WO2022161459A1 - Procédé et appareil de planification inter-porteuses dans des communications mobiles - Google Patents

Procédé et appareil de planification inter-porteuses dans des communications mobiles Download PDF

Info

Publication number
WO2022161459A1
WO2022161459A1 PCT/CN2022/074580 CN2022074580W WO2022161459A1 WO 2022161459 A1 WO2022161459 A1 WO 2022161459A1 CN 2022074580 W CN2022074580 W CN 2022074580W WO 2022161459 A1 WO2022161459 A1 WO 2022161459A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
carrier pattern
carrier
processor
slots
Prior art date
Application number
PCT/CN2022/074580
Other languages
English (en)
Inventor
Abdellatif Salah
Original Assignee
Mediatek Singapore Pte. Ltd.
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd., Mediatek Inc. filed Critical Mediatek Singapore Pte. Ltd.
Priority to EP22745331.3A priority Critical patent/EP4268530A1/fr
Priority to CN202280010975.5A priority patent/CN116746262A/zh
Priority to US18/262,793 priority patent/US20240089963A1/en
Publication of WO2022161459A1 publication Critical patent/WO2022161459A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure is generally related to mobile communications and, more particularly, to dynamic and semi-static cross-carrier scheduling using PUCCH carrier pattern for latency enhancement and UCI transmission enhancement with respect to user equipment and network apparatus in mobile communications.
  • HARQ-ACK hybrid automatic repeat request-acknowledgement
  • the user equipment (UE) needs to report HARQ-ACK information for corresponding downlink receptions in a HARQ-ACK codebook.
  • the HARQ-ACK codebook should be transmitted in a slot indicated by a value of a HARQ feedback timing indicator field in a corresponding downlink control information (DCI) format.
  • the DCI format should also indicate the physical uplink control channel (PUCCH) resource scheduled for the HARQ-ACK information transmission.
  • PUCCH physical uplink control channel
  • HARQ-ACK multiplexing can be used to facilitate HARQ-ACK information transmission.
  • Multiple HARQ-ACK feedbacks corresponding to multiple physical downlink shared channel (PDSCH) transmissions may be accumulated, multiplexed and transmitted to the network apparatus at once.
  • One PUCCH resource may be used to carry multiple HARQ-ACK feedbacks to be transmitted in the same slot.
  • URLLC Ultra-Reliable and Low Latency Communication
  • a general URLLC requirement is that a packet of size 32 bytes shall be transmitted within 1 millisecond end-to-end latency with a success probability of 10 -5 .
  • URLLC traffic is typically sporadic and short whereas low-latency and high-reliability requirements are stringent.
  • the control reliability of URLLC has to be stricter than the data reliability which is up to 10 -6 BLER. Accordingly, allowing only one PUCCH resource for HARQ feedback bits transmission in an uplink slot will add to transmission latency.
  • Multi-link operation is introduced to increase system capacity and transmission efficiency of the communication systems.
  • Multi-link operation can be implemented by carrier aggregation (CA) or dual connectivity (DC) , where additional links are used to increase the amount of data that can be transferred to and from the UE.
  • the UE can be configured with more than one radio links (e.g., component carriers) and can connect to more than one network nodes (e.g., serving cells) .
  • cross-carrier scheduling is supported to improve transmission efficiency and reduce latency.
  • Cross-carrier scheduling enables the UE to connect to different network nodes for receiving the downlink data on different carriers.
  • Cross-carrier scheduling may also be used to balance the loads from traffic and scheduling across different component carriers.
  • the downlink scheduling assignments on physical downlink control channel are only valid for the component carrier (CC) on which they were transmitted.
  • the downlink scheduling assignments can be received on a CC other than the one on which PDCCH is received.
  • uplink control information (UCI) transmission e.g., PUCCH
  • PUCCH carrier is configured to a single cell within a PUCCH cell group.
  • TDD time division duplex
  • the uplink/downlink TDD pattern is the bottleneck for the URLLC latency.
  • TDD allows uplink and downlink to use the entire frequency spectrum, but in different time slots. Time is divided up into short slots and some are designated for uplink while others are designated for downlink. This approach enables asymmetric traffic and time-varying uplink and downlink demands.
  • An objective of the present disclosure is to propose solutions or schemes that address the aforementioned issues pertaining to dynamic and semi-static cross-carrier scheduling for latency enhancement and UCI transmission enhancement with respect to user equipment and network apparatus in mobile communications.
  • a method may involve an apparatus receiving a PDCCH on a CC in a PUCCH cell group.
  • the method may also involve the apparatus receiving a PDSCH on a CC in the PUCCH cell group scheduled by the PDCCH.
  • the method may further involve the apparatus receiving a PUCCH carrier pattern semi-statically configured via a RRC signal or dynamically configured via a DCI.
  • the method may further involve the apparatus transmitting UCI corresponding to the downlink data on a PUCCH on a CC according to the PUCCH carrier pattern.
  • a method may involve an apparatus receiving downlink data on a CC.
  • the method may also involve the apparatus receiving a PUCCH carrier pattern on the CC via a semi-static configuration or a dynamic and semi-static configuration.
  • the method may further involve the apparatus performing a PUCCH carrier switching according to the PUCCH carrier pattern when transmitting UCI corresponding to the downlink data.
  • an apparatus may include a transceiver and a processor coupled to the transceiver.
  • the transceiver may be configured to wirelessly communicate with a network node of a wireless network.
  • the processor may be configured to receive, via the transceiver, a PDCCH on a CC in a PUCCH cell group.
  • the processor may also be configured to receive, via the transceiver, downlink data on a PDSCH on a CC in the PUCCH cell group scheduled by the PDCCH.
  • the processor may be further configured to receive, via the transceiver, a PUCCH carrier pattern semi-statically configured via a RRC signal or dynamically configured via a DCI.
  • the processor may be further configured to transmit, via the transceiver, UCI corresponding to the downlink data on a PUCCH on a CC according to the PUCCH carrier pattern.
  • LTE Long-Term Evolution
  • LTE-Advanced Long-Term Evolution-Advanced
  • LTE-Advanced Pro 5th Generation
  • NR New Radio
  • IoT Internet-of-Things
  • NB-IoT Narrow Band Internet of Things
  • IIoT Industrial Internet of Things
  • 6G 6th Generation
  • FIG. 1 is a diagram depicting an example scenario under schemes in accordance with implementations of the present disclosure.
  • FIG. 2 is a diagram depicting an example scenario under schemes in accordance with implementations of the present disclosure.
  • FIG. 3 is a block diagram of an example communication system in accordance with an implementation of the present disclosure.
  • FIG. 4 is a flowchart of an example process in accordance with an implementation of the present disclosure.
  • FIG. 5 is a flowchart of an example process in accordance with an implementation of the present disclosure.
  • Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to semi-static and dynamic cross-carrier scheduling for latency enhancement with respect to user equipment and network apparatus in mobile communications.
  • a number of possible solutions may be implemented separately or jointly. That is, although these possible solutions may be described below separately, two or more of these possible solutions may be implemented in one combination or another.
  • PUCCH carrier is configured to a single cell within a PUCCH cell group.
  • the uplink/downlink TDD pattern is the bottleneck for the URLLC latency.
  • TDD allows uplink and downlink to use the entire frequency spectrum, but in different time slots. Time is divided up into short slots and some are designated for uplink while others are designated for downlink. This approach enables asymmetric traffic and time-varying uplink and downlink demands.
  • PUCCH can only be scheduled in uplink slots, in an event that TDD pattern allocate more slots as downlink slots, the duration between uplink slots will be drawn too long and cause long latency.
  • the present disclosure proposes a number of schemes pertaining to dynamic and semi-static cross-carrier scheduling for latency enhancement and UCI transmission enhancement with respect to the UE and the network apparatus.
  • a CA system of TDD carriers with an appropriate time offset between uplink slots on different CCs is supported.
  • the UE can be configured with dynamic and semi-static cross-carrier scheduling for PUCCH. Switching of CC used for PUCCH can help to reduce the latency for CA with two or multiple carriers having different TDD patterns. Accordingly, by applying the schemes of the present disclosure, the performance of UCI transmission can be improved to reduce alignment delay/latency. Applications with URLLC requirements can benefit from the enhancements achieved by the implementations of the present disclosure.
  • FIG. 1 illustrates example scenario 100 under schemes in accordance with implementations of the present disclosure.
  • Scenario 100 involves a UE and a plurality of network nodes, which may be a part of a wireless communication network (e.g., an LTE network, a 5G network, an NR network, an IoT network or an NB-IoT network) .
  • Scenario 100 illustrates an example of semi-static cross-carrier scheduling for PUCCH.
  • the UE may be configured with a plurality of CCs such as a first CC (e.g., CC 1) , a second CC (e.g., CC 2) , and a third CC (e.g., CC 3) .
  • the first CC, the second CC, and the third CC may have identical or different TDD patterns for uplink/downlink slots.
  • the ration of downlink slot to uplink slot is 3: 1 for CC 1, 4:1 for CC 2, and 3: 1 for CC 3.
  • the UE may be configured with semi-static switching of CC used for PUCCH.
  • the UE may receive a PDCCH on the first CC in a PUCCH cell group.
  • the PDCCH may schedule a PDSCH on the first CC.
  • the UE may receive downlink data on the PDSCH on the first CC scheduled by the PDCCH.
  • the UE may further receive a PUCCH carrier pattern on the first CC via a semi-static configuration or a dynamic configuration.
  • the network node may define the PUCCH carrier pattern and semi-statically signal the PUCCH carrier pattern to the UE via a radio resource control (RRC) signal or dynamically signal the PUCCH carrier pattern to the UE via downlink control information (DCI) .
  • RRC radio resource control
  • the PUCCH may be scheduled on another CC (e.g., second CC or third CC) different from the first CC.
  • the PUCCH carrier pattern may indicate scheduled PUCCH carrier for transmitting the UCI.
  • the PUCCH carrier pattern configures CC 2 that is available for transmitting UCI in first slot S1, configures CC 3 that is available for transmitting UCI in second slot S2, configures CC 1 that is available for transmitting UCI in third slot S3, and configures CC 3 that is available for transmitting UCI in sixth slot S6.
  • the PUCCH carrier pattern does not indicate any CC in the fourth slot S4 and the fifth slot S5.
  • the DCI may indicate which slot to transmit the UCI. Therefore, the UE will know which CC is used for PUCCH transmission, and transmit the UCI (e.g., HARQ-ACK) corresponding to the downlink data on the PUCCH on the second CC according to the PUCCH carrier pattern.
  • the UE may perform a PUCCH carrier switching, from the first CC to the second CC or to the third CC, when transmitting UCI corresponding to the downlink data.
  • the UE may receive downlink data on the PDSCH on another CC (e.g., second CC or third CC) different from first CC in the PUCCH cell group scheduled by the PDCCH. Therefore, the PUCCH may be scheduled on another CC different from the CC that the downlink data has been received. In an event that the UE receives downlink data on the second CC, the PUCCH may be scheduled on the first CC or the third CC within the PUCCH cell group. In an event that the UE receives downlink data on the third CC, the PUCCH may be scheduled on the first CC or the second CC within the PUCCH cell group.
  • another CC e.g., second CC or third CC
  • the UE may receive the PUCCH carrier pattern (e.g., via RRC configuration or DCI indication) configuring the first CC (e.g., CC 1) , the second CC (e.g., CC 2) , and the third CC (e.g., CC 3) within the PUCCH cell group that can be used to transmit the UCI.
  • appointing multiple serving cells within PUCCH cell group to use for PUCCH may be supported (e.g., per PDSCH-ServingCell configuration) .
  • PUCCH-Cell field of PDSCH-ServingCellConfig should be allowed to list at most K elements of ServCellIndex.
  • the UCI carried by the PUCCH is independent from the CC selected for PUCCH transmission (e.g., CC 2) .
  • a single PUCCH carrier pattern is configured per PUCCH cell group.
  • the PUCCH carrier pattern may configure the first CC and the second CC within one cell group, and the third CC may be configured in another cell group.
  • the PUCCH carrier pattern may be configured with the first CC and the second CC for transmitting UCI.
  • the PUCCH carrier pattern may configured with the first CC, the second CC, and the third CC of different cell groups for transmitting UCI.
  • PUCCH carrier switching across cell groups is configurable to the UE (e.g. via RRC) .
  • PUCCH carrier pattern used for the UCI transmission may reduce the latency for carrier aggregation operated within two or multiple inter-band carriers having different TDD pattern.
  • the PUCCH carrier pattern may configure a primary cell (PCell) and a secondary cell (SCell) with the PUCCH cell group that can be used to transmit the PUCCH.
  • PCell primary cell
  • SCell secondary cell
  • the PUCCH carrier pattern is configured in the time domain.
  • the PUCCH carrier pattern is a time pattern.
  • a plurality of slots are configured in the time domain.
  • the PUCCH cell group may have two cells that are PUCCH carriers (e.g. primary cell (PCell) and secondary cell (SCell) ) .
  • the UE could be signaled with the PUCCH carrier pattern based on slots, and the PUCCH carrier pattern indicates one of the PCell and the SCell for at least one of the slots.
  • PUCCH carrier pattern [S, P, P, S, P] means using SCell for PUCCH transmission on the first slot, using PCell for PUCCH transmission on the second slot, using PCell for PUCCH transmission on the third slot, using SCell for PUCCH transmission on the fourth slot, and using PCell for PUCCH transmission on the fifth slot.
  • the PUCCH carrier pattern indicates one of the first CC, the second CC, and the third CC for at least one of the slots.
  • the PUCCH carrier pattern defines one of the PCell/PSCell/PUCCH-SCell for each of the slots, so each of the slots is mapping to one of the PCell and the SCell.
  • each of the slots may configured as uplink slot or downlink slot, uplink resources may be scheduled in the uplink slot, and downlink resources may be scheduled in the downlink sot.
  • Each of uplink slots and its corresponding CC will be configured in the PUCCH carrier pattern for PUCCH transmission.
  • the UE may only transmit UCI in the uplink slot and its corresponding CC that is pre-determined in the PUCCH carrier pattern.
  • the PUCCH carrier pattern may be configured with periodicity.
  • the UE may receive the PUCCH carrier pattern periodically.
  • Each of the received PUCCH carrier pattern may remain the same as previous received PUCCH carrier pattern.
  • each of the received PUCCH carrier pattern may have different time pattern, length, and the number of CCs from previous received PUCCH carrier pattern.
  • the UE may receive a configuration configuring the PUCCH carrier pattern and a period for applying the PUCCH carrier pattern. Then, the UE may apply the PUCCH carrier pattern periodically for transmitting UCI based on the received PUCCH carrier pattern and pre-determined period until receiving another PUCCH carrier pattern from the network node.
  • the periodicity and length of the PUCCH carrier pattern for semi-static PUCCH carrier switching may directly be determined by the RRC configuration of the time domain pattern pucchCellPattern.
  • the length of the PUCCH carrier pattern may be variable from 1 to maximum number of the slots in a frame.
  • slot length gets different depending on numerology, and numerology indicates subcarrier spacing type. For normal cyclic prefix (CP) and slot configuration 0, if numerology is 0, the corresponding subcarrier spacing is 15 kHz, and the slot length is 1 ms. If numerology is 1, the corresponding subcarrier spacing is 30 kHz, and the slot length is 0.5 ms. If numerology is 2, the corresponding subcarrier spacing is 60 kHz, and the slot length is 0.25 ms. If numerology is 3, the corresponding subcarrier spacing is 120 kHz, and the slot length is 0.125 ms.
  • numerology indicates subcarrier spacing type. For normal cyclic prefix (CP) and slot configuration 0, if numerology is 0, the corresponding subcarrier spacing is 15 kHz, and the slot length is 1 ms. If numerology is 1, the corresponding subcarrier spacing is 30 kHz, and the slot length is
  • the corresponding subcarrier spacing is 240 kHz, and the slot length is 0.0625 ms. Therefore, slot length gets shorter as subcarrier spacing gets wider.
  • minimum length (i.e., one slot) of the PUCCH carrier pattern may get shorter as subcarrier spacing gets wider, and maximum length (i.e., one frame) of the PUCCH carrier pattern may be the same at different subcarrier spacing.
  • the first CC, the second CC, and the third CC may be configured with different numerologies.
  • the numerology of the CC for receiving PDCCH and downlink data is different from the numerology of the CC for transmitting UCI
  • timing offsets in the scheduling assignment are interpreted in the PDSCH numerology.
  • the PCell and the SCell may be configured with different numerologies.
  • the numerology of the PUCCH cell (e.g., PCell) for receiving PDCCH and downlink data is different from the numerology of the PUCCH cell (e.g., SCell) for transmitting UCI
  • timing offsets in the scheduling assignment are interpreted in the PDSCH numerology.
  • the PUCCH carrier pattern may be configured at slot granularity.
  • the minimum scheduling time granularity of the PUCCH carrier pattern is one slot of the PCell/PSCell/PUCCH-SCell.
  • the length of slot in time varies depending on numerology. As mentioned above, slot length gets shorter as subcarrier spacing gets wider. Therefore, in perspective of the slot length, the slot granularity gets smaller as subcarrier spacing gets wider. In most numerology, minimum time scheduling granularity of NR is much smaller than 1 ms.
  • the DCI may further indicate which slot is used for transmitting the UCI. This behaviour may be signalled by K1 index/value, or any other affordable way to signal 1 bit. K1 value points to the slot on which the PUCCH is going to be transmitted. However, with the PUCCH carrier changing, the unit of K1 needs to be clarified.
  • K1 is PDSCH-to-HARQ_feedback timing indicator.
  • the PDSCH-to-HARQ-timing-indicator field values provided in the DCI message map to values for a set of number of slots provided by higher layer parameter dl-DataToUL-ACK under PUCCH-Config in RRC Reconfig message (K1 Value) .
  • K1 value For PUCCH carrier switching based on PUCCH carrier pattern via semi-static configuration or dynamic configuration, K1 value needs to be interpreted based on the numerology of the CC for UCI transmission.
  • FIG. 2 is a diagram depicting an example scenario under schemes in accordance with implementations of the present disclosure.
  • PDSCH is received in the second slot S2.
  • K1 value is 4 which means the UCI needs to be transmitted in the fourth slot (i.e., the sixth slot S6) after the second slot S2.
  • K1 granularity is determined based on the CC on which the DCI has been received.
  • the UE may receive DCI on PDCCH on CC1, and the unit of K1 granularity may be one slot.
  • the slot length gets shorter as subcarrier spacing gets wider. Therefore, in perspective of the slot length, the K1 granularity gets smaller as subcarrier spacing gets wider.
  • the K1 granularity may be determined based on the slot length of the CC1.
  • K1 granularity is determined based on the CC on which the PDSCH transmission has been received.
  • the PDSCH may be received on the same CC as the DCI has been received. Therefore, K1 granularity determined based on the CC on which the PDSCH transmission has been received may be the same as K1 granularity determined based on the CC on which the DCI has been received.
  • K1 granularity is determined based on the smallest or the largest SCS among the PUCCH carriers within the PUCCH cell group. For example, reference is made to FIG. 1, Assuming that the SCS of the first CC (e.g., CC 1) is 15 kHz, the SCS of the second CC (e.g., CC 2) is 30 kHz, and the SCS of the third CC (e.g., CC 3) is 120 kHz, in an event that K1 granularity is determined based on the smallest SCS, K1 granularity may be one slot length 1 ms with the 15 kHz SCS. In an event that K1 granularity is determined based on the largest SCS, K1 granularity may be one slot length 0.125 ms with 120 kHz SCS.
  • the SCS of the first CC e.g., CC 1
  • the SCS of the second CC e.g., CC 2
  • K1 granularity is configured to the UE via RRC signal or DCI (e.g., to use the PCell or another SCell granularity) .
  • the set of values of K1 may be defined per PUCCH cell group. In some implementations, the set of values of K1 may be defined per PUCCH cell group with the largest SCS of PUCCH carriers as a granularity reference.
  • the UE may scan the PUCCH carrier according to some defined rules to select the carrier on which the PUCCH is taking place. If the scan fails and no carrier is available, the UE may not expect to receive K1 pointing to a slot where PUCCH resources are not available on any PUCCH carrier. In another embodiment, if the scan fails and no carrier is available, the UE may cancel PUCCH transmission if the received K1 is pointing to a slot on which PUCCH resources are not available on any PUCCH carrier. In another embodiment, if the scan fails and no carrier is available, the UE may postpone PUCCH transmission if the received K1 is pointing to a slot on which PUCCH resources are not available on any PUCCH carrier. In another embodiment, flexible symbols within slots are not considered for PUCCH transmission. However, in order to further reduce latency, flexible symbols use for PUCCH transmission is configurable (e.g. via RRC signal) .
  • Order of PUCCH carriers to be selected is defined according to some rules that could be semi-statically defined. Specifically, the carriers order is semi-statically configured to the UE, and PCell could be always ranked as first priority. The carriers order is determined implicitly determined by the UE according to some rules or criterions. For example, carrier with most UL opportunities and carrier with largest SCS may have higher priority. In some implementations, the PUCCH carrier could be determined by the UE using some available information like the UCI payload and/or PUCCH resource and/or K1. If multiple carriers verify all the conditions for PUCCH carrier selection, the carrier with the lowest or the highest index may be selected.
  • the UE could be configured with the possibility to change the PUCCH carrier to avoid the intra-UE multiplexing.
  • Intra-UE multiplexing could be taken into consideration when selecting the PUCCH carrier. For example, if intra-UE multiplexing is needed on the PUCCH carrier then PUCCH carrier deprioritized or not selected or its priority in the priority list is changed and for example the next PUCCH carrier is selected.
  • Intra-UE multiplexing rules could be restricted to some PUCCH carriers. For example, PCell only.
  • PUCCH carrier priority list could be changed/amended by the UE according to the intra-UE multiplexing instances. For example, PUCCH carriers on which intra-UE multiplexing is needed are relegated to lower priority in the list.
  • FIG. 3 illustrates an example communication system 300 having an example communication apparatus 310 and an example network apparatus 320 in accordance with an implementation of the present disclosure.
  • Each of communication apparatus 310 and network apparatus 320 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to semi-static and dynamic cross-carrier scheduling for latency enhancement and UCI transmission enhancement with respect to user equipment and network apparatus in wireless communications, including scenarios/schemes described above as well as processes 400 and 500 described below.
  • Communication apparatus 310 may be a part of an electronic apparatus, which may be a UE such as a portable or mobile apparatus, a wearable apparatus, a wireless communication apparatus or a computing apparatus.
  • communication apparatus 310 may be implemented in a smartphone, a smartwatch, a personal digital assistant, a digital camera, or a computing equipment such as a tablet computer, a laptop computer or a notebook computer.
  • Communication apparatus 310 may also be a part of a machine type apparatus, which may be an IoT, NB-IoT, or IIoT apparatus such as an immobile or a stationary apparatus, a home apparatus, a wire communication apparatus or a computing apparatus.
  • communication apparatus 310 may be implemented in a smart thermostat, a smart fridge, a smart door lock, a wireless speaker or a home control center.
  • communication apparatus 310 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more reduced-instruction set computing (RISC) processors, or one or more complex-instruction-set-computing (CISC) processors.
  • IC integrated-circuit
  • RISC reduced-instruction set computing
  • CISC complex-instruction-set-computing
  • Communication apparatus 310 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of communication apparatus 310 are neither shown in FIG. 3 nor described below in the interest of simplicity and brevity.
  • other components e.g., internal power supply, display device and/or user interface device
  • Network apparatus 320 may be a part of an electronic apparatus, which may be a network node such as a base station, a small cell, a router or a gateway.
  • network apparatus 320 may be implemented in an eNodeB in an LTE, LTE-Advanced or LTE-Advanced Pro network or in a gNB in a 5G, NR, IoT, NB-IoT or IIoT network.
  • network apparatus 320 may be implemented in the form of one or more IC chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, or one or more RISC or CISC processors.
  • Network apparatus 320 may include at least some of those components shown in FIG.
  • Network apparatus 320 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of network apparatus 320 are neither shown in FIG. 5 nor described below in the interest of simplicity and brevity.
  • components not pertinent to the proposed scheme of the present disclosure e.g., internal power supply, display device and/or user interface device
  • each of processor 312 and processor 322 may be implemented in the form of one or more single-core processors, one or more multi-core processors, or one or more CISC processors. That is, even though a singular term “a processor” is used herein to refer to processor 312 and processor 322, each of processor 312 and processor 322 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure.
  • each of processor 312 and processor 322 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific purposes in accordance with the present disclosure.
  • each of processor 312 and processor 322 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including semi-static and dynamic cross-carrier scheduling for latency enhancement with respect to user equipment and network apparatus in mobile communications in accordance with various implementations of the present disclosure.
  • communication apparatus 310 may also include a transceiver 316 coupled to processor 312 and capable of wirelessly transmitting and receiving data.
  • communication apparatus 310 may further include a memory 314 coupled to processor 312 and capable of being accessed by processor 312 and storing data therein.
  • network apparatus 320 may also include a transceiver 326 coupled to processor 322 and capable of wirelessly transmitting and receiving data.
  • network apparatus 320 may further include a memory 324 coupled to processor 322 and capable of being accessed by processor 322 and storing data therein. Accordingly, communication apparatus 310 and network apparatus 320 may wirelessly communicate with each other via transceiver 316 and transceiver 326, respectively.
  • each of communication apparatus 310 and network apparatus 320 is provided in the context of a mobile communication environment in which communication apparatus 310 is implemented in or as a communication apparatus or a UE and network apparatus 320 is implemented in or as a network node of a communication network.
  • processor 312 may receive, via transceiver 316, a PDCCH on a CC in a PUCCH cell group.
  • the PDCCH may schedule a PDSCH on a CC the same as or different from the CC that the PDCCH has been received.
  • Processor 312 may receive, via transceiver 316, downlink data on the PDSCH on the CC in the PUCCH cell group scheduled by the PDCCH. Then, processor 312 may further receive a PUCCH carrier pattern semi-statically configured via a radio resource control (RRC) signal or dynamically configured via downlink control information (DCI) .
  • RRC radio resource control
  • DCI downlink control information
  • the processor 312 may perform a PUCCH carrier switching, from the first CC to the second CC, and transmit UCI corresponding to the downlink data on the PUCCH on the CC according to the PUCCH carrier pattern.
  • the PUCCH carrier pattern is configured by the network apparatus 320.
  • the PUCCH carrier pattern configures the first CC and the second CC within a PUCCH cell group that can be used to transmit the UCI.
  • the PUCCH carrier pattern configures a primary cell (PCell) and a secondary cell (SCell) within the PUCCH cell group that can be used to transmit the PUCCH.
  • the PUCCH carrier pattern is configured in a time domain, and a plurality of slots are configured in the time domain.
  • the PUCCH carrier pattern indicates one of the first CC and the second CC for at least one of the slots.
  • the PUCCH carrier pattern indicates one of the PCell and the SCell for at least one of the slots.
  • each of the slots is mapping to one of the PCell and the SCell.
  • a length of the PUCCH carrier pattern is variable from 1 to a maximum number of the slots.
  • the PCell and the SCell are configured with different numerologies.
  • the PUCCH carrier pattern is configured at a slot granularity.
  • the first CC and the second CC are configured with different numerologies.
  • the PUCCH carrier pattern is configured with periodicity.
  • FIG. 4 illustrates an example process 400 in accordance with an implementation of the present disclosure.
  • Process 400 may be an example implementation of schemes described above, whether partially or completely, with respect to dynamic cross-carrier scheduling for latency enhancement with the present disclosure.
  • Process 400 may represent an aspect of implementation of features of communication apparatus 310.
  • Process 400 may include one or more operations, actions, or functions as illustrated by one or more of blocks 410, 420, 430 and 440. Although illustrated as discrete blocks, various blocks of process 400 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks of process 400 may executed in the order shown in FIG. 4 or, alternatively, in a different order.
  • Process 400 may be implemented by communication apparatus 310 or any suitable UE or machine type devices. Solely for illustrative purposes and without limitation, process 400 is described below in the context of communication apparatus 310.
  • Process 400 may begin at block 410.
  • process 400 may involve processor 312 of apparatus 310 receiving a PDCCH on a CC in a PUCCH cell group. Process 400 may proceed from block 410 to block 420.
  • process 400 may involve processor 312 receiving downlink data on a PDSCH on a CC in the PUCCH cell group scheduled by the PDCCH.
  • Process 400 may proceed from block 420 to block 430.
  • process 400 may involve processor 312 receiving PUCCH carrier pattern semi-statically configured via a RRC signal or dynamically configured via DCI. Process 400 may proceed from block 430 to block 440.
  • process 400 may involve processor 312 transmitting UCI corresponding to the downlink data on a PUCCH on a CC according to the PUCCH carrier pattern.
  • the PUCCH carrier pattern configures the first CC and the second CC within a cell group that can be used to transmit the UCI.
  • the PUCCH carrier pattern configures a primary cell (PCell) and a secondary cell (SCell) within the PUCCH cell group that can be used to transmit the PUCCH.
  • the PUCCH carrier pattern is configured in a time domain.
  • a plurality of slots are configured in the time domain, and the PUCCH carrier pattern indicates one of the first CC and the second CC for at least one of the slots. In some implementations, the PUCCH carrier pattern indicates one of the PCell and the SCell for at least one of the slots.
  • each of the slots is mapping to one of the PCell and the SCell.
  • a length of the PUCCH carrier pattern is variable from 1 to a maximum number of the slots.
  • the PCell and the SCell are configured with different numerologies.
  • the PUCCH carrier pattern is configured based on a slot granularity.
  • the first CC and the second CC are configured with different numerologies.
  • the PUCCH carrier pattern is configured with periodicity.
  • FIG. 5 illustrates an example process 500 in accordance with an implementation of the present disclosure.
  • Process 500 may be an example implementation of schemes described above, whether partially or completely, with respect to UCI transmission enhancement with the present disclosure.
  • Process 500 may represent an aspect of implementation of features of communication apparatus 310.
  • Process 500 may include one or more operations, actions, or functions as illustrated by one or more of blocks 510, 520, 530 and 540. Although illustrated as discrete blocks, various blocks of process 500 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks of process 500 may executed in the order shown in FIG. 5 or, alternatively, in a different order.
  • Process 500 may be implemented by communication apparatus 310 or any suitable UE or machine type devices. Solely for illustrative purposes and without limitation, process 500 is described below in the context of communication apparatus 310.
  • Process 500 may begin at block 510.
  • process 500 may involve processor 312 of apparatus 310 receiving downlink data on a CC. Process 500 may proceed from 510 to 520.
  • process 500 may involve processor 312 receiving a PUCCH carrier pattern on the CC via a semi-static configuration or a dynamic configuration. Process 500 may proceed from 520 to 530.
  • process 500 may involve processor 312 performing a PUCCH carrier switching according to the PUCCH carrier pattern when transmitting UCI corresponding to the downlink data.
  • process 500 may involve processor 312 applying the PUCCH carrier pattern periodically.
  • any two components so associated can also be viewed as being “operably connected” , or “operably coupled” , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable” , to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention concerne diverses solutions de planification inter-porteuses concernant un équipement utilisateur et un appareil de réseau dans des communications mobiles. Un appareil peut recevoir un canal physique de contrôle descendant (PDCCH) sur une porteuse de composante (CC) dans un groupe de cellules PUCCH. L'appareil peut recevoir des données de liaison descendante sur un canal physique partagé descendant (PDSCH) sur une CC dans le groupe de cellules PUCCH planifié par le PDCCH. L'appareil peut recevoir un motif de porteuse de canal physique de contrôle montant (PUCCH) configuré semi-statiquement par l'intermédiaire d'un signal de commande de ressource radio (RRC) ou configuré dynamiquement par l'intermédiaire d'informations de commande de liaison descendante (DCI). L'appareil peut transmettre des informations de commande de liaison montante (UCI) correspondant aux données de liaison descendante sur un PUCCH sur une CC selon le motif de porteuse PUCCH.
PCT/CN2022/074580 2021-01-28 2022-01-28 Procédé et appareil de planification inter-porteuses dans des communications mobiles WO2022161459A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22745331.3A EP4268530A1 (fr) 2021-01-28 2022-01-28 Procédé et appareil de planification inter-porteuses dans des communications mobiles
CN202280010975.5A CN116746262A (zh) 2021-01-28 2022-01-28 移动通信中的跨载波调度的方法和装置
US18/262,793 US20240089963A1 (en) 2021-01-28 2022-01-28 Method and apparatus for cross-carrier scheduling in mobile communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163142516P 2021-01-28 2021-01-28
US63/142,516 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022161459A1 true WO2022161459A1 (fr) 2022-08-04

Family

ID=82654190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074580 WO2022161459A1 (fr) 2021-01-28 2022-01-28 Procédé et appareil de planification inter-porteuses dans des communications mobiles

Country Status (4)

Country Link
US (1) US20240089963A1 (fr)
EP (1) EP4268530A1 (fr)
CN (1) CN116746262A (fr)
WO (1) WO2022161459A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242881A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Explicit indication of uplink control channel resources in carrier aggregation systems
CN109076527A (zh) * 2016-03-31 2018-12-21 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN111903170A (zh) * 2017-03-23 2020-11-06 苹果公司 用于新空口载波聚合的调度和混合自动重传请求操作以及码本设计

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242881A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Explicit indication of uplink control channel resources in carrier aggregation systems
CN109076527A (zh) * 2016-03-31 2018-12-21 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN111903170A (zh) * 2017-03-23 2020-11-06 苹果公司 用于新空口载波聚合的调度和混合自动重传请求操作以及码本设计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "On UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2100574, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971045 *

Also Published As

Publication number Publication date
EP4268530A1 (fr) 2023-11-01
CN116746262A (zh) 2023-09-12
US20240089963A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
US10945256B2 (en) Method and apparatus for reporting hybrid automatic repeat request-acknowledgement information for different service types in mobile communications
WO2021078189A1 (fr) Procédé et appareil de planification dynamique parmi des porteuses dans des communications mobiles
CN103190100B (zh) 发送探测基准信号的方法和设备
US11368260B2 (en) Method and apparatus for reporting hybrid automatic repeat request-acknowledge information in mobile communications
RU2631660C1 (ru) Распределение и использование ресурсов физического канала управления восходящей линии связи
US9730107B2 (en) Method and apparatus for performing cell management in wireless communication system
US11184892B2 (en) Enhancement of new radio PUSCH for URLLC in mobile communications
US20200145143A1 (en) Methods And Apparatus For HARQ Procedure And PUCCH Resource Selection In Mobile Communications
US20210143944A1 (en) Method And Apparatus For Out-Of-Order Hybrid Automatic Repeat Request Feedback In Mobile Communications
WO2019196946A1 (fr) Attribution de ressources dans le domaine temporel pour des informations de commande de liaison descendante compactes dans des communications mobiles
WO2019161804A1 (fr) Conception et opérations d'informations de commande de liaison descendante compacte dans des communications mobiles
US11252710B2 (en) Frequency domain resource allocation for compact downlink control information in mobile communications
WO2022083671A1 (fr) Procédés de signalisation et de signalisation et de configuration dynamique et statique de canal pucch à porteuses croisées dans des communications téléphoniques mobiles
WO2022161459A1 (fr) Procédé et appareil de planification inter-porteuses dans des communications mobiles
WO2022002145A1 (fr) Procédés et appareil pour des transmissions de harq entre porteuses
WO2022247928A1 (fr) Procédé et appareil d'ordonnancement de commutation de porteuse de canal de commande de liaison montante physique (pucch) dans des communications mobiles
WO2022233315A1 (fr) Procédé et appareil de commutation de porteuse de canal de commande de liaison montante physique (pucch) dans des communications mobiles
US20230116002A1 (en) Method And Apparatus For PUCCH Carrier Switching And PUCCH Repetition In Mobile Communications
US20240057109A1 (en) Method And Apparatus For Scheduling Of Multi-Cell Uplink And Downlink Transmissions With Single Downlink Control Information
WO2023207945A1 (fr) Procédé et appareil d'agrégation de spectre efficace avec de multiples groupes d'at dans des communications mobiles
WO2024067090A1 (fr) Procédé et appareil de surveillance de contrôle de budget dans une planification multicellulaire avec une seule information de commande de liaison descendante
WO2023207674A1 (fr) Procédé et appareil de planification de transmissions en liaison montante et en liaison descendante à cellules multiples avec des informations de commande de liaison descendante uniques
US20230403701A1 (en) Methods For Simultaneous PUCCH And PUSCH Transmissions In Intra-Band Carrier Aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010975.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18262793

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022745331

Country of ref document: EP

Effective date: 20230728

NENP Non-entry into the national phase

Ref country code: DE