WO2022162252A1 - Método para recuperación biológica de metales en residuos eléctricos y electrónicos - Google Patents

Método para recuperación biológica de metales en residuos eléctricos y electrónicos Download PDF

Info

Publication number
WO2022162252A1
WO2022162252A1 PCT/ES2021/070069 ES2021070069W WO2022162252A1 WO 2022162252 A1 WO2022162252 A1 WO 2022162252A1 ES 2021070069 W ES2021070069 W ES 2021070069W WO 2022162252 A1 WO2022162252 A1 WO 2022162252A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
metals
column
biomass
mineral medium
Prior art date
Application number
PCT/ES2021/070069
Other languages
English (en)
French (fr)
Inventor
Antonio David DORADO CASTAÑO
Xavier GAMISANS NOGUERA
Montserrat SOLÉ SARDANS
Concepción LAO LUQUE
Ramon MIQUEL GRAU
Antoni ESCOBET CANAL
Teresa ESCOBET CANAL
Original Assignee
Universitat Politecnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica De Catalunya filed Critical Universitat Politecnica De Catalunya
Priority to PCT/ES2021/070069 priority Critical patent/WO2022162252A1/es
Priority to EP21721961.7A priority patent/EP4286548A1/en
Priority to US18/273,597 priority patent/US20240141457A1/en
Publication of WO2022162252A1 publication Critical patent/WO2022162252A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0091Treating solutions by chemical methods by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0095Process control or regulation methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates generally to methods of recycling electrical and electronic waste.
  • the invention refers to a method for the biological recovery of metals in electrical and electronic waste, for example printed circuit boards (PCB) (for example, mobile phones, among others) or any electrical material in general.
  • PCB printed circuit boards
  • PCBs are common components in most electrical and electronic equipment. Electrical and electronic waste, which consists of discarded computers, televisions, mobile phones, stereos, and other electronic equipment, has become a major problem around the world. Rapid technological advances make electrical and electronic products obsolete in a short time. This, coupled with exploding sales in consumer electronics, means more products are being thrown away, even if they still work.
  • One of the main problems with this type of electrical and electronic waste is that it is full of toxic chemicals -arsenic, lead, mercury, polychrome flame retardants, among others.
  • electrical and electronic waste also contains an important part of valuable metals such as copper, silver or gold, which could be recovered for reuse.
  • Bioleaching is based on the release of metals from metal concentrates, such as electrical and electronic waste, using the activity of microorganisms.
  • document CN105734284A discloses a bioleaching treatment for PCB electronic waste, promoted through the use of biochar.
  • a bioleaching treatment for PCB electronic waste promoted through the use of biochar.
  • Patent CN104328280 shows a method and equipment for bioleaching with Acidithiobacillus ferrooxidans to extract copper, gold and nickel from PCBs.
  • bioleaching with Acidithiobacillus ferrooxidans has been improved by proliferating the bacteria in low dissolved oxygen conditions to maximize their growth, and then increasing the oxygen concentration when PCBs are added to maximize copper leaching.
  • Patent application CN105039704 is based on bioleaching with Thiobacillus acidophilus (reclassified as Acidiphilium acidophilum) for copper extraction.
  • Document CN103397195A discloses a recovery device and method of recovering metallic copper from a waste printed circuit board.
  • the device comprises a microbial fuel cell, a reactor for copper leaching from the waste printed circuit board and a biological oxidation reactor for Fe ⁇ 2+>.
  • the recovery method comprises: first, iron oxidizing bacteria in the Fe ⁇ 2+> biological oxidation reactor oxidize Fe ⁇ 2+> to Fe ⁇ 3+>; then, the Fe ⁇ 3+>-containing solution is introduced into the reactor for copper leaching from the waste PCB, the metallic copper is oxidized into Cu ⁇ 2+> by Fe ⁇ 3+>, and at the same time, Fe ⁇ 3+> is reduced to Fe ⁇ 2+>; and finally, the solution containing Cu ⁇ 2+> is introduced into a cathode chamber of the microbial fuel cell, the Cu ⁇ 2+> is reduced to metallic copper in the cathode chamber of the microbial fuel cell, while that the Fe ⁇ 2+> from the cathode chamber of the microbial fuel cell is introduced into the Fe ⁇ 2+> biological oxidation reactor and then oxidized to Fe ⁇ 3+>.
  • CN107746959B discloses a two-stage biological leaching method for recycling valuable metals on waste printed circuit board.
  • the method comprises the following steps: S1, a pretreatment is carried out, namely, the waste printed circuit board is broken and then classified, thus obtaining metal particles; S2, leaching of non-ferrous metals is carried out, specifically, a mineral leaching microorganism is cultivated in a culture medium containing Fe2+, so
  • SUBSTITUTE SHEET (RULE 26) so that Fe2+ becomes Fe3+, and then Fe3+ reacts with metal particles in step S1, thus obtaining non-ferrous metal leachate and precious metal residue;
  • precious metal leaching is carried out, namely, the precious metal residue from step S2 reacts with a precious metal leaching agent solution formed by the way limewater absorbs HCN, and so precious metal leaching is obtained;
  • S4 the non-ferrous metal leachate from step S2 and the precious metal leachate from step S3 are extracted and recycled accordingly.
  • Embodiment examples of the present invention provide a method for the biological recovery of metals in electrical and electronic waste.
  • the method comprises inoculating a series of iron-oxidizing, aerobic microorganisms, and a mineral medium formed by different salts in solution or fertilizers in a column of immobilized biomass (ie a fixed bed bioreactor); and carrying out, in the biomass column, a first phase of biological oxidation of iron II ions present in the mineral medium or fertilizers to iron III ions.
  • the first phase is catalyzed by the metabolic activity of iron-oxidizing microorganisms and is carried out within a predetermined temperature range, controlling the pH of the mineral medium or fertilizers.
  • the first phase has a duration of at least two hours.
  • a liquid phase comprising the iron III ions is irrigated inside at least one leaching column with dimensions suitable for housing one or more printed circuit boards of an electrical material or electronic waste from which they are to be recovered.
  • the metals producing in contact with said liquid phase a reduction of the iron III ions oxidizing the metals to iron II, and the metals of interest are separated from their solubilization.
  • said printed circuit board or boards are in contact with the liquid phase inside the leaching column(s) for at least one hour.
  • the metals of interest are extracted from the solution.
  • the leach column(s) may house any electrical material from which metals are to be recovered.
  • the iron-oxidizing microorganisms that have detached from the biomass column are separated, outside the biomass column, providing a solid phase that includes the iron-oxidizing microorganisms and the said liquid phase comprising the iron III ions.
  • the solid phase with the iron-oxidizing microorganisms can be recirculated (or returned) to the biomass column.
  • the first phase instead of, or additionally, being carried out within a predetermined temperature range, can also be carried out with redox and/or oxygen control.
  • the aforementioned preset temperature range can be between 25 and 35 e C, preferably 30 e C.
  • a structuring agent is additionally used that facilitates the percolation of the liquid when said electrical material or said printed circuit board or boards come into contact with the leaching liquid.
  • This structuring agent can be the plastic material of the printed circuit board or boards.
  • the leaching liquid renewal cycles are carried out in the aforementioned leaching column(s) and the printed circuit board(s) (or said electrical material) stirring . This reduces the time needed and better biological recoveries are obtained.
  • the printed circuits may be static within the leach column(s), ie, not agitated, as in a heap leach process.
  • the metals of interest when they have been extracted from the solution, they are reduced from their soluble state to a metallic state through a cementation process that provides a spontaneous reaction between a soluble copper II extracted from the plate or printed circuit boards or electrical material and metallic iron.
  • soluble copper II is reduced to copper metal and metallic iron is oxidized to soluble iron II.
  • the cementation process in this embodiment is carried out in a mechanically agitated tank at a speed in the range of 120 to 140 rpm at room temperature.
  • the reduction of the extracted metals of interest to the metallic state is carried out by electrolysis using stainless steel or lead electrodes. In another embodiment, the reduction can be performed by a precipitation technique.
  • the method also automatically monitors the biological oxidation of iron II ions to iron III ions and/or automatically monitors the extraction of a metal (for example copper, among other metals) in the leaching column(s) by means of one or more optical sensors that continuously and non-invasively monitor a change in color of the liquid in the leaching column(s) as a result of the solubilization of the metals that are extracted. Both follow-ups can be done simultaneously.
  • a metal for example copper, among other metals
  • the tracked biological oxidation is processed, calibrated and/or diagnosed by a processing unit operatively connected to the optical sensor(s).
  • the irrigation is carried out in programmed and controlled batches by means of an automatic control system/device with programmable hardware and software components.
  • two leach columns are used.
  • the two leach columns can be synchronized by the automatic control system/device.
  • the leaching columns can automatically exchange the liquid phase from one column to another through the automatic control device.
  • the automatic control device is operatively connected with said optical sensor(s).
  • the change from one column to the other is made based on the color change detected by the optical sensor(s), as explained above.
  • the soluble iron II obtained is recycled to the first phase of biological oxidation to reduce the amount of iron required in it, that is, the process is cyclic .
  • iron III ions can also be recirculated from a lower part of the leach column(s) to an upper part thereof.
  • the different salts of the mineral medium include an iron II salt and salts that provide nitrogen, sulphur, phosphorus, magnesium, potassium and calcium.
  • the composition of the mineral medium comprises: 15-60g/L of FeSO 4 ⁇ 7 H2O, 3 g/L of (NH 4 ) 2 SO4; 0.5 g/L of MgSO 4 ⁇ 7H 2 O, 0.5 g/L of K 2 HPO 4 , 0.10 g/L of KCI and 0.01 g/L of Ca(NOs)2 ⁇ 4 H 2 O.
  • the pH of the mineral medium is controlled in a range between 1.7 and 1.8 by adding an acid or a base. For example, by adding sulfuric acid at a concentration of 10%.
  • scrap iron can be used as the source of iron.
  • the activity of the iron-oxidizing microorganisms in the biomass column is also monitored, for example by means of:
  • the activity of the sample can be related to the concentration of iron-oxidizing microorganisms (that is, biomass) by means of a previous calibration, for
  • a calibration of the oxygen microprobe is also performed in an oxygen-free aqueous medium and under saturation conditions at a constant temperature.
  • the aforementioned irrigation step is carried out at room temperature and at a pH lower than 1.8.
  • Fig. 1 is a flow chart illustrating a method for biological recovery of metals in electrical and electronic waste, according to an embodiment of the present invention.
  • Fig. 2 schematically illustrates the proposed bioleaching plant for implementation of the proposed method.
  • Fig. 1 shows an embodiment of the proposed method for the biological recovery of metals in electrical and electronic waste.
  • step 101 a series of iron-oxidizing, aerobic microorganisms and a mineral medium formed by different salts in solution or fertilizers such as NPK.
  • step 102 a first phase of biological oxidation of the iron II ions present in the mentioned mineral medium or fertilizers to iron III ions is carried out in the biomass column 15. This first phase is catalyzed by the activity metabolism of iron-oxidizing microorganisms, and is carried out within a previously set temperature range between 25 and 35°C, preferably 30°C , controlling the pH of the mineral medium or fertilizers.
  • the first phase lasts for at least two hours in order to ensure adequate contact between the microorganisms and the iron II solution.
  • a liquid phase comprising iron III ions is irrigated into two leach columns 17A, 17B arranged to
  • SUBSTITUTE SHEET (RULE 26) accommodate one or more printed circuits of electrical material or electronic waste, reducing the iron III ions to iron II by oxidizing the metals, and separating the metals of interest by dissolving them. Finally, in step 104, the metals of interest are removed from solution. It should be noted that the method is efficient using a single leach column.
  • the iron-oxidizing microorganisms that have detached from the biomass column 15 are separated from it, thus providing a solid phase that includes the iron-oxidizing microorganisms and the aforementioned liquid phase that includes the iron ions III.
  • the leach column(s) may house any electrical material from which metals are to be recovered.
  • FIG. 2 an embodiment of the bioleaching plant used to implement the proposed method is shown therein.
  • a key difference compared to known bioleaching plants is that in this case the biomass column 15 is immobilized.
  • the biomass column 15 consists of a column filled with polyurethane foam or other packing material that allows the immobilization of the biomass responsible for the oxidation of iron II ions to iron III ions.
  • the solution of iron II ions that the microorganisms oxidize to iron III ions is recirculated through a collector 14 in the lower part of the column 15 that collects the leachate and allows its recirculation by means of a pump towards the upper part. from column 15.
  • a diffuser allows the distribution of the liquid.
  • Collector 14 has one input port and one output port to work in continuous mode. This collector 14 measures and controls the pH below 1.8 units, as well as the dissolved oxygen and the redox potential and is heated by means of a resistance or heating/thermostatic bath 16 that ensures an optimal temperature of the biomass (not less than 30 e ).
  • a venturi ejector is installed that allows the suction of air through the circulation of the liquid itself, which ensures the availability of oxygen and the carbon source necessary to maintain microbial activity. Ventilation can also be done using compressed air and diffusers or any other equivalent system.
  • Column 15 measures the pressure drops to ensure that clogging does not occur due to excessive growth. Column 15 has ports that allow punctual extraction of
  • SUBSTITUTE SHEET (RULE 26) pieces/pieces of support material to perform microrespiration of the immobilized biomass and ensure that the biological activity is optimal during the operation.
  • the operation of the fixed biomass reactor 15 allows several advantages such as the reduction of the volume of the reactor, the increase in the specific production rate of Fe (III) leaching, a much clearer liquid that generates less precipitates and minimizing the loss of biomass at the outlet of the bioreactor 15 since the biomass is retained inside and a subsequent decanter is not necessary (reduction of auxiliary equipment).
  • Tank 1 1 is an acid solution tank that allows pH control and is activated when the pH exceeds 1.8 units.
  • Tank 12 raises the pH if it drops too low; this tank 12 provides a base. This same function is performed by the acid tank 20 for the leach columns 17A, 17B.
  • Tank 13 is a mineral medium tank that compensates the closed cycle for any losses that may occur (due to evaporation, for example) or due to periodic purging ('Waste' as indicated in Fig. 2).
  • the iron source can be introduced in the form of a solution of iron salts (FeSO4) or through residual material containing iron from other industrial processes that dissolves under working conditions and generates a continuous source of iron to generate leachate.
  • the biomass column is fed continuously with a mineral medium with the following composition: 15-60g/L of FeSO 4 ⁇ 7 H 2 O, 3 g/L of (NH ⁇ SC ; 0.5 g/L of MgSO 4 ⁇ 7H 2 O, 0.5 g/L K 2 HPO 4 , 0.10 g/L KCI and 0.01 g/L Ca(NOs) 2 ⁇ 4 H 2 O.
  • a mineral medium with the following composition: 15-60g/L of FeSO 4 ⁇ 7 H 2 O, 3 g/L of (NH ⁇ SC ; 0.5 g/L of MgSO 4 ⁇ 7H 2 O, 0.5 g/L K 2 HPO 4 , 0.10 g/L KCI and 0.01 g/L Ca(NOs) 2 ⁇ 4 H
  • the biomass column 15 also allows the biological production of acid as a leaching agent from by-products or residues with sulfur as an energy source for Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans (eg biogas desulfurization).
  • SUBSTITUTE SHEET (RULE 26)
  • the activity of iron-oxidizing microorganisms in the biomass column 15 can be monitored by microrespirometric techniques (oxygen consumption), for example: removing and cleaning one or more pieces of a support material from the biomass column 15 ; preparing a solution with the same composition of the mineral medium but without the iron salt FeSC ⁇ 7 H 2 O; extracting a certain amount of sample from the reactor 10, preferably 2 ml (not limiting since other amounts could be extracted) of the liquid resulting from having washed the piece(s), and centrifuging for about 10 minutes at 5000 rpm; eliminating the excess and adding another certain quantity, preferably also 2 ml, of the mineral medium but without the iron salt FeSC ⁇ 7 H 2 O; stabilizing the temperature by placing the sample in a thermostatic bath at about 30 e C; adding another certain quantity, preferably 2 ml, of the mineral medium with the iron salt FeSÜ4 ⁇ 7 H 2 O and homogenizing it; extracting a certain
  • the above process allows detecting the activity of iron-oxidizing microorganisms with very small sample volumes, less than 2 mL of sample.
  • the oxygen microprobe can be calibrated in an oxygen-free aqueous medium (nitrogen displacement) and in saturation conditions (oxygenating through a diffuser until a stable signal is achieved) at constant temperature.
  • the leaching columns 17A, 17B are irrigated with the iron III solution so that the plates come into contact with the solution and the chemical reaction that allows the metals of interest to be extracted is produced.
  • part of the leachate obtained in the lower part of the leaching columns 17A, 17B is recirculated back to the upper part of the leach columns.
  • leach columns 17A, 17B via a trap 18 at the bottom of columns 17A, 17B.
  • a contact time within the leaching columns 17A, 17B of at least one hour is required to ensure efficient leaching of the metals contained in the printed circuit board(s).
  • a structuring agent can be additionally used when making said contact.
  • liquid renewal cycles can be carried out in the leaching columns 17A, 17B, by shaking the plates. This reduces the time needed and better biological recoveries are obtained.
  • the process takes place at room temperature and at a pH below 1.8. It is important to keep the pH below this value to avoid the precipitation of iron III, which would reduce the efficiency of the process and, therefore, the efficiency of metal extraction.
  • a pH control can be performed on the liquid recirculated to the leach columns 17A, 17B.
  • the bioleaching plant may also include a detection system made up of one or more optical sensors that is coupled to the biomass column 15 and/or the leach columns 17A, 17B or near thereto. they.
  • the optical sensor(s) is(are) configured to continuously and non-invasively monitor color changes associated with dissolution of metals and the rate of progress of metal reactions. oxidation and reduction of metals.
  • the detection system detects the completion of reactions and solutions to make decisions in the automation and control of the bioleaching plant. This detection reduces waiting times in the integration of the different stages of the process.
  • the operating mechanism can be based on a light emitter and a programmable RGB (red-blue-green detector) and IR (infrared) sensor with a microprocessor that allows digital analysis processing, self-calibration and self-diagnosis.
  • the light detection system can be carried out by transmission or by reflection using self-reflective photocells.
  • these elements can be integrated and assembled on a platform adapted to the biomass column 15 to be monitored and protected with a sealed casing.
  • Optical sensors can be configured to track the biological oxidation of iron II ions to iron III ions simultaneously with tracking an extraction of a metal, for example copper, among other metals such as tin, nickel, manganese, silver , aluminum, cobalt, indium, gold, lead, osmium, dysprosium, etc. in leach columns 17A, 17B.
  • a metal for example copper, among other metals such as tin, nickel, manganese, silver , aluminum, cobalt, indium, gold, lead, osmium, dysprosium, etc.
  • the reduction of metals from the soluble state to the metallic state can be carried out by different techniques.
  • the reduction is performed by electrode electrolysis.
  • SUBSTITUTE SHEET (RULE 26) made of 316L stainless steel for both the cathode and the anode and a liquid recirculation system that allows smooth agitation without magnetic or mechanical elements.
  • a power supply is used in which the voltage and current are controlled.
  • the electrolysis can be performed using lead electrodes, among others.
  • the reduction can be done by a cementation process.
  • This process consists of the spontaneous reaction between soluble copper II and metallic iron, in which copper is reduced to metallic copper and iron is oxidized to soluble iron II.
  • an electrorefining can be additionally carried out.
  • the bioleaching plant can be automatically controlled by an automatic control system/device (not shown in Fig. 2).
  • This automatic plant control device can record the main process variables (pH, DO, redox) and the measurement of the liquid levels of the leaching columns 17A, 17B to act on the pumps and solenoid valves that allow optimal sequencing. between units without downtime and increasing productivity.
  • the control device allows the automatic integration of the different elements, minimizes work times and corrects any deviation that may arise.
  • the decision making is integrated with the detection system explained above, such as the automatic tracking system for color change reactions. In addition, it allows the start-up of the automatic bioleaching plant. It also allows the semi-continuous leaching stage to occur in programmable batches between loading and unloading of the waste to be recovered without the system stopping continuous production.
  • bioleaching plant operates under a cyclic process that allows the iron II solution to be recirculated to the biomass column 15, thus reducing the need for iron in the biological process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Se proporciona un método para recuperación biológica de metales en residuos eléctricos y electrónicos, comprende a) inocular una serie de microorganismos hierro-oxidantes, aeróbicos, y un medio mineral o fertilizantes en una columna de biomasa inmovilizada; b) realizar una fase de oxidación biológica de unos iones de hierro II presentes en el medio mineral o fertilizantes a unos iones de hierro III; c) irrigar una fase líquida al interior de unas columnas de lixiviación que albergan una placa de circuito impreso de un material eléctrico o de un residuo electrónico del cual se quieren recuperar los metales, produciéndose una reducción de los iones de hierro III oxidando los metales, a hierro II, y separar los metales a partir de su solubilización; y d) extraer de la solución los metales. La invención opera bajo un proceso cíclico que permite que la solución de hierro II sea recirculada a la columna de biomasa.

Description

MÉTODO PARA RECUPERACIÓN BIOLÓGICA DE METALES EN RESIDUOS ELÉCTRICOS Y ELECTRÓNICOS
>o de la Técnica
La presente invención se refiere en general a métodos de reciclaje de residuos eléctricos y electrónicos. En particular, la invención se refiere a un método para la recuperación biológica de metales en residuos eléctricos y electrónicos, por ejemplo de placas de circuito impreso (PCB) (por ejemplo, de teléfonos móviles, entre otros) o de cualquier material eléctrico en general.
Antecedentes de la Invención
Las placas de circuito impreso (PCBs) son componentes comunes en la mayoría de los equipos eléctricos y electrónicos. Los desechos eléctricos y electrónicos, que consisten en ordenadores, televisores, teléfonos móviles, equipos de música y otros equipos electrónicos desechados, se han convertido en un problema importante en todo el mundo. Los rápidos avances tecnológicos hacen que los productos eléctricos y electrónicos se vuelvan obsoletos en poco tiempo. Esto, junto con las ventas explosivas en electrónica de consumo, significa que se están desechando más productos, aunque todavía funcionen. Uno de los principales problemas con este tipo de residuos eléctricos y electrónicos es que están llenos de productos químicos tóxicos -arsénico, plomo, mercurio, retardantes de llama policromados, entre otros. Por otra parte, los desechos eléctricos y electrónicos también contienen una parte importante de metales valiosos como el cobre, la plata o el oro, que podrían recuperarse para volver a utilizarse.
En general, para recuperar estos metales de la matriz mineral (minerales) o de la matriz plástica (desechos electrónicos) se emplean métodos químicos. Últimamente, la biolixiviación ha sido probada como una alternativa a los procesos químicos, mostrando importantes ventajas tales como bajo costo, alta eficiencia y amigabilidad con el medio ambiente.
La biolixiviación se basa en la liberación de metales de concentrados metálicos, como residuos eléctricos y electrónicos, utilizando la actividad de microorganismos.
Se conocen algunas patentes o solicitudes de patente en este sector.
Por ejemplo, el documento CN105734284A da a conocer un tratamiento de biolixiviación de residuos electrónicos de PCBs, promovido mediante el uso de biocarbono. Según el método,
HOJA DE REEMPLAZO (REGLA 26) a través de radicales de oxidación-reducción en el biocarbono, el metal cobre en la PCB es biolixiviado por microorganismos Fe <2+>. La capacidad de oxidación-reducción del biocarbono y la biolixiviación se combinan, de manera que el Fe <2+> es oxidado para obtener Fe <3+>, y la tasa de lixiviación del metal de cobre es incrementada.
Los documentos CN103898550, CN102091711 y CN202519343 se basan en el uso de las bacterias acidófilas Acidithiobacillus para la lixiviación del cobre. La patente CN104328280 muestra un método y un equipo para la biolixiviación con Acidithiobacillus ferrooxidans para extraer cobre, oro y níquel de las PCB. En la patente CN104862475 la biolixiviación con Acidithiobacillus ferrooxidans ha sido mejorada mediante la proliferación de la bacteria en condiciones de bajo nivel de oxígeno disuelto para maximizar su crecimiento, y luego aumentando la concentración de oxígeno cuando se añaden las PCB para maximizar la lixiviación del cobre. La solicitud de patente CN105039704 se basa en la biolixiviación con Thiobacillus acidophilus (reclasificado como Acidiphilium acidophilum) para la extracción de cobre.
El documento CN103397195A divulga un dispositivo de recuperación y un método de recuperación de cobre metálico de un tablero de circuito impreso de desecho. El dispositivo comprende una pila de combustible microbiana, un reactor para la lixiviación del cobre de la placa de circuito impreso de desecho y un reactor de oxidación biológica de Fe<2+>. El método de recuperación comprende: en primer lugar, las bacterias oxidantes del hierro en el reactor de oxidación biológica de Fe<2+> oxidan el Fe<2+> en Fe<3+>; a continuación, la solución que contiene Fe<3+> se introduce en el reactor para la lixiviación del cobre de la placa de circuito impreso de desecho, el cobre metálico se oxida en Cu<2+> por Fe<3+>, y al mismo tiempo, el Fe<3+> se reduce en Fe<2+>; y, por último, la solución que contiene Cu<2+> se introduce en una cámara catódica de la pila de combustible microbiana, el Cu<2+> se reduce a cobre metálico en la cámara catódica de la pila de combustible microbiana, mientras que el Fe<2+> de la cámara catódica de la pila de combustible microbiana se introduce en el reactor de oxidación biológica de Fe<2+> y luego se oxida a Fe<3+>.
El documento CN107746959B divulga un método de lixiviación biológica en dos etapas para el reciclaje de metales valiosos en una placa de circuito impreso de desecho. El método comprende los siguientes pasos: S1 , se lleva a cabo un pretratamiento, en concreto, la placa de circuito impreso de desecho se rompe y luego se clasifica, obteniéndose así partículas de metal; S2, se lleva a cabo la lixiviación de los metales no ferrosos, en concreto, se cultiva un microorganismo de lixiviación de minerales en un medio de cultivo que contiene Fe2+, de
HOJA DE REEMPLAZO (REGLA 26) modo que el Fe2+ se convierte en Fe3+, y luego el Fe3+ reacciona con las partículas de metal en el paso S1 , obteniéndose así lixiviado de metales no ferrosos y residuos de metales preciosos; S3, se lleva a cabo la lixiviación de metales preciosos, concretamente, los residuos de metales preciosos de la etapa S2 reaccionan con una solución de agente de lixiviación de metales preciosos formada por el modo en que el agua de cal absorbe el HCN, y así se obtiene el lixiviado de metales preciosos; y S4, el lixiviado de metales no ferrosos de la etapa S2 y el lixiviado de metales preciosos de la etapa S3 se extraen y reciclan correspondientemente.
Por último, la solicitud de patente internacional WO 03006696 divulga un método de extracción de zinc de un mineral con azufre que comprende la biolixiviación del mineral con microorganismos acidófilos.
Exposición de la invención
Ejemplos de realización de la presente invención aportan un método para recuperación biológica de metales en residuos eléctricos y electrónicos. El método comprende inocular una serie de microorganismos hierro-oxidantes, aeróbicos, y un medio mineral formado por diferentes sales en disolución o fertilizantes en una columna de biomasa inmovilizada (es decir un biorreactor de cama fija); y realizar, en la columna de biomasa, una primera fase de oxidación biológica de unos iones de hierro II presentes en el medio mineral o fertilizantes a unos iones de hierro III. La primera fase está catalizada por la actividad metabólica de los microorganismos hierro-oxidantes y se realiza dentro de un rango de temperatura prefijado, controlando el pH del medio mineral o fertilizantes. Particularmente, la primera fase tiene una duración de al menos dos horas.
Seguidamente, se irriga una fase líquida que comprende los iones de hierro III al interior de al menos una columna de lixiviación con unas dimensiones adecuadas para albergar una o vahas placas de circuito impreso de un material eléctrico o de un residuo electrónico del cual se quieren recuperar los metales, produciéndose en contacto con dicha fase líquida una reducción de los iones de hierro III oxidando los metales, a hierro II, y se separan los metales de interés a partir de su solubilización. Particularmente, la citada placa o placas de circuito impreso están en contacto con la fase líquida en el interior de la(s) columna(s) de lixiviación durante al menos una hora. Finalmente, se extraen de la solución los metales de interés. Cabe señalar que en otras realizaciones, en lugar de la placa (o placas) de circuito impreso, la(s) columna(s) de lixiviación puede(n) albergar cualquier material eléctrico del que se vayan a recuperar los metales.
HOJA DE REEMPLAZO (REGLA 26) Particularmente, las diferentes etapas del método propuesto se realizan de manera continua.
En un ejemplo de realización, una vez realizada la primera fase, los microorganismos hierro- oxidantes que se han desprendido de la columna de biomasa se separan, fuera de la columna de biomasa, proporcionando una fase sólida que comprende los microorganismos hierro-oxidantes y la citada fase líquida que comprende los iones de hierro III.
La fase sólida con los microorganismos hierro-oxidantes puede recircularse (o devolverse) a la columna de biomasa.
En otros ejemplos de realización, la primera fase en vez de, o adicionalmente, realizarse dentro de un rango de temperatura prefijado también puede realizarse con control de redox y/o de oxígeno.
El citado rango de temperatura prefijado puede estar comprendido entre 25 y 35 eC, preferiblemente 30eC.
En un ejemplo de realización, se utiliza adicionalmente un agente estructurador que facilita la percolación del líquido cuando el mencionado material eléctrico o la mencionada placa o placas de circuito impreso entran en contacto con el líquido de lixiviación. Este agente estructurante puede ser el propio material plástico de la placa o placas de circuito impreso.
En un ejemplo de realización, los ciclos de renovación del líquido de lixiviación se realizan en la(s) mencionada(s) columna(s) de lixiviación y la(s) placa(s) de circuitos impresos (o dicho material eléctrico) agitándose. De este modo se reduce el tiempo necesario y se obtienen mejores recuperaciones biológicas. Alternativamente, en otra realización, los circuitos impresos pueden estar estáticos dentro de la(s) columna(s) de lixiviación, es decir, no agitados, como en un proceso de lixiviación en pilas.
En un ejemplo de realización, cuando los metales de interés han sido extraídos de la solución, se reducen los mismos de su estado soluble a un estado metálico mediante un proceso de cementación que proporciona una reacción espontánea entre un cobre II soluble extraído de la placa o placas de circuito impreso o material eléctrico y el hierro metálico. En la citada reacción espontánea el cobre II soluble se reduce a metal de cobre y el hierro metálico se oxida a hierro II soluble. El proceso de cementación en este ejemplo de realización se realiza en un tanque agitado mecánicamente a una velocidad comprendida en un rango de 120 a 140 rpm a temperatura ambiente.
HOJA DE REEMPLAZO (REGLA 26) En otro ejemplo de realización, la reducción de los metales extraídos de interés al estado metálico se realiza mediante electrólisis utilizando electrodos de acero inoxidable o de plomo. En otra realización, la reducción puede realizarse mediante una técnica de precipitación.
En un ejemplo de realización, el método realiza además un seguimiento automático de la oxidación biológica de los iones de hierro II a iones de hierro III y/o un seguimiento automático de una extracción de un metal (por ejemplo cobre, entre otros metales) en la(s) columna(s) de lixiviación por medio de uno o más sensores ópticos que controlan de forma continua y no invasiva un cambio de color del líquido de la(s) columna(s) de lixiviación como resultado de la solubilización de los metales que se extraen. Ambos seguimientos pueden realizarse simultáneamente.
En un ejemplo de realización, al menos, la oxidación biológica rastreada es procesada, calibrada y/o diagnosticada mediante una unidad de procesamiento conectada operativamente al sensor o sensores ópticos.
En un ejemplo de realización, la irrigación se lleva a cabo en lotes programados y controlados mediante un sistema/dispositivo de control automático con componentes hardware y software programables.
En un ejemplo de realización, se utilizan dos columnas de lixiviación. En este caso, las dos columnas de lixiviación pueden sincronizarse mediante el sistema/dispositivo de control automático. Las columnas de lixiviación pueden intercambiar automáticamente la fase líquida de una columna a la otra a través del dispositivo de control automático. El dispositivo de control automático está operativamente conectado con el mencionado sensor o sensores ópticos. Así, en una realización particular, el cambio de una columna a la otra se realiza en función del cambio de color detectado por el/los sensor(es) óptico(s), como se ha explicado anteriormente.
En un ejemplo de realización, cuando los metales de interés han sido extraídos de la solución, el hierro II soluble obtenido se recicla a la primera fase de oxidación biológica para reducir la cantidad de hierro requerido en la misma, es decir, el proceso es cíclico. Asimismo, para mejorar el contacto entre el material eléctrico o los residuos electrónicos y los iones de hierro III, y para asegurar que todos los iones de hierro III entrantes reaccionen con los metales, los iones de hierro III también pueden recircularse desde una parte inferior de la(s) columna(s) de lixiviación a una parte superior de la(s) misma(s).
HOJA DE REEMPLAZO (REGLA 26) En un ejemplo de realización, las diferentes sales del medio mineral incluyen una sal de hierro II y sales que aportan nitrógeno, azufre, fósforo, magnesio, potasio y calcio. Preferiblemente, la composición del medio mineral comprende: 15-60g/L de FeSO4 ■ 7 H2O, 3 g/L de (NH4)2SO4; 0.5 g/L de MgSO4 ■ 7H2O, 0.5 g/L de K2HPO4, 0.10 g/L de KCI y 0.01 g/L de Ca(NOs)2 ■ 4 H2O. Asimismo, el pH del medio mineral se controla en un rango entre 1.7 y 1 .8 mediante la adición de un ácido o una base. Por ejemplo, mediante la adición de ácido sulfúrico en una concentración del 10%.
En algunas realizaciones, se puede utilizar chatarra de hierro como fuente de hierro.
En un ejemplo de realización, se realiza además un seguimiento de la actividad de los microorganismos hierro-oxidantes en la columna de biomasa, por ejemplo mediante:
- extraer y limpiar un material de soporte, tal y como una pieza (sólida) de muestra, de la columna de biomasa;
- preparar una solución con la misma composición del medio mineral pero sin la sal de hierro FeSO4 ■ 7 H2O;
- extraer una cierta cantidad de muestra, preferiblemente 2 ml, del líquido resultante de haber limpiado el material de soporte y centrifugar durante unos 10 minutos a 5000 rpm;
- eliminar el sobrante y añadir otra cierta cantidad, preferiblemente 2 ml, del medio mineral pero sin la sal de hierro FeSO4 ■ 7 H2O;
- estabilizar la temperatura poniendo la muestra en un baño termostático a 30eC;
- añadir otra cierta cantidad, preferiblemente 2 ml, del medio mineral con la sal de hierro FeSO4 ■ 7 H2O y homogeneizar;
- extraer una cierta cantidad, preferiblemente 1 ml, del medio mineral e introducirla en un recipiente que se trae nuevamente a dicho baño termostático con agitación magnética;
- introducir una microsonda de oxígeno en dicho recipiente hasta estar en contacto con la muestra o introducir la muestra en el recipiente con un sensor adherido al mismo; y
- registrar mediante dicha microsonda o sensor la evolución de la concentración de oxígeno y a partir de la pendiente de evolución temporal obtenida determinar la actividad biológica de la muestra.
Asimismo, se puede relacionar la actividad de la muestra con la concentración de microorganismos hierro-oxidantes (es decir, biomasa) mediante un calibrado previo, por
HOJA DE REEMPLAZO (REGLA 26) ejemplo mediante la determinación de la actividad biológica de vahas concentraciones de biomasa conocidas y correlacionarlas con dichos parámetros de actividad y concentración
En un ejemplo de realización, también se realiza una calibración de la microsonda de oxígeno en un medio acuoso libre de oxígeno y en condiciones de saturación a una temperatura constante.
En un ejemplo de realización, la citada etapa de irrigación se realiza a temperatura ambiente y a un pH inferior a 1.8.
Breve descripción de los dibujos
Las anteriores y otras características y ventajas se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización, meramente ilustrativa y no limitativa, con referencia a los dibujos que la acompañan, en los que:
La Fig. 1 es un diagrama de flujo que ¡lustra un método para recuperación biológica de metales en residuos eléctricos y electrónicos, según un ejemplo de realización de la presente invención.
La Fig. 2 ¡lustra esquemáticamente la planta de biolixiviación propuesta para implementación del método propuesto.
Descripción detallada de unos ejemplos de realización
Con referencia a la Fig. 1 , en la misma se muestra un ejemplo de realización del método propuesto para la recuperación biológica de metales en residuos eléctricos y electrónicos. Como se observa en la figura, en el paso 101 , se introducen en una columna de biomasa inmovilizada 15 (ver Fig. 2) una serie de microorganismos hierro-oxidantes, aeróbicos, y un medio mineral formado por diferentes sales en solución o fertilizantes como NPK. A continuación, en la etapa 102, se realiza una primera fase de oxidación biológica de los iones de hierro II presentes en el mencionado medio mineral o fertilizantes a iones de hierro III en la columna de biomasa 15. Esta primera fase es catalizada por la actividad metabólica de los microorganismos hierro-oxidantes, y se realiza dentro de un rango de temperatura previamente fijado entre 25 y 35eC, preferentemente 30eC, controlando el pH del medio mineral o de los fertilizantes. Particularmente, la primera fase tiene una duración de al menos dos horas para poder asegurar un contacto adecuado entre los microorganismos y la solución de hierro II. Posteriormente, en la etapa 103, se riega una fase líquida que comprende iones de hierro III en dos columnas de lixiviación 17A, 17B dispuestas para
HOJA DE REEMPLAZO (REGLA 26) alojar uno o vahos circuitos impresos de material eléctrico o residuos electrónicos, reduciéndose los iones de hierro III a hierro II oxidando los metales, y separándose los metales de interés mediante la disolución de los mismos. Finalmente, en la etapa 104, los metales de interés se extraen de la disolución. Cabe señalar que el método es eficaz utilizando una sola columna de lixiviación.
En un ejemplo de realización, los microorganismos hierro-oxidantes que se han desprendido de la columna de biomasa 15 se separan de la misma, proporcionando así una fase sólida que comprende los microorganismos hierro-oxidantes y la citada fase líquida que comprende los iones de hierro III.
Cabe señalar que, en lugar de la mencionada placa (o placas) de circuitos impresos, la(s) columna(s) de lixiviación puede(n) albergar cualquier material eléctrico del que se vayan a recuperar los metales.
Con referencia ahora a la Fig. 2, en la misma se muestra un ejemplo de realización de la planta de biolixiviación utilizada para implementar el método propuesto. Una diferencia clave en comparación con las plantas de biolixiviación conocidas es que en este caso la columna de biomasa 15 está inmovilizada.
La columna de biomasa 15 consiste en una columna rellena de espuma de poliuretano u otro material de relleno que permite la inmovilización de la biomasa responsable de la oxidación de los iones de hierro II a iones de hierro III. En esta columna 15, la solución de iones de hierro II que los microorganismos oxidan a iones de hierro III es recirculada mediante un colector 14 en la parte inferior de la columna 15 que recoge el lixiviado y permite su recirculación mediante una bomba hacia la parte superior de la columna 15.
Un difusor permite la distribución del líquido. El colector 14 dispone de un puerto de entrada y otro de salida para trabajar en modo continuo. Este colector 14 mide y controla el pH por debajo de 1 ,8 unidades, así como el oxígeno disuelto y el potencial redox y se calienta mediante una resistencia o baño calefactor/termostático 16 que asegura una temperatura óptima de la biomasa (no inferior a 30e). En la línea de recirculación se instala un eyector venturi que permite la aspiración de aire a través de la circulación del propio líquido, lo que asegura la disponibilidad de oxígeno y la fuente de carbono necesaria para el mantenimiento de la actividad microbiana. La ventilación también puede realizarse a partir de aire comprimido y difusores o cualquier otro sistema equivalente. En la columna 15 se miden las pérdidas de carga para garantizar que no se produzcan atascos por un crecimiento excesivo. La columna 15 dispone de puertos que permiten la extracción puntual de
HOJA DE REEMPLAZO (REGLA 26) trozos/piezas de material de soporte para realizar microrrespiraciones de la biomasa inmovilizada y asegurar que la actividad biológica es óptima durante la operación.
El funcionamiento del reactor fijo de biomasa 15 permite varias ventajas como son la reducción del volumen del reactor, el aumento de la tasa de producción específica del lixiviado de Fe (III), un líquido mucho más claro que genera menos precipitados y minimizar la pérdida de biomasa a la salida del biorreactor 15 ya que la biomasa queda retenida en su interior y no es necesario un decantador posterior (disminución de equipos auxiliares).
El tanque 1 1 es un tanque de una solución ácida que permite controlar el pH y se activa cuando el pH supera las 1 ,8 unidades. El tanque 12, por el contrario, eleva el pH si baja demasiado; este tanque 12 proporciona una base. Esta misma función la realiza el tanque de ácido 20 para las columnas de lixiviación 17A, 17B. El tanque 13 es un tanque de medio mineral que compensa el ciclo cerrado por las pérdidas que puedan producirse (por evaporación, por ejemplo) o por la purga que se realiza periódicamente (‘Residuos’ como se indica en la Fig. 2).
La fuente de hierro puede introducirse en forma de solución de sales de hierro (FeSO4) o a través de material residual con contenido en hierro procedente de otros procesos industriales que en condiciones de trabajo se disuelve y genera una fuente continua de hierro para generar el lixiviado. Preferentemente, la columna de biomasa se alimenta de forma continua con un medio mineral con la siguiente composición 15-60g/L de FeSO4 ■ 7 H2O, 3 g/L de (NH^SC ; 0.5 g/L de MgSO4 ■ 7H2O, 0.5 g/L de K2HPO4, 0.10 g/L de KCI y 0.01 g/L de Ca(NOs)2 ■ 4 H2O. Cabe señalar que también pueden utilizarse otros medios minerales o composiciones diferentes.
La columna de biomasa 15 también permite la producción biológica de ácido como agente de lixiviación a partir de subproductos o residuos con azufre como fuente de energía para Acidithiobacillus ferrooxidans y Acidithiobacillus thiooxidans (por ejemplo, desulfuración de biogás).
Para preparar el medio mineral (aprox. 1 litro) se disuelven todas las sales (excepto la sal de hierro) en 700ml de agua desionizada y se ajusta el pH de esta solución a 1 .75, por ejemplo con ácido sulfúrico al 10%. Luego se disuelve la sal de hierro en 300ml de agua desionizada y se ajusta el pH de esta solución a 1.75, también con ácido sulfúrico al 10%. Finalmente se juntan las dos soluciones y se comprueba el pH resultado y, si hace falta, se reajusta nuevamente a un pH de 1 .75 con ácido sulfúrico al 10%.
HOJA DE REEMPLAZO (REGLA 26) El seguimiento de la actividad de los microorganismos hierro-oxidantes en la columna de biomasa 15 se puede realizar mediante técnicas microrespirométricas (consumo de oxígeno), por ejemplo: extrayendo y limpiando una o más piezas de un material de soporte de la columna de biomasa 15; preparando una solución con la misma composición del medio mineral pero sin la sal de hierro FeSC ■ 7 H2O; extrayendo una cierta cantidad de muestra del reactor 10, preferiblemente 2 mi (no limitativo puesto que se podrían extraer otras cantidades) del líquido resultante de haber lavado la pieza(s), y centrifugando durante unos 10 minutos a 5000 rpm; eliminando el sobrante y añadiendo otra cierta cantidad, preferiblemente también 2 ml, del medio mineral pero sin la sal de hierro FeSC ■ 7 H2O; estabilizando la temperatura poniendo la muestra en un baño termostático a unos 30eC; añadiendo otra cierta cantidad, preferiblemente 2 ml, del medio mineral con la sal de hierro FeSÜ4 ■ 7 H2O y homogeneizándolo; extrayendo una cierta cantidad, preferiblemente 1 mi, del medio mineral e introducirla en un recipiente que se trae nuevamente al baño termostático con agitación magnética; introduciendo una microsonda de oxígeno en el recipiente hasta estar en contacto con la muestra, o alternativamente, introduciendo directamente la muestra en el recipiente con un sensor, por ejemplo un sensor óptico, adherido al recipiente; y registrando mediante la microsonda o sensor la evolución de la concentración de oxígeno y a partir de la pendiente de evolución temporal obtenida determinando la actividad biológica de la muestra.
El proceso anterior permite detectar la actividad de los microorganismos hierro-oxidantes con volúmenes de muestra muy pequeños, inferiores a 2 mL de muestra.
La microsonda de oxígeno puede calibrarse en un medio acuoso libre de oxígeno (desplazamiento con nitrógeno) y en condiciones de saturación (oxigenando mediante un difusor hasta conseguir una señal estable) a temperatura constante.
Durante el funcionamiento de la planta, las columnas de lixiviación 17A, 17B se riegan con la solución de hierro III de forma que las placas entran en contacto con la solución y se produce la reacción química que permite extraer los metales de interés. Para mejorar el contacto entre los residuos y el hierro III y asegurar que todo el hierro III reacciona con los metales, preferentemente parte del lixiviado obtenido en la parte inferior de las columnas de lixiviación 17A, 17B se recircula de nuevo a la parte superior de las columnas de lixiviación 17A, 17B mediante un colector 18 en la parte inferior de las columnas 17A, 17B. Se requiere un tiempo de contacto dentro de las columnas de lixiviación 17A, 17B de al menos una hora para asegurar una lixiviación eficiente de los metales contenidos en la(s) placa(s) de circuito impreso.
HOJA DE REEMPLAZO (REGLA 26) Para facilitar la percolación del lixiviado, se puede utilizar adicionalmente un agente estructurante al realizar el mencionado contacto.
Asimismo, se pueden realizar ciclos de renovación de líquidos en las columnas de lixiviación 17A, 17B, agitando las placas. De este modo se reduce el tiempo necesario y se obtienen mejores recuperaciones biológicas.
El proceso tiene lugar a temperatura ambiente y a un pH inferior a 1 ,8. Es importante mantener el pH por debajo de este valor para evitar la precipitación de hierro III que reduciría la eficacia del proceso y, por tanto, la eficacia de la extracción de metales. Para llevar a cabo este ajuste del pH, se puede realizar un control del pH en el líquido recirculado a las columnas de lixiviación 17A, 17B.
Aunque no se muestra en la Fig. 2, la planta de biolixiviación también puede incluir un sistema de detección formado por uno o más sensores ópticos que se acopla a la columna de biomasa 15 y/o a las columnas de lixiviación 17A, 17B o cerca de ellas. El (los) sensor(es) óptico(s) está(n) configurado(s) para monitorear continuamente, y de manera no invasiva, los cambios de color asociados con la disolución de los metales y el grado de progreso de las reacciones de oxidación y reducción de los metales. El sistema de detección detecta la finalización de las reacciones y las soluciones para tomar decisiones en la automatización y el control de la planta de biolixiviación. Esta detección reduce los tiempos de espera en la integración de las diferentes etapas del proceso. El mecanismo de funcionamiento puede basarse en un emisor de luz y un sensor programadle RGB (detector rojo-azul-verde) e IR (infrarrojo) con un microprocesador que permite el procesamiento de análisis digital, autocalibración y autodiagnóstico. El sistema de detección de luz puede realizarse por transmisión o por reflexión mediante fotocélulas autorreflexivas. En algunas realizaciones, estos elementos pueden estar integrados y ensamblados en una plataforma adaptada a la columna de biomasa 15 que se va a monitorizar y protegida con una carcasa estanca.
Los sensores ópticos pueden configurarse para realizar el seguimiento de la oxidación biológica de los iones de hierro II a iones de hierro III simultáneamente al seguimiento de una extracción de un metal, por ejemplo cobre, entre otros metales tales como estaño, níquel, manganeso, plata, aluminio, cobalto, indio, oro, plomo, osmio, disprosio, etc. en las columnas de lixiviación 17A, 17B.
La reducción de los metales del estado soluble al estado metálico puede realizarse mediante diferentes técnicas. En una realización, la reducción se realiza por electrólisis con electrodos
HOJA DE REEMPLAZO (REGLA 26) de acero inoxidable 316L tanto para el cátodo como para el ánodo y un sistema de recirculación de líquido que permite una agitación suave sin elementos magnéticos o mecánicos. Se utiliza una fuente de alimentación en la que se controla el voltaje y la corriente. En otras realizaciones, la electrólisis se puede realizar utilizando electrodos de plomo, entre otros.
Alternativamente, la reducción puede realizarse mediante un proceso de cementación. Este proceso consiste en la reacción espontánea entre el cobre II soluble y el hierro metálico, en la que el cobre se reduce a un cobre metálico y el hierro se oxida a un hierro II soluble. Para conseguir una mayor pureza se puede realizar adicionalmente un electrorrefinamiento.
También se contempla la recuperación de metales en estado metálico por precipitación.
La planta de biolixiviación puede ser controlada automáticamente mediante un sistema/dispositivo de control automático (no mostrado en la Fig. 2). Este dispositivo de control automático de la planta puede registrar las principales variables del proceso (pH, OD, redox) y la medición de los niveles de líquido de las columnas de lixiviación 17A, 17B para actuar sobre las bombas y electroválvulas que permiten una óptima secuenciación entre las unidades sin tiempos muertos y aumentando la productividad. El dispositivo de control permite la integración automática de los diferentes elementos, minimiza los tiempos de trabajo y corrige cualquier desviación que pueda surgir. La toma de decisiones se integra con el sistema de detección anteriormente explicado, como el sistema de seguimiento automático de las reacciones de cambio de color. Además, permite la puesta en marcha de la planta de biolixiviación automática. También permite que la etapa semicontinua de lixiviación se produzca en lotes programadles entre cargas y descargas de los residuos a recuperar sin que el sistema deje de producir de forma continua.
Cabe destacar que la planta de biolixiviación opera bajo un proceso cíclico que permite recircular la solución de hierro II a la columna de biomasa 15, por lo que se reduce la necesidad de hierro del proceso biológico.
El alcance de la presente invención se define en las reivindicaciones adjuntas.
HOJA DE REEMPLAZO (REGLA 26)

Claims

REIVINDICACIONES
1 . Un método para recuperación biológica de metales en residuos eléctricos y electrónicos, comprende: a) inocular una serie de microorganismos hierro-oxidantes, aeróbicos, y un medio mineral formado por diferentes sales en disolución o fertilizantes en una columna de biomasa inmovilizada (15); b) realizar, en la columna de biomasa (15), una primera fase de oxidación biológica de unos iones de hierro II presentes en dicho medio mineral o fertilizantes a unos iones de hierro III, en donde la primera fase está catalizada por la actividad metabólica de los microorganismos hierro-oxidantes y se realiza dentro de un rango de temperatura prefijado, controlando el pH del medio mineral o fertilizantes, y en donde dicha primera etapa tiene una duración de al menos dos horas; c) irrigar una fase líquida que comprende los iones de hierro III al interior de al menos una columna de lixiviación (17A, 17B) configurada para albergar una o más placas de circuito impreso de un material eléctrico o de un residuo electrónico del cual se quieren recuperar los metales, produciéndose una reducción de los iones de hierro III oxidando los metales, a hierro II, y separar los metales de interés a partir de su solubilización, en donde la placa o placas de circuito impreso están en contacto con la fase líquida en el interior de la columna de lixiviación (17A, 17B) durante al menos una hora; y d) extraer de la solución dichos metales de interés.
2. El método de la reivindicación 1 , en donde previamente a la etapa c) el método comprende separar los microorganismos hierro-oxidantes que se han desprendido dentro de la columna de biomasa (15), al exterior de la columna de biomasa (15), proporcionándose una fase sólida que comprende los microorganismos hierro-oxidantes y la fase líquida que comprende los iones de hierro III.
3. El método de la reivindicación 1 o 2, en donde la etapa d) comprende reducir los metales de interés extraídos de su estado soluble a un estado metálico mediante un proceso de cementación que proporciona una reacción espontánea entre un cobre II soluble extraído de la placa o placas de circuito impreso o material eléctrico y el hierro metálico, en donde en dicha reacción espontánea el cobre II soluble se reduce a metal de cobre y el hierro metálico se oxida a hierro II soluble.
HOJA DE REEMPLAZO (REGLA 26)
4. El método de la reivindicación 1 o 2, en donde la etapa d) comprende reducir los metales de interés extraídos de su estado soluble a un estado metálico mediante electrólisis utilizando electrodos de acero inoxidable o plomo.
5. El método según una cualquiera de las reivindicaciones anteriores, que comprende además seguir automáticamente la oxidación biológica de los iones de hierro II a iones de hierro III y/o una extracción de un metal en la columna de lixiviación (17A, 17B), que es al menos una, utilizando uno o más sensores ópticos que controlan de forma continua y no invasiva un cambio de color del líquido de la(s) columna(s) de lixiviación (17A, 17B) como resultado de la solubilización de los metales que se extraen.
6. El método según la reivindicación 5, en donde ambos seguimientos se realizan simultáneamente.
7. El método según la reivindicación 5, en donde al menos el seguimiento de la oxidación biológica se procesa, calibra y/o diagnostica utilizando una unidad de procesamiento operativamente conectada al sensor/sensores ópticos.
8. El método según una cualquiera de las reivindicaciones anteriores, en donde la irrigación de la etapa c) se realiza por lotes, programados y controlados utilizando un dispositivo de control automático.
9. El método según una cualquiera de las reivindicaciones anteriores, en donde en la etapa c) la fase líquida se irriga en dos columnas de lixiviación (17A, 17B), que automáticamente intercambian la fase líquida de una columna a otra por medio del dispositivo de control automático.
10. El método según una cualquiera de las reivindicaciones anteriores, en donde las diferentes sales del medio mineral incluyen una sal de hierro II y sales que aportan nitrógeno, azufre, fósforo, magnesio, potasio y calcio.
1 1. El método según la reivindicación 10, en donde el medio mineral comprende la siguiente composición: 15-60g/L de FeSC ■ 7 H2O, 3 g/L de (NF ^SC ; 0.5 g/L de MgSC ■ 7H2O, 0.5 g/L de K2HPO4, 0.10 g/L de KCI y 0.01 g/L de Ca(NO3)2 ■ 4 H2O.
12. El método según una cualquiera de las reivindicaciones anteriores, que comprende además realizar un seguimiento de la actividad de dichos microorganismos hierro-oxidantes en la columna de biomasa (15) en la etapa b) mediante: extraer y limpiar un material de soporte de la columna de biomasa (15);
HOJA DE REEMPLAZO (REGLA 26) 15 preparar una solución con la misma composición del medio mineral pero sin la sal de hierro FeSC ■ 7 H2O; extraer una cierta cantidad de muestra, preferiblemente 2 ml, del líquido resultante de haber limpiado el material de soporte y centrifugar durante unos 10 minutos a 5000 rpm; eliminar el sobrante y añadir otra cierta cantidad, preferiblemente 2 ml, del medio mineral pero sin la sal de hierro FeSC ■ 7 H2O; estabilizar la temperatura poniendo la muestra en un baño termostático (16) a 30eC; añadir otra cierta cantidad, preferiblemente 2 ml, del medio mineral con la sal de hierro FeSC ■ 7 H2O y homogeneizar; extraer una cierta cantidad, preferiblemente 1 ml, del medio mineral e introducirla en un recipiente que se trae nuevamente a dicho baño termostático (16) con agitación magnética; introducir una microsonda de oxígeno en dicho recipiente hasta estar en contacto con la muestra o introducir la muestra en el recipiente con un sensor adherido al mismo; y registrar mediante dicha microsonda o sensor la evolución de la concentración de oxígeno y a partir de la pendiente de evolución temporal obtenida determinar la actividad biológica de la muestra.
13. El método según la reivindicación 12, que comprende además: relacionar la actividad de la muestra con la concentración de microorganismos hierro-oxidantes mediante un calibrado previo; y/o realizar una calibración de la microsonda de oxígeno en un medio acuoso libre de oxígeno y en condiciones de saturación a una temperatura constante.
14. El método de la reivindicación 1 , en donde la etapa c) comprende además recircular el hierro II de una parte de la columna de lixiviación (17A, 17B), que es al menos una, a una parte superior de la misma, y en donde la etapa c) se realiza a temperatura ambiente y a un pH inferior a 1 .8.
15. El método según una cualquiera de las reivindicaciones anteriores, que comprende además: e) recircular la solución a la columna de biomasa (15).
HOJA DE REEMPLAZO (REGLA 26)
PCT/ES2021/070069 2021-01-28 2021-01-28 Método para recuperación biológica de metales en residuos eléctricos y electrónicos WO2022162252A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES2021/070069 WO2022162252A1 (es) 2021-01-28 2021-01-28 Método para recuperación biológica de metales en residuos eléctricos y electrónicos
EP21721961.7A EP4286548A1 (en) 2021-01-28 2021-01-28 Method for biological recovery of metals from electrical and electronic waste
US18/273,597 US20240141457A1 (en) 2021-01-28 2021-01-28 Method for biological recovery of metals from electrical and electronic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070069 WO2022162252A1 (es) 2021-01-28 2021-01-28 Método para recuperación biológica de metales en residuos eléctricos y electrónicos

Publications (1)

Publication Number Publication Date
WO2022162252A1 true WO2022162252A1 (es) 2022-08-04

Family

ID=75690308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070069 WO2022162252A1 (es) 2021-01-28 2021-01-28 Método para recuperación biológica de metales en residuos eléctricos y electrónicos

Country Status (3)

Country Link
US (1) US20240141457A1 (es)
EP (1) EP4286548A1 (es)
WO (1) WO2022162252A1 (es)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006696A1 (en) 2001-07-13 2003-01-23 Teck Cominco Metals Ltd. Heap bioleaching process for the extraction of zinc
CN102091711A (zh) 2010-12-14 2011-06-15 惠州市雄越保环科技有限公司 一种废弃印刷线路板的回收处理装置
CN202519343U (zh) 2012-03-02 2012-11-07 常州纺织服装职业技术学院 废弃线路板中铜回收系统
CN103397195A (zh) 2013-08-09 2013-11-20 内蒙古科技大学 废弃印刷电路板中金属铜的回收装置与回收方法
CN103898550A (zh) 2014-04-14 2014-07-02 常州纺织服装职业技术学院 一种线路板中铜的回收方法
CN104328280A (zh) 2014-10-15 2015-02-04 上海第二工业大学 一种废弃挠性线路板中全金属成分的回收方法及设备
CN104862475A (zh) 2015-05-13 2015-08-26 江苏理工学院 氧化亚铁硫杆菌浸取废弃印刷电路板中铜的方法
CN105039704A (zh) 2015-07-07 2015-11-11 安徽中大印制电路有限公司 一种废旧印刷电路板中铜回收工艺
CN105734284A (zh) 2016-03-10 2016-07-06 中国科学院城市环境研究所 一种印刷电路板中金属铜的高效生物浸出技术
CN107746959A (zh) 2017-11-17 2018-03-02 中山大学 一种全值回收废旧线路板中有价金属的两步生物浸出方法和装置
WO2019206755A1 (en) * 2018-04-25 2019-10-31 Universitat Politecnica De Catalunya Method for the biological recovery of metals in electric and electronic waste

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006696A1 (en) 2001-07-13 2003-01-23 Teck Cominco Metals Ltd. Heap bioleaching process for the extraction of zinc
CN102091711A (zh) 2010-12-14 2011-06-15 惠州市雄越保环科技有限公司 一种废弃印刷线路板的回收处理装置
CN202519343U (zh) 2012-03-02 2012-11-07 常州纺织服装职业技术学院 废弃线路板中铜回收系统
CN103397195A (zh) 2013-08-09 2013-11-20 内蒙古科技大学 废弃印刷电路板中金属铜的回收装置与回收方法
CN103898550A (zh) 2014-04-14 2014-07-02 常州纺织服装职业技术学院 一种线路板中铜的回收方法
CN104328280A (zh) 2014-10-15 2015-02-04 上海第二工业大学 一种废弃挠性线路板中全金属成分的回收方法及设备
CN104862475A (zh) 2015-05-13 2015-08-26 江苏理工学院 氧化亚铁硫杆菌浸取废弃印刷电路板中铜的方法
CN105039704A (zh) 2015-07-07 2015-11-11 安徽中大印制电路有限公司 一种废旧印刷电路板中铜回收工艺
CN105734284A (zh) 2016-03-10 2016-07-06 中国科学院城市环境研究所 一种印刷电路板中金属铜的高效生物浸出技术
CN107746959A (zh) 2017-11-17 2018-03-02 中山大学 一种全值回收废旧线路板中有价金属的两步生物浸出方法和装置
WO2019206755A1 (en) * 2018-04-25 2019-10-31 Universitat Politecnica De Catalunya Method for the biological recovery of metals in electric and electronic waste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOCHENG HONG ET AL: "Novel Sustainable Metal Removal by Biologically Produced Ferric Sulphate", DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2011 SECOND INTERNATIONAL CONFERENCE ON, IEEE, 5 August 2011 (2011-08-05), pages 784 - 787, XP032064179, ISBN: 978-1-4577-0755-1, DOI: 10.1109/ICDMA.2011.192 *

Also Published As

Publication number Publication date
US20240141457A1 (en) 2024-05-02
EP4286548A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
Baniasadi et al. Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review
Mahmoud et al. A review of sulfide minerals microbially assisted leaching in stirred tank reactors
Ilyas et al. Biotechnological recycling of hazardous waste PCBs using Sulfobacillus thermosulfidooxidans through pretreatment of toxicant metals: Process optimization and kinetic studies
Hubau et al. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs)
Rawlings Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates
Ghassa et al. Novel bioleaching of waste lithium ion batteries by mixed moderate thermophilic microorganisms, using iron scrap as energy source and reducing agent
Cao et al. Precipitation of valuable metals from bioleaching solution by biogenic sulfides
Deng et al. Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea leach
Tezyapar Kara et al. Bioleaching metal-bearing wastes and by-products for resource recovery: A review
RU2009106948A (ru) Извлечение молибдена из содержащих молибден сульфидных материалов с помощью биологического выщелачивания в присутствии железа
CN102534210A (zh) 金属矿堆浸-厌氧浓缩转化-生物浸出提取工艺
Natal'ya et al. Two-stage bacterial–chemical oxidation of refractory gold-bearing sulfidic concentrates
Ubaldini et al. Gold recovery from a refractory pyrrhotite ore by biooxidation
Nili et al. Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor
WO2022162252A1 (es) Método para recuperación biológica de metales en residuos eléctricos y electrónicos
ES2707353B2 (es) Metodo para recuperacion biologica de metales en residuos electricos y electronicos
US20080207462A1 (en) DNA fragments array from biomining microorganisms and method for detection of them
Vargas et al. Biological and chemical control in copper bioleaching processes: When inoculation would be of any benefit?
Rawlings Relevance of cell physiology and genetic adaptability of biomining microorganisms to industrial processes
Bouffard et al. Modeling pyrite bioleaching in isothermal test columns with the HeapSim model
US8268038B2 (en) High temperature leaching process
Vardanyan et al. Sequential biologically assisted extraction of Cu and Zn from printed circuit boards (PCB)
Kumari et al. Electronic waste-a journey from global menace to wealth generation by its effective management strategy
Doshi et al. Bioleaching of lateritic nickel ore using chemolithotrophic micro organisms (Acidithiobacillus ferrooxidans)
Srivastava et al. Urban mining of precious metals with cyanide as lixiviant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21721961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273597

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021721961

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021721961

Country of ref document: EP

Effective date: 20230828