WO2022162282A1 - Dispositif de supervision d'un systeme electrique comprenant une machine redondee - Google Patents

Dispositif de supervision d'un systeme electrique comprenant une machine redondee Download PDF

Info

Publication number
WO2022162282A1
WO2022162282A1 PCT/FR2021/052131 FR2021052131W WO2022162282A1 WO 2022162282 A1 WO2022162282 A1 WO 2022162282A1 FR 2021052131 W FR2021052131 W FR 2021052131W WO 2022162282 A1 WO2022162282 A1 WO 2022162282A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
setpoint
power
branch
supervision device
Prior art date
Application number
PCT/FR2021/052131
Other languages
English (en)
Inventor
Arthur MEGY
Alan CAVAREC
Xavier Rochereau
Original Assignee
Psa Automobiles Sa (To Use)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa (To Use) filed Critical Psa Automobiles Sa (To Use)
Priority to CN202180092144.2A priority Critical patent/CN117083795A/zh
Priority to EP21824628.8A priority patent/EP4285484A1/fr
Publication of WO2022162282A1 publication Critical patent/WO2022162282A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • TITLE SUPERVISION DEVICE FOR AN ELECTRICAL SYSTEM COMPRISING A REDUNDATED MACHINE
  • the invention relates to redundant rotating electrical machines, used for technical fields requiring a high degree of operating safety, for organs linked to the safety of persons, for example in the field of automobiles, aeronautics, chemical industry, nuclear.
  • the invention relates more particularly to a supervision device and a supervision method carrying out a diagnosis of such a redundant rotating electrical machine, hereinafter referred to by the expression “redundant machine” throughout the text of this document.
  • a redundant machine comprises a certain number of phases, usually 3 or more phases, which are duplicated at least once to form independent windings generating an electromagnetic torque on a common shaft.
  • a rotor of the machine each winding being connected to a controlled power supply comprising a dedicated control device, for example a phased current generator, which is specific to it.
  • the coil and its power supply form a branch, and the redundant machine therefore comprises at least two branches.
  • the architecture of such a redundant machine is generally designed so as to limit the common modes between the redundant branches as much as possible.
  • each branch supplies a portion of the total power of the redundant machine, for example 50% for a simple two-branch redundancy.
  • the remaining branch continues to operate and makes it possible to ensure the continuity of operation of the redundant machine, possibly in degraded mode.
  • the diagnostics ensuring the correct operation of each branch must be as advanced as possible. In particular, it is important to be able carry out these diagnostics periodically. However, without requesting the redundant machine, it is difficult to make a complete diagnosis, and by requesting the redundant machine, it is possible that this disturbs the function which it is supposed to fulfill by causing an undesired rotation of the redundant machine for example .
  • control unit which carries out an initial check individually on each group made up of the circuit and the winding it controls, in order to determine whether a fault has occurred or has not occurred.
  • This control unit carries out this initial verification by energizing each group in a staggered manner.
  • a problem with this prior art is that this initial verification is, precisely, only initial, and does not make it possible to ensure the proper functioning of each group whatever the moment, which reduces the safety operation of such a device.
  • the object of the invention is to remedy this lack while allowing the verification to be imperceptible to the driver.
  • the subject of the invention is a device for supervising an electrical system comprising:
  • a redundant rotating electrical machine comprising a rotating shaft and at least two windings each generating an electromagnetic torque on this same rotating shaft
  • control device generating a power control setpoint for the control device
  • the supervision device comprising:
  • this supervision device being configured so as to successively:
  • all the power control setpoints can be zero, the redundant machine possibly being stopped or rotating but not consuming any current and therefore not producing any torque: even in these circumstances, the supervision makes it possible to apply the power test setpoints without changing the behavior of the redundant machine, although the latter consumes a current caused by these power test setpoints, this current changing the physical values measured following the application of the test instructions and enabling diagnosis.
  • the supervision device will be able to monitor the evolution of the rotation of the rotating shaft: if the latter was initially stopped and tends to rotate under the effect of the test instructions, or to accelerate if it had a non-zero speed, the monitoring device will report a fault.
  • Other physical values can also be monitored, on the machine or any element of each branch, such as excessive temperature on a power element such as the windings or an inverter component.
  • the power test instructions are signed: this sign is relative from one branch to another, or from the direction of the electromagnetic flux of one coil with respect to another , and has no significance as to the very nature of the power produced or recovered by the rotating shaft since it is zero.
  • the zero sum of these power test setpoints means that these power test setpoints neutralize each other. them, the resulting torque on the rotating shaft being zero.
  • the sum of the power control setpoints can be zero, negative, or positive, and by convention, if necessary, the sum of the positive power control setpoints will designate when this power is consumed by the redundant machine, and by the sum negative power control setpoints when this power is generated by the redundant machine, in the case where this redundant machine has one operating mode as a motor and another as a generator.
  • one of the physical values is the speed of rotation of the rotating shaft, this supervision device being configured so as to transmit simultaneously for at least two control devices of two separate branches the additional power test setpoint if each of the power control setpoints for the control device is zero.
  • these redundant machines generally drive components relating to operational safety, for example the operational safety of a vehicle, and generally have long periods where the power control instructions are zero involving a current consumed by the redundant machine zero, and a zero speed but not necessarily, and therefore an impossibility of diagnosis during these long periods although the vehicle is started or in the rolling phase. Thanks to the invention, it is now possible to diagnose this electrical system even during these long periods, by generating a current in the at least two branches, this current not causing mechanical power supplied by the rotating shaft, it is that is, no torque at the output of the rotating shaft since the rotating shaft is common to the windings.
  • the supervision device is configured so as to send several power test instructions at different successive power values.
  • the supervision device is configured so that the sum of the control setpoint and the test setpoint of at least one branch is equal to a maximum allowed power of this branch. [019] According to one embodiment of the invention, the supervision device is configured so that the sum of the control setpoint and the test setpoint for each branch is, one after the other, equal to a maximum permitted power of this branch.
  • the invention also relates to a motor vehicle comprising an electrical system comprising:
  • a redundant rotating electrical machine comprising a rotating shaft and at least two windings each generating a torque on this same rotating shaft
  • control device generating a power control setpoint for the control device
  • this vehicle comprising a supervision device as previously described.
  • this vehicle comprises an autonomous driving system controlling the control devices.
  • this vehicle comprises an electric steering system controlled by the autonomous driving system, this steering system comprising a steering column motorized by the electric rotating machine.
  • the supervision device sends the additional power test setpoint to the control setpoint, before each commissioning of the autonomous driving system.
  • the supervision device sends the additional power test setpoint to the control setpoint when the vehicle is stationary.
  • FIG 1 is a block diagram disclosing an example of a supervision device according to the invention, and an example of an electrical system that it diagnoses.
  • Figure 1 discloses a supervision device S of an electrical system comprising:
  • a redundant rotating electrical machine M1 comprising a rotating shaft and at least two windings B1, B2, Bn each generating an electromagnetic torque on this same rotating shaft
  • a sensor Pn, Cn measuring a physical value of the branch and/or of the redundant rotating electrical machine M1.
  • the supervision device S comprises:
  • the supervision device S is configured so as to successively:
  • the supervision device S comprises, interconnected by a communication network: - a diagnostic device 10,
  • FIG. 1 illustrates for example rotating shaft speed sensors P1, P2, Pn. Note that there are as many speed sensors as branches.
  • FIG. 1 also illustrates current sensors C1, C2, Cn. It will be noted that there are as many current sensors C1, C2, Cn as there are branches, each current sensor measuring the current of each phase U, V, W of the redundant machine. It is implicit that these current sensors C1, C2, Cn can be combined or replaced, analogously, by voltage, power or torque sensors for each branch.
  • These inverters Ond1, Ond2, Ondn are based for example on an H bridge structure, most often consisting of electronic switches such as power transistors or thyristors.
  • the control devices D1, D2, Dn generally a pulse width modulation, the source is modulated in order to construct an alternating signal of desired frequency and desired phase shift between phases when there are several phases.
  • the control devices D1, D2, Dn are electronic devices which convert the power instructions emanating from the control devices DC1, DC2, DCn into switching signals from the electronic switches, generally into pulse width modulation. It will be noted that the control devices D1, D2, Dn are often integrated in the inverters Ond1, Ond2, Ondn, but not necessarily, in particular when the inverters are of high power.
  • the control devices DC1, DC2, DCn are, for example, computers or calculators. They are arranged so as to generate a power setpoint for the control devices D1, D2, Dn in open loop and/or in closed loop.
  • these control devices DC1, DC2, DCn comprise the means for acquiring the physical values of each branch and/or of the redundant machine M1 so as to, for example, control the generation of the power setpoints at a speed of rotation of the rotating shaft.
  • Each control device DC1, DC2, DCn receives a setpoint from the control means 100, this setpoint possibly being a setpoint of torque, speed, or power required at the output of the rotating shaft.
  • These control devices DC1, DC2, DCn also receive the power test instructions from the diagnostic device 10, which are added to the instructions from the control means 100.
  • one of the control devices DC1, DC2, DCn can operate in an open loop by imposing a first constant power test setpoint while another of the control devices DC1, DC2, DCn operates in a loop closed by transmitting as a setpoint a second power test setpoint exactly opposite to the first second power actually obtained.
  • This diagnostic device 10 like the control means 100, are for example also calculators or computers, which may or may not be partly integrated into the control devices DC1, DC2, DCn.
  • these control devices DC1, DC2, DCn, the diagnostic device 10 and the control means 100 form a single calculator or computer, but this variant is less advantageous because the control devices DC1, DC2, DCn are no longer independent and therefore less reassuring because a breakdown of this supervision device S means that no more windings can be controlled.
  • this supervision device S is a means that can implement a diagnostic method comprising the steps of successively:
  • This supervision device S therefore comprises the means of acquisition, of processing by software instructions stored in a memory as well as the control means required for the implementation of the method. Consequently, a supervision device S, according to the invention, can be produced in the form of software (or computer (or even “software”)) modules, or else of electronic circuits (or “hardware”), or even of 'a combination of electronic circuits and software modules'.
  • the source is for example a vehicle battery, not shown, supplying current to the inverters Ond1, Ond2, Ondn.
  • Battery will be understood throughout the text of this document to mean an assembly comprising at least one battery module containing at least one electrochemical cell. This battery optionally comprises electrical or electronic means for managing the electrical energy of this at least one module. When there are several modules, they are grouped together in a tray or casing and then form a battery pack, this battery pack being often designated by the English expression "battery pack", this casing generally containing an assembly interface, and connection terminals.
  • electrochemical cell will be understood throughout the text of this document to mean cells generating current by chemical reaction, for example of the lithium-ion (or Li-ion) type, of the Ni-Mh type, or Ni -Cd or even lead.
  • This battery is for example a 12V DC battery for supplying an on-board network of a vehicle, this network in turn supplying the supervision device S.
  • this battery is for example a 400V battery continuous for supplying a redundant machine M1 such as a traction or propulsion motor of the vehicle.
  • these inverters Ond1, Ond2, Ondn as well as the control devices D1, D2, Dn can be integrated into the battery, or even into each module of the battery, or even onto each cell.
  • the electrical or electronic means for managing electrical energy can integrate these inverters Ond1, Ond2, Ondn.
  • this system may include a separate battery for each inverter Ond1, Ond2, Ondn, each of these separate batteries forming part of a branch.
  • These measured physical values are for example values of the position or the speed of the rotating shaft, and/or current values of each of the phases (Un, Vn, Wn) of each winding, and/or voltage values of each of the phases (Un, Vn, Wn) of each winding and/or temperature values of each winding, and/or current leakage, temperature and voltage values of the elements of each branch.
  • n is, throughout the text of this document, an index indicating the number of branches, for example in FIG. 1 illustrates an electrical system with two branches, and therefore n varies from one to two. But three or more branches can be considered.
  • the redundant machine M1 represented is a three-phase machine of phase U, V, W according to the designation known to those skilled in the art. Each of these three phases is duplicated for each coil, ie for each branch.
  • the electrical system comprises three branches and the diagnostic device 10 can test the branches two by two, for example by applying two test instructions each to the branch "one" and “two”. , then on the “two and “three” branch, then on the “one” and “three” branches, thus making it possible to discriminate the branch presenting a defect.
  • One of the physical values is for example the speed of rotation of the rotating shaft, this supervision device S being configured so as to transmit simultaneously for at least two control devices DC1, DC2, DCn of two distinct branches the additional power test setpoint if each of the power control setpoints for the control device D1, D2, Dn is zero.
  • the supervision device S is for example configured so as to send several power test instructions at different successive power values.
  • these successive power values can be in the form of stages, or even in the form of a continuous increasing evolution.
  • the supervision device S is for example configured so that the sum of the control setpoint and the test setpoint of at least one branch is equal to a maximum allowed power of this branch.
  • This characteristic is, for example, optimal for detecting current leaks, or an excessively high internal resistance of the winding leading to an abnormal rise in temperature.
  • the maximum permitted power is, for example, the maximum physical power that the inverter and/or the battery of the branch concerned can supply.
  • the supervision device S is for example configured so that the sum of the control setpoint and the test setpoint for each branch is, one after the other, equal to a maximum allowed power of this branch.
  • the redundant rotating electrical machine M1 comprising the rotating shaft and at least the two windings B1, B2, Bn each generating a torque on this same rotating shaft
  • control device DC1, DC2, DCn generating a power control setpoint for the control device D1, D2, Dn
  • this vehicle further comprising the supervision device S as previously described.
  • This invention applies very advantageously to this vehicle further comprising an autonomous driving system controlling the control devices DC1, DC2, DCn.
  • This vehicle comprises for example an electric steering system controlled by the autonomous driving system, this steering system comprising a steering column motorized by the electric rotating machine M1.
  • this supervision device S sends the additional power test setpoint to the control setpoint, before each commissioning of the autonomous driving system.
  • this supervision device S sends the additional power test setpoint to the control setpoint, when the vehicle is stationary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Dispositif de supervision (S) d'un système électrique comprenant : une machine électrique tournante redondée (M1), au moins deux branches indépendantes et comprenant chacune : l'un des bobinages de la machine redondée (M1) un dispositif de contrôle générant une consigne de pilotage de puissance pour commander le bobinage, le dispositif de supervision (S) comprenant les dispositif de contrôle, et étant configuré de sorte à successivement: émettre simultanément pour au moins deux dispositifs de contrôle de deux branches distinctes une demande de consigne de test de puissance supplémentaire à la consigne de pilotage, de telle sorte que la somme de ces consignes de test de puissance soit nulle, puis établir un diagnostic de panne en fonction de valeurs physiques mesurées consécutivement à l'application des consignes de test.

Description

DESCRIPTION
TITRE : DISPOSITIF DE SUPERVISION D’UN SYSTEME ELECTRIQUE COMPRENANT UNE MACHINE REDONDEE
[001] La présente invention revendique la priorité de la demande française N° 2100753 déposée le 27.01.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[002] L’invention concerne les machines électriques tournantes redondantes, utilisées pour des domaines techniques nécessitant un haut degré de sûreté de fonctionnement, pour des organes liés à la sécurité des personnes par exemple dans le domaine de l’automobile, l’aéronautique, l’industrie chimique, le nucléaire. L’invention concerne plus particulièrement un dispositif de supervision et un procédé de supervision réalisant un diagnostic d’une telle machine électrique tournante redondante, par la suite désignée par l’expression « machine redondante » dans tout le texte de ce document.
[003] Comme le sait l’homme du métier, une machine redondante comprend un certain nombre de phases, le plus souvent 3 phases ou plus, qui sont dupliquées au moins une fois pour former des bobinages indépendants générant un couple électromagnétique sur un arbre commun comme par exemple un rotor de la machine, chaque bobinage étant connecté à une alimentation contrôlée comprenant un dispositif de contrôle dédié, par exemple un générateur de courant phasé, qui lui est propre. La bobine et son alimentation forment une branche, et la machine redondante comprend donc au moins deux branches. L’architecture d’une telle machine redondante est en générale conçue de sorte à limiter au maximum les modes communs entre les branches redondées.
[004] Généralement, chaque branche fournit une portion de la puissance totale de la machine redondante, par exemple 50% pour une redondance simple à deux branches. Ainsi, en cas de panne d’une branche, que ce soit au niveau de l’alimentation ou de la bobine, la (ou les) branche restante continue de fonctionner et permet d’assurer la continuité de fonctionnement de la machine redondante, éventuellement en mode dégradé.
[005] Les diagnostics s’assurant du bon fonctionnement de chaque branche doivent être les plus avancés possible. En particulier, il est important de pouvoir réaliser ces diagnostics périodiquement. Or sans solliciter la machine redondante, il est difficile d’en faire un diagnostic complet, et en sollicitant la machine redondante, il est possible que cela perturbe la fonction qu’elle est censée remplir en entraînant une rotation indésirée de la machine redondante par exemple.
[006] C’est pourquoi on connaît par exemple du document EP-A1 -3067251 un appareil de commande de direction assistée électrique comprenant :
- un moteur présentant une pluralité d’enroulements à phases multiples,
- une pluralité de circuits onduleurs qui commandent l’entraînement respectivement de la pluralité d’enroulements à phases multiples individuellement,
- une unité de commande qui réalise une vérification initiale et individuellement sur chaque groupe constitué du circuit et l’enroulement qu’il commande, afin de déterminer si un défaut s’est produit ou ne s’est pas produit.
[007] Cette unité de commande réalise cette vérification initiale en énergisant chaque groupe de façon décalée.
[008] Un problème de cet art antérieur est que cette vérification initiale n’est, justement, qu’initiale, et ne permet pas de s’assurer du bon fonctionnement de chaque groupe quel que soit l’instant, ce qui diminue la sûreté de fonctionnement d’un tel appareil.
[009] Le but de l’invention est de remédier à ce manque tout en permettant que la vérification soit imperceptible par le conducteur.
[010] A cet effet, l’invention a pour objet dispositif de supervision d’un système électrique comprenant :
- une machine électrique tournante redondée comprenant un arbre tournant et au moins deux bobinages générant chacun un couple électromagnétique sur ce même arbre tournant,
- au moins deux branches indépendantes et comprenant chacune :
- l’un des bobinages,
- un onduleur alimentant individuellement le bobinage de la branche,
- un dispositif de commande de l’onduleur de la branche,
- un dispositif de contrôle générant une consigne de pilotage de puissance pour le dispositif de commande,
- un capteur mesurant une valeur physique de la branche et/ou de la machine électrique tournante redondée, le dispositif de supervision comprenant :
- un moyen d’acquisition de chacune des valeurs physiques, - les dispositif de contrôle, ce dispositif de supervision étant configuré de sorte à successivement:
- émettre simultanément pour au moins deux dispositifs de contrôle de deux branches distinctes une demande de consigne de test de puissance supplémentaire à la consigne de pilotage, de telle sorte que la somme de ces consignes de test de puissance soit nulle, puis
- établir un diagnostic de panne en fonction des valeurs physiques mesurées consécutivement à l’application des consignes de test.
[011] Ainsi, quelle que soit les valeurs des consignes de pilotage de puissance, qui peuvent être différentes entre-elles, il devient possible d’y rajouter des consignes de test de puissance qui, sauf à ce qu’il y ait un défaut dans l’une des branches, n’ont pas d’effet sur la puissance mécanique fournie par l’arbre tournant, et donc sans effet perceptible pour un conducteur d’un véhicule lorsque, comme cela sera décrit ci-après, ce véhicule comprend ce système électrique.
[012] Par exemple, toutes les consignes de pilotage de puissance peuvent être nulles, la machine redondante pouvant être à l’arrêt ou tournante mais ne consommant pas de courant et donc ne produisant pas de couple : même dans ces circonstances, le dispositif de supervision permet d’appliquer les consignes de test de puissance sans changer le comportement de la machine redondante, bien que cette dernière consomme un courant provoqué par ces consignes de test de puissance, ce courant faisant évoluer les valeurs physiques mesurées consécutivement à l’application des consignes de test et permettant le diagnostic. Par exemple, le dispositif de supervision pourra surveiller l’évolution de la rotation de l’arbre tournant : si ce dernier était initialement à l’arrêt et qu’il a tendance à tourner sous l’effet des consignes de test, ou à accélérer s’il avait une vitesse non nulle, le dispositif de surveillance remontera un défaut. D’autres valeurs physiques peuvent également être surveillées, sur la machine ou un élément quelconque de chaque branche comme par exemple une température excessive sur un élément de puissance comme les bobinages ou un composant des onduleurs.
[013] On notera que, dans le cadre de cette invention, les consignes de test de puissance sont signées : ce signe est relatif d’une branche à une autre, ou du sens du flux électromagnétique d’une bobine par rapport à une autre, et n’a pas de signification quant à la nature même de la puissance produite ou récupérée par l’arbre tournant puisqu’elle est nulle. La somme nulle de ces consignes de test de puissance signifie que ces consignes de test de puissance se neutralisent entre- elles, le couple résultant sur l’arbre tournant étant nul. La somme des consignes de pilotage de puissance peut être nulle, négative, ou positive, et par convention, si nécessaire, on désignera par la somme des consignes de pilotage de puissance positive quand cette puissance est consommée par la machine redondante, et par la somme des consignes de pilotage de puissance négative quand cette puissance est générée par la machine redondante, dans le cas où cette machine redondante a un mode de fonctionnement en moteur et un autre en générateur.
[014] Selon un mode de réalisation de l’invention, l’une des valeurs physiques est la vitesse de rotation de l’arbre tournant, ce dispositif de supervision étant configuré de sorte à émettre simultanément pour au moins deux dispositifs de contrôle de deux branches distinctes la consigne de test de puissance supplémentaire si chacune des consignes de pilotage de puissance pour le dispositif de commande est nulle.
[015] En effet, ces machines redondantes entraînent en général des organes concernant la sûreté de fonctionnement, par exemple la sûreté de fonctionnement d’un véhicule, et présentent en général des longues périodes où les consignes de pilotage de puissance sont nulles impliquant un courant consommé par la machine redondante nul, et une vitesse nulle mais pas nécessairement, et donc une impossibilité de diagnostic pendant ces longues périodes bien que le véhicule soit démarré ou en phase de roulage. Grâce à l’invention, il est désormais possible de diagnostiquer ce système électrique même pendant ces longues périodes, en générant un courant dans les au moins deux branches, ce courant ne provoquant pas de puissance mécanique fournie par l’arbre tournant, c’est à dire pas de couple en sortie de l’arbre tournant puisque l’arbre tournant est commun aux bobinages.
[016] Selon un mode de réalisation de l’invention, le dispositif de supervision est configuré de sorte à émettre plusieurs consignes de test de puissance à des valeurs de puissance successives différentes.
[017] Cette disposition permet par exemple de diagnostiquer les onduleurs sur plusieurs plages de puissance.
[018] Selon un mode de réalisation de l’invention, le dispositif de supervision est configuré de sorte à ce que la somme de la consigne de pilotage et de la consigne de test d’au moins une branche soit égale à une puissance maximale admise de cette branche. [019] Selon un mode de réalisation de l’invention, le dispositif de supervision est configuré de sorte à ce que la somme de la consigne de pilotage et de la consigne de test de chaque branche soit, l’une après l’autre, égale à une puissance maximale admise de cette branche.
[020] L’invention a également pour objet un véhicule automobile comprenant un système électrique comprenant :
- une machine électrique tournante redondée comprenant un arbre tournant et au moins deux bobinages générant chacun un couple sur ce même arbre tournant,
- au moins deux branches indépendantes et comprenant chacune :
- l’un des bobinages,
- un onduleur alimentant individuellement le bobinage de la branche,
- un dispositif de commande de l’onduleur de la branche,
- un dispositif de contrôle générant une consigne de pilotage de puissance pour le dispositif de commande,
- un capteur mesurant une valeur physique de la branche et/ou de la machine électrique, ce véhicule comprenant un dispositif de supervision tel que précédemment décrit.
[021] Selon un mode de réalisation de l’invention, ce véhicule comprend un système de conduite autonome pilotant les dispositifs de contrôle.
[022] Selon un mode de réalisation de l’invention, ce véhicule comprend un système de direction électrique piloté par le système de conduite autonome, ce système de direction comprenant une colonne de direction motorisée par la machine tournante électrique.
[023] Selon un mode de réalisation de l’invention, le dispositif de supervision émet la consigne de test de puissance supplémentaire à la consigne de pilotage, avant chaque mise en service du système de conduite autonome.
[024] On comprendra par mise en service du système de conduite autonome l’instant à partir duquel le système de conduite autonome est susceptible d’ordonner les consignes de pilotage de puissance aux dispositifs de contrôle.
[025] Selon un mode de réalisation de l’invention, le dispositif de supervision émet la consigne de test de puissance supplémentaire à la consigne de pilotage lorsque le véhicule est immobile. [026] D’autres particularités et avantages apparaîtront à la lecture de la description ci-après d’un mode particulier de réalisation, non limitatif de l’invention, faite en référence à la figure unique dans laquelle :
[027] [Fig 1] : est un schéma de principe divulguant un exemple de dispositif de supervision selon l’invention, et un exemple d’un système électrique qu’il diagnostique.
[028] Il est à garder à l’esprit que la figure est donnée à titre d'exemple et n’est pas limitative de l’invention.
[029] La figure 1 divulgue un dispositif de supervision S d’un système électrique comprenant :
- une machine électrique tournante redondée M1 comprenant un arbre tournant et au moins deux bobinages B1 , B2, Bn générant chacun un couple électromagnétique sur ce même arbre tournant,
- au moins deux branches indépendantes et comprenant chacune :
- l’un des bobinages B1 , B2, Bn ,
- un onduleur Ond1 , Ond2, Ondn alimentant individuellement le bobinage B1 , B2, Bn de la branche,
- un dispositif de commande D1 , D2, Dn de l’onduleur Ond1 , Ond2, Ondn de la branche,
- un dispositif de contrôle DC1 , DC2, DCn générant une consigne de pilotage de puissance pour le dispositif de commande D1 , D2, Dn,
- un capteur Pn, Cn mesurant une valeur physique de la branche et/ou de la machine électrique tournante redondée M1 .
[030] le dispositif de supervision S comprend :
- un moyen d’acquisition de chacune des valeurs physiques, et
- les dispositif de contrôle DC1 , DC2, DCn .
[031] Le dispositif de supervision S est configuré de sorte à successivement:
- émettre simultanément pour au moins deux dispositifs de contrôle DC1 , DC2, DCn de deux branches distinctes une demande de consigne de test de puissance supplémentaire à la consigne de pilotage, de telle sorte que la somme de ces consignes de test de puissance soit nulle, puis
- établir un diagnostic de panne en fonction des valeurs physiques mesurées consécutivement à l’application des consignes de test.
[032] Par exemple, le dispositif de supervision S comprend, reliés entre eux par un réseau de communication : - un dispositif de diagnostique 10,
- un moyen de pilotage 100,
- les dispositifs de contrôle DC1 , DC2, DCn
- le moyen d’acquisition de chacune des valeurs physiques.
[033] La figure 1 illustre par exemple des capteurs de vitesse de l’arbre tournant P1 , P2, Pn. On notera qu’il y a autant de capteurs de vitesse que de branches. La figure 1 illustre également des capteurs de courant C1 , C2, Cn. On notera qu’il y a autant de capteurs de courant C1 , C2, Cn que de branches, chaque capteur de courant mesurant le courant de chaque phase U, V, W de la machine redondée. Il est implicite que ces capteurs de courant C1 , C2, Cn peuvent être combinés ou remplacés, de façon analogue, par des capteurs de tension, de puissance, ou de couple pour chaque branche.
[034] Ces capteurs Pn, Cn mesurent donc des valeurs physiques des branches et/ou de la machine redondante M1.
[035] Ces onduleurs Ond1 , Ond2, Ondn sont basés par exemple sur une structure de pont en H, constituée le plus souvent d'interrupteurs électroniques tels que des transistors de puissance ou thyristors. Par un jeu de commutations commandées de manière appropriée par les dispositifs de commande D1 , D2, Dn, généralement une modulation de largeur d'impulsion, on module la source afin de construire un signal alternatif de fréquence désirée et de déphasage désiré entre phases lorsqu’il y a plusieurs phases.
[036] Les dispositifs de commande D1 , D2, Dn sont des dispositifs électroniques qui convertissent les consignes de puissance émanant des dispositifs de contrôle DC1 , DC2, DCn en signaux de commutation des interrupteurs électroniques, généralement en la modulation de largeur d'impulsion. On notera que les dispositifs de commande D1 , D2, Dn sont souvent intégrés dans les onduleurs Ond1 , Ond2, Ondn, mais pas nécessairement, en particulier lorsque les onduleurs sont de forte puissance.
[037] Les dispositifs de contrôle DC1 , DC2, DCn sont par exemple des ordinateurs ou des calculateurs. Ils sont agencés de sorte à générer une consigne de puissance pour les dispositifs de commande D1 , D2, Dn en boucle ouverte et/ou en boucle fermée. Par exemple, ces dispositifs de contrôle DC1 , DC2, DCn comprennent les moyens d’acquisition des valeurs physiques de chaque branche et/ou de la machine redondante M1 de sorte à, par exemple, asservir la génération des consignes de puissance à une vitesse de rotation de l’arbre tournant. [038] Chaque dispositif de contrôle DC1 , DC2, DCn reçoit une consigne du moyen de pilotage 100, cette consigne pouvant être une consigne de couple, de vitesse, ou de puissance requise à la sortie de l’arbre tournant. Ces dispositifs de contrôle DC1 , DC2, DCn reçoivent en outre les consignes de test de puissance du dispositif de diagnostic 10, qui s’ajoutent aux consignes du moyen de pilotage 100.
[039] En particulier, l’un des dispositifs de contrôle DC1 , DC2, DCn peut fonctionner en boucle ouverte en imposant une première consigne de test de puissance constante alors qu’un autre des dispositifs de contrôle DC1 , DC2, DCn fonctionne en boucle fermée en émettant comme consigne une deuxième consigne de test de puissance exactement opposée à la première deuxième puissance réellement obtenue.
[040] Ce dispositif de diagnostic 10, tout comme le moyen de pilotage 100, sont par exemple également des calculateurs ou ordinateurs, qui peuvent être en partie intégrés ou non aux dispositifs de contrôle DC1 , DC2, DCn. En variante, ces dispositifs de contrôle DC1 , DC2, DCn, le dispositif de diagnostic 10 et le moyen de pilotage 100 forment un unique calculateur ou ordinateur, mais cette variante est moins avantageuse car les dispositifs de contrôle DC1 , DC2, DCn ne sont plus indépendants et donc moins sécurisants car une panne de ce dispositif de supervision S entraine que plus aucun bobinage ne peut être commandé.
[041] On notera que ce dispositif de supervision S est un moyen pouvant mettre en oeuvre un procédé de diagnostic comprenant les étapes de successivement:
- émettre simultanément pour au moins les deux dispositifs de contrôle DC1 , DC2, DCn des deux branches distinctes la demande de consigne de test de puissance supplémentaire à la consigne de pilotage, de telle sorte que la somme de ces consignes de test de puissance soit nulle, puis
- établir le diagnostic de panne en fonction des valeurs physiques mesurées consécutivement à l’application des consignes de test.
[042] Ce dispositif de supervision S comprend donc les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à la mise en oeuvre du procédé. Par conséquent, un dispositif de supervision S, selon l’invention, peut être réalisé sous la forme de modules logiciels (ou informatiques (ou encore « software »)), ou bien de circuits électroniques (ou « hardware »), ou encore d’une combinaison de circuits électroniques et de modules logiciels ».
[043] La source est par exemple une batterie de véhicule, non représentée, alimentant en courant les onduleurs Ond1 , Ond2, Ondn. [044] On comprendra par batterie, dans tout le texte de ce document, un ensemble comprenant au moins un module de batterie contenant au moins une cellule électrochimique. Cette batterie comprend éventuellement des moyens électriques ou électroniques pour la gestion d’énergie électrique de ce au moins un module. Lorsqu’il y a plusieurs modules, ils sont regroupés dans un bac ou carter et forment alors un bloc batteries, ce bloc batteries étant souvent désigné par l’expression anglaise « pack batteries », ce carter contenant généralement une interface de montage, et des bornes de raccordement.
[045] Par ailleurs, on comprendra par cellule électrochimique dans tout le texte de ce document, des cellules générant du courant par réaction chimique, par exemple de type lithium-ion (ou Li-ion), de type Ni-Mh, ou Ni-Cd ou encore plomb.
[046] Cette batterie est par exemple une batterie 12V continue pour l’alimentation d’un réseau de bord d’un véhicule, ce réseau alimentant à son tour le dispositif de supervision S. Mais en variante cette batterie est par exemple une batterie 400V continue pour l’alimentation d’une machine redondante M1 comme un moteur de traction ou de propulsion du véhicule.
[047] En variante non représentée, ces onduleurs Ond1 , Ond2, Ondn ainsi que les dispositifs de commande D1 , D2, Dn peuvent être intégrés dans la batterie, voire dans chaque module de la batterie, voire sur chaque cellule. Par exemple, les moyens électriques ou électroniques pour la gestion d’énergie électrique peuvent intégrer ces onduleurs Ond1 , Ond2, Ondn.
[048] En variante, et de façon à augmenter la sûreté de fonctionnement d’un tel système, ce système peut comprendre une batterie distincte pour chaque onduleur Ond1 , Ond2, Ondn, chacune de ces batteries distinctes faisant partie d’une branche.
[049] Ces valeurs physiques mesurées sont par exemple des valeurs de la position ou de la vitesse de l’arbre tournant, et/ou des valeurs de courant de chacune des phases (Un, Vn, Wn) de chaque bobinage, et/ou des valeurs de tension de chacune des phases (Un, Vn, Wn) de chaque bobinage et/ou des valeurs de température de chaque bobinage, et/ou des valeurs de fuite de courant, de température, de tension des éléments de chaque branche.
[050] On notera que « n » est, dans tout le texte de ce document, un indice indiquant le numéro de branches, par exemple sur la figure 1 illustre un système électrique à deux branches, et donc n varie de un à deux. Mais on peut envisager trois branches ou plus. On notera en outre que la machine redondante M1 représentée est une machine triphasée de phase U, V, W selon la désignation connue de l’homme du métier. Chacune de ces trois phases est dupliquée pour chaque bobine, c’est-à-dire pour chaque branche.
[051] Par exemple, pour n = 3, le système électrique comprend trois branches et le dispositif de diagnostic 10 pourra tester les branches deux à deux, par exemple en appliquant deux consigne de tests chacune sur la branche « une » et « deux », puis sur la branche « deux et « trois », puis sur la branches « une » et « trois », permettant ainsi de discriminer la branche présentant un défaut.
[052] L’une des valeurs physiques est par exemple la vitesse de rotation de l’arbre tournant, ce dispositif de supervision S étant configuré de sorte à émettre simultanément pour au moins deux dispositifs de contrôle DC1 , DC2, DCn de deux branches distinctes la consigne de test de puissance supplémentaire si chacune des consignes de pilotage de puissance pour le dispositif de commande D1 , D2, Dn est nulle.
[053] Le dispositif de supervision S est par exemple configuré de sorte à émettre plusieurs consignes de test de puissance à des valeurs de puissance successives différentes. Par exemple ces valeurs de puissance successives peuvent être sous forme de paliers, ou encore sous forme d’évolution croissante continue.
[054] Le dispositif de supervision S est par exemple configuré de sorte à ce que la somme de la consigne de pilotage et de la consigne de test d’au moins une branche soit égale à une puissance maximale admise de cette branche. Cette caractéristique est par exemple optimale pour détecter des fuites de courant, ou une résistance interne du bobinage trop élevée entraînant une élévation de température anormale. La puissance maximale admise est par exemple la puissance maximale physique que peut fournir l’onduleur et/ou la batterie de la branche concernée.
[055] Le dispositif de supervision S est par exemple configuré de sorte à ce que la somme de la consigne de pilotage et de la consigne de test de chaque branche soit, l’une après l’autre, égale à une puissance maximale admise de cette branche.
[056] Cette invention s’applique tout particulièrement au véhicule automobile comprenant le système électrique comprenant :
- la machine électrique tournante redondée M1 comprenant l’arbre tournant et au moins les deux bobinages B1 , B2, Bn générant chacun un couple sur ce même arbre tournant,
- au moins les deux branches indépendantes et comprenant chacune :
- l’un des bobinages, - l’onduleur Ond1 , Ond2, Ondn alimentant individuellement le bobinage B1 , B2, Bn de la branche,
- le dispositif de commande D1 , D2, Dn de l’onduleur Ond1 , Ond2, Ondn de la branche,
- le dispositif de contrôle DC1 , DC2, DCn générant une consigne de pilotage de puissance pour le dispositif de commande D1 , D2, Dn,
- le capteur Pn, Cn mesurant la valeur physique de la branche et/ou de la machine électrique M1 , ce véhicule comprenant en outre le dispositif de supervision S tel que précédemment décrit.
[057] Cette invention s’applique très avantageusement à ce véhicule comprend en outre un système de conduite autonome pilotant les dispositifs de contrôle DC1 , DC2, DCn.
[058] Ce véhicule comprend par exemple un système de direction électrique piloté par le système de conduite autonome, ce système de direction comprenant une colonne de direction motorisée par la machine tournante électrique M1 .
[059] Par exemple ce dispositif de supervision S émet la consigne de test de puissance supplémentaire à la consigne de pilotage, avant chaque mise en service du système de conduite autonome.
[060] Par exemple ce dispositif de supervision S émet la consigne de test de puissance supplémentaire à la consigne de pilotage, lorsque le véhicule est immobile.

Claims

REVENDICATIONS
1. dispositif de supervision (S) d’un système électrique comprenant :
- une machine électrique tournante redondée (M1 ) comprenant un arbre tournant et au moins deux bobinages (B1 , B2, Bn) générant chacun un couple électromagnétique sur ce même arbre tournant,
- au moins deux branches indépendantes et comprenant chacune :
- l’un des bobinages
- un onduleur (Ond1 , Ond2, Ondn) alimentant individuellement le bobinage (B1 , B2, Bn) de la branche,
- un dispositif de commande (D1 , D2, Dn) de l’onduleur (Ond1 , Ond2, Ondn) de la branche,
- un dispositif de contrôle (DC1 , DC2, DCn) générant une consigne de pilotage de puissance pour le dispositif de commande (D1 , D2, Dn),
- un capteur (Pn, Cn) mesurant une valeur physique de la branche et/ou de la machine électrique (M1 ), le dispositif de supervision (S) comprenant :
- un moyen d’acquisition de chacune des valeurs physiques,
- les dispositif de contrôle (DC1 , DC2, DCn), caractérisé en ce que ce dispositif de supervision (S) est configuré de sorte à successivement:
- émettre simultanément pour au moins deux dispositifs de contrôle (DC1 , DC2, DCn) de deux branches distinctes une demande de consigne de test de puissance supplémentaire à la consigne de pilotage, de telle sorte que la somme de ces consignes de test de puissance soit nulle, puis
- établir un diagnostic de panne en fonction des valeurs physiques mesurées consécutivement à l’application des consignes de test.
2. Dispositif de supervision (S) selon la revendication 1 , l’une des valeurs physiques étant la vitesse de rotation de l’arbre tournant, ce dispositif de de supervision (S) étant configuré de sorte à émettre simultanément pour au moins deux dispositifs de contrôle (DC1 , DC2, DCn) de deux branches distinctes la consigne de test de puissance supplémentaire si chacune des consignes de pilotage de puissance pour le dispositif de commande (D1 , D2, Dn) est nulle.
3. Dispositif de supervision (S) selon l’une des revendications précédentes, configuré de sorte à émettre plusieurs consignes de test de puissance à des valeurs de puissance successives différentes.
4. Dispositif de supervision (S) selon l’une des revendications précédentes, configuré de sorte à ce que la somme de la consigne de pilotage et de la consigne de test d’au moins une branche soit égale à une puissance maximale admise de cette branche.
5. Dispositif de supervision (S) selon la revendication 4, configuré de sorte à ce que la somme de la consigne de pilotage et de la consigne de test de chaque branche soit, l’une après l’autre, égale à une puissance maximale admise de cette branche.
6. Véhicule automobile comprenant un système électrique comprenant :
- une machine électrique tournante redondée (M1 ) comprenant un arbre tournant et au moins deux bobinages (B1 , B2, Bn) générant chacun un couple sur ce même arbre tournant,
- au moins deux branches indépendantes et comprenant chacune :
- l’un des bobinages
- un onduleur (Ond1 , Ond2, Ondn) alimentant individuellement le bobinage (B1 , B2, Bn) de la branche,
- un dispositif de commande (D1 , D2, Dn) de l’onduleur (Ond1 , Ond2, Ondn) de la branche,
- un dispositif de contrôle (DC1 , DC2, DCn) générant une consigne de pilotage de puissance pour le dispositif de commande (D1 , D2, Dn),
- un capteur (Pn, Cn) mesurant une valeur physique de la branche et/ou de la machine électrique (M1 ), ce véhicule étant caractérisé en ce qu’il comprend un dispositif de supervision (S) selon l’une des revendications précédentes.
7. Véhicule selon la revendication 6 comprenant un système de conduite autonome pilotant les dispositifs de contrôle (DC1 , DC2, DCn).
8. Véhicule selon la revendication 7 comprenant un système de direction électrique piloté par le système de conduite autonome, ce système de direction comprenant une colonne de direction motorisée par la machine tournante électrique M1 .
9. Véhicule selon la revendication 7 ou 8, le dispositif de supervision (S) émettant la consigne de test de puissance supplémentaire à la consigne de pilotage, avant chaque mise en service du système de conduite autonome.
10. Véhicule selon l’une des revendications 6 à 9, le dispositif de supervision (S) émettant la consigne de test de puissance supplémentaire à la consigne de pilotage, lorsque le véhicule est immobile.
PCT/FR2021/052131 2021-01-27 2021-11-30 Dispositif de supervision d'un systeme electrique comprenant une machine redondee WO2022162282A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180092144.2A CN117083795A (zh) 2021-01-27 2021-11-30 用于监控包括冗余机器的电气系统的监控装置
EP21824628.8A EP4285484A1 (fr) 2021-01-27 2021-11-30 Dispositif de supervision d'un systeme electrique comprenant une machine redondee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100753A FR3119276B1 (fr) 2021-01-27 2021-01-27 Dispositif de supervision d’un systeme electrique comprenant une machine redondee
FRFR2100753 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022162282A1 true WO2022162282A1 (fr) 2022-08-04

Family

ID=75438999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/052131 WO2022162282A1 (fr) 2021-01-27 2021-11-30 Dispositif de supervision d'un systeme electrique comprenant une machine redondee

Country Status (4)

Country Link
EP (1) EP4285484A1 (fr)
CN (1) CN117083795A (fr)
FR (1) FR3119276B1 (fr)
WO (1) WO2022162282A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2100753A1 (en) 1970-06-12 1972-03-24 Inst Khim Prirodny Oestranes - by reducing delto 8(9)-dehydrooestranes with - trifluoroacetic acid and
US20110156629A1 (en) * 2009-12-25 2011-06-30 Denso Corporation Electric power steering device
EP3067251A1 (fr) 2013-11-08 2016-09-14 Mitsubishi Electric Corporation Dispositif de commande de direction assistée électrique et procédé de commande de direction assistée électrique
US20190074790A1 (en) * 2015-11-05 2019-03-07 Hitachi Automotive Systems, Ltd. Power converter and electric power steering apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2100753A1 (en) 1970-06-12 1972-03-24 Inst Khim Prirodny Oestranes - by reducing delto 8(9)-dehydrooestranes with - trifluoroacetic acid and
US20110156629A1 (en) * 2009-12-25 2011-06-30 Denso Corporation Electric power steering device
EP3067251A1 (fr) 2013-11-08 2016-09-14 Mitsubishi Electric Corporation Dispositif de commande de direction assistée électrique et procédé de commande de direction assistée électrique
US20190074790A1 (en) * 2015-11-05 2019-03-07 Hitachi Automotive Systems, Ltd. Power converter and electric power steering apparatus

Also Published As

Publication number Publication date
FR3119276B1 (fr) 2022-12-09
EP4285484A1 (fr) 2023-12-06
CN117083795A (zh) 2023-11-17
FR3119276A1 (fr) 2022-07-29

Similar Documents

Publication Publication Date Title
EP2517347B1 (fr) Onduleur reconfigurable, a tolerance de pannes, pour l'alimentation d'un moteur polyphase synchrone a aimants permanents, et ensemble desdits onduleur et moteur
FR2864724A1 (fr) Dispositif de commande destine a un dispositif de generateur electrique de vehicule a moteur
EP2293429B1 (fr) Dispositif sécurisé de surveillance et de commande pour actionneur de pilotage d'un aéronef
FR2855677A1 (fr) Circuit de commande a modulation en largeur d'impulsions pour machine electrique multi mode et machine electrique multi mode equipee d'un tel circuit de commande
FR2955719A1 (fr) Procede et dispositif de commande de machine electrique polyphasee
FR2829315A1 (fr) Procede et appareil de commande des moteurs sans balais
US20090096463A1 (en) Hybrid vehicle testing system and method
FR2902739A1 (fr) Dispositif de direction assistee
EP2476183B1 (fr) Alternateur a redressement synchrone pour vehicule automobile, equipe de moyens electroniques de gestion de defauts
US10658965B2 (en) Motor vehicle
FR2907911A1 (fr) Controleur d'alternateur de vehicule.
EP2311182B1 (fr) Procede pour commander une machine electrique tournante, notamment un alternateur
CA3056877C (fr) Architecture de systeme de freinage pour aeronef
CA2783508C (fr) Procede de detection de panne d'une source de courant a decoupage et source de puissance correspondante
EP2655123B1 (fr) Dispositif et procede de conversion dc/dc dans le reseau de bord d'un vehicule
WO2022162282A1 (fr) Dispositif de supervision d'un systeme electrique comprenant une machine redondee
WO2012010557A1 (fr) Procede de detection de panne d'un alternateur a aimant permanent et dispositif d'alimentation comportant un module de detection
US11799354B2 (en) Current imbalance fault mitigation for rotary electric machine with parallel stator windings
EP0982825A1 (fr) Dispositif de contrôle de la vitesse de rotation d'un moteur électrique et appareil de centrifugation équipé d'un tel dispositif
EP3667898B1 (fr) Gestion de nombre de cellules de puissance actives d'un variateur de vitesse
FR3121995A1 (fr) Procede de test d’un equipement raccorde a une batterie
FR3117077A3 (fr) Systeme de controle electronique pour vehicule automobile fonctionnant en temps reel, intelligent et sur de moteurs electriques de vehicules automobiles a propulsion electrique
FR3106945A1 (fr) Procédé d’identification de dysfonctionnement d’un ensemble onduleur-moteur
WO2023187270A1 (fr) Procede de controle d'un vehicule comprenant un dispositif de test d'isolement d'un circuit electrique
FR3011397A1 (fr) Systeme et procede de commande d'un moteur electrique d'un vehicule automobile pour la detection de defauts electriques.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092144.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021824628

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021824628

Country of ref document: EP

Effective date: 20230828