WO2022160761A1 - 双立体相机的标定方法及装置 - Google Patents

双立体相机的标定方法及装置 Download PDF

Info

Publication number
WO2022160761A1
WO2022160761A1 PCT/CN2021/121464 CN2021121464W WO2022160761A1 WO 2022160761 A1 WO2022160761 A1 WO 2022160761A1 CN 2021121464 W CN2021121464 W CN 2021121464W WO 2022160761 A1 WO2022160761 A1 WO 2022160761A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereo camera
corner point
coordinates
effective area
corner
Prior art date
Application number
PCT/CN2021/121464
Other languages
English (en)
French (fr)
Inventor
刘锋
Original Assignee
北京罗克维尔斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京罗克维尔斯科技有限公司 filed Critical 北京罗克维尔斯科技有限公司
Publication of WO2022160761A1 publication Critical patent/WO2022160761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration

Definitions

  • the present disclosure relates to the technical field of computer vision, and in particular, to a calibration method and device for dual stereo cameras, an electronic device and a storage medium.
  • the stereo camera can obtain the 3D point cloud of the target object, and the point cloud can be used to realize 3D reconstruction, detection and measurement of the target.
  • the two stereo cameras can be kept in a fixed positional relationship, and at the same time, point clouds can be obtained and stitched together to expand the field of view and obtain point clouds of larger targets.
  • To complete the splicing of the point clouds obtained by the two stereo cameras the most important thing is to unify the point clouds obtained by the two stereo cameras into the same coordinate system, that is, to find the transformation matrix of the coordinate systems where the two cameras are located to complete the two stereo cameras. Camera extrinsic calibration.
  • one solution is to complete the calibration of the stereo camera by shooting two-dimensional images and three-dimensional point clouds of the calibration chessboard fixed on the calibration plate in different postures.
  • Another solution is to use wrinkled paper regardless of thickness, and use the iterative closest point algorithm to calibrate the external parameters of multiple stereo cameras.
  • both calibration methods require the camera to have a sufficient field of view. Overlapping area, which leads to waste if the overlapping area of the field of view is too large, and the overlapping area of the field of view is too small to put down the calibration plate or the calibration object, which will lead to the overlapping area of the field of view being too large or too small. will be ineffective.
  • a global coordinate system can also be established in various ways, and marker points can be prepared in advance in the global coordinate system, and the marker points are known in the global coordinate system, but a total station or complex calibration objects are often required to cooperate, increasing the The cost of completing stereo camera calibration.
  • the present disclosure provides a method and device for calibrating dual stereo cameras, an electronic device and a storage medium, which realize the method for calibrating dual stereo cameras without overlapping fields of view, and the calibration
  • the production of the board is relatively simple, and the calibration efficiency and accuracy are high, which effectively reduces the cost of completing the calibration of the dual stereo cameras.
  • an embodiment of the present disclosure provides a method for calibrating a dual stereo camera, including:
  • the calibration plate is placed in the field of view of the first stereo camera and the second stereo camera; wherein the fields of view of the first stereo camera and the second stereo camera do not overlap, and the calibration plate is provided with a first stereo camera.
  • an effective area, a second effective area, and a blank area located between the first effective area and the second effective area the first effective area is located in the field of view of the first stereo camera, the second effective area
  • the effective area is located in the field of view of the second stereo camera, the first effective area and the second effective area are provided with a black and white checkerboard pattern, and the overlapping point of the adjacent black checkerboard is a corner point, located at the The corner point in the first effective area is the first corner point, and the corner point in the second effective area is the second corner point;
  • the calibration transformation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located is obtained according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • fitting the first corner points on the same straight line into a straight line according to the shooting coordinates of the first corner point including:
  • a least squares algorithm or a random sampling consensus algorithm is used to fit all the first corner points to a plane.
  • the straight line is parallel to the arrangement direction of the first effective area and the second effective area;
  • the calculated coordinates of the second corner point located on the fitted straight line are obtained according to the shooting coordinates of the first corner point and the sum of the number of checkerboards.
  • obtaining the calculated coordinates of the second corner point located on the fitted straight line according to the shooting coordinates of the first corner point and the sum of the number of checkerboards including:
  • the product of the sum and the side length of the checkerboard is the distance between the first corner point and the second corner point located on the same fitted straight line;
  • the calculated coordinates of the second corner point located on the fitted straight line are obtained according to the shooting coordinates of the first corner point, the fitted equation of the straight line, and the distance.
  • the calculated coordinates of all the second corner points located on the fitted straight line are obtained according to the shooting coordinates of at least one of the first corner points in each row and the sum of the number of checkerboards.
  • the calibration transformation matrix includes a rotation matrix and a translation matrix
  • the different second corner points list a plurality of sets of the calculated coordinates of the second corner points, the shooting coordinates of the second corner points, the relationship equation between the rotation matrix and the translation matrix;
  • the rotation matrix and the translation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located are obtained according to the relational equation.
  • R is the rotation matrix
  • T is the translation matrix
  • (Px', Py', Pz') is the calculated coordinates of the second corner
  • (Px, Py, Pz) is the shooting coordinates of the second corner .
  • a singular value decomposition algorithm is used to obtain a calibration transformation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • the pose of the calibration plate includes the distance from the calibration plate to the first stereo camera and the second stereo camera, and/or, the calibration plate is relative to the first stereo camera and the second stereo camera.
  • the tilt angle of the second stereo camera is the distance from the calibration plate to the first stereo camera and the second stereo camera.
  • the shooting coordinates of the first corner point of the calibration board in at least eight different poses are acquired.
  • an embodiment of the present disclosure further provides a calibration device for dual stereo cameras, including:
  • a calibration plate setting module used for placing the calibration plate in the field of view of the first stereo camera and the second stereo camera; wherein the fields of view of the first stereo camera and the second stereo camera do not overlap, and the
  • the calibration board is provided with a first effective area, a second effective area and a blank area between the first effective area and the second effective area, and the first effective area is located in the view of the first stereo camera.
  • the second effective area is located in the field of view of the second stereo camera
  • the first effective area and the second effective area are provided with a black and white checkerboard pattern, and the overlapping of adjacent black checkerboards
  • the point is a corner point, the corner point located in the first effective area is the first corner point, and the corner point located in the second effective area is the second corner point;
  • a first coordinate acquisition module configured to acquire the shooting coordinates of the first corner point and the second corner point of the calibration board in different poses
  • a fitting module configured to fit the first corner points on the same straight line into a straight line according to the shooting coordinates of the first corner point
  • a second coordinate acquisition module configured to acquire the calculated coordinates of the second corner point located on the fitted straight line according to the shooting coordinates of the first corner point and the equivalent checkerboard occlusion pattern in the blank area ;
  • a matrix acquisition module configured to acquire a calibration transformation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • an embodiment of the present disclosure further provides an electronic device, including a processor and a memory, the processor executes the calibration of the dual stereo cameras according to the first aspect by calling a program or an instruction stored in the memory steps of the method.
  • an embodiment of the present disclosure further provides a storage medium, where the storage medium stores a program or an instruction, and the program or instruction causes a computer to execute the steps of the method for calibrating a dual stereo camera according to the first aspect.
  • the calibration plate is placed in the field of view of the first stereo camera and the second stereo camera, the fields of view of the first stereo camera and the second stereo camera do not overlap, and the calibration plate is provided with a first effective area, a second effective area, and a blank area located between the first effective area and the second effective area, the first effective area is located in the field of view of the first stereo camera, and the second effective area is located in the field of view of the second stereo camera , the first effective area and the second effective area are provided with black and white checkerboard patterns, the overlapping points of adjacent black checkerboards are corner points, the corner points located in the first effective area are the first corner points, and the corner points located in the second effective area are The corner point in the area is the second corner point.
  • the shooting coordinates of the first corner points of the calibration board in different poses fit the first corner points on the same line into a straight line according to the shooting coordinates of the first corner point, and fit the first corner points on the same line into a straight line according to the shooting coordinates of the first corner point. and the equivalent checkerboard occlusion pattern in the blank area to obtain the calculated coordinates of the second corner point on the fitted straight line, and obtain the shooting coordinates of the second corner point of the calibration board in different poses, according to the same second corner point
  • the calculated coordinates and the shooting coordinates of obtain the calibration transformation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located.
  • the embodiments of the present disclosure implement a method for calibrating dual stereo cameras without overlapping fields of view.
  • the manufacture of the calibration plate is relatively simple, the calibration efficiency and accuracy are high, and third-party tools such as a total station are not required.
  • the cost of completing the calibration of the dual stereo cameras is reduced.
  • FIG. 1 is a schematic flowchart of a method for calibrating dual stereo cameras according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the position structure of a dual stereo camera according to an embodiment of the present disclosure
  • FIG. 3 is a schematic top-view structural diagram of a calibration plate provided by an embodiment of the present disclosure.
  • Fig. 4 is the top view structure schematic diagram of the original calibration plate
  • FIG. 5 is a schematic structural diagram of a calibration device for dual stereo cameras according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for calibrating dual stereo cameras according to an embodiment of the present disclosure.
  • the method for calibrating dual stereo cameras can be applied to application scenarios where dual stereo cameras need to be calibrated, and can be performed by the calibration device for dual stereo cameras provided by the embodiments of the present disclosure, which way to achieve.
  • the calibration method for dual stereo cameras includes the following steps:
  • FIG. 2 is a schematic diagram of a positional structure of a dual stereo camera according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a top-view structure of a calibration plate according to an embodiment of the present disclosure.
  • the first stereo camera 1 and the second stereo camera 2 are located at the same level, wherein the field of view 100 is the field of view of the first stereo camera 1, the field of view 200 is the field of view of the second stereo camera 2, The fields of view of the first stereo camera 1 and the second stereo camera 2 do not overlap.
  • the calibration board 3 is provided with a first effective area 10, a second effective area 20 and a blank area 30 located between the first effective area 10 and the second effective area 20.
  • the blank area 30 can also be called an invalid area.
  • 3 is placed in the field of view of the first stereo camera 1 and the second stereo camera 2
  • the first effective area 10 can be set in the field of view 100 of the first stereo camera 1
  • the second effective area 20 is located in the second stereo camera 2.
  • the first effective area 10 on the calibration plate 3 is completely in the field of view of the first stereo camera 1
  • the second effective area 20 on the calibration plate 3 is completely in the field of view of the second stereo camera 2 .
  • the first effective area 10 and the second effective area 20 are provided with black and white checkerboard patterns, the overlapping points of adjacent black checkerboards are corner points, and the corner points located in the first effective area 10 are the first corner points, which are located in the first corner.
  • the corner points in the second effective area 20 are the second corner points.
  • point A is the first corner point
  • point B is the second corner point.
  • FIG. 4 is a schematic top-view structural diagram of the original calibration plate. As shown in FIG. 4 , which is an original calibration plate commonly used at present, the calibration plate 3 used in the embodiment of the present disclosure shown in FIG. 3 only needs to cover the middle part of the original calibration plate to form a middle blank area 30 and two The first effective area 10 and the second effective area 20 on the side make the manufacture of the calibration plate 3 used in the embodiment of the present disclosure relatively simple.
  • the first stereo camera 1 photographs the first effective area 10 , acquires a two-dimensional image and a three-dimensional point cloud in the first effective area 10 , and extracts two images obtained by the first stereo camera 1 .
  • the first corner point in the 3D image is determined and the shooting coordinates of the first corner point are determined, and the shooting coordinates of the first corner point are the three-dimensional coordinates corresponding to the first corner point in the point cloud.
  • the shooting coordinates of the first corner point of the calibration board 3 in different poses can be obtained.
  • the pose of the calibration plate 3 may include the distances from the calibration plate 3 to the first stereo camera 1 and the second stereo camera 2 , and/or the calibration plate 3 relative to the first stereo camera 1 and the second stereo camera 2 angle of inclination.
  • the pose of the calibration plate 3 is constantly changed, that is, the distances from the calibration plate 3 to the first stereo camera 1 and the second stereo camera 2 are continuously adjusted, and the calibration plate 3 relative to the The tilt angles of the first stereo camera 1 and the second stereo camera 2 are adjusted every time the pose of the calibration board 3 is adjusted, and the shooting coordinates of the first corner point corresponding to one pose of the calibration board 3 are obtained.
  • it may be set to acquire the shooting coordinates of the first corner point of the calibration board 3 in at least eight different poses.
  • the distance between 1 and the second stereo camera 2, or the inclination angle of the calibration plate 3 relative to the first stereo camera 1 and the second stereo camera 2 is different.
  • Increasing the sampling times of the first corner shooting coordinates is beneficial to improve the accuracy of the camera calibration results. sex and precision.
  • the second stereo camera 2 photographs the second effective area 20 , obtains a two-dimensional image and a three-dimensional point cloud of the second effective area 20 , and extracts the two-dimensional image obtained by the second stereo camera 2 .
  • the second corner point in the image and the shooting coordinates of the second corner point are determined.
  • the shooting coordinates of the second corner point are the three-dimensional coordinates corresponding to the second corner point in the point cloud, and the shooting coordinates of the second corner point are the second corner point.
  • the shooting coordinates of the second corner point of the calibration board 3 in different poses can be obtained.
  • the pose of the calibration plate 3 is constantly changed, that is, the distances from the calibration plate 3 to the first stereo camera 1 and the second stereo camera 2 are constantly adjusted, and The inclination angle of the calibration plate 3 relative to the first stereo camera 1 and the second stereo camera 2, every time the posture of the calibration plate 3 is adjusted, the first corner point and the second corner point corresponding to one posture of the calibration plate 3 are obtained.
  • Shooting coordinates Exemplarily, it may be set to acquire the shooting coordinates of the first corner point and the second corner point of the calibration board 3 in at least eight different poses.
  • each time the pose of the calibration board 3 is adjusted a set of samples of the shooting coordinates of the first corner point and the second corner point are formed, and the poses of the calibration board 3 corresponding to each set of samples are different, that is, the corresponding calibration board 3
  • the distance to the first stereo camera 1 and the second stereo camera 2, or the inclination angle of the calibration plate 3 relative to the first stereo camera 1 and the second stereo camera 2 is different, increase the shooting coordinates of the first corner point and the second corner point.
  • the sampling times are beneficial to improve the accuracy and precision of the camera calibration results.
  • the first corner points on the same straight line are fitted into a straight line according to the shooting coordinates of the first corner points, and all the first corner points can be Points fit to a plane.
  • the least squares algorithm or the random sampling consensus algorithm can be used to fit all the first corner points to a plane.
  • the first stereo camera 1 photographs the first effective area 10 , obtains a two-dimensional image and a three-dimensional point cloud of the first effective area 10 , and extracts the first corner point in the two-dimensional image obtained by the first stereo camera 1 And determine the shooting coordinates of the first corner points.
  • the three-dimensional coordinate points corresponding to all the first corner points are consistent with the least squares algorithm or random sampling.
  • the algorithm fits to a plane.
  • the first corner point is projected on the plane to form a projected point, and the projected points on the same straight line are fitted as a straight line.
  • the straight line fitted through the projection points can be, for example, a line connecting the first corner points in a horizontal row in FIG. 3 , that is, the fitted straight line is parallel to the first effective area 10 and the second effective area 20 . Arrangement direction.
  • the height of the first corner points obtained by shooting will change, so that all the first corner points are no longer on the same plane.
  • the first corner point is fitted to a plane, and then the first corner point is projected on the plane according to the shooting coordinates of the first corner point to form a projection point, and the projection points on the same straight line are fitted to a straight line, which can The shooting measurement error of the first stereo camera 1 is effectively eliminated.
  • the fitted straight line is parallel to the arrangement direction of the first effective area 10 and the second effective area 20 , that is, the straight line fitted through the projection points can be, for example, a line connecting the first corner points in a horizontal row in FIG. 3 , according to
  • the shooting coordinates of the first corner point and the equivalent checkerboard occlusion pattern in the blank area 30 obtain the calculated coordinates of the second corner point located on the fitted straight line, and the right side can be solved according to the known geometric relationship when making the calibration plate 3
  • the calculated coordinates of the second corner points located on the fitted straight line in the second effective area 20 are the three-dimensional coordinates of the three-dimensional point cloud corresponding to the second corner points located on the fitted straight line obtained by calculation.
  • the number of checkerboards contained in the horizontal direction of the part of the shielding original calibration plate 3 can be set to 8, and the present disclosure implements
  • the number of checkerboards included in the equivalent checkerboard occlusion pattern of the blank area 30 along the arrangement direction is not specifically limited, and the number of checkerboards included in the equivalent checkerboard occlusion pattern of the blank area 30 along the arrangement direction can be stored in the system in advance. . Determine the number of checkerboards on the line from the second corner point to the boundary line between the blank area 30 and the second effective area 20. Taking the second corner point B as an example, the second corner point B on the line to the blank area 30 and the second effective area.
  • the number of checkerboards between the boundary lines of the area 20 is 7, then the number of checkerboards between the first corner point on the straight line and the boundary line between the first effective area 10 and the blank area 30 and the equivalent checkerboard blocking pattern are determined along the arrangement direction
  • the sum of the number of included checkerboards and the number of checkerboards on the straight line from the second corner point to the boundary line between the blank area 30 and the second effective area 20 is 20.
  • the calculated coordinates of the second corner point located on the fitted straight line can be obtained according to the shooting coordinates of the first corner point and the sum of the number of checkerboards. Specifically, the product of the sum and the side length of the checkerboard can be set as the distance between the first corner point and the second corner point on the same fitted straight line. According to the shooting coordinates of the first corner point, the distance of the fitted straight line The equation and the distance between the first corner point and the second corner point lying on the same fitted straight line obtain the calculated coordinates of the second corner point lying on the fitted straight line.
  • the sum of the number of checkerboards for example, the product of 20 and the side length of the checkerboard is the distance between the first corner point A and the second corner point B located on the same fitted straight line
  • the equation of the fitted straight line is Known, combined with the known shooting coordinates of the first corner point on the line, that is, the three-dimensional coordinates, the calculated coordinates of the second corner point on the fitted line can be calculated and obtained, and the calculated coordinates of the second corner point are the first The coordinates of the two corner points in the coordinate system where the first stereo camera 1 is located.
  • the fitted straight line is set parallel to the arrangement direction of the first effective area 10 and the second effective area 20, and according to the shooting coordinates of the first corner point and the equivalent checkerboard occlusion pattern in the blank area 30, the location in the fitting area is obtained.
  • the calculated coordinates of the second corner point on the straight line can effectively simplify the process of obtaining the calculated coordinates of the second corner point, which is beneficial to improve the calibration efficiency of the dual stereo camera.
  • S105 Acquire a calibration transformation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • the stereo camera can obtain the three-dimensional surface information of the target object, that is, the three-dimensional point cloud, and the point cloud can be used to realize the three-dimensional reconstruction, detection and measurement of the target. It cannot meet the actual needs, so it is necessary to maintain a fixed positional relationship between the two stereo cameras, and at the same time obtain point clouds and stitch them together, so that the field of view can be expanded and the point clouds of larger targets can be obtained.
  • To complete the splicing of the point clouds obtained by the two stereo cameras the most important thing is to unify the point clouds obtained by the two stereo cameras into one coordinate system. It is necessary to convert the point cloud description of the second camera to the description in the coordinate system of the first camera, that is, to find the transformation matrix of the coordinate system where the two cameras are located, that is, to determine the external parameter calibration of the two stereo cameras.
  • the transformation matrix B can be represented as a 4 ⁇ 4 matrix, and the transformation matrix B satisfies the following calculation formula:
  • the transformation matrix B that is, the external parameter calibration matrix
  • the transformation matrix B can be marked as a 4 ⁇ 4 matrix, or it can be composed of a 3 ⁇ 3 rotation matrix R and a 3 ⁇ 1 translation matrix T, and the coordinate system is transformed by some rigid bodies. , for example, it can be converted to another coordinate system by doing some translation and rotation along the x direction, y direction or z direction respectively.
  • the translation matrix T and the rotation matrix R can be calculated.
  • both the rotation matrix R and the translation matrix T are expanded into 4 ⁇ 4 matrices.
  • the first three matrices in the second row of the equation correspond to the rotation matrix R, and the latter matrix corresponds to the translation matrix T. According to the linear Algebraic related theory, the expansion of the above matrix does not affect the calculation results.
  • the coordinate system of the point cloud obtained by the first stereo camera 1 is used as the basic coordinate system.
  • the transformation matrix B between the second stereo camera 2 and the first stereo camera 1 is calibrated, the second stereo camera 2 is calibrated.
  • the rotation matrix R and the translation matrix T of the first stereo camera 1 With the rotation matrix R and the translation matrix T of the first stereo camera 1, the calibration of the two stereo cameras can be completed, and the unification of the coordinate systems of the two can be realized.
  • the calibration transformation matrix includes a rotation matrix and a translation matrix
  • the calibration transformation matrix between the coordinate system where the first stereo camera 1 is located and the coordinate system where the second stereo camera 2 is located is obtained according to the calculated coordinates and the shooting coordinates of the same second corner point
  • the relationship equations of the calculation coordinates of the second corner points, the shooting coordinates of the second corner points, the rotation matrix and the translation matrix can be listed, and the location of the first stereo camera 1 can be obtained according to the relationship equation.
  • R is the rotation matrix
  • T is the translation matrix
  • (Px', Py', Pz') are the calculated coordinates of the second corner
  • (Px, Py, Pz) are the shooting coordinates of the second corner.
  • the three-dimensional coordinate point P′ corresponding to the calculated coordinates of the second corner point in the second effective area 20 obtained by solving the known geometric relationship when the calibration plate 3 is produced and the second effective area 20 captured by the second stereo camera 2 are obtained.
  • the three-dimensional coordinate point P corresponding to the shooting coordinates of the second inner corner belongs to the same point in the physical world, which is called the point of the same name.
  • a singular value decomposition algorithm can be used to obtain the calibration transformation matrix between the coordinate system where the first stereo camera 1 is located and the coordinate system where the second stereo camera 2 is located according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • the calculated coordinates of all the second corner points located on the fitted straight line may be acquired according to the shooting coordinates of at least one first corner point of each row and the sum of the number of checkerboards.
  • at least one first corner point of each row in the first effective area 10 is obtained, then according to the shooting coordinates of the at least one first corner point of each row, the fitted straight line of each row, and
  • the calculated coordinates of all the second corner points in the second effective area 20 can be obtained by the sum of the number of corresponding intermediate checkerboards.
  • the shooting coordinates of all the second corner points in the second effective area 20 can also be obtained when the second stereo camera 2 is shooting.
  • a singular value decomposition algorithm can be used to obtain the calibration transformation between the coordinate system where the first stereo camera 1 is located and the coordinate system where the second stereo camera 2 is located according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • matrix that is, the rotation matrix R and the translation matrix T between the coordinate system where the first stereo camera 1 is located and the coordinate system where the second stereo camera 2 are located are obtained, and then the coordinate system where the first stereo camera 1 is located and the second stereo camera can be obtained.
  • the transformation matrix B between the coordinate systems where 2 is located that is, the external parameter calibration matrix, realizes the calibration work between the first stereo camera 1 and the second stereo camera 2 .
  • S101 to S106 are only used to represent the steps in the dual stereo camera calibration method, and do not represent a limitation on the execution order of the steps. There is a strict sequential execution order, the remaining steps may be performed simultaneously or the sequential execution order may be adjusted, which is not specifically limited in this embodiment of the present disclosure.
  • the above-mentioned embodiment takes the coordinate system where the first stereo camera 1 is located as the basic coordinate system, and transfers the coordinate system where the second stereo camera 2 is located to the coordinate system where the first stereo camera 1 is located, or the coordinate system where the second stereo camera 2 is located.
  • the calibration process is the same from the coordinate system 1 where the first stereo camera 1 is located to the coordinate system where the second stereo camera 2 is located, and will not be repeated here.
  • the technical solution of the embodiment of the present disclosure realizes a method for calibrating dual stereo cameras without overlapping fields of view.
  • the manufacture of the calibration plate 3 is relatively simple, and the calibration efficiency and accuracy are high.
  • the cost of completing the calibration of the dual stereo cameras is reduced.
  • FIG. 5 is a schematic structural diagram of a calibration device for dual stereo cameras according to an embodiment of the present disclosure.
  • the calibration device for dual stereo cameras includes a calibration plate setting module 201 , a first coordinate obtaining module 202 , a fitting module 203 , a second coordinate obtaining module 204 and a matrix obtaining module 205 .
  • the calibration plate setting module 201 is used to place the calibration plate 3 in the field of view of the first stereo camera 1 and the second stereo camera 2; The fields of view do not overlap, and the calibration plate 3 is provided with a first effective area 10, a second effective area 20 and a blank area 30 located between the first effective area 10 and the second effective area 20, and the first effective area 10 is located in the first effective area 10.
  • the second effective area 20 is located in the field of view of the second stereo camera 2
  • the first effective area 10 and the second effective area 20 are provided with black and white checkerboard patterns, and the adjacent black checkerboards are
  • the overlapping point is the corner point
  • the corner point located in the first effective area 10 is the first corner point
  • the corner point located in the second effective area 20 is the second corner point.
  • the first coordinate acquisition module 202 is used to acquire the shooting coordinates of the first corner point and the second corner point of the calibration board in different poses
  • the fitting module 203 is used to make the same line according to the shooting coordinates of the first corner point.
  • the first corner point is fitted as a straight line
  • the second coordinate obtaining module 204 is configured to obtain the second corner located on the fitted straight line according to the shooting coordinates of the first corner point and the equivalent checkerboard occlusion pattern in the blank area 30
  • the matrix obtaining module 205 is configured to obtain the calibration transformation matrix between the coordinate system where the first stereo camera 1 is located and the coordinate system where the second stereo camera 2 is located according to the calculated coordinates and shooting coordinates of the same second corner point.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • the electronic device includes a processor and a memory.
  • the processor executes the steps of the method for calibrating a dual stereo camera according to the above-mentioned embodiment by calling a program or an instruction stored in the memory. Therefore, it has the beneficial effects of the above-mentioned embodiment. Here No longer.
  • the electronic device may be arranged to include at least one processor 301 , at least one memory 302 and at least one communication interface 303 .
  • the various components in the electronic device are coupled together by a bus system 304 .
  • the communication interface 303 is used for information transmission with external devices.
  • the bus system 304 is used to implement the connection communication between these components.
  • the bus system 304 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 304 in FIG. 6 .
  • the memory 302 in this embodiment may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the memory 302 stores the following elements: executable units or data structures, or a subset thereof, or an extended set of operating systems and applications.
  • the processor 301 executes the steps of each embodiment of the calibration method for a dual stereo camera provided by the embodiment of the present invention by calling the program or instruction stored in the memory 302 .
  • the calibration method for dual stereo cameras provided in the embodiment of the present invention may be applied to the processor 301 or implemented by the processor 301 .
  • the processor 301 may be an integrated circuit chip, which has signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 301 or an instruction in the form of software.
  • the above-mentioned processor 301 can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method for calibrating a dual stereo camera provided by the embodiment of the present invention may be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software units in the decoding processor.
  • the software unit may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 302, and the processor 301 reads the information in the memory 302, and completes the steps of the method in combination with its hardware.
  • the electronic device may further include one entity component, or multiple entity components, according to the instructions generated by the processor 301 when executing the dual stereo camera calibration method provided by the embodiment of the present application.
  • Each entity component cooperates with the processor 301 and the memory 302 to realize the functions of the electronic device in this embodiment.
  • the embodiment of the present invention also provides a storage medium, such as a computer-readable storage medium, the storage medium stores a program or an instruction, and the program or instruction enables a computer to execute a method for calibrating a dual stereo camera when it executes the line, and the method includes:
  • the calibration plate is placed in the field of view of the first stereo camera and the second stereo camera; wherein, the fields of view of the first stereo camera and the second stereo camera do not overlap, and the calibration plate is provided with a first effective area and a second effective area. area and a blank area located between the first effective area and the second effective area, the first effective area is located in the field of view of the first stereo camera, the second effective area is located in the field of view of the second stereo camera, and the first effective area is located in the field of view of the second stereo camera.
  • a black and white checkerboard pattern is set in the second effective area, the overlapping points of the adjacent black checkerboards are corner points, the corner points located in the first effective area are the first corner points, and the corner points located in the second effective area are the corner points. is the second corner;
  • the calibration transformation matrix between the coordinate system where the first stereo camera is located and the coordinate system where the second stereo camera is located is obtained according to the calculated coordinates and the shooting coordinates of the same second corner point.
  • the computer-executable instructions when executed by a computer processor, may also be used to execute the technical solution of the calibration method for dual stereo cameras provided by any embodiment of the present invention.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and of course can also be implemented by hardware, but in many cases the former is a better implementation manner .
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in a computer-readable storage medium, such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer , server, or network device, etc.) to execute the methods of various embodiments of the present invention.
  • a computer-readable storage medium such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc.

Abstract

一种双立体相机的标定方法及装置、电子设备及存储介质。双立体相机的标定方法包括:将标定板放置于第一立体相机和第二立体相机的视场内,第一和第二立体相机的视场不交叠;获取标定板处于不同位姿下的第一和第二角点的拍摄坐标;根据第一角点的拍摄坐标将同在一条直线上的第一角点拟合为一条直线;根据第一角点的拍摄坐标以及空白区内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标;根据同一第二角点的计算坐标和拍摄坐标获取第一和第二立体相机所在坐标系之间的标定转换矩阵。

Description

双立体相机的标定方法及装置
相关申请的交叉引用
本申请基于申请号为202110125412.8、申请日为2021年1月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及计算机视觉技术领域,尤其涉及一种双立体相机的标定方法及装置、电子设备及存储介质。
背景技术
立体相机可以获取目标物体的三维点云,利用点云可以实现对目标的三维重建、检测以及测量工作等,单个立体相机的视野有限,单次获取的目标物体点云有时无法满足实际需求,因此可以把两台立体相机保持固定的位置关系,同时获取点云并进行拼接使用以扩大视野,获取更大目标的点云。要完成两台立体相机获取点云的拼接,这其中最重要是把两台立体相机获取的点云统一到同一个坐标系下,即找到两台相机所在坐标系的转换矩阵以完成两台立体相机的外参标定。
目前已有的立体相机标定方案中,一种方案是通过拍摄固定于标定平板上的标定棋盘在不同姿态下的二维图像和三维点云,完成立体相机的标定。另一种方案是使用不计厚度的褶皱纸张,利用迭代最近点算法对多台立体相机进行外参标定,虽然能够实现多立体相机的匹配,但是两种标定方法均要求相机的视场有足够的重叠区域,这就导致如果视场重叠区域过大就会造成浪费,视场重叠区域过小又不足以放下标定板或者标定物,进而导致视场重叠区域过大或过小时上述方式的标定方案都会失去作用。另外,还可以通过各种方式建立全局坐标系,在全局坐标系提前做好标志点,而且标志点在全局坐标系已知,但是往往需要全站仪或者制作复杂的标定物进行配合,增加了完成立体相机标定的成本。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种双立体相机的标定方法及装置、电子设备及存储介质,实现了无重叠视场的双立体相机的标定方法,标定板的制作较为简单,标定效率和精度较高,有效降低了完成双立体相机标定工作的成本。
第一方面,本公开实施例提供了一种双立体相机的标定方法,包括:
将标定板放置于第一立体相机和第二立体相机的视场内;其中,所述第一立体相机和所述第二立体相机的视场不交叠,所述标定板上设置有第一有效区、第二有效区和位于所述第一有效区和所述第二有效区之间的空白区,所述第一有效区位于所述第一立体相机的视场中,所述第二有效区位于所述第二立体相机的视场中,所述第一有效区和所述第二有效区内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于所述第一有效区内的角点为第一 角点,位于所述第二有效区内的角点为第二角点;
获取所述标定板处于不同位姿下的所述第一角点和所述第二角点的拍摄坐标;
根据所述第一角点的拍摄坐标将同在一条直线上的所述第一角点拟合为一条直线;
根据所述第一角点的拍摄坐标以及所述空白区内的等效棋盘格遮挡图案获取位于拟合的所述直线上的所述第二角点的计算坐标;
根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵。
可选地,根据所述第一角点的拍摄坐标将同在一条直线上的所述第一角点拟合为一条直线,包括:
根据所述第一角点的拍摄坐标将所有所述第一角点拟合为一个平面;
根据所述第一角点的拍摄坐标将所述第一角点在所述平面上投影以形成投影点;
将同在一条直线上的所述投影点拟合为一条直线。
可选地,采用最小二乘算法或者随机抽样一致算法将所有所述第一角点拟合为一个平面。
可选地,所述直线平行于所述第一有效区和所述第二有效区的排列方向;
根据所述第一角点的拍摄坐标以及所述空白区内的等效棋盘格遮挡图案获取位于拟合的所述直线上的所述第二角点的计算坐标,包括:
确定所述直线上第一角点至所述第一有效区与所述空白区的交界线之间的棋盘格数量,与所述等效棋盘格遮挡图案沿所述排列方向所包含的棋盘格数量,以及所述直线上第二角点至所述空白区与所述第二有效区交界线之间的棋盘格数量的总和;
根据所述第一角点的拍摄坐标以及棋盘格数量的所述总和获取位于拟合的所述直线上的所述第二角点的计算坐标。
可选地,根据所述第一角点的拍摄坐标以及棋盘格数量的所述总和获取位于拟合的所述直线上的所述第二角点的计算坐标,包括:
所述总和与棋盘格边长的乘积为位于同一拟合的所述直线上的所述第一角点和所述第二角点之间的距离;
根据所述第一角点的拍摄坐标、拟合的所述直线的方程以及所述距离获取位于拟合的所述直线上的所述第二角点的计算坐标。
可选地,根据每行的至少一个所述第一角点的拍摄坐标以及棋盘格数量的所述总和获取位于拟合的所述直线上的所有所述第二角点的计算坐标。
可选地,所述标定转换矩阵包括旋转矩阵和平移矩阵;
根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵,包括:
依据不同的所述第二角点,列出多组所述第二角点的计算坐标、所述第二角点的拍摄坐标、所述旋转矩阵和所述平移矩阵的关系等式;
根据所述关系等式获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系 之间的旋转矩阵和平移矩阵。
可选地,所述关系等式为:
Figure PCTCN2021121464-appb-000001
其中,R为旋转矩阵,T为平移矩阵,(Px’,Py’,Pz’)为所述第二角点的计算坐标,(Px,Py,Pz)为所述第二角点的拍摄坐标。
可选地,采用奇异值分解算法根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵。
可选地,所述标定板的位姿包括所述标定板至所述第一立体相机和所述第二立体相机的距离,和/或,所述标定板相对于所述第一立体相机和所述第二立体相机的倾斜角度。
可选地,获取所述标定板处于至少八个不同位姿下的所述第一角点的拍摄坐标。
第二方面,本公开实施例还提供了一种双立体相机的标定装置,包括:
标定板设置模块,用于将标定板放置于第一立体相机和第二立体相机的视场内;其中,所述第一立体相机和所述第二立体相机的视场不交叠,所述标定板上设置有第一有效区、第二有效区和位于所述第一有效区和所述第二有效区之间的空白区,所述第一有效区位于所述第一立体相机的视场中,所述第二有效区位于所述第二立体相机的视场中,所述第一有效区和所述第二有效区内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于所述第一有效区内的角点为第一角点,位于所述第二有效区内的角点为第二角点;
第一坐标获取模块,用于获取所述标定板处于不同位姿下的所述第一角点和所述第二角点的拍摄坐标;
拟合模块,用于根据所述第一角点的拍摄坐标将同在一条直线上的所述第一角点拟合为一条直线;
第二坐标获取模块,用于根据所述第一角点的拍摄坐标以及所述空白区内的等效棋盘格遮挡图案获取位于拟合的所述直线上的所述第二角点的计算坐标;
矩阵获取模块,用于根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵。
第三方面,本公开实施例还提供了一种电子设备,包括处理器和存储器,所述处理器通过调用所述存储器存储的程序或指令,执行如第一方面所述的双立体相机的标定方法的步骤。
第四方面,本公开实施例还提供了一种存储介质,所述存储介质存储程序或指令,所述程序或指令使计算机执行如第一方面所述的双立体相机的标定方法的步骤。
本公开实施例提供的技术方案与现有技术相比具有如下优点:
本公开实施例技术方案设置将标定板放置于第一立体相机和第二立体相机的视场内,第一立体相机和第二立体相机的视场不交叠,标定板上设置有第一有效区、第二有效区和位于第一有效区和第二有效区之间的空白区,第一有效区位于第一立体相机的视场中,第二有效区位于第二立体相机的视场中,第一有效区和第二有效区内设置有黑白棋盘格图案,相邻黑 色棋盘格的交叠点为角点,位于第一有效区内的角点为第一角点,位于第二有效区内的角点为第二角点。获取标定板处于不同位姿下的第一角点的拍摄坐标,根据第一角点的拍摄坐标将同在一条直线上的第一角点拟合为一条直线,根据第一角点的拍摄坐标以及空白区内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标,获取标定板处于不同位姿下的第二角点的拍摄坐标,根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机所在坐标系和第二立体相机所在坐标系之间的标定转换矩阵。由此,本公开实施例实现了一种无重叠视场的双立体相机的标定方法,标定板的制作较为简单,标定效率和精度较高,且无需借助例如全站仪等第三方工具,有效降低了完成双立体相机标定工作的成本。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种双立体相机的标定方法的流程示意图;
图2为本公开实施例提供的一种双立体相机的位置结构示意图;
图3为本公开实施例提供的一种标定板的俯视结构示意图;
图4为原始标定板的俯视结构示意图;
图5为本公开实施例提供的一种双立体相机的标定装置的结构示意图;
图6为本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
图1为本公开实施例提供的一种双立体相机的标定方法的流程示意图。双立体相机的标定方法可以应用在需要对双立体相机进行标定的应用场景,可以由本公开实施例提供的双立体相机的标定装置执行,该双立体相机的标定装置可以采用软件和/或硬件的方式来实现。如图1所示,双立体相机的标定方法包括以下步骤:
S101、将标定板放置于第一立体相机和第二立体相机的视场内。
图2为本公开实施例提供的一种双立体相机的位置结构示意图,图3为本公开实施例提供的一种标定板的俯视结构示意图。结合图2和图3,第一立体相机1和第二立体相机2 位于同一水平高度,其中视场100为第一立体相机1的视场,视场200为第二立体相机2的视场,第一立体相机1和第二立体相机2的视场不交叠。
标定板3上设置有第一有效区10、第二有效区20和位于第一有效区10和第二有效区20之间的空白区30,空白区30也可以称为无效区,将标定板3放置于第一立体相机1和第二立体相机2的视场内,可以设置第一有效区10位于第一立体相机1的视场100中,第二有效区20位于第二立体相机2的视场200中,即设置标定板3上的第一有效区10完全在第一立体相机1的视野中,标定板3上的第二有效区20完全在第二立体相机2的视野中。
第一有效区10和第二有效区20内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于第一有效区10内的角点为第一角点,位于第二有效区20内的角点为第二角点,例如点A即为第一角点,点B即为第二角点。具体地,图4为原始标定板的俯视结构示意图。如图4所示,为目前普遍使用的原始标定板,图3所示的本公开实施例所使用的标定板3仅需要遮挡原始标定板的中间部分,即可形成中间的空白区30以及两侧的第一有效区10和第二有效区20,使得本公开实施例所使用的标定板3的制作较为简单。
S102、获取标定板处于不同位姿下的第一角点和第二角点的拍摄坐标。
具体地,结合图2和图3,第一立体相机1对第一有效区10进行拍摄,获取第一有效区10内的二维图像以及三维点云,提取第一立体相机1获取到的二维图像中的第一角点并确定第一角点的拍摄坐标,第一角点的拍摄坐标为第一角点在点云中对应的三维坐标。
结合图2和图3,获取第一角点的拍摄坐标,可以获取标定板3处于不同位姿下的第一角点的拍摄坐标。示例性地,标定板3的位姿可以包括标定板3至第一立体相机1和第二立体相机2的距离,和/或,标定板3相对于第一立体相机1和第二立体相机2的倾斜角度。
具体地,在获取第一角点的拍摄坐标时,不断更换标定板3的位姿,即不断调整标定板3至第一立体相机1和第二立体相机2的距离,以及标定板3相对于第一立体相机1和第二立体相机2的倾斜角度,每调整一次标定板3的位姿,获取对应标定板3一个位姿下的第一角点的拍摄坐标。示例性地,可以设置获取标定板3处于至少八个不同位姿下的第一角点的拍摄坐标。
由此,每调整一次标定板3的位姿,形成一组第一角点拍摄坐标的采样,且每组采样对应的标定板3的位姿不同,即对应的标定板3到第一立体相机1和第二立体相机2的距离,或者标定板3相对于第一立体相机1和第二立体相机2的倾斜角度不同,增加第一角点拍摄坐标的采样次数有利于提高相机标定结果的准确性和精度。
具体地,结合图2和图3,第二立体相机2对第二有效区20进行拍摄,获取第二有效区20的二维图像以及三维点云,提取第二立体相机2获取到的二维图像中的第二角点并确定第二角点的拍摄坐标,第二角点的拍摄坐标为第二角点在点云中对应的三维坐标,且第二角点的拍摄坐标为第二角点在第二立体相机2所在坐标系中的坐标,可以设置第一角点的拍摄坐标获取过程与第二角点的拍摄坐标的获取过程同时进行。
结合图2和图3,获取第二角点的拍摄坐标,可以获取标定板3处于不同位姿下的第二角点的拍摄坐标。具体地,在获取第一角点以及第二角点的拍摄坐标时,不断更换标定板3 的位姿,即不断调整标定板3至第一立体相机1和第二立体相机2的距离,以及标定板3相对于第一立体相机1和第二立体相机2的倾斜角度,每调整一次标定板3的位姿,获取对应标定板3一个位姿下的第一角点以及第二角点的拍摄坐标。示例性地,可以设置获取标定板3处于至少八个不同位姿下的第一角点以及第二角点的拍摄坐标。
由此,每调整一次标定板3的位姿,形成一组第一角点以及第二角点拍摄坐标的采样,且每组采样对应的标定板3的位姿不同,即对应的标定板3到第一立体相机1和第二立体相机2的距离,或者标定板3相对于第一立体相机1和第二立体相机2的倾斜角度不同,增加第一角点以及第二角点拍摄坐标的采样次数有利于提高相机标定结果的准确性和精度。
S103、根据第一角点的拍摄坐标将同在一条直线上的第一角点拟合为一条直线。
具体地,结合图2和图3,根据第一角点的拍摄坐标将同在一条直线上的第一角点拟合为一条直线,可以先根据第一角点的拍摄坐标将所有第一角点拟合为一个平面。示例性地,可以采用最小二乘算法或者随机抽样一致算法将所有第一角点拟合为一个平面。具体地,第一立体相机1对第一有效区10进行拍摄,获取第一有效区10的二维图像以及三维点云,提取第一立体相机1获取到的二维图像中的第一角点并确定第一角点的拍摄坐标,对于每组第一角点拍摄坐标的采样,根据第一角点的拍摄坐标将所有第一角点对应的三维坐标点由最小二乘算法或者随机抽样一致算法拟合为一个平面。
然后根据第一角点的拍摄坐标将第一角点在平面上投影以形成投影点,并将同在一条直线上的投影点拟合为一条直线。如图3所示,经由投影点拟合出的直线例如可以为图3中横向一行第一角点的连线,即拟合出的直线平行于第一有效区10和第二有效区20的排列方向。
第一立体相机1由于拍摄测量误差会导致拍摄得到的第一角点在高度有所变化,导致所有的第一角点并不再一个平面上,因此先根据第一角点的拍摄坐标将所有第一角点拟合为一个平面,再根据第一角点的拍摄坐标将第一角点在平面上投影以形成投影点,并将同在一条直线上的投影点拟合为一条直线,能够有效消除第一立体相机1的拍摄测量误差。
S104、根据第一角点的拍摄坐标以及空白区内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标。
具体地,拟合的直线平行于第一有效区10和第二有效区20的排列方向,即经由投影点拟合出的直线例如可以为图3中横向一行第一角点的连线,根据第一角点的拍摄坐标以及空白区30内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标,可以根据制作标定板3时的已知几何关系求解右侧第二有效区20内位于拟合的直线上的第二角点的计算坐标,即求解出计算获得的位于拟合的直线上的第二角点对应三维点云的三维坐标。
具体地,确定直线上第一角点至第一有效区10与空白区30的交界线之间的棋盘格数量,以第一角点A为例,直线上第一角点A至第一有效区10与空白区30的交界线之间的棋盘格数量为5。确定空白区30的等效棋盘格遮挡图案沿排列方向所包含的棋盘格数量,结合图3和图4,例如可以设置遮挡原始标定板3的部分横向包含的棋盘格数量为8,本公开实施例对空白区30的等效棋盘格遮挡图案沿排列方向所包含的棋盘格数量不作具体限定,空白区30的等效棋盘格遮挡图案沿排列方向所包含的棋盘格数量可以提前存储在系统中。 确定直线上第二角点至空白区30与第二有效区20交界线之间的棋盘格数量,以第二角点B为例,直线上第二角点B至空白区30与第二有效区20交界线之间的棋盘格数量为7,则确定直线上第一角点至第一有效区10与空白区30的交界线之间的棋盘格数量与等效棋盘格遮挡图案沿排列方向所包含的棋盘格数量以及直线上第二角点至空白区30与第二有效区20交界线之间的棋盘格数量的总和为20。
可以根据第一角点的拍摄坐标以及棋盘格数量的总和获取位于拟合的直线上的第二角点的计算坐标。具体地,可以设置总和与棋盘格边长的乘积为位于同一拟合的直线上的第一角点和第二角点之间的距离,根据第一角点的拍摄坐标、拟合的直线的方程以及位于同一拟合的直线上的第一角点和第二角点之间的距离获取位于拟合的直线上的第二角点的计算坐标。
示例性地,棋盘格数量的总和,例如20与棋盘格边长的乘积即为位于同一拟合直线上的第一角点A与第二角点B之间的距离,拟合的直线的方程已知,再结合已知该直线上的第一角点的拍摄坐标,即三维坐标,可以计算获得位于拟合的直线上的第二角点的计算坐标,第二角点的计算坐标是第二角点在第一立体相机1所在坐标系中的坐标。
由此,设置拟合的直线平行于第一有效区10和第二有效区20的排列方向,并根据第一角点的拍摄坐标以及空白区30内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标,有效简化了第二角点计算坐标的获取过程,有利于提高双立体相机的标定效率。
S105、根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机所在坐标系和第二立体相机所在坐标系之间的标定转换矩阵。
具体地,立体相机可以获取目标物体的三维表面信息,即三维点云,利用点云可以实现对目标的三维重建、检测以及测量等,单个立体相机的视野有限,单次获取目标物体点云有时无法满足实际需求,因此需要把两台立体相机保持固定的位置关系,同时获取点云并进行拼接使用,这样就可以扩大视野,获取更大目标的点云。要完成两台立体相机获取的点云进行拼接,这其中最重要是把两台立体相机获取的点云统一到一个坐标系下,例如可以选取统一到第一台立体相机的坐标系下,就需要把第二个相机的点云描述转换到第一台相机坐标系下描述,即找到两台相机所在坐标系的转换矩阵,也即确定两台立体相机的外参标定。
示例性地,转换矩阵B可以表示为4×4的矩阵,转换矩阵B满足如下计算公式:
Figure PCTCN2021121464-appb-000002
其中,转换矩阵B,即外参标定矩阵可以标记成一个4×4的矩阵,也可以是由一个3×3的旋转矩阵R和一个3×1的平移矩阵T组成,坐标系通过一些刚体变换,例如分别沿x方 向,y方向或者z方向做一些平移和旋转就可以转换到另外一个坐标系。要实现两个立体相机的标定,就需要求出平移量x,y和z以及旋转量rx,ry和rz,就可以计算出平移矩阵T和旋转矩阵R。上述公式中,为方便计算,将旋转矩阵R和平移矩阵T均扩展为4×4的矩阵,等式中第二行前三个矩阵对应旋转矩阵R,后面一个矩阵对应平移矩阵T,根据线性代数相关理论,上述矩阵的扩展并不影响计算结果。
针对双立体相机,以第一立体相机1获取的点云所在坐标系作为基础坐标系,只要标定出第二立体相机2与第一立体相机1的转换矩阵B,即标定出第二立体相机2与第一立体相机1的旋转矩阵R和平移矩阵T,就可以完成两台立体相机的标定工作,实现二者坐标系的统一。
具体地,标定转换矩阵包括旋转矩阵和平移矩阵,根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的标定转换矩阵,可以依据不同的第二角点,列出多组第二角点的计算坐标、第二角点的拍摄坐标、旋转矩阵和平移矩阵的关系等式,根据关系等式获取第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的旋转矩阵和平移矩阵。
具体地,关系等式为:
Figure PCTCN2021121464-appb-000003
其中,R为旋转矩阵,T为平移矩阵,(Px’,Py’,Pz’)为第二角点的计算坐标,(Px,Py,Pz)为第二角点的拍摄坐标。具体地,根据制作标定板3时已知的几何关系求解得到的第二有效区20内第二角点计算坐标对应的三维坐标点P’与第二立体相机2拍摄得到的第二有效区20内第二角点拍摄坐标对应的三维坐标点P属于物理世界中的同一个点,称为同名点,P’的坐标为(Px’,Py’,Pz’),P的坐标为(Px,Py,Pz),二者之间满足计算公式P’=(RT)P,即满足上述关系等式。
示例性地,可以采用奇异值分解算法根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的标定转换矩阵。
可选地,可以设置根据每行的至少一个第一角点的拍摄坐标以及棋盘格数量的总和获取位于拟合的直线上的所有第二角点的计算坐标。具体地,结合图2和图3,至少获取第一有效区10内每一行的至少一个第一角点,则根据每一行的至少一个第一角点的拍摄坐标、每行的拟合直线以及对应的中间间隔的棋盘格数量的总和,可以获取到第二有效区20内所有第二角点的计算坐标。另外,第二立体相机2拍摄时也可以获取到第二有效区20内所有第二角点的拍摄坐标。
示例性地,以第二有效区20内角点的数量为80个为例,每调整一次标定板3的位姿,即可获取到80个第二角点的拍摄坐标和计算坐标,即获取到80组同名点,可以设置获取标定板3处于八个不同位姿下的第一角点的拍摄坐标和第二角点的拍摄坐标,则共存在640组同名点,640组同名点均满足P’=(RT)P的关系等式,可以列出640个上述关系等式。
针对640个上述关系等式,可以采用奇异值分解算法,根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的标定转换矩阵,即获取到第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的旋转矩阵R和平移矩阵T,进而可以求得第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的转换矩阵B,即外参标定矩阵,实现了第一立体相机1和第二立体相机2之间的标定工作。需要说明的是,利用奇异值分解算法根据多个关系等式求解旋转矩阵R和平移矩阵T的过程为本领域常规技术,这里不再展开论述。
需要说明的是,上述实施例仅示例性地以S101至S106表示双立体相机的标定方法中的各个步骤,并不代表对各个步骤执行顺序的限定,除有绝对的必要使得两个步骤之间的严格的先后执行顺序,其余步骤之间可以同时进行或者进行先后执行顺序的调整,本公开实施例对此不作具体限定。另外,上述实施例以第一立体相机1所在坐标系为基础坐标系,将第二立体相机2所在坐标系统一到第一立体相机1所在坐标系,也可以以第二立体相机2所在坐标系为基础坐标系,将第一立体相机1所在坐标系统一到第二立体相机2所在坐标系,标定过程相同,这里不再赘述。
本公开实施例技术方案实现了一种无重叠视场的双立体相机的标定方法,标定板3的制作较为简单,标定效率和精度较高,且无需借助例如全站仪等第三方工具,有效降低了完成双立体相机标定工作的成本。
本公开实施例还提供了一种双立体相机的标定装置,图5为本公开实施例提供的一种双立体相机的标定装置的结构示意图。如图5所示,双立体相机的标定装置包括标定板设置模块201、第一坐标获取模块202、拟合模块203、第二坐标获取模块204和矩阵获取模块205。
结合图2至图5,标定板设置模块201用于将标定板3放置于第一立体相机1和第二立体相机2的视场内;其中,第一立体相机1和第二立体相机2的视场不交叠,标定板3上设置有第一有效区10、第二有效区20和位于第一有效区10和第二有效区20之间的空白区30,第一有效区10位于第一立体相机1的视场中,第二有效区20位于第二立体相机2的视场中,第一有效区10和第二有效区20内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于第一有效区10内的角点为第一角点,位于第二有效区20内的角点为第二角点。第一坐标获取模块202用于获取标定板处于不同位姿下的第一角点和第二角点的拍摄坐标,拟合模块203用于根据第一角点的拍摄坐标将同在一条直线上的第一角点拟合为一条直线,第二坐标获取模块204用于根据第一角点的拍摄坐标以及空白区30内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标,矩阵获取模块205用于根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机1所在坐标系和第二立体相机2所在坐标系之间的标定转换矩阵。
本发明实施例还提供了一种电子设备,图6为本发明实施例提供的一种电子设备的结构示意图。如图6所示,电子设备包括处理器和存储器,处理器通过调用存储器存储的程序或指令,执行如上述实施例的双立体相机的标定方法的步骤,因此具备上述实施例的有益效果,这里不再赘述。
如图6所示,可以设置电子设备包括至少一个处理器301、至少一个存储器302和至少一个通信接口303。电子设备中的各个组件通过总线系统304耦合在一起。通信接口303用于与外部设备之间的信息传输。可理解,总线系统304用于实现这些组件之间的连接通信。总线系统304除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但为了清楚说明起见,在图6中将各种总线都标为总线系统304。
可以理解,本实施例中的存储器302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。在一些实施方式中,存储器302存储了如下的元素:可执行单元或者数据结构,或者他们的子集,或者他们的扩展集操作系统和应用程序。在本发明实施例中,处理器301通过调用存储器302存储的程序或指令,执行本发明实施例提供的双立体相机的标定方法各实施例的步骤。
本发明实施例提供的双立体相机的标定方法可以应用于处理器301中,或者由处理器301实现。处理器301可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本发明实施例提供的双立体相机的标定方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器302,处理器301读取存储器302中的信息,结合其硬件完成方法的步骤。
该电子设备还可以包括一个实体部件,或者多个实体部件,以根据处理器301在执行本申请实施例提供的双立体相机的标定方法时生成的指令。各个实体部件与处理器301和存储器302共同配合实现本实施例中电子设备的功能。
本发明实施例还提供一种存储介质,例如计算机可读存储介质,存储介质存储程序或指令,该程序或指令使计算机执行行时用于执行一种双立体相机的标定方法,该方法包括:
将标定板放置于第一立体相机和第二立体相机的视场内;其中,第一立体相机和第二立体相机的视场不交叠,标定板上设置有第一有效区、第二有效区和位于第一有效区和第二有效区之间的空白区,第一有效区位于第一立体相机的视场中,第二有效区位于第二立体相机的视场中,第一有效区和第二有效区内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于第一有效区内的角点为第一角点,位于第二有效区内的角点为第二角点;
获取标定板处于不同位姿下的第一角点和第二角点的拍摄坐标;
根据第一角点的拍摄坐标将同在一条直线上的第一角点拟合为一条直线;
根据第一角点的拍摄坐标以及空白区内的等效棋盘格遮挡图案获取位于拟合的直线上的第二角点的计算坐标;
根据同一第二角点的计算坐标和拍摄坐标获取第一立体相机所在坐标系和第二立体相机所在坐标系之间的标定转换矩阵。
可选地,该计算机可执行指令在由计算机处理器执行时还可以用于执行本发明任意实施例所提供的双立体相机的标定方法的技术方案。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种双立体相机的标定方法,包括:
    将标定板放置于第一立体相机和第二立体相机的视场内;其中,所述第一立体相机和所述第二立体相机的视场不交叠,所述标定板上设置有第一有效区、第二有效区和位于所述第一有效区和所述第二有效区之间的空白区,所述第一有效区位于所述第一立体相机的视场中,所述第二有效区位于所述第二立体相机的视场中,所述第一有效区和所述第二有效区内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于所述第一有效区内的角点为第一角点,位于所述第二有效区内的角点为第二角点;
    获取所述标定板处于不同位姿下的所述第一角点和所述第二角点的拍摄坐标;
    根据所述第一角点的拍摄坐标将同在一条直线上的所述第一角点拟合为一条直线;
    根据所述第一角点的拍摄坐标以及所述空白区内的等效棋盘格遮挡图案获取位于拟合的所述直线上的所述第二角点的计算坐标;
    根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵。
  2. 根据权利要求1所述的双立体相机的标定方法,其中,所述根据所述第一角点的拍摄坐标将同在一条直线上的所述第一角点拟合为一条直线,包括:
    根据所述第一角点的拍摄坐标将所有所述第一角点拟合为一个平面;
    根据所述第一角点的拍摄坐标将所述第一角点在所述平面上投影以形成投影点;
    将同在一条直线上的所述投影点拟合为一条直线。
  3. 根据权利要求2所述的双立体相机的标定方法,其中,采用最小二乘算法或者随机抽样一致算法将所有所述第一角点拟合为一个平面。
  4. 根据权利要求1所述的双立体相机的标定方法,其中,所述直线平行于所述第一有效区和所述第二有效区的排列方向;
    所述根据所述第一角点的拍摄坐标以及所述空白区内的等效棋盘格遮挡图案获取位于拟合的所述直线上的所述第二角点的计算坐标,包括:
    确定所述直线上第一角点至所述第一有效区与所述空白区的交界线之间的棋盘格数量,与所述等效棋盘格遮挡图案沿所述排列方向所包含的棋盘格数量,以及所述直线上第二角点至所述空白区与所述第二有效区交界线之间的棋盘格数量的总和;
    根据所述第一角点的拍摄坐标以及棋盘格数量的所述总和获取位于拟合的所述直线上的所述第二角点的计算坐标。
  5. 根据权利要求4所述的双立体相机的标定方法,其中,所述根据所述第一角点的拍摄坐标以及棋盘格数量的所述总和获取位于拟合的所述直线上的所述第二角点的计算坐标,包括:
    所述总和与棋盘格边长的乘积为位于同一拟合的所述直线上的所述第一角点和所述第二角点之间的距离;
    根据所述第一角点的拍摄坐标、拟合的所述直线的方程以及所述距离获取位于拟合的所述直线上的所述第二角点的计算坐标。
  6. 根据权利要求4或5所述的双立体相机的标定方法,其中,根据每行的至少一个所述第一角点的拍摄坐标以及棋盘格数量的所述总和获取位于拟合的所述直线上的所有所述第二角点的计算坐标。
  7. 根据权利要求1所述的双立体相机的标定方法,其中,所述标定转换矩阵包括旋转矩阵和平移矩阵;
    所述根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵,包括:
    依据不同的所述第二角点,列出多组所述第二角点的计算坐标、所述第二角点的拍摄坐标、所述旋转矩阵和所述平移矩阵的关系等式;
    根据所述关系等式获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的旋转矩阵和平移矩阵。
  8. 根据权利要求7所述的双立体相机的标定方法,其中,所述关系等式为:
    Figure PCTCN2021121464-appb-100001
    其中,R为旋转矩阵,T为平移矩阵,(Px’,Py’,Pz’)为所述第二角点的计算坐标,(Px,Py,Pz)为所述第二角点的拍摄坐标。
  9. 根据权利要求7或8所述的双立体相机的标定方法,其中,采用奇异值分解算法根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵。
  10. 根据权利要求1所述的双立体相机的标定方法,其中,所述标定板的位姿包括所述标定板至所述第一立体相机和所述第二立体相机的距离,和/或,所述标定板相对于所述第一立体相机和所述第二立体相机的倾斜角度。
  11. 根据权利要求10所述的双立体相机的标定方法,其中,获取所述标定板处于至少八个不同位姿下的所述第一角点的拍摄坐标。
  12. 一种双立体相机的标定装置,包括:
    标定板设置模块,用于将标定板放置于第一立体相机和第二立体相机的视场内;其中,所述第一立体相机和所述第二立体相机的视场不交叠,所述标定板上设置有第一有效区、第二有效区和位于所述第一有效区和所述第二有效区之间的空白区,所述第一有效区位于所述第一立体相机的视场中,所述第二有效区位于所述第二立体相机的视场中,所述第一有效区和所述第二有效区内设置有黑白棋盘格图案,相邻黑色棋盘格的交叠点为角点,位于所述第一有效区内的角点为第一角点,位于所述第二有效区内的角点为第二角点;
    第一坐标获取模块,用于获取所述标定板处于不同位姿下的所述第一角点和所述第二角点的拍摄坐标;
    拟合模块,用于根据所述第一角点的拍摄坐标将同在一条直线上的所述第一角点拟合为一条直线;
    第二坐标获取模块,用于根据所述第一角点的拍摄坐标以及所述空白区内的等效棋盘格遮挡图案获取位于拟合的所述直线上的所述第二角点的计算坐标;
    矩阵获取模块,用于根据同一所述第二角点的计算坐标和拍摄坐标获取所述第一立体相机所在坐标系和所述第二立体相机所在坐标系之间的标定转换矩阵。
  13. 一种电子设备,包括:
    存储器;和
    处理器,所述处理器通过调用所述存储器存储的程序或指令,执行如权利要求1-11中任一项所述的双立体相机的标定方法的步骤。
  14. 一种存储介质,其中,所述存储介质存储程序或指令,所述程序或指令使计算机执行如权利要求1-11中任一项所述的双立体相机的标定方法的步骤。
PCT/CN2021/121464 2021-01-29 2021-09-28 双立体相机的标定方法及装置 WO2022160761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110125412.8 2021-01-29
CN202110125412.8A CN112785656B (zh) 2021-01-29 2021-01-29 双立体相机的标定方法及装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022160761A1 true WO2022160761A1 (zh) 2022-08-04

Family

ID=75759799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121464 WO2022160761A1 (zh) 2021-01-29 2021-09-28 双立体相机的标定方法及装置

Country Status (2)

Country Link
CN (1) CN112785656B (zh)
WO (1) WO2022160761A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038721A (zh) * 2023-04-03 2023-05-02 广东工业大学 一种无运动学参与的手眼标定方法和系统
CN117523106A (zh) * 2023-11-24 2024-02-06 广州市斯睿特智能科技有限公司 一种单目结构光的三维重建方法、系统、设备及介质
CN117830439A (zh) * 2024-03-05 2024-04-05 南昌虚拟现实研究院股份有限公司 一种多相机系统位姿标定方法及装置
CN117911542A (zh) * 2024-03-19 2024-04-19 杭州灵西机器人智能科技有限公司 一种标定板、标定板识别方法、系统、设备及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112785656B (zh) * 2021-01-29 2023-11-10 北京罗克维尔斯科技有限公司 双立体相机的标定方法及装置、电子设备及存储介质
CN113436277A (zh) * 2021-07-15 2021-09-24 无锡先导智能装备股份有限公司 3d相机标定方法、装置及标定系统
CN113900435B (zh) * 2021-08-31 2022-09-27 深圳蓝因机器人科技有限公司 基于双摄像头的移动机器人避障方法、设备、介质及产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141115A1 (en) * 2008-03-04 2011-06-16 Universtitaet Konstanz Interactive method for displaying integrated schematic network plans and geographic maps
CN106803273A (zh) * 2017-01-17 2017-06-06 湖南优象科技有限公司 一种全景摄像机标定方法
CN110766759A (zh) * 2019-10-09 2020-02-07 北京航空航天大学 一种无重叠视场的多相机标定方法及装置
CN112785656A (zh) * 2021-01-29 2021-05-11 北京罗克维尔斯科技有限公司 双立体相机的标定方法及装置、电子设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9875542B2 (en) * 2012-01-23 2018-01-23 Nec Corporation Camera calibration device, camera calibration method, and camera calibration program
CN110335307B (zh) * 2019-06-26 2021-07-09 Oppo广东移动通信有限公司 标定方法、装置、计算机存储介质和终端设备
CN110689579B (zh) * 2019-10-18 2022-08-30 华中科技大学 基于合作目标的快速单目视觉位姿测量方法及测量系统
CN112132906B (zh) * 2020-09-22 2023-07-25 西安电子科技大学 一种深度相机与可见光相机之间的外参标定方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141115A1 (en) * 2008-03-04 2011-06-16 Universtitaet Konstanz Interactive method for displaying integrated schematic network plans and geographic maps
CN106803273A (zh) * 2017-01-17 2017-06-06 湖南优象科技有限公司 一种全景摄像机标定方法
CN110766759A (zh) * 2019-10-09 2020-02-07 北京航空航天大学 一种无重叠视场的多相机标定方法及装置
CN112785656A (zh) * 2021-01-29 2021-05-11 北京罗克维尔斯科技有限公司 双立体相机的标定方法及装置、电子设备及存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038721A (zh) * 2023-04-03 2023-05-02 广东工业大学 一种无运动学参与的手眼标定方法和系统
CN116038721B (zh) * 2023-04-03 2023-07-18 广东工业大学 一种无运动学参与的手眼标定方法和系统
CN117523106A (zh) * 2023-11-24 2024-02-06 广州市斯睿特智能科技有限公司 一种单目结构光的三维重建方法、系统、设备及介质
CN117830439A (zh) * 2024-03-05 2024-04-05 南昌虚拟现实研究院股份有限公司 一种多相机系统位姿标定方法及装置
CN117911542A (zh) * 2024-03-19 2024-04-19 杭州灵西机器人智能科技有限公司 一种标定板、标定板识别方法、系统、设备及介质

Also Published As

Publication number Publication date
CN112785656B (zh) 2023-11-10
CN112785656A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2022160761A1 (zh) 双立体相机的标定方法及装置
CN107633536B (zh) 一种基于二维平面模板的相机标定方法及系统
WO2022160760A1 (zh) 多立体相机的标定方法及装置
KR100386090B1 (ko) 동심원 패턴을 이용한 카메라 내부변수 보정시스템 및카메라 보정방법
US10771776B2 (en) Apparatus and method for generating a camera model for an imaging system
US11488322B2 (en) System and method for training a model in a plurality of non-perspective cameras and determining 3D pose of an object at runtime with the same
CN110689581A (zh) 结构光模组标定方法、电子设备、计算机可读存储介质
WO2022007886A1 (zh) 一种相机自动标定优化方法及相关系统、设备
WO2021004416A1 (zh) 一种基于视觉信标建立信标地图的方法、装置
CN109926724B (zh) 双ccd定位打标方法、双ccd定位打标系统和存储介质
JP2002027507A (ja) カメラ・キャリブレーション装置及び方法、並びに、記憶媒体
JP2020053008A (ja) 位置決め方法、ロボット及びコンピューター記憶媒体
CN106570907B (zh) 一种相机标定方法及装置
WO2019232793A1 (zh) 双摄像头标定方法、电子设备、计算机可读存储介质
CN111311682A (zh) 一种led屏校正过程中的位姿估计方法、装置及电子设备
CN112233189B (zh) 多深度相机外部参数标定方法、装置及存储介质
JP2013036831A (ja) キャリブレーション装置及び歪み誤差算出方法
JP2016218815A (ja) ラインセンサカメラのキャリブレーション装置及び方法
CN111915681B (zh) 多组3d相机群的外参标定方法、装置、存储介质及设备
CN111145264B (zh) 多传感器的标定方法、装置及计算设备
CN111383264B (zh) 一种定位方法、装置、终端及计算机存储介质
CN113516719B (zh) 一种基于多单应性矩阵的相机标定方法、系统及存储介质
KR102023087B1 (ko) 카메라 캘리브레이션 방법
CN114511640A (zh) 一种利用地图进行相机标定的方法、装置及存储介质
CN115564845A (zh) 分区域的双目相机标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922353

Country of ref document: EP

Kind code of ref document: A1