装置3によって制御される。
Next, the operation of the outdoor unit 1 will be explained.
The compressor 11 sucks a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant. The compressor 11 may be, for example, an inverter compressor whose capacity, which is the output amount per unit time, is controlled by changing the operating frequency f, or may be one having a constant operating frequency f. The operating frequency f when the compressor 11 is an inverter compressor is controlled by the controller 3 via the outdoor unit controller 10 .
 室外熱交換器12は、図示しない室外機ファンから供給される室外空気と、圧縮機11から吐出された冷媒との間で熱交換を行わせることによって、冷媒の熱を室外空気に放熱して冷媒を凝縮させる。すなわち、室外熱交換器12は、凝縮器として機能する。なお、室外熱交換器12は、このような空冷方式に限られず、例えば水と冷媒との間で熱交換を行う水冷方式が用いられても良い。 The outdoor heat exchanger 12 exchanges heat between outdoor air supplied from an outdoor unit fan (not shown) and refrigerant discharged from the compressor 11, thereby dissipating the heat of the refrigerant to the outdoor air. Allow the refrigerant to condense. That is, the outdoor heat exchanger 12 functions as a condenser. In addition, the outdoor heat exchanger 12 is not limited to such an air-cooling system, and for example, a water-cooling system in which heat is exchanged between water and a refrigerant may be used.
 膨張弁13は、冷媒を膨張させる。膨張弁13は、例えば、電子式膨張弁などの開度の制御が可能な弁で構成される。膨張弁13が電子式膨張弁の場合に、膨張弁13の開度は、室外機制御部10を介して制御装置3によって制御される。膨張弁13は、電子式膨張弁に限定されるものではなく、機械式膨張弁またはキャピラリによって構成されてもよい。 The expansion valve 13 expands the refrigerant. The expansion valve 13 is configured by, for example, a valve whose degree of opening can be controlled, such as an electronic expansion valve. When the expansion valve 13 is an electronic expansion valve, the degree of opening of the expansion valve 13 is controlled by the control device 3 via the outdoor unit control section 10 . The expansion valve 13 is not limited to an electronic expansion valve, and may be a mechanical expansion valve or a capillary.
 室外機制御部10は、制御装置3からの指令に基づき、圧縮機11および膨張弁13を制御する。室外機制御部10は、演算装置上でソフトウェアを実行することによって各種機能を実行するマイクロコンピュータ等で構成され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。 The outdoor unit control unit 10 controls the compressor 11 and the expansion valve 13 based on commands from the control device 3 . The outdoor unit control unit 10 is composed of a microcomputer or the like that executes various functions by executing software on an arithmetic device, or is composed of hardware such as a circuit device that realizes various functions.
 室外機1は、凝縮温度センサ14、蒸発温度センサ15およびガス冷媒温度センサ16を備える。 The outdoor unit 1 includes a condensation temperature sensor 14, an evaporation temperature sensor 15 and a gas refrigerant temperature sensor 16.
 凝縮温度センサ14は、圧縮機11の吐出側に設けられ、室外熱交換器12における冷媒の凝縮温度CTを計測する。凝縮温度センサ14として、温度センサに限られず、例えば圧力センサが用いられても良い。この場合、凝縮温度センサ14で計測された高圧圧力と冷媒の種類とに基づき、凝縮温度CTが得られる。凝縮温度センサ14は、圧縮機11の吐出側であって、膨張弁13の上流側であれば、いずれの位置に設けられても良い。 The condensation temperature sensor 14 is provided on the discharge side of the compressor 11 and measures the condensation temperature CT of the refrigerant in the outdoor heat exchanger 12 . The condensation temperature sensor 14 is not limited to a temperature sensor, and a pressure sensor, for example, may be used. In this case, the condensation temperature CT is obtained based on the high pressure measured by the condensation temperature sensor 14 and the type of refrigerant. The condensation temperature sensor 14 may be provided at any position on the discharge side of the compressor 11 and on the upstream side of the expansion valve 13 .
 蒸発温度センサ15は、圧縮機11の吸入側に設けられ、室内熱交換器21における冷媒の蒸発温度ETを計測する。蒸発温度センサ15として、温度センサに限られず、例えば圧力センサが用いられても良い。この場合、蒸発温度センサ15で計測された低圧圧力と冷媒の種類とに基づき、蒸発温度ETが得られる。蒸発温度センサ15は、圧縮機11の吸入側であって、室内熱交換器21の下流側であれば、いずれの位置に設けられても良い。 The evaporation temperature sensor 15 is provided on the suction side of the compressor 11 and measures the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21 . The evaporation temperature sensor 15 is not limited to a temperature sensor, and may be a pressure sensor, for example. In this case, the evaporation temperature ET is obtained based on the low pressure measured by the evaporation temperature sensor 15 and the type of refrigerant. The evaporation temperature sensor 15 may be provided at any position on the suction side of the compressor 11 and on the downstream side of the indoor heat exchanger 21 .
 ガス冷媒温度センサ16は、圧縮機11の吸入側に設けられ、圧縮機11に吸入されるガス冷媒の温度を計測する。ガス冷媒温度センサ16として、例えば熱電対またはサーミスタ等が用いられる。 The gas refrigerant temperature sensor 16 is provided on the suction side of the compressor 11 and measures the temperature of the gas refrigerant sucked into the compressor 11 . A thermocouple, a thermistor, or the like, for example, is used as the gas refrigerant temperature sensor 16 .
 次に、室内機2の動作を説明する。
 室内熱交換器21は、送風機22から供給される対象空間の空気である室内空気と、室外機1の膨張弁13から流出した冷媒との間で熱交換を行う。これにより、対象空間SPに供給される冷却空気が生成される。すなわち、室内熱交換器21は、蒸発器として機能する。
Next, the operation of the indoor unit 2 will be explained.
The indoor heat exchanger 21 exchanges heat between the indoor air, which is the air in the target space supplied from the blower 22 , and the refrigerant flowing out from the expansion valve 13 of the outdoor unit 1 . Thereby, the cooling air supplied to the target space SP is generated. That is, the indoor heat exchanger 21 functions as an evaporator.
 送風機22は、室内熱交換器21に対して空気を供給する。送風機22の回転数は、室内機制御部20を介して制御装置3によって計測される。送風機22の回転数が計測されることにより、送風機22の電流値、具体的には送風機22を構成するファンモータの電流値が算出される。送風機22として、例えばDC(Direct Current)ファンモータなどのモータによって駆動される遠心ファンまたは多翼ファン等が用いられる。 The blower 22 supplies air to the indoor heat exchanger 21 . The rotation speed of the blower 22 is measured by the controller 3 via the indoor unit controller 20 . By measuring the rotation speed of the blower 22, the current value of the blower 22, specifically the current value of the fan motor that constitutes the blower 22 is calculated. As the air blower 22, for example, a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor is used.
 除霜部23は、室内熱交換器21を除霜する。
 除霜部23の除霜方式として、例えばヒータの熱によって霜を溶かすヒータ方式、あるいは、室内熱交換器21に水を散水し、水の熱によって霜を溶かす散水方式が用いられる。あるいは、除霜部23の除霜方式として、冷凍サイクル運転を停止して、着霜している室内熱交換器21に送風機22によって周辺空気を供給することによって霜を溶かすオフサイクル方式等が用いられてもよい。除霜部23のON/OFFは、室内機制御部20を介して制御装置3によって制御される。
The defrosting section 23 defrosts the indoor heat exchanger 21 .
As a defrosting method of the defrosting unit 23, for example, a heater method of melting frost with heat of a heater or a water spraying method of spraying water on the indoor heat exchanger 21 and melting frost with the heat of water is used. Alternatively, as a defrosting method of the defrosting unit 23, an off-cycle method or the like is used in which the frost is melted by stopping the refrigerating cycle operation and supplying ambient air to the frosted indoor heat exchanger 21 by the blower 22. may be ON/OFF of the defrosting section 23 is controlled by the control device 3 via the indoor unit control section 20 .
 室内機制御部20は、制御装置3からの指令に基づき、送風機22および除霜部23を制御する。室内機制御部20は、演算装置上でソフトウェアを実行することによって各種機能を実行するマイクロコンピュータ等で構成され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。 The indoor unit control section 20 controls the blower 22 and the defrosting section 23 based on commands from the control device 3 . The indoor unit control unit 20 is composed of a microcomputer or the like that executes various functions by executing software on an arithmetic device, or is composed of hardware such as a circuit device that realizes various functions.
 次に、制御装置3の動作を説明する。
 制御装置3は、圧縮機11の駆動周波数を制御して、圧縮機11が単位時間当たりに吐出する冷媒量を制御する。制御装置3は、室内機2から流出する冷媒の過熱度が所望の範囲となるように、膨張弁13の開度を制御する。制御装置3は、室内機制御部20を介して室内機2に設けられた送風機22および除霜部23を制御する。さらに、本実施の形態において、制御装置3は、最適な除霜運転の開始時期を決定し、決定した除霜開始時期に除霜運転を行うように、各部を制御する。制御装置3は、冷凍システム100の全体を制御する。
Next, the operation of the control device 3 will be explained.
The control device 3 controls the driving frequency of the compressor 11 to control the amount of refrigerant discharged by the compressor 11 per unit time. The control device 3 controls the degree of opening of the expansion valve 13 so that the degree of superheat of the refrigerant flowing out of the indoor unit 2 is within a desired range. The control device 3 controls the blower 22 and the defrosting section 23 provided in the indoor unit 2 via the indoor unit control section 20 . Furthermore, in the present embodiment, the control device 3 determines the optimal defrosting operation start timing, and controls each part so that the defrosting operation is performed at the determined defrosting start timing. The control device 3 controls the entire refrigeration system 100 .
 図3は、図2の制御装置3の構成の一例を示すハードウェア構成図である。制御装置3は、処理回路31と、メモリ32と、入出力部33とを含む。処理回路31は、専用のハードウェアであってもよいし、メモリ32に格納されるプログラムを実行するCPU(Central Processing Unit)であってもよい。処理回路31がCPUの場合、制御装置3の機能は、ソフトウェアにより実現される。ソフトウェアはプログラムとして記述され、メモリ32に格納される。処理回路31は、メモリ32に記憶されたプログラムを読み出して実行する。メモリ32には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が含まれる。CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。 FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device 3 in FIG. The control device 3 includes a processing circuit 31 , a memory 32 and an input/output section 33 . The processing circuit 31 may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory 32 . When the processing circuit 31 is a CPU, the functions of the control device 3 are realized by software. Software is written as a program and stored in the memory 32 . The processing circuit 31 reads and executes a program stored in the memory 32 . The memory 32 includes nonvolatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.). It is also called a processor, microcomputer, processor, or DSP (Digital Signal Processor).
 次に、上記構成を有する冷凍システム100の動作について説明する。冷却運転時の動作と、最適な除霜開始時期の決定方法とについて説明する。 Next, the operation of the refrigeration system 100 having the above configuration will be described. The operation during the cooling operation and the method of determining the optimal defrosting start time will be described.
 (冷却運転)
 冷凍システム100によって冷却運転が行われる場合の動作について説明する。室外機1において、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、室外熱交換器12を通過する空気または水などの媒体と熱交換して凝縮し、高圧の液冷媒となって室外熱交換器12から流出する。
(cooling operation)
The operation when the cooling operation is performed by the refrigeration system 100 will be described. In the outdoor unit 1, a low-temperature, low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature, high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 exchanges heat with a medium such as air or water passing through the outdoor heat exchanger 12, condenses, becomes a high-pressure liquid refrigerant, and flows out of the outdoor heat exchanger 12. do.
 室外熱交換器12から流出した高圧の液冷媒は、膨張弁13に流入する。膨張弁13に流入した高圧の液冷媒は、減圧されて低温低圧の気液二相冷媒となり、室外機1から流出する。室外機1から流出した低温低圧の気液二相冷媒は、冷媒配管5を介して室内機2に流入する。 The high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 12 flows into the expansion valve 13 . The high-pressure liquid refrigerant that has flowed into the expansion valve 13 is decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows out of the outdoor unit 1 . The low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out of the outdoor unit 1 flows into the indoor unit 2 via the refrigerant pipe 5 .
 室内機2に流入した低温低圧の気液二相冷媒は、室内熱交換器21に流入する。室内熱交換器21に流入した低温低圧の気液二相冷媒は、室内空気と熱交換して吸熱及び蒸発し、低温低圧のガス冷媒となって室内熱交換器21から流出する。室内熱交換器21から流出した低温低圧のガス冷媒は、室内機2から流出する。室内機2から流出した低温低圧のガス冷媒は、冷媒配管5を介して室外機1に流入し、圧縮機11に吸入される。 The low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor unit 2 flows into the indoor heat exchanger 21 . The low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 21 exchanges heat with indoor air, absorbs heat, evaporates, and flows out of the indoor heat exchanger 21 as a low-temperature, low-pressure gas refrigerant. The low-temperature, low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 21 flows out of the indoor unit 2 . The low-temperature, low-pressure gas refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 through the refrigerant pipe 5 and is sucked into the compressor 11 .
 (最適な除霜開始時期の決定方法)
 次に、最適な時期に除霜運転を開始する決定方法について説明する。
(Method for determining optimum defrosting start time)
Next, a method of determining when to start the defrosting operation at the optimum time will be described.
 室内熱交換器21の温度が氷点下の状態で冷却運転が長時間行われる場合、室内熱交換器21が着霜する。室内熱交換器21が着霜した状態で冷却運転が継続されると、着霜量が増加して、送風機22の静圧が増加する。 When the cooling operation is performed for a long time while the temperature of the indoor heat exchanger 21 is below freezing, frost forms on the indoor heat exchanger 21 . If the cooling operation is continued while the indoor heat exchanger 21 is frosted, the amount of frost increases and the static pressure of the blower 22 increases.
 図4は、送風機22の周囲の静圧と送風機22の回転数との関係を示す図である。
 図4に示すように、送風機22の周囲の静圧(空気の圧力)が大きいほど、送風機22の回転数は小さくなる。送風機22の周囲の静圧(空気の圧力)が小さいほど、送風機22の回転数は大きくなる。
FIG. 4 is a diagram showing the relationship between the static pressure around the blower 22 and the rotational speed of the blower 22. As shown in FIG.
As shown in FIG. 4, the higher the static pressure (air pressure) around the blower 22, the lower the rotation speed of the blower 22. As shown in FIG. As the static pressure (air pressure) around the blower 22 decreases, the rotation speed of the blower 22 increases.
 室内熱交換器21の着霜が進行することによって、室内機2の筐体の空気の出口が閉塞し、圧力損失が起こり、風が通りにくくなる。室外に排出する空気が室内熱交換器21の着霜によって防がれると、送風機22の周囲の静圧が上昇するため、送風機22の回転数は低下する。送風機22の回転数が低下すると、送風機22の風量が小さくなるので、外部から空気の吸込みが困難になり、筐体の中にある空気の排出が困難になる。 As frost builds up on the indoor heat exchanger 21, the air outlet of the housing of the indoor unit 2 is blocked, pressure loss occurs, and airflow becomes difficult. When the indoor heat exchanger 21 is blocked from frosting the air to be discharged to the outside, the static pressure around the fan 22 increases, and the rotation speed of the fan 22 decreases. When the number of revolutions of the blower 22 decreases, the air volume of the blower 22 decreases, making it difficult to draw in air from the outside and to exhaust the air inside the housing.
 図5は、送風機22の電流値と送風機22の回転数との関係を示す図である。
 図5に示すように、送風機22の回転数が小さくなると、送風機22の電流値(送風機22の消費電流)は大きくなる。室内熱交換器21の着霜が進行することによって、室内機2の筐体の空気の出口が閉塞して、送風機22の周囲の静圧が増加した場合、送風機22の回転数が減少する。送風機22の回転数の減少によって、送風機22の電流値が増加する。
FIG. 5 is a diagram showing the relationship between the current value of the blower 22 and the rotation speed of the blower 22. As shown in FIG.
As shown in FIG. 5, when the rotational speed of the fan 22 decreases, the current value of the fan 22 (current consumption of the fan 22) increases. As frost builds up on the indoor heat exchanger 21, the air outlet of the housing of the indoor unit 2 is blocked, and when the static pressure around the blower 22 increases, the rotation speed of the blower 22 decreases. The current value of the blower 22 increases due to the decrease in the rotational speed of the blower 22 .
 したがって、室内熱交換器21が着霜した場合には、室内熱交換器21に付着した霜を溶かして除去する除霜運転が行われる。 Therefore, when the indoor heat exchangers 21 are frosted, a defrosting operation is performed to melt and remove the frost adhering to the indoor heat exchangers 21 .
 図6は、冷却運転時および除霜運転時の送風機22の電流値の一例を示す図である。
 図6において、横軸は時刻tを示し、縦軸は、冷凍システム100において、除霜運転の時間をTa、冷却運転の時間をTbで行った場合の送風機22の電流値を示す。
FIG. 6 is a diagram showing an example of current values of the blower 22 during cooling operation and defrosting operation.
In FIG. 6, the horizontal axis indicates the time t, and the vertical axis indicates the current value of the blower 22 when the defrosting operation time is Ta and the cooling operation time is Tb in the refrigeration system 100 .
 冷却運転によって、室内熱交換器21の着霜が進行するので、送風機22の電流値が増加する。 Due to the cooling operation, frost formation on the indoor heat exchanger 21 progresses, so the current value of the blower 22 increases.
 冷却運転の時間Tbが短い場合には、冷却運転時間が短くなるので、庫内が目標温度に到達しない場合がある。 If the cooling operation time Tb is short, the cooling operation time will be short, so the inside of the refrigerator may not reach the target temperature.
 冷却運転の時間Tbが長い場合には、冷却運転時間が長くなるので、室内熱交換器21の着霜量が過大になる。すなわち、冷却運転の時間Tbが長い場合には、着霜によって室内熱交換器21の伝熱性能が低下し、冷却が十分にできないことがある。 When the cooling operation time Tb is long, the cooling operation time becomes long, so the amount of frost formed on the indoor heat exchanger 21 becomes excessive. That is, when the cooling operation time Tb is long, the heat transfer performance of the indoor heat exchanger 21 is lowered due to frost formation, and cooling may not be sufficient.
 以上のような冷却能力の低下を防ぐために、室内熱交換器21の除霜開始タイミングの最適化を行う。 The defrosting start timing of the indoor heat exchanger 21 is optimized in order to prevent the decrease in cooling capacity as described above.
 制御装置3は、現在の時刻が定められた時間帯に含まれる場合には、第1の除霜タイミング決定方法を用いて、除霜運転と冷却運転とを切り替える。制御装置3は、第1の除霜タイミング決定方法では、ET(Exit Temperature)シフト制御を用いて、除霜開始タイミングを決定し、そのときの送風機22の電流値を除霜開始閾値THsとして記録する。制御装置3は、現在の時刻が定められた時間帯に含まれる場合には、ETシフト制御を用いて、除霜終了タイミングを決定し、そのときの送風機の電流値を除霜終了閾値THeとして記録する。 The control device 3 switches between the defrosting operation and the cooling operation using the first defrosting timing determination method when the current time is included in the determined time period. In the first defrost timing determination method, the controller 3 uses ET (Exit Temperature) shift control to determine the defrost start timing, and records the current value of the blower 22 at that time as the defrost start threshold value THs. do. When the current time is included in the predetermined time period, the control device 3 uses the ET shift control to determine the defrosting end timing, and sets the current value of the blower at that time as the defrosting end threshold THe. Record.
 制御装置3は、現在の時刻が定められた時間帯に含まれない場合には、第2の除霜タイミング決定方法を用いて、除霜運転と冷却運転とを切り替える。制御装置3は、第2の除霜タイミング決定方法では、ETシフト制御によって得られた除霜開始閾値THsおよび除霜終了閾値THeを用いて、除霜運転と冷却運転とを切り替える。 When the current time is not included in the specified time period, the control device 3 switches between the defrosting operation and the cooling operation using the second defrosting timing determination method. In the second defrosting timing determination method, the control device 3 switches between the defrosting operation and the cooling operation using the defrosting start threshold THs and the defrosting end threshold THe obtained by the ET shift control.
 ここで、定められた時間帯とは、夜間などの人の出入りが少ない時間帯である。ETシフト制御では、制御装置3は、蒸発器である室内熱交換器21における空気の吹出温度と室内熱交換器21における冷媒の蒸発温度ETとの温度差ΔT(=RT-ET)が閾値TH1以上であると判断した場合に、室内熱交換器21が着霜したと判断する。このように判断できる理由は、以下である。蒸発器の着霜が進行すると、熱伝達率が低下して冷媒が蒸発器の出口までに蒸発しなくなる。その結果、冷媒の蒸発温度ETが低下するので、温度差ΔTが大きくなる。このときの送風機の電流値を、現在の時刻が定められた時間帯に含まれない場合における除霜開始閾値とすることができる。 Here, the set time period is a time period when there are few people coming and going, such as at night. In the ET shift control, the control device 3 sets the temperature difference ΔT (=RT-ET) between the blowout temperature of the air in the indoor heat exchanger 21, which is an evaporator, and the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21 to the threshold value TH1. When it is determined that the above is the case, it is determined that the indoor heat exchanger 21 is frosted. The reason why this determination can be made is as follows. As frost builds up on the evaporator, the heat transfer coefficient decreases and the refrigerant does not evaporate until the outlet of the evaporator. As a result, the evaporation temperature ET of the refrigerant decreases, and the temperature difference ΔT increases. The current value of the blower at this time can be used as the defrosting start threshold when the current time is not included in the determined time period.
 図7は、室内熱交換器21の近傍に配置されるセンサの例を表わす図である。
 蒸発温度ETの測定方法は、室内熱交換器21の入口側の温度センサ41によって測定する方法と、出口側の圧力センサ43によって検出された圧力を飽和ガス温度に換算して求める方法とがある。
FIG. 7 is a diagram showing an example of sensors arranged near the indoor heat exchanger 21. As shown in FIG.
Evaporation temperature ET can be measured by using temperature sensor 41 on the inlet side of indoor heat exchanger 21 or by converting pressure detected by pressure sensor 43 on the outlet side into saturated gas temperature. .
 本実施の形態によれば、人の出入りが多い昼間は送風機22の電流値制御によって、人の出入りが少ない夜間はETシフト制御によって、除霜運転と冷却運転と切り替えることができる。人の出入りが多い昼間など、ETシフト制御では正確なタイミングで除霜運転ができない場合に、ファンモータ電流値制御が可能になるため、常に最適な除霜運転を行うことができる。 According to the present embodiment, it is possible to switch between the defrosting operation and the cooling operation by controlling the current value of the blower 22 during the daytime when many people come and go, and by ET shift control during the nighttime when few people come and go. When the defrosting operation cannot be performed at an accurate timing with the ET shift control, such as during the day when there are many people coming and going, the fan motor current value control becomes possible, so the optimum defrosting operation can always be performed.
 本実施の形態では、送風機の経年劣化によって、送風機22の電流値が変化した場合でも、ETシフト制御中に測定された送風機22の電流値を、送風機の経年劣化に応じた除霜開始閾値および除霜終了閾値に設定することができる。 In the present embodiment, even if the current value of the blower 22 changes due to deterioration over time of the blower, the current value of the blower 22 measured during the ET shift control is set to the defrosting start threshold and A defrost end threshold can be set.
 図8は、実施の形態1における、除霜開始および除霜終了の判定手順を表わすフローチャートである。図8のフローチャート処理は、冷凍システム100が稼働中、常に実行される。 FIG. 8 is a flowchart representing the procedure for determining the start and end of defrosting in the first embodiment. The flowchart process of FIG. 8 is always executed while the refrigeration system 100 is in operation.
 ステップS101において、制御装置3は、冷凍システム100の冷却運転を開始させる。 In step S101, the control device 3 starts the cooling operation of the refrigeration system 100.
 ステップS102において、現在の時刻が定められた時間帯に含まれる場合には、処理がステップS103に進み、現在の時刻が定められた時間帯に含まれない場合には、処理がステップS104に進む。 In step S102, when the current time is included in the determined time zone, the process proceeds to step S103, and when the current time is not included in the determined time zone, the process proceeds to step S104. .
 ステップS103において、制御装置3は、第1の除霜タイミング決定方法を用いて、除霜運転と冷却運転とを切り替える。 In step S103, the control device 3 switches between the defrosting operation and the cooling operation using the first defrosting timing determination method.
 ステップS104において、制御装置3は、第2の除霜タイミング決定方法を用いて、除霜運転と冷却運転とを切り替える。 In step S104, the control device 3 switches between the defrosting operation and the cooling operation using the second defrosting timing determination method.
 図9は、図8のステップS103の処理の詳細を表わすフローチャートである。
 ステップS502において、制御装置3は、室内熱交換器21における空気の吹出温度RTおよび室内熱交換器21における冷媒の蒸発温度ETを取得する。
FIG. 9 is a flow chart showing the details of the processing in step S103 of FIG.
In step S<b>502 , the control device 3 acquires the blowing temperature RT of the air in the indoor heat exchanger 21 and the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21 .
 ステップS503において、室内熱交換器21における空気の吹出温度RTと、室内熱交換器21における冷媒の蒸発温度ETとの温度差ΔT(=RT-ET)が閾値TH1以上のときには、処理がステップS505に進む。温度差ΔTが閾値TH1未満のときには、処理がステップS402に戻る。TH1は、たとえば、5℃である。 In step S503, when the temperature difference ΔT (=RT-ET) between the blowing temperature RT of the air in the indoor heat exchanger 21 and the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21 is equal to or greater than the threshold TH1, the process proceeds to step S505. proceed to When the temperature difference ΔT is less than the threshold TH1, the process returns to step S402. TH1 is, for example, 5°C.
 ステップS504において、制御装置3は、冷凍システム100の冷却運転を終了し、除霜運転を開始させるとともに、送風機22の電流値Isを取得する。 In step S504, the control device 3 ends the cooling operation of the refrigeration system 100, starts the defrosting operation, and acquires the current value Is of the blower 22.
 ステップS505において、取得した送風機22の電流値Isを除霜開始閾値THsとして記録する。 In step S505, the acquired current value Is of the blower 22 is recorded as the defrosting start threshold THs.
 ステップS506において、制御装置3は、室内熱交換器21における空気の吹出温度RTおよび室内熱交換器21における冷媒の蒸発温度ETを取得する。 In step S506, the control device 3 acquires the blowout temperature RT of the air in the indoor heat exchanger 21 and the evaporation temperature ET of the refrigerant in the indoor heat exchanger 21.
 ステップS507において、室内熱交換器21における空気の吹出温度RTと室内熱交換器21における冷媒の蒸発温度ETとの温度差ΔT(=RT-ET)が閾値TH2未満のときには、処理がステップS509に進む。温度差ΔTが閾値TH2以上のときには、処理がステップS506に戻る。 In step S507, when the temperature difference ΔT (=RT-ET) between the air outlet temperature RT in the indoor heat exchanger 21 and the refrigerant evaporation temperature ET in the indoor heat exchanger 21 is less than the threshold TH2, the process proceeds to step S509. move on. When the temperature difference ΔT is equal to or greater than the threshold TH2, the process returns to step S506.
 ステップS508において、制御装置3は、冷凍システム100の除霜運転を終了し、冷却運転を開始させるとともに、送風機22の電流値Isを取得する。 In step S508, the control device 3 ends the defrosting operation of the refrigeration system 100, starts the cooling operation, and acquires the current value Is of the blower 22.
 ステップS509において、取得した送風機22の電流値を除霜終了閾値THeとして記録する。 In step S509, the acquired current value of the blower 22 is recorded as the defrosting end threshold THe.
 図10は、実施の形態1における、図8のステップS104の処理の詳細を表わすフローチャートである。図11は、実施の形態1における第2の除霜タイミング決定方法による除霜開始タイミングおよび除霜終了タイミングを表わす図である。 FIG. 10 is a flow chart showing the details of the process of step S104 in FIG. 8 in the first embodiment. FIG. 11 is a diagram showing defrosting start timing and defrosting end timing according to the second defrosting timing determination method in the first embodiment.
 ステップS1において、制御装置3は、送風機22の電流値Isが除霜開始閾値THsを超えているか否かを判定する。送風機22の電流値Isが除霜開始閾値THsを超えている場合に、処理がステップS2に進む。送風機22の電流値Isが除霜開始閾値THsを超えていない場合に、制御装置3は、冷凍システム100の冷却運転を継続させる。 In step S1, the control device 3 determines whether or not the current value Is of the blower 22 exceeds the defrosting start threshold THs. When the current value Is of the blower 22 exceeds the defrosting start threshold THs, the process proceeds to step S2. When the current value Is of the blower 22 does not exceed the defrosting start threshold THs, the control device 3 continues the cooling operation of the refrigeration system 100 .
 ステップS2において、制御装置3は、冷凍システム100の冷却運転を終了させ、冷凍システム100の除霜運転を開始させる。 In step S2, the control device 3 ends the cooling operation of the refrigeration system 100 and starts the defrosting operation of the refrigeration system 100.
 ステップS3において、除霜運転開始から一定時間Δtが経過した場合に、処理がステップS4に進む。除霜運転開始から一定時間Δtが経過していない場合に、制御装置3は、冷凍システム100の除霜運転を継続させる。 In step S3, when a certain period of time Δt has passed since the defrosting operation started, the process proceeds to step S4. The control device 3 allows the refrigeration system 100 to continue the defrosting operation when the predetermined time Δt has not elapsed since the defrosting operation was started.
 ステップS4において、制御装置3は、冷凍システム100の除霜運転を終了させ、冷凍システム100の冷却運転を開始させる。 In step S4, the control device 3 terminates the defrosting operation of the refrigeration system 100 and starts the cooling operation of the refrigeration system 100.
 特許文献1では、温度効率の閾値は、冷凍機の種類に応じて予め設定される。冷凍庫内には、冷却対象物が置かれ、作業者が出入りすることが想定される。よって、冷凍機の種類が同じでも、実使用環境は、冷凍庫ごとに相違する。 In Patent Document 1, the temperature efficiency threshold is set in advance according to the type of refrigerator. Objects to be cooled are placed in the freezer, and it is assumed that workers enter and leave the freezer. Therefore, even if the type of refrigerator is the same, the actual use environment differs from refrigerator to refrigerator.
 本実施の形態によれば、送風機の電流値に基づく除霜運転と冷却運転の切替タイミングを定める除霜開始閾値および除霜終了閾値は、ETシフト制御に基づく除霜運転と冷却運転の切替タイミングにおける送風機の電流値を用いる。これによって、実使用環境に応じて、除霜運転のタイミングを適切に設定することができる。 According to the present embodiment, the defrosting start threshold value and the defrosting end threshold value that determine the switching timing between the defrosting operation and the cooling operation based on the current value of the blower are the switching timing between the defrosting operation and the cooling operation based on the ET shift control. Use the current value of the blower in This makes it possible to appropriately set the timing of the defrosting operation according to the actual use environment.
 実施の形態2.
 図12は、実施の形態2における、図8のステップS104の処理の詳細を表わすフローチャートである。図13は、実施の形態2における第2の除霜タイミング決定方法による除霜開始タイミングおよび除霜終了タイミングを表わす図である。
Embodiment 2.
FIG. 12 is a flow chart showing details of the process of step S104 in FIG. 8 in the second embodiment. FIG. 13 is a diagram showing defrosting start timing and defrosting end timing according to the second defrosting timing determination method in the second embodiment.
 ステップS11において、制御装置3は、送風機22の電流値Isが除霜開始閾値THsを超えているか否かを判定する。送風機22の電流値Isが除霜開始閾値THsを超えている場合に、処理がステップS12に進む。送風機22の電流値Isが除霜開始閾値THsを超えていない場合に、制御装置3は、冷凍システム100の冷却運転を継続させる。 In step S11, the control device 3 determines whether or not the current value Is of the blower 22 exceeds the defrosting start threshold THs. When the current value Is of the blower 22 exceeds the defrosting start threshold THs, the process proceeds to step S12. When the current value Is of the blower 22 does not exceed the defrosting start threshold THs, the control device 3 continues the cooling operation of the refrigeration system 100 .
 ステップS12において、制御装置3は、冷凍システム100の冷却運転を終了させ、冷凍システム100の除霜運転を開始させる。制御装置3は、送風機22を回転させたまま除霜するオフサイクルデフロストを実行させる。 In step S<b>12 , the control device 3 ends the cooling operation of the refrigeration system 100 and starts the defrosting operation of the refrigeration system 100 . The control device 3 causes the off-cycle defrosting to be performed while the air blower 22 is being rotated.
 ステップS13において、制御装置3は、送風機22の電流値Isが除霜終了閾値THe未満であるか否かを判定する。送風機22の電流値Isが除霜終了閾値THe未満の場合に、処理がステップS14に進む。送風機22の電流値Isが除霜終了閾値THe未満でない場合に、制御装置3は、冷凍システム100の除霜運転を継続させる。たとえば、除霜終了閾値THeは、試運転時に、室内熱交換器21の除霜の進行具合を目視によって確認することによって、設定することができる。あるいは、試運転時に除霜終了閾値THeを変化させながら冷凍システム100を運転させて、効率が最大となるときの除霜終了閾値THeを実運転で使用することとしてもよい。 In step S13, the control device 3 determines whether or not the current value Is of the blower 22 is less than the defrosting end threshold THe. When the current value Is of the blower 22 is less than the defrosting end threshold value THe, the process proceeds to step S14. When the current value Is of the blower 22 is not less than the defrosting end threshold THe, the control device 3 continues the defrosting operation of the refrigeration system 100 . For example, the defrosting end threshold THe can be set by visually confirming the progress of defrosting of the indoor heat exchanger 21 during trial operation. Alternatively, the refrigeration system 100 may be operated while changing the defrosting end threshold THe during trial operation, and the defrosting end threshold THe at which efficiency is maximized may be used in actual operation.
 ステップS14において、制御装置3は、冷凍システム100の除霜運転を終了させ、冷凍システム100の冷却運転を開始させる。 In step S14, the control device 3 terminates the defrosting operation of the refrigeration system 100 and starts the cooling operation of the refrigeration system 100.
 本実施の形態によれば、除霜開始閾値および除霜終了閾値を適切に設定すれば、初期の状態に近い状態まで冷凍システムの冷却能力を確実にもどすことができる。 According to the present embodiment, by appropriately setting the defrost start threshold and the defrost end threshold, it is possible to reliably return the cooling capacity of the refrigeration system to a state close to the initial state.
 実施の形態3.
 図14は、実施の形態3における、図8のステップS104の処理の詳細を表わすフローチャートである。図15は、実施の形態3における第2の除霜タイミング決定方法による除霜開始タイミングおよび除霜終了タイミングを表わす図である。
Embodiment 3.
FIG. 14 is a flow chart showing details of the process of step S104 of FIG. 8 in the third embodiment. FIG. 15 is a diagram showing defrosting start timing and defrosting end timing according to the second defrosting timing determination method in the third embodiment.
 ステップS21において、制御装置3は、送風機22の電流値Isが除霜開始閾値THsを超えているか否かを判定する。送風機22の電流値Isが除霜開始閾値THsを超えている場合に、処理がステップS22に進む。送風機22の電流値Isが除霜開始閾値THsを超えていない場合に、制御装置3は、冷凍システム100の冷却運転を継続させる。 In step S21, the control device 3 determines whether or not the current value Is of the blower 22 exceeds the defrosting start threshold THs. When the current value Is of the blower 22 exceeds the defrosting start threshold THs, the process proceeds to step S22. When the current value Is of the blower 22 does not exceed the defrosting start threshold THs, the control device 3 continues the cooling operation of the refrigeration system 100 .
 ステップS22において、制御装置3は、冷凍システム100の冷却運転を終了させ、冷凍システム100の除霜運転を開始させるとともに、送風機22の回転を停止させる。 In step S22, the control device 3 terminates the cooling operation of the refrigeration system 100, starts the defrosting operation of the refrigeration system 100, and stops the rotation of the blower 22.
 ステップS23において、一定時間Δtが経過した場合に、処理がステップS4に進む。一定時間Δtが経過していない場合に、制御装置3は、冷凍システム100の除霜運転を継続させる。 In step S23, when the fixed time Δt has passed, the process proceeds to step S4. If the fixed time Δt has not passed, the control device 3 continues the defrosting operation of the refrigeration system 100 .
 ステップS24において、制御装置3は、送風機22の回転を開始させる。
 ステップS25において、制御装置3は、送風機22の電流値Isが除霜終了閾値THe未満であるか否かを判定する。送風機22の電流値Isが除霜終了閾値THe未満の場合に、処理がステップS26に進む。送風機22の電流値Isが除霜終了閾値THe未満でない場合に、処理がステップS27に進む。
In step S<b>24 , the control device 3 starts rotating the blower 22 .
In step S25, the control device 3 determines whether or not the current value Is of the blower 22 is less than the defrosting end threshold value THe. When the current value Is of the blower 22 is less than the defrosting end threshold value THe, the process proceeds to step S26. If the current value Is of the blower 22 is not less than the defrosting end threshold value THe, the process proceeds to step S27.
 ステップS27において、制御装置3は、送風機22の回転を停止させる。その後、処理がステップS23に戻る。 At step S27, the control device 3 stops the rotation of the blower 22. After that, the process returns to step S23.
 ステップS26において、制御装置3は、冷凍システム100の除霜運転を終了させ、送風機22の回転を停止させ、冷凍システム100の冷却運転を開始させる。 In step S26, the control device 3 terminates the defrosting operation of the refrigeration system 100, stops the rotation of the blower 22, and starts the cooling operation of the refrigeration system 100.
 実施の形態4.
 図16は、実施の形態4に係る冷凍システム200における冷媒回路の構成の一例を示す概略図である。冷凍システム200は、室外機201、室内機202、および制御装置3を備える。
Embodiment 4.
FIG. 16 is a schematic diagram showing an example of the configuration of a refrigerant circuit in a refrigeration system 200 according to Embodiment 4. As shown in FIG. A refrigeration system 200 includes an outdoor unit 201 , an indoor unit 202 and a control device 3 .
 室外機201は、室外機1と同様に、圧縮機11、室外熱交換器12、膨張弁13、凝縮温度センサ14、蒸発温度センサ15、ガス冷媒温度センサ16および室外機制御部10を備える。室外機201は、さらに、バイパス回路17およびバイパス弁18を備える。 The outdoor unit 201 includes a compressor 11 , an outdoor heat exchanger 12 , an expansion valve 13 , a condensation temperature sensor 14 , an evaporation temperature sensor 15 , a gas refrigerant temperature sensor 16 and an outdoor unit controller 10 , similar to the outdoor unit 1 . The outdoor unit 201 further includes a bypass circuit 17 and a bypass valve 18 .
 バイパス回路17は、冷媒配管5における圧縮機11の吐出側から分岐し、膨張弁13と室内熱交換器21との間の冷媒配管5に接続されている。バイパス回路17は、圧縮機11から吐出された冷媒の一部が室内熱交換器21に流入するように設けられている。バイパス弁18は、バイパス回路17に設けられている。バイパス弁18の開閉は、室外機制御部10を介して制御装置3によって制御され、開閉によってバイパス回路17を流れる冷媒の流通または遮断を行う。 The bypass circuit 17 branches from the refrigerant pipe 5 on the discharge side of the compressor 11 and is connected to the refrigerant pipe 5 between the expansion valve 13 and the indoor heat exchanger 21 . The bypass circuit 17 is provided so that part of the refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 21 . A bypass valve 18 is provided in the bypass circuit 17 . The opening/closing of the bypass valve 18 is controlled by the control device 3 via the outdoor unit control section 10, and the opening/closing of the bypass valve 18 circulates or blocks the refrigerant flowing through the bypass circuit 17. FIG.
 室内機202は、室内機2と同様に、室内熱交換器21、送風機22および室内機制御部20を備える。室内機202は、室内機2と異なり、除霜部23が設けられていない。 The indoor unit 202 includes an indoor heat exchanger 21, an air blower 22, and an indoor unit controller 20, similar to the indoor unit 2. Unlike the indoor unit 2 , the indoor unit 202 is not provided with the defrosting unit 23 .
 制御装置3は、除霜運転の際に、バイパス弁18を開状態とする。これにより、圧縮機11から吐出された高温高圧のガス冷媒の一部がバイパス弁18を流通し、室内機202の室内熱交換器21に流入する。室内熱交換器21に高温のガス冷媒が流入することにより、室内熱交換器21に付着した霜は、冷媒の熱によって溶けて除去される。 The control device 3 opens the bypass valve 18 during the defrosting operation. As a result, part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 11 flows through the bypass valve 18 and flows into the indoor heat exchanger 21 of the indoor unit 202 . When the high-temperature gas refrigerant flows into the indoor heat exchanger 21, frost adhering to the indoor heat exchanger 21 is melted and removed by the heat of the refrigerant.
 このように、本実施の形態では、除霜部23に代えて、バイパス回路17およびバイパス弁18が設けられることにより、室内熱交換器21の除霜を行うことが出来る。なお、この例では、除霜部23が除かれた構成となっているが、これに限られず、除霜部23が併用されても良い。 Thus, in the present embodiment, the indoor heat exchanger 21 can be defrosted by providing the bypass circuit 17 and the bypass valve 18 instead of the defrosting section 23 . In this example, the defrosting unit 23 is removed, but the configuration is not limited to this, and the defrosting unit 23 may be used together.
 以上のように、本実施の形態の冷凍システム200において、バイパス回路17およびバイパス弁18が除霜部23として用いられる。これにより、高温の冷媒が室内熱交換器21に流入するため、室内熱交換器21に付着した霜を除去することができる。 As described above, the bypass circuit 17 and the bypass valve 18 are used as the defrosting section 23 in the refrigeration system 200 of the present embodiment. As a result, the high-temperature refrigerant flows into the indoor heat exchanger 21, so frost adhering to the indoor heat exchanger 21 can be removed.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 1,201 室外機、2,202 室内機、21 室内熱交換器、3 制御装置、4 空間温度センサ、5 冷媒配管、10 室外機制御部、11 圧縮機、12 室外熱交換器、13 膨張弁、14 凝縮温度センサ、15 蒸発温度センサ、16 ガス冷媒温度センサ、17 バイパス回路、18 バイパス弁、20 室内機制御部、22 送風機、23 除霜部、31 処理回路、32 メモリ、33 入出力部、41 温度センサ、43 圧力センサ、100,200 冷凍システム。 1, 201 outdoor unit, 2, 202 indoor unit, 21 indoor heat exchanger, 3 control device, 4 space temperature sensor, 5 refrigerant pipe, 10 outdoor unit control unit, 11 compressor, 12 outdoor heat exchanger, 13 expansion valve , 14 condensation temperature sensor, 15 evaporation temperature sensor, 16 gas refrigerant temperature sensor, 17 bypass circuit, 18 bypass valve, 20 indoor unit control section, 22 blower, 23 defrosting section, 31 processing circuit, 32 memory, 33 input/output section , 41 temperature sensor, 43 pressure sensor, 100, 200 refrigeration system.

Claims (10)

  1.  環状に接続された圧縮機、室外熱交換器、膨張弁および室内熱交換器と、
     前記室内熱交換器に付着した霜を除去する除霜部と、
     前記室内熱交換器に空気を送る送風機と、
     対象空間を冷却する冷却運転と、前記除霜部を制御して前記室内熱交換器に付着した霜を除去する除霜運転とを切り替える制御装置と、備え、
     前記制御装置は、前記送風機の電流値に基づいて、前記除霜運転を開始する、冷凍システム。
    a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger connected in a ring;
    a defrosting section for removing frost adhering to the indoor heat exchanger;
    a blower that sends air to the indoor heat exchanger;
    A control device that switches between a cooling operation for cooling the target space and a defrosting operation for controlling the defrosting unit to remove frost adhered to the indoor heat exchanger,
    The refrigeration system, wherein the control device starts the defrosting operation based on a current value of the blower.
  2.  前記制御装置は、現在時刻が予め定められた時間帯に含まれるときには、前記冷却運転中に、前記室内熱交換器における空気の吹出温度と、前記室内熱交換器における冷媒の蒸発温度とに基づき、前記除霜運転を開始するとともに、前記送風機の電流値を測定して、前記測定した電流値を除霜開始閾値に設定し、
     前記制御装置は、現在時刻が予め定められた時間帯に含まれないときには、前記冷却運転中に、前記送風機の電流値が前記除霜開始閾値を超えたときに、前記除霜運転を開始する、請求項1記載の冷凍システム。
    When the current time is included in a predetermined time period, the control device performs the cooling operation based on the blowout temperature of the air in the indoor heat exchanger and the evaporation temperature of the refrigerant in the indoor heat exchanger. , while starting the defrosting operation, measuring the current value of the blower and setting the measured current value as a defrosting start threshold;
    The control device starts the defrosting operation when the current value of the blower exceeds the defrosting start threshold value during the cooling operation when the current time is not included in the predetermined time period. A refrigeration system according to claim 1.
  3.  前記制御装置は、現在時刻が前記予め定められた時間帯に含まれないときには、前記除霜運転開始から一定時間経過後に、前記除霜運転を終了する、請求項2記載の冷凍システム。 3. The refrigeration system according to claim 2, wherein when the current time is not included in the predetermined time period, the control device ends the defrosting operation after a certain period of time has passed since the defrosting operation started.
  4.  前記制御装置は、現在時刻が前記予め定められた時間帯に含まれるときには、前記除霜運転中に、前記室内熱交換器における空気の吹出温度と、前記室内熱交換器における冷媒の蒸発温度とに基づき、前記冷却運転を開始するとともに、前記送風機の電流値を測定して、前記測定した電流値を除霜終了閾値に設定する、請求項2または3記載の冷凍システム。 When the current time is included in the predetermined time period, the control device controls the blowing temperature of the air in the indoor heat exchanger and the evaporation temperature of the refrigerant in the indoor heat exchanger during the defrosting operation. 4. The refrigeration system according to claim 2 or 3, wherein the cooling operation is started based on, the current value of the blower is measured, and the measured current value is set as the defrosting end threshold.
  5.  前記制御装置は、現在時刻が前記予め定められた時間帯に含まれないときには、前記除霜運転中に、前記送風機を動作させ、前記除霜運転中の前記送風機の電流値が前記除霜終了閾値未満のときに、前記除霜運転を終了する、請求項4記載の冷凍システム。 When the current time is not included in the predetermined time period, the control device operates the blower during the defrosting operation so that the current value of the blower during the defrosting operation reaches the end of defrosting. 5. The refrigeration system according to claim 4, wherein said defrosting operation is terminated when the temperature is less than a threshold.
  6.  前記制御装置は、現在時刻が前記予め定められた時間帯に含まれないときには、前記除霜運転を開始するとともに、前記送風機を停止させ、前記除霜運転開始から一定時間経過後に前記送風機を動作させ、前記送風機の電流値を測定し、前記除霜終了閾値以上のときは、除霜を再開し、前記送風機の電流値が前記除霜終了閾値未満のときに、前記除霜運転を終了する、請求項4記載の冷凍システム。 When the current time is not included in the predetermined time period, the control device starts the defrosting operation, stops the blower, and operates the blower after a predetermined time has elapsed from the start of the defrosting operation. and measures the current value of the blower, restarts defrosting when the current value is equal to or greater than the defrosting end threshold value, and terminates the defrosting operation when the current value of the blower is less than the defrosting end threshold value. 5. The refrigeration system of claim 4.
  7.  前記除霜部は、ヒータの熱によって前記室内熱交換器に付着した前記霜を除去する、請求項1~6のいずれか1項に記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 6, wherein the defrosting section removes the frost adhering to the indoor heat exchanger with heat from a heater.
  8.  前記除霜部は、前記室内熱交換器に散水し、水の熱によって前記室内熱交換器に付着した前記霜を除去する、請求項1~6のいずれか1項に記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 6, wherein the defrosting unit sprays water on the indoor heat exchangers to remove the frost adhering to the indoor heat exchangers with the heat of water.
  9.  前記除霜部は、前記送風機の風によって前記室内熱交換器に付着した前記霜を除去する、請求項1~6のいずれか1項に記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 6, wherein the defrosting section removes the frost adhering to the indoor heat exchanger with the wind of the blower.
  10.  前記除霜部は、
     前記圧縮機の吐出側から分岐し、前記膨張弁と前記室内熱交換器との間に接続され、前記圧縮機から吐出された冷媒の一部を前記室内熱交換器に流入させるバイパス回路と、
     前記バイパス回路に設けられ、前記バイパス回路を流れる前記冷媒の流通及び遮断を行うバイパス弁と、を有する、請求項1~6のいずれか1項に記載の冷凍システム。
    The defrosting unit is
    a bypass circuit that branches from the discharge side of the compressor, is connected between the expansion valve and the indoor heat exchanger, and causes part of the refrigerant discharged from the compressor to flow into the indoor heat exchanger;
    7. The refrigeration system according to any one of claims 1 to 6, further comprising a bypass valve provided in said bypass circuit for circulating and blocking said refrigerant flowing through said bypass circuit.
PCT/JP2021/002785 2021-01-27 2021-01-27 Refrigeration system WO2022162776A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022577869A JP7412608B2 (en) 2021-01-27 2021-01-27 refrigeration system
PCT/JP2021/002785 WO2022162776A1 (en) 2021-01-27 2021-01-27 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002785 WO2022162776A1 (en) 2021-01-27 2021-01-27 Refrigeration system

Publications (1)

Publication Number Publication Date
WO2022162776A1 true WO2022162776A1 (en) 2022-08-04

Family

ID=82652757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002785 WO2022162776A1 (en) 2021-01-27 2021-01-27 Refrigeration system

Country Status (2)

Country Link
JP (1) JP7412608B2 (en)
WO (1) WO2022162776A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method
JP2008232617A (en) * 2008-04-26 2008-10-02 Mitsubishi Electric Corp Air conditioner
JP2012220030A (en) * 2011-04-04 2012-11-12 Toyo Eng Works Ltd Defrosting device of carbon dioxide circulation and cooling system
JP2018189340A (en) * 2017-05-11 2018-11-29 ホシザキ株式会社 Cooling storage box

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method
JP2008232617A (en) * 2008-04-26 2008-10-02 Mitsubishi Electric Corp Air conditioner
JP2012220030A (en) * 2011-04-04 2012-11-12 Toyo Eng Works Ltd Defrosting device of carbon dioxide circulation and cooling system
JP2018189340A (en) * 2017-05-11 2018-11-29 ホシザキ株式会社 Cooling storage box

Also Published As

Publication number Publication date
JP7412608B2 (en) 2024-01-12
JPWO2022162776A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5063347B2 (en) Refrigeration air conditioner
JP6447742B2 (en) Refrigeration cycle equipment
JP6071648B2 (en) Air conditioner
JP4760974B2 (en) Refrigeration equipment
JP2007225155A (en) Defrosting operation control device and method
JP5641875B2 (en) Refrigeration equipment
JP5474024B2 (en) Refrigeration cycle equipment
US10571174B2 (en) Systems and methods for defrost control
JP2011085317A (en) Defrosting device, refrigerating cycle device, and defrosting method
JP2013228130A (en) Freezer
JP2012207803A (en) Control method of air conditioner
JP2008304137A (en) Refrigerating unit
JP2008224135A (en) Refrigerating device
KR102365378B1 (en) Air conditioner and control method thereof
JP2001280769A (en) Method and apparatus for controlling defrosting of reversible heat pump device
CN113639408A (en) Air conditioner and control method thereof
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP2008138914A (en) Refrigerating device and method of returning refrigerating machine oil
JP5366764B2 (en) Cooling device and refrigeration cycle device
JP6388720B2 (en) Air conditioner
JP6149921B2 (en) Refrigeration equipment
WO2022162776A1 (en) Refrigeration system
JP2001004254A (en) Refrigeration system
JP2006183987A (en) Refrigerating device
KR101470538B1 (en) control method of Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922800

Country of ref document: EP

Kind code of ref document: A1