WO2022160921A1 - 一种激光雷达抗干扰方法及装置 - Google Patents

一种激光雷达抗干扰方法及装置 Download PDF

Info

Publication number
WO2022160921A1
WO2022160921A1 PCT/CN2021/134652 CN2021134652W WO2022160921A1 WO 2022160921 A1 WO2022160921 A1 WO 2022160921A1 CN 2021134652 W CN2021134652 W CN 2021134652W WO 2022160921 A1 WO2022160921 A1 WO 2022160921A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
sequences
signals
signal
time intervals
Prior art date
Application number
PCT/CN2021/134652
Other languages
English (en)
French (fr)
Inventor
于众
石现领
陈珊杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21922511.7A priority Critical patent/EP4276491A4/en
Publication of WO2022160921A1 publication Critical patent/WO2022160921A1/zh
Priority to US18/361,014 priority patent/US20230366995A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the embodiments of the present application relate to the technical field of optical communication, and in particular, to a method and device for anti-jamming of a lidar.
  • Lidar is a radar system that emits laser beams to detect the position, velocity and other characteristic quantities of targets. Its basic working principle is to first launch a detection laser beam to the target, then compare the transmitted signal with the reflected signal received from the target, and obtain the distance, azimuth, altitude, speed, attitude, shape and other information of the target according to the comparison result.
  • lidar anti-jamming technology came into being.
  • the common anti-jamming method of pulsed lidar is to modulate pulse amplitude, pulse width and pulse time interval, etc., so as to transmit pulse signals carrying specific information.
  • the lidar When the lidar is used in an environment with interference, it is not possible to simply increase the laser transmission power to improve the anti-interference ability. In this case, the noise formed by the interfering signal has a great influence on the system, which reduces the ranging performance of the lidar.
  • the embodiments of the present application disclose an anti-jamming method and device for a laser radar, which are used to improve the anti-jamming capability of the laser radar.
  • a first aspect discloses a lidar anti-jamming device
  • the lidar anti-jamming device may include a control module, a laser and a detector, wherein: the control module is configured to determine N first sequences and N groups of first time intervals , N is an integer greater than or equal to 1; the laser is used to transmit N first laser signals according to the N first sequences and the N groups of first time intervals; the detector is used to receive N and converting the N second laser signals into electrical signals to obtain N first electrical signals; the control module is further configured to superimpose the N first electrical signals to obtain a first superimposed signal , and N second sequences and N groups of second time intervals are determined according to the first superimposed signal.
  • the first time interval may determine the sending time of the corresponding first sequence, and the interval length of the N groups of first time intervals is a random time length. Therefore, the sending time of the corresponding signals of the N first sequences The length of time is random.
  • the control module can superimpose the corresponding electrical signals according to the N groups of first time intervals to obtain the first superimposed signal. Compared with the directly received signal, the amplitude of the superimposed first superimposed signal will be greatly increased, which can improve the signal-to-noise ratio.
  • the sending time of the laser signal is random, which can avoid the accumulation of interference signals of a fixed frequency. Therefore, the noise in the point cloud image of the lidar can be reduced, and the anti-interference ability of the lidar can be improved.
  • the apparatus may further include a signal generator, wherein: the signal generator is configured to generate N first sequences and N groups of first time intervals according to the N first sequences Two electrical signals; the laser transmitting N first laser signals according to the N first sequences and the N groups of first time intervals includes: the laser transmitting N first laser signals according to the N second electrical signals laser signal.
  • the signal generator is configured to generate N first sequences and N groups of first time intervals according to the N first sequences Two electrical signals
  • the laser transmitting N first laser signals according to the N first sequences and the N groups of first time intervals includes: the laser transmitting N first laser signals according to the N second electrical signals laser signal.
  • the signal generator can be used to realize that the first sequence is consistent with the sequence of the emitted first laser signal, and the sequence of the first sequence and the laser signal can be guaranteed consistency.
  • the signal generator can determine the length of the time interval for transmitting the N first laser signals by using the N groups of first time intervals, which can realize the randomness of the transmission time.
  • the control module superimposing the N first electrical signals to obtain the first superimposed signal includes: according to the N groups of first time intervals Superimposing the N first electrical signals to obtain a second superimposed signal; filtering the second superimposed signals according to the N first sequences to obtain a first superimposed signal.
  • the N first sequences are the same sequence, that is, the sequences of the N laser signals sent are the same laser sequence, but the N groups of first time intervals are random, and the time used for sending is different, so the corresponding The electrical signals are superimposed to obtain a second superimposed signal.
  • the signal amplitude of the superimposed signal is greatly increased after accumulation, and the transmission time of the laser signal is random, so the accumulation of fixed-frequency interference signals can be reduced.
  • the second superimposed signal is formed by superimposing the corresponding signals of the same sequence, the superimposed signal can be directly filtered. After filtering, not only can the influence of the interference signal be further reduced, the anti-interference performance of the lidar can be improved, but also the number of filtering times can be reduced and the internal structure of the control module can be simplified.
  • the control module superimposing the N first electrical signals to obtain the first superimposed signal includes: pairing according to the N first sequences The N first electrical signals are filtered to obtain N filtered signals; and the N filtered signals are superimposed according to the N groups of first time intervals to obtain a first superimposed signal.
  • the N first sequences are different sequences, that is, the sequences of the N laser signals to be sent are different laser sequences.
  • the first superimposed signal is a superimposed signal of signals corresponding to different sequences, the probability of using the same or similar sequence for this lidar and other lidars can be reduced, so as to avoid interference caused by multiple lidars using the same or similar sequence, Thus, the anti-jamming capability of the lidar can be further improved. Since the sequences are different, the signals corresponding to the different sequences can be filtered first, and then superimposed to form the first superimposed signal, which can reduce the influence of the interference signal, thereby improving the anti-interference performance of the lidar.
  • the device further includes a beam splitter, and the control module includes a filter, wherein: the beam splitter is configured to receive N third laser signals, transmit N fourth laser signals, and reflect N fifth laser signals, the third laser signal is the laser signal transmitted from the first laser signal to the beam splitter, and the third laser signal includes the fourth laser signal and the fifth laser signal ; the detector is also used to receive N sixth laser signals, convert the N sixth laser signals into electrical signals, and obtain N third electrical signals, and the sixth laser signals are the fifth The laser signal is transmitted to the laser signal of the detector; the control module filters the second superimposed signal according to the N first sequences, and obtaining the first superimposed signal includes: the control module according to the N first sequences The third electrical signal adjusts the filter coefficient of the filter; the filter filters the second superimposed signal according to the N first sequences to obtain a first superimposed signal.
  • the beam splitter is configured to receive N third laser signals, transmit N fourth laser signals, and reflect N fifth laser signals
  • the third laser signal is the laser signal transmitted from the first laser signal to the
  • the emitted laser signal can be reflected and transmitted through the beam splitter to form two laser signals with the same sequence.
  • one laser signal can be sent to the detector, and another laser signal can be sent directly to the detector.
  • the filter coefficient of the filter can be adjusted, and the filter coefficient can respectively correspond to the sequence actually sent by the laser. At this time, by adjusting the filter coefficient, the problem of reducing the detection performance of the lidar caused by the internal interference of the device can be avoided, so that the anti-interference ability of the lidar can be improved.
  • the device further includes a beam splitter, and the control module includes a filter
  • the beam splitter is configured to receive N third laser signals, transmit N fourth laser signals, and reflect N fifth laser signals
  • the third laser signal is the laser signal transmitted from the first laser signal to the beam splitter, and the third laser signal includes the fourth laser signal and the fifth laser signal
  • the detector is further configured to receive N sixth laser signals, convert the N sixth laser signals into electrical signals, and obtain N fourth electrical signals
  • the sixth laser signals are the fifth The laser signal is transmitted to the laser signal of the detector
  • the control module filters the N first electrical signals according to the N first sequences, and obtaining N filtered signals includes: the control module according to the The N fourth electrical signals adjust the filter coefficient of the filter; the filter filters the second superimposed signal according to the N first sequences to obtain N filtered signals.
  • the emitted laser signal can be reflected and transmitted through the beam splitter to form two laser signals with the same sequence.
  • one laser signal can be emitted to the detector, and the other laser signal can be directly emitted to the detector.
  • the filter coefficient of the filter can be adjusted, and the filter coefficient can respectively correspond to the sequence actually sent by the laser. At this time, by adjusting the filter coefficient, the problem of reducing the detection performance of the lidar caused by the internal interference of the device can be avoided, so that the anti-interference ability of the lidar can be improved.
  • the control module determining N second sequences and N groups of second time intervals according to the first superimposed signal includes: when the N first sequences and the first superimposed signal are When there is a correlation peak between the two, and the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, the N first sequences are determined as the N second sequences, and the N groups of first time intervals are determined as the N second sequences. Determined to be the N groups of second time intervals.
  • control module may perform a cross-correlation operation on the first sequence and the first superimposed signal, and when there is a correlation peak in the cross-correlation result, it can be indicated that the first superimposed signal is the return signal corresponding to the laser signal emitted by the first sequence. Further, when the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, it can be determined that the interference of the received echo signal is small and can meet the detection requirements of the system.
  • the control module may determine that the N first sequences and N groups of first time intervals are applicable to the current environment, that is, the N first sequences and N groups of first time intervals may be determined as N A second sequence and N sets of second time intervals. At this time, the current N first sequences and the current N groups of first time intervals are no longer adjusted, so that the processing overhead of the control module can be reduced, so that the processing efficiency can be improved.
  • control module determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the correlation peak exists, and the main sidelobe ratio is When the value is less than or equal to the first threshold, increase the interval length and/or the number of intervals included in each of the N groups of first time intervals to obtain N groups of first time intervals.
  • the control module when there is a correlation peak in the result of the cross-correlation operation between the first sequence and the first superimposed signal, it indicates that there is a certain degree of similarity between the N first sequences and the first superimposed signal, and the control module can determine the first superimposed signal.
  • the signal is the echo signals of the current N first sequences.
  • the value of the main-side lobe ratio of the correlation peak is less than a certain threshold, although it can be determined that the first superimposed signal is the echo signal of the first laser sequence sent, it fails to meet the predetermined anti-interference requirement.
  • control module can further increase the interval length and/or the interval number of the first time interval, that is, can increase the transmission time and/or the interval number of the laser signal, and can further avoid the accumulation of interference signals, so that the signal-to-interference ratio can be improved , which can improve the anti-jamming capability of lidar.
  • control module determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the correlation peak does not exist, adjusting the N second sequences One sequence, N first sequences are obtained.
  • the control module when there is no correlation peak between the first sequence and the first superimposed signal, the control module cannot determine that the first superimposed signal is an echo signal corresponding to the laser signal emitted by the first sequence. At this time, the laser signal may be interfered by other lidars. Therefore, the control module can adjust the current first sequence to reduce the influence of the interference signal, thereby improving the anti-interference ability of the lidar.
  • control module determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the value of the main sidelobe ratio is greater than a second threshold, The interval length and/or number of each group of first time intervals in the N groups of first time intervals are reduced to obtain N groups of first time intervals, and the second threshold is greater than the first threshold.
  • the interval length and the number of intervals of the time interval can be reduced, and the processing overhead can be reduced on the premise that the anti-jamming capability of the lidar satisfies the current environment. , so that the processing efficiency of the control module can be improved and processing resources can be saved.
  • control module determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the signal-to-noise ratio of the first superimposed signal is greater than or equal to the When the third threshold is set, the N first sequences are adjusted to obtain N first sequences.
  • the control module may determine the signal-to-noise ratio of the first superimposed signal to determine the first superimposed signal. Whether there is a certain signal accumulation. Since the existence of signal accumulation but the absence of correlation peaks may be caused by interference signals in the environment, the control module can improve the anti-interference ability of the lidar by adjusting the first sequence.
  • the length of intervals included in the N groups of second time intervals is less than or equal to a fourth threshold, and the number of intervals of the N groups of second time intervals is less than or equal to a fifth threshold.
  • the interval length and the number of intervals of the time interval are increased, which increases the processing overhead while improving the anti-interference capability.
  • the interval length and interval number of the time interval are set.
  • the upper limit can not only avoid the endless increase of the interval length and interval number of the time interval to reduce the waste of processing resources, but also improve the processing efficiency.
  • a second aspect discloses a lidar anti-jamming method, the method is applied to a lidar anti-jamming device, the method may include: determining N first sequences and N groups of first time intervals, where N is greater than or equal to 1 Integer; transmit N first laser signals according to the N first sequences and the N groups of first time intervals; receive N second laser signals, convert the N second laser signals into electrical signals, and obtain N first electrical signals; superimposing the N first electrical signals to obtain a first superimposed signal; and determining N second sequences and N groups of second time intervals according to the first superimposed signals.
  • the first time interval may determine the sending time of the corresponding first sequence, and the interval length of the N groups of first time intervals is a random time length. Therefore, the sending time of the corresponding signals of the N first sequences The length of time is random.
  • the corresponding electrical signals may be superimposed according to the N groups of first time intervals to obtain the first superimposed signal. Compared with the directly received signal, the amplitude of the superimposed first superimposed signal will be greatly increased, which can improve the signal-to-noise ratio.
  • the sending time of the laser signal is random, which can avoid the accumulation of noise. Therefore, the noise in the point cloud image of the lidar system can be reduced, and the anti-jamming capability of the lidar can be improved.
  • the method may further include: generating N second electrical signals according to the N first sequences and the N groups of first time intervals;
  • the sequence and the N groups of first time intervals to transmit N first laser signals include: transmitting N first laser signals according to the N second electrical signals.
  • the first sequence is consistent with the sequence of the emitted first laser signal, and the consistency of the first sequence and the sequence of the laser signal can be guaranteed.
  • the length of the time interval for sending the N first laser signals can be determined through the N groups of first time intervals, and the randomness of the sending time can be realized.
  • the superimposing the N first electrical signals to obtain the first superimposed signal includes: superimposing all the N first time intervals according to the N groups of first time intervals.
  • the N first electrical signals are obtained to obtain a second superimposed signal; the second superimposed signal is filtered according to the N first sequences to obtain a first superimposed signal.
  • the N first sequences are the same sequence, that is, the sequences of the N laser signals sent are the same laser sequence, but the N groups of first time intervals are random, and the time used for sending is different, so the corresponding The electrical signals are superimposed to obtain a second superimposed signal.
  • the signal amplitude of the superimposed signal is greatly increased after accumulation, and the transmission time of the laser signal is random, so the accumulation of fixed-frequency interference signals can be reduced.
  • the second superimposed signal is formed by superimposing the corresponding signals of the same sequence, the superimposed signal can be directly filtered. After filtering, it can not only reduce signal interference and improve the anti-interference performance of lidar, but also reduce the number of filtering times and simplify the internal structure of the control module.
  • the step of superimposing the N first electrical signals to obtain a first superimposed signal includes: comparing the N first sequences to the N first sequences.
  • the N first electrical signals are filtered to obtain N filtered signals; and the N filtered signals are superimposed according to the N groups of first time intervals to obtain a first superimposed signal.
  • the N first sequences are different sequences, that is, the sequences of the N laser signals to be sent are different laser sequences.
  • the first superimposed signal is a superimposed signal of signals corresponding to different sequences, the probability of using the same or similar sequence for this lidar and other lidars can be reduced, so as to avoid interference caused by multiple lidars using the same or similar sequence, Thus, the anti-jamming capability of the lidar can be further improved. Since the sequences are different, the signals corresponding to the different sequences can be filtered first, and then superimposed to form the first superimposed signal, which can reduce the influence of the interference signal, thereby improving the anti-interference performance of the lidar.
  • the method may further include: receiving N third laser signals, transmitting N fourth laser signals, and reflecting N fifth laser signals, the third laser signals being the first laser signals
  • the laser signal is transmitted to the laser signal of the beam splitter, the third laser signal includes the fourth laser signal and the fifth laser signal; N sixth laser signals are received, and the N sixth laser signals are Converting into electrical signals to obtain N third electrical signals, the sixth laser signal is the laser signal transmitted from the fifth laser signal to the detector; Filtering the two superimposed signals to obtain the first superimposed signal includes: adjusting the filter coefficient of the filter according to the N third electrical signals; filtering the second superimposed signal according to the N first sequences to obtain The first superimposed signal.
  • the emitted laser signal may be reflected and transmitted to form two laser signals with the same sequence.
  • one laser signal can be transmitted to the detection object, and another laser signal can be directly transmitted back.
  • the filter coefficient of the filter can be adjusted, and the filter coefficient can respectively correspond to the actual transmitted sequence. At this time, the problem of reducing the detection performance of the lidar caused by the internal interference of the lidar can be avoided by adjusting the filter coefficient, so that the anti-interference ability of the lidar can be improved.
  • the method may further include: receiving N third laser signals, transmitting N fourth laser signals, and reflecting N fifth laser signals, the third laser signals being the first laser signals
  • the laser signal is transmitted to the laser signal of the beam splitter, the third laser signal includes the fourth laser signal and the fifth laser signal; N sixth laser signals are received, and the N sixth laser signals are Converting into electrical signals to obtain N fourth electrical signals, the sixth laser signal is the laser signal transmitted from the fifth laser signal to the detector;
  • Filtering the first electrical signals to obtain N filtered signals includes: adjusting the filter coefficients of the filter according to the N fourth electrical signals; filtering the second superimposed signal according to the N first sequences , get N filtered signals.
  • the emitted laser signal may be reflected and transmitted to form two laser signals with the same sequence.
  • one laser signal can be sent to the detection object, and another laser signal can be sent back directly.
  • the filter coefficient of the filter can be adjusted, and the filter coefficient can respectively correspond to the actual transmitted sequence. At this time, the problem of reducing the detection performance of the lidar caused by the internal interference of the lidar can be avoided by adjusting the filter coefficient, so that the anti-interference ability of the lidar can be improved.
  • the determining N second sequences and N groups of second time intervals according to the first superimposed signal includes: when there is a gap between the N first sequences and the first superimposed signal correlation peak, and when the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, the N first sequences are determined as the N second sequences, and the N groups of first time intervals are determined as the N groups of second time intervals.
  • a cross-correlation operation may be performed on the first sequence and the first superimposed signal, and when a correlation peak exists in the cross-correlation result, it can be indicated that the first superimposed signal is an echo signal corresponding to the laser signal emitted by the first sequence , and further, when the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, it can be determined that the interference of the received echo signal is small and can meet the detection requirements of the lidar.
  • the N first sequences and the N groups of first time intervals are applicable to the current environment, that is, the N first sequences and the N groups of first time intervals can be determined as the Nth Two sequences and N sets of second time intervals.
  • the current N first sequences and the current N groups of first time intervals are no longer adjusted, so that processing overhead can be reduced and processing efficiency can be improved.
  • the determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the correlation peak exists and the value of the main side lobe ratio is less than or equal to the first threshold, increasing the interval length and/or the number of intervals included in each of the N groups of first time intervals to obtain N groups of first time intervals.
  • the first superimposed signal when there is a correlation peak in the result of the cross-correlation operation between the first sequence and the first superimposed signal, it indicates that there is a certain degree of similarity between the N first sequences and the first superimposed signal, and it can be determined that the first superimposed signal is The echo signals of the current N first sequences. Further, when the value of the main-side lobe ratio of the correlation peak is less than a certain threshold, although it can be determined that the first superimposed signal is the echo signal of the first laser sequence sent, it fails to meet the predetermined anti-interference requirement.
  • the interval length and/or the number of intervals of the first time interval can be further increased, that is, the emission time and/or the number of intervals of the transmitted laser signal can be increased, the accumulation of interference signals can be further avoided, the signal-to-interference ratio can be improved, and the Improve the anti-jamming capability of lidar.
  • the determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the correlation peak does not exist, adjusting the N first sequences , get N first sequences.
  • the current first sequence can be adjusted to reduce the influence of the interference signal, thereby improving the anti-jamming capability of the laser radar.
  • the determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the value of the main sidelobe ratio is greater than the second threshold, The interval length and/or number of each group of first time intervals in the N groups of first time intervals are reduced to obtain N groups of first time intervals, and the second threshold is greater than the first threshold.
  • the interval length and the number of intervals of the time interval can be reduced, and the processing overhead can be reduced on the premise of ensuring that the anti-interference capability satisfies the current environment, so that the Processing efficiency can be improved and processing resources can be saved.
  • the determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes: when the signal-to-noise ratio of the first superimposed signal is greater than the third threshold When , the N first sequences are adjusted to obtain N first sequences.
  • the first superimposed signal when it is not determined that the first superimposed signal has a certain degree of similarity with the N first sequences, it may be determined whether the first superimposed signal exists in the first superimposed signal by determining the signal-to-noise ratio of the first superimposed signal. certain signal accumulation. Since the existence of signal accumulation but the absence of correlation peaks may be caused by interference signals in the environment, the anti-interference ability of the lidar can be improved by adjusting the first sequence.
  • the length of intervals included in the N groups of second time intervals is less than or equal to a fourth threshold, and the number of intervals of the N groups of second time intervals is less than or equal to a fifth threshold.
  • the interval length and the number of intervals of the time interval are increased, which increases the processing overhead while improving the anti-interference capability.
  • the interval length and interval number of the time interval are set.
  • the upper limit can not only avoid the endless increase of the interval length and interval number of the time interval to reduce the waste of processing resources, but also improve the processing efficiency.
  • FIG. 1 is a schematic diagram of an application scenario of a lidar disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a laser pulse disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a lidar anti-jamming device disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a signal superposition method disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another lidar anti-jamming device disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for a signal anti-jamming strategy disclosed in an embodiment of the present application
  • FIG. 7 is a schematic diagram of a cross-correlation computing method disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another lidar anti-jamming device disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an anti-jamming method for a laser radar disclosed in an embodiment of the present application.
  • the embodiments of the present application disclose an anti-jamming method and device for a laser radar, which are used to improve the anti-jamming capability of the laser radar. Each of them will be described in detail below.
  • FIG. 1 is a schematic diagram of an application scenario of a lidar disclosed in an embodiment of the application.
  • the phenomenon of lidar being interfered becomes increasingly serious. This will not only affect the performance of the LiDAR system itself, such as ranging, but also the performance of other systems.
  • the advanced driver assistance systems (ADAS) function will also be interfered.
  • ADAS advanced driver assistance systems
  • Lidar can be divided into pulsed lidar and continuous wave lidar according to the emission waveform of laser.
  • FIG. 2 is a schematic diagram of a laser pulse.
  • each lidar can carry specific information by adjusting the time interval and amplitude of a set of laser pulses.
  • the transmitted pulse signal may include two pulses, the amplitudes of the first pulse and the second pulse may be different, and their amplitudes are fixed.
  • the time interval between two pulses can also be fixed.
  • the pulse amplitude of the received laser signal and the time interval between the laser pulses can be detected.
  • the received laser signal is the echo signal reflected back by the detected object from the emitted laser signal.
  • the echo signal can be understood as a received laser signal having a certain degree of similarity with the signal characteristic of the transmitted signal by detecting corresponding signal characteristics (eg, the above-mentioned pulse amplitude and time interval between pulses).
  • a lidar transmits a laser signal to a detected object, in order to ensure the safety of human eyes, the laser transmission power needs to be limited, which makes the signal-to-noise ratio of the received echo signal limited, and the ranging capability of the lidar is also limited. Since the interference signal has a great influence on the lidar, how to further improve the anti-jamming capability of the lidar is an urgent problem to be solved.
  • FIG. 3 is a schematic structural diagram of a lidar anti-jamming device disclosed in an embodiment of the present application.
  • the lidar anti-jamming device may include a control module 301, a laser 302 and a detector 303, wherein:
  • a control module 301 configured to determine N first sequences and N groups of first time intervals, where N is an integer greater than or equal to 1;
  • a laser 302, configured to emit N first laser signals according to N first sequences and N groups of first time intervals;
  • a detector 303 configured to receive N second laser signals, convert the N second laser signals into electrical signals, and obtain N first electrical signals;
  • the control module 301 is further configured to superimpose N first electrical signals to obtain a first superimposed signal, and determine N second sequences and N groups of second time intervals according to the first superimposed signal.
  • the control module 301 may determine N first sequences and N groups of first time intervals.
  • the control module 301 can generate N first sequences by generating random sequences, can also select N first sequences from the stored sequences, and can also adjust the last used first sequence to obtain N first sequences, and also You can continue to use the last used first sequence as the current N first sequences.
  • the first sequence may be a sequence representing a pulsed laser signal.
  • N is an integer greater than or equal to 1.
  • each of the N first sequences may be the same.
  • each of the N first sequences may be different, or may be partially the same and partially different.
  • a first sequence may include a non-zero value, such as "1"; it may also include multiple non-zero values, such as "10111001".
  • the control module 301 can determine N groups of first time intervals by generating random numbers, can also determine N groups of first time intervals according to a preset random sequence, and can also adjust the last used first time intervals to obtain N groups of first time intervals. For the first time interval, the first time interval used last time can also be continued to be used as the current N groups of first time intervals. It should be understood that the above is an example of generating the random N groups of first time intervals, and does not limit the specific manner of generating the random time intervals. Wherein, the first time interval represents the time interval between the two groups of laser signals.
  • the N sets of first time intervals may be time intervals of random lengths of time. Each of the N groups of first time intervals may be the same or different, and may be partially the same and partially different.
  • the control module 301 After the control module 301 determines the N first sequences and N groups of first time intervals, it can send the N first sequences and N groups of first time intervals to the laser 302 .
  • the laser 302 After receiving the N first sequences and N groups of first time intervals, the laser 302 may transmit N first laser signals according to the N first sequences and N groups of first time intervals.
  • the first laser signal may be a pulsed laser signal, wherein the sequence of the first laser signal may correspond to the first sequence. That is, it can be understood that the sequence of the N first laser signals may be determined by the N first sequences, and the adjacent emission times of the N first laser signals may be determined by the N groups of first time intervals.
  • the sequence of the first first laser signal emitted by the laser 302 is consistent with the first first sequence (for example, the first sequence is "1010", the sequence corresponding to the first laser signal is also "1010")
  • the second The sequence of the first laser signal is consistent with the second first sequence
  • the sequence of the N-th first laser signal is consistent with the N-th first sequence.
  • the laser 302 can calculate the start time of the emission of each first laser signal according to the N groups of first time intervals.
  • a set of first time intervals may represent a time interval of two successively emitted first laser signals.
  • the sequence of the first first laser signal is “1010” and the sequence of the second first laser signal is "0101”
  • the first time interval may represent the first sequence “1” and “1” in the emission "1010”
  • the detector 303 may detect a reflection signal of the laser signal emitted by the laser 302 . Therefore, after the laser 302 transmits N first laser signals according to N first sequences and N groups of first time intervals, the detector 303 can receive N second laser signals.
  • the second laser signal may include a laser signal reflected by the first laser signal through the detection object, may also include an interference signal, and may also include an interference signal and a laser signal reflected by the first laser signal through the detection object.
  • the interference signal may include other laser signals that the detector 303 can receive that is not the first laser signal reflected by the detected object.
  • the detector 303 can convert the N second laser signals into electrical signals to obtain N first electrical signals, and can send the N first electrical signals to the control module 301 .
  • the control module 301 After the control module 301 receives the N first electrical signals from the detector 303, the N first electrical signals can be superimposed to obtain a first superimposed signal.
  • FIG. 4 is a schematic diagram of a signal superposition method disclosed in an embodiment of the present application.
  • the interval length of the first time interval of the first group is T 1
  • the interval length of the first time interval of the second group is T 2
  • the interval length of the first time interval of the Nth group is T N
  • the control module 301 may correspondingly superimpose the N first electrical signals in the time intervals corresponding to T 1 , T 2 , . . . , T N .
  • T 1 the interval length of the first time interval of the first group
  • T 2 the interval length of the first time interval of the second group
  • T N the interval length of the first time interval of the Nth group
  • the control module 301 may correspondingly superimpose the N first electrical signals in the time intervals corresponding to T 1 , T 2 , . .
  • the control module 301 may detect a sequence of N first electrical signals.
  • the control module 301 may superimpose N first electrical signals to obtain the first superimposed signal according to the start time and the N groups of first time intervals T 1 , T 2 , . . . , T N .
  • the reflected signal may have interference signals, that is, the N second laser signals received may be the N first laser signals reflected back by the detection object and the N laser signals. Signals that interfere with signal synthesis. That is, interference may exist in the N first electrical signals received by the control module 301 . After the control module 301 superimposes the corresponding N first electrical signals, a superimposed signal can be obtained.
  • the superimposed signal obtained by the control module 301 may have interference, but since the time length from T 1 , T 2 to T N is random, the accumulation of interference signals can be avoided to a certain extent. In addition, compared with the non-superimposed signal, the amplitude of the superimposed signal corresponding to the first sequence will increase, so a larger signal-to-interference ratio can be generated, thereby improving the anti-jamming capability of the lidar. It should be noted that the control module 301 may perform filtering in the process of superimposing the N first electrical signals, and the signal after filtering and superimposition is the first superimposed signal.
  • control module 301 After the control module 301 obtains the first superimposed signal, it can perform a cross-correlation operation between the obtained first superimposed signal and the known first sequence to determine whether the first superimposed signal is an echo including the reflected back of the laser signal emitted by the first sequence. Signal.
  • the control module 301 may determine N second sequences and N groups of second time intervals according to whether the echo signal contains the laser emission signal.
  • FIG. 5 is a schematic structural diagram of another lidar anti-jamming device disclosed in an embodiment of the present application.
  • the lidar anti-jamming device shown in FIG. 5 is optimized by the lidar anti-jamming device shown in FIG. 3 .
  • the lidar anti-jamming device may include a control module 501 , a laser 502 and a detector 503 .
  • the detailed description may refer to the related description corresponding to FIG. 3 .
  • the lidar anti-jamming device may further include a signal generator 504, wherein:
  • a signal generator 504 configured to generate N second electrical signals according to N first sequences and N groups of first time intervals;
  • the laser 502 emits N first laser signals according to N first sequences and N groups of first time intervals, including:
  • the laser 502 emits N first laser signals according to the N second electrical signals.
  • the signal generator 504 may be coupled to the control module 501 and the laser 502, respectively.
  • the control module 501 may send the determined N first sequences and N groups of first time intervals to the signal generator 504 .
  • the signal generator 504 may generate N second electrical signals according to the N first sequences and N groups of first time intervals. That is, the signal generator 504 may determine sequences of N second electrical signals according to N first sequences, and may determine time intervals between N second electrical signals according to N groups of first time intervals.
  • the sequence of each of the N second electrical signals may be determined by the N first sequences, and the start time of transmission corresponding to each sequence of the N second electrical signals may be determined by N groups of time intervals.
  • the sequence of the first second electrical signal generated by the signal generator 504 is the same as the first first sequence
  • the sequence of the second second electrical signal is the same as the second first sequence.
  • the time interval between the start time of the first second electrical signal transmitted by the signal generator 504 and the start time of the second second electrical signal is the first set of first time intervals, . . . , the N-th
  • the time interval between the start time of one second electrical signal and the start time of the Nth second electrical signal is the first time interval of the N-1th group, the start time of the Nth second electrical signal and the The time interval between the end times is the first time interval of the Nth group.
  • the laser 502 can transmit N first laser signals according to the N second electrical signals, which can be understood as the sequence of the N first laser signals is the same as the sequence of the N second electrical signals, and the sequence of the two adjacent first laser signals is the same as that of the N second electrical signals.
  • the time interval between a laser signal is the same as the time interval between the corresponding two adjacent second electrical signals, and the time interval between the start time and the end time of the last first laser signal is the same as the time interval between the last second
  • the time interval between the start time and the end time of the electrical signal is the same.
  • control module 501 when the N first sequences are the same sequence, the control module 501 superimposes the N first electrical signals to obtain the first superimposed signal including:
  • the detector 503 After the detector 503 receives the N second laser signals, it can convert the N second laser signals into electrical signals to obtain N first electrical signals. For a detailed description of the second laser signal, reference may be made to the related description of FIG. 3 .
  • the detector 503 may send N first electrical signals to the control module 501 .
  • Control module 501 may include filter 5011 .
  • the control module 501 can first superimpose the N first electrical signals according to the N groups of first time intervals to obtain the second superimposed signal, and then can obtain the second superimposed signal according to The N first sequences filter the second superimposed signal to obtain a first superimposed signal. For a specific stacking method, reference may be made to the methods corresponding to FIG. 4 and FIG.
  • the control module 501 can determine the filter coefficient of the filter according to the first sequence, and then can filter the second superimposed signal through the filter to obtain the first superimposed signal.
  • the control module 501 may first determine N first sequences, and may determine the filter coefficients of the filter according to the first sequences. For example, when the first sequence is the same sequence, assuming that this sequence is "1010", the control module 501 can set the filter coefficient to be "1010". Of course, other filter coefficients can also be set as required. After filtering, the interference signal and noise can be removed, so that the signal-to-noise ratio of the superimposed signal can be further improved, and the anti-jamming capability of the lidar can be improved.
  • control module 501 may include a decoder 5013 , and the above-mentioned control module 501 superimposes N first electrical signals to obtain the first superimposed signal may be completed by the decoder 5013 .
  • the lidar anti-jamming device may further include a beam splitter 505, and the control module 501 may include a filter 5011, wherein:
  • the beam splitter 505 is used to receive N third laser signals, transmit N fourth laser signals, and reflect N fifth laser signals.
  • the third laser signal is the laser signal transmitted from the first laser signal to the beam splitter, and the third laser signal is the signal includes a fourth laser signal and a fifth laser signal;
  • the detector 503 is further configured to receive N sixth laser signals, convert the N sixth laser signals into electrical signals, and obtain N third electrical signals, where the sixth laser signal is the laser transmitted by the fifth laser signal to the detector Signal;
  • the control module 501 filters the second superimposed signal according to the N first sequences to obtain the first superimposed signal including:
  • the control module 501 adjusts the filter coefficient of the filter 5011 according to the N third electrical signals
  • the filter 5011 filters the second superimposed signal according to the N first sequences to obtain the first superimposed signal.
  • the laser 502 can send N first laser signals to the beam splitter 505, and the beam splitter 505 can receive N third laser signals. After receiving the N third laser signals, the beam splitter 505 can transmit N fourth laser signals, and can reflect N fifth laser signals.
  • the third laser signal may be the laser signal transmitted by the first laser signal to the beam splitter 505 .
  • the third laser signal may include a fourth laser signal and a fifth laser signal, that is, it can be understood that the beam splitter 505 can transmit and reflect N third laser signals to obtain N fourth laser signals and N fifth laser signals. Afterwards, the beam splitter 505 may transmit N fourth laser signals to the detector, and may directly transmit N fifth laser signals to the detector 503 .
  • the detector 503 may receive the N second laser signals, convert the N second laser signals into electrical signals, and obtain N first electrical signals.
  • the detector 503 may also receive N sixth laser signals, and the N sixth laser signals may be the laser signals transmitted by the N fifth laser signals to the detector 503 .
  • the detector 503 may convert the N sixth laser signals into electrical signals to obtain N third electrical signals.
  • the filter coefficient of the filter 5011 can be determined according to the N third electrical signals.
  • the control module 501 may filter the superimposed signal (ie, the second superimposed signal) of the N first electrical signals to obtain the first superimposed signal.
  • the control module 501 may determine the filter coefficients according to the N third electrical signals.
  • the control module 501 may adjust the filter coefficient of the filter 5011 according to the same sequence corresponding to the N third electrical signals.
  • the control module 501 may filter the second superimposed signal.
  • the fifth laser signal can be directly sent to the detector 503 without being sent to the detected object.
  • the laser signals determine N third electrical signals
  • the control module 501 may determine the sequence of the N first laser signals to transmit according to the N third electrical signals. In this case, even if interference occurs inside the control module 501, the signal generator 504 and the laser 502, since the coefficients of the filters are readjusted according to the N third electrical signals, the control module 501 can also improve the accuracy of the N third electrical signals. The probability of correct superposition and filtering of an electrical signal can improve the anti-jamming capability of the lidar device.
  • the detector 501 should receive the sixth laser signal first, and then the second laser signal, but special circumstances are not excluded. Therefore, the detector 504 will not receive the sixth laser signal and the second laser here.
  • the order of the signals constitutes a limitation.
  • control module 501 determining N second sequences and N groups of second time intervals according to the first superimposed signal includes:
  • the N first sequences are determined as N second sequences, and the N groups of The first time interval is determined as N sets of second time intervals.
  • control module 501 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • control module 501 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • the interval length and/or the number of intervals of each group of first time intervals in the N groups of first time intervals are reduced to obtain N groups of new first time intervals, and the second threshold is greater than first threshold.
  • control module 501 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • the N first sequences are adjusted to obtain new N first sequences.
  • control module 501 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • the N first sequences are adjusted to obtain N first sequences.
  • FIG. 6 is a schematic flowchart of a method for a signal anti-interference strategy disclosed in an embodiment of the present application.
  • the control module 501 may first determine the current N first sequences and the current N groups of first time intervals. After the control module 501 receives the N first electrical signals (and may also receive N third electrical signals), the control module 501 can superimpose and filter the N first electrical signals to obtain a first superimposed signal. Afterwards, the control module 501 can determine whether there is a correlation peak between the first superimposed signal and the current first sequence. When it is determined that there is a correlation peak, the control module 501 may continue to determine whether the value of the main-side lobe ratio of the correlation peak is greater than the first threshold.
  • the control module 501 may determine N second sequences and N groups of second time intervals. Further, the control module 501 may determine the first superimposed signal as the target echo signal, and output the target echo signal. In one case, when it is determined that the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, the control module 501 may determine the current N first sequences as N second sequences, and the current N groups of first time intervals It is determined as N groups of second time intervals, and the target echo signal is output.
  • the control module 501 may continue to determine whether the value of the main-sidelobe ratio of the correlation peak is greater than the second threshold.
  • the control module 501 may determine the current N first sequences as N second sequences, and the current N groups of first time intervals as N Group the second time interval, and output the target echo signal.
  • the second threshold is greater than the first threshold.
  • the control module 501 may adjust the current N groups of first time intervals. When it is determined that the value of the main-side lobe ratio of the correlation peak is greater than the second threshold, the control module 501 may adjust the current N groups of first time intervals. When it is determined that there is no correlation peak, the control module 501 may continue to determine whether the signal-to-noise ratio of the first superimposed signal is greater than the third threshold. When it is determined that the signal-to-noise ratio is greater than the third threshold, the control module 501 may adjust the current N first sequences.
  • the correlation peak may be a correlation peak obtained by the control module 501 performing cross-correlation between the current N first sequences and the first superimposed signal.
  • FIG. 7 is a schematic diagram of a cross-correlation computing method disclosed in an embodiment of the present application. (a) in FIG.
  • the control module 501 can perform a cross-correlation operation on the first superimposed signal and N first sequences, and the result of the cross-correlation operation can be seen from (b) in FIG. 7 Correlation peaks may be present.
  • Correlation peaks may be present.
  • the control module 501 can determine that the first superimposed signal is the echo signals corresponding to N first sequences .
  • the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, it can indicate that the echo signal can meet the requirements of the system, and the first superimposed signal can be output as the selected target echo signal.
  • the first threshold may vary.
  • the control module 501 can adjust the first threshold value according to the signal-to-noise ratio of the first superimposed signal, can also adjust the first threshold value according to the value of the main sidelobe ratio of the correlation peak, can also set it according to the requirements of the system, and can also use Other methods set the first threshold.
  • the first threshold value may also be fixed, that is, it may be a preset value. It should be understood that the above is only an example to illustrate the method for determining the first threshold, and does not constitute a limitation.
  • the second threshold may vary.
  • the control module 501 may adjust the second threshold according to the absolute value of the difference between the correlation peak main-sidelobe ratio corresponding to the previous first superimposed signal and the current first superimposed signal, and when the absolute value of the difference is greater than the sixth threshold, It indicates that the value of their correlation peak main sidelobe ratio is greatly different, the control module 501 can increase the second threshold, and when the absolute value of the difference is less than or equal to the sixth threshold, it indicates that their corresponding correlation peak main sidelobe ratio If the difference between the values is small, the control module 501 can decrease the second threshold or keep the second threshold unchanged.
  • the second threshold may also be fixed.
  • the third threshold may be variable or fixed.
  • the control module 501 may set the third threshold to a fixed value, or may adjust the third threshold according to the signal-to-noise ratio of the first superimposed signal or the value of the main-side lobe ratio of the correlation peak.
  • the control module 501 may first perform dynamic threshold detection on the first superimposed signal.
  • the control module 501 can determine a threshold value, and then can first judge whether the amplitude value of the first superimposed signal is greater than this threshold value, and when it is judged that the amplitude value is greater than this threshold value, can continue to judge whether there is a correlation peak; When it is determined that the amplitude value is less than or equal to the threshold value, the first superimposed signal can be discarded.
  • This threshold value can be dynamically changed.
  • the dynamic threshold value can be determined according to the channel conditions.
  • the value of this threshold can be reduced, and when the signal-to-noise ratio is higher than the seventh threshold, the threshold can be increased limit value.
  • This threshold value can also be determined based on the amplitude of other received signals. It should be understood that the above is only an example to illustrate the determination of the dynamic threshold, and does not constitute a limitation on the specific determination method.
  • the control module 501 may increase the interval length and/or the number of intervals of the current N groups of first time intervals, and determine a new N groups of first time intervals interval. That is, it can be understood that the time interval between two adjacent transmitted first laser signals can be increased and/or the number of transmitted first laser signals can be increased (ie, the size of N can be increased). In one case, the interval length and/or number of intervals may be the same for each increment.
  • the control module 501 may increase the interval length and/or the interval number of the first time interval according to the step size.
  • the control module 501 may preset a step a of the interval length and a step b of the number of intervals, where both a and b are greater than zero. Assuming that one of the current N groups of first time intervals has a length of a1 and the number of intervals is b1, when the first time interval of this group needs to be increased, the interval of a new set of time intervals of the first time interval of this group The length can be a2, and the number of intervals can be b2.
  • the interval length and/or the number of intervals may be different for each increment.
  • the control module 501 may increase the interval length and/or the number of intervals of the time interval according to the absolute value of the difference between the value of the main sidelobe ratio of the current correlation peak and the first threshold.
  • the control module 501 may increase the interval length and/or the interval number of the first time interval by a larger magnitude.
  • the control module 501 may also increase the interval length and/or the number of intervals of the first time interval according to other methods, and the specific increase method is not limited here.
  • Increasing the interval length of the first time interval can reduce the probability of accumulation of interference signals during the superposition process, and increasing the number of intervals of the first time interval can increase the amplitude of the superimposed signal, thereby increasing the signal-to-noise ratio of the first superimposed signal , which can improve the anti-jamming capability of the lidar device.
  • the control module 501 may reduce the interval length and/or the number of intervals of each group of first time intervals in the current N groups of first time intervals to obtain a new N groups of first time intervals. That is, it can be understood that the time interval between two adjacent transmitted first laser signals can be reduced and/or the number of transmitted first laser signals can be reduced (ie, the size of N can be reduced). In one case, the interval length and/or number of intervals may be the same for each reduction.
  • the control module 501 may decrease the interval length and/or the interval number of the first time interval according to the step size.
  • the control module 501 may preset a step a3 of the interval length and a step b3 of the number of intervals, where both a3 and b3 are greater than zero. Assuming that there is a group of first time intervals in the current N groups, the interval length of a group of first time intervals is a1, and the number of intervals is b1. When the group of first time intervals needs to be reduced, a new one corresponding to the group of first time intervals The interval length of the group time interval can be a2, and the number of intervals can be b2.
  • the interval length and/or the number of intervals may be different for each reduction.
  • the control module 501 may also reduce the interval length and/or the interval number of the current N first time intervals according to the magnitude of the absolute value of the difference between the second threshold and the value of the main sidelobe ratio of the correlation peak. When the absolute value of the difference is larger, the amount of reduction that can be made is larger.
  • the interval length and/or the interval number of the current N first time intervals may also be reduced in other manners. Since the control module 501 may continuously increase the interval length and/or interval number of the N first time intervals, it may cause that even if the interval length and/or interval number of the current N first time intervals are further increased, it may not be obvious. The effect of outputting echo signals is improved, and therefore, the excessively long time interval and/or the number of excessive intervals of the first time interval can be reduced, which can improve processing efficiency and reduce waste of processing resources.
  • the control module 501 may adjust the current N first sequences to obtain new N first sequences.
  • the control module 501 can adjust the N first sequences so that the new N first sequences are different from the unadjusted first sequences, and can also increase or decrease the length of the current sequence. For example, when the current N first sequences are the same first sequence and the first sequence is 10011010, the new first sequence may be determined to be 11001011, 100110101011, or 100110.
  • the first superimposed signal may also receive a certain echo signal, but the signal that the control module 501 cannot determine may be due to external interference signals or other factors. Therefore, whether there is a certain signal accumulation in the first superimposed signal can be determined by the size of the signal-to-noise ratio, that is, it is judged whether the signal-to-noise ratio of the first superimposed signal is greater than the third threshold, and when it is judged that it is greater than the third threshold, It can be indicated that there is a certain signal accumulation, and the control module 501 adjusts the N first sequences, so that the signal-to-noise ratio of the first superimposed signal obtained next time can be improved by transforming the sequences.
  • the control module 501 can adjust the N first sequences so that the lidar device and surrounding The sequence used by the lidar device is differentiated, so that the anti-jamming capability of the lidar device can be improved.
  • the lengths of intervals included in the N groups of second time intervals are less than or equal to the fourth threshold, and the number of intervals of the N groups of second time intervals is less than or equal to the fifth threshold.
  • the control module 501 may set the fourth threshold and the fifth threshold, so that the interval lengths included in the N groups of second time intervals are less than or equal to the fourth threshold, and the number of intervals of the N groups of second time intervals is less than or equal to the fifth threshold.
  • the fourth threshold and/or the fifth threshold may be a fixed value or a variable value. In the case where the fourth threshold and/or the fifth threshold are variable values, the control module 501 may adjust their values according to the received signal quality, channel interference, and the like.
  • the method for specifically determining the fourth threshold and the fifth threshold is not limited here. In the case where the upper limit of the interval length and the number of intervals of the time interval is set, the endless increase of the time interval can be avoided, so that the processing efficiency of the lidar apparatus can be improved and the endless consumption of processing resources can be prevented.
  • the control module 501 may further include an encoding/decoding control unit 5012, and the above steps of determining the current N first sequences and the current N groups of first time intervals according to the first superimposed signal may be performed by the encoding/decoding control unit 5012.
  • the control module 501 may further include a signal selector 5014, the judgment step in FIG. As shown in FIG. 5 , it can be understood that the encoding/decoding control unit 5012 may first determine the current N first sequences and the current N groups of first time intervals.
  • the control module 501 may also include a decoder 5013 . In one case, decoder 5013 may include filter 5011.
  • the decoder 5013 After the decoder 5013 receives the N first electrical signals, it can complete the superposition and filtering of the first electrical signals according to the current N groups of first time intervals and the current N first sequences to obtain the first superimposed signal.
  • the signal selector 5014 may obtain the first superimposed signal from the decoder 5013, and then may determine N second sequences and N groups of second time intervals according to the first superimposed signal. For a detailed description, reference may be made to the relevant description corresponding to FIG. 6 above.
  • the current N first sequences and the current N groups of first time intervals determined by the above control module 501 are the N first sequences and N groups of first time intervals used for this cycle, and the determined new N first time intervals
  • a sequence and new N sets of first time intervals are the N first sequences and N sets of first time intervals for the next cycle.
  • the N second sequences and the N groups of second time intervals are the final results obtained after one cycle or multiple cycles, which are the best sequences and time intervals that can be used by the device in the current environment, and have high resistance to Interference ability. However, it is only applicable to the current environment. When the environment changes, the anti-interference capabilities of the determined N second sequences and N groups of second time intervals may change.
  • the N second sequences and N groups of second time intervals determined in this cycle can be used as the N first determined first in the next cycle. Sequence and N sets of first time intervals. After the cycle, the next N second sequences and N groups of second time intervals can be determined.
  • FIG. 8 is a schematic structural diagram of another lidar anti-jamming device disclosed in an embodiment of the present application.
  • the lidar anti-jamming device shown in FIG. 8 is optimized by the lidar anti-jamming device shown in FIG. 3 .
  • the lidar anti-jamming device may include a control module 801, a laser 802 and a detector 803, wherein:
  • the lidar anti-jamming device may further include a signal generator 804, wherein:
  • a signal generator 804 configured to generate N second electrical signals according to the N first sequences and N groups of first time intervals;
  • the laser 802 transmits N first laser signals according to N first sequences and N groups of first time intervals, including:
  • the laser 802 emits N first laser signals according to the N second electrical signals.
  • control module 801 when the N first sequences are different sequences, the control module 801 superimposes the N first electrical signals to obtain the first superimposed signal including:
  • the detector 801 can convert the N second laser signals into electrical signals to obtain N first electrical signals.
  • the detector 803 may send N first electrical signals to the control module 801 .
  • Control module 801 may include filter 8011 .
  • the control module 801 can first filter the N first electrical signals according to the N first sequences to obtain N filtered signals, and then can superimpose N signals according to the N groups of first time intervals Filter the signal to obtain a first superimposed signal. That is to say, it can be understood that the coefficients of N different filters 8011 can be determined according to the N different first sequences, and then the N first electrical signals can be input into N filters 8011 corresponding to filter coefficients for filtering, Obtain N filtered signals.
  • the number of filters 8011 may be one or more, and the filter may determine one or more filter coefficients correspondingly. For example, when the number of filters is 1, the order of the N filter coefficients can be determined according to the order of the N first electrical signals received; when the number of filters is multiple, the order of each first electrical signal can be determined.
  • the electrical signal determines a filter, and each filter can determine a filter coefficient.
  • the control module 801 may superimpose the N filtered signals to obtain a first superimposed signal. For a specific stacking process, reference may be made to the above-mentioned related description of FIG. 4 , which will not be repeated here.
  • the control module 801 can avoid the influence caused by the interference by filtering and superimposing. Therefore, the anti-jamming capability of the lidar can be improved.
  • the lidar anti-jamming device may further include a beam splitter 805, and the control module 801 may include a filter 8011, wherein:
  • the beam splitter 805 is used for receiving N third laser signals, transmitting N fourth laser signals, and reflecting N fifth laser signals.
  • the third laser signal is the laser signal transmitted from the first laser signal to the beam splitter, and the third laser signal is the signal includes a fourth laser signal and a fifth laser signal;
  • the detector 803 is further configured to receive N sixth laser signals, convert the N sixth laser signals into electrical signals, and obtain N fourth electrical signals, and the sixth laser signals are the fifth laser signals transmitted to the detector 803 .
  • laser signal ;
  • the control module 801 filters the N first electrical signals according to the N first sequences, and obtains the N filtered signals including:
  • the control module 801 adjusts the filter coefficient of the filter 8011 according to the N fourth electrical signals
  • the filter 8011 filters the second superimposed signals according to the N first sequences to obtain N filtered signals.
  • the laser 802 can send N first laser signals to the beam splitter 805, and the beam splitter 805 can receive N third laser signals. After receiving the N third laser signals, the beam splitter 805 can transmit N fourth laser signals and reflect N fifth laser signals. For related descriptions, reference may be made to the corresponding descriptions in FIG. 5 . It should be noted that, after receiving the N sixth laser signals, the detector 803 can convert the N sixth laser signals into N fourth electrical signals, and then can send the N fourth electrical signals to the control module 801 .
  • the control module 801 can determine the filter coefficient of the filter 8011 according to the N fourth electrical signals.
  • the control module 801 may filter the N first electrical signals to obtain N filtered signals, and then may superimpose the N filtered signals to obtain the first superimposed signal.
  • the control module 801 may first determine whether the received N fourth electrical signals are of different sequences or partially different sequences, and then may determine corresponding filter coefficients of the filter 8011 according to the N fourth electrical signals. After the control module 801 determines the filter coefficient, it may further filter and superimpose the N first electrical signals.
  • the control module 801 may further filter and superimpose the N first electrical signals.
  • the order in which the detector 803 receives the sixth laser signal and the second laser signal is not limited here.
  • control module 801 determining N second sequences and N groups of second time intervals according to the first superimposed signal includes:
  • the N first sequences are determined as N second sequences, and the N groups of The first time interval is determined as N sets of second time intervals.
  • control module 801 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • control module 801 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • the interval length and/or the number of intervals of each group of first time intervals in the N groups of first time intervals are reduced to obtain N groups of new first time intervals, and the second threshold is greater than first threshold.
  • control module 801 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • the N first sequences are adjusted to obtain new N first sequences.
  • control module 801 determining N second sequences and N groups of second time intervals according to the first superimposed signal further includes:
  • the N first sequences are adjusted to obtain N first sequences.
  • the lengths of intervals included in the N groups of second time intervals are less than or equal to the fourth threshold, and the number of intervals of the N groups of second time intervals is less than or equal to the fifth threshold.
  • control module 801 may superimpose the N first sequences to obtain a composite sequence of the first sequences. Further, the control module 801 can determine whether there is a correlation peak between the synthesized sequence of the first sequence and the first superimposed signal.
  • the control module 801 may further include an encoding/decoding control unit 8012, and the above steps of determining the current N first sequences and the current N groups of first time intervals according to the first superimposed signal may be performed by the encoding/decoding control unit 8012.
  • the control module 801 may further include a signal selector 8014, the judgment step in FIG.
  • the control module 801 may further include a decoder 8013, and the decoder 8013 can filter and superimpose the N first electrical signals to obtain a first superimposed signal.
  • the decoder 8013 may include the filter 8011.
  • the related description corresponding to FIG. 6 refer to the related description corresponding to FIG. 6 .
  • control module 801 determines that the current N first sequences and the current N groups of first time intervals are the N first sequences and N groups of first time intervals used for this cycle, and the determined new N first sequences and the new N sets of first time intervals are the N first sequences and N sets of first time intervals for the next cycle.
  • the N second sequences and the N groups of second time intervals are the final results obtained after one cycle or multiple cycles, which are the best sequences and time intervals that can be used by the device in the current environment, and have high resistance to Interference ability. However, it is only applicable to the current environment. When the environment changes, the anti-interference capabilities of the determined N second sequences and N groups of second time intervals may change.
  • the N second sequences and N groups of second time intervals determined in this cycle can be used as the N first determined first in the next cycle. Sequence and N sets of first time intervals. After the cycle, the next N second sequences and N groups of second time intervals can be determined.
  • FIG. 9 is a schematic flowchart of an anti-jamming method for a laser radar disclosed in an embodiment of the present application. As shown in FIG. 9 , the anti-jamming method for lidar may include the following steps.
  • N is an integer greater than or equal to 1.
  • N second electrical signals may be generated by a signal generator according to N first sequences and N groups of first time intervals, and then N first lasers may be emitted by a laser according to N second electrical signals Signal.
  • the control module when the N first sequences are the same sequence, can superimpose N first electrical signals according to the N groups of first time intervals to obtain the second superimposed signal, and then the control module can superimpose the N first electrical signals according to the N first time intervals.
  • the first sequence filters the second superimposed signal to obtain a first superimposed signal.
  • N third laser signals may be received through a beam splitter, N fourth laser signals may be transmitted, and N fifth laser signals may be reflected.
  • the third laser signal may be the laser transmitted from the first laser signal to the beam splitter. signal, the third laser signal may include a fourth laser signal and a fifth laser signal.
  • the filter coefficient of the filter can be adjusted by the control module according to the N third electrical signals, and the second superimposed signal can be filtered according to the N first sequences by the filter to obtain the first superimposed signal.
  • the control module can filter the N first electrical signals according to the N first sequences to obtain N filtered signals, and the control module can filter the N first electrical signals according to the N first sequences.
  • the N filtered signals are superimposed at the first time interval to obtain a first superimposed signal.
  • N third laser signals may be received through a beam splitter, N fourth laser signals may be transmitted, and N fifth laser signals may be reflected.
  • the third laser signal is the laser signal transmitted from the first laser signal to the beam splitter.
  • the third laser signal includes a fourth laser signal and a fifth laser signal.
  • the detector may also receive N sixth laser signals, convert the N sixth laser signals into electrical signals, and obtain N fourth electrical signals, where the sixth laser signals are laser signals transmitted from the fifth laser signals to the detector.
  • the filter coefficients of the filter can also be adjusted according to the N fourth electrical signals by the control module, and the second superimposed signals can be filtered according to the N first sequences by the control module filter to obtain N filtered signals.
  • control module can determine whether there is a correlation peak between the first superimposed signal and the first sequence, and when there is a correlation peak and the value of the main-side lobe ratio of the correlation peak is greater than the first threshold, the control module can
  • the N first sequences are determined as N second sequences, and the N groups of first time intervals are determined as N groups of second time intervals.
  • control module may determine whether there is a correlation peak between the first superimposed signal and the first sequence, and when there is a correlation peak and the value of the main sidelobe ratio is less than or equal to the first threshold, the control module may increase the N groups of first time intervals are obtained from the interval length and/or the number of intervals included in each group of first time intervals in the N groups of first time intervals.
  • the control module when there is a correlation peak between the first superimposed signal and the first sequence, and the value of the main-sidelobe ratio is greater than the second threshold, the control module can reduce the number of first time intervals in each group of N groups of first time intervals. The interval length and/or the number of intervals of the time intervals are obtained to obtain N groups of first time intervals, and the second threshold value is greater than the first threshold value.
  • control module may determine whether there is a correlation peak between the first superimposed signal and the first sequence, and when there is no correlation peak, adjust N first sequences to obtain N first sequences.
  • control module can determine whether there is a correlation peak between the first superimposed signal and the first sequence. When there is no correlation peak and the signal-to-noise ratio of the first superimposed signal is greater than a third threshold, the control module can be used to determine whether there is a correlation peak. Adjust the N first sequences to obtain N first sequences.
  • the lengths of intervals included in the N groups of second time intervals are less than or equal to the fourth threshold, and the number of intervals of the N groups of second time intervals is less than or equal to the fifth threshold.
  • the control module may perform dynamic threshold detection on the first superimposed signal. That is, it can be determined by the control module whether the amplitude of the first superimposed signal is larger than the dynamic threshold, and when it is larger than the dynamic threshold, it can be further determined whether there is a correlation peak between the first superimposed signal and the first sequence. When less than or equal to this dynamic threshold value, the first superimposed signal can be discarded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种抗干扰方法、激光雷达及车辆,激光雷达可以包括:控制模块(301)、激光器(302)和探测器(303),其中:控制模块(301),用于确定N个第一序列和N组第一时间间隔,N为大于或等于1的整数;激光器(302),用于根据N个第一序列和N组第一时间间隔发射N个第一激光信号;探测器(303),用于接收N个第二激光信号,将N个第二激光信号转换为电信号,得到N个第一电信号;控制模块(301),还用于根据N个第一电信号确定N个第二序列和N组第二时间间隔。该方法可以提高激光雷达的抗干扰能力。

Description

一种激光雷达抗干扰方法及装置
本申请要求于2021年01月29日提交中国专利局、申请号为202110126177.6、申请名称为“一种激光雷达抗干扰方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信技术领域,尤其涉及一种激光雷达抗干扰方法及装置。
背景技术
激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。其基本工作原理是先向目标发射探测激光束,然后比较发射信号和从目标接收回来的反射信号,根据比较结果获得目标的距离、方位、高度、速度、姿态、形状等信息。
在现实中,存在多种干扰源影响激光雷达的性能。例如,太阳光、恶意同频干扰的激光信号、无协同作用且使用相同激光波长的多台激光雷达等。为了解决激光雷达的干扰问题,激光雷达抗干扰技术应运而生。目前,脉冲式激光雷达的常见抗干扰方法是:调制脉冲幅度、脉冲宽度和脉冲时间间隔等,从而发射携带特定信息的脉冲信号。在接收时,从接收到的信号中筛选符合调制脉冲幅度、脉冲宽度和时间间隔等对应的特定的脉冲信号作为自身的回波信号。考虑到人眼安全的问题,激光的发射功率受到限制,因此接收到的信号的信噪比也有限。激光雷达在存在干扰的环境中使用时,无法简单的通过增大激光发射功率提高抗干扰能力。在这种情况下,干扰信号所形成的噪点对于系统的影响较大,降低了激光雷达的测距等性能。
发明内容
本申请实施例公开了一种激光雷达抗干扰方法及装置,用于提高激光雷达的抗干扰能力。
第一方面公开一种激光雷达抗干扰装置,该激光雷达抗干扰装置可以包括控制模块、激光器和探测器,其中:所述控制模块,用于确定N个第一序列和N组第一时间间隔,N为大于或等于1的整数;所述激光器,用于根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号;所述探测器,用于接收N个第二激光信号,将所述N个第二激光信号转换为电信号,得到N个第一电信号;所述控制模块,还用于叠加所述N个第一电信号得到第一叠加信号,根据所述第一叠加信号确定N个第二序列和N组第二时间间隔。
本申请实施例中,第一时间间隔可以确定对应的第一序列的发送时间,N组第一时间间隔的间隔长度是随机的时间长度,因此,N个第一序列的对应的信号的发送时间的时间长度是随机的。当探测器接收到N个第二激光信号之后,控制模块可以根据N组第一时间间隔叠加对应的电信号,得到第一叠加信号。经过叠加的第一叠加信号相较于直接接收的信号,其信号的幅度会大大提高,可以提高信噪比。同时激光信号的发送时间是随机的,可以避免固定频率的干扰信号累积。因此,可以减少激光雷达中点云图中的噪点,提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述装置还可以包括信号发生器,其中:所述信号发生器,用于根据所述N个第一序列和所述N组第一时间间隔,生成N个第二电信号;所述激光器根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号包括:所述激光器根据所述N个第二电信号发射N个第一激光信号。
本申请实施例中,由于控制模块确定第一序列和第一时间间隔之后,可以通过信号发生器实现第一序列与发射的第一激光信号的序列一致,可以保证第一序列与激光信号的序列的一致性。此外,信号生成器可以通过使用N组第一时间间隔确定发送N个第一激光信号的时间间隔的长短,可以实现发送时间的随机性。在控制模块对信号进行叠加时,可以避免固定频率的干扰信号的积累,从而可以提高叠加信号的信干比。
作为一种可能的实施方式,当所述N个第一序列为同一序列时,所述控制模块叠加所述N个第一电信号得到第一叠加信号包括:根据所述N组第一时间间隔叠加所述N个第一电信号,得到第二叠加信号;根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
本申请实施例中,N个第一序列为同一序列,即发送的N个激光信号的序列是相同的激光序列,但N组第一时间间隔是随机的,发送所用时间不同,因此可以将对应电信号进行叠加,得到第二叠加信号,叠加信号的信号幅度经过累积大大提高,同时激光信号的发送时间是随机的,因此,可以减少固定频率的干扰信号的积累。进一步地,由于第二叠加信号是由同一个序列对应信号的叠加而成,因此可直接对叠加信号进行滤波。经过滤波,不但可以进一步降低干扰信号的影响,提高激光雷达的抗干扰性能,而且还可以减少滤波的次数和简化控制模块的内部结构。
作为一种可能的实施方式,当所述N个第一序列为不同序列时,所述控制模块叠加所述N个第一电信号得到第一叠加信号包括:根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号;根据所述N组第一时间间隔叠加所述N个滤波信号,得到第一叠加信号。
本申请实施例中,N个第一序列为不同序列,即发送的N个激光信号的序列是不同的激光序列。由于第一叠加信号是不同序列对应的信号的叠加信号,由此,能够降低本激光雷达与其他激光雷达使用相同或相似序列的几率,以避免多个激光雷达使用相同或相似序列形成的干扰,从而可以进一步提高激光雷达抗干扰能力。由于序列不同,可以先对不同序列对应的信号滤波,再叠加形成第一叠加信号,可以降低干扰信号的影响,从而提高激光雷达的抗干扰性能。
作为一种可能的实施方式,所述装置还包括分光镜,所述控制模块包括滤波器,其中:所述分光镜,用于接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;所述探测器,还用于接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第三电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;所述控制模块根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号包括:所述控制模块根据所述N个第三电信号调整所述滤波器的滤波系数;所述滤波器根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
本申请实施例中,在激光器发射激光信号后,可以将发射出的激光信号经过分光镜反射和透射,形成两路序列相同的激光信号。其中,可以把一路激光信号向探测物发射,以及把另一路激光信号直接向探测器发射。探测器接收到直接发射回来的信号后,可以调整滤波器 的滤波系数,滤波系数可以分别对应激光器实际发送的序列。此时,通过调整滤波系数可以避免装置内部干扰造成的激光雷达的探测性能降低的问题,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述装置还包括分光镜,所述控制模块包括滤波器,其中:所述分光镜,用于接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;所述探测器,还用于接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第四电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;所述控制模块根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号包括:所述控制模块根据所述N个第四电信号调整所述滤波器的滤波系数;所述滤波器根据所述N个第一序列对所述第二叠加信号进行滤波,得到N个滤波信号。
本申请实施例中,在激光器发射激光信号后,可以将发射出的激光信号经过分光镜反射和透射,形成两路序列相同的激光信号。其中,一路激光信号可以向探测物发射,另一路激光信号可以直接向探测器发射。探测器接收到直接发射回来的信号后,可以调整滤波器的滤波系数,滤波系数可以分别对应激光器实际发送的序列。此时,通过调整滤波系数可以避免装置内部干扰造成的激光雷达的探测性能降低的问题,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述控制模块根据所述第一叠加信号确定N个第二序列和N组第二时间间隔包括:当所述N个第一序列与所述第一叠加信号之间存在相关峰,且所述相关峰的主旁瓣比的值大于第一阈值时,将所述N个第一序列确定为所述N个第二序列,将所述N组第一时间间隔确定为所述N组第二时间间隔。
本申请实施例中,控制模块可以对第一序列与第一叠加信号进行互相关运算,当互相关的结果存在相关峰时,可以说明第一叠加信号是对应第一序列发射的激光信号的回波信号,进一步地,当相关峰的主旁瓣比的值大于第一阈值时,可以确定接收到的回波信号的干扰较小,能够满足系统的探测要求。当能够满足系统的探测要求时,控制模块可以确定N个第一序列和N组第一时间间隔能够适用于当前环境,即可以将N个第一序列和N组第一时间间隔确定为N个第二序列和N组第二时间间隔。此时,不再调整当前N个第一序列和当前N组第一时间间隔,从而可以减小控制模块处理开销,从而可以提高处理效率。
作为一种可能的实施方式,所述控制模块根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当存在所述相关峰,且所述主旁瓣比的值小于或等于所述第一阈值时,增大所述N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到N组第一时间间隔。
本申请实施例中,当第一序列与第一叠加信号的互相关运算的结果存在相关峰时,说明N个第一序列和第一叠加信号存在一定的相似度,控制模块可以确定第一叠加信号是当前N个第一序列的回波信号。进一步地,当相关峰的主旁瓣比的值小于一定阈值时,虽然能够判断出第一叠加信号是发送的第一激光序列的回波信号,但是未能达到既定的抗干扰要求。因此,控制模块可以进一步增大第一时间间隔的间隔长度和/或间隔数量,即可以增加发射激光信号的发射时间和/或间隔数量,可以进一步避免干扰信号的积累,以便可以提高信干比,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述控制模块根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当不存在所述相关峰时,调整所述N个第一序列,得到N个第一序列。
本申请实施例中,当第一序列与第一叠加信号之间不存在相关峰时,控制模块不能够确定第一叠加信号是对应第一序列发射的激光信号的回波信号。此时,激光信号可能受到其他激光雷达的干扰,因此,控制模块可以对当前的第一序列进行调整,减弱干扰信号的影响,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述控制模块根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当所述主旁瓣比的值大于第二阈值时,减小所述N组第一时间间隔中每组第一时间间隔的间隔长度和/或数量,得到N组第一时间间隔,所述第二阈值大于所述第一阈值。
本申请实施例中,当主旁瓣比的值远大于第二阈值时,可以减小时间间隔的间隔长度和间隔数量,在保证激光雷达抗干扰能力满足当前环境的前提下,可以减小处理开销,从而可以提高控制模块的处理效率和节约处理资源。
作为一种可能的实施方式,所述控制模块根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当所述第一叠加信号的信噪比大于或等于所述第三阈值时,调整所述N个第一序列,得到N个第一序列。
本申请实施例中,当未能确定第一叠加信号与N个第一序列存在一定的相似度的情况下,控制模块可以通过确定第一叠加信号的信噪比大小来确定第一叠加信号中是否存在一定的信号积累。由于存在信号积累但不存在相关峰可能是环境中的干扰信号所导致的,因此控制模块可以通过调整第一序列,提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述N组第二时间间隔包括的间隔长度小于或等于第四阈值,所述N组第二时间间隔的间隔数量小于或等于第五阈值。
本申请实施例中,调整时间间隔的过程中,增加时间间隔的间隔长度和间隔数量,提高抗干扰性能力的同时会带来处理开销的增加。当增加时间间隔的间隔长度和间隔数量到一定程度后,继续增加时间间隔的间隔长度和间隔数量并不能够明显提高激光雷达的抗干扰能力,因此,设定时间间隔的间隔长度和间隔数量的上限,不仅可以避免时间间隔的间隔长度和间隔数量无休止的增加,以减少处理资源的浪费,也可以提高处理效率。
第二方面公开一种激光雷达抗干扰方法,所述方法应用于激光雷达抗干扰装置,所述方法可以包括:确定N个第一序列和N组第一时间间隔,N为大于或等于1的整数;根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号;接收N个第二激光信号,将所述N个第二激光信号转换为电信号,得到N个第一电信号;叠加所述N个第一电信号得到第一叠加信号;根据所述第一叠加信号确定N个第二序列和N组第二时间间隔。
本申请实施例中,第一时间间隔可以确定对应的第一序列的发送时间,N组第一时间间隔的间隔长度是随机的时间长度,因此,N个第一序列的对应的信号的发送时间的时间长度是随机的。当接收到N个第二激光信号之后,可以根据N组第一时间间隔叠加对应的电信号,得到第一叠加信号。经过叠加的第一叠加信号相较于直接接收的信号,其信号的幅度会大大提高,可以提高信噪比。同时激光信号的发送时间是随机的,可以避免噪声的累积。因此,可以减少激光雷达系统中点云图中的噪点,提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述方法还可以包括:根据所述N个第一序列和所述N组第一时间间隔,生成N个第二电信号;所述根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号包括:根据所述N个第二电信号发射N个第一激光信号。
本申请实施例中,由于确定第一序列和第一时间间隔之后,第一序列与发射的第一激光 信号的序列一致,可以保证第一序列与激光信号的序列的一致性。此外,可以通过N组第一时间间隔确定发送N个第一激光信号的时间间隔的长短,可以实现发送时间的随机性。在对信号进行叠加时,可以避免固定频率的干扰信号的积累,从而可以提高叠加信号的信干比。
作为一种可能的实施方式,当所述N个第一序列为同一序列时,所述叠加所述N个第一电信号得到第一叠加信号包括:根据所述N组第一时间间隔叠加所述N个第一电信号,得到第二叠加信号;根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
本申请实施例中,N个第一序列为同一序列,即发送的N个激光信号的序列是相同的激光序列,但N组第一时间间隔是随机的,发送所用时间不同,因此可以将对应电信号进行叠加,得到第二叠加信号,叠加信号的信号幅度经过累积大大提高,同时激光信号的发送时间是随机的,因此,可以减少固定频率的干扰信号的积累。进一步地,由于第二叠加信号是由同一个序列对应信号的叠加而成,因此可直接对叠加信号进行滤波。经过滤波,不但可以降低信号干扰,提高激光雷达的抗干扰性能,而且还可以减少滤波的次数和简化控制模块的内部结构。
作为一种可能的实施方式,当所述N个第一序列为不同序列时,所述叠加所述N个第一电信号得到第一叠加信号包括:根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号;根据所述N组第一时间间隔叠加所述N个滤波信号,得到第一叠加信号。
本申请实施例中,N个第一序列为不同序列,即发送的N个激光信号的序列是不同的激光序列。由于第一叠加信号是不同序列对应的信号的叠加信号,由此,能够降低本激光雷达与其他激光雷达使用相同或相似序列的几率,以避免多个激光雷达使用相同或相似序列形成的干扰,从而可以进一步提高激光雷达抗干扰能力。由于序列不同,可以先对不同序列对应的信号滤波,再叠加形成第一叠加信号,可以降低干扰信号的影响,从而提高激光雷达的抗干扰性能。
作为一种可能的实施方式,所述方法还可以包括:接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第三电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;所述根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号包括:根据所述N个第三电信号调整所述滤波器的滤波系数;根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
本申请实施例中,在发射激光信号后,可以将发射出的激光信号进行反射和透射,形成两路序列相同的激光信号。其中,可以把一路激光信号发射给探测物,以及把另一路激光信号直接发射回来。接收到直接发射回来的信号后,可以调整滤波器的滤波系数,滤波系数可以分别对应实际发送的序列。此时,通过调整滤波系数可以避免激光雷达内部干扰造成的激光雷达的探测性能降低的问题,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述方法还可以包括:接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第四电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;所述根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号包括:根据所述N个第四电信号调整所述滤波器的滤波系数;根据所述N个第一序列对所述第二叠加信号进行滤波,得到N个滤波信号。
本申请实施例中,在发射激光信号后,可以将发射出的激光信号进行反射和透射,形成两路序列相同的激光信号。其中,可以把一路激光信号向探测物发射,以及把另一路激光信号直接发射回来。接收到直接发射回来的信号后,可以调整滤波器的滤波系数,滤波系数可以分别对应实际发送的序列。此时,通过调整滤波系数可以避免激光雷达内部干扰造成的激光雷达的探测性能降低的问题,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔包括:当所述N个第一序列与所述第一叠加信号之间存在相关峰,且所述相关峰的主旁瓣比的值大于第一阈值时,将所述N个第一序列确定为所述N个第二序列,将所述N组第一时间间隔确定为所述N组第二时间间隔。
本申请实施例中,可以对第一序列与第一叠加信号进行互相关运算,当互相关的结果存在相关峰时,可以说明第一叠加信号是对应第一序列发射的激光信号的回波信号,进一步地,当相关峰的主旁瓣比的值大于第一阈值时,可以确定接收到的回波信号的干扰较小,能够满足激光雷达的探测要求。当能够满足激光雷达的探测要求时,可以确定N个第一序列和N组第一时间间隔能够适用于当前环境,即可以将N个第一序列和N组第一时间间隔确定为N个第二序列和N组第二时间间隔。此时,不再调整当前N个第一序列和当前N组第一时间间隔,从而可以减小处理开销,以及可以提高处理效率。
作为一种可能的实施方式,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当存在所述相关峰,且所述主旁瓣比的值小于或等于所述第一阈值时,增大所述N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到N组第一时间间隔。
本申请实施例中,当第一序列与第一叠加信号的互相关运算的结果存在相关峰时,说明N个第一序列和第一叠加信号存在一定的相似度,可以确定第一叠加信号是当前N个第一序列的回波信号。进一步地,当相关峰的主旁瓣比的值小于一定阈值时,虽然能够判断出第一叠加信号是发送的第一激光序列的回波信号,但是未能达到既定的抗干扰要求。因此可以进一步增大第一时间间隔的间隔长度和/或间隔数量,即可以增加发射激光信号的发射时间和/或间隔数量,可以进一步避免干扰信号的积累,以便可以提高信干比,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当不存在所述相关峰时,调整所述N个第一序列,得到N个第一序列。
本申请实施例中,当第一序列与第一叠加信号之间不存在相关峰时,不能够确定第一叠加信号是对应第一序列发射的激光信号的回波信号。此时,激光信号可能受到其他激光雷达的干扰,因此,可以对当前的第一序列进行调整,减弱干扰信号的影响,从而可以提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:当所述主旁瓣比的值大于所述第二阈值时,减小所述N组第一时间间隔中每组第一时间间隔的间隔长度和/或数量,得到N组第一时间间隔,所述第二阈值大于所述第一阈值。
本申请实施例中,当主旁瓣比的值远大于第二阈值时,可以减小时间间隔的间隔长度和间隔数量,在保证抗干扰能力满足当前环境的前提下,可以减小处理开销,从而可以提高处理效率和节约处理资源。
作为一种可能的实施方式,所述根据所述第一叠加信号确定N个第二序列和N组第二时间 间隔还包括:当所述第一叠加信号的信噪比大于所述第三阈值时,调整所述N个第一序列,得到N个第一序列。
本申请实施例中,当未能确定第一叠加信号与N个第一序列存在一定的相似度的情况下,可以通过确定第一叠加信号的信噪比大小来确定第一叠加信号中是否存在一定的信号积累。由于存在信号积累但不存在相关峰可能是环境中的干扰信号所导致的,因此可以通过调整第一序列,提高激光雷达的抗干扰能力。
作为一种可能的实施方式,所述N组第二时间间隔包括的间隔长度小于或等于第四阈值,所述N组第二时间间隔的间隔数量小于或等于第五阈值。
本申请实施例中,调整时间间隔的过程中,增加时间间隔的间隔长度和间隔数量,提高抗干扰性能力的同时会带来处理开销的增加。当增加时间间隔的间隔长度和间隔数量到一定程度后,继续增加时间间隔的间隔长度和间隔数量并不能够明显提高激光雷达的抗干扰能力,因此,设定时间间隔的间隔长度和间隔数量的上限,不仅可以避免时间间隔的间隔长度和间隔数量无休止的增加,以减少处理资源的浪费,也可以提高处理效率。
附图说明
图1是本申请实施例公开的一种激光雷达的应用场景示意图;
图2是本申请实施例公开的一种激光脉冲的示意图;
图3是本申请实施例公开的一种激光雷达抗干扰装置的结构示意图;
图4是本申请实施例公开的一种信号叠加方法的示意图;
图5是本申请实施例公开的另一种激光雷达抗干扰装置的结构示意图;
图6是本申请实施例公开的一种信号抗干扰策略的方法流程示意图;
图7是本申请实施例公开的一种互相关运算方法的示意图;
图8是本申请实施例公开的又一种激光雷达抗干扰装置的结构示意图;
图9是本申请实施例公开的一种激光雷达抗干扰方法的流程示意图。
具体实施方式
本申请实施例公开了一种激光雷达抗干扰方法及装置,用于提高激光雷达的抗干扰能力。以下分别进行详细说明。
为了更好地理解本申请实施例公开的一种激光雷达抗干扰方法及装置,下面先对本申请实施例相关技术进行介绍。
激光探测及测距(light detection and ranging,LiDAR)系统在汽车辅助驾驶或自动驾驶、服务机器人以及工业自动化等领域广泛应用。在实际的应用场景中,存在多种激光雷达的干扰源。请参阅图1,图1是申请实施例公开的一种激光雷达的应用场景示意图,如图1所示,随着车载激光雷达的普及,激光雷达受到干扰的现象日益严重。这不仅会影响LiDAR系统本身的测距等性能,而且会影响其他系统的性能。例如,在车联网中,当激光雷达被干扰时,高级辅助驾驶系统(advanced driver assistance systems,ADAS)功能也会受到干扰。
激光雷达可以根据激光的发射波形分为脉冲式激光雷达和连续波激光雷达。请参阅图2,图2是一种激光脉冲的示意图。如图2所示,可以通过调节发射一组激光脉冲的时间间隔和幅度,使得每台激光雷达携有特定的信息。例如,发射的脉冲信号可以包括两个脉冲,第一个脉冲与第二个脉冲的幅度可以不同,它们的幅度是固定不变的。两个脉冲之间的时间间隔 也可以固定不变。在接收到反射回来的激光信号之后,可以检测接收到的激光信号的脉冲幅度和激光脉冲之间的时间间隔。当接收到的激光信号的幅度值与发射的激光信号的幅度值对应相等,且接收到的激光信号的脉冲之间的时间间隔与发射的激光信号的脉冲之间的时间间隔也对应相同时,即可以确定从接收到的激光信号是发射的激光信号经过探测物反射回来的回波信号。回波信号可以理解为,经过检测对应的信号特征(例如,上述的脉冲幅度与脉冲之间的时间间隔),确定与发射信号的信号特征具有一定相似度的接收到的激光信号。
激光雷达向探测物发射激光信号时,为了保证人眼安全,需要对激光发射功率进行限制,这使得接收到的回波信号的信噪比有限,激光雷达的测距能力也会受到限制。由于干扰信号对激光雷达的影响较大,因此,如何进一步提高激光雷达抗干扰能力是一个亟待解决的问题。
请参阅图3,图3是本申请实施例公开的一种激光雷达抗干扰装置的结构示意图。如图3所示,激光雷达抗干扰装置可以包括控制模块301、激光器302和探测器303,其中:
控制模块301,用于确定N个第一序列和N组第一时间间隔,N为大于或等于1的整数;
激光器302,用于根据N个第一序列和N组第一时间间隔发射N个第一激光信号;
探测器303,用于接收N个第二激光信号,将N个第二激光信号转换为电信号,得到N个第一电信号;
控制模块301,还用于叠加N个第一电信号得到第一叠加信号,根据第一叠加信号确定N个第二序列和N组第二时间间隔。
当需要通过激光雷达探测周围环境时,控制模块301可以确定N个第一序列和N组第一时间间隔。控制模块301可以通过生成随机序列的方式生成N个第一序列,也可以从存储的序列选取N个第一序列,还可以对上一次使用的第一序列进行调整得到N个第一序列,还可以继续使用上一次使用的第一序列作为当前的N个第一序列。应理解,上述是对于如何确定第一序列的举例说明,并不对其具体确定方式构成限定。其中,第一序列可以是表示脉冲式激光信号的序列。N为大于或等于1的整数。在一种情况下,N个第一序列中的每个序列可以均相同。在另一种情况下,N个第一序列中的每个序列可以均不同,也可以部分相同、部分不同。一个第一序列可以包括一个非零的值,例如“1”;也可以包括多个非零的值,例如“10111001”。
控制模块301可以通过产生随机数的方式确定N组第一时间间隔,也可以根据预设的随机序列确定N组第一时间间隔,还可以对上一次使用的第一时间间隔进行调整得到N组第一时间间隔,还可以继续使用上一次使用的第一时间间隔作为当前的N组第一时间间隔。应理解,上述是对产生随机的N组第一时间间隔的举例说明,并不对具体的产生随机的时间间隔的方式构成限定。其中,第一时间间隔表示两组激光信号之间的时间间隔。N组第一时间间隔可以是随机时间长度的时间间隔。N组第一时间间隔中的每组第一时间间隔可以均相同,也可以均不同,还可以部分相同、部分不同。
控制模块301确定出N个第一序列和N组第一时间间隔之后,可以向激光器302发送N个第一序列和N组第一时间间隔。激光器302接收到N个第一序列和N组第一时间间隔之后,可以根据N个第一序列和N组第一时间间隔发射N个第一激光信号。第一激光信号可以为脉冲式激光信号,其中,第一激光信号的序列可以与第一序列对应一致。即可以理解为,N个第一激光信号的序列可以由N个第一序列确定,N个第一激光信号的两两相邻发射时间可以由N组第一时间间隔确定。例如,激光器302发射的第一个第一激光信号的序列与第一个第一序列一致(如这个第一序列为“1010”,对应第一激光信号的序列也为“1010”),第二个第一激光信号的序列与第二个第一序列一致,…,第N个第一激光信号的序列与第N个第一序列一致。激光 器302可以根据N组第一时间间隔推算出每一个第一激光信号的发射的起始时间。例如,一组第一时间间隔可以表示两个前后发射的第一激光信号的时间间隔。例如,第一个第一激光信号的序列为“1010”,第二个第一激光信号的序列为“0101”,第一个时间间隔可以表示发射“1010”中第一个序列“1”和发射“0101”中的第一个序列“0”之间的间隔长度。当激光器通过第N-1个第一时间间隔确定发射N个第一激光信号的起始时间时,进一步地,可以通过第N个第一时间间隔确定发射N个第一激光信号的结束时间。
在激光器302发射了激光信号的情况下,探测器303可能探测到激光器302发射的激光信号的反射信号。因此,激光器302根据N个第一序列和N组第一时间间隔发射N个第一激光信号之后,探测器303可以接收N个第二激光信号。第二激光信号可以包括第一激光信号经过探测物反射回来的激光信号,也可以包括干扰信号,还可以包括干扰信号和第一激光信号经过探测物反射回来的激光信号。其中,干扰信号可以包括探测器303能够接收到的非第一激光信号经过探测物反射回来的其他激光信号。之后探测器303可以将N个第二激光信号转化电信号得到N个第一电信号,以及可以将N个第一电信号发送给控制模块301。
控制模块301接收到来自探测器303的N个第一电信号之后,可以叠加N个第一电信号得到第一叠加信号。请参阅图4,图4本申请实施例公开的一种信号叠加方法的示意图。如图4所示,第1组第一时间间隔的间隔长度是T 1,第2组第一时间间隔的间隔长度是T 2,……,第N组第一时间间隔的间隔长度是T N。控制模块301可以对应地叠加T 1、T 2、……、T N对应的时间间隔的N个第一电信号。例如,如图4中的(a)所示,控制模块301可以检测N个第一电信号的序列。控制模块301可以根据起始时间和N组第一时间间隔T 1、T 2、……、T N,叠加N个第一电信号得到第一叠加信号。如图4中的(b)所示,经过反射后的信号可能存在干扰信号,即接收到的N个第二激光信号可能是N个第一激光信号经过探测物反射回来的激光信号与N个干扰信号合成的信号。即控制模块301接收到的N个第一电信号中可能存在干扰。控制模块301可以将对应的N个第一电信号进行叠加之后,可以得到一个叠加信号。控制模块301得到的叠加信号可能存在干扰,但由于从T 1、T 2到T N的时间长度是随机的,可以一定程度上避免干扰信号的积累。此外,叠加之后的信号相比于不叠加的信号,叠加信号中对应第一序列的幅度将会增加,因此可以产生较大的信干比,从而可以提高激光雷达的抗干扰能力。需要说明的是,控制模块301可以在叠加N个第一电信号的过程中进行滤波,经过滤波和叠加之后的信号为第一叠加信号。
控制模块301获得第一叠加信号之后,可以根据获得的第一叠加信号与已知的第一序列做互相关运算,确定第一叠加信号是否为包含第一序列发射的激光信号反射回来的回波信号。控制模块301可以根据回波信号是否包含激光发射信号确定N个第二序列和N组第二时间间隔。
请参阅图5,图5是本申请实施例公开的另一种激光雷达抗干扰装置的结构示意图。其中,图5所示的激光雷达抗干扰装置是由图3所示的激光雷达抗干扰装置优化得到的。如图5所示,该激光雷达抗干扰装置可以包括控制模块501、激光器502和探测器503。
其中,详细描述可以参考图3对应的相关描述。
在一个实施例中,激光雷达抗干扰装置还可以包括信号发生器504,其中:
信号发生器504,用于根据N个第一序列和N组第一时间间隔,生成N个第二电信号;
激光器502根据N个第一序列和N组第一时间间隔发射N个第一激光信号包括:
激光器502根据N个第二电信号发射N个第一激光信号。
信号发生器504可以分别耦合控制模块501以及激光器502。控制模块501可以将确定的N个第一序列和N组第一时间间隔发送给信号发生器504。信号发生器504接收到N个第一序列和N组第一时间间隔之后,可以根据N个第一序列和N组第一时间间隔,生成N个第二电信号。即信号发生器504可以根据N个第一序列确定N个第二电信号的序列,以及可以根据N组第一时间间隔确定N个第二电信号之间的时间间隔。N个第二电信号中的每个信号的序列可以由N个第一序列确定,N个第二电信号中每个序列对应的发射的起始时间可以由N组时间间隔确定。例如,信号生成器504生成的第一个第二电信号的序列与第一个第一序列相同,第二个第二电信号的序列与第二个第一序列相同。此外,信号生成器504发射的第一个第二电信号的起始时间与第二个第二电信号的起始时间之间的时间间隔为第一组第一时间间隔,…,第N-1个第二电信号的起始时间与第N个第二电信号的起始时间之间的时间间隔为第N-1组第一时间间隔,第N个第二电信号的起始时间和结束时间之间的时间间隔为第N组第一时间间隔。进一步地,激光器502可以根据N个第二电信号发射N个第一激光信号,可以理解为N个第一激光信号的序列和与N个第二电信号的序列相同,以及相邻两个第一激光信号之间的时间间隔与对应的相邻两个第二电信号之间的时间间隔相同,以及最后一个第一激光信号的起始时间和结束时间之间的时间间隔与最后一个第二电信号的起始时间和结束时间之间的时间间隔相同。
在一个实施例中,当N个第一序列为同一序列时,控制模块501叠加N个第一电信号得到第一叠加信号包括:
根据N组第一时间间隔叠加N个第一电信号,得到第二叠加信号;
根据N个第一序列对第二叠加信号进行滤波,得到第一叠加信号。
探测器503接收N个第二激光信号之后,可以将N个第二激光信号转化为电信号,得到N个第一电信号。第二激光信号的详细描述可以参考图3的相关描述。探测器503可以将N个第一电信号发送给控制模块501。控制模块501可以包括滤波器5011。当N个第一序列为同一序列时,控制模块501接收到N个第一电信号之后,可以先根据N组第一时间间隔叠加N个第一电信号,得到第二叠加信号,之后可以根据N个第一序列对第二叠加信号进行滤波,得到第一叠加信号。具体的叠加方法可以参考上述图4和图5对应的方法,在此不加赘述。控制模块501可以根据第一序列确定滤波器的滤波系数,之后可以通过滤波器对第二叠加信号进行滤波,得到第一叠加信号。控制模块501可以先确定N个第一序列,根据第一序列可以确定滤波器的滤波系数。例如,当第一序列是同一序列时,假设这一序列的为“1010”,控制模块501可以设置滤波系数为“1010”。当然也可以根据需要设置其它滤波系数。经过滤波之后,可以去除干扰信号和噪声,从而可以进一步地提高叠加信号的信噪比,可以实现激光雷达抗干扰能力的提升。
应理解,控制模块501可以包括解码器5013,上述的控制模块501叠加N个第一电信号得到第一叠加信号可以由解码器5013完成。
在一个实施例中,激光雷达抗干扰装置还可以包括分光镜505,控制模块501可以包括滤波器5011,其中:
分光镜505,用于接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,第三激光信号为第一激光信号传输到分光镜的激光信号,第三激光信号包括第四激光信 号和第五激光信号;
探测器503,还用于接收N个第六激光信号,将N个第六激光信号转换为电信号,得到N个第三电信号,第六激光信号为第五激光信号传输到探测器的激光信号;
控制模块501根据N个第一序列对第二叠加信号进行滤波,得到第一叠加信号包括:
控制模块501根据N个第三电信号调整滤波器5011的滤波系数;
滤波器5011根据N个第一序列对第二叠加信号进行滤波,得到第一叠加信号。
激光器502可以向分光镜505发送N个第一激光信号,分光镜505可以接收N个第三激光信号。分光镜505到接收N个第三激光信号之后,可以透射N个第四激光信号,以及可以反射N个第五激光信号。第三激光信号可以为第一激光信号传输到分光镜505的激光信号。第三激光信号可以包括第四激光信号和第五激光信号,即可以理解为分光镜505可以将N个第三激光信号透射和反射,得到N个第四激光信号和N个第五激光信号。之后分光镜505可以向探测物发射N个第四激光信号,以及可以直接向探测器503发送N个第五激光信号。之后探测器503可以接收N个第二激光信号,将N个第二激光信号转换为电信号,得到N个第一电信号。探测器503还可以接收N个第六激光信号,N个第六激光信号可以是N个第五激光信号传输到探测器503的激光信号。之后探测器503可以将N个第六激光信号转换为电信号,得到N个第三电信号。
控制模块501接收到来自探测器503的N个第三电信号之后,可以根据N个第三电信号确定滤波器5011的滤波系数。控制模块501可以对N个第一电信号的叠加信号(即第二叠加信号)进行滤波,得到第一叠加信号。控制模块501可以根据N个第三电信号确定滤波系数。控制模块501可以根据N个第三电信号对应的同一序列调整滤波器5011的滤波系数。当滤波系数确定之后,控制模块501可以对第二叠加信号进行滤波,滤波的详细方法可以参考上述图7中相关描述,在此不加赘述。应理解,经过分光镜505的反射和透射,第五激光信号可以不向探测物发送而直接发送给探测器503,探测器503均可以直接接收N个第六激光信号,可以根据激光器502发射的激光信号确定N个第三电信号,控制模块501可以根据N个第三电信号确定发射的N个第一激光信号的序列。这种情况下,即便在控制模块501、信号发生器504以及激光器502内部出现干扰,由于根据N个第三电信号重新调整了滤波器的系数,因此,控制模块501也能够提高对N个第一电信号进行正确的叠加和滤波的概率,由此可以提高激光雷达装置的抗干扰能力。
应理解,一般情况下,探测器501应当先接收到第六激光信号,后接收到第二激光信号,但不排除特殊情况,因此,此处不对探测器504接收第六激光信号和第二激光信号的顺序构成限定。
在一个实施例中,控制模块501根据第一叠加信号确定N个第二序列和N组第二时间间隔包括:
当N个第一序列与第一叠加信号之间存在相关峰,且相关峰的主旁瓣比的值大于第一阈值时,将N个第一序列确定为N个第二序列,将N组第一时间间隔确定为N组第二时间间隔。
在一个实施例中,控制模块501根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当存在相关峰,且主旁瓣比的值小于或等于第一阈值时,增大N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到N组新的第一时间间隔。
在一个实施例中,控制模块501根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当主旁瓣比的值大于第二阈值时,减小N组第一时间间隔中每组第一时间间隔的间隔长 度和/或间隔数量,得到N组新的第一时间间隔,第二阈值大于第一阈值。
在一个实施例中,控制模块501根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当不存在相关峰时,调整N个第一序列,得到新的N个第一序列。
在一个实施例中,控制模块501根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当第一叠加信号的信噪比大于第三阈值时,调整N个第一序列,得到N个第一序列。
请参阅图6,图6是本申请实施例公开的一种信号抗干扰策略的方法流程示意图。如图6所示,控制模块501可以先确定当前N个第一序列和当前N组第一时间间隔。控制模块501接收到N个第一电信号(可以还接收到N个第三电信号)之后,可以对N个第一电信号进行叠加和滤波,得到第一叠加信号。之后控制模块501可以判断第一叠加信号和当前第一序列之间是否存在相关峰。当判断出存在相关峰时,控制模块501可以继续判断相关峰的主旁瓣比的值是否大于第一阈值。当判断出相关峰的主旁瓣比的值大于第一阈值时,控制模块501可以确定N个第二序列和N组第二时间间隔。进一步地,控制模块501可以将第一叠加信号确定为目标回波信号,并输出目标回波信号。一种情况下,当判断出相关峰的主旁瓣比的值大于第一阈值时,控制模块501可以将当前N个第一序列确定为N个第二序列,将当前N组第一时间间隔确定为N组第二时间间隔,并输出目标回波信号。另一种情况下,当判断出相关峰的主旁瓣比的值大于第一阈值时,控制模块501可以继续判断相关峰的主旁瓣比的值是否大于第二阈值。当判断出相关峰的主旁瓣比的值小于或等于第二阈值时,控制模块501可以将当前N个第一序列确定为N个第二序列,将当前N组第一时间间隔确定为N组第二时间间隔,并输出目标回波信号。其中,第二阈值大于第一阈值。
当判断出相关峰的主旁瓣比的值小于或等于第一阈值时,控制模块501可以调整当前N组第一时间间隔。当判断出相关峰的主旁瓣比的值大于第二阈值时,控制模块501可以调整当前N组第一时间间隔。当判断出不存在相关峰时,控制模块501可以继续判断第一叠加信号的信噪比是否大于第三阈值。当判断出信噪比大于第三阈值时,控制模块501可以调整当前N个第一序列。当判断出信噪比小于或等于第三阈值时,可以表明第二激光信号中不包括第一激光信号的回波信号,此时可以不输出目标回波信号。相关峰可以是控制模块501对当前N个第一序列与第一叠加信号进行互相关得到的相关峰。一种可能的情况下,请参阅图7,图7是本申请实施例公开的一种互相关运算方法的示意图。如图7中的(a)为第一叠加信号,控制模块501可以对第一叠加信号和N个第一序列做互相关运算,从图7中的(b)可以看出互相关运算的结果可能存在相关峰。当前第一序列与第一叠加信号之间存在相关峰时,可以反映出第一序列和第一叠加信号足够相似,控制模块501可以确定第一叠加信号是N个第一序列对应的回波信号。进一步的,当相关峰的主旁瓣比的值大于第一阈值时,可以表明回波信号可以达到系统的要求,便可以将第一叠加信号作为选定的目标回波信号输出。
第一阈值可以是变化的。例如,控制模块501可以根据第一叠加信号的信噪比调节第一阈值,也可以通过根据相关峰的主旁瓣比的值调节第一阈值,还可以根据系统的要求进行设置,还可以通过其他方法设定第一阈值。第一阈值也可以是固定的,即可以是预先设定的一个值。应理解,上述仅是举例说明第一阈值的确定方法,并不构成限定。
第二阈值可以是变化的。例如,控制模块501可以根据上一次第一叠加信号和当前第一叠加信号对应的相关峰主旁瓣比的差值的绝对值调整第二阈值,当差值的绝对值大于第六阈值时,表明它们的相关峰主旁瓣比的值相差较大,控制模块501可以增大第二阈值,当差值的绝 对值小于或等于第六阈值时,表明它们对应的相关峰主旁瓣比的值相差较小,控制模块501可以减小第二阈值或保持第二阈值不变。第二阈值也可以是固定的。
第三阈值可以是变化的,也可以是固定的。控制模块501可以设定第三阈值为一个固定值,也可以根据第一叠加信号的信噪比或上述相关峰的主旁瓣比的值等调整第三阈值。
在判断是否存在相关峰之前,控制模块501可以先对第一叠加信号进行动态门限检测。控制模块501可以确定一个门限值,之后可以先判断第一叠加信号的幅度值是否大于这一门限值,当判断出幅度值大于这一门限值时,可以继续判断是否存在相关峰;当判断出幅度值小于或者等于这一门限值时,可以丢弃这个第一叠加信号。这一门限值可以是动态变化的。动态门限值可以根据信道情况确定,例如,当信噪比小于或等于第七阈值时,可以降低这一门限值的值,当信噪比高大于第七阈值时,可以提高这一门限值的值。这一门限值也可以根据接收到的其他信号的幅度确定。应理解,上述仅是举例说明动态门限的确定情况,并不对具体的确定方法构成限定。
当判断出相关峰的主旁瓣比的值小于或等于第一阈值时,控制模块501可以增大当前N组第一时间间隔的间隔长度和/或间隔数量,确定新的N组第一时间间隔。即可以理解为,可以增大两个相邻发射的第一激光信号的之间的时间间隔和/或增加发送第一激光信号的个数(即增加N的大小)。在一种情况下,每次增加的间隔长度和/或间隔数量可以相同。控制模块501可以根据步长增大第一时间间隔的间隔长度和/或间隔数量。控制模块501可以预先设定间隔长度的步长a和间隔数量的步长b,a和b均大于零。假设当前N组第一时间间隔中有一组的间隔长度为a1,间隔数量为b1,当需要增大这一组第一时间间隔时,该组第一时间间隔的新的一组时间间隔的间隔长度可以为a2,间隔数量可以为b2,应理解,该组第一时间间隔对应的新的一组第一时间间隔的间隔长度和间隔数量可以为a2=a1+a、b2=b1,也可以为a2=a1、b2=b1+b,还可以为a2=a1+a,b2=b1+b。在另一种情况下,每次增加的间隔长度和/或间隔数量可以不同。控制模块501可以根据当前的相关峰的主旁瓣比的值与第一阈值的差值的绝对值大小增大时间间隔的间隔长度和/或间隔数量。当第一阈值与相关峰的主旁瓣比的值的差值的绝对值较大时,控制模块501增大第一时间间隔的间隔长度和/或间隔数量的幅度可以较大。例如,可以设定一个增大的一次函数(如y=x,x为第一阈值与相关峰的主旁瓣比的值的差值的绝对值,y为增大第一时间间隔的间隔长度或间隔数量)或者二次函数y=x 2,其中x大于零)等。控制模块501还可以根据其他方式增大第一时间间隔的间隔长度和/或间隔数量,此处不对具体的增大方式构成限定。增大第一时间间隔的间隔长度可以减小干扰信号在叠加过程中积累的概率,增大第一时间间隔的间隔数量可以增大叠加信号的幅度,从而可以增加第一叠加信号的信噪比,进而可以提高激光雷达装置的抗干扰能力。
当判断出相关峰的主旁瓣比的值大于第二阈值时,控制模块501可以减小当前N组第一时间间隔中每组第一时间间隔的间隔长度和/或间隔数量,得到新的N组第一时间间隔。即可以理解为,可以减小两个相邻发射的第一激光信号的之间的时间间隔和/或减小发送第一激光信号的个数(即减小N的大小)。在一种情况下,每次减小的间隔长度和/或间隔数量可以相同。控制模块501可以根据步长减小第一时间间隔的间隔长度和/或间隔数量。控制模块501可以预先设定间隔长度的步长a3和间隔数量的步长b3,a3和b3均大于零。假设当前N组第一时间间隔中有一组第一时间间隔的间隔长度为a1,间隔数量为b1,当需要减小这一组第一时间间隔时,该组第一时间间隔对应的新的一组时间间隔的间隔长度可以为a2,间隔数量可以为b2。应理解,该组第一时间间隔对应的新的一组第一时间间隔的间隔长度和间隔数量可以为a2=a1-a3、b2=b1,也可以为a2=a1、b2=b1-b3,还可以为a2=a1-a3、b2=b1-b3。在另一种情况下,每次减 小的间隔长度和/或间隔数量可以不同。控制模块501也可以根据第二阈值与相关峰的主旁瓣比的值的差值的绝对值的大小来减小当前N个第一时间间隔的间隔长度和/或间隔数量。当差值的绝对值越大时,可以减少的幅度越大。例如,可以设定一个函数(如,y=x,x为第二阈值与相关峰的主旁瓣比的值的差值的绝对值,y为减小第一时间间隔的间隔长度或间隔数量)减小时间间隔的间隔长度和/或间隔数量。也可以通过其他方式减小当前N个第一时间间隔的间隔长度和/或间隔数量的方式。由于控制模块501可能不断的增大N个第一时间间隔的间隔长度和/或间隔数量,可能造成即便进一步增大当前N个第一时间间隔的间隔长度和/或间隔数量,也未能够明显提高输出回波信号的效果,因此减少第一时间间隔过长的时间间隔和/或过多间隔数量,可以提高处理效率和减少处理资源的浪费。
当判断出不存在相关峰且第一叠加信号的信噪比大于第三阈值时,控制模块501可以调整当前N个第一序列,得到新的N个第一序列。控制模块501可以调整N个第一序列,使得新的N个第一序列与未调整的第一序列不同,也可以增加或减小当前序列的长度。例如,当前N个第一序列为相同的第一序列,且第一序列为10011010时,可以确定新的第一序列为11001011,也可以为100110101011,还可以为100110。应理解,当不存在相关峰的情况下,第一叠加信号也可能是接收到一定的回波信号,但是可能由于外部的干扰信号或者其他因素,使得控制模块501不能够确定的这一信号就是回波信号,因此,可以通过信噪比大小确定第一叠加信号中是否存在一定的信号积累,即判断第一叠加信号的信噪比是否大于第三阈值,当判断出大于第三阈值时,可以表明存在一定的信号积累,控制模块501调整N个第一序列,以便可以通过变换序列来改善下一次得到的第一叠加信号的信噪比。当判断出小于或等于第二阈值时,可以表明第一叠加信号中不存在信号积累,便可以不输出目标回波信号。当周围的激光雷达使用相同或相似的序列探测周围环境时,可能会对本激光雷达装置的探测性能造成干扰,此时控制模块501可以通过调整N个第一序列,使得本激光雷达装置与周围的激光雷达装置使用的序列有所区别,从而可以提高激光雷达装置的抗干扰能力。
在一个实施例中,N组第二时间间隔包括的间隔长度小于或等于第四阈值,N组第二时间间隔的间隔数量小于或等于第五阈值。
控制模块501可以设定第四阈值和第五阈值,使得上述N组第二时间间隔包括的间隔长度小于或等于第四阈值,N组第二时间间隔的间隔数量小于或等于第五阈值。其中,第四阈值和/或第五阈值可以为一个固定的值,也可以是一个变动的值。在第四阈值和/或第五阈值为变动的值的情况下,控制模块501可以根据接收到的信号质量、信道干扰等情况调整它们的值。此处不对具体确定第四阈值和第五阈值的方法构成限定。在设定时间间隔的间隔长度和间隔数量的上限的情况下,可以避免时间间隔无休止地增加,从而可以提高激光雷达装置的处理效率和防止处理资源无止尽地消耗。
控制模块501还可以包括编/解码控制单元5012,上述根据第一叠加信号确定当前N个第一序列和当前N组第一时间间隔的步骤可以由编/解码控制单元5012执行。控制模块501还可以包括信号选择器5014,图6中的判断步骤可以由信号选择器5014执行,调整当前N个第一序列和当前N组第一时间间隔可以由编/解码控制单元5012完成。如图5所示,可以理解为,编/解码控制单元5012可以先确定当前N个第一序列和当前N组第一时间间隔。控制模块501还可以包括解码器5013。在一种情况下,解码器5013可以包括滤波器5011。解码器5013接收到N个第一电信号之后,可以根据当前N组第一时间间隔和当前N个第一序列完成对第一电信号的叠加和滤波,获得第一叠加信号。信号选择器5014可以从解码器5013中获得第一叠加信号,之后可以根据第一叠加信号确定N个第二序列和N组第二时间间隔。详细描述可以参考上面的图6 对应的相关描述。
应理解,上述控制模块501确定的当前N个第一序列和当前N组第一时间间隔为用于本次循环的N个第一序列和N组第一时间间隔,确定的新的N个第一序列和新的N组第一时间间隔为用于下一次循环的N个第一序列和N组第一时间间隔。N个第二序列和N组第二时间间隔为经过一次循环或多次循环得到的最终结果,是确定的在当前环境下该装置能够使用的最好的序列和时间间隔,具有较高的抗干扰能力。但只适用于当前环境,当环境改变的情况下,确定的N个第二序列和N组第二时间间隔的抗干扰能力可能发生变化。一种可能的情况下,如图6所示,当环境发生变化时,可以将本次循环确定的N个第二序列和N组第二时间间隔作为下一次循环中首次确定的N个第一序列和N组第一时间间隔。经过循环之后,可以确定下一次的N个第二序列和N组第二时间间隔。
请参阅图8,图8是本申请实施例公开的又一种激光雷达抗干扰装置的结构示意图。其中,图8所示的激光雷达抗干扰装置是由图3所示的激光雷达抗干扰装置优化得到的。如图8所示,该激光雷达抗干扰装置可以包括控制模块801、激光器802和探测器803其中:
其中,详细描述可以参考图3和图5对应的相关描述。
在一个实施例中,激光雷达抗干扰装置还可以包括信号发生器804,其中:
信号发生器804,用于根据N个第一序列和N组第一时间间隔,生成N个第二电信号;
激光器802根据N个第一序列和N组第一时间间隔发射N个第一激光信号包括:
激光器802根据N个第二电信号发射N个第一激光信号。
其中,详细说明可以参考图3和图5对应的相关描述。
在一个实施例中,当N个第一序列为不同序列时,控制模块801叠加N个第一电信号得到第一叠加信号包括:
根据N个第一序列对N个第一电信号进行滤波,得到N个滤波信号;
根据N组第一时间间隔叠加N个滤波信号,得到第一叠加信号。
探测器801接收N个第二激光信号之后,可以将N个第二激光信号转化为电信号,得到N个第一电信号。探测器803可以将N个第一电信号发送给控制模块801。控制模块801可以包括滤波器8011。当N个第一序列为不同序列时,控制模块801可以先根据N个第一序列对N个第一电信号进行滤波,得到N个滤波信号,之后可以根据N组第一时间间隔叠加N个滤波信号,得到第一叠加信号。即可以理解为,可以先根据N个不同的第一序列确定N个不同的滤波器8011的系数,接着可以将这N个第一电信号分别输入N个对应滤波系数的滤波器8011进行滤波,得到N个滤波信号。滤波的详细描述可以参考图7对应的相关描述,需要说明的是,此时滤波器8011的个数可以是一个或多个,滤波器可以对应确定一个或多个滤波系数。例如,当滤波器的个数为1时,可以按照接收到的N个第一电信号的顺序确定N个滤波系数的顺序;当滤波器的个数为多个时,可以对每个第一电信号确定一个滤波器,每个滤波器可以确定一个滤波系数。进一步地,控制模块801可以将N个滤波信号进行叠加,得到第一叠加信号。具体的叠加过程可以参考上述图4的相关描述,在此不加赘述。当N个第一序列是不同的序列时,即便干扰信号的序列与第一电信号的序列部分相同,控制模块801也可以通过滤波和叠加的方式避免干扰造成的影响。因此,可以提高激光雷达的抗干扰能力。
在一个实施例中,激光雷达抗干扰装置还可以包括分光镜805,控制模块801可以包括滤波器8011,其中:
分光镜805,用于接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信 号,第三激光信号为第一激光信号传输到分光镜的激光信号,第三激光信号包括第四激光信号和第五激光信号;
探测器803,还用于接收N个第六激光信号,将N个第六激光信号转换为电信号,得到N个第四电信号,第六激光信号为第五激光信号传输到探测器803的激光信号;
控制模块801根据N个第一序列对N个第一电信号进行滤波,得到N个滤波信号包括:
控制模块801根据N个第四电信号调整滤波器8011的滤波系数;
滤波器8011根据N个第一序列对第二叠加信号进行滤波,得到N个滤波信号。
激光器802可以向分光镜805发送N个第一激光信号,分光镜805接收N个第三激光信号。分光镜805到接收N个第三激光信号之后,可以透射N个第四激光信号和反射N个第五激光信号。相关描述可以参考图5的对应描述。需要说明的是,探测器803接收到N个第六激光信号之后,可以将N个第六激光信号转换为N个第四电信号,之后可以向控制模块801发送N个第四电信号。
控制模块801可以接收来自探测器803的N个第四电信号之后,可以根据N个第四电信号确定滤波器8011的滤波系数。控制模块801可以对N个第一电信号进行滤波得到N个滤波信号,之后可以对N个滤波信号进行叠加得到第一叠加信号。控制模块801可以先确定接收到的N个第四电信号是不同的序列或是部分不同的序列,之后可以根据N个第四电信号分别确定滤波器8011的对应的滤波系数。控制模块801确定滤波系数之后,可以进一步对N个第一电信号进行滤波和叠加,详细描述可以参考上述图5的相关描述。
应理解,此处不对探测器803接收第六激光信号和第二激光信号的顺序构成限定。
在一个实施例中,控制模块801根据第一叠加信号确定N个第二序列和N组第二时间间隔包括:
当N个第一序列与第一叠加信号之间存在相关峰,且相关峰的主旁瓣比的值大于第一阈值时,将N个第一序列确定为N个第二序列,将N组第一时间间隔确定为N组第二时间间隔。
在一个实施例中,控制模块801根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当存在相关峰,且主旁瓣比的值小于或等于第一阈值时,增大N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到N组新的第一时间间隔。
在一个实施例中,控制模块801根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当主旁瓣比的值大于第二阈值时,减小N组第一时间间隔中每组第一时间间隔的间隔长度和/或间隔数量,得到N组新的第一时间间隔,第二阈值大于第一阈值。
在一个实施例中,控制模块801根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当不存在相关峰时,调整N个第一序列,得到新的N个第一序列。
在一个实施例中,控制模块801根据第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
当第一叠加信号的信噪比大于第三阈值时,调整N个第一序列,得到N个第一序列。
其中,具体描述可以参考图8的相关描述,在此不加赘述。
在一个实施例中,N组第二时间间隔包括的间隔长度小于或等于第四阈值,N组第二时间间隔的间隔数量小于或等于第五阈值。
其中,具体描述可以参考图5的相关描述。需要说明的是,控制模块801在判断N个第一 序列和第一叠加信号是否存在相关峰之前,可以先对N个第一序列进行叠加,得到一个第一序列的合成序列。进一步地,控制模块801可以判断第一序列的合成序列与第一叠加信号是否存在相关峰。
控制模块801还可以包括编/解码控制单元8012,上述根据第一叠加信号确定当前N个第一序列和当前N组第一时间间隔的步骤可以由编/解码控制单元8012执行。控制模块801还可以包括信号选择器8014,图6中的判断步骤可以由信号选择器8014执行,调整当前N个第一序列和当前N组第一时间间隔可以由编/解码控制单元8012完成。控制模块801还可以包括解码器8013,解码器8013完成可以对N个第一电信号滤波并进行叠加得到第一叠加信号。其中,解码器8013可以包括滤波器8011。详细描述可以参考图6对应的相关描述。
应理解,控制模块801确定当前N个第一序列和当前N组第一时间间隔为用于本次循环的N个第一序列和N组第一时间间隔,确定的新的N个第一序列和新的N组第一时间间隔为用于下一次循环的N个第一序列和N组第一时间间隔。N个第二序列和N组第二时间间隔为经过一次循环或多次循环得到的最终结果,是确定的在当前环境下该装置能够使用的最好的序列和时间间隔,具有较高的抗干扰能力。但只适用于当前环境,当环境改变的情况下,确定的N个第二序列和N组第二时间间隔的抗干扰能力可能发生变化。一种可能的情况下,如图6所示,当环境发生变化时,可以将本次循环确定的N个第二序列和N组第二时间间隔作为下一次循环中首次确定的N个第一序列和N组第一时间间隔。经过循环之后,可以确定下一次的N个第二序列和N组第二时间间隔。
请参阅图9,图9是本申请实施例公开的一种激光雷达抗干扰方法的流程示意图。如图9所示,该激光雷达抗干扰方法可以包括以下步骤。
901、通过控制模块确定N个第一序列和N组第一时间间隔。
其中,N为大于或等于1的整数。
902、通过激光器根据N个第一序列和N组第一时间间隔发射N个第一激光信号。
903、通过探测器接收N个第二激光信号,将N个第二激光信号转换为电信号,得到N个第一电信号。
904、通过控制模块叠加N个第一电信号得到第一叠加信号。
905、通过控制模块根据第一叠加信号确定N个第二序列和N组第二时间间隔。
在一个实施例中,可以通过信号生成器根据N个第一序列和N组第一时间间隔,生成N个第二电信号,之后可以通过激光器根据N个第二电信号发射N个第一激光信号。
在一个实施例中,当N个第一序列为同一序列时,可以通过控制模块根据N组第一时间间隔叠加N个第一电信号,得到第二叠加信号,之后可以通过控制模块根据N个第一序列对第二叠加信号进行滤波,得到第一叠加信号。
在一个实施例中,可以通过分光镜接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,第三激光信号可以为第一激光信号传输到分光镜的激光信号,第三激光信号可以包括第四激光信号和第五激光信号。还可以通过探测器接收N个第六激光信号,将N个第六激光信号转换为电信号,得到N个第三电信号,第六激光信号可以为第五激光信号传输到探测器的激光信号。可以通过控制模块根据N个第三电信号调整滤波器的滤波系数,可以通过滤波器根据N个第一序列对第二叠加信号进行滤波,得到第一叠加信号。
在一个实施例中,当N个第一序列为不同序列时,可以通过控制模块根据N个第一序列对N个第一电信号进行滤波,得到N个滤波信号,可以通过控制模块根据N组第一时间间隔叠加 N个滤波信号,得到第一叠加信号。
在一个实施例中,可以通过分光镜接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,第三激光信号为第一激光信号传输到分光镜的激光信号,第三激光信号包括第四激光信号和第五激光信号。还可以通过探测器接收N个第六激光信号,将N个第六激光信号转换为电信号,得到N个第四电信号,第六激光信号为第五激光信号传输到探测器的激光信号。还可以通过控制模块根据N个第四电信号调整滤波器的滤波系数,还可以通过控制模块滤波器根据N个第一序列对第二叠加信号进行滤波,得到N个滤波信号。
在一个实施例中,可以通过控制模块判断第一叠加信号和第一序列是否存在相关峰,当存在相关峰,且相关峰的主旁瓣比的值大于第一阈值时,可以通过控制模块将N个第一序列确定为N个第二序列,将N组第一时间间隔确定为N组第二时间间隔。
在一个实施例中,可以通过控制模块判断第一叠加信号和第一序列是否存在相关峰,当存在相关峰,且主旁瓣比的值小于或等于第一阈值时,可以通过控制模块增大N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到N组第一时间间隔。
在一个实施例中,当第一叠加信号和第一序列是否存在相关峰,且主旁瓣比的值大于第二阈值时,可以通过控制模块减小N组第一时间间隔中每组第一时间间隔的间隔长度和/或间隔数量,得到N组第一时间间隔,第二阈值大于第一阈值。
在一个实施例中,可以通过控制模块判断第一叠加信号和第一序列是否存在相关峰,当不存在相关峰时,调整N个第一序列,得到N个第一序列。
在一个实施例中,可以通过控制模块判断第一叠加信号和第一序列是否存在相关峰,当不存在相关峰时,且第一叠加信号的信噪比大于第三阈值时,可以通过控制模块调整N个第一序列,得到N个第一序列。
在一个实施例中,N组第二时间间隔包括的间隔长度小于或等于第四阈值,N组第二时间间隔的间隔数量小于或等于第五阈值。
在一个实施例中,在控制模块得到第一叠加信号之后以及确定第一叠加信号和第一序列是否存在相关峰之前,可以通过控制模块对第一叠加信号进行动态门限检测。即可以通过控制模块确定第一叠加信号的幅度大小是否大于动态的门限,当大于这一动态的门限值时,可以进一步判断第一叠加信号和第一序列是否存在相关峰。当小于或等于这一动态门限值时,可以丢弃这个第一叠加信号。
需要说明的是,本申请实施例中所描述的激光雷达抗干扰方法中的具体流程的相关功能,可参见上述图3、图5和图8中的激光雷达抗干扰装置实施例中的相关描述,此处不再赘述。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (27)

  1. 一种激光雷达,其特征在于,包括控制模块、激光器和探测器,其中:
    所述控制模块,用于确定N个第一序列和N组第一时间间隔,N为大于或等于1的整数;
    所述激光器,用于根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号;
    所述探测器,用于接收N个第二激光信号,将所述N个第二激光信号转换为电信号,得到N个第一电信号;
    所述控制模块,还用于根据所述N个第一电信号确定N个第二序列和N组第二时间间隔。
  2. 根据权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括信号发生器,其中:
    所述信号发生器,用于根据所述N个第一序列和所述N组第一时间间隔,生成N个第二电信号;
    所述激光器根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号包括:
    所述激光器根据所述N个第二电信号发射N个第一激光信号。
  3. 根据权利要求1或2所述的激光雷达,其特征在于,所述控制模块用于:
    叠加所述N个第一电信号得到第一叠加信号;
    根据所述第一叠加信号确定N个第二序列和N组第二时间间隔。
  4. 根据权利要求3所述的激光雷达,其特征在于,所述N个第一序列为同一序列,所述控制模块用于:
    根据所述N组第一时间间隔叠加所述N个第一电信号,得到第二叠加信号;
    根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
  5. 根据权利要求3所述的激光雷达,其特征在于,所述N个第一序列为不同序列,所述控制模块用于:
    根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号;
    根据所述N组第一时间间隔叠加所述N个滤波信号,得到第一叠加信号。
  6. 根据权利要求4所述的激光雷达,其特征在于,所述激光雷达还包括分光镜,所述控制模块包括滤波器,其中:
    所述分光镜,用于接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;
    所述探测器,还用于接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第三电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;
    所述控制模块根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号包括:
    所述控制模块根据所述N个第三电信号调整所述滤波器的滤波系数;
    所述滤波器根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
  7. 根据权利要求5所述的激光雷达,其特征在于,所述激光雷达还包括分光镜,所述控制模块包括滤波器,其中:
    所述分光镜,用于接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信 号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;
    所述探测器,还用于接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第四电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;
    所述控制模块根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号包括:
    所述控制模块根据所述N个第四电信号调整所述滤波器的滤波系数;
    所述滤波器根据所述N个第一序列对所述第二叠加信号进行滤波,得到N个滤波信号。
  8. 根据权利要求3-7任一项所述的激光雷达,其特征在于,当所述N个第一序列与所述第一叠加信号之间存在相关峰,且所述相关峰的主旁瓣比的值大于第一阈值时,所述控制模块用于:
    将所述N个第一序列确定为所述N个第二序列,将所述N组第一时间间隔确定为所述N组第二时间间隔。
  9. 根据权利要求3-7任一项所述的激光雷达,其特征在于,当所述N个第一序列与所述第一叠加信号之间存在相关峰,且所述相关峰的主旁瓣比的值小于或等于第一阈值时,所述控制模块用于:
    增大所述N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到下一次的N组第一时间间隔。
  10. 根据权利要求8或9所述的激光雷达,其特征在于,当不存在所述相关峰时,所述控制模块还用于:
    调整所述N个第一序列,得到下一次的N个第一序列。
  11. 根据权利要求8所述的激光雷达,其特征在于,当所述主旁瓣比的值大于第二阈值时,所述控制模块还用于:
    减小所述N组第一时间间隔中每组第一时间间隔的间隔长度和/或数量,得到下一次的N组第一时间间隔,所述第二阈值大于所述第一阈值。
  12. 根据权利要求8或9所述的激光雷达,其特征在于,当所述第一叠加信号的信噪比大于第三阈值时,所述控制模块还用于:
    调整所述N个第一序列,得到下一次的N个第一序列。
  13. 根据权利要求1-12任一项所述的激光雷达,其特征在于,所述N组第二时间间隔包括的间隔长度小于或等于第四阈值,所述N组第二时间间隔的间隔数量小于或等于第五阈值。
  14. 一种抗干扰方法,其特征在于,所述方法应用于激光雷达,所述方法包括:
    确定N个第一序列和N组第一时间间隔,N为大于或等于1的整数;
    根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号;
    接收N个第二激光信号,将所述N个第二激光信号转换为电信号,得到N个第一电信号;
    根据所述N个第一电信号确定N个第二序列和N组第二时间间隔。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述N个第一序列和所述N组第一时间间隔,生成N个第二电信号;
    所述根据所述N个第一序列和所述N组第一时间间隔发射N个第一激光信号包括:
    根据所述N个第二电信号发射N个第一激光信号。
  16. 根据权利要求14或15所述的方法,其特征在于,所述根据所述N个第一电信号确定N 个第二序列和N组第二时间间隔包括:
    叠加所述N个第一电信号得到第一叠加信号;
    根据所述第一叠加信号确定N个第二序列和N组第二时间间隔。
  17. 根据权利要求16所述的方法,其特征在于,当所述N个第一序列为同一序列时,所述叠加所述N个第一电信号得到第一叠加信号包括:
    根据所述N组第一时间间隔叠加所述N个第一电信号,得到第二叠加信号;
    根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
  18. 根据权利要求16所述的方法,其特征在于,当所述N个第一序列为不同序列时,所述叠加所述N个第一电信号得到第一叠加信号包括:
    根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号;
    根据所述N组第一时间间隔叠加所述N个滤波信号,得到第一叠加信号。
  19. 根据权利要求17所述的方法,其特征在于,所述激光雷达包括探测器、分光镜和滤波器,所述方法还包括:
    接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;
    接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第三电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;
    所述根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号包括:
    根据所述N个第三电信号调整所述滤波器的滤波系数;
    根据所述N个第一序列对所述第二叠加信号进行滤波,得到第一叠加信号。
  20. 根据权利要求18所述的方法,其特征在于,所述激光雷达包括探测器、分光镜和滤波器,所述方法还包括:
    接收N个第三激光信号,透射N个第四激光信号,反射N个第五激光信号,所述第三激光信号为所述第一激光信号传输到所述分光镜的激光信号,所述第三激光信号包括所述第四激光信号和所述第五激光信号;
    接收N个第六激光信号,将所述N个第六激光信号转换为电信号,得到N个第四电信号,所述第六激光信号为所述第五激光信号传输到所述探测器的激光信号;
    所述根据所述N个第一序列对所述N个第一电信号进行滤波,得到N个滤波信号包括:
    根据所述N个第四电信号调整所述滤波器的滤波系数;
    根据所述N个第一序列对所述第二叠加信号进行滤波,得到N个滤波信号。
  21. 根据权利要求16-20任一项所述的方法,其特征在于,当所述N个第一序列与所述第一叠加信号之间存在相关峰,且所述相关峰的主旁瓣比的值大于第一阈值时,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔包括:
    将所述N个第一序列确定为所述N个第二序列,将所述N组第一时间间隔确定为所述N组第二时间间隔。
  22. 根据权利要求16-20任一项所述的方法,其特征在于,当所述N个第一序列与所述第一叠加信号之间存在相关峰,且所述主旁瓣比的值小于或等于第一阈值时,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
    增大所述N组第一时间间隔中每组第一时间间隔包括的间隔长度和/或间隔数量,得到下一次的N组第一时间间隔。
  23. 根据权利要求21或22所述的方法,其特征在于,当不存在所述相关峰时,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
    调整所述N个第一序列,得到下一次的N个第一序列。
  24. 根据权利要求21所述的方法,其特征在于,当所述主旁瓣比的值大于第二阈值时,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
    减小所述N组第一时间间隔中每组第一时间间隔的间隔长度和/或数量,得到下一次的N组第一时间间隔,所述第二阈值大于所述第一阈值。
  25. 根据权利要求21或22所述的方法,其特征在于,当所述第一叠加信号的信噪比大于第三阈值时,所述根据所述第一叠加信号确定N个第二序列和N组第二时间间隔还包括:
    调整所述N个第一序列,得到下一次的N个第一序列。
  26. 根据权利要求14-25任一项所述的方法,其特征在于,所述N组第二时间间隔包括的间隔长度小于或等于第四阈值,所述N组第二时间间隔的间隔数量小于或等于第五阈值。
  27. 一种车辆,其特征在于,所述车辆包含权利要求1-13任一项所述的激光雷达。
PCT/CN2021/134652 2021-01-29 2021-11-30 一种激光雷达抗干扰方法及装置 WO2022160921A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21922511.7A EP4276491A4 (en) 2021-01-29 2021-11-30 INTERFERENCE PROTECTION METHOD AND APPARATUS FOR LIDAR
US18/361,014 US20230366995A1 (en) 2021-01-29 2023-07-28 Lidar Anti-Interference Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110126177.6A CN114814797A (zh) 2021-01-29 2021-01-29 一种激光雷达抗干扰方法及装置
CN202110126177.6 2021-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,014 Continuation US20230366995A1 (en) 2021-01-29 2023-07-28 Lidar Anti-Interference Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022160921A1 true WO2022160921A1 (zh) 2022-08-04

Family

ID=82525881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134652 WO2022160921A1 (zh) 2021-01-29 2021-11-30 一种激光雷达抗干扰方法及装置

Country Status (4)

Country Link
US (1) US20230366995A1 (zh)
EP (1) EP4276491A4 (zh)
CN (1) CN114814797A (zh)
WO (1) WO2022160921A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160003946A1 (en) * 2014-07-03 2016-01-07 Advanced Scientific Concepts, Inc. Ladar sensor for a dense environment
WO2018215251A1 (de) * 2017-05-23 2018-11-29 Robert Bosch Gmbh Vorrichtung und verfahren zur entfernungsmessung
CN110161521A (zh) * 2019-06-11 2019-08-23 中国科学院光电技术研究所 一种基于真随机编码的光子计数激光雷达
CN110687544A (zh) * 2019-10-16 2020-01-14 深圳市镭神智能系统有限公司 一种激光雷达及激光雷达抗干扰方法
CN110780306A (zh) * 2019-11-19 2020-02-11 深圳市镭神智能系统有限公司 一种激光雷达抗干扰方法及激光雷达
CN110927734A (zh) * 2019-11-24 2020-03-27 深圳奥锐达科技有限公司 一种激光雷达系统及其抗干扰方法
CN111427023A (zh) * 2020-05-18 2020-07-17 武汉天眸光电科技有限公司 激光雷达抗干扰方法、激光雷达系统及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200088844A1 (en) * 2018-09-18 2020-03-19 Velodyne Lidar, Inc. Systems and methods for improving detection of a return signal in a light ranging and detection system with pulse encoding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160003946A1 (en) * 2014-07-03 2016-01-07 Advanced Scientific Concepts, Inc. Ladar sensor for a dense environment
WO2018215251A1 (de) * 2017-05-23 2018-11-29 Robert Bosch Gmbh Vorrichtung und verfahren zur entfernungsmessung
CN110161521A (zh) * 2019-06-11 2019-08-23 中国科学院光电技术研究所 一种基于真随机编码的光子计数激光雷达
CN110687544A (zh) * 2019-10-16 2020-01-14 深圳市镭神智能系统有限公司 一种激光雷达及激光雷达抗干扰方法
CN110780306A (zh) * 2019-11-19 2020-02-11 深圳市镭神智能系统有限公司 一种激光雷达抗干扰方法及激光雷达
CN110927734A (zh) * 2019-11-24 2020-03-27 深圳奥锐达科技有限公司 一种激光雷达系统及其抗干扰方法
CN111427023A (zh) * 2020-05-18 2020-07-17 武汉天眸光电科技有限公司 激光雷达抗干扰方法、激光雷达系统及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4276491A4

Also Published As

Publication number Publication date
EP4276491A1 (en) 2023-11-15
EP4276491A4 (en) 2024-06-19
CN114814797A (zh) 2022-07-29
US20230366995A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN109917408B (zh) 激光雷达的回波处理方法、测距方法及激光雷达
US20210333360A1 (en) Anti-interference processing method and apparatus for multi-pulse laser radar system
US11092674B2 (en) Transmit signal design for an optical distance measurement system
CN110535537B (zh) 一种水下通信探测一体化方法
CN107884780A (zh) 测距方法、激光雷达及车辆
CN109490889A (zh) 车载雷达以及判断车载雷达是否被遮挡的方法、装置
JP2008292502A (ja) 信号処理方法
WO2007131980A1 (fr) Procede de detection des reflecteurs d'une impulsion electromagnetique
CN112654895B (zh) 一种雷达探测方法及相关装置
CN112752986B (zh) 雷达测距方法和装置
Hague et al. The generalized sinusoidal frequency modulated waveform for continuous active sonar
WO2022160921A1 (zh) 一种激光雷达抗干扰方法及装置
CN109001720B (zh) 用于检测和测距的设备
US10605892B2 (en) System and method for pseudo randomized chirp scheduling for interference avoidance
CN116338623A (zh) 激光雷达偏振增强系统、方法、计算设备及存储介质
CN111638529B (zh) 一种基于真随机数发生器的车载雷达系统
US20150212196A1 (en) Method, device and system for processing radar signals
CN112859100A (zh) 一种激光雷达及探测方法、存储介质
JP2006090800A (ja) レーダ装置
WO2021087759A1 (zh) 同频干扰抑制方法、线性调频连续波雷达、移动平台和存储介质
CN113960567A (zh) 基于半导体环形激光器的激光雷达信号源装置及测距方法
CN209992664U (zh) 一种激光雷达杂散光抑制电路
Zhihuo et al. Novel orthogonal random phase-coded pulsed radar for automotive application
US20240069158A1 (en) Multi chip radar synchronization
Feng et al. High-Resolution Chaos Lidar Using Self-Phase-Modulated Feedback External-Cavity Semiconductor Laser-based Chaos Source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021922511

Country of ref document: EP

Effective date: 20230809

NENP Non-entry into the national phase

Ref country code: DE