WO2022160786A1 - 伽马调试方法、装置及设备 - Google Patents

伽马调试方法、装置及设备 Download PDF

Info

Publication number
WO2022160786A1
WO2022160786A1 PCT/CN2021/124554 CN2021124554W WO2022160786A1 WO 2022160786 A1 WO2022160786 A1 WO 2022160786A1 CN 2021124554 W CN2021124554 W CN 2021124554W WO 2022160786 A1 WO2022160786 A1 WO 2022160786A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
gray
brightness level
binding point
voltage
Prior art date
Application number
PCT/CN2021/124554
Other languages
English (en)
French (fr)
Inventor
牛浩之
王铁钢
韩光光
姜海斌
上官修宁
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2022160786A1 publication Critical patent/WO2022160786A1/zh
Priority to US18/341,044 priority Critical patent/US20230335080A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems

Definitions

  • the present application relates to the field of display technology, and in particular to a gamma debugging method, a gamma debugging device, and a gamma debugging device.
  • Gamma adjustment is usually required for each display panel before the display panel leaves the factory.
  • the current method of gamma debugging the display panel is to set the voltage value corresponding to each grayscale binding point based on experience. If the set voltage value is inaccurate, it is necessary to continuously adjust the voltage value corresponding to each grayscale binding point until each grayscale The optical parameters such as the brightness and color coordinates of the binding point reach the corresponding target values.
  • gamma debugging is required under different brightness levels. Each grayscale binding point often needs to be adjusted multiple times. Therefore, gamma debugging is performed. The time is very long, which affects the production efficiency.
  • a first aspect of the present application provides a gamma debugging method, which includes: acquiring a first voltage difference between a first gray-scale binding point and a second gray-scale binding point of a first display panel at a first brightness level; Perform gamma debugging on the second display panel at the first brightness level to determine the voltage value of the second display panel at the first grayscale binding point; bind the first grayscale of the second display panel at the first brightness level The difference between the voltage value corresponding to the point and the difference value of the first voltage is used as the initial value of the first voltage, and the gamma adjustment is performed on the second display panel at the second gray-scale binding point under the first brightness level.
  • an embodiment of the present application provides a gamma debugging device, which includes:
  • a voltage difference acquiring module configured to acquire a first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the first display panel at the first brightness level
  • a voltage value determination module configured to perform gamma debugging on the second display panel at the first brightness level, and determine the voltage value of the second display panel at the first gray-scale binding point
  • the debugging module is used to use the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the first voltage difference value as the first voltage initial value, and the first voltage at the first brightness level.
  • the second grayscale binding point performs gamma debugging on the second display panel.
  • an embodiment of the present application provides a gamma debugging device, including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • a gamma debugging device including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the first display panel is obtained, and the first brightness level
  • the difference between the voltage value corresponding to a gray-scale binding point and the first voltage difference is used as the first voltage initial value, and then gamma debugging is performed on the second display panel at the second gray-scale binding point under the first brightness level.
  • the initial value of the first voltage is closer to the actual voltage value corresponding to the binding point of the second gray scale of the second display panel at the first brightness level, compared to arbitrarily setting the second gray scale of the second display panel at the first brightness level
  • the initial value of the voltage corresponding to the level binding point is more accurate according to the assignment of the initial value of the first voltage, thereby reducing the number of gamma debugging performed on the second display panel by the second gray level binding point at the first brightness level, thereby reducing Gamma debugging time, improve production efficiency.
  • FIG. 1 shows a schematic flowchart of a gamma debugging method provided by an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of a gamma debugging method provided by another embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a gamma debugging method provided by still another embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a gamma debugging method provided by still another embodiment of the present application
  • FIG. 5 shows a schematic flowchart of a gamma debugging method provided by still another embodiment of the present application
  • FIG. 6 shows a schematic diagram of a luminance level and a gray level binding point provided by an embodiment of the present application
  • FIG. 7 shows a schematic flowchart of a gamma debugging method provided by still another embodiment of the present application.
  • FIG. 8 shows a schematic diagram of gamma debugging time provided by an embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of a gamma debugging apparatus provided by an embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of a gamma debugging apparatus provided by another embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a gamma debugging device provided according to an embodiment of the present application.
  • Embodiments of the present application provide a gamma debugging method, a gamma debugging device, and a gamma debugging device.
  • the embodiments of the gamma debugging method, the gamma debugging device, and the gamma debugging device will be described below with reference to the accompanying drawings.
  • FIG. 1 shows a schematic flowchart of a gamma debugging method provided according to an embodiment of the present application. As shown in FIG. 1 , the gamma debugging method provided by the embodiment of the present application includes steps 110 to 130 .
  • Step 110 Obtain a first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the first display panel at the first brightness level.
  • Step 120 Perform gamma debugging on the second display panel at the first brightness level to determine the voltage value of the second display panel at the first gray-scale binding point.
  • step 130 the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the first voltage difference value is used as the initial value of the first voltage, and the second gray-scale value at the first brightness level is used as the initial value of the first voltage.
  • the step-binding point performs gamma adjustment on the second display panel.
  • the first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the first display panel is first obtained, and the second gray-scale binding point at the first brightness level is
  • the display panel performs gamma debugging, it is only necessary to determine the voltage value corresponding to the first grayscale binding point of the second display panel at the first brightness level, and bind the first grayscale of the second display panel at the first brightness level.
  • the difference between the voltage value corresponding to the point and the first voltage difference value is used as the initial value of the first voltage, and then the second display panel is gamma debugged at the second gray-scale binding point under the first brightness level.
  • the initial value of the first voltage is closer to the actual voltage value corresponding to the binding point of the second gray scale of the second display panel at the first brightness level, compared to arbitrarily setting the second gray scale of the second display panel at the first brightness level
  • the initial value of the voltage corresponding to the level binding point is more accurate according to the assignment of the initial value of the first voltage, thereby reducing the number of gamma debugging performed on the second display panel by the second gray level binding point at the first brightness level, thereby reducing Gamma debugging time, improve production efficiency.
  • the first display panel and the second display panel may be the same batch of display panels. Compared with display panels of different batches, the voltage difference of the previous display panel in the same batch of display panels is more reference for the next display panel.
  • both the first display panel and the second display panel are 8-bit display panels, that is, both the first display panel and the second display panel have a total of 256 gray levels from 0 to 255 levels.
  • the first gray-scale binding point and the second gray-scale binding point may be any value from 0 to 255. It can be understood that the first gray-scale binding point and the second gray-scale binding point are different. For example, the first grayscale binding point is 255 grayscale, and the second grayscale binding point is 250 grayscale.
  • both the first display panel and the second display panel have multiple brightness levels, and under the same gray scale, different brightness levels correspond to different target brightness values.
  • different brightness levels correspond to different target brightness values.
  • the target brightness corresponding to the first brightness level is 430 nit
  • the target brightness corresponding to the second brightness level is 410 nit. It can be understood that, under the same gray scale, the voltage values required for different brightness levels are also different.
  • the voltage value can be understood as the data voltage value required by the driving chip, and the data voltage value is transmitted to the sub-pixels of the display panel through the data lines of the display panel, so that the sub-pixels generate driving current and emit light.
  • the voltage difference value can be understood as the difference between the data voltage values.
  • the gamma debugging method provided by this embodiment of the present application may further include step 111 : performing gamma on the first display panel at a first brightness level For debugging, determine the first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the first display panel.
  • the first voltage difference value determined in step 111 may be stored after step 111 and before step 110 .
  • step 111 may specifically include: setting the initial voltage value V11 corresponding to the first gray-scale binding point of the first display panel at the first brightness level and the voltage corresponding to the second gray-scale binding point at the first brightness level.
  • Voltage initial value V12 determine whether the actual brightness of the first display panel at the voltage initial value V11 conforms to the target brightness value corresponding to the first gray-scale binding point of the first display panel at the first brightness level, and determine whether the first display panel Whether the actual brightness at the initial voltage value V12 conforms to the target brightness value corresponding to the second gray-scale binding point of the first display panel at the first brightness level.
  • the adjusted initial voltage value V11' As the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level.
  • the adjusted initial voltage value V12' As the actual voltage value corresponding to the second gray-scale binding point of the first display panel at the first brightness level.
  • the difference between the adjusted initial voltage value V11' and the adjusted initial voltage value V12' is taken as the first voltage difference.
  • the initial voltage value V11 is used as the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level. If the actual brightness of the first display panel at the initial voltage value V12 matches the target brightness value corresponding to the second gray-scale binding point of the first display panel at the first brightness level, the initial voltage value V12 can be directly used as the first display The actual voltage value corresponding to the second gray-scale binding point of the panel at the first brightness level. Further, the difference between the initial voltage value V11 and the initial voltage value V12 may be used as the first voltage difference.
  • the second display panel at the first brightness level in step 120 may be determined in the manner of determining the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level in the above step 111.
  • the voltage value corresponding to the first gray-scale binding point below is not described in detail here. It can be understood that the actual luminance value of the second display panel at the voltage value corresponding to the first grayscale binding point at the first brightness level conforms to the corresponding first grayscale binding point of the second display panel at the first brightness level. target brightness value.
  • step 130 may specifically include: taking the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the first voltage difference value as the initial first voltage value, perform gamma adjustment on the second display panel at the second gray-scale binding point at the first brightness level, and determine the actual voltage value corresponding to the second gray-scale binding point of the second display panel at the first brightness level.
  • the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level can be determined in the above step 111 to determine the second display panel at the first brightness level in step 130.
  • the actual voltage value corresponding to the second gray-scale binding point below is not described in detail here.
  • the initial value of the first voltage is the initial voltage value corresponding to the second gray-scale binding point of the second display panel at the first brightness level, and the second gray-scale binding point of the second display panel at the first brightness level.
  • the actual brightness value at the actual voltage value corresponding to the point conforms to the target brightness value corresponding to the second gray-scale binding point of the second display panel at the first brightness level.
  • the gamma debugging method provided by this embodiment of the present application may further include step 140 , and after step 120 , the gamma debugging method provided by this embodiment of the present application The method may also include step 150 .
  • Step 140 Obtain a second voltage difference between the first brightness level and the second brightness level of the first display panel at the first grayscale binding point.
  • Step 150 The difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the second voltage difference value is used as the initial value of the second voltage, and the first gray-scale value at the second brightness level is used.
  • the step-binding point performs gamma adjustment on the second display panel.
  • the second voltage difference between the first brightness level and the second brightness level of the first display panel it is only necessary to determine the first grayscale binding of the second display panel at the first brightness level
  • the voltage value corresponding to the point, the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the second voltage difference is taken as the second voltage initial value, and then under the second brightness level
  • the first grayscale binding point of the second display panel is gamma debugged.
  • the initial value of the second voltage is closer to the actual voltage value corresponding to the first gray-scale binding point of the second display panel at the second brightness level, compared to the arbitrary setting of the first gray-scale value of the second display panel at the second brightness level
  • the initial value of the voltage corresponding to the step binding point is more accurate according to the assignment of the second voltage initial value, thereby reducing the number of gamma debugging performed on the second display panel by the first gray-scale binding point at the second brightness level, thereby reducing Gamma debugging time, improve production efficiency.
  • the gamma debugging method provided by this embodiment of the present application may further include step 141 : performing the first display panel under the first grayscale binding point. Gamma debugging, determining a second voltage difference between the first brightness level and the second brightness level of the first display panel.
  • the second voltage difference of the first display panel in step 141 may be determined in the manner of determining the first voltage difference of the first display panel in the foregoing step 111 , which will not be described in detail here.
  • the second voltage difference value determined in step 141 may also be stored.
  • step 150 may specifically include: taking the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the second voltage difference value as the initial second voltage value, perform gamma debugging on the second display panel at the first gray-scale binding point at the second brightness level, and determine the actual voltage value corresponding to the first gray-scale binding point of the second display panel at the second brightness level.
  • the second display panel at the second brightness level in step 150 may be determined in the manner of determining the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level in the above step 111. The actual voltage value corresponding to the first gray-scale binding point below is not described in detail here.
  • the initial value of the second voltage is the initial voltage value corresponding to the first gray-scale binding point of the second display panel at the second brightness level, and the first gray-scale binding point of the second display panel at the second brightness level.
  • the actual brightness value at the voltage value corresponding to the point conforms to the target brightness value corresponding to the first gray-scale binding point of the second display panel at the second brightness level.
  • the gamma debugging method provided by this embodiment of the present application may further include step 160 .
  • Step 160 setting multiple grayscale binding points, wherein the first grayscale binding point and the second grayscale binding point are two adjacent grayscale binding points among the multiple grayscale binding points.
  • the grayscale binding points may include 0 grayscale, 32 grayscale, 64 grayscale, 96 grayscale, 128 grayscale, 160 grayscale, 192 grayscale, 224 grayscale, and 255 grayscale.
  • the first grayscale binding point is 32 grayscales
  • the second grayscale binding point may be 0 grayscale or 64 grayscales.
  • the first grayscale binding point is 128 grayscales
  • the second grayscale binding point may be 160 grayscales or 96 grayscales.
  • gray-scale binding points and the specific numerical values of the gray-scale binding points may be set to be different from the above examples, which are not limited in this application.
  • the grayscale binding point and the second grayscale binding point can prevent the difference between the first grayscale binding point and the second grayscale binding point from being too large, prevent the first voltage difference from losing reference, and further ensure that the initial The assignment of the value is more accurate, thereby reducing the number of gamma debugging performed on the second display panel at the second gray-scale binding point at the first brightness level, thereby reducing the gamma debugging time and improving production efficiency.
  • the gamma debugging method provided by this embodiment of the present application may further include step 170 .
  • Step 170 Set multiple brightness levels, wherein the first brightness level and the second brightness level are two adjacent brightness levels selected from the multiple brightness levels.
  • a brightness adjustment control usually a brightness adjustment bar
  • a brightness adjustment bar By sliding the brightness adjustment bar, the same picture can be presented with different brightness. Brightness levels can correspond to different positions of the brightness adjustment bar.
  • the plurality of brightness levels may include the highest brightness level and the lowest brightness level, and other brightness levels between the highest brightness level and the lowest brightness level.
  • the number of brightness levels may be 10.
  • the number of brightness levels and the target brightness value corresponding to each brightness level may be set according to actual requirements, which is not limited in this application.
  • the value of the data voltage does not increase linearly, and the display panel is very sensitive to the change of the data voltage.
  • the brightness level and the second brightness level can avoid that the difference between the first brightness level and the second brightness level is too large under the same gray scale, avoid the loss of reference of the second voltage difference, and further ensure the assignment according to the initial value of the second voltage It is more accurate, thereby reducing the number of gamma debugging performed on the second display panel at the first gray-scale binding point at the second brightness level, thereby reducing the gamma debugging time and improving production efficiency.
  • the target brightness value corresponding to the first grayscale binding point is greater than the target brightness value corresponding to the second grayscale binding point. Under the same gray-scale binding point, the target brightness value corresponding to the first brightness level is greater than the target brightness value corresponding to the second brightness level.
  • debugging can be carried out according to a certain order of brightness levels and binding points of gray scales. Due to the limitations of the brightness acquisition equipment, the acquisition accuracy under low brightness is not as high as that under high brightness. Therefore, the target brightness corresponding to the brightness level can be gradually reduced and the gray-scale binding point can be gradually reduced in order.
  • Gamma debugging and refer to the voltage difference of the first display panel at high brightness level and high gray scale, so that the referenced initial voltage value is more accurate, thereby reducing the impact on the second display at low brightness level and low gray scale. Time when the panel was gamma debugged.
  • the number of gray-scale binding points may be set as N 1 , and the plurality of gray-scale binding points are respectively gray-scale binding point 1 to gray-scale binding point N 1 , where the gray-scale values corresponding to the gray-scale binding point 1 to the gray-scale binding point N 1 may decrease sequentially.
  • the grayscale binding point 1 may be 255 grayscales.
  • the number of brightness levels can be set as N 2 , and the multiple brightness levels are respectively brightness level 1 to brightness level N 2 . Under the same gray scale, the target brightness values corresponding to brightness level 1 to brightness level N 2 can be sequentially decreased.
  • brightness level 1 may be a brightness level corresponding to a high brightness mode (High Brightness Mode, HBM), and brightness level 2 to brightness level N 2 may be brightness levels corresponding to a normal mode (Normal).
  • each gray level at each brightness level in FIG. 6 may be determined according to the method of determining the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level in the above step 111 . Then, according to the method of determining the first voltage difference in the above step 111, to determine the first voltage difference between adjacent gray-scale binding points in FIG. 6 at each brightness level, And determine the second voltage difference between adjacent brightness levels under each gray-scale binding point in FIG. 6 .
  • the gamma adjustment of the first display panel may be performed in the order that the target brightness corresponding to the brightness level gradually decreases and the gray-scale binding point gradually decreases.
  • brightness level 1 is the maximum brightness among multiple brightness levels.
  • gray-scale binding point 1 is the largest gray-scale binding point among multiple gray-scale binding points.
  • the first voltage difference between adjacent gray-scale binding points of the first display panel is determined and stored.
  • the first voltage difference between gray-scale binding point 1 and gray-scale binding point 2 is stored as GammaStep1[1]
  • the voltage difference between gray-scale binding point 2 and gray-scale binding point 3 is stored as GammaStep1[1].
  • the first voltage difference is stored as GammaStep1[2]
  • the first voltage difference between the gray-scale binding point (N 1 -1) and the gray-scale binding point N 1 is stored as GammaStep1[N 1 -1] .
  • a second voltage difference between adjacent brightness levels is determined and stored.
  • grayscale binding point 1 and grayscale binding point 1 as 255 grayscale as an example
  • the second voltage difference between brightness level 1 and brightness level 2 is stored as Gamma255Step1[1]
  • the brightness The second voltage difference between level 2 and brightness level 3 is stored as Gamma255Step1[2]
  • the second voltage difference between brightness level (N 2 -1) and brightness level N 2 is stored as Gamma255Step1[ N 2 -1].
  • the gamma debugging is still performed in the order that the target brightness corresponding to the brightness level gradually decreases and the gray-scale binding point gradually decreases. Specifically, firstly, gamma debugging is performed on the gray-scale binding point 1 of the second display panel at brightness level 1, and the voltage value corresponding to the gray-scale binding point 1 at brightness level 1 is determined. The difference between the voltage value corresponding to the gray-scale binding point 1 and the GammaStep1[1] is used as the first voltage initial value of the gray-scale binding point 2 of the second display panel under the brightness level 1, and the first voltage initial value is used to determine the second voltage value.
  • the grayscale binding point 2 of the display panel at brightness level 1 is used for gamma debugging. Since the first voltage initial value is more accurate than the arbitrarily set initial voltage value, it can be quickly determined that the second display panel is at brightness level 1.
  • the grayscale is tied to the actual voltage value corresponding to point 2. Further, the difference between the actual voltage value corresponding to the gray-scale binding point 2 of the second display panel at brightness level 1 and the GammaStep1[2] is taken as the first value of the gray-scale binding point 3 of the second display panel at brightness level 1. An initial value of the voltage is determined, and then the actual voltage value corresponding to the gray-scale binding point 3 of the second display panel at the brightness level 1 is determined.
  • the difference between the actual voltage value corresponding to the gray-scale binding point (N 1 -1) of the second display panel at brightness level 1 and GammaStep1[N 1 -1] is taken as the second display panel at brightness level 1
  • the initial value of the first voltage of the gray-scale binding point N 1 at the lower brightness level is determined, and then the actual voltage value corresponding to the gray-scale binding point N 1 of the second display panel at the brightness level 1 is determined.
  • the grayscale binding point 1 at other brightness levels can be performed as follows.
  • the voltage value corresponding to the grayscale binding point 1 of the second display panel at brightness level 1 has been determined above, and then the voltage value corresponding to the grayscale binding point 1 of the second display panel at brightness level 1 is compared with that of Gamma255Step1[1]. The difference is used as the second voltage initial value of the gray-scale binding point 1 of the second display panel under the brightness level 2, and the gray-scale binding point 1 of the second display panel under the brightness level 2 is gamma gamma based on the second voltage initial value.
  • the second voltage initial value is more accurate than the arbitrarily set initial voltage value, the actual voltage value corresponding to the grayscale binding point 1 of the second display panel at brightness level 2 can be quickly determined.
  • the difference between the actual voltage value corresponding to the gray-scale binding point 1 of the second display panel under the brightness level 2 and the Gamma255Step1[2] is taken as the first value of the gray-scale binding point 1 of the second display panel under the brightness level 3.
  • the difference between the actual voltage value corresponding to the gray scale binding point 1 of the second display panel at the brightness level (N 2 -1) and the Gamma255Step1 [N 2 -1] is taken as the second display panel at the brightness level N
  • the initial value of the first voltage at the gray-scale binding point 1 at 2 is determined, and the actual voltage value corresponding to the gray-scale binding point 1 at the brightness level N 2 of the second display panel is further determined.
  • the actual voltage values corresponding to the gray-scale binding point 2 to the gray-scale binding point (N 1 -1) under the brightness level 2 to the brightness level N 2 can be determined.
  • FIG. 6 is only an example, and is not used to limit the present application.
  • the gamma debugging method provided by this embodiment of the present application may further include steps 181 to 182 .
  • Step 181 Perform gamma debugging on the Nth display panel at the first brightness level, and determine the voltage value corresponding to the first gray-scale binding point of the Nth display panel at the first brightness level, where N ⁇ 3 and an integer .
  • Step 182 The difference between the voltage value corresponding to the first gray-scale binding point of the Nth display panel at the first brightness level and the average value of the first voltage difference values of the plurality of display panels is used as the third voltage initial value.
  • the second gray-scale binding point under the brightness level performs gamma adjustment on the Nth display panel.
  • each display panel belongs to the same batch, there are inevitably differences in the characteristics of each display panel.
  • the first voltage of each display panel that has completed gamma debugging is used.
  • the average determined by the difference is a reference, which can reduce the influence of different characteristics of the display panel as much as possible, so as to more accurately assign the initial voltage value to the second gray-scale binding point of the subsequent display panel at the first brightness level.
  • the average value of the first voltage differences of the plurality of display panels may be the sum of the first gray-scale binding point and the second gray-scale binding point of the first display panel to the N-1th display panel at the first brightness level. The average value of each first voltage difference between them.
  • the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level can be determined in the above step 111 to determine the Nth display panel at the first brightness level in step 181.
  • the voltage value corresponding to the first gray-scale binding point below is not described in detail here. It can be understood that the actual luminance value of the voltage value corresponding to the first grayscale binding point of the Nth display panel at the first brightness level conforms to the corresponding voltage value of the first grayscale binding point of the Nth display panel at the first brightness level. target brightness value.
  • each first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the second display panel at the first brightness level can be obtained.
  • the second display panel is at the first brightness level between the first gray-scale binding point and the second gray-scale binding point.
  • the first voltage difference is stored as GammaStep2[i], where 1 ⁇ i ⁇ (N 1 -1).
  • GammaStep2[1] indicates that the second display panel is at brightness level 1
  • GammaStep2[2] indicates that the second display panel is at brightness level 1
  • the average value of the first voltage differences of the plurality of display panels in step 182 can be calculated according to formula (1):
  • GammaStep[i] represents the average value of the first voltage difference of multiple display panels
  • GammaStep(N-1)[i] represents the first grayscale binding point of the N-1th display panel at the first brightness level and the Each first voltage difference between the second gray-scale binding points.
  • step 182 may specifically include: taking the average value of the voltage value corresponding to the first gray-scale binding point of the Nth display panel at the first brightness level and the first voltage difference of the plurality of display panels The difference is used as the initial value of the third voltage, and the gamma adjustment is performed on the Nth display panel at the second grayscale binding point under the first brightness level, and the second grayscale binding point of the Nth display panel at the first brightness level is determined.
  • the corresponding actual voltage value Exemplarily, in step 111, the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level can be determined to determine the first brightness level of the Nth display panel in step 182.
  • the actual voltage value corresponding to the second gray-scale binding point below is not described in detail here. It can be understood that the actual luminance value at the actual voltage value corresponding to the second grayscale binding point of the Nth display panel at the first brightness level conforms to the second grayscale binding point of the Nth display panel at the first brightness level. The corresponding target brightness value.
  • the display panel to be debugged includes the first display panel to the tenth display panel.
  • the The first voltage difference between the first grayscale binding point and the second grayscale binding point of a display panel and a second display panel at a first brightness level determines the first voltage difference between the first display panel and the second display panel. an average value of the voltage difference, and then use the average value of the first voltage difference determined by the first display panel and the second display panel to determine the second grayscale binding point corresponding to the third display panel at the first brightness level.
  • the voltage initial value and then perform gamma debugging on the third display panel, and then use the average value of the first voltage difference determined from the first display panel to the third display panel to determine the fourth display panel at the first brightness level.
  • the initial value of the voltage corresponding to the second gray-scale binding point, and then gamma debugging is performed on the fourth display panel, and so on, the average value of the first voltage difference determined by the first display panel to the ninth display panel is used to determine it
  • the initial value of the voltage corresponding to the second gray-scale binding point of the tenth display panel at the first brightness level, and then gamma debugging is performed on the tenth display panel.
  • the initial value of the voltage corresponding to the second gray-scale binding point at the first brightness level is based on the previous It is determined by the average value of the first voltage difference determined by the display panel that has completed the debugging.
  • the gamma debugging method provided by this embodiment of the present application may further include step 183 .
  • Step 183 Use the difference between the voltage value corresponding to the first gray-scale binding point of the Nth display panel at the first brightness level and the average value of the second voltage difference values of the plurality of display panels as the fourth initial voltage value.
  • the first gray-scale binding point under the brightness level performs gamma adjustment on the Nth display panel.
  • the average value determined by the second voltage difference is a reference, which can reduce the influence of different characteristics of the display panel as much as possible, so as to more accurately assign the initial value of the voltage to the first gray-scale binding point of the subsequent display panel at the second brightness level .
  • the average value of the second voltage differences of the plurality of display panels may be the difference between the first brightness level and the second brightness level of the first display panel to the N-1th display panel at the first gray-scale binding point.
  • the mean value of each second voltage difference may be the difference between the first brightness level and the second brightness level of the first display panel to the N-1th display panel at the first gray-scale binding point.
  • each second voltage difference between the first brightness level and the second brightness level of the second display panel at the first grayscale binding point can be obtained.
  • the first gray level binding point is 255 gray level as an example
  • the second display panel has a difference between the first brightness level and the second brightness level at the first gray level binding point.
  • Each second voltage difference between is stored as Gamma255Step2[i], where 1 ⁇ i ⁇ (N 1 -1).
  • Gamma255Step2[1] indicates the second voltage difference between brightness level 1 and brightness level 2 when the second display panel is at grayscale binding point 1.
  • Gamma255Step2[2] indicates that the second display panel is at grayscale binding point 1.
  • step 183 the average value of the second voltage difference of the plurality of display panels can be calculated according to formula (2):
  • Gamma255Step[i] represents the average value of the second voltage difference of multiple display panels
  • Gamma255Step(N-1)[i] represents the first brightness level of the N-1th display panel at the first grayscale binding point and the each second voltage difference between the second brightness levels.
  • step 183 may specifically include: taking the average value of the voltage value corresponding to the first gray-scale binding point of the Nth display panel at the first brightness level and the second voltage difference of the plurality of display panels The difference is used as the initial value of the fourth voltage, and the Nth display panel is gamma debugged at the first grayscale binding point under the second brightness level, and the first grayscale binding point of the Nth display panel under the second brightness level is determined.
  • the corresponding actual voltage value Exemplarily, the determination of the Nth display panel at the second brightness level in step 183 may be performed in the manner of determining the actual voltage value corresponding to the first gray-scale binding point of the first display panel at the first brightness level in the above step 111 .
  • the actual voltage value corresponding to the first gray-scale binding point below is not described in detail here. It can be understood that the actual luminance value at the actual voltage value corresponding to the first grayscale binding point of the Nth display panel at the second brightness level conforms to the first grayscale binding point of the Nth display panel at the second brightness level. The corresponding target brightness value.
  • the display panel to be debugged includes the first display panel to the tenth display panel. After gamma debugging is performed on the first display panel and the second display panel, the Each second voltage difference between the first brightness level and the second brightness level of the first display panel and the second display panel at the first grayscale binding point determines the second voltage difference between the first display panel and the second display panel.
  • the average value of the voltage difference, and then the average value of the second voltage difference determined by the first display panel and the second display panel is used to determine the voltage corresponding to the first gray-scale binding point of the third display panel at the second brightness level initial value, and then perform gamma debugging on the third display panel, and then use the average value of the second voltage difference determined from the first display panel to the third display panel to determine the fourth display panel at the second brightness level.
  • the display panel usually includes red sub-pixels, green sub-pixels and blue sub-pixels, and any sub-pixels can be debugged according to the above-mentioned gamma debugging method.
  • the voltage value or the voltage difference value herein refers to the voltage value or voltage difference value corresponding to the red sub-pixel, and the same is true for the green sub-pixel and the blue sub-pixel.
  • the inventor of the present application debugs the display panel according to the gamma debugging method provided in the embodiment of the present application, and debugs the display panel according to the traditional gamma debugging method of randomly assigning the initial value of the voltage, and obtains the gamma as shown in FIG. 8 . Debug time comparison. In Fig.
  • the ordinate represents the actual debugging time
  • the abscissa represents different display panels
  • the curve A represents the time required to debug the display panel according to the traditional gamma debugging method of randomly assigning the initial value of the voltage
  • the curve B represents the implementation according to the present application
  • the time required for debugging the display panel by the gamma debugging method provided by the example shows that, compared with the traditional gamma debugging method, the gamma debugging method provided by the embodiment of the present application can reduce the gamma debugging time by about 60%, As a result, the gamma debugging time can be greatly reduced, and the production efficiency can be improved.
  • the embodiment of the present application also provides a gamma debugging device.
  • the gamma debugging device 800 provided by the embodiment of the present application includes a voltage difference acquisition module 801 , a voltage value determination module 802 , and a debugging module 803 .
  • the voltage difference obtaining module 801 is configured to obtain a first voltage difference between a first gray-scale binding point and a second gray-scale binding point of the first display panel at a first brightness level.
  • the voltage value determination module 802 is configured to perform gamma debugging on the second display panel under the first brightness level, and determine the voltage value corresponding to the first gray-scale binding point of the second display panel under the first brightness level.
  • the debugging module 803 is configured to use the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the first voltage difference as the first voltage initial value, and the The second gray-scale binding point performs gamma adjustment on the second display panel.
  • the first voltage difference between the first gray-scale binding point and the second gray-scale binding point of the first display panel is first obtained, and the second gray-scale binding point at the first brightness level is
  • the display panel performs gamma debugging, it is only necessary to determine the voltage value corresponding to the first grayscale binding point of the second display panel at the first brightness level, and bind the first grayscale of the second display panel at the first brightness level.
  • the difference between the voltage value corresponding to the point and the first voltage difference value is used as the initial value of the first voltage, and then the second display panel is gamma debugged at the second gray-scale binding point under the first brightness level.
  • the initial value of the first voltage is closer to the actual voltage value corresponding to the binding point of the second gray scale of the second display panel at the first brightness level, compared to arbitrarily setting the second gray scale of the second display panel at the first brightness level
  • the initial value of the voltage corresponding to the level binding point is more accurate according to the assignment of the initial value of the first voltage, thereby reducing the number of gamma debugging performed on the second display panel by the second gray level binding point at the first brightness level, thereby reducing Gamma debugging time, improve production efficiency.
  • the voltage difference acquiring module 801 is further configured to:
  • a second voltage difference between the first brightness level and the second brightness level of the first display panel at the first grayscale binding point is acquired.
  • the debugging module 803 is also used for:
  • the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the difference between the second voltage is used as the second voltage initial value, and the first gray-scale binding point at the second brightness level is used. Perform gamma tuning on the second display panel.
  • the voltage value determination module 802 is further configured to:
  • the debugging module 803 is also used for:
  • the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the average value of the first voltage difference values of the plurality of display panels is used as the third voltage initial value, and at the first brightness level
  • the second grayscale binding point of the Nth display panel performs gamma debugging.
  • the gamma debugging apparatus provided in this embodiment of the present application further includes a mean value determination module 804, and the mean value determination module 804 is configured to:
  • the mean value determination module 804 is further configured to:
  • the average value of the second voltage difference is determined according to each second voltage difference between the first brightness level and the second brightness level of the first display panel to the N-1th display panel at the first grayscale binding point.
  • the debugging module 803 is also used for:
  • the difference between the voltage value corresponding to the first gray-scale binding point of the second display panel at the first brightness level and the average value of the second voltage differences of the plurality of display panels is taken as the fourth initial voltage value, and at the second brightness level
  • the first grayscale binding point of the Nth display panel is gamma debugged.
  • the gamma debugging apparatus provided by the embodiment of the present application further includes a parameter setting module 805, and the parameter setting module 805 is used for:
  • a plurality of gray-scale binding points are set, wherein the first gray-scale binding point and the second gray-scale binding point are two adjacent gray-scale binding points among the multiple gray-scale binding points.
  • the target brightness value corresponding to the first gray-scale binding point is greater than the target brightness value corresponding to the second gray-scale binding point.
  • the parameter setting module 805 is further configured to:
  • Multiple brightness levels are set, wherein the first brightness level and the second brightness level are two adjacent brightness levels among the multiple brightness levels.
  • the target brightness value corresponding to the first brightness level is greater than the target brightness value corresponding to the second brightness level.
  • FIG. 11 shows a schematic diagram of a hardware structure of a gamma debugging device provided by an embodiment of the present application.
  • An on-gamma debugging device may include a processor 901 and a memory 902 storing computer program instructions.
  • the above-mentioned processor 901 may include a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 902 may include mass storage for data or instructions.
  • memory 902 may include a Hard Disk Drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of more than one of the above.
  • Memory 902 may include removable or non-removable (or fixed) media, where appropriate.
  • Storage 902 may be internal or external to the integrated gateway disaster recovery device, where appropriate.
  • memory 902 is non-volatile solid state memory.
  • memory 902 includes read only memory (ROM).
  • the ROM may be a mask programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of the above.
  • PROM programmable ROM
  • EPROM erasable PROM
  • EEPROM electrically erasable PROM
  • EAROM electrically rewritable ROM
  • flash memory or A combination of two or more of the above.
  • the processor 901 reads and executes the computer program instructions stored in the memory 902 to implement any one of the gamma debugging methods in the foregoing embodiments.
  • the gamma debug device may also include a communication interface 903 and a bus 910 .
  • the processor 901 , the memory 902 , and the communication interface 903 are connected through the bus 910 and complete the mutual communication.
  • the communication interface 903 is mainly used to implement communication between modules, apparatuses, units, and/or devices in the embodiments of the present invention.
  • the bus 910 includes hardware, software, or both, coupling the components of the compensation voltage determination device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) Interconnect, Industry Standard Architecture (ISA) Bus, Infiniband Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Microchannel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of the above.
  • Bus 910 may include one or more buses, where appropriate. Although embodiments of the present invention describe and illustrate a particular bus, the present invention contemplates any suitable bus or interconnect.
  • the gamma debugging device may execute the gamma debugging method in the embodiment of the present application, thereby implementing the gamma debugging method and the gamma debugging device described in conjunction with FIG. 1 and FIG. 9 .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the gamma debugging method in the above-mentioned embodiment can be implemented, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the above-mentioned computer-readable storage medium may include read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), magnetic disk or optical disk, etc., which are not limited herein.
  • examples of computer-readable storage media include non-transitory machine-readable media such as electronic circuits, semiconductor memory devices, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, hard disks, and the like.
  • non-transitory machine-readable media such as electronic circuits, semiconductor memory devices, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, hard disks, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Picture Signal Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本申请公开了一种伽马调试方法、装置及设备。该方法包括:获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值;在第一亮度等级下对第二显示面板进行伽马调试,确定第二显示面板在第一灰阶绑点下的电压值;将第二显示面板在第一灰阶绑点下电压值与第一电压差值之差作为第一电压初始值,在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。

Description

伽马调试方法、装置及设备
相关申请的交叉引用
本申请要求享有于2021年01月28日提交的名称为“伽马调试方法、装置及设备”的中国专利申请第202110120573.8号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,具体涉及一种伽马调试方法、伽马调试装置及伽马调试设备。
背景技术
在显示面板出厂前通常对每个显示面板均需进行伽马调试。目前对显示面板进行伽马调试的方法,是根据经验设置各个灰阶绑点对应的电压值,若设置的电压值不准确则需不断调整各个灰阶绑点对应的电压值,直至各个灰阶绑点的亮度、色坐标等光学参数达到对应的目标值。但目前每个显示面板的灰阶绑点一般多达几十个,且在不同亮度等级下均需要进行伽马调试,每个灰阶绑点往往又需要多次调整,因此进行伽马调试的时间很长,影响生产效率。
发明内容
本申请第一方面提供一种伽马调试方法,其包括:获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值;在第一亮度等级下对第二显示面板进行伽马调试,确定第二显示面板在第一灰阶绑点下的电压值;将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。
第二方面,本申请实施例提供一种伽马调试装置,其包括:
电压差值获取模块,用于获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值;
电压值确定模块,用于在第一亮度等级下对第二显示面板进行伽马调试,确定第二显示面板在第一灰阶绑点下的电压值;
调试模块,用于将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。
第三方面,本申请实施例提供一种伽马调试设备,包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如第一方面任意一项实施例所述的伽马调试方法。
根据本申请实施例提供的伽马调试方法、装置及设备,先获取第一显示面板的第一灰阶绑点与第二灰阶绑点之间的第一电压差值,在第一亮度等级下对第二显示面板进行伽马调试时,仅需确定第二显示面板在第一亮度等级下的第一灰阶绑点下的电压值,将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,进而在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。该第一电压初始值更接近第二显示面板在第一亮度等级下的第二灰阶绑点所对应的实际电压值,相对于随意设置第二显示面板在第一亮度等级下的第二灰阶绑点对应的电压初始值,根据第一电压初始值的赋值更准确,进而可以减少在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试的次数,从而减少伽马调试时间,提高生产效率。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征,附图并未按照实际的比例绘制。
图1示出本申请一种实施例提供的伽马调试方法的流程示意图;
图2示出本申请另一种实施例提供的伽马调试方法的流程示意图;
图3示出本申请又一种实施例提供的伽马调试方法的流程示意图;
图4示出本申请又一种实施例提供的伽马调试方法的流程示意图;
图5示出本申请又一种实施例提供的伽马调试方法的流程示意图;
图6示出本申请一种实施例提供的亮度等级及灰阶绑点的示意图;
图7示出本申请又一种实施例提供的伽马调试方法的流程示意图;
图8示出本申请一种实施例提供的伽马调试时间的示意图;
图9示出本申请一种实施例提供的伽马调试装置的结构示意图;
图10示出本申请另一种实施例提供的伽马调试装置的结构示意图;
图11示出根据本申请一种实施例提供的伽马调试设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
本申请实施例提供了一种伽马调试方法、伽马调试装置及伽马调试设备,以下将结合附图对伽马调试方法、伽马调试装置及伽马调试设备的各实施例进行说明。
图1示出根据本申请一种实施例提供的伽马调试方法的流程示意图。如图1所示,本申请实施例提供的伽马调试方法包括步骤110至步骤130。
步骤110,获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值。
步骤120,在第一亮度等级下对第二显示面板进行伽马调试,确定第二显示面板在第一灰阶绑点下的电压值。
步骤130,将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。
根据本申请实施例提供的伽马调试方法,先获取第一显示面板的第一 灰阶绑点与第二灰阶绑点之间的第一电压差值,在第一亮度等级下对第二显示面板进行伽马调试时,仅需确定第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值,将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,进而在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。该第一电压初始值更接近第二显示面板在第一亮度等级下的第二灰阶绑点所对应的实际电压值,相对于随意设置第二显示面板在第一亮度等级下的第二灰阶绑点对应的电压初始值,根据第一电压初始值的赋值更准确,进而可以减少在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试的次数,从而减少伽马调试时间,提高生产效率。
示例性的,第一显示面板和第二显示面板可以是同一批次的显示面板。相对于不同批次的显示面板,同一批次的显示面板中上一个显示面板的电压差值对下一个显示面板来说更具有参考性。
示例性的,第一显示面板和第二显示面板均为8bit显示面板,即第一显示面板和第二显示面板均有0~255级共256级灰度。第一灰阶绑点与第二灰阶绑点可以是0~255中的任意一个数值,可以理解的是,第一灰阶绑点与第二灰阶绑点不同。例如,第一灰阶绑点为255灰阶,第二灰阶绑点为250灰阶。
示例性的,第一显示面板和第二显示面板均具有多个亮度等级,在同一灰阶下,不同的亮度等级对应的目标亮度值不同。例如,在255灰阶下,第一亮度等级对应的目标亮度为430nit,第二亮度等级对应的目标亮度为410nit。可以理解的是,在同一灰阶下,不同的亮度等级所需的电压值也是不同的。
在本文中,电压值可以理解为驱动芯片所需提供的数据电压值,该数据电压值通过显示面板的数据线传输至显示面板的子像素,使得子像素产生驱动电流并发光。电压差值可以理解为数据电压值之差。
在一些可选的实施例中,如图2所示,在步骤110之前,本申请实施例提供的伽马调试方法还可以包括步骤111:在第一亮度等级下对第一显示面板进行伽马调试,确定第一显示面板的第一灰阶绑点与第二灰阶绑点 之间的第一电压差值。
示例性的,可以在步骤111之后,步骤110之前,存储步骤111中确定的第一电压差值。
示例性的,步骤111具体可以包括:设置第一显示面板在第一亮度等级下的第一灰阶绑点对应的电压初始值V11以及在第一亮度等级下的第二灰阶绑点对应的电压初始值V12;判断第一显示面板在电压初始值V11下的实际亮度是否符合第一显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值,并判断第一显示面板在电压初始值V12下的实际亮度是否符合第一显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值。若第一显示面板在电压初始值V11下的实际亮度不符合第一显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值,则调整电压初始值V11的数值,直至第一显示面板在调整后的电压初始值V11’下的实际亮度符合第一显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值,则将调整后的电压初始值V11’作为第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值。若第一显示面板在电压初始值V12下的实际亮度不符合第一显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值,则调整电压初始值V12的数值,直至第一显示面板在调整后的电压初始值V12’下的实际亮度符合第一显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值,则将调整后的电压初始值V12’作为第一显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值。将调整后的电压初始值V11’与调整后的电压初始值V12’的差值作为第一电压差值。
可以理解的是,若第一显示面板在电压初始值V11下的实际亮度符合第一显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值,则可以直接将电压初始值V11作为第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值。若第一显示面板在电压初始值V12下的实际亮度符合第一显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值,则可以直接将电压初始值V12作为第一显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值。进而可以将电压初始值V11与电压初始值V12的差值作为第一电压差值。
示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式,来确定步骤120中第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值,在此不再详细赘述。可以理解的是,第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值下的实际亮度值符合第二显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值。
在一些可选的实施例中,步骤130具体可以包括:将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试,确定第二显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值。示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式,来确定步骤130中第二显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值,在此不再详细赘述。可以理解的是,第一电压初始值为第二显示面板在第一亮度等级下的第二灰阶绑点对应的初始电压值,第二显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值下的实际亮度值符合第二显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值。
在一些可选的实施例中,如图3所示,在步骤120之前,本申请实施例提供的伽马调试方法还可以包括步骤140,在步骤120之后,本申请实施例提供的伽马调试方法还可以包括步骤150。
步骤140,获取第一显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的第二电压差值。
步骤150,将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第二电压差值之差作为第二电压初始值,在第二亮度等级下的第一灰阶绑点对第二显示面板进行伽马调试。
根据本申请实施例,先获取第一显示面板的第一亮度等级与第二亮度等级之间的第二电压差值,仅需确定第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值,将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第二电压差值之差作为第二电压初始值,进而在第二 亮度等级下的第一灰阶绑点对第二显示面板进行伽马调试。该第二电压初始值更接近第二显示面板在第二亮度等级下的第一灰阶绑点所对应的实际电压值,相对于随意设置第二显示面板在第二亮度等级下的第一灰阶绑点对应的电压初始值,根据第二电压初始值的赋值更准确,进而可以减少在第二亮度等级下的第一灰阶绑点对第二显示面板进行伽马调试的次数,从而减少伽马调试时间,提高生产效率。
在一些可选的实施例中,如图4所示,在步骤140之前,本申请实施例提供的伽马调试方法还可以包括步骤141:在第一灰阶绑点下对第一显示面板进行伽马调试,确定第一显示面板的第一亮度等级与第二亮度等级之间的第二电压差值。
示例性的,可以按照上述步骤111中确定第一显示面板的第一电压差值的方式,来确定步骤141中第一显示面板的第二电压差值,在此不再详细赘述。
示例性的,在步骤141之后,步骤140之前,还可以存储步骤141中确定的第二电压差值。
在一些可选的实施例中,步骤150具体可以包括:将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第二电压差值之差作为第二电压初始值,在第二亮度等级下的第一灰阶绑点对第二显示面板进行伽马调试,确定第二显示面板在第二亮度等级下的第一灰阶绑点对应的实际电压值。示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式,来确定步骤150中第二显示面板在第二亮度等级下的第一灰阶绑点对应的实际电压值,在此不再详细赘述。可以理解的是,第二电压初始值为第二显示面板在第二亮度等级下的第一灰阶绑点对应的初始电压值,第二显示面板在第二亮度等级下的第一灰阶绑点对应的电压值下的实际亮度值符合第二显示面板在第二亮度等级下的第一灰阶绑点对应的目标亮度值。
在一些可选的实施例中,如图5所示,在步骤110之前,本申请实施例提供的伽马调试方法还可以包括步骤160。
步骤160,设置多个灰阶绑点,其中,第一灰阶绑点和第二灰阶绑点 多个灰阶绑点中相邻的两个灰阶绑点。
示例性的,仍以第一显示面板和第二显示面板均为8bit显示面板为例,可以从0~255中选取一些数值作为灰阶绑点。例如,灰阶绑点可以包括0灰阶、32灰阶、64灰阶、96灰阶、128灰阶、160灰阶、192灰阶、224灰阶、255灰阶。例如,第一灰阶绑点为32灰阶,第二灰阶绑点则可以是0灰阶或64灰阶。例如,第一灰阶绑点为128灰阶,第二灰阶绑点则可以是160灰阶或96灰阶。
当然,可以将灰阶绑点的数量以及灰阶绑点的具体数值设置为不同于上述示例,本申请对此不作限定。
由于随着灰阶的增大,数据电压的数值并非是线性增加的,而显示面板对数据电压的变化非常敏感,将多个灰阶绑点中相邻的两个灰阶绑点作为第一灰阶绑点和第二灰阶绑点,可以避免第一灰阶绑点和第二灰阶绑点的差值过大,避免第一电压差值失去参考性,进一步保证根据第一电压初始值的赋值更准确,进而可以减少在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试的次数,从而减少伽马调试时间,提高生产效率。
在一些可选的实施例中,请继续参考图5,在步骤110之前,本申请实施例提供的伽马调试方法还可以包括步骤170。
步骤170,设置多个亮度等级,其中,第一亮度等级和第二亮度等级为多个亮度等级中选相邻的两个亮度等级。
示例性的,显示面板上会设置亮度调整控件,通常为亮度调整条,滑动该亮度调整条,即可用不同亮度呈现同一画面。亮度等级可以对应于亮度调整条的不同位置。
示例性的,多个亮度等级中可以包括最高亮度等级和最低亮度等级,以及最高亮度等级和最低亮度等级之间的其它亮度等级。例如,亮度等级的数量可以为10个,当然,可以根据实际需求设置亮度等级的数量及各亮度等级对应的目标亮度值,本申请对此不作限定。
如上所述,由于随着灰阶的增大,数据电压的数值并非是线性增加的,而显示面板对数据电压的变化非常敏感,将多个亮度等级中相邻的两个亮度等级作为第一亮度等级和第二亮度等级,可以避免在同一灰阶下第一亮 度等级和第二亮度等级的差值过大,避免第二电压差值失去参考性,进一步保证根据第二电压初始值的赋值更准确,进而可以减少在第二亮度等级下的第一灰阶绑点对第二显示面板进行伽马调试的次数,从而减少伽马调试时间,提高生产效率。
在一些可选的实施例中,第一灰阶绑点对应的目标亮度值大于第二灰阶绑点对应的目标亮度值。在同一灰阶绑点下,第一亮度等级对应的目标亮度值大于第二亮度等级对应的目标亮度值。
在对显示面板进行伽马调试时,可以按照一定的亮度等级顺序及灰阶绑点顺序进行调试。由于亮度采集设备的局限性,在低亮度下的采集准确度没有在高亮度下的采集准确度高,因此,可以按照亮度等级对应的目标亮度逐渐降低以及灰阶绑点逐渐减小的顺序进行伽马调试,并参考第一显示面板在高亮度等级及高灰阶下的电压差值,使得所参考的电压初始值更准确,从而减小在低亮度等级、低灰阶下对第二显示面板进行伽马调试的时间。
为了更清楚的理解本申请,作为一个示例,如图6所示,可以设置灰阶绑点的数量为N 1,多个灰阶绑点分别为灰阶绑点1至灰阶绑点N 1,其中灰阶绑点1至灰阶绑点N 1对应的灰阶值可以依次递减。示例性的,灰阶绑点1可以为255灰阶。另外,可以设置亮度等级的数量为N 2,多个亮度等级分别为亮度等级1至亮度等级N 2,在同一灰阶下,亮度等级1至亮度等级N 2对应的目标亮度值可以依次递减。示例性的,亮度等级1可以为高亮模式(High Brightness Mode,HBM)对应的亮度等级,亮度等级2至亮度等级N 2可以为常规模式(Normal)对应的亮度等级。
示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式,来确定图6中在每个亮度等级下每个灰阶绑点对应的实际电压值;然后按照上述步骤111中确定第一电压差值的方式,来确定图6中在每个亮度等级下相邻灰阶绑点之间的第一电压差值,并确定图6中每个灰阶绑点下相邻亮度等级之间的第二电压差值。
如上所述,可以按照亮度等级对应的目标亮度逐渐降低以及灰阶绑点 逐渐减小的顺序对第一显示面板进行伽马调试,示例性的,亮度等级1为多个亮度等级中的最大亮度等级,灰阶绑点1为多个灰阶绑点中的最大灰阶绑点。
具体的,在亮度等级1下,确定第一显示面板的各相邻灰阶绑点之间的第一电压差值并存储。示例性的,在亮度等级1下,灰阶绑点1与灰阶绑点2之间的第一电压差值存储为GammaStep1[1],灰阶绑点2与灰阶绑点3之间的第一电压差值存储为GammaStep1[2],以此类推,灰阶绑点(N 1-1)与灰阶绑点N 1之间的第一电压差值存储为GammaStep1[N 1-1]。
在各灰阶绑点下,确定相邻亮度等级之间的第二电压差值并存储。以灰阶绑点1且灰阶绑点1为255灰阶为例,在灰阶绑点1下,亮度等级1与亮度等级2之间的第二电压差值存储为Gamma255Step1[1],亮度等级2与亮度等级3之间的第二电压差值存储为Gamma255Step1[2],以此类推,亮度等级(N 2-1)与亮度等级N 2之间的第二电压差值存储为Gamma255Step1[N 2-1]。
在对第二显示面板进行伽马调试时,依然按照亮度等级对应的目标亮度逐渐减低以及灰阶绑点逐渐减小的顺序进行伽马调试。具体的,首先对第二显示面板在亮度等级1下的灰阶绑点1进行伽马调试,确定在亮度等级1下的灰阶绑点1对应的电压值,然后将在亮度等级1下的灰阶绑点1对应的电压值与GammaStep1[1]的差值作为第二显示面板在亮度等级1下的灰阶绑点2的第一电压初始值,以该第一电压初始值对第二显示面板在亮度等级1下的灰阶绑点2进行伽马调试,由于相对于随意设置的电压初始值,该第一电压初始值更准确,因此能够快速确定第二显示面板在亮度等级1下的灰阶绑点2对应的实际电压值。进一步的,将第二显示面板在亮度等级1下的灰阶绑点2对应的实际电压值与GammaStep1[2]的差值作为第二显示面板在亮度等级1下的灰阶绑点3的第一电压初始值,进而确定第二显示面板在亮度等级1下的灰阶绑点3对应的实际电压值。以此类推,将第二显示面板在亮度等级1下的灰阶绑点(N 1-1)对应的实际电压值与GammaStep1[N 1-1]的差值作为第二显示面板在亮度等级1下的灰阶绑点N 1的第一电压初始值,进而确定第二显示面板在亮度等级1下的灰阶绑 点N 1对应的实际电压值。
在亮度等级1下对第二显示面板进行调试完后,针对其它亮度等级下的灰阶绑点1可以按照如下方式进行。
上述已经确定第二显示面板在亮度等级1下的灰阶绑点1对应的电压值,然后将第二显示面板在亮度等级1下的灰阶绑点1对应的电压值与Gamma255Step1[1]的差值作为第二显示面板在亮度等级2下的灰阶绑点1的第二电压初始值,以该第二电压初始值对第二显示面板在亮度等级2下的灰阶绑点1进行伽马调试,由于相对于随意设置的电压初始值,该第二电压初始值更准确,因此能够快速确定第二显示面板在亮度等级2下的灰阶绑点1对应的实际电压值。进一步的,将第二显示面板在亮度等级2下的灰阶绑点1对应的实际电压值与Gamma255Step1[2]的差值作为第二显示面板在亮度等级3下的灰阶绑点1的第二电压初始值,进而确定第二显示面板在亮度等级3下的灰阶绑点1对应的实际电压值。以此类推,将第二显示面板在亮度等级(N 2-1)下的灰阶绑点1对应的实际电压值与Gamma255Step1[N 2-1]的差值作为第二显示面板在亮度等级N 2下的灰阶绑点1的第一电压初始值,进而确定第二显示面板在亮度等级N 2下的灰阶绑点1对应的实际电压值。
以此类推,可以确定亮度等级2至亮度等级N 2下的灰阶绑点2至灰阶绑点(N 1-1)对应的实际电压值。
图6仅是一个示例,并不用于限定本申请。
在一些可选的实施例中,如图7所示,在步骤130之后,本申请实施例提供的伽马调试方法还可以包括步骤181至步骤182。
步骤181,在第一亮度等级下对第N显示面板进行伽马调试,确定第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值,其中,N≥3且为整数。
步骤182,将第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与多个显示面板的第一电压差值的均值之差作为第三电压初始值,在第一亮度等级下的第二灰阶绑点对第N显示面板进行伽马调试。
即使各显示面板属于同一批次,各显示面板之间的特性还是不可避免 的存在差异,在对后面的显示面板进行伽马调试时,以前面已完成伽马调试的各显示面板的第一电压差值确定的均值为参考,可以尽可能的降低显示面板不同特性的影响,从而更准确的为后面的显示面板在第一亮度等级下的第二灰阶绑点赋予电压初始值。
示例性的,多个显示面板的第一电压差值的均值可以是第一显示面板至第N-1显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的各第一电压差值的均值。
示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式,来确定步骤181中第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值,在此不再详细赘述。可以理解的是,第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值下的实际亮度值符合第N显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值。
在对第二显示面板进行伽马调试完成之后,可以得到第二显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的各第一电压差值。继续以灰阶绑点包括灰阶绑点1至灰阶绑点N 1为例,第二显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的各第一电压差值存储为GammaStep2[i],其中,1≤i≤(N 1-1)。GammaStep2[1]表示第二显示面板在亮度等级1下,灰阶绑点1与灰阶绑点2之间的第一电压差值,GammaStep2[2]表示第二显示面板在亮度等级1下,灰阶绑点2与灰阶绑点3之间的第一电压差值,以此类推。
示例性的,可以根据式(1)计算步骤182中的多个显示面板的第一电压差值的均值:
Figure PCTCN2021124554-appb-000001
其中,GammaStep[i]表示多个显示面板的第一电压差值的均值,GammaStep(N-1)[i]表示第N-1显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的各第一电压差值。
在一些可选的实施例中,步骤182具体可以包括:将第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与多个显示面板的第一电压 差值的均值之差作为第三电压初始值,在第一亮度等级下的第二灰阶绑点对第N显示面板进行伽马调试,确定第N显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值。示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式,来确定步骤182中第N显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值,在此不再详细赘述。可以理解的是,第N显示面板在第一亮度等级下的第二灰阶绑点对应的实际电压值下的实际亮度值符合第N显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值。
为了更好的理解本提案,下面举一个例子,例如,待调试显示面板包括第一显示面板至第十显示面板,在对第一显示面板和第二显示面板进行伽马调试之后,可以根据第一显示面板和第二显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的各第一电压差值,确定第一显示面板和第二显示面板的第一电压差值的均值,然后以第一显示面板和第二显示面板所确定的第一电压差值的均值,来确定第三显示面板在第一亮度等级下的第二灰阶绑点对应的电压初始值,进而对第三显示面板进行伽马调试,接着以第一显示面板至第三显示面板所确定的第一电压差值的均值,来确定第四显示面板在第一亮度等级下的第二灰阶绑点对应的电压初始值,进而对第四显示面板进行伽马调试,以此类推,以第一显示面板至第九显示面板所确定的第一电压差值的均值,来确定第十显示面板在第一亮度等级下的第二灰阶绑点对应的电压初始值,进而对第十显示面板进行伽马调试。也就是说,在依次对第三显示面板及第三显示面板之后的显示面板进行伽马调试时,其在第一亮度等级下的第二灰阶绑点对应的电压初始值均是依据其前面的已完成调试的显示面板所确定的第一电压差值的均值来确定的。
在一些可选的实施例中,请继续参考图7,在步骤130之后,本申请实施例提供的伽马调试方法还可以包括步骤183。
步骤183,将第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与多个显示面板的第二电压差值的均值之差作为第四电压初始值,在第二亮度等级下的第一灰阶绑点对第N显示面板进行伽马调试。
如上所述,即使各显示面板属于同一批次,各显示面板之间的特性还是不可避免的存在差异,在对后面的显示面板进行伽马调试时,以前面已完成伽马调试的各显示面板的第二电压差值确定的均值为参考,可以尽可能的降低显示面板不同特性的影响,从而更准确的为后面的显示面板在第二亮度等级下的第一灰阶绑点赋予电压初始值。
示例性的,多个显示面板的第二电压差值的均值可以是第一显示面板至第N-1显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的各第二电压差值的均值。
在对第二显示面板进行伽马调试完成之后,可以得到第二显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的各第二电压差值。继续以亮度等级包括亮度等级1至亮度等级N 2,第一灰阶绑点为255灰阶为例,第二显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的各第二电压差值存储为Gamma255Step2[i],其中,1≤i≤(N 1-1)。Gamma255Step2[1]表示第二显示面板在灰阶绑点1下,亮度等级1与亮度等级2之间的第二电压差值,Gamma255Step2[2]表示第二显示面板在灰阶绑点1下,亮度等级2与亮度等级3之间的第二电压差值,以此类推。
在步骤183中,可以根据式(2)计算多个显示面板的第二电压差值的均值:
Figure PCTCN2021124554-appb-000002
其中,Gamma255Step[i]表示多个显示面板的第二电压差值的均值,Gamma255Step(N-1)[i]表示第N-1显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的各第二电压差值。
在一些可选的实施例中,步骤183具体可以包括:将第N显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与多个显示面板的第二电压差值的均值之差作为第四电压初始值,在第二亮度等级下的第一灰阶绑点对第N显示面板进行伽马调试,确定第N显示面板在第二亮度等级下的第一灰阶绑点对应的实际电压值。示例性的,可以按照上述步骤111中确定第一显示面板在第一亮度等级下的第一灰阶绑点对应的实际电压值的方式, 来确定步骤183中第N显示面板在第二亮度等级下的第一灰阶绑点对应的实际电压值,在此不再详细赘述。可以理解的是,第N显示面板在第二亮度等级下的第一灰阶绑点对应的实际电压值下的实际亮度值符合第N显示面板在第二亮度等级下的第一灰阶绑点对应的目标亮度值。
为了更好的理解本提案,下面再举一个例子,例如,待调试显示面板包括第一显示面板至第十显示面板,在对第一显示面板和第二显示面板进行伽马调试之后,可以根据第一显示面板和第二显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的各第二电压差值,确定第一显示面板和第二显示面板的第二电压差值的均值,然后以第一显示面板和第二显示面板所确定的第二电压差值的均值,来确定第三显示面板在第二亮度等级下的第一灰阶绑点对应的电压初始值,进而对第三显示面板进行伽马调试,接着以第一显示面板至第三显示面板所确定的第二电压差值的均值,来确定第四显示面板在第二亮度等级下的第一灰阶绑点对应的电压初始值,进而对第四显示面板进行伽马调试,以此类推,以第一显示面板至第九显示面板所确定的第二电压差值的均值,来确定第十显示面板在第二亮度等级下的第一灰阶绑点对应的电压初始值,进而对第十显示面板进行伽马调试。也就是说,在依次对第三显示面板及第三显示面板之后的显示面板进行伽马调试时,其在第二亮度等级下的第一灰阶绑点对应的电压初始值均是依据其前面的已完成调试的显示面板所确定的第二电压差值均值来确定的。
可以理解的是,显示面板通常包括红色子像素、绿色子像素和蓝色子像素,对任意一种子像素均可按照上述伽马调试方法进行调试。例如对于红色子像素,则本文中的电压值或电压差值是指红色子像素对应的电压值或电压差值,绿色子像素和蓝色子像素同理。
本申请发明人按照本申请实施例提供的伽马调试方法对显示面板进行调试,并按照传统的随意赋电压初值的伽马调试方法对显示面板进行调试,得到如图8所示的伽马调试时间对比。图8中纵坐标表示实际调试时间,横坐标表示不同显示面板,曲线A表示按照传统的随意赋电压初值的伽马调试方法对显示面板进行调试所需的时间,曲线B表示按照本申请实施例 提供的伽马调试方法对显示面板进行调试所需的时间,可见,与传统的伽马调试方法相比,本申请实施例提供的伽马调试方法能够将伽马调试时间缩减约60%,从而可大大减少伽马调试时间,提高生产效率。
本申请实施例还提供一种伽马调试装置。如图9所示,本申请实施例提供的伽马调试装置800包括电压差值获取模块801、电压值确定模块802及调试模块803。
电压差值获取模块801,用于获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值。
电压值确定模块802,用于在第一亮度等级下对第二显示面板进行伽马调试,确定第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值。
调试模块803,用于将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。
根据本申请实施例提供的伽马调试装置,先获取第一显示面板的第一灰阶绑点与第二灰阶绑点之间的第一电压差值,在第一亮度等级下对第二显示面板进行伽马调试时,仅需确定第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值,将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第一电压差值之差作为第一电压初始值,进而在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试。该第一电压初始值更接近第二显示面板在第一亮度等级下的第二灰阶绑点所对应的实际电压值,相对于随意设置第二显示面板在第一亮度等级下的第二灰阶绑点对应的电压初始值,根据第一电压初始值的赋值更准确,进而可以减少在第一亮度等级下的第二灰阶绑点对第二显示面板进行伽马调试的次数,从而减少伽马调试时间,提高生产效率。
在一些可选的实施例中,电压差值获取模块801还用于:
获取第一显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的第二电压差值。
在一些可选的实施例中,调试模块803还用于:
将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与第二电压差值之差作为第二电压初始值,在第二亮度等级下的第一灰阶绑点对第二显示面板进行伽马调试。
在一些可选的实施例中,电压值确定模块802还用于:
在第一亮度等级下对第N显示面板进行伽马调试,确定第N显示面板在第一灰阶绑点下的电压值,其中,N≥3且为整数。
在一些可选的实施例中,调试模块803还用于:
将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与多个显示面板的第一电压差值的均值之差作为第三电压初始值,在第一亮度等级下的第二灰阶绑点对第N显示面板进行伽马调试。
在一些可选的实施例中,如图9所示,本申请实施例提供的伽马调试装置还包括均值确定模块804,均值确定模块804用于:
根据第一显示面板至第N-1显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的各第一电压差值,确定第一电压差值的均值。
在一些可选的实施例中,均值确定模块804还用于:
根据第一显示面板至第N-1显示面板在第一灰阶绑点下的第一亮度等级与第二亮度等级之间的各第二电压差值,确定第二电压差值的均值。
在一些可选的实施例中,调试模块803还用于:
将第二显示面板在第一亮度等级下的第一灰阶绑点对应的电压值与多个显示面板的第二电压差值的均值之差作为第四电压初始值,在第二亮度等级下的第一灰阶绑点对第N显示面板进行伽马调试。
在一些可选的实施例中,如图10所示,本申请实施例提供的伽马调试装置还包括参数设置模块805,参数设置模块805用于:
设置多个灰阶绑点,其中,第一灰阶绑点和第二灰阶绑点为多个灰阶绑点中相邻的两个灰阶绑点。
在一些可选的实施例中,在同一亮度等级下,第一灰阶绑点对应的目标亮度值大于第二灰阶绑点对应的目标亮度值。
在一些可选的实施例中,参数设置模块805还用于:
设置多个亮度等级,其中,第一亮度等级和第二亮度等级为多个亮度 等级中相邻的两个亮度等级。
在一些可选的实施例中,在同一灰阶绑点下,第一亮度等级对应的目标亮度值大于第二亮度等级对应的目标亮度值。
图11示出了本申请实施例提供的伽马调试设备的硬件结构示意图。
在伽马调试设备可以包括处理器901以及存储有计算机程序指令的存储器902。
具体地,上述处理器901可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本发明实施例的一个或多个集成电路。
存储器902可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器902可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器902可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器902可在综合网关容灾设备的内部或外部。在特定实施例中,存储器902是非易失性固态存储器。在特定实施例中,存储器902包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器901通过读取并执行存储器902中存储的计算机程序指令,以实现上述实施例中的任意一种伽马调试方法。
在一个示例中,伽马调试设备还可包括通信接口903和总线910。其中,如图11所示,处理器901、存储器902、通信接口903通过总线910连接并完成相互间的通信。
通信接口903,主要用于实现本发明实施例中各模块、装置、单元和/或设备之间的通信。
总线910包括硬件、软件或两者,将补偿电压确定设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他 图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线910可包括一个或多个总线。尽管本发明实施例描述和示出了特定的总线,但本发明考虑任何合适的总线或互连。
该伽马调试设备可以执行本申请实施例中的伽马调试方法,从而实现结合图1和图9描述的伽马调试方法和伽马调试装置。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时可实现上述实施例中的伽马调试方法,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,上述计算机可读存储介质可包括只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等,在此并不限定。示例性的,计算机可读存储介质的示例包括非暂态机器可读介质,如电子电路、半导体存储器设备、闪存、可擦除ROM(EROM)、软盘、CD-ROM、硬盘等。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (17)

  1. 一种伽马调试方法,所述方法包括:
    获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值;
    在所述第一亮度等级下对第二显示面板进行伽马调试,确定所述第二显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值;
    将所述第二显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与所述第一电压差值之差作为第一电压初始值,在所述第一亮度等级下的所述第二灰阶绑点对所述第二显示面板进行伽马调试。
  2. 根据权利要求1所述的伽马调试方法,其中,所述方法还包括:
    获取所述第一显示面板在所述第一灰阶绑点下的所述第一亮度等级与所述第二亮度等级之间的第二电压差值;
    将所述第二显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与所述第二电压差值之差作为第二电压初始值,在所述第二亮度等级下的所述第一灰阶绑点对所述第二显示面板进行伽马调试。
  3. 根据权利要求2所述的伽马调试方法,其中,所述方法还包括:
    在所述第一亮度等级下对第N显示面板进行伽马调试,确定所述第N显示面板在所述第一灰阶绑点下的电压值,其中,N≥3且为整数;
    将所述第N显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与多个显示面板的所述第一电压差值的均值之差作为第三电压初始值,在所述第一亮度等级下的所述第二灰阶绑点对所述第N显示面板进行伽马调试。
  4. 根据权利要求3所述的伽马调试方法,其中,所述方法还包括:
    将所述第N显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与多个显示面板的所述第二电压差值的均值之差作为第四电压初始值,在所述第二亮度等级下的所述第一灰阶绑点对所述第N显示面板进行伽马调试。
  5. 根据权利要求1所述的伽马调试方法,其中,所述方法还包括:
    设置多个灰阶绑点,其中,所述第一灰阶绑点和所述第二灰阶绑点为 多个所述灰阶绑点中相邻的两个灰阶绑点。
  6. 根据权利要求5所述的伽马调试方法,其中,在同一亮度等级下,所述第一灰阶绑点对应的目标亮度值大于所述第二灰阶绑点对应的目标亮度值。
  7. 根据权利要求2所述的伽马调试方法,其中,所述方法还包括:
    设置多个亮度等级,其中,所述第一亮度等级和所述第二亮度等级为多个所述亮度等级中相邻的两个亮度等级。
  8. 根据权利要求7所述的伽马调试方法,其中,在同一灰阶绑点下,所述第一亮度等级对应的目标亮度值大于所述第二亮度等级对应的目标亮度值。
  9. 根据权利要求1所述的伽马调试方法,其中,所述第一显示面板和所述第二显示面板为同一批次的显示面板。
  10. 根据权利要求1所述的伽马调试方法,其中,在所述获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值之前,所述方法还包括:
    设置所述第一显示面板在第一亮度等级下的第一灰阶绑点对应的电压初始值以及在第一亮度等级下的第二灰阶绑点对应的电压初始值;
    判断所述第一显示面板在电压初始值下的实际亮度是否符合第一显示面板在第一亮度等级下的第一灰阶绑点对应的目标亮度值,并判断第一显示面板在电压初始值下的实际亮度是否符合第一显示面板在第一亮度等级下的第二灰阶绑点对应的目标亮度值;
    若均不符合,则调整电压初始值及电压初始值,得到调整后的电压初始值和调整后的电压初始值,所述第一显示面板在调整后的电压初始值和调整后的电压初始值下的实际亮度符合各自对应的目标亮度值;
    将调整后的电压初始值与调整后的电压初始值的差值作为第一电压差值。
  11. 根据权利要求2所述的伽马调试方法,其中,所述方法还包括:
    设置多个亮度等级和多个亮度等级;
    按照所述亮度等级对应的目标亮度逐渐降低以及所述灰阶绑点逐渐减 小的顺序对所述第一显示面板进行伽马调试。
  12. 一种伽马调试装置,所述装置包括:
    电压差值获取模块,用于获取第一显示面板在第一亮度等级下的第一灰阶绑点与第二灰阶绑点之间的第一电压差值;
    电压值确定模块,用于在所述第一亮度等级下对第二显示面板进行伽马调试,确定所述第二显示面板在所述第一灰阶绑点下的电压值;
    调试模块,用于将所述第二显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与所述第一电压差值之差作为第一电压初始值,在所述第一亮度等级下的所述第二灰阶绑点对所述第二显示面板进行伽马调试。
  13. 根据权利要求12所述的伽马调试装置,其中,所述电压值确定模块还用于:
    在所述第一亮度等级下对第N显示面板进行伽马调试,确定第N显示面板在所述第一灰阶绑点下的电压值,其中,N≥3且为整数。
    调试模块还用于:
    将所述第二显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与多个显示面板的所述第一电压差值的均值之差作为第三电压初始值,在所述第一亮度等级下的所述第二灰阶绑点对所述第N显示面板进行伽马调试。
  14. 根据权利要求13所述的伽马调试装置,还包括均值确定模块,所述均值确定模块用于:
    根据所述第一显示面板至第N-1显示面板在所述第一亮度等级下的所述第一灰阶绑点与所述第二灰阶绑点之间的各第一电压差值,确定第一电压差值的均值,或者
    根据所述第一显示面板至第N-1显示面板在所述第一灰阶绑点下的所述第一亮度等级与所述第二亮度等级之间的各第二电压差值,确定第二电压差值的均值。
  15. 根据权利要求14所述的伽马调试装置,其中,所述调试模块还用于:
    将所述第二显示面板在所述第一亮度等级下的所述第一灰阶绑点对应的电压值与多个显示面板的所述第二电压差值的均值之差作为第四电压初始值,在所述第二亮度等级下的所述第一灰阶绑点对所述第N显示面板进行伽马调试。
  16. 根据权利要求12所述的伽马调试装置,还包括参数设置模块,所述参数设置模块用于:
    设置多个灰阶绑点,其中,所述第一灰阶绑点和所述第二灰阶绑点为多个灰阶绑点中相邻的两个灰阶绑点,或者
    设置多个亮度等级,其中,所述第一亮度等级和所述第二亮度等级为多个亮度等级中相邻的两个亮度等级。
  17. 一种伽马调试设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任意一项所述的伽马调试方法。
PCT/CN2021/124554 2021-01-28 2021-10-19 伽马调试方法、装置及设备 WO2022160786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/341,044 US20230335080A1 (en) 2021-01-28 2023-06-26 Method, apparatus and device for gamma debugging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110120573.8 2021-01-28
CN202110120573.8A CN112820233B (zh) 2021-01-28 2021-01-28 伽马调试方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/341,044 Continuation US20230335080A1 (en) 2021-01-28 2023-06-26 Method, apparatus and device for gamma debugging

Publications (1)

Publication Number Publication Date
WO2022160786A1 true WO2022160786A1 (zh) 2022-08-04

Family

ID=75860028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124554 WO2022160786A1 (zh) 2021-01-28 2021-10-19 伽马调试方法、装置及设备

Country Status (3)

Country Link
US (1) US20230335080A1 (zh)
CN (1) CN112820233B (zh)
WO (1) WO2022160786A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820233B (zh) * 2021-01-28 2022-09-13 昆山国显光电有限公司 伽马调试方法、装置及设备
CN113393794B (zh) * 2021-06-15 2022-04-15 昆山国显光电有限公司 伽马调试方法、装置及设备
CN114267316B (zh) * 2021-12-17 2023-06-20 昆山工研院新型平板显示技术中心有限公司 伽马调试方法、电子设备及计算机可读存储介质
CN116935769B (zh) * 2023-09-14 2023-12-22 深圳市东陆科技有限公司 一种oled显示模组不良特性的检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020018900A (ko) * 2000-09-04 2002-03-09 김영남 플라즈마 디스프레이 패널에서의 감마 보정장치 및 방법
CN108550345A (zh) * 2018-07-12 2018-09-18 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN111754913A (zh) * 2020-06-29 2020-10-09 昆山国显光电有限公司 一种伽马计算方法、装置和显示面板
CN112071264A (zh) * 2020-09-09 2020-12-11 北京集创北方科技股份有限公司 伽马校正方法及装置
CN112820233A (zh) * 2021-01-28 2021-05-18 昆山国显光电有限公司 伽马调试方法、装置及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020018900A (ko) * 2000-09-04 2002-03-09 김영남 플라즈마 디스프레이 패널에서의 감마 보정장치 및 방법
CN108550345A (zh) * 2018-07-12 2018-09-18 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN111754913A (zh) * 2020-06-29 2020-10-09 昆山国显光电有限公司 一种伽马计算方法、装置和显示面板
CN112071264A (zh) * 2020-09-09 2020-12-11 北京集创北方科技股份有限公司 伽马校正方法及装置
CN112820233A (zh) * 2021-01-28 2021-05-18 昆山国显光电有限公司 伽马调试方法、装置及设备

Also Published As

Publication number Publication date
CN112820233B (zh) 2022-09-13
CN112820233A (zh) 2021-05-18
US20230335080A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2022160786A1 (zh) 伽马调试方法、装置及设备
US10269286B2 (en) Gamma correction method and gamma correction device for display module
WO2017190545A1 (zh) 伽马调整的方法及装置
CN112530347B (zh) 补偿灰阶确定方法、装置及设备
CN108039143B (zh) 一种伽马电路调整的方法及装置
JP2020518849A (ja) 表示パネルのムラ現象補償方法および表示パネル
US20240005887A1 (en) Method for configuring compensation look-up table, method for compensating display panel, apparatus for configuring compensation look-up table
US20240112615A1 (en) Gamma tuning method, apparatus, device, and storage medium
CN110245747A (zh) 基于全卷积神经网络的图像处理方法及装置
WO2024031832A1 (zh) 一种显示面板及其亮度补偿方法、补偿装置、补偿设备
US11749165B2 (en) Brightness parameter correction method and device and brightness compensation system
CN114267316B (zh) 伽马调试方法、电子设备及计算机可读存储介质
CN114898693A (zh) 伽马调试方法、装置、显示装置及计算机可读存储介质
CN113393794B (zh) 伽马调试方法、装置及设备
US10276111B2 (en) Mura compensation method for display panel and display panel
CN112908240B (zh) 伽马调试方法、装置及设备
US20240127733A1 (en) Method, apparatus, and device for driving display screen to display
CN114283745A (zh) 显示面板的亮度补偿方法及相关装置
CN114882843B (zh) 显示面板的亮度补偿方法、装置及计算机可读存储介质
WO2023245894A1 (zh) 显示面板的补偿方法、装置、设备及存储介质
CN113327552B (zh) 伽马调试方法及其装置、电子设备及存储介质
CN115359751A (zh) 伽马调试方法及装置、计算机可读存储介质
CN116052593A (zh) 伽马调节方法、装置、设备及存储介质
CN106447594B (zh) 图像处理装置及其方法
CN114639346B (zh) Mura补偿方法、装置、设备、存储介质和计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922377

Country of ref document: EP

Kind code of ref document: A1