WO2022160966A1 - 一种uwb系统下新增基站的初始化方法、终端以及系统 - Google Patents

一种uwb系统下新增基站的初始化方法、终端以及系统 Download PDF

Info

Publication number
WO2022160966A1
WO2022160966A1 PCT/CN2021/136906 CN2021136906W WO2022160966A1 WO 2022160966 A1 WO2022160966 A1 WO 2022160966A1 CN 2021136906 W CN2021136906 W CN 2021136906W WO 2022160966 A1 WO2022160966 A1 WO 2022160966A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
area
uwb
coordinates
imu
Prior art date
Application number
PCT/CN2021/136906
Other languages
English (en)
French (fr)
Inventor
董伟
徐昊玮
薛清风
王二力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/263,379 priority Critical patent/US20240118375A1/en
Publication of WO2022160966A1 publication Critical patent/WO2022160966A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of positioning technologies, and in particular, to a method, terminal, and system for initializing a newly added base station in a UWB system.
  • UWB Ultra-Wide Band
  • a UWB system In a smart home, an indoor positioning system based on Ultra-Wide Band (UWB) technology (referred to as a UWB system) is generally used to provide spatial awareness for indoor smart devices (such as universal remote controls, mobile phones).
  • UWB technology is different from traditional communication technology, which realizes wireless transmission by sending and receiving extremely narrow pulses with nanosecond or microsecond level or less. Because the pulse time width is extremely short, it is possible to achieve ultra-wide bandwidth in the spectrum, for example, the bandwidth used is more than 500MHz.
  • UWB technology can also achieve positioning.
  • the signal pulse position can be detected and combined with certain positioning algorithms to calculate the time the signal travels in the air, which is multiplied by the speed of the signal transmission in the air (such as the speed of light). ), that is, the distance between the UWB base station and the UWB tag is obtained to realize positioning.
  • UWB signals have poor penetration, higher requirements for line-of-sight propagation, and poor ranging and positioning accuracy after passing through walls. Therefore, the UWB base station arranged in a certain room (such as a living room) may not be able to provide positioning services for other rooms (such as a bedroom). To this end, it is necessary to set up new UWB base stations in other rooms (such as bedrooms), and establish a new UWB system for measuring the positioning of UWB tags located in other rooms. In other words, different rooms are provided with independent UWB systems, and different navigation coordinate systems are established in different rooms, and the positioning algorithm is quite complicated.
  • the present application provides an initialization method for a newly added base station in a UWB system, which can establish a unified navigation coordinate system in different rooms and simplify the positioning algorithm.
  • an initialization method for a newly added base station in a UWB system including: when a third electronic device is located at a first position in a first area, the third electronic device sends a first UWB signal to the first electronic device, using for measuring the first coordinate corresponding to the first position in the navigation coordinate system; when the third electronic device is located at the first position, also start the IMU measurement of the third electronic device; the third electronic device moves from the first area to the second area ; When the third electronic device is located at the second position in the second area, the third electronic device sends a second UWB signal to the second electronic device for measuring the distance between the third electronic device and the second electronic device when the third electronic device is at the second position , the number of the second positions is at least three; the third electronic device returns to the first area; when the third electronic device is located in the third position of the first area, the third electronic device sends a third UWB signal to the first electronic device , used to measure the second coordinate corresponding to the third position in the
  • the first electronic device is a UWB base station set in the first area, used to measure the position of the device in the first area
  • the second electronic device is a UWB base station set in the second area, used to measure the position of the device in the second area. equipment.
  • the first electronic device determines a navigation coordinate system.
  • the coordinates of the second electronic device in the navigation coordinate system can be obtained by calculation. That is to say, the second electronic device uses the same navigation coordinate system as the first electronic device, so that a unified navigation coordinate system is established in the first area and the second area, which is beneficial to simplify the positioning algorithm.
  • first area and the second area establish a unified navigation coordinate system, when the device to be tested is switched between the first area and the second area, there is no need to perform multiple initial posture alignments, which simplifies user operations and provides user experience.
  • the third electronic device calculates the second electronic device based on the first coordinates, the data measured by the IMU, the second coordinates, and the distance between the third electronic device and the second electronic device when the third electronic device is at the second position.
  • the coordinates in the navigation coordinate system specifically include: the third electronic device calculates and obtains the third coordinate corresponding to the third position according to the first coordinate and the data measured by the IMU; according to the third coordinate corresponding to the third position, and the third For the second coordinate corresponding to the position, calculate the deviation value between the motion data of the third electronic device and the data measured by the IMU; according to the deviation value and the data measured by the IMU, calculate the motion data of the third electronic device; motion data, and the first coordinate corresponding to the first position, calculate the fourth coordinate corresponding to the second position; according to the four coordinates corresponding to the second position, and the distance between the third electronic device and the second electronic device when the third electronic device is in the second position,
  • the coordinates of the second electronic device in the navigation coordinate system are obtained by calculation
  • the UWB measurement of the first electronic device in the first area uses the UWB measurement of the first electronic device in the first area to measure the coordinates of the initial position (ie, the first position) of the third electronic device, and then use the IMU measurement method to calculate the position of the third electronic device in the second area. movement trajectory.
  • the coordinates (ie, the third coordinates) of the end position (ie, the third position) can be calculated. Since the data measured by the IMU will accumulate over time, the error will increase. Then, the coordinates (ie, the second coordinates) of the end point position are obtained by measuring the first electronic device, and the data measured by the first electronic device is more accurate.
  • the deviation of the third coordinate and the second coordinate is used to correct the estimated motion trajectory in the second area, and the corrected motion trajectory can be used to improve the calculated coordinates of the second electronic device in the navigation coordinate system. precision. Furthermore, it is also beneficial to improve the positioning accuracy of other devices measured by the second electronic device.
  • the deviation value between the motion data of the third electronic device and the data measured by the IMU is calculated, specifically: using Karl In the Mann filtering method, the deviation value between the motion data of the third electronic device and the data measured by the IMU is calculated according to the third coordinate corresponding to the third position and the second coordinate corresponding to the third position.
  • the method further includes: when the third electronic device enters the second area again, sending a fourth UWB signal to the second electronic device for measuring the distance between the third electronic device and the second electronic device ;
  • the third electronic device calculates the coordinates of the current position of the third electronic device in the navigation coordinate system based on the distance between the third electronic device and the second electronic device and the coordinates of the second electronic device in the navigation coordinate system. That is to say, according to the movement trajectory of the third electronic device in the second area (that is, the position coordinates of the third electronic device at each moment in the second area can be calculated), and when the third electronic device is in at least three positions with The distance from the second electronic device, the coordinates of the second electronic device can be calculated.
  • the method further includes: when the third electronic device is in the third position, turning off or suspending the IMU measurement of the third electronic device. It can be seen that it is beneficial to turn off the IMU measurement in time and reduce the power consumption of the third electronic device.
  • the second electronic device and the first electronic device have different communication addresses.
  • the second electronic device and the first electronic device have different communication addresses, specifically: the second electronic device and the first electronic device have different communication time slots or pseudo-random code sequences.
  • the first electronic device and the second electronic device may use a communication technology of time division multiple access (TDMA) or code division multiple access (CDMA) for receiving the third electronic device UWB signal sent. Therefore, different communication time slots or pseudo-random code sequences are uniformly allocated to the first electronic device and the second electronic device. Then, each second electronic device in the second area will receive the UWB signal sent to itself in the respective allocated communication time slot, or use its own pseudo-random code sequence to analyze the UWB signal sent to itself.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • the third electronic device when the third electronic device is located at the first position in the first area, the third electronic device sends a first UWB signal to the first electronic device for measuring the first position in the navigation coordinate system Before the corresponding first coordinates, the method further includes: the third electronic device receives a first operation of the user, where the first operation is used to instruct the second electronic device to be initialized; in response to receiving the first operation, the third electronic device sends The first prompt is used to prompt the user to bring the third electronic device into the first area.
  • a prompt method is provided for informing the user how to operate.
  • the method before the third electronic device moves from the first area to the second area, the method further includes: the third electronic device sends out a second prompt for prompting the user to bring the third electronic device into the second area. area.
  • a prompt method is provided for informing the user how to operate.
  • the method before the third electronic device returns to the first area, the method further includes: the third electronic device issues a third prompt for prompting the user to bring the third electronic device back to the first area.
  • a prompt method is provided for informing the user how to operate.
  • the navigation coordinate system is determined according to the first electronic device.
  • the navigation coordinate system is the navigation coordinate system of the UWB system formed by the first electronic device.
  • the number of first electronic devices is at least three, and each first electronic device includes a UWB antenna; or, the number of first electronic devices is one, and the first electronic device includes at least three UWB antenna.
  • the number of second electronic devices is at least three, and each second electronic device includes one UWB antenna; or, the number of second electronic devices is one, and the second electronic device includes at least three UWB antenna.
  • a second aspect provides an initialization method for a newly added base station in a UWB system, comprising: when a third electronic device is located at a first position in a first area, the third electronic device sends a first UWB signal to the first electronic device, and uses for measuring the first coordinate corresponding to the first position in the navigation coordinate system; when the third electronic device is located at the first position, the IMU measurement of the third electronic device is also started; the third electronic device moves from the first area to the second area ; When the third electronic device is located at the second position in the second area, obtain the attitude information when the third electronic device points to the second electronic device, and the number of the second position is at least two; the third electronic device returns to the first area ; When the third electronic device is located at the third position of the first area, the third electronic device sends the third UWB signal to the first electronic device for measuring the second coordinate corresponding to the third position in the navigation coordinate system; The three electronic devices calculate the coordinates of the second electronic device in the navigation coordinate system based on the first coordinates,
  • the first electronic device is a UWB base station set in the first area, used to measure the position of the device in the first area
  • the second electronic device is a UWB base station set in the second area, used to measure the position of the device in the second area. equipment.
  • the first electronic device determines a navigation coordinate system.
  • the coordinates of the second electronic device in the navigation coordinate system can be obtained by calculation. That is to say, the second electronic device uses the same navigation coordinate system as the first electronic device, so that a unified navigation coordinate system is established in the first area and the second area, which is beneficial to simplify the positioning algorithm.
  • first area and the second area establish a unified navigation coordinate system, when the device to be tested is switched between the first area and the second area, there is no need to perform multiple initial posture alignments, which simplifies user operations and provides user experience.
  • the third electronic device points to the second electronic device, including: the preset axis of the carrier coordinate system of the third electronic device points to the second electronic device.
  • the orientation of the mobile phone (or the direction of the mobile phone) can be defined as a direction parallel to the long side of the mobile phone and pointing to the top along the tail of the mobile phone. Therefore, the orientation of the phone can be referred to as the top orientation of the phone.
  • the top of a mobile phone is the part of the body where hardware such as a front-facing camera, infrared transmitter, earpiece, light sensor, or distance sensor is installed.
  • the rear of the phone is the part of the fuselage where the microphone and speaker are installed.
  • the third electronic device calculates and obtains the navigation of the second electronic device based on the first coordinates, the data measured by the IMU, the second coordinates, and the attitude information when the third electronic device points to the second electronic device.
  • the coordinates in the coordinate system specifically include: the third electronic device calculates the third coordinate corresponding to the third position according to the first coordinate and the data measured by the IMU; The second coordinate is to calculate the deviation value between the motion data of the third electronic device and the data measured by the IMU; according to the deviation value and the data measured by the IMU, the motion data of the third electronic device is calculated; according to the motion data of the third electronic device, and the first coordinate corresponding to the first position, calculate the fourth coordinate corresponding to the second position; according to the four coordinates corresponding to the second position, and the attitude information when the third electronic device points to the second electronic device, calculate the second electronic device The coordinates in the navigation coordinate system.
  • the second electronic device when the third electronic device is located in the second area, according to the attitude information of the third electronic device when it points to the second electronic device, and the coordinates of the third electronic device in the navigation coordinate system when pointing, the second electronic device can be calculated coordinate of.
  • yet another method of calculating the coordinates of the second electronic device is provided.
  • the deviation value between the motion data of the third electronic device and the data measured by the IMU is calculated, specifically: using Karl In the Mann filtering method, the deviation value between the motion data of the third electronic device and the data measured by the IMU is calculated according to the third coordinate corresponding to the third position and the second coordinate corresponding to the third position.
  • the method further includes: when the third electronic device enters the second area again, sending a fourth UWB signal to the second electronic device for measuring the distance between the third electronic device and the second electronic device ;
  • the third electronic device calculates the coordinates of the current position of the third electronic device in the navigation coordinate system based on the distance between the third electronic device and the second electronic device and the coordinates of the second electronic device in the navigation coordinate system.
  • the method further includes: when the third electronic device is in the third position, turning off or suspending the IMU measurement of the third electronic device.
  • the second electronic device and the first electronic device have different communication addresses.
  • the second electronic device and the first electronic device have different communication addresses, specifically: the second electronic device and the first electronic device have different communication time slots or pseudo-random code sequences.
  • the third electronic device when the third electronic device is located at the first position in the first area, the third electronic device sends a first UWB signal to the first electronic device for measuring the first position in the navigation coordinate system Before the corresponding first coordinates, the method further includes: the third electronic device receives a first operation of the user, where the first operation is used to instruct the second electronic device to be initialized; in response to receiving the first operation, the third electronic device sends The first prompt is used to prompt the user to bring the third electronic device into the first area.
  • the method before the third electronic device moves from the first area to the second area, the method further includes: the third electronic device sends out a second prompt for prompting the user to bring the third electronic device into the second area. area.
  • the method further includes: the third electronic device issues a third prompt for prompting the user to bring the third electronic device back to the first area.
  • the navigation coordinate system is determined according to the first electronic device.
  • the number of first electronic devices is at least three, and each first electronic device includes a UWB antenna; or, the number of first electronic devices is one, and the first electronic device includes at least three UWB antenna.
  • the number of second electronic devices is at least three, and each second electronic device includes one UWB antenna; or, the number of second electronic devices is one, and the second electronic device includes at least three UWB antenna.
  • a third aspect provides a third electronic device, comprising: a processor, a memory, a UWB module, and an IMU module, the memory, the UWB module, and the IMU module are coupled to the processor, and the memory is used for Store computer program code, the computer program code includes computer instructions, when the processor reads the computer instructions from the memory, so that the third electronic device executes the first aspect and any of the first aspects.
  • an apparatus is provided, the apparatus is included in a third electronic device, and the apparatus has a function of implementing the behavior of the third electronic device in any of the methods in the above aspects and possible implementation manners.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions. For example, a communication module or unit, a measurement module or unit, and a computing module or unit, among others.
  • a fifth aspect provides a computer-readable storage medium, comprising computer instructions, which, when the computer instructions are executed on a third electronic device, cause the third electronic device to perform any one of the above-mentioned first aspect and the first aspect A method in a possible implementation manner, and a method in performing the second aspect and any one possible implementation manner of the second aspect.
  • a sixth aspect provides a computer program product that, when the computer program product runs on a computer, causes the computer to execute the method in the above-mentioned first aspect and any possible implementation manner of the first aspect, and execute the above-mentioned second aspect and the method in any possible implementation manner of the second aspect.
  • a seventh aspect provides a chip system, including a processor, when the processor executes an instruction, the processor executes the first aspect and the method in any possible implementation manner of the first aspect, and executes the second aspect and the method in any possible implementation manner of the second aspect.
  • a system comprising at least one first electronic device, at least one second electronic device, and at least one third electronic device, the at least one first electronic device is disposed in the first area, the at least one The second electronic device is arranged in the second area, and the third electronic device executes the method in the first aspect and any possible implementation manner of the first aspect, and executes any one of the second aspect and the second aspect. method in one possible implementation.
  • the number of first electronic devices is at least three, and each first electronic device includes a UWB antenna; or, the number of first electronic devices is one, and the first electronic device includes at least three UWB antenna.
  • the number of second electronic devices is at least three, and each second electronic device includes one UWB antenna; or, the number of second electronic devices is one, and the second electronic device includes at least three UWB antenna.
  • FIG. 1 is a schematic diagram of a system architecture of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a first electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a third electronic device according to an embodiment of the present application.
  • 4A is a flowchart of a method for initializing a newly added base station in a UWB system according to an embodiment of the present application
  • 4B is a schematic interface diagram of some third electronic devices provided by an embodiment of the present application.
  • FIG. 4C is a schematic interface diagram of further third electronic devices provided by the embodiments of the present application.
  • FIG. 4D is a schematic interface diagram of further third electronic devices provided by the embodiments of the present application.
  • FIG. 4E is a schematic interface diagram of further third electronic devices provided by the embodiments of the present application.
  • FIG. 4F is a schematic interface diagram of still some third electronic devices provided by the embodiments of the present application.
  • FIG. 4G is a schematic interface diagram of further third electronic devices provided by the embodiments of the present application.
  • FIG. 4H is a schematic interface diagram of still some third electronic devices provided by the embodiments of the present application.
  • 4I is a schematic interface diagram of still some third electronic devices provided by the embodiments of the present application.
  • FIG. 4J is a schematic interface diagram of still some third electronic devices provided by the embodiments of the present application.
  • 5A is a schematic diagram of a movement trajectory of a third electronic device in different regions according to an embodiment of the present application.
  • FIG. 5B is a schematic diagram of another movement trajectory of a third electronic device in different regions provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of three coordinate systems provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a process of Kalman filtering provided by an embodiment of the present application.
  • FIG. 8 is a result comparison diagram of a simulation experiment provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • Scheme 1 First set up one or more UWB base stations in room 1, and establish a navigation coordinate system, which can measure the positioning of UWB tags located in room 1. Then, one or more UWB base stations are arranged in room 2 .
  • the UWB base station in room 1 can be used to measure the coordinates of the UWB base station in room 2 in the navigation coordinate system. Then, use the UWB base station in room 2 to measure the location of the UWB tag located in room 2.
  • Scheme 2 First set up one or more UWB base stations in room 1, and establish a navigation coordinate system 1, which can measure the positioning of UWB tags located in room 1. Then, one or more UWB base stations are arranged in the room 2, and a navigation coordinate system 2 is established for measuring the positioning of the UWB tags located in the room 2. In other words, each room is provided with an independent UWB system, and different navigation coordinate systems are established in different rooms.
  • the UWB tag needs to store information of navigation coordinate systems of different rooms (for example, coordinates of UWB base stations in different navigation coordinate systems).
  • the UWB tag also needs to determine the UWB base station in which navigation coordinate system the UWB signal is sent according to the specific conditions of the received UWB signal. Then use the coordinates of the corresponding UWB base station to calculate, and output the coordinates of the UWB tag in the navigation coordinate system. It can be seen that the positioning algorithm is quite complicated. In addition, every time the UWB tag switches to another navigation coordinate system, the initial attitude of the UWB tag needs to be re-calibrated, and the user experience is not good.
  • an embodiment of the present application provides an initialization method for a newly added base station in a UWB system, which can establish a unified navigation coordinate system in different rooms, reduce the storage burden of UWB tags, and reduce the algorithm for positioning UWB tags in different rooms. , and it is also beneficial to ensure the positioning accuracy of UWB tags in different rooms. Moreover, the user does not need to perform multiple initial posture calibrations on the UWB tag, which improves user experience.
  • FIG. 1 it is a schematic structural diagram of an application scenario provided by an embodiment of the present application.
  • one or more first electronic devices 100 with UWB signal transceiving devices are arranged in area 1 (eg, room 1), and the first electronic device 100 has established a navigation coordinate system (referred to as U system for short).
  • the one or more first electronic devices 100 can be used to measure the position of the UWB tag located in the area 1 under the U system.
  • the above-mentioned UWB signal transceiving apparatus may be a multi-antenna architecture (eg, a three-antenna architecture, a four-antenna architecture, etc.), ie, including at least multiple antennas for transmitting and receiving UWB signals.
  • a first electronic device 100 may be set in the area 1 to realize the positioning of the UWB tag located in the area 1 .
  • the above-mentioned UWB signal transceiving apparatus may be of a single-antenna architecture, that is, including one antenna for transmitting and receiving UWB signals.
  • at least three first electronic devices 100 with a single-antenna structure need to be set in the area 1 to locate the UWB tags located in the area 1 .
  • both the first electronic device 100 with a single-antenna structure and the first electronic device 100 with a multi-antenna structure may be provided in the area 1 .
  • the antenna structure of the first electronic device 100 in the embodiment of the present application and the number of the first electronic device 100 set in the area 1 are not limited.
  • area 2 is a newly added positioning area.
  • one or more second electronic devices 200 with UWB signal transceiving means may be arranged in the area 2 (eg room 2).
  • the one or more second electronic devices 200 will be used to measure the position of the UWB tags located within the area 2 .
  • the UWB signal transceiver device of the second electronic device 200 may be a multi-antenna structure or a single-antenna structure.
  • the number of the second electronic device 200 may be one.
  • the number of the second electronic device 200 is at least three.
  • the first electronic device 100 that is, the antenna structure of the second electronic device 200 in the embodiment of the present application, and the number of the second electronic devices 200 set in the area 2 is not limited.
  • the structure of the second electronic device 200 may be the same as or different from that of the first electronic device 100 , which is not limited in the embodiment of the present application.
  • the system architecture of the application scenario shown in FIG. 1 further includes a third electronic device 300 , which can move between area 1 and area 2 .
  • the third electronic device 300 may include an inertial measurement unit (inertial measurement unit, IMU) for measuring the motion trajectory of the third electronic device 300 itself.
  • IMU inertial measurement unit
  • the first electronic device 100 may be used to measure the starting position of the third electronic device 300 in the area 1 . Then, the third electronic device 300 can be moved from the area 1 to the area 2 and back to the area 1 again. During the whole process of the movement of the third electronic device 300, the IMU is used to measure the motion trajectory of the third electronic device 300, and the distance between the third electronic device 300 and the second electronic device 200 in the area 2 is measured. When the third electronic device 300 returns to the area 2, the first electronic device 100 is used to measure the end position of the third electronic device 300 in the area 1.
  • the motion trajectory of the third electronic device 300 measured by the IMU has a certain actual time accumulated error, and the positioning error is relatively large after continuous operation.
  • the continuous positioning accuracy of the third electronic device 300 measured by the first electronic device 100 is higher, so the first electronic device 100 can be used to measure the end position of the third electronic device 300 back in the area 1 subsequently.
  • offset correction is performed on the motion trajectory of the third electronic device 300 measured by the IMU.
  • the position of the second electronic device 200 in the area 2 is calculated, that is, the second electronic device 200 is in the area 2.
  • the second electronic device 200 can be used to measure the positions of other devices located in the area 2 . It should be noted that in the whole process, the same navigation coordinate system is used, that is, the effect of coordinate system 1 of area 2 and area 1 is realized. The specific implementation scheme will be described in detail below.
  • the above-mentioned first electronic device 100 may specifically be a UWB base station, a smart speaker, a smart TV, an air purifier, a humidifier, a smart lamp (such as a ceiling lamp, a desk lamp, an aromatherapy lamp, etc.), a desktop computer, a router, and a smart socket. , water dispenser, refrigerator, smart switch, smart door lock, Customer Premise Equipment (CPE), tablet computer, mobile phone, etc.
  • CPE Customer Premise Equipment
  • FIG. 2 shows a schematic structural diagram of the first electronic device 100 .
  • the first electronic device 100 may include a processor 110, a memory 120, a universal serial bus (USB) interface 130, a power module 140, a UWB module 150, a wireless communication module 160, and the like.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the first electronic device 100 .
  • the first electronic device 100 may include more or less components than shown, or some components are combined, or some components are separated, or different components are arranged.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the first electronic device 100 .
  • the first electronic device 100 may also adopt an interface connection manner different from that in FIG. 2 , or a combination of multiple interface connection manners.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor, a modem processor, a controller and a baseband processor, and the like. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the processor 210 is a central processing unit (CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more integrated circuits of the embodiments of the present application , for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • Memory 120 may be used to store computer-executable program code, which includes instructions.
  • the memory 120 may also store data processed by the processor 110 , such as the calculated position and attitude of the UWB tag 200 .
  • the memory 120 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the first electronic device 100 by executing the instructions stored in the memory 120 and/or the instructions stored in the memory provided in the processor.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or a universal serial bus (universal serial bus, USB) interface 130 and the like.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the first electronic device 100, and can also be used to transmit data between the first electronic device 100 and peripheral devices.
  • the power module 140 is used to supply power to various components of the first electronic device 100 , such as the processor 210 , the memory 220 and the like.
  • the wireless communication function of the first electronic device 100 may be implemented by the UWB module 150, the wireless communication module 160, a modem processor, a baseband processor, and the like.
  • the modulation and demodulation processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the modem processor may be a stand-alone device. In other embodiments, the modem processor may be independent of the processor 110, and may be provided in the same device as the UWB module 150 or other functional modules.
  • the UWB module 150 which is a UWB signal transceiver device, can provide a solution of wireless communication based on UWB technology applied to the first electronic device 100 .
  • UWB technology is different from traditional communication technology, which realizes wireless transmission by sending and receiving extremely narrow pulses with nanosecond or microsecond level or less. Because the pulse time width is extremely short, it is possible to achieve ultra-wide bandwidth in the spectrum, for example, the bandwidth used is more than 500MHz.
  • UWB technology can also achieve positioning. Specifically, the signal pulse position can be detected and combined with certain positioning algorithms to calculate the time the signal travels in the air, which is multiplied by the speed of the signal transmission in the air (such as the speed of light).
  • the first electronic device 100 can also determine the phase difference between the UWB tag 200 relative to the UWB tag 200 and the different antennas according to the UWB signal sent by the UWB tag 200. Orientation of the first electronic device 100 . In order to achieve the goal of positioning function, the accuracy can reach the precise positioning of centimeter level.
  • the UWB module 150 may be one or more devices integrating at least one communication processing module.
  • the UWB module 150 receives electromagnetic waves via an antenna, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the UWB module 150 can also receive the signal to be sent from the processor 110, perform frequency modulation on it, amplify it, and then convert it into electromagnetic waves for radiation through the antenna.
  • the UWB module 150 may include one or more antennas for transmitting UWB signals, or the UWB module 150 may be connected with one or more antennas for transmitting UWB signals.
  • the first electronic device 100 may further include a wireless communication module 160 to provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fidelity, Wi-Fi) applied on the first electronic device 100.
  • WLAN wireless local area networks
  • Fi wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite system global navigation satellite system
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared , IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives the electromagnetic wave through the antenna, frequency modulates and filters the electromagnetic wave signal, and sends the processed signal to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna.
  • the specific form/structure of the second electronic device 200 reference may be made to the above description of the specific form/structure of the first electronic device 100, which will not be described here.
  • the specific form/structure of the second electronic device 200 may be the same as or different from that of the first electronic device 100 .
  • the above-mentioned third electronic device 300 may specifically be a UWB tag, a mobile phone, a remote control, a wearable electronic device (smart watch, smart bracelet, VR glasses, etc.), a tablet computer, a personal digital assistant (personal digital assistant, PDA), handle, air mouse, sweeping robot, etc.
  • the specific form of the third electronic device 300 is also not limited in this application.
  • FIG. 3 shows a schematic structural diagram of a third electronic device 300 .
  • the third electronic device 300 may include a processor 310, a memory 320, a universal serial bus (USB) interface 330, a power module 340, a UWB module 350, a wireless communication module 360, and an IMU module 370 etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the third electronic device 300 .
  • the third electronic device 300 may include more or less components than shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the third electronic device 300 .
  • the third electronic device 300 may also adopt an interface connection manner different from that in FIG. 3 , or a combination of multiple interface connection manners.
  • the processor 310 may include one or more processing units, for example, the processor 310 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural-network processing unit neural-network processing unit
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 310 for storing instructions and data.
  • the memory in processor 310 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 310 . If the processor 310 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided, and the waiting time of the processor 310 is reduced, thereby increasing the efficiency of the system.
  • Memory 320 may be used to store computer executable program code, which includes instructions.
  • the memory 320 may include a stored program area and a stored data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the memory 320 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing the instructions stored in the memory 320 and/or the instructions stored in the memory provided in the processor.
  • the USB interface 330 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 330 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the power module 340 is used to supply power to various components of the third electronic device 300 , such as the processor 310 , the memory 320 and the like.
  • the UWB module 350 that is, a UWB signal transceiving device, can provide a solution of wireless communication based on UWB technology applied to the third electronic device 300 .
  • the UWB module 350 includes an antenna module, and the antenna module may include one or more antennas for transmitting and receiving UWB signals, so that the second electronic device 200 can determine the distance between the third electronic device 300 and the first electronic device 100 , and The direction of the third electronic device 300 relative to the first electronic device 100 .
  • the UWB module 350 may be one or more devices integrating at least one communication processing module.
  • the UWB module 350 receives electromagnetic waves via an antenna, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the UWB module 350 can also receive the signal to be sent from the processor 110, perform frequency modulation on it, amplify it, and convert it into an electromagnetic wave for radiation through the antenna.
  • the UWB module 350 may include one or more antennas for transmitting UWB signals, or the UWB module 350 may be connected with one or more antennas for transmitting UWB signals.
  • the third electronic device 300 may further include a wireless communication module 360 to provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fidelity, Wi-Fi) applied on the first electronic device 100. Fi) network), Bluetooth (bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared , IR) and other wireless communication solutions.
  • the wireless communication module 360 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 360 receives electromagnetic waves via the antenna, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 360 can also receive the signal to be sent from the processor 110, perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna.
  • the IMU module 370 is used to measure motion data of the third electronic device 300, such as acceleration and angular velocity.
  • the IMU module 370 may include a combined unit composed of three accelerometers and three gyroscopes, and the accelerometers and the gyroscopes are installed on measurement axes that are perpendicular to each other.
  • the accelerometer can detect the three-axis acceleration of the third electronic device 300 in the carrier coordinate system (abbreviated as b system), and the gyroscope can detect the angular velocity of b system around the three axes in the geographic coordinate system (abbreviated as n system).
  • the posture of the third electronic device 300 can be calculated according to the motion data of the third electronic device 300 measured by the IMU module 370 . Further, the motion trajectory of the third electronic device 300 can be calculated according to the attitude change of the third electronic device 300 and the acceleration measured by the IMU module 370 . In some examples, the position of the third electronic device 300 at some moments measured by the first electronic device 100 or the second electronic device 200 can also be combined to provide the third electronic device 300 with more accurate and continuous positioning and navigation.
  • the embodiments of the present application may be applied to the communication system shown in FIG. 1 , wherein the first electronic device 100 and the second electronic device 200 may have the structure shown in FIG. 2 , and the third electronic device 300 may have the structure shown in FIG. 3 . Structure.
  • the technical solutions provided by the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
  • a schematic flowchart of an initialization method for a newly added base station in a UWB system includes:
  • the third electronic device triggers the initialization of the UWB system formed by the first electronic device 100 .
  • one or more first electronic devices 100 are provided in the area 1, and the one or more first electronic devices 100 may constitute a positioning system for measuring the position of the UWB tag located in the area 1.
  • the area 1 may be a closed or semi-closed space, such as a room 1, and the area 1 may also be an open space.
  • the first electronic device 100 has a single-antenna architecture, so at least three first electronic devices 100 need to be set in the area 1 .
  • the description will be given by taking as an example that the three first electronic devices 100 are provided in the area 1 .
  • a preset arrangement rule for example, the first electronic device A, the first electronic device B and the first electronic device C are arranged in the area 1, wherein the connection line between the first electronic device A and the first electronic device B is parallel to the The horizontal plane, and the connection line between the second electronic device A and the first electronic device B is parallel to the vertical plane) install three first electronic devices 100, and determine the navigation coordinate system of the first electronic device 100 and each first electronic device. The coordinates of 100 in this coordinate system.
  • the first electronic device 100 in the area 1 may be set by using a control device (eg, the third electronic device 300 ) installed with a home application.
  • a control device eg, the third electronic device 300
  • the control device is the main interface of the home application.
  • the main interface includes home devices (such as TV 1 and speaker 1) that have been registered and networked.
  • the user can add a new device by adding control 410 .
  • the registration and network distribution of the speaker 2 has been completed. Among them, TV 1, speaker 1 and speaker 2 are all located in the living room (area 1).
  • the process of establishing a UWB system composed of TV 1 , speaker 1 and speaker 2 is described by taking the example that TV 1 , speaker 1 and speaker 2 (ie, the three first electronic devices 100 ) are all configured with UWB modules.
  • the mobile phone in response to the user selecting to turn on the logo 411 of a device (eg, speaker 2), the mobile phone enters the control interface of speaker 2 as shown in (1) in FIG. 4C.
  • the control interface includes setting controls for various functions of the speaker 2, for example, controls 412 for establishing a UWB system.
  • the mobile phone displays a setting interface as shown in (2) in FIG. 4C.
  • This setting interface can set the communication address of speaker 2.
  • the speaker 2 is the first device set by the UWB system (it can be used as the main device), the communication address can also be the default address.
  • multiple base stations in the UWB system can use time division multiple access (TDMA) or code division multiple access (CDMA) communication technologies to receive UWB messages sent by other devices. signal, or send UWB signals to other devices. Therefore, it is necessary to separately set communication addresses for the devices joining the UWB system.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • the mobile phone After setting the communication address of the speaker 2, the mobile phone displays the interface shown in (1) in Figure 4D.
  • the interface shows that speaker 2 has been added as a base station in the newly established UWB system.
  • the user can add other base stations in the UWB system by adding a control 414 in the interface.
  • the phone may display other devices with UWB modules that have been registered in the home application and have been networked.
  • the user can select one or more devices to add to the UWB system, and set the communication address for each added device.
  • the mobile phone may also set a default communication address for each device according to the order in which each device is added, which is not limited in this embodiment of the present application. As shown in (2) in FIG.
  • the mobile phone (including the UWB module) may send UWB signals to the three base stations, requesting to measure the distance of the mobile phone relative to the three base stations. And, with the position of one of the base stations as the origin, the navigation coordinates of the UWB system are established, and the coordinates of the other base stations under the navigation coordinates of the UWB system are calculated according to the distance of the mobile phone relative to the three base stations.
  • the mobile phone can display the interface shown in Figure 4E.
  • the interface can display the coordinates 416 of each base station under the navigation coordinates of the UWB system. Then, the user can start the first electronic device 100 to measure the position of the third electronic device 300 in the navigation coordinate system by operating the control 417 for requesting the UWB system ranging.
  • the positioning system formed by the first electronic device 100 can realize the positioning of the devices in the area 1 .
  • the third electronic device 300 sets the communication address of the second electronic device 200 located in the area 2 .
  • one or more second electronic devices 200 may be set in area 2, and the one or more second electronic devices 200 may be initialized.
  • the second electronic device is a single-antenna architecture, so at least three second electronic devices 200 need to be set in the area 2 .
  • the description will be given by taking as an example that there are three second electronic devices 200 disposed in the area 2 .
  • the second electronic device 200 located in area 2 and the first electronic device 100 in area 1 belong to the same positioning system. Then, in the positioning system, the first electronic device 100 and the second electronic device 200 can adopt the communication technology of time division multiple access (TDMA) or code division multiple access (CDMA). for receiving the UWB signal sent by the third electronic device 300 . Therefore, different communication time slots or pseudo-random code sequences are uniformly allocated to the first electronic device 100 and the second electronic device 200 . Then, each second electronic device 200 in the area 2 will receive the UWB signal sent to itself in the respective allocated communication time slot, or analyze the UWB signal sent to itself using the respective pseudo-random code sequence.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • the second electronic device 200 in the area 2 can still be set by using the control device (eg, the third electronic device 300 ) installed with the home application. Still take the example that the control device is a mobile phone.
  • the control device is a mobile phone.
  • the user registers and configures the second electronic device 200 in the area 2 through the home application.
  • the main interface of the home application displays newly added devices in the master bedroom (ie area 2 ): speaker 3 , TV 2 and speaker 4 (ie second electronic device 200 ).
  • the home application can also mark the main equipment of the UWB system, for example, mark the main equipment speaker 2 of the UWB system established in step S400, for example, mark it as the main equipment of the UWB system 1. Not limited.
  • the mobile phone enters the control interface of the speaker 2 as shown in (2) in FIG. 4F.
  • the user can add the device in the master bedroom as the base station in the UWB system 1 by adding the control 419 .
  • a communication address will be set for each newly added device.
  • the specific adding process refer to the method for adding a base station in step S400.
  • speaker 3 , speaker 4 and TV 2 have been added as base stations in UWB system 1 . It can be noticed that the coordinates of the newly added device in the UWB system 1 are unknown at this time.
  • the control interface displays a control 420 for initializing the newly added base station.
  • the mobile phone In response to the user operating the control 420, the mobile phone triggers the initialization of the newly added base station (speaker 3, speaker 4 and TV 2).
  • the mobile phone can display the interface shown in (2) in FIG. 4G, which is used to prompt the user to return to area 1 (ie, the living room) to start initializing the newly added base station.
  • the third electronic device 300 is located in the area 1, and each first electronic device 100 is requested to measure the distance, and the initial position of the third electronic device 300 is acquired, which is denoted as p0. And, the third electronic device 300 starts the IMU measurement for measuring the motion data of the third electronic device 300 .
  • FIG. 5A shows the movement track of the third electronic device 300 , that is, the positions of the third electronic device 300 at different times are marked.
  • the third electronic device 300 is located in area 1 , and at this time, the third electronic device 300 may request ranging from each first electronic device 100 in area 1 .
  • the first electronic device 100 may receive the ranging request sent by the third electronic device 300 in the communication time slot of the first electronic device 100 , or the first electronic device 100 may use the pseudo-random code sequence of the first electronic device 100
  • the ranging request sent by the third electronic device 300 is parsed, and the first electronic device 100 can measure the distance from the third electronic device 300 by, for example, a two-way ranging method.
  • the third electronic device 300 may calculate the third electronic device based on the measured distance between each first electronic device 100 and the third electronic device 300 and the pre-stored coordinates of each first electronic device 100 The coordinates of the device 300 in the navigation coordinate system at this time are the initial position.
  • the third electronic device 300 starts the IMU module 370 and starts to measure the motion data of the third electronic device 300 so as to calculate the motion trajectory of the third electronic device 300 .
  • the third electronic device 300 may prompt the user to perform a preset operation, and the preset operation may cause the third electronic device 300 to be in a preset posture and start the IMU measurement.
  • the preset posture may be, for example, that the user operates the third electronic device 300 so that a specific direction of one coordinate axis (eg, the Y axis of the b system) of the third electronic device 300 is aligned with the first electronic device 100 .
  • the posture of the third electronic device 300 is the initial posture.
  • the initial attitude can be represented by attitude angles (such as pitch angle, azimuth angle and roll angle), and the attitude angle can be calculated according to the attitude data (angular velocity of the three axes of the carrier coordinate system) measured by the IMU module of the third electronic device 300 .
  • attitude angles such as pitch angle, azimuth angle and roll angle
  • attitude angle can be calculated according to the attitude data (angular velocity of the three axes of the carrier coordinate system) measured by the IMU module of the third electronic device 300 .
  • the process in which the user performs the preset operation is also referred to as the calibration process of the initial posture of the third electronic device 300 .
  • the third electronic device 300 may provide the user to move the third electronic device 300 from the initial position, move from the area 1 to the area 2, and finally return to the area 2.
  • the present application does not limit the prompting manner and prompting timing of the third electronic device 300 .
  • a control device installed with a home application can still be used to prompt the user to perform a corresponding operation, and cooperate to complete the initialization of the second electronic device 200 .
  • the control device is a mobile phone.
  • the mobile phone displays a prompt message, prompting the user to bring the mobile phone back to the living room.
  • the mobile phone can display the prompt interface shown in (1) in FIG. 4H, prompting the user to point the top of the mobile phone to the speaker 2.
  • This time is time 1, and the mobile phone is in the initial position.
  • the mobile phone measures the initial position p0 of the mobile phone in the UWB system to the first electronic device 100 at this time.
  • the mobile phone starts the IMU measurement at the same time, which is used to measure the motion data of the mobile phone.
  • the third electronic device 300 enters the area 2, and the distance between the third electronic device 300 and each of the second electronic devices 200 is acquired when at least three locations are obtained. Or, when acquiring at least two positions, the gesture data when the third electronic device 300 points to each of the second electronic devices 200 .
  • each second electronic device 200 is requested to measure the distance at at least three locations, and each second electronic device 200 and the third electronic device in the area 2 are obtained. distance between 300.
  • the third electronic device 300 may display a prompt interface as shown in (2) in FIG. 4H , prompting the user to enter area 2 (ie, the master bedroom) with the third electronic device 300 .
  • the third electronic device 300 is operated (for example, the control 422 that has entered the master bedroom is operated).
  • the third electronic device 300 requests each of the second electronic devices 200 in the area 2 to measure the distance from the third electronic device 300 in response to the user's operation.
  • the time when the third electronic device 300 receives that the user operates the third electronic device 300 is time 2 .
  • the third electronic device 300 may display a prompt interface as shown in (3) in FIG.
  • the third electronic device 300 may start to request ranging from the second electronic device 200 after a preset time period after time 1.
  • the third electronic device 300 may request the second electronic device 200 to measure the distance at an interval after time 1.
  • the third electronic device 300 may not receive the UWB signal sent by the second electronic device, or the received UWB signal sent by the second electronic device is weak, then the third electronic device 300 does not calculate the relationship between the third electronic device 300 and each The distance between the two electronic devices 200 .
  • the third electronic device 300 can receive the UWB signal sent by the second electronic device, or the received UWB signal sent by the second electronic device is strong, then the third electronic device 300 starts to calculate The distance between the third electronic device 300 and each of the second electronic devices 200 .
  • the third electronic device 300 may also start to request the second electronic device 200 for ranging after determining that the third electronic device 300 roughly enters the area 2 according to the motion data measured by the IMU. In other words, the present application does not limit the timing when the third electronic device 300 starts to request ranging from the second electronic device 200 .
  • the third electronic device 300 when the third electronic device 300 is located at at least three positions in the area 2 (the three positions cannot be located on the same line as the second electronic device 200 ), the distance from each of the second electronic devices 200 needs to be measured. the distance.
  • the distance For example, as shown in FIG. 5A , when at least the third electronic device 300 is measured at position A (corresponding to time 2), position B (corresponding to time 4), and position C (corresponding to time 5), the third electronic device 300 and the The distance of each second electronic device 200 .
  • FIG. 5A only shows the distance between one second electronic device and the third electronic device when it is in three positions.
  • the third electronic device 300 ie, the mobile phone
  • the third electronic device 300 may also select three positions designated by the user according to the user's operation, and request the second electronic device 200 for ranging. For example, after the user operates the control that has entered the master bedroom as shown in (2) in FIG. 4H , or, after the third electronic device 300 displays the interface shown in (3) in FIG. 4H for a preset time period ( For example, after 1 minute), the interface shown in (1) in FIG. 4I is displayed, which is used to prompt the user to select at least three positions in the area 2 and request the second electronic device 200 to measure the distance.
  • the third electronic device 300 receives the user's click on the ranging control 423, it sends a ranging request to the second electronic device 200 to measure the distance between the third electronic device and the corresponding second electronic device 200 at the location.
  • the posture of the third electronic device 300 when pointing to each second electronic device is recorded information.
  • the attitude information can be represented by attitude angles (such as pitch angle, azimuth angle, and roll angle), and can be calculated from the angular velocity output by the IMU module of the third electronic device 300.
  • attitude angles such as pitch angle, azimuth angle, and roll angle
  • the pointing of the third electronic device 300 to a certain second electronic device 200 refers to aligning a specific coordinate axis in the carrier coordinate system of the third electronic device 300 with the second electronic device 200 .
  • the third electronic device 300 being a mobile phone as an example.
  • the orientation of the mobile phone (or the direction of the mobile phone) can be defined as: the direction parallel to the long side of the mobile phone and pointing to the top along the tail of the mobile phone. Therefore, the orientation of the phone can be referred to as the top orientation of the phone.
  • the top of a mobile phone is the part of the body where hardware such as a front-facing camera, infrared transmitter, earpiece, light sensor, or distance sensor is installed.
  • the rear of the phone is the part of the fuselage where the microphone and speaker are installed.
  • the relevant interface displayed by the third electronic device 300 may refer to (2) in FIG. 4H and (3) in FIG. 4H . Then, the third electronic device 300 may display an interface as shown in (3) in FIG. 4I, prompting the user to point to each of the second electronic devices 200 in sequence at at least two positions.
  • the third electronic device calculates the gesture information pointing to the corresponding second electronic device 200 at the position.
  • the third electronic device 300 continuously performs IMU measurement to measure the motion data of the third electronic device 300 .
  • the third electronic device 300 returns to the area 1, requests each first electronic device 100 to measure the distance, and obtains the end position of the third electronic device 300, which is denoted as p1.
  • the third electronic device 300 may turn off the IMU measurement at the end position. For example, when the third electronic device 300 obtains the end position, the IMU measurement is turned off. Alternatively, the third electronic device 300 turns off the IMU measurement, and prompts the user to remain at the current location for a preset period of time (for example, 30 seconds), and within the preset period of time, the third electronic device 300 sends a message to each of the first electronic devices 100 Ranging request, and get the end position.
  • a preset period of time for example, 30 seconds
  • the third electronic device 300 may display the interface shown in (2) in FIG. 4I, prompting the user to return to the living room.
  • the user can operate the controls 424 that have returned to the living room.
  • the third electronic device 300 receives the user operation control 424, that is, time 3, the third electronic device requests each of the first electronic devices 100 to measure the distance.
  • the third electronic device 300 estimates the motion trajectory of the third electronic device 300 according to the initial position and the motion data of the third electronic device 300 measured by the IMU.
  • the carrier coordinate system that is, the b system
  • the navigation coordinate system that is, the n-system
  • the navigation coordinate system that is, the U system
  • the b series takes the center point P of the mobile phone firmware as the origin.
  • the Y axis and the X axis of the b system are directions parallel to the screen plane of the mobile phone, the Y axis is the direction along the length of the mobile phone, and the X axis is the direction along the width of the mobile phone.
  • the Z axis of the b system is the direction perpendicular to the mobile phone screen, and the direction from the back of the mobile phone screen to the front of the mobile phone screen is the positive direction of the Z axis.
  • the n series also takes the P point of the center of the mobile phone firmware as the origin.
  • the X axis of the n system points east along the local latitude (E)
  • the Y axis of the n system points north along the local meridian (N)
  • the Z axis of the n system points upward along the local geographic vertical line, and constitutes with the X axis and the Y axis Right-handed Cartesian coordinate system.
  • the plane formed by the X axis and the Y axis is the local horizontal plane
  • the plane formed by the Y axis and the Z axis is the local vertical plane.
  • the U system is a rectangular coordinate system established by the first electronic device 100 .
  • the origin is the position O of a certain UWB antenna in the first electronic device 100 .
  • the origin is the position O of the UWB antenna in one of the first electronic devices 100 .
  • the three-axis direction of the U system is the same as the direction of the n system.
  • the X axis of the U system points east (E) along the local latitude
  • the Y axis of the U system points north (N) along the local meridian
  • the Z axis of the U system points up along the local geographic vertical, and is consistent with the X axis and the Y axis.
  • the axes form a right-handed rectangular coordinate system. That is, the difference between the U system and the n system is only that the origin is different, and the directions of the three axes are the same.
  • the IMU module 370 collects the motion data of the third electronic device 300 according to a certain frequency, including the acceleration of the third electronic device 300 on the three axes in the carrier coordinate system (abbreviated as b system). (reported as and ), the angular velocity of the b system around the three axes in the geographic coordinate system (referred to as the n system for short) (respectively denoted as and ).
  • the angular velocity ( and ) to perform integral operation to obtain the angle change of the third electronic device 300 on the three axes that is, to obtain the attitude change of the third electronic device 300 .
  • the posture of the third electronic device 300 at each moment can be obtained.
  • a fusion calculation may also be performed in combination with the acceleration collected by the IMU module 370 or data from other sensors to obtain a more accurate attitude, which is not covered in this embodiment of the present application. Do limit.
  • the speed of the third electronic device 300 on the three axes of the b system can be converted to obtain the speed of the third electronic device 300 on the U system (denoted as and ).
  • the speed of the third electronic device 300 on the U system (denoted as and ) to perform integral operation to obtain the position change of the third electronic device 300 .
  • the position of the third electronic device in the entire moving process from time 1 to time 3 can be estimated, that is, the motion trajectory.
  • the end position of the third electronic device 300 is estimated, which is denoted as p1'.
  • the motion trajectory of the third electronic device 300 estimated in step S406 may be corrected by using the difference between p1' and p1.
  • Kalman filter can be used for correction.
  • FIG. 7 it is a schematic diagram of data processing of each module in the third electronic device 300 .
  • the UWB module 350 is used to obtain the initial position p0 of the third electronic device 300 starting from the area 1, and the end position p1 returning to the area 1 via the area 2.
  • the UWB module 350 sends the initial position p0 to the IMU module 370, and the IMU module 370 measures its motion data (acceleration, angular velocity) from the initial position to the end position, and estimates the end position p1 in combination with the initial position p0 sent by the UWB module 350 '.
  • the IMU module 370 inputs the end position p1 ′ and the UWB module 350 inputs the end position p1 into the Kalman filter module (for example, it may be located in the processor 310 in the third electronic device 300 ), and outputs the estimated optimal motion data deviation. Then, the IMU module 370 may be based on the bias of the motion data (eg, the bias error ⁇ b of the gyroscope, and the bias error of the accelerometer ), correct the motion data measured by the IMU module 370, and obtain a corrected motion trajectory based on the corrected motion data.
  • the bias of the motion data eg, the bias error ⁇ b of the gyroscope, and the bias error of the accelerometer
  • the Kalman filter is an algorithm that uses a linear system state model to optimally estimate the system state through the system input and output observation data. Since the observation data includes the influence of noise and interference in the system, the optimal estimation can also be regarded as a filtering process.
  • Data filtering is a data processing technique that removes noise and restores real data.
  • linear system state model describes the state of the system changing with time, which is expressed by formula (1):
  • x m represents the state quantity at the mth epoch
  • m-1) represents the state transition matrix
  • w (m-1) represents the process noise vector.
  • y m represents the observed quantity of the system
  • H m represents the observation matrix
  • v m represents the measurement noise vector
  • the state quantity of the Kalman filter can be set as shown in formula (3):
  • ⁇ v U and ⁇ p U are the attitude error, velocity error and position error in the U system of the third electronic device 300, respectively, ⁇ b is the angular velocity bias error output by the gyroscope in the third electronic device 300, is the acceleration bias error output by the accelerometer in the third electronic device 300 .
  • ⁇ t is the time interval from time m-1 to time m
  • w m-1 is the noise vector of the motion trajectory calculated according to the output data of the IMU module 370 .
  • the measurement equation is formula (8), as follows:
  • the bias error ⁇ b of the gyroscope and the bias error of the accelerometer can be calculated.
  • the angular velocity and acceleration output by the gyroscope and the accelerometer are corrected, and the corrected angular velocity and acceleration are used again to calculate the motion trajectory of the third electronic device 300 from time 1 to time 3 .
  • the coordinates when the third electronic device 300 is located at position A, position B and position C are recalculated and denoted as point A (x A , y A , z respectively).
  • point A point A
  • point B point B
  • point C point C (x C , y C , z C ).
  • the third electronic device 300 calculates the navigation coordinates of each second electronic device 200 according to the corrected motion trajectory of the third electronic device 300 and the measured distance between the third electronic device 300 and each second electronic device 200 coordinates in the system. Alternatively, the third electronic device 300 calculates the position of each second electronic device 200 in The coordinates in the navigation coordinate system.
  • step S404 the distance between the third electronic device 300 and the second electronic device 200 when the third electronic device 300 is at point A, point B, and point C, respectively, has been measured. Then, combined with the position information of point A, point B and point C obtained in step S407, the position information of each second electronic device 200 can be obtained by calculation.
  • one of the second electronic devices 200 is taken as an example for description.
  • the distances measured by a certain second electronic device 200 to the second electronic device and the third electronic device 300 are divided into r A , r B , and r C .
  • the position of the second electronic device 200 is an unknown number, denoted as (x, y, z), and formula (9) can be obtained as follows:
  • the position (x, y, z) of the second electronic device 200 can be obtained by solving the formula (9).
  • the coordinates of more positions and the distances corresponding to each position may be obtained in addition to points A, B, and C, and more equations may be established.
  • the exact location of the second electronic device 200 may be obtained by solving the formula (9).
  • the methods for finding the positions of the other second electronic devices 200 are the same, and are not repeated here.
  • the interface shown in FIG. 4J can be displayed. At this point, the initialization process for the newly added base station has been completed.
  • the third electronic device 300 when the third electronic device 300 is located in the area 2, it can request the second electronic device 200 to measure the distance, and then calculate its current position based on the measured distance and the position of each second electronic device 200 . That is, positioning and navigation of the third electronic device 300 located in the area 2 using the second electronic device 200 are realized.
  • step S404 the attitude information of the third electronic device 300 pointing to the second electronic device 200 when the third electronic device 300 is at point B and point C, respectively, has been measured. Then, combining with the position information of point B and point C obtained in step S407, the position information of each second electronic device 200 can be calculated.
  • the position information of the third electronic device 300 at position i is ( xi , yi , z i ), and the attitude information of the third electronic device 300 pointing to the second electronic device at position i includes the third electronic device 300
  • the pitch angle of the carrier coordinate system relative to the U system Azimuth ⁇ i and roll angle ⁇ i i takes values in sequence in ⁇ 1, 2..., n ⁇ , n ⁇ 2, n is an integer.
  • the coordinate position of the third electronic device 300 in the U system is (x 1 , y 1 , z 1 ), and the attitude information of the third electronic device 300 includes the pitch angle Azimuth angle ⁇ 1 and roll angle ⁇ 1 .
  • the coordinate position of the third electronic device 300 in the U system is (x 2 , y 2 , z 2 ), and the attitude information of the third electronic device 300 includes the pitch angle Azimuth ⁇ 2 and roll angle ⁇ 2 .
  • the coordinate position of the third electronic device 300 in the U system is (x i , y i , z i ), and the attitude information is the pitch angle Azimuth ⁇ i and roll angle ⁇ i .
  • i takes values in sequence in ⁇ 1, 2..., n ⁇ , n ⁇ 2, n is an integer.
  • the position information of the third electronic device 300 is ( xi , y i , z i ), and the attitude information is the pitch angle Taking the azimuth angle ⁇ i and the roll angle ⁇ i as examples, a specific method for calculating the position information (x, y, z) of the second electronic device by the third electronic device 300 is introduced.
  • the position information (x i , y i , z i ) and attitude information (including the pitch angle) of the third electronic device 300 The azimuth angle ⁇ i and the roll angle ⁇ i ) are known quantities.
  • the position information (x, y, z) of the second electronic device is an unknown quantity. i takes values in sequence in ⁇ 1, 2..., n ⁇ , n ⁇ 2, n is an integer.
  • the position information (x, y, z) of the second electronic device is the coordinate position of the second electronic device in the U system, and (x, y, z) can be displayed in three rows and one column as shown in the matrix (1).
  • the position information (x i , y i , z i ) of the third electronic device 300 is the coordinate position of the third electronic device 300 in the U system, and (x i , y i , z i ) can be shown in matrix (2) A matrix representation of three rows and one column.
  • the coordinates of the third electronic device 300 at position i are K i ( xi , y i , z i ); the coordinates of the second electronic device are R(x, y, z).
  • the subscript U in the above matrix (1) and matrix (2) represents the U system constructed by the UWB base station; K i (x i , y i , z i ) and R (x, y, z) are the coordinates in the U system .
  • (x i , y i , z i ) are known quantities, and (x, y, z) are unknown quantities.
  • ri K i R
  • K i R is the distance between the third electronic device 300 and the second electronic device when the third electronic device 300 is at the position i .
  • the Y-axis of the b-series of the third electronic device 300 passes through the position of the second electronic device. Therefore, the coordinates of the second electronic device in the b system are (0, ri , 0).
  • the above matrix is obtained from the coordinates (0, ri , 0) of the second electronic device in the b system.
  • r i is the modulus of the vector K i R, ie the length of the vector K i R.
  • the vector K i R is a vector in the U system e. It should be noted again that (x i , y i , z i ), the pitch angle The azimuth angle ⁇ i and the roll angle ⁇ i are both known quantities, and (x, y, z) and ri are both unknown quantities.
  • a T is the transpose matrix of A
  • a T A means the product of A T and A.
  • (A T A) -1 is the inverse of A T A.
  • X is equal to A T A's inverse matrix multiplied by A T , multiplied by B.
  • the third electronic device 300 when the third electronic device 300 is located in the area 2, it can request the second electronic device 200 to measure the distance, and then calculate its current position based on the measured distance and the position of each second electronic device 200 . That is, positioning and navigation of the third electronic device 300 located in the area 2 using the second electronic device 200 are realized.
  • the calculated position of the second electronic device 200 and the position of the first electronic device 100 are the coordinates under the same navigation coordinate system, that is, the effect of the coordinate system 1 of the area 2 and the area 1 is realized.
  • the present application realizes the establishment of a unified navigation coordinate system in different areas, the device to be located does not need to store information of multiple navigation coordinate systems, the storage burden of the device to be located is reduced, and the storage of the device to be located in different areas is reduced.
  • the positioning algorithm is also beneficial to ensure the positioning accuracy in different areas.
  • the user does not need to perform multiple initial posture calibrations of the device to be positioned, which improves user experience.
  • At least three UWB base stations (ie, the first electronic device 100 ) with a single-antenna structure are set in the area 1, and at least three (take three as an example) UWB base stations with a single-antenna structure are set in the area 2 (ie, the second electronic device 200 ) is taken as an example to illustrate the technical solution of the present application.
  • a UWB base station with a multi-antenna architecture ie, the first electronic device 100
  • a UWB base station with a multi-antenna architecture ie, the second electronic device 200
  • the method of measuring the coordinates of the third electronic device in the U system by the three single-antenna architecture UWB base stations is different from the method of measuring the coordinates of the third electronic device in the U system by a UWB base station with a multi-antenna architecture.
  • the process is slightly different from that in Figure 4A.
  • the third electronic device In the method for measuring the position of the third electronic device using three UWB base stations with single antenna architecture, the third electronic device needs to send ranging requests to the three UWB base stations with single antenna architecture respectively. Then, the three single-antenna architecture UWB base stations respond to the third electronic device respectively. Based on, for example, the two-way ranging method, the third electronic device can calculate the distances between the third electronic device and the three UWB base stations of the single-antenna architecture, and then based on the three distances, the triangulation principle can be used to calculate the Coordinates in the U system.
  • the third electronic device needs to interact with each UWB base station with a single-antenna architecture, and the third electronic device calculates its own Coordinates in the U system. Moreover, in step S408, the third electronic device needs to calculate the coordinates of the second electronic device with the three single-antenna architectures in the U system.
  • the third electronic device In the method for measuring the position of the third electronic device by using a UWB base station with a multi-antenna architecture, the third electronic device only needs to send a ranging request to a UWB base station with a multi-antenna architecture. Then, the UWB base station of the multi-antenna architecture responds to the third electronic device, and the third electronic device can calculate the distance between itself and the third electronic device based on, for example, a two-way ranging method, and can also reach the distance between itself and the third electronic device according to the third electronic device. The time difference of the different antennas determines the vector of the third electronic device to the multi-antenna architecture.
  • the coordinates of the third electronic device in the U system are then calculated based on a distance and a vector. It can be seen that when the coordinates of the third electronic device in the U system need to be measured, the third electronic device only needs to interact with a UWB base station with a multi-antenna architecture, and the third electronic device is calculated by the UWB base station with a multi-antenna architecture. The coordinates of the electronic device in the U system. Then, the UWB base station of the multi-antenna architecture sends the calculated third electronic device the coordinates of the third electronic device in the U system, which is convenient for the third electronic device to perform subsequent calculations. Moreover, in step S408, the third electronic device only needs to calculate the coordinates of the second electronic device with a multi-antenna architecture in the U system.
  • one UWB base station with a multi-antenna architecture may also be set in area 1
  • at least three UWB base stations with a single-antenna architecture ie, the second electronic device 100
  • at least three UWB base stations with a single-antenna architecture ie, the first electronic device 100
  • one UWB base station with a multi-antenna architecture ie, the second electronic device 200
  • This article will not repeat them.
  • FIG 8 it is the data of a set of simulation experiments.
  • the motion trajectory of the mobile phone (ie, the third electronic device 300 ) for 10 seconds is simulated in the simulated space scene, and the original data of the gyroscope and acceleration are generated by simulation.
  • the gray area in the figure is the coverage area of the existing UWB base station signal, and the white area is the signal coverage area of the newly added UWB base station.
  • a total of 3 newly added base stations to be initialized are arranged in the new expansion area (ie, the white area), which are distributed as base station 1, base station 2, and base station 3.
  • the real locations of the three base stations are marked as shown in the figure.
  • the three-axis fixed bias of the gyroscope is set to 0.1deg/s (degree/second), and the random noise of the gyroscope is set to 1deg/sqrt(s) (degree/square meter).
  • Figure 8 shows the motion trajectory data (ie, the unoptimized motion trajectory) obtained by the mobile phone only using the data of the IMU, and the estimated position of the newly added base station calculated by applying the unoptimized motion trajectory (marked in the figure) , the average new base station positioning error is 0.5m.
  • Figure 8 also marks the motion trajectory obtained after correcting the data measured by the IMU using the data measured by the existing UWB base station (the mobile phone returns to the signal coverage area of the existing UWB base station and the position is measured) (that is, the optimized motion trajectory), and the estimated position of the newly added base station (marked in the figure) calculated by applying the optimized motion trajectory, the average positioning error is reduced to 0.1m.
  • the above-mentioned terminal and the like include corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the embodiments of the present invention.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiment of the present invention is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • Each functional unit in each of the embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种UWB系统下新增基站的初始化方法、终端以及系统,涉及定位技术领域,能在不同区域内建立统一的导航坐标系,简化定位算法,该方法包括:设备在区域1,请求区域1中的UWB基站测量初始位置,并启动IMU测量;设备移动到区域2,设备在至少三处位置请求测量与区域2中的每个UWB基站的距离(或在至少两处位置获取设备指向区域2中的每个UWB基站时的姿态数据);移动终端回到区域1,请求区域1中的UWB基站测量终点位置;设备根据测量的终端位置矫正利用IMU测量数据推算的设备在区域2中的坐标;基于矫正后的区域2的坐标,以及测量的区域2中的每个UWB基站与设备的距离(或设备指向区域2中的每个UWB基站时的姿态数据),计算区域2中的每个UWB基站的坐标。

Description

一种UWB系统下新增基站的初始化方法、终端以及系统
本申请要求于2021年1月30日提交国家知识产权局、申请号为202110131725.4、申请名称为“一种UWB系统下新增基站的初始化方法、终端以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种UWB系统下新增基站的初始化方法、终端以及系统。
背景技术
随着智能家居的快速发展,智能设备的空间感知能力成为智能家居重要的发展方向。使能智能设备的空间感知能力后,通过用户与智能设备、智能设备与智能设备之间的空间交互可以大幅度提升智能家居的使用体验。
在智能家居中,一般采用基于超宽带(Ultra-Wide Band,UWB)技术的室内定位系统(简称为UWB系统)为在室内的智能设备(例如万能遥控器、手机)提供空间感知能力。其中,UWB技术不同于传统的通信技术,其通过发送和接收具有纳秒或微秒级以下的极窄脉冲来实现无线传输的。由于脉冲时间宽度极短,因此可以实现频谱上的超带宽,例如使用的带宽在500MHz以上。除了实现无线通信外,UWB技术还可以实现定位,具体的可以通过检测信号脉冲位置,并结合某些定位算法来计算信号在空中飞行的时间,该时间乘上信号在空中传输的速率(例如光速)即得到UWB基站和UWB标签之间的距离,实现定位。
需要说明的是,UWB信号穿透性较差,对视线传播要求较高,穿墙后的测距和定位精度差。因此,在某房间(例如客厅)布置的UWB基站可能无法为其他房间(例如卧室)提供定位服务。为此,需要在其他房间(例如卧室)内设置新的UWB基站,建立一个新的UWB系统,用于测量位于其他房间的UWB标签的定位。换言之,不同的房间设置有独立的UWB系统,在不同的房间建立有不同的导航坐标系,定位算法相当复杂。
发明内容
本申请提供的一种UWB系统下新增基站的初始化方法,可以在不同房间内建立统一的导航坐标系,简化定位算法。
为了实现上述目的,本申请实施例提供了以下技术方案:
第一方面,提供一种UWB系统下新增基站的初始化方法,包括:当第三电子设备位于第一区域的第一位置时,第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中第一位置对应的第一坐标;当第三电子设备位于第一位置时,还启动第三电子设备的IMU测量;第三电子设备从第一区域移动到第二区域;当第三电子设备位于第二区域的第二位置时,第三电子设备向第二电子设备发送第二UWB信号,用于测量第三电子设备在第二位置时与第二电子设备的距离,第二位置的数量 为至少三个;第三电子设备回到第一区域;当第三电子设备位于第一区域的第三位置时,第三电子设备向第一电子设备发送第三UWB信号,用于测量在导航坐标系中的第三位置对应的第二坐标;第三电子设备基于第一坐标,IMU测量的数据,第二坐标,以及第三电子设备在第二位置时与第二电子设备的距离,计算得到第二电子设备的在导航坐标系中的坐标。
其中,第一电子设备为设置在第一区域的UWB基站,用于测量第一区域内设备的位置,第二电子设备为设置在第二区域的UWB基站,用于测量第二区域内设备的设备。其中,第一电子设备确定一个导航坐标系。而通过本申请实施例提供的方法,可以计算得到第二电子设备在该导航坐标系中的坐标。也就是说,第二电子设备使用与第一电子设备相同的导航坐标系,实现了在第一区域和第二区域建立统一的导航坐标系,有利于简化定位算法。
又由于第一区域和第二区域建立统一的导航坐标系,当待测设备在第一区域和第二区域之间切换时,也无需进行多次的初始姿态的对准,简化用户操作,提供用户体验。
一种可能的实现方式中,第三电子设备基于第一坐标,IMU测量的数据,第二坐标,以及第三电子设备在第二位置时与第二电子设备的距离,计算得到第二电子设备的在导航坐标系中的坐标,具体包括:第三电子设备根据第一坐标、IMU测量的数据,计算得到第三位置对应的第三坐标;根据第三位置对应的第三坐标,以及第三位置对应的第二坐标,计算第三电子设备的运动数据与IMU测量的数据的偏差值;根据偏差值,以及IMU测量的数据,计算得到第三电子设备的运动数据;根据第三电子设备的运动数据,以及第一位置对应的第一坐标,计算第二位置对应的第四坐标;根据第二位置对应的四坐标,以及第三电子设备在第二位置时与第二电子设备的距离,计算得到第二电子设备在导航坐标系中的坐标。
也就是说,利用第一区域第一电子设备的UWB测量,测量出第三电子设备初始位置(即第一位置)的坐标,再利用IMU测量方法推算出第三电子设备在第二区域中的运动轨迹。结合初始位置和IMU测量推算的运动轨迹,可以推算出终点位置(即第三位置)的坐标(即第三坐标)。由于IMU测量的数据会随着时间的累计,误差增大。再使用第一电子设备测量得到终点位置的坐标(即第二坐标),第一电子设备测量的数据更加精度。因此,利用第三坐标和第二坐标的偏差,来矫正推算的在第二区域中的运动轨迹,并利用矫正后的运动轨迹可以提升计算得到的第二电子设备在导航坐标系中的坐标的精度。进而,也有利于提升第二电子设备测量其他设备的定位精度。
一种可能的实现方式中,根据第三位置对应的第三坐标,以及第三位置对应的第二坐标,计算第三电子设备的运动数据与IMU测量的数据的偏差值,具体为:采用卡尔曼滤波的方法,根据第三位置对应的第三坐标,以及第三位置对应的第二坐标,计算第三电子设备的运动数据与IMU测量的数据的偏差值。由此,提供一种矫正IMU测量推算的运动轨迹的方法。
一种可能的实现方式中,该方法还包括:当第三电子设备再次进入第二区域时,向第二电子设备发送第四UWB信号,用于测量第三电子设备与第二电子设备的距离;第三电子设备基于第三电子设备与第二电子设备的距离,以及第二电子设备在导航坐 标系中的坐标,计算第三电子设备当前位置在导航坐标系中的坐标。也就是说,根据第三电子设备在第二区域中的运动轨迹(即能够计算得到第三电子设备在第二区域中各个时刻的位置坐标),以及第三电子设备在至少三处位置时与第二电子设备距离,可以计算出第二电子设备的坐标。
一种可能的实现方式中,该方法还包括:在第三电子设备在第三位置时,关闭或暂停第三电子设备的IMU测量。可见,有利于及时关闭IMU测量,降低第三电子设备的功耗。
一种可能的实现方式中,第二电子设备与第一电子设备具有不同的通信地址。
一种可能的实现方式中,第二电子设备与第一电子设备具有不同的通信地址,具体为:第二电子设备与第一电子设备具有不同的通信时隙或伪随机码序列。
也就是说,第一电子设备和第二电子设备可采用时分多址(time division multiple access,TDMA)或码分多址(code division multiple access,CDMA)的通信技术,用于接收第三电子设备发送的UWB信号。因此,统一为第一电子设备和第二电子设备分配不同的通信时隙或者伪随机码序列。那么,第二区域中的每个第二电子设备将在各自分配的通信时隙中接收到发送给自己的UWB信号,或者采用各自的伪随机码序列解析发发送给自己的UWB信号。
一种可能的实现方式中,在当第三电子设备位于第一区域的第一位置时,第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中第一位置对应的第一坐标之前,该方法还包括:第三电子设备接收用户的第一操作,第一操作用于指示对第二电子设备进行初始化;响应于接收到第一操作,第三电子设备发出第一提示,用于提示用户携带第三电子设备进入第一区域。由此提供一种提示方法,用于告知用户如何操作。
一种可能的实现方式中,在第三电子设备从第一区域移动到第二区域之前,该方法还包括:第三电子设备发出第二提示,用于提示用户携带第三电子设备进入第二区域。由此提供一种提示方法,用于告知用户如何操作。
一种可能的实现方式中,在第三电子设备回到第一区域之前,该方法还包括:第三电子设备发出第三提示,用于提示用户携带第三电子设备回到第一区域。由此提供一种提示方法,用于告知用户如何操作。
一种可能的实现方式中,导航坐标系为根据第一电子设备确定。其中,该导航坐标系为第一电子设备构成的UWB系统的导航坐标系。
一种可能的实现方式中,第一电子设备的数量为至少三个,其中每个第一电子设备包含一个UWB天线;或者,第一电子设备的数量为一个,第一电子设备包含至少三个UWB天线。
一种可能的实现方式中,第二电子设备的数量为至少三个,其中每个第二电子设备包含一个UWB天线;或者,第二电子设备的数量为一个,第二电子设备包含至少三个UWB天线。
第二方面、提供一种UWB系统下新增基站的初始化方法,包括:当第三电子设备位于第一区域的第一位置时,第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中第一位置对应的第一坐标;当第三电子设备位于第一位置时, 还启动第三电子设备的IMU测量;第三电子设备从第一区域移动到第二区域;当第三电子设备位于第二区域的第二位置时,获取第三电子设备指向第二电子设备时的姿态信息,第二位置的数量为至少两个;第三电子设备回到第一区域;当第三电子设备位于第一区域的第三位置时,第三电子设备向第一电子设备发送第三UWB信号,用于测量在导航坐标系中的第三位置对应的第二坐标;第三电子设备基于第一坐标,IMU测量的数据,第二坐标,以及第三电子设备指向第二电子设备时的姿态信息,计算得到第二电子设备的在导航坐标系中的坐标。
其中,第一电子设备为设置在第一区域的UWB基站,用于测量第一区域内设备的位置,第二电子设备为设置在第二区域的UWB基站,用于测量第二区域内设备的设备。其中,第一电子设备确定一个导航坐标系。而通过本申请实施例提供的方法,可以计算得到第二电子设备在该导航坐标系中的坐标。也就是说,第二电子设备使用与第一电子设备相同的导航坐标系,实现了在第一区域和第二区域建立统一的导航坐标系,有利于简化定位算法。
又由于第一区域和第二区域建立统一的导航坐标系,当待测设备在第一区域和第二区域之间切换时,也无需进行多次的初始姿态的对准,简化用户操作,提供用户体验。
一种可能的实现方式中,第三电子设备指向第二电子设备,包括:第三电子设备的载体坐标系的预设轴指向第二电子设备。
以第三电子设备是手机为例。基于大部分用户使用手机的习惯,可定义手机朝向(或者手机指向)为:平行于手机的长边,且沿手机的尾部指向顶部的方向。因此,可以将手机的朝向称为手机的顶部朝向。通常情况下,手机的顶部为安装有前置摄像头、红外发射器、听筒、光传感器、或者距离传感器等硬件的机身部分。手机的尾部为安装有麦克风和扬声器的机身部分。
一种可能的实现方式中,第三电子设备基于第一坐标,IMU测量的数据,第二坐标,以及第三电子设备指向第二电子设备时的姿态信息,计算得到第二电子设备的在导航坐标系中的坐标,具体包括:第三电子设备根据第一坐标、IMU测量的数据,计算得到第三位置对应的第三坐标;根据第三位置对应的第三坐标,以及第三位置对应的第二坐标,计算第三电子设备的运动数据与IMU测量的数据的偏差值;根据偏差值,以及IMU测量的数据,计算得到第三电子设备的运动数据;根据第三电子设备的运动数据,以及第一位置对应的第一坐标,计算第二位置对应的第四坐标;根据第二位置对应的四坐标,以及第三电子设备指向第二电子设备时的姿态信息,计算得到第二电子设备在导航坐标系中的坐标。
换言之,在第三电子设备位于第二区域内时,根据第三电子设备指向第二电子设备时的姿态信息,以及指向时第三电子设备在导航坐标系中坐标,可以计算出第二电子设备的坐标。由此,提供了又一种计算第二电子设备的坐标。
一种可能的实现方式中,根据第三位置对应的第三坐标,以及第三位置对应的第二坐标,计算第三电子设备的运动数据与IMU测量的数据的偏差值,具体为:采用卡尔曼滤波的方法,根据第三位置对应的第三坐标,以及第三位置对应的第二坐标,计算第三电子设备的运动数据与IMU测量的数据的偏差值。
一种可能的实现方式中,该方法还包括:当第三电子设备再次进入第二区域时,向第二电子设备发送第四UWB信号,用于测量第三电子设备与第二电子设备的距离;第三电子设备基于第三电子设备与第二电子设备的距离,以及第二电子设备在导航坐标系中的坐标,计算第三电子设备当前位置在导航坐标系中的坐标。
一种可能的实现方式中,该方法还包括:在第三电子设备在第三位置时,关闭或暂停第三电子设备的IMU测量。
一种可能的实现方式中,第二电子设备与第一电子设备具有不同的通信地址。
一种可能的实现方式中,第二电子设备与第一电子设备具有不同的通信地址,具体为:第二电子设备与第一电子设备具有不同的通信时隙或伪随机码序列。
一种可能的实现方式中,在当第三电子设备位于第一区域的第一位置时,第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中第一位置对应的第一坐标之前,该方法还包括:第三电子设备接收用户的第一操作,第一操作用于指示对第二电子设备进行初始化;响应于接收到第一操作,第三电子设备发出第一提示,用于提示用户携带第三电子设备进入第一区域。
一种可能的实现方式中,在第三电子设备从第一区域移动到第二区域之前,该方法还包括:第三电子设备发出第二提示,用于提示用户携带第三电子设备进入第二区域。
一种可能的实现方式中,在第三电子设备回到第一区域之前,该方法还包括:第三电子设备发出第三提示,用于提示用户携带第三电子设备回到第一区域。
一种可能的实现方式中,导航坐标系为根据第一电子设备确定。
一种可能的实现方式中,第一电子设备的数量为至少三个,其中每个第一电子设备包含一个UWB天线;或者,第一电子设备的数量为一个,第一电子设备包含至少三个UWB天线。
一种可能的实现方式中,第二电子设备的数量为至少三个,其中每个第二电子设备包含一个UWB天线;或者,第二电子设备的数量为一个,第二电子设备包含至少三个UWB天线。
第三方面、提供一种第三电子设备,包括:处理器、存储器、UWB模块和IMU模块,所述存储器、所述UWB模块、所述IMU模块与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器从所述存储器中读取所述计算机指令,以使得所述第三电子设备执行上述第一方面以及第一方面中任一种可能的实现方式中的方法,以及执行上述第二方面以及第二方面中任一种可能的实现方式中的方法。
第四方面、提供一种装置,该装置包含在第三电子设备中,该装置具有实现上述方面及可能的实现方式中任一方法中第三电子设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括至少一个与上述功能相对应的模块或单元。例如,通信模块或单元、测量模块或单元、以及计算模块或单元等。
第五方面、提供一种计算机可读存储介质,包括计算机指令,当所述计算机指令在第三电子设备上运行时,使得所述第三电子设备执行上述第一方面以及第一方面中 任一种可能的实现方式中的方法,以及执行上述第二方面以及第二方面中任一种可能的实现方式中的方法。
第六方面、提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面以及第一方面中任一种可能的实现方式中的方法,以及执行上述第二方面以及第二方面中任一种可能的实现方式中的方法。
第七方面、提供一种芯片系统,包括处理器,当处理器执行指令时,处理器执行上述第一方面以及第一方面中任一种可能的实现方式中的方法,以及执行上述第二方面以及第二方面中任一种可能的实现方式中的方法。
第八方面、提供一种系统,包括至少一个第一电子设备,至少一个第二电子设备,以及至少一个第三电子设备,所述至少一个第一电子设备设置在第一区域,所述至少一个第二电子设备设置在第二区域,所述第三电子设备执行上述第一方面以及第一方面中任一种可能的实现方式中的方法,以及执行上述第二方面以及第二方面中任一种可能的实现方式中的方法。
一种可能的实现方式中,第一电子设备的数量为至少三个,其中每个第一电子设备包含一个UWB天线;或者,第一电子设备的数量为一个,第一电子设备包含至少三个UWB天线。
一种可能的实现方式中,第二电子设备的数量为至少三个,其中每个第二电子设备包含一个UWB天线;或者,第二电子设备的数量为一个,第二电子设备包含至少三个UWB天线。
可以理解地,上述提供的第三方面所述的第三电子设备,第四方面所述的装置,第五方面所述的计算机存储介质,第六方面所述的计算机程序产品,第七方面所述的芯片系统,以及第八方面所述的系统所能达到的有益效果,可参考第一方面或第二方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种应用场景的系统架构示意图;
图2为本申请实施例提供的一种第一电子设备的结构示意图;
图3为本申请实施例提供的一种第三电子设备的结构示意图;
图4A为本申请实施例提供的一种UWB系统新增基站的初始化的方法流程图;
图4B为本申请实施例提供的一些第三电子设备的界面示意图;
图4C为本申请实施例提供的又一些第三电子设备的界面示意图;
图4D为本申请实施例提供的又一些第三电子设备的界面示意图;
图4E为本申请实施例提供的又一些第三电子设备的界面示意图;
图4F为本申请实施例提供的又一些第三电子设备的界面示意图;
图4G为本申请实施例提供的又一些第三电子设备的界面示意图;
图4H为本申请实施例提供的又一些第三电子设备的界面示意图;
图4I为本申请实施例提供的又一些第三电子设备的界面示意图;
图4J为本申请实施例提供的又一些第三电子设备的界面示意图;
图5A为本申请实施例提供的一种第三电子设备在不同区域内运动轨迹的示意图;
图5B为本申请实施例提供的又一种第三电子设备在不同区域内运动轨迹的示意 图;
图6为本申请实施例提供的三种坐标系的示意图;
图7为本申请实施例提供的一种卡尔曼滤波的过程示意图;
图8为本申请实施例提供的一种仿真实验的结果对比图。
具体实施方式
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在解决不同房间的UWB定位问题时,可以采用以下两种解决方案,但这些解决方案都分别存在不同的问题,如下:
方案一、先在房间1设置好一个或多个UWB基站,并建立导航坐标系,能够测量位于房间1中的UWB标签的定位。然后,在房间2中布置一个或多个UWB基站。可以利用房间1的UWB基站,测量得到房间2中的UWB基站的在导航坐标系下的坐标。而后,利用房间2中的UWB基站测量位于房间2中的UWB标签的定位。
当利用房间1的基站测量房间2中的基站的位置时,由于房间1和房间2有墙壁阻隔,在房间1和房间2中传播的UWB信号的强度被会削弱,并且穿墙后的UWB信号的空间传播时延也将增大,严重影响着房间2中基站的定位精度。
方案二、先在房间1设置好一个或多个UWB基站,并建立导航坐标系1,能够测量位于房间1中的UWB标签的定位。然后,在房间2中布置一个或多个UWB基站,建立导航坐标系2,用于测量位于房间2中的UWB标签的定位。换言之,每个房间设置有独立的UWB系统,且在不同的房间建立不同的导航坐标系。
那么,针对在不同房间中移动的UWB标签,该UWB标签需要存储不同房间的导航坐标系的信息(例如不同导航坐标系下的UWB基站的坐标)。当对UWB标签进行定位时,UWB标签还需要根据接收到的UWB信号的具体情况,确定该UWB信号是哪个导航坐标系下的UWB基站发送的。再采用相应的UWB基站的坐标进行计算,并输出UWB标签在该导航坐标系下的坐标,可见定位算法相当复杂。另外,当UWB标签每次切换到另一个导航坐标系时,需要重新对UWB标签的初始姿态进行校准,用户体验不佳。
为此,本申请实施例提供一种UWB系统下新增基站的初始化方法,可以在不同的房间内建立统一的导航坐标系,减轻UWB标签的存储负担,降低UWB标签在不同房间定位时的算法,还有利于保证UWB标签在不同房间的定位精度。并且,用户也无需对UWB标签进行多次初始姿态校准,提升用户体验。
以下结合附图,对本申请实施例提供的技术方案进行详细说明。
如图1所示,为本申请实施例提供的一种应用场景的架构示意图。其中,区域1 (例如房间1)内设置有一个或多个具有UWB信号收发装置的第一电子设备100,并且第一电子设备100已建立导航坐标系(简称为U系)。该一个或多个第一电子设备100可用于测量位于区域1内的UWB标签在U系下的位置。在一些示例中,上述UWB信号收发装置可以为多天线架构(如三天线架构、四天线架构等),即包含至少多个用于发送和接收UWB信号的天线。那么,区域1内可以设置一个第一电子设备100,实现对位于区域1内的UWB标签进行定位。在另一些示例中,上述UWB信号收发装置可以为单天线架构,即包含一个用于发送和接收UWB信号的天线。那么根据三角定位原理,区域1内需设置至少三个单天线架构的第一电子设备100,实现对位于区域1内的UWB标签进行定位。在又一些示例中,区域1内可以既设置有单天线架构的第一电子设备100,还设置有多天线架构的第一电子设备100。总之,本申请实施例第一电子设备100的天线架构,以及区域1设置的第一电子设备100的数量不做限定。
其中,区域2(例如房间2)为新增的定位区域。类似的,可以在区域2(例如房间2)中设置一个或多个具有UWB信号收发装置的第二电子设备200。该一个或多个第二电子设备200将用于测量位于区域2内的UWB标签的位置。与区域1内的第一电子设备100类似,第二电子设备200的UWB信号收发装置可以为多天线架构,也可以为单天线架构。当第二电子设备200为多天线架构时,第二电子设备200的数量可以为一个。当第二电子设备200为单天线架构时,第二电子设备200的数量为至少三个。相关内容可参考上文对第一电子设备100的描述,即本申请实施例第二电子设备200的天线架构,以及区域2设置的第二电子设备200的数量不做限定。另外,第二电子设备200的结构可以与第一电子设备100相同或不同,本申请实施例也不做限定。
在本申请实施例中,图1所示的应用场景的系统架构中还包括有第三电子设备300,其能够在区域1和区域2之间移动的。该第三电子设备300可以包括惯性测量单元(inertial measurement unit,IMU),用于测量第三电子设备300自身的运动轨迹。
在初始化区域2的第二电子设备200时,可以利用第一电子设备100测量第三电子设备300在区域1内的起点位置。然后,将第三电子设备300可以从区域1移动到区域2,再回到区域1。在第三电子设备300移动的整个过程中,使用IMU测量第三电子设备300的运动轨迹,并测量第三电子设备300与区域2中的第二电子设备200之间的距离。当第三电子设备300回到区域2时,再利用第一电子设备100测量第三电子设备300在区域1内的终点位置。需要说明的是,利用IMU测量的第三电子设备300的运动轨迹具有一定的实际时间累积误差,持续运行后定位误差较大。而第一电子设备100测量的第三电子设备300的持续定位精度更高,故后续可以利用第一电子设备100测量第三电子设备300回到区域1内的终点位置。然后使用第一电子设备100测量的终点位置,对IMU测量的第三电子设备300的运动轨迹进行偏移矫正。使用偏移矫正后的运动轨迹,以及测量到的第三电子设备300与区域2中第二电子设备200的距离,计算出区域2中第二电子设备200的位置,即第二电子设备200在导航坐标系中的坐标。当计算得到第二电子设备200的坐标后,可利用第二电子设备200测量位于区域2中其他设备的位置。需要注意的是,整个过程中,使用的是同一个导航坐标系,即实现了区域2和区域1的坐标系统一的效果。具体的实现方案将在下文详细 说明。
示例性的,上述第一电子设备100具体可以为UWB基站、智能音箱、智能电视、空气净化器、加湿器、智能灯具(如吸顶灯、台灯、香薰灯等)、台式电脑、路由器、智能插座、饮水机、冰箱、智能开关、智能门锁、客户前置设备(Customer Premise Equipment,CPE)、平板电脑、手机等,本申请对第一电子设备100的具体形式不做限定。
请参见图2,其示出了第一电子设备100的结构示意图。
如图2所示,第一电子设备100可以包括处理器110,存储器120,通用串行总线(universal serial bus,USB)接口130,电源模块140,UWB模块150,无线通信模块160等。
可以理解的是,本发明实施例示意的结构并不构成对第一电子设备100的具体限定。在本申请另一些实施例中,第一电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。另外,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对第一电子设备100的结构限定。在本申请另一些实施例中,第一电子设备100也可以采用与图2不同的接口连接方式,或多种接口连接方式的组合。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器、调制解调处理器,控制器和基带处理器等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。例如,处理器210是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
存储器120可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。例如,存储器120还可以存储处理器110处理后的数据,例如计算得到的UWB标签200的位置,姿态等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行第一电子设备100的各种功能应用以及数据处理。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal  asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口130等。
其中,USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为第一电子设备100充电,也可以用于第一电子设备100与外围设备之间传输数据。
电源模块140用于为第一电子设备100的各个部件,如处理器210、存储器220等供电。
第一电子设备100的无线通信功能可以通过UWB模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
其中,调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与UWB模块150或其他功能模块设置在同一个器件中。
UWB模块150,即为UWB信号收发装置,可以提供应用在第一电子设备100上的基于UWB技术的无线通信的解决方案。其中,UWB技术不同于传统的通信技术,其通过发送和接收具有纳秒或微秒级以下的极窄脉冲来实现无线传输的。由于脉冲时间宽度极短,因此可以实现频谱上的超带宽,例如使用的带宽在500MHz以上。除了实现无线通信外,UWB技术还可以实现定位,具体的可以通过检测信号脉冲位置,并结合某些定位算法来计算信号在空中飞行的时间,该时间乘上信号在空中传输的速率(例如光速)即得到UWB标签200和第一电子设备100之间的距离,并且本申请中,第一电子设备100还可以根据UWB标签200发送的UWB信号达到不同天线的相位差,确定UWB标签200相对于第一电子设备100的方向。从而达到定位功能的目标,精度可以达到厘米级别的精确定位。
UWB模块150可以是集成至少一个通信处理模块的一个或多个器件。UWB模块150经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。UWB模块150还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。其中,UWB模块150可以包含一个或多个用于发送UWB信号的天线,或者UWB模块150连接有一个或多个用于发送UWB信号的天线。
可选的,第一电子设备100还可以包括无线通信模块160,以提供应用在第一电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经 由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
其中,上述第二电子设备200的具体形式/结构可以参考上述对第一电子设备100的具体形式/结构的描述,这里不再说明。另外,第二电子设备200的具体形式/结构可以与第一电子设备100相同,或者不同。
示例性的,上述第三电子设备300,具体可以是UWB标签、手机、遥控器、可穿戴电子设备(智能手表、智能手环、VR眼镜等)、平板电脑、个人数字助理(personal digital assistant,PDA)、手柄、空鼠、扫地机器人等,本申请对第三电子设备300的具体形式也不做限定。
请参见图3,其示出了第三电子设备300的结构示意图。
如图3所示,第三电子设备300可以包括处理器310,存储器320,通用串行总线(universal serial bus,USB)接口330,电源模块340,UWB模块350,无线通信模块360,以及IMU模块370等。
可以理解的是,本发明实施例示意的结构并不构成对第三电子设备300的具体限定。在本申请另一些实施例中,第三电子设备300可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。另外,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对第三电子设备300的结构限定。在本申请另一些实施例中,第三电子设备300也可以采用与图3不同的接口连接方式,或多种接口连接方式的组合。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器310中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器310中的存储器为高速缓冲存储器。该存储器可以保存处理器310刚用过或循环使用的指令或数据。如果处理器310需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器310的等待时间,因而提高了系统的效率。
存储器320可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。存储器320可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器 110通过运行存储在存储器320的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
USB接口330是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口330可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
电源模块340用于为第三电子设备300的各个部件,如处理器310、存储器320等供电。
UWB模块350,即UWB信号收发装置,可以提供应用在第三电子设备300上的基于UWB技术的无线通信的解决方案。UWB模块350中包含天线模块,该天线模块中可以包含一个或多个天线,用于发送和接收UWB信号,以便第二电子设备200确定第三电子设备300与第一电子设备100的距离,以及第三电子设备300相对于第一电子设备100的方向。
UWB模块350可以是集成至少一个通信处理模块的一个或多个器件。UWB模块350经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。UWB模块350还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。其中,UWB模块350可以包含一个或多个用于发送UWB信号的天线,或者UWB模块350连接有一个或多个用于发送UWB信号的天线。
可选的,第三电子设备300还可以包括无线通信模块360,以提供应用在第一电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块360可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块360经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块360还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
IMU模块370,用于测量第三电子设备300的运动数据,例如加速度、角速度。其中,IMU模块370可以包括三个加速度计和三个陀螺仪组成的组合单元,且加速度计和陀螺仪安装在互相垂直的测量轴上。其中,加速度计可以检测第三电子设备300在载体坐标系(简称为b系)中三轴上的加速度,陀螺仪可以检测b系围绕地理坐标系(简称为n系)中三轴的角速度。而后可以根据IMU模块370测量到的第三电子设备300的运动数据,解算出第三电子设备300的姿态。进一步的,根据第三电子设备300的姿态变化,以及IMU模块370测量到的加速度可以计算出第三电子设备300的运动轨迹。一些示例中,还可以结合第一电子设备100或第二电子设备200测量的第 三电子设备300在一些时刻的位置,可以为第三电子设备300提供更加准确和连续的定位和导航。
本申请实施例可应用于上述图1所示的通信系统中,其中,第一电子设备100、第二电子设备200可具有图2所示的结构,第三电子设备300可具有图3所示的结构。下面结合附图,对本申请实施例提供的技术方案进行详细说明。
如图4A所示,为本申请实施例提供的一种UWB系统下新增基站的初始化方法的流程示意图,包括:
S401、第三电子设备触发第一电子设备100构成的UWB系统的初始化。
示例性的,区域1内设置有一个或多个第一电子设备100,这一个或多个第一电子设备100可构成一个定位系统,用于测量位于区域1内的UWB标签的位置。其中,区域1可以为封闭或半封闭的空间,例如为房间1,区域1也可以为开阔的空间。
在一个示例中,第一电子设备100为单天线架构,那么区域1内需要设置至少三个第一电子设备100。下文,以区域1中设置有三个第一电子设备100为例进行说明。首先,按照预设的布置规则(例如,区域1中设置第一电子设备A、第一电子设备B和第一电子设备C,其中第一电子设备A和第一电子设备B的连线平行于水平面,且第二电子设备A和第一电子设备B的连线平行于铅垂面)安装三个第一电子设备100,并确定出第一电子设备100的导航坐标系以及各个第一电子设备100在该坐标系下的坐标。
在一种具体的实现中,可以利用安装有家居应用的控制设备(如第三电子设备300)对区域1中第一电子设备100进行设置。以控制设备是手机为例,如图4B中(1)所示,为家居应用的主界面。该主界面包含已注册并配网的家居设备(例如电视1和音箱1)。用户可以通过添加控件410,添加新设备。添加新设备的具体过程可参考现有技术,这里不再赘述。如图4B中(2)所示,已完成音箱2的注册与配网。其中,电视1、音箱1和音箱2均位于客厅(区域1)。这里以电视1、音箱1和音箱2(即三个第一电子设备100)均配置有UWB模块为例,对建立由电视1、音箱1和音箱2构成的UWB系统的过程进行说明。如图4B中(2)所示,响应于用户选择开启一个设备(例如音箱2)的标识411,手机进入如图4C中(1)所示的音箱2的控制界面。该控制界面中包含音箱2的各个功能的设置控件,例如建立UWB系统的控件412。响应于用户操作控件412,手机显示如图4C中(2)所示的设置界面。该设置界面可以设置音箱2的通信地址。当然由于音箱2为该UWB系统设置的第一个设备(可以作为主设备),通信地址也可以为默认地址。
需要说明的是,UWB系统中的多个基站可采用时分多址(time division multiple access,TDMA)或码分多址(code division multiple access,CDMA)的通信技术,用于接收其他设备发送的UWB信号,或者向其他设备发送UWB信号。因此,需要为加入UWB系统的设备分别设置通信地址。
在设置好音箱2的通信地址后,手机显示如图4D中(1)所示的界面。该界面显示已添加音箱2为新建立的UWB系统中的一个基站。进一步的,用户可以通过该界面中添加控件414,添加该UWB系统中其他基站。例如,响应于用户操作添加控件414,手机可以显示出已在家居应用中注册并已配网的其他具有UWB模块的设备。用 户可以从中选择一个或多个设备添加到该UWB系统中,并为每个添加的设备设置通信地址。当然,手机也可以根据每个设备添加的顺序为各个设备设置默认的通信地址,本申请实施例对此不做限定。如图4D中(2)所示的界面,此时已添加音箱2、音箱1以及电视1为UWB系统中的UWB基站。而后,可以对UWB系统进行初始化。响应于用户操作UWB系统初始化控件415,手机(包含UWB模块)可以向三个基站发送UWB信号,请求测量手机相对于三个基站的距离。并且,以其中一个基站的位置为原点,建立UWB系统的导航坐标,根据手机相对于三个基站的距离,计算出其他基站在UWB系统的导航坐标下的坐标。当UWB系统初始化完成后,手机可以显示如图4E所示的界面。该界面中可以显示各个基站在UWB系统的导航坐标下的坐标416。而后,用户可以通过操作请求UWB系统测距的控件417,出发第一电子设备100测量第三电子设备300在导航坐标系中的位置。
至此,第一电子设备100构成的定位系统可实现对区域1中的设备进行定位。
S402、第三电子设备300设置位于区域2的第二电子设备200的通信地址。
示例性的,当需要在区域2的设备进行定位时,可以在区域2中设置一个或多个第二电子设备200,并对该一个或多个第二电子设备200进行初始化。在一个示例中,该第二电子设备为单天线架构,那么区域2内需要设置至少三个第二电子设备200。下文,以区域2中设置有三个第二电子设备200为例进行说明。
由于本申请要在区域1和区域2内建立统一的导航坐标系,因此,位于区域2内的第二电子设备200与区域1的第一电子设备100属于同一个定位系统。那么,在该定位系统中,第一电子设备100和第二电子设备200可采用时分多址(time division multiple access,TDMA)或码分多址(code division multiple access,CDMA)的通信技术,用于接收第三电子设备300发送的UWB信号。因此,统一为第一电子设备100和第二电子设备200分配不同的通信时隙或者伪随机码序列。那么,区域2中的每个第二电子设备200将在各自分配的通信时隙中接收到发送给自己的UWB信号,或者采用各自的伪随机码序列解析发发送给自己的UWB信号。
在一种具体的实现中,仍然可以利用安装有家居应用的控制设备(例如第三电子设备300)对区域2中第二电子设备200进行设置。仍然以控制设备是手机为例。首先,用户通过家居应用对区域2中的第二电子设备200进行注册和配网。如图4F中(1)所示,家居应用的主界面中显示有新增在主卧(即区域2)中的设备:音箱3、电视2和音箱4(即第二电子设备200)。可选的,家居应用也可以对UWB系统的主设备进行标记,例如对步骤S400已建立的UWB系统的主设备音箱2进行标记,例如标记为UWB系统1的主设备,本申请对标记的方式不做限定。而后,响应于用户操作音箱2的标识418,手机进入如图4F中(2)所示的音箱2的控制界面。用户可以通过添加控件419添加主卧中的设备为该UWB系统1中的基站。在添加过程中,会为每个新添加的设备设置通信地址,具体的添加过程可参考步骤S400中添加基站的方法。如图4G中(1)所示的控制界面,已添加音箱3、音箱4和电视2为UWB系统1中的基站。可以注意到,此时新增的设备在该UWB系统1中的坐标未知。该控制界面中显示有新增基站初始化的控件420,响应于用户操作该控件420,手机触发新增基站(音箱3、音箱4和电视2)的初始化。在一个示例中,手机可以显示如图4G中(2)所示的界面, 用于提示用户回到区域1(即客厅)开始初始化新增基站。
S403、在时刻1,第三电子设备300位于区域1,请求每个第一电子设备100测距,并获取第三电子设备300初始位置,记为p0。以及,第三电子设备300启动IMU测量,用于测量第三电子设备300的运动数据。
请参见图5A,其示出了第三电子设备300的运动轨迹,即标记了第三电子设备300在不同时刻的位置。
如图5A所示,在时刻1时,第三电子设备300位于区域1,此时第三电子设备300可以向区域1中的每个第一电子设备100请求测距。此时,第一电子设备100在第一电子设备100的通信时隙可以接收到第三电子设备300发送的测距请求,或者第一电子设备100采用第一电子设备100的伪随机码序列可以解析出第三电子设备300发送的测距请求,第一电子设备100例如可以采用双向测距法测得与第三电子设备300的距离。一些示例中,第三电子设备300可以基于测得的每个第一电子设备100与第三电子设备300之间的距离以及预先存储的每个第一电子设备100的坐标,计算出第三电子设备300此时在导航坐标系中坐标,即为初始位置。
并且,从初始位置开始,第三电子设备300启动IMU模块370,开始测量第三电子设备300的运动数据,以便计算第三电子设备300的运动轨迹。一些示例中,第三电子设备300可以提示用户执行预设操作,该预设操作可以使得第三电子设备300处于预设姿态,并启动IMU测量。其中预设姿态,例如可以是用户操作第三电子设备300,使得第三电子设备300的一个坐标轴(例如b系的Y轴)的特定方向对准第一电子设备100。此时,第三电子设备300的姿态为初始姿态。该初始姿态可以用姿态角(如俯仰角、方位角和横滚角)表示,该姿态角可以根据第三电子设备300的IMU模块测量的姿态数据(载体坐标系三轴的角速度)计算得到。其中,用户执行预设操作的过程也称为第三电子设备300的初始姿态的校准过程。
可选的,第三电子设备300可以提供用户从初始位置开始移动第三电子设备300,从区域1移动到区域2,最后回到区域2。本申请对第三电子设备300的提示方式和提示时机不做限定。
在一种具体的实现中,仍然可以利用安装有家居应用的控制设备(例如第三电子设备300)提示用户执行相应的操作,配合完成第二电子设备200的初始化。仍然以控制设备是手机为例。如图4G中(2)所示,手机显示提示信息,提示用户携带手机回到客厅。当用户携带手机回到客厅,并点击已回到客厅的控件421。响应于用户点击控件421,手机可以显示图4H中(1)所示的提示界面,提示用户将手机的顶部指向音箱2。此时为时刻1,且手机位于初始位置。手机向第一电子设备100测量此时手机在UWB系统下的初始位置p0。并且,手机同时启动IMU测量,用于测量手机的运动数据。
S404、时刻2,第三电子设备300进入区域2,获取至少三处位置时,第三电子设备300与每个第二电子设备200之间的距离。或者,获取至少两处位置时,第三电子设备300指向每个第二电子设备200时的姿态数据。
在一种技术方案中,在第三电子设备300进入区域2后,在至少三处位置请求每个第二电子设备200测距,得到区域2中每个第二电子设备200与第三电子设备300 之间的距离。
在该技术方案的一个示例中,第三电子设备300(即手机)可以显示如图4H中(2)所示提示界面,提示用户持第三电子设备300进入区域2(即主卧)。当用户进入区域2后,操作第三电子设备300(例如操作已进入主卧的控件422)。第三电子设备300响应于用户的操作,请求区域2中每个第二电子设备200测量与第三电子设备300的距离。其中,第三电子设备300接收到用户操作第三电子设备300的时间即为时刻2。在另一个示例中,第三电子设备300可以显示如图4H中(3)所示提示界面,提示用户在时刻1之后的预设时间段(例如1分钟、5分钟等)内进入区域2,那么第三电子设备300可以在时刻1之后的预设时间段后,开始向第二电子设备200请求测距。在又一个示例中,第三电子设备300可以在时刻1后,就开始间隔一段时间,请求第二电子设备200测距。第三电子设备300可能接收不到第二电子设备发送的UWB信号,或者接收到的第二电子设备发送的UWB信号较弱,则第三电子设备300不计算第三电子设备300与每个第二电子设备200之间的距离。当第三电子设备300进入区域2后,第三电子设备300可以接收第二电子设备发送的UWB信号,或者接收到的第二电子设备发送的UWB信号较强,则第三电子设备300开始计算第三电子设备300与每个第二电子设备200之间的距离。在又一个示例中,第三电子设备300也可以根据IMU测量的运动数据判断第三电子设备300大致进入区域2后,开始向第二电子设备200请求测距。换言之,本申请对第三电子设备300向第二电子设备200开始请求测距的时机不做限定。
而后,在一些实施例中,需要测量得到第三电子设备300位于区域2中至少三处位置(此三处位置不能与第二电子设备200位于同一直线上)时,距离各个第二电子设备200的距离。例如,如图5A所示,至少测量到第三电子设备300位于位置A(对应时刻2),位置B(对应时刻4),以及位置C(对应时刻5)时,第三电子设备300分别与各个第二电子设备200的距离。图5A中仅示出了一个第二电子设备在三个位置时与第三电子设备之间的距离。具体实现中,第三电子设备300(即手机)可以自动选择三处位置,向第二电子设备200请求测距。第三电子设备300也可以根据用户的操作,选择在用户指定的三处位置,向第二电子设备200请求测距。例如,在用户操作如图4H中(2)所示的已进入主卧的控件后,或者,在第三电子设备300显示如图4H中(3)所示的界面后的预设时间段(例如1分钟)后,显示如图4I中(1)所示的界面,用于提示用户在区域2中选择至少三处位置,请求第二电子设备200测距。当第三电子设备300接收到用户点击测距控件423时,向第二电子设备200发送一次测距请求,用于测量在该位置时第三电子设备与相应的第二电子设备200的距离。
在另一种技术方案中,在第三电子设备300进入区域2后,在至少两处位置(例如位置C和位置B)时,记录第三电子设备300指向每个第二电子设备时的姿态信息。该姿态信息可以用姿态角(如俯仰角、方位角和横滚角)表示,可以通过第三电子设备300的IMU模块输出的角速度计算得到,具体的计算方法可参考下文的描述。
其中,第三电子设备300指向某个第二电子设备200,是指将第三电子设备300的载体坐标系中特定的坐标轴对准该第二电子200。以第三电子设备300是手机为例。基于大部分用户使用手机的习惯,可定义手机朝向(或者手机指向)为:平行于手机 的长边,且沿手机的尾部指向顶部的方向。因此,可以将手机的朝向称为手机的顶部朝向。通常情况下,手机的顶部为安装有前置摄像头、红外发射器、听筒、光传感器、或者距离传感器等硬件的机身部分。手机的尾部为安装有麦克风和扬声器的机身部分。
其中,在第三电子设备300进入区域2,第三电子设备300显示的相关界面可以参考图4H中(2)以及图4H中(3)。而后,第三电子设备300可以显示如图4I中(3)所示的界面,提示用户在至少两个位置,依次指向每个第二电子设备200。当用户点击确定控件425时,第三电子设备计算在该位置指向相应的第二电子设备200的姿态信息。
需要注意的是,在该本步骤中,第三电子设备300持续进行IMU测量,测量第三电子设备300的运动数据。
S405、时刻3,第三电子设备300回到区域1,请求每个第一电子设备100测距,获取第三电子设备300的终点位置,记为p1。
在一些示例中,第三电子设备300可以在终点位置时关闭IMU测量。例如,第三电子设备300在获取到终点位置时,关闭IMU测量。或者,第三电子设备300关闭IMU测量,并提示用户在当前位置保持预设时间段(例如30秒),在该预设时间段内,第三电子设备300向每个第一电子设备100发送测距请求,并获取终点位置。
例如,在执行完步骤S404之后,第三电子设备300可以显示图4I中(2)所示的界面,提示用户返回客厅。当用户回到客厅后,用户可以操作已回到客厅的控件424。第三电子设备300接收到用户操作控件424时,即为时刻3,第三电子设备请求每个第一电子设备100测距。
S406、第三电子设备300根据初始位置以及IMU测量的第三电子设备300的运动数据,估算第三电子设备300的运动轨迹。
这里以第三电子设备300是手机为例,先对第三电子设备的载体坐标系(即b系)、第三电子设备的导航坐标系(即n系),以及第一电子设备100建立的导航坐标系(即U系)进行说明。
请参见图6,b系以手机固件中心P点为原点。b系的Y轴和X轴为平行手机屏幕平面的方向,且Y轴为沿着手机长度的方向,X轴为沿着手机宽度的方向。b系的Z轴为垂直于手机屏幕的方向,且由手机屏幕背面指向手机屏幕正面的方向为Z轴的正方向。
n系,也是以手机固件中心P点为原点。n系的X轴沿当地纬线指向东(E),n系的Y轴沿当地子午线线指向北(N),n系的Z轴沿当地地理垂线指向上,并与X轴和Y轴构成右手直角坐标系。其中,X轴与Y轴构成的平面即为当地水平面,Y轴与Z轴构成的平面即为当地铅垂面。
U系,是第一电子设备100建立的直角坐标系。一些示例中,第一电子设备100的数量为1个时(第一电子设备100为多天线架构),以第一电子设备100中某个UWB天线的位置O点为原点。另一些示例中,第一电子设备100的数量为三个或三个以上时(第一电子设备100为单天线架构),以其中一个第一电子设备100中UWB天线的位置O点为原点。为了后续简便运算,U系的三轴方向与n系的方向相同。即,U系的X轴沿当地纬线指向东(E),U系的Y轴沿当地子午线线指向北(N),U系 的Z轴沿当地地理垂线指向上,并与X轴和Y轴构成右手直角坐标系。也即,U系和n系的区别仅在于原点不同,三轴的方向均相同。
(1)解算第三电子设备300的姿态。
当第三电子设备300启动IMU模块370后,IMU模块370按照一定频率采集第三电子设备300的运动数据,包括第三电子设备300在载体坐标系(简称为b系)中三轴上的加速度(分别记为
Figure PCTCN2021136906-appb-000001
Figure PCTCN2021136906-appb-000002
),b系围绕地理坐标系(简称为n系)中三轴的角速度(分别记为
Figure PCTCN2021136906-appb-000003
Figure PCTCN2021136906-appb-000004
)。
一些示例中,对IMU模块370采集的角速度(
Figure PCTCN2021136906-appb-000005
Figure PCTCN2021136906-appb-000006
)进行积分运算,得到第三电子设备300在三轴上的角度变化,即得到第三电子设备300的姿态变化。根据第三电子设备300的角度变化以及第三电子设备300的初始姿态(步骤S403中计算得到),可以得到第三电子设备300在各个时刻的姿态。在另一些示例中,在解算第三电子设备300的姿态时,也可以结合IMU模块370采集的加速度或者其他传感器的数据进行融合计算,以得到更加精确的姿态,本申请实施例对此不做限定。
(2)解算第三电子设备300在U系上的速度。
对IMU模块370采集的加速度(
Figure PCTCN2021136906-appb-000007
Figure PCTCN2021136906-appb-000008
)进行积分运算,得到第三电子设备300在b系三轴上的速度(记为
Figure PCTCN2021136906-appb-000009
Figure PCTCN2021136906-appb-000010
)。再利用(1)计算的第三电子设备300在各个时刻的姿态,可以将第三电子设备300在b系三轴上的速度转换得到第三电子设备300在U系上的速度(记为
Figure PCTCN2021136906-appb-000011
Figure PCTCN2021136906-appb-000012
)。
(3)解算第三电子设备300的位置。
第三电子设备300在U系上的速度(记为
Figure PCTCN2021136906-appb-000013
Figure PCTCN2021136906-appb-000014
)进行积分运算,得到第三电子设备300的位置变化。结合第三电子设备300的初始位置可以估算出第三电子设备从时刻1到时刻3整个移动过程中的位置,即运动轨迹。其中,包括估算出第三电子设备300的终点位置,记为p1'。
S407、根据第一电子设备100测量的终点位置p1以及估算的第三电子设备300的运动轨迹,得到矫正后的第三电子设备300的运动轨迹。
由于第三电子设备300利用IMU模块370采集的运动数据计算得到的p1'具有时间累积误差,并且认为定位精度高的UWB系统(第一电子设备100)测量得到p1是准确的位置信息,那么,可以利用p1'和p1的差值,对步骤S406中估算的第三电子设备300的运动轨迹进行矫正。
在一个具体的实施例中,可以利用卡尔曼滤波(Kalman filter)来矫正。
如图7所示,为第三电子设备300中各个模块数据处理的示意图。其中,UWB模块350用于获取第三电子设备300从区域1的出发的初始位置p0,以及经区域2回到区域1的终点位置p1。其中,UWB模块350将初始位置p0发送给IMU模块370,IMU模块370测量自身从初始位置到终点位置的运动数据(加速度、角速度),并结合UWB模块350发送的初始位置p0估算出终点位置p1'。IMU模块370将终点位置p1'以及UWB模块350将终点位置p1均输入到卡尔曼滤波模块(例如可以位于第三电子设备300中的处理器310中)中,输出得到估计的最优的运动数据的偏差。而后,IMU模块370可以基于运动数据的偏差(例如陀螺仪的偏置误差ε b,以及加速度计的偏置误差
Figure PCTCN2021136906-appb-000015
),矫正IMU模块370测量到的运动数据,并基于矫正后的运动数据得到矫正 后的运动轨迹。
下面详细说明下卡尔曼滤波模块的滤波过程。
其中,卡尔曼滤波是一种利用线性系统状态模型,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。数据滤波是去除噪声还原真实数据的一种数据处理技术。
其中,线性系统状态模型描述了系统随时间变化的状态,用公式(1)表示:
x m=Φ m|m-1x m-1+w m-1       公式(1)
其中,x m代表第m个历元下的状态量,Φ (m|m-1)代表状态转移矩阵,w (m-1)代表过程噪声向量。为了校正状态量的估计值,需要对状态量或与状态量相关联的其他变量进行观测,如果观测量不为状态量本身还需要经过计算将变量的观测量转换为状态量的观测量。为了完成上述目标需建立量测方程,系统的量测方程表征了系统的状态量与观测量之间的关系,用公式(2)所示:
y m=H mx m+v m      公式(2)
其中,y m代表系统的观测量,H m表示观测矩阵,v m代表测量噪声向量。
在本申请实施例中,可以如公式(3)所示,设置卡尔曼滤波的状态量:
Figure PCTCN2021136906-appb-000016
其中,
Figure PCTCN2021136906-appb-000017
δv U和δp U分别为第三电子设备300的U系下的姿态误差、速度误差和位置误差,ε b为第三电子设备300中陀螺仪输出的角速度偏置误差,
Figure PCTCN2021136906-appb-000018
为第三电子设备300中加速度计输出的加速度偏置误差。
并且,公式(3)中各个状态量之间的微分关系可以用公式(4)表示:
Figure PCTCN2021136906-appb-000019
其中,
Figure PCTCN2021136906-appb-000020
为b系和U系的转换矩阵;
Figure PCTCN2021136906-appb-000021
为IMU模块中加速度计输出加速度(
Figure PCTCN2021136906-appb-000022
Figure PCTCN2021136906-appb-000023
Figure PCTCN2021136906-appb-000024
)转换到U系后的加速度。
改写该公式(4)的微分方程为矩阵形式,得到公式(5):
Figure PCTCN2021136906-appb-000025
则得到微分方程,如公式(6)所示:
Figure PCTCN2021136906-appb-000026
进一步,得到线性系统状态模型方程,如公式(7)所示:
x m=[F 15×15·Δt+I]·x m-1+w m-1      公式(7)
其中,Δt为m-1时刻到m时刻的时间间隔,w m-1为根据IMU模块370的输出数据计算运动轨迹的噪声向量。
在本申请实施例中,量测方程为公式(8),如下:
y m=p1'-p1      公式(8)
根据公式(8),结合卡尔曼滤波算法就可以传递计算出陀螺仪的偏置误差ε b,以及加速度计的偏置误差
Figure PCTCN2021136906-appb-000027
之后根据分别用陀螺仪的偏置误差ε b,以及加速度计的偏置误差
Figure PCTCN2021136906-appb-000028
校正陀螺仪和加速度计的输出的角速度和加速度,并再次使用矫正后的角速度和加速度计算第三电子设备300从时刻1至时刻3的运动轨迹。
例如,如图5A所示,根据矫正后的角速度和加速度,重新计算得到第三电子设备300位于位置A、位置B以及位置C时的坐标,分别记为A点(x A,y A,z A),B点(x B,y B,z B)C点(x C,y C,z C)。
S408、第三电子设备300根据矫正后的第三电子设备300的运动轨迹,以及测量的第三电子设备300与每个第二电子设备200的距离,计算每个第二电子设备200在导航坐标系中的坐标。或者,第三电子设备300根据矫正后的第三电子设备300的运动轨迹,以及测量的第三电子设备300指向每个第二电子设备200时的姿态信息,计算每个第二电子设备200在导航坐标系中的坐标。
在一种技术方案中,在步骤S404中,已测量得到第三电子设备300分别在A点、B点和C点时,与第二电子设备200之间的距离。那么,再结合步骤S407中得到的A点、B点和C点的位置信息,可以计算得到每个第二电子设备200的位置信息。
这里以其中一个第二电子设备200为例进行说明。某个第二电子设备200测量到该第二电子设备和第三电子设备300的距离分为r A、r B、r C。该第二电子设备200的位置为未知数,记为(x,y,z),可以得到公式(9),如下:
Figure PCTCN2021136906-appb-000029
求解公式(9)即可得到该第二电子设备200的位置(x,y,z)。在其他一些实施例中,也可以获取A点、B点和C点外,更多位置的坐标以及各个位置对应的距离,建立更多的方程组,采用牛顿迭代和最小二乘法求解得到更为精确的该第二电子设备200的位置。
其他第二电子设备200的位置的求解方法与此相同,不再赘述。如图4J所示,在第三电子设备300在计算得到每个第二电子设备200在UWB系统的导航坐标系下的坐标后,可以显示图4J所示的界面。此时,已完成对新增基站的初始化过程。
之后,当第三电子设备300位于区域2中时,可以向第二电子设备200请求测量距离,而后基于测量得到的距离和各个第二电子设备200的位置,计算得到自身当前的位置。即,实现利用第二电子设备200对位于区域2中的第三电子设备300的定位 以及导航等。
在另一种技术方案中,在步骤S404中,已测量得到第三电子设备300分别在B点和C点时,第三电子设备300指向第二电子设备200的姿态信息。那么,再结合步骤S407中得到的B点和C点的位置信息,可以计算得到每个第二电子设备200的位置信息。
这里以其中一个第二电子设备200为例进行说明。示例性的,第三电子设备300在位置i的位置信息为(x i,y i,z i),第三电子设备300在位置i指向该第二电子设备的姿态信息包括第三电子设备300的载体坐标系相对于U系的俯仰角
Figure PCTCN2021136906-appb-000030
方位角φ i和横滚角θ i。其中,i在{1,2……,n}中依次取值,n≥2,n为整数。
例如,第三电子设备300在图5B所示的位置B时,第三电子设备300在U系的坐标位置为(x 1,y 1,z 1),第三电子设备300姿态信息包括俯仰角
Figure PCTCN2021136906-appb-000031
方位角φ 1和横滚角θ 1。第三电子设备300在图5B所示的位置C时,第三电子设备300在U系的坐标位置为(x 2,y 2,z 2),第三电子设备300姿态信息包括俯仰角
Figure PCTCN2021136906-appb-000032
方位角φ 2和横滚角θ 2
也就是说,第三电子设备300在位置i时,第三电子设备300在U系的坐标位置为(x i,y i,z i),姿态信息是俯仰角
Figure PCTCN2021136906-appb-000033
方位角φ i和横滚角θ i。其中,i在{1,2……,n}中依次取值,n≥2,n为整数。以下实施例中,以第三电子设备300在位置i时,第三电子设备300的位置信息是(x i,y i,z i),姿态信息是俯仰角
Figure PCTCN2021136906-appb-000034
方位角φ i和横滚角θ i为例,介绍第三电子设备300执行计算第二电子设备的位置信息(x,y,z)的具体方法。
其中,第三电子设备300的位置信息(x i,y i,z i)和姿态信息(包括俯仰角
Figure PCTCN2021136906-appb-000035
方位角φ i和横滚角θ i)是已知量。第二电子设备的位置信息(x,y,z)为未知量。i在{1,2……,n}中依次取值,n≥2,n为整数。
应理解,第二电子设备的位置信息(x,y,z)是第二电子设备在U系中的坐标位置,(x,y,z)可以以矩阵(1)所示的三行一列的矩阵表示。第三电子设备300的位置信息(x i,y i,z i)是第三电子设备300在U系中的坐标位置,(x i,y i,z i)可以以矩阵(2)所示的三行一列的矩阵表示。
Figure PCTCN2021136906-appb-000036
因此,如公式(10)所示,矩阵(1)-矩阵(2),便可以得到图5B所示的向量K iR。
向量
Figure PCTCN2021136906-appb-000037
其中,第三电子设备300在位置i时的坐标为K i(x i,y i,z i);第二电子设备的坐标为R(x,y,z)。上述矩阵(1)和矩阵(2)中的下标U表示UWB基站构建的U系;K i(x i,y i,z i)和R(x,y,z)是U系中的坐标。其中,(x i,y i,z i)是已知量,(x,y,z)是未知量。
根据坐标系转移原理可以得出以下公式(11):
向量
Figure PCTCN2021136906-appb-000038
其中,
Figure PCTCN2021136906-appb-000039
为b系到U系的转换矩阵,也可称为b系到U系的旋转矩阵,可通过公式(12)得到,如下:
Figure PCTCN2021136906-appb-000040
其中,r i=K iR,K iR是第三电子设备300在位置i时,第三电子设备300与第二电子设备之间的距离。当第三电子设备300在位置i指向第二电子设备时,第三电子设备300的b系的Y轴经过第二电子设备所在位置。因此,第二电子设备在b系中的坐标为(0,r i,0)。上述矩阵
Figure PCTCN2021136906-appb-000041
是由第二电子设备在b系中的坐标(0,r i,0)得到的。r i是向量K iR的模,即向量K iR的长度。向量K iR是U系e中的向量。需要再次说明的是,(x i,y i,z i)、俯仰角
Figure PCTCN2021136906-appb-000042
方位角φ i和横滚角θ i均为已知量,(x,y,z)和r i均为未知量。
结合上述公式(10)和公式(11)可以得出以下公式(13),从而得到公式(14):
Figure PCTCN2021136906-appb-000043
Figure PCTCN2021136906-appb-000044
其中,公式(14)中所述的
Figure PCTCN2021136906-appb-000045
中的
Figure PCTCN2021136906-appb-000046
是公式(12)中所述的
Figure PCTCN2021136906-appb-000047
的第1行第2列的元素与r i的乘积,可以表示为
Figure PCTCN2021136906-appb-000048
同理,公式(14)中的
Figure PCTCN2021136906-appb-000049
是公式(12)中所述的
Figure PCTCN2021136906-appb-000050
的第2行第2列的元素与r i的乘积,可以表示为
Figure PCTCN2021136906-appb-000051
公式(14)中的
Figure PCTCN2021136906-appb-000052
是公式(12)中所述的
Figure PCTCN2021136906-appb-000053
的第3行第2列的元素与r i的乘积,可以表示为
Figure PCTCN2021136906-appb-000054
Figure PCTCN2021136906-appb-000055
也就是说,
Figure PCTCN2021136906-appb-000056
Figure PCTCN2021136906-appb-000057
因此,上述公式(14)可以变形为以下公式(15):
Figure PCTCN2021136906-appb-000058
由公式(15)可以得出:
Figure PCTCN2021136906-appb-000059
Figure PCTCN2021136906-appb-000060
根据上述公式(15),结合第三电子设备300在n个位置测量得到的第三电子设备300的n个姿态信息,可以得到如下矩阵方程(1):
AX=B   矩阵方程(1)
其中,
Figure PCTCN2021136906-appb-000061
第三电子设备300可以采用公式X=(A TA) -1A TB解算上述矩阵方程(1)。其中,A T是A的转置矩阵,
Figure PCTCN2021136906-appb-000062
Figure PCTCN2021136906-appb-000063
A TA表示A T与A的乘积。(A TA) -1是A TA的逆矩阵。X等于A TA的逆矩阵乘以A T,再乘以B。
第三电子设备300采用X=(A TA) -1A TB,可以计算得到矩阵X,即
Figure PCTCN2021136906-appb-000064
即第三电子设备300可以计算得到第二电子设备在U系的坐标R(x,y,z)。
其他第二电子设备200的位置的求解方法与此相同,不再赘述。之后,当第三电子设备300位于区域2中时,可以向第二电子设备200请求测量距离,而后基于测量得到的距离和各个第二电子设备200的位置,计算得到自身当前的位置。即,实现利用第二电子设备200对位于区域2中的第三电子设备300的定位以及导航等。
综上可见,计算得到的第二电子设备200的位置,与第一电子设备100的位置是 同一个导航坐标系下的坐标,即实现了区域2和区域1的坐标系统一的效果。换言之,本申请实现了在不同的区域内建立统一的导航坐标系,待定位设备无需存储多个导航坐标系的信息,减小了待定位设备的存储负担,并且降低待定位设备在不同区域内定位时的算法,还有利于保证不同区域内的定位精度。再有,当待定位设备在不同区域中移动时,用户也无需对待定位设备进行多次初始姿态校准,提升用户体验。
以上实施例是以在区域1中设置至少三个单天线架构的UWB基站(即第一电子设备100),以及在区域2中设置至少三个(以三个为例)单天线架构的UWB基站(即第二电子设备200)为例说明本申请的技术方案的。在其他一些实施例中,也可以在区域1中设置一个多天线架构的UWB基站(即第一电子设备100),以及在区域2中设置一个多天线架构的UWB基站(即第二电子设备200)。需要注意的,三个单天线架构的UWB基站在测量第三电子设备在U系中的坐标,与一个多天线架构的UWB基站测量第三电子设备U系中的坐标的方法不同,因此在执行流程中,和图4A中略有不同。
采用三个单天线架构的UWB基站测量第三电子设备的位置的方法中,第三电子设备需要分别向三个单天线架构的UWB基站发生测距请求。然后,三个单天线架构的UWB基站分别响应第三电子设备。第三电子设备基于例如双向测距法,可以计算出第三电子设备分别与三个单天线架构的UWB基站之间的距离,而后基于三个距离采用三角定位原理可以计算出第三电子设备在U系中的坐标。由此可见,在每次需要测量第三电子设备在U系中的坐标时,第三电子设备均需与每个单天线架构的UWB基站进行交互,并且是由第三电子设备计算得到自身在U系中的坐标。而且在步骤S408中,第三电子设备需要计算三个单天线架构的第二电子设备在U系下的坐标。
采用一个多天线架构的UWB基站测量第三电子设备的位置的方法中,第三电子设备只需要向一个多天线架构的UWB基站发生测距请求。然后,该多天线架构的UWB基站响应第三电子设备,第三电子设备可以基于例如双向测距法,可以计算出自身与第三电子设备之间的距离,并且还可以根据第三电子设备达到不同天线的时间差确定出第三电子设备到该多天线架构的向量。然后基于一个距离和一个向量计算出第三电子设备在U系中的坐标。由此可见,在需要测量第三电子设备在U系中的坐标时,第三电子设备只需与一个多天线架构的UWB基站进行交互,并且是由该多天线架构的UWB基站计算得到第三电子设备在U系中的坐标。而后,该多天线架构的UWB基站将计算的第三电子设备发送第三电子设备在U系中的坐标,便于第三电子设备进行后续计算。并且,在步骤S408中,第三电子设备只需计算一个多天线架构的第二电子设备在U系下的坐标。
在其他一些实施例中,还可以在区域1中设置一个多天线架构的UWB基站(即第一电子设备100),以及在区域2中设置至少三个单天线架构的UWB基站(即第二电子设备200)。或者,在区域1中设置至少三个单天线架构的UWB基站(即第一电子设备100),以及在区域2中设置一个多天线架构的UWB基站(即第二电子设备200)。本文将不再赘述。
如图8所示,为一组仿真实验的数据。在仿真的空间场景内模拟10s的手机(即第三电子设备300)运动轨迹,并仿真产生陀螺仪与加速度原始数据。图中标灰的区 域内,为已有UWB基站信号覆盖区域,白色区域为新加UWB基站信号覆盖区域。在新拓展区域(即白色区域)内共布置3个待初始化的新增基站,分布为基站1、基站2和基站3。这三个基站真实位置如图所标记。另外,在仿真中设置陀螺仪三轴固定偏置为0.1deg/s(度/秒),陀螺仪随机噪声为1deg/sqrt(s)(度/平米)。
图8中标记了手机仅应用IMU的数据解算得到的运动轨迹数据(即未优化的运动轨迹),以及应用该未优化的运动轨迹计算得到的新增基站的估计位置(如图中标记),其平均的新增基站定位误差为0.5m。图8中还标记了利用已有的UWB基站测量的数据(手机重新回到已有UWB基站信号覆盖区域后测量得到位置)对IMU测量的数据进行矫正后得到的运动轨迹(即优化后的运动轨迹),以及应用该优化后的运动轨迹计算得到的新增基站的估计位置(如图中标记),其平均的定位误差降低为0.1m。
可见,采用已有的UWB基站测量的数据对IMU测量得到的运动轨迹进行优化后,对新增基站的定位精度提高了。
可以理解的是,上述终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
本申请实施例可以根据上述方法示例对上述终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种UWB系统下新增基站的初始化方法,其特征在于,包括:
    当第三电子设备位于第一区域的第一位置时,所述第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中所述第一位置对应的第一坐标;当所述第三电子设备位于所述第一位置时,还启动所述第三电子设备的IMU测量;
    所述第三电子设备从所述第一区域移动到第二区域;
    当所述第三电子设备位于所述第二区域的第二位置时,所述第三电子设备向第二电子设备发送第二UWB信号,用于测量所述第三电子设备在所述第二位置时与所述第二电子设备的距离,所述第二位置的数量为至少三个;
    所述第三电子设备回到所述第一区域;
    当所述第三电子设备位于所述第一区域的第三位置时,所述第三电子设备向所述第一电子设备发送第三UWB信号,用于测量在所述导航坐标系中的所述第三位置对应的第二坐标;
    所述第三电子设备基于所述第一坐标,所述IMU测量的数据,所述第二坐标,以及所述第三电子设备在所述第二位置时与所述第二电子设备的距离,计算得到所述第二电子设备的在所述导航坐标系中的坐标。
  2. 根据权利要求1所述的方法,其特征在于,所述第三电子设备基于所述第一坐标,所述IMU测量的数据,所述第二坐标,以及所述第三电子设备在所述第二位置时与所述第二电子设备的距离,计算得到所述第二电子设备的在所述导航坐标系中的坐标,具体包括:
    所述第三电子设备根据所述第一坐标、所述IMU测量的数据,计算得到所述第三位置对应的第三坐标;
    根据所述第三位置对应的所述第三坐标,以及所述第三位置对应的所述第二坐标,计算所述第三电子设备的运动数据与所述IMU测量的数据的偏差值;
    根据所述偏差值,以及所述IMU测量的数据,计算得到所述第三电子设备的运动数据;
    根据所述第三电子设备的运动数据,以及所述第一位置对应的第一坐标,计算所述第二位置对应的第四坐标;
    根据所述第二位置对应的所述四坐标,以及所述第三电子设备在所述第二位置时与所述第二电子设备的距离,计算得到所述第二电子设备在所述导航坐标系中的坐标。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第三位置对应的所述第三坐标,以及所述第三位置对应的所述第二坐标,计算所述第三电子设备的运动数据与所述IMU测量的数据的偏差值,具体为:
    采用卡尔曼滤波的方法,根据所述第三位置对应的所述第三坐标,以及所述第三位置对应的所述第二坐标,计算所述第三电子设备的运动数据与所述IMU测量的数据的偏差值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    当所述第三电子设备再次进入所述第二区域时,向所述第二电子设备发送第四UWB信号,用于测量所述第三电子设备与所述第二电子设备的距离;
    所述第三电子设备基于所述第三电子设备与所述第二电子设备的距离,以及所述第二电子设备在所述导航坐标系中的坐标,计算所述第三电子设备当前位置在所述导航坐标系中的坐标。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    在所述第三电子设备在所述第三位置时,关闭或暂停所述第三电子设备的IMU测量。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第二电子设备与所述第一电子设备具有不同的通信地址。
  7. 根据权利要求6所述的方法,其特征在于,所述第二电子设备与所述第一电子设备具有不同的通信地址,具体为:
    所述第二电子设备与所述第一电子设备具有不同的通信时隙或伪随机码序列。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,在所述当第三电子设备位于第一区域的第一位置时,所述第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中所述第一位置对应的第一坐标之前,所述方法还包括:
    所述第三电子设备接收用户的第一操作,所述第一操作用于指示对第二电子设备进行初始化;
    响应于接收到所述第一操作,所述第三电子设备发出第一提示,用于提示所述用户携带所述第三电子设备进入第一区域。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,在所述第三电子设备从所述第一区域移动到第二区域之前,所述方法还包括:
    所述第三电子设备发出第二提示,用于提示用户携带所述第三电子设备进入第二区域。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,在所述第三电子设备回到所述第一区域之前,所述方法还包括:
    所述第三电子设备发出第三提示,用于提示用户携带所述第三电子设备回到所述第一区域。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述导航坐标系为根据所述第一电子设备确定。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一电子设备的数量为至少三个,其中每个所述第一电子设备包含一个UWB天线;或者,所述第一电子设备的数量为一个,所述第一电子设备包含至少三个UWB天线。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第二电子设备的数量为至少三个,其中每个所述第二电子设备包含一个UWB天线;或者,所述第二电子设备的数量为一个,所述第二电子设备包含至少三个UWB天线。
  14. 一种UWB系统下新增基站的初始化方法,其特征在于,包括:
    当第三电子设备位于第一区域的第一位置时,所述第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中所述第一位置对应的第一坐标;当所述第三电子设备位于所述第一位置时,还启动所述第三电子设备的IMU测量;
    所述第三电子设备从所述第一区域移动到第二区域;
    当所述第三电子设备位于所述第二区域的第二位置时,获取所述第三电子设备指向第二电子设备时的姿态信息,所述第二位置的数量为至少两个;
    所述第三电子设备回到所述第一区域;
    当所述第三电子设备位于所述第一区域的第三位置时,所述第三电子设备向所述第一电子设备发送第三UWB信号,用于测量在所述导航坐标系中的所述第三位置对应的第二坐标;
    所述第三电子设备基于所述第一坐标,所述IMU测量的数据,所述第二坐标,以及所述第三电子设备指向第二电子设备时的姿态信息,计算得到所述第二电子设备的在所述导航坐标系中的坐标。
  15. 根据权利要求14所述的方法,其特征在于,所述第三电子设备指向所述第二电子设备,包括:所述第三电子设备的载体坐标系的预设轴指向所述第二电子设备。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第三电子设备基于所述第一坐标,所述IMU测量的数据,所述第二坐标,以及所述第三电子设备指向第二电子设备时的姿态信息,计算得到所述第二电子设备的在所述导航坐标系中的坐标,具体包括:
    所述第三电子设备根据所述第一坐标、所述IMU测量的数据,计算得到所述第三位置对应的第三坐标;
    根据所述第三位置对应的所述第三坐标,以及所述第三位置对应的所述第二坐标,计算所述第三电子设备的运动数据与所述IMU测量的数据的偏差值;
    根据所述偏差值,以及所述IMU测量的数据,计算得到所述第三电子设备的运动数据;
    根据所述第三电子设备的运动数据,以及所述第一位置对应的第一坐标,计算所述第二位置对应的第四坐标;
    根据所述第二位置对应的所述四坐标,以及所述第三电子设备指向第二电子设备时的姿态信息,计算得到所述第二电子设备在所述导航坐标系中的坐标。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述第三位置对应的所述第三坐标,以及所述第三位置对应的所述第二坐标,计算所述第三电子设备的运动数据与所述IMU测量的数据的偏差值,具体为:
    采用卡尔曼滤波的方法,根据所述第三位置对应的所述第三坐标,以及所述第三位置对应的所述第二坐标,计算所述第三电子设备的运动数据与所述IMU测量的数据的偏差值。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述方法还包括:
    当所述第三电子设备再次进入所述第二区域时,向所述第二电子设备发送第四UWB信号,用于测量所述第三电子设备与所述第二电子设备的距离;
    所述第三电子设备基于所述第三电子设备与所述第二电子设备的距离,以及所述第二电子设备在所述导航坐标系中的坐标,计算所述第三电子设备当前位置在所述导航坐标系中的坐标。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述方法还包括:
    在所述第三电子设备在所述第三位置时,关闭或暂停所述第三电子设备的IMU测 量。
  20. 根据权利要求14-19任一项所述的方法,其特征在于,所述第二电子设备与所述第一电子设备具有不同的通信地址。
  21. 根据权利要求20所述的方法,其特征在于,所述第二电子设备与所述第一电子设备具有不同的通信地址,具体为:
    所述第二电子设备与所述第一电子设备具有不同的通信时隙或伪随机码序列。
  22. 根据权利要求14-21任一项所述的方法,其特征在于,在所述当第三电子设备位于第一区域的第一位置时,所述第三电子设备向第一电子设备发送第一UWB信号,用于测量在导航坐标系中所述第一位置对应的第一坐标之前,所述方法还包括:
    所述第三电子设备接收用户的第一操作,所述第一操作用于指示对第二电子设备进行初始化;
    响应于接收到所述第一操作,所述第三电子设备发出第一提示,用于提示所述用户携带所述第三电子设备进入第一区域。
  23. 根据权利要求14-22任一项所述的方法,其特征在于,在所述第三电子设备从所述第一区域移动到第二区域之前,所述方法还包括:
    所述第三电子设备发出第二提示,用于提示用户携带所述第三电子设备进入第二区域。
  24. 根据权利要求14-23任一项所述的方法,其特征在于,在所述第三电子设备回到所述第一区域之前,所述方法还包括:
    所述第三电子设备发出第三提示,用于提示用户携带所述第三电子设备回到所述第一区域。
  25. 根据权利要求14-24任一项所述的方法,其特征在于,所述导航坐标系为根据所述第一电子设备确定。
  26. 根据权利要求14-25任一项所述的方法,其特征在于,所述第一电子设备的数量为至少三个,其中每个所述第一电子设备包含一个UWB天线;或者,所述第一电子设备的数量为一个,所述第一电子设备包含至少三个UWB天线。
  27. 根据权利要求14-26任一项所述的方法,其特征在于,所述第二电子设备的数量为至少三个,其中每个所述第二电子设备包含一个UWB天线;或者,所述第二电子设备的数量为一个,所述第二电子设备包含至少三个UWB天线。
  28. 一种第三电子设备,其特征在于,包括:处理器、存储器、UWB模块和IMU模块,所述存储器、所述UWB模块、所述IMU模块与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器从所述存储器中读取所述计算机指令,以使得所述第三电子设备执行如权利要求1-27中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在第三电子设备上运行时,使得所述第三电子设备执行如权利要求1-27中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,当计算机程序产品在计算机上运行时,使得计算机执行如权利要求1-27中任一项所述的方法。
PCT/CN2021/136906 2021-01-30 2021-12-09 一种uwb系统下新增基站的初始化方法、终端以及系统 WO2022160966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/263,379 US20240118375A1 (en) 2021-01-30 2021-12-09 Method for Initializing Newly Added Base Station in UWB System, Terminal, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110131725.4 2021-01-30
CN202110131725.4A CN114845236A (zh) 2021-01-30 2021-01-30 一种uwb系统下新增基站的初始化方法、终端以及系统

Publications (1)

Publication Number Publication Date
WO2022160966A1 true WO2022160966A1 (zh) 2022-08-04

Family

ID=82561229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136906 WO2022160966A1 (zh) 2021-01-30 2021-12-09 一种uwb系统下新增基站的初始化方法、终端以及系统

Country Status (3)

Country Link
US (1) US20240118375A1 (zh)
CN (1) CN114845236A (zh)
WO (1) WO2022160966A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184979A (zh) * 2022-09-08 2022-10-14 中交第一航务工程局有限公司 船管相对位置监测方法、系统、计算机设备及存储介质
CN117098142A (zh) * 2023-10-18 2023-11-21 济南华科电气设备有限公司 一种基于uwb技术的煤矿井下人员定位方法及系统
CN117651250A (zh) * 2024-01-29 2024-03-05 深圳华云时空技术有限公司 一种基于UWB和AoA技术的定位测向方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156708A1 (en) * 2008-12-24 2010-06-24 Mstar Semiconductor, Inc. Auxiliary Positioning Method and Auxiliary Positioning Device Using the Method
CN106352869A (zh) * 2016-08-12 2017-01-25 上海理工大学 移动机器人室内定位系统及其计算方法
CN111182450A (zh) * 2020-01-13 2020-05-19 成都四相致新科技有限公司 一种行车定位方法、系统、介质及设备
CN111194002A (zh) * 2020-01-13 2020-05-22 成都四相致新科技有限公司 一种基于测距基站的行车定位方法、系统、介质及设备
CN111385756A (zh) * 2020-02-22 2020-07-07 吴雯琦 室内定位方法、系统、装置、存储介质、计算机程序产品
WO2020215711A1 (zh) * 2019-04-22 2020-10-29 苏州科瓴精密机械科技有限公司 一种基站位置坐标的确定方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156708A1 (en) * 2008-12-24 2010-06-24 Mstar Semiconductor, Inc. Auxiliary Positioning Method and Auxiliary Positioning Device Using the Method
CN106352869A (zh) * 2016-08-12 2017-01-25 上海理工大学 移动机器人室内定位系统及其计算方法
WO2020215711A1 (zh) * 2019-04-22 2020-10-29 苏州科瓴精密机械科技有限公司 一种基站位置坐标的确定方法、装置、设备及存储介质
CN111182450A (zh) * 2020-01-13 2020-05-19 成都四相致新科技有限公司 一种行车定位方法、系统、介质及设备
CN111194002A (zh) * 2020-01-13 2020-05-22 成都四相致新科技有限公司 一种基于测距基站的行车定位方法、系统、介质及设备
CN111385756A (zh) * 2020-02-22 2020-07-07 吴雯琦 室内定位方法、系统、装置、存储介质、计算机程序产品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184979A (zh) * 2022-09-08 2022-10-14 中交第一航务工程局有限公司 船管相对位置监测方法、系统、计算机设备及存储介质
CN115184979B (zh) * 2022-09-08 2022-11-25 中交第一航务工程局有限公司 船管相对位置监测方法、系统、计算机设备及存储介质
CN117098142A (zh) * 2023-10-18 2023-11-21 济南华科电气设备有限公司 一种基于uwb技术的煤矿井下人员定位方法及系统
CN117098142B (zh) * 2023-10-18 2023-12-26 济南华科电气设备有限公司 一种基于uwb技术的煤矿井下人员定位方法及系统
CN117651250A (zh) * 2024-01-29 2024-03-05 深圳华云时空技术有限公司 一种基于UWB和AoA技术的定位测向方法
CN117651250B (zh) * 2024-01-29 2024-04-19 深圳华云时空技术有限公司 一种基于UWB和AoA技术的定位测向方法

Also Published As

Publication number Publication date
US20240118375A1 (en) 2024-04-11
CN114845236A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2022160966A1 (zh) 一种uwb系统下新增基站的初始化方法、终端以及系统
US11802930B2 (en) Systems and methods for multiantenna orientation and direction detection
US9609468B1 (en) Inter-device bearing estimation based on beam forming and motion data
JP4880782B2 (ja) 加速度データに応じて無線通信端末間の相対的な方向と距離を表示する無線通信端末及び方法
WO2016054773A1 (zh) 目标设备的定位方法和移动终端
US20180074188A1 (en) Virtual angle-of-arrival/angle-of-departure tracking
US20130211711A1 (en) Indoor Navigation Techniques to Calibrate/Recalibrate Inertial Sensors and Navigation Processing
CN106713598B (zh) 基于指示方向的指令传输方法及装置、智能设备
JP2010507985A (ja) 無線ネットワークにおける協調位置特定
Zwirello et al. Sensor data fusion in UWB-supported inertial navigation systems for indoor navigation
Amundson et al. RF angle of arrival-based node localisation
Ling et al. High precision UWB-IR indoor positioning system for IoT applications
US20220322042A1 (en) Terminal Interaction Method and Terminal
TWI698141B (zh) 決定無線裝置的軌跡路徑
US11199411B2 (en) Systems and methods for utilizing graph based map information as priors for localization using particle filter
WO2021103729A1 (zh) 终端间定位方法及装置
TWI656353B (zh) 測向晶片、測向方法及信標
WO2022143089A1 (zh) 一种室内定位方法、终端以及系统
Polonelli et al. Performance Comparison between Decawave DW1000 and DW3000 in low-power double side ranging applications
US20240153375A1 (en) Home Device Position Marking Method and Electronic Device
Jian et al. Hybrid cloud computing for user location-aware augmented reality construction
Anwar et al. Relative self-calibration of wireless acoustic sensor networks using dual positioning mobile beacon
WO2023179241A1 (zh) 一种定位方法和装置
Miller et al. Multi-User Augmented Reality with Infrastructure-free Collaborative Localization
Vincent Portable indoor multi-user position tracking system for immersive virtual environments using sensor fusion with multidimensional scaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922556

Country of ref document: EP

Kind code of ref document: A1