WO2022160726A1 - 多通道荧光定量检测装置及分子诊断平台 - Google Patents

多通道荧光定量检测装置及分子诊断平台 Download PDF

Info

Publication number
WO2022160726A1
WO2022160726A1 PCT/CN2021/117496 CN2021117496W WO2022160726A1 WO 2022160726 A1 WO2022160726 A1 WO 2022160726A1 CN 2021117496 W CN2021117496 W CN 2021117496W WO 2022160726 A1 WO2022160726 A1 WO 2022160726A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
filter assembly
sleeve
filter
Prior art date
Application number
PCT/CN2021/117496
Other languages
English (en)
French (fr)
Inventor
张涛
李晓峰
黄宏坤
刘建知
Original Assignee
广东润鹏生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东润鹏生物技术有限公司 filed Critical 广东润鹏生物技术有限公司
Publication of WO2022160726A1 publication Critical patent/WO2022160726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics

Definitions

  • the present application relates to the technical field of fluorescence detection, in particular to a multi-channel fluorescence quantitative detection device and a molecular diagnosis platform.
  • Fluorescence quantitative detection is the detection part in the final step of molecular diagnosis. During the detection process, excitation light of a predetermined wavelength is used to irradiate the fluorescent substance in the capillary to excite the fluorescence, and then the fluorescence is collected by the fluorescence acquisition device to realize the detection of fluorescence. Fluorescence quantitative detection of reactants, but the fluorescence quantitative detection device of the related art has the problem that the detection time is too long.
  • the present application provides a multi-channel fluorescence quantitative detection device and a molecular diagnosis platform, so as to improve the fluorescence detection efficiency to a certain extent.
  • the application provides a multi-channel fluorescence quantitative detection device
  • the multi-channel fluorescence quantitative detection device may include a frame, a light source component, a first filter component, a second filter component, an imaging component, an optical fiber bundle, and an optical detection slot;
  • the optical detection slot can be arranged on the rack, and the optical detection slot can be used to fix the capillary tube with the sample; the light source assembly and the first filter assembly can be arranged opposite to the rack , the light source assembly can be used to provide a white light source, and the white light source can pass through the first filter assembly to form incident light of a predetermined wavelength band; the optical fiber bundle can include three ports, and the first optical fiber bundle has three ports.
  • a port may be connected to the first filter assembly, a second port of the fiber bundle may be connected to the optical detection slot, and the incident light can pass through between the first port and the second port
  • the incident optical fiber in between is irradiated to the capillary to excite fluorescence
  • the second filter assembly and the imaging assembly can be oppositely disposed on the frame, and the third port of the optical fiber bundle can be connected to the second
  • the filter assembly is connected, so that the fluorescence is irradiated to the second filter assembly through the outgoing optical fiber between the second port and the third port
  • the second filter assembly can be used to filtering the fluorescence, so that the fluorescence in a predetermined wavelength band is irradiated into the imaging component, and the imaging component can be used for collecting the fluorescence and imaging;
  • the number of the capillary tubes may be multiple, and the multiple capillary tubes may be arranged side by side at intervals; the number of the optical fiber bundles may be multiple, and the multiple optical fiber bundles may correspond one-to-one with the multiple capillary tubes, and there are multiple optical fiber bundles.
  • the second ports of each of the optical fiber bundles may face the corresponding capillary tubes, respectively.
  • both the first filter assembly and the second filter assembly may include a filter wheel, a filter, and a driving device; the driving device may be fixedly arranged on the frame, and the driving device The driving end of the device can be connected with the filter wheel to drive the filter wheel to rotate around the axis of the filter wheel.
  • the number of the filters may be multiple, and the multiple filters may be arranged at intervals along the circumferential direction of the filter wheel; the multiple filters of the first filter assembly may be used for Filtering the white light source to obtain incident light of different wavelength bands; a plurality of filters of the second filter component can be used to filter the fluorescence, so that the fluorescence of a predetermined wavelength band is irradiated into the imaging component; The number of the plurality of filters of the second filter assembly may be the same as the number of the plurality of filters of the first filter assembly and correspond one-to-one.
  • the first filter assembly and the second filter assembly may further include light shields, respectively; the light shields may be provided on the filter wheel, and the light shields
  • the side walls on both sides can be respectively provided with a light inlet and a light outlet, and the light inlet and the light outlet can be located on the same axis; the rotation of the filter wheel can rotate a plurality of the filters in sequence to between the light inlet and the light outlet to form an optical path channel between the light inlet and the light outlet.
  • the driving devices of the first filter assembly and the second filter assembly may both be stepping motors; the step of the first filter assembly and the second filter assembly Photoelectric sensors may be respectively provided at the input motor; one end of the output shaft of the stepping motor may be connected to the filter wheel, and the other end of the output shaft of the stepping motor may be provided with an induction sheet.
  • the light source assembly may include an LED lamp, a light source sleeve and a collimating lens; the light source sleeve may be fixedly arranged on the frame, and the light source sleeve may be combined with the first filter
  • the light inlet of the assembly is coaxially arranged; one end of the light source sleeve can extend into the light shield through the light inlet of the first filter assembly, and the LED lamp can be connected with the light source sleeve.
  • the other end is connected, and the collimating lens can be installed in the light source sleeve.
  • the light source assembly may further include a heat sink; the heat sink may be mounted on the rack, and one end of the light source sleeve may be used for installing the LED lamp to be connected to the heat sink, So that the LED lamp is clamped between the light source sleeve and the heat sink, and the aluminum substrate of the LED lamp can be attached to the heat sink.
  • the multi-channel fluorescence quantitative detection device may further include a first optical fiber lens assembly;
  • the first optical fiber lens assembly may include a first sleeve, a first focusing lens and a first optical fiber fixing member;
  • a sleeve can be fixedly arranged on the frame, and the first sleeve can be arranged coaxially with the light outlet of the first filter assembly; one end of the first sleeve can pass through the first The light outlet of the filter assembly extends into the light shield of the first filter assembly, and the other end of the first sleeve can be connected with the first optical fiber fixing member;
  • the first port of the optical fiber bundle can be inserted into the first sleeve through the first optical fiber fixing member, the first focusing lens can be installed in the first sleeve, and the first port of the optical fiber bundle can be located in the first sleeve on the focal plane of the first focusing lens.
  • the multi-channel fluorescence quantitative detection device may further include a second optical fiber lens assembly; the second optical fiber lens assembly may include a second sleeve, a second lens and a second optical fiber fixture; the second optical fiber lens assembly
  • the sleeve can be fixedly arranged on the frame, and the second sleeve can be arranged coaxially with the light inlet of the second filter assembly; one end of the second sleeve can pass through the second sleeve
  • the light inlet of the filter assembly extends into the light shield of the second filter assembly, and the other end of the second sleeve can be connected with the second optical fiber fixing member;
  • the three ports can be inserted into the second sleeve through the second optical fiber fixing member, and the second lens can be installed in the second sleeve; the fluorescence emitted by the third port of the optical fiber bundle can
  • the second filter element is irradiated on the filter at the working position through the second lens.
  • the imaging assembly may include a camera, a first lens, and a camera lens sleeve; the first lens may be installed in the camera lens sleeve, and the camera lens sleeve may be fixedly disposed in the camera
  • the camera lens sleeve can be arranged coaxially with the light outlet of the second filter assembly, and one end of the camera lens sleeve can extend into the light outlet through the light outlet of the second filter assembly.
  • the camera can be fixed on the frame, and the other end of the camera lens sleeve can be connected with the camera, so that the second filter can pass through the second filter.
  • the fluorescence of the light assembly is irradiated onto the CMOS chip of the camera.
  • the optical detection slot may be formed with a plurality of detection chambers arranged side by side at intervals, and the plurality of detection chambers may be in one-to-one correspondence with the plurality of the capillaries; the upper end of the optical detection slot corresponds to each
  • the position of the detection chamber may be provided with a capillary insertion hole, so that the capillary is inserted into the corresponding detection chamber; a plurality of light-passing holes may be opened on the side wall of the optical detection slot, and a plurality of The light-passing holes may correspond to and communicate with a plurality of the detection chambers one-to-one.
  • an optical fiber fixing plate may be installed on the side wall of the optical detection slot, and a plurality of optical fiber fixing holes may be opened on the optical fiber fixing plate corresponding to the plurality of light-passing holes, and each of the optical fibers is fixed.
  • the holes may be located on the same axis as the corresponding light-passing holes; a second focusing lens may be respectively clamped between each light-passing hole and each of the corresponding optical fiber fixing holes; a plurality of the optical fiber bundles
  • the second ports can be respectively inserted into a plurality of the optical fiber fixing holes.
  • a heating plate may be provided on the bottom wall of the optical detection tank for heating the optical detection tank.
  • the optical detection tank may also be formed with a first heat preservation chamber and a second heat preservation chamber, and a plurality of the detection chambers may be located between the first heat preservation chamber and the second heat preservation chamber.
  • a thermal insulation layer may be provided on the outside of the optical detection tank to keep the optical detection tank warm.
  • the present application also provides a molecular diagnostic platform, and the molecular diagnostic platform may include the multi-channel fluorescence quantitative detection device described in any one of the above.
  • the fluorescence quantitative detection device may include a frame, a light source assembly, a first filter assembly, a second filter assembly, an imaging assembly, an optical fiber bundle, and an optical detection slot.
  • the photodetector can be placed on the rack, and the photodetector can be used to fix a plurality of capillaries containing samples to be detected.
  • the light source assembly can provide a white light source, the light source assembly and the first filter assembly can be oppositely arranged on the frame, the white light source emitted by the light source assembly can be irradiated on the first filter assembly, and then the white light source is filtered by the first filter assembly.
  • the number of optical fiber bundles can be multiple, and multiple optical fiber bundles can be in one-to-one correspondence with multiple capillaries.
  • the incident light can enter the plurality of incident optical fibers uniformly through the plurality of first ports.
  • the second ports of the plurality of optical fiber bundles can be respectively connected to the optical detection slot, and the plurality of second ports can be respectively directed toward the corresponding capillaries; so that the incident light is irradiated on the corresponding capillaries through the second ports, so as to excite the inside of the capillaries.
  • the fluorescent substance emits fluorescence in the corresponding band.
  • the second filter assembly and the imaging assembly can be oppositely disposed on the rack, and the third ports of the multiple optical fiber bundles can be converged into one and connected to the first filter assembly, so that the fluorescence of the corresponding wavelength band emitted by the multiple capillaries can be irradiated on the first filter assembly.
  • the second filter assembly can filter out stray light and then illuminate it on the imaging assembly, so that the fluorescence imaging photos of multiple capillaries can be easily and quickly obtained through the imaging assembly to analyze the concentration of the sample and improve the accuracy of the sample. The efficiency of fluorescence quantitative detection.
  • the present application also provides a molecular diagnosis platform.
  • the molecular diagnosis platform may include the multi-channel fluorescence quantitative detection device. Therefore, the molecular diagnosis platform also has the beneficial effect of the multi-channel fluorescence quantitative detection device.
  • FIG. 1 is a schematic structural diagram of a multi-channel fluorescence quantitative detection device from a first viewing angle provided by an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a multi-channel fluorescence quantitative detection device provided in an embodiment of the present application from a second viewing angle;
  • Figure 3 is a cross-sectional view at A-A in Figure 2;
  • Fig. 4 is a sectional view at B-B in Fig. 2;
  • FIG. 5 is a schematic structural diagram of an optical detection cell provided by an embodiment of the present application.
  • 2-light source assembly 21-LED lamp, 22-light source sleeve, 23-collimating lens, 24-heat sink;
  • 8-optical detection slot 81-light hole, 82-fiber fixing plate, 83-fiber fixing hole, 84-silica gel cover.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the multi-channel fluorescence quantitative detection device and the molecular diagnostic platform according to some embodiments of the present application will be described below with reference to FIGS. 1 to 5 .
  • the present application provides a fluorescence quantitative detection device for performing fluorescence quantitative detection on a sample in a capillary; as shown in FIG. 1 , the fluorescence quantitative detection device may include a rack 1, a light source assembly 2, a first filter assembly 3, The second filter assembly 4 , the imaging assembly 5 , the optical fiber bundle and the optical detection slot 8 .
  • the optical detection tank 8 can be placed on the rack 1, and the optical detection tank 8 can be used to fix the capillary tube containing the sample to be detected.
  • the number of capillaries may be multiple, and the multiple capillaries may be arranged side by side in the photodetection tank 8 at intervals.
  • the light source assembly 2 can provide a white light source.
  • the light source assembly 2 and the first filter assembly 3 can be disposed on the frame 1 opposite to each other.
  • the white light source emitted by the light source assembly 2 can illuminate the first filter assembly 3, and then pass through the first filter assembly.
  • the light component 3 filters the white light source, so that the monochromatic light of a predetermined wavelength band passes through the first filter component 3 to form incident light with a predetermined wavelength band for illuminating the capillary.
  • the fiber bundle may be a three-port fiber bundle, including a first port, a second port and a third port, an incident fiber may be formed between the first port and the second port, and an exit fiber may be formed between the second port and the third port .
  • the number of optical fiber bundles can be multiple, and multiple optical fiber bundles can be in one-to-one correspondence with multiple capillaries.
  • the formed incident light can enter into the plurality of incident optical fibers uniformly through the plurality of first ports.
  • the second ports of the multiple optical fiber bundles can be respectively connected to the optical detection slot 8, and the multiple second ports are respectively directed toward the corresponding capillaries.
  • the incident light can be transmitted to the corresponding second port through a plurality of incident optical fibers, and then the incident light of the predetermined wavelength band is irradiated on the corresponding capillary tube through the second port, so as to excite the fluorescent substance in the capillary tube to emit fluorescence in the corresponding wavelength band.
  • the second filter assembly 4 can be arranged on the rack 1, and the third ports of the multiple optical fiber bundles can be converged into one and connected to the second filter assembly 4, so that the fluorescence of the corresponding wavelength band emitted by the multiple capillaries can be irradiated on the second filter assembly 4.
  • the imaging component 5 can be arranged opposite the second filter component 4, the fluorescence can be irradiated on the imaging component 5 through the second filter component 4, and the stray light can be removed by the second filter component 4, thereby facilitating,
  • the fluorescence imaging photos of multiple capillaries are quickly obtained through the imaging component 5 to analyze the concentration of the sample and improve the efficiency of the fluorescence quantitative detection of the sample.
  • the first filter component 3 can filter the white light source emitted by the light source component 2 to form a variety of monochromatic lights with different wavelength bands .
  • the first filter assembly 3 may include a filter wheel 31 , a filter 32 , a driving device 33 and a light shield 34 ;
  • the driving device 33 may be fixedly arranged on the frame 1 , and the driving device The driving end of the filter wheel 33 can be connected with the filter wheel 31 to drive the filter wheel 31 to rotate around the axis of the filter wheel 31 through the driving device 33 .
  • the number of the filters 32 may be multiple, the multiple filters 32 may be distributed at intervals along the circumference of the filter wheel 31 , and the multiple filters 32 can respectively pass light of different wavelength bands.
  • the light blocking cover 34 can be covered on the filter wheel 31 , a light inlet can be opened on the side wall of the light blocking cover 34 on the side opposite to the filter wheel 31 , and the side wall on the other side of the light blocking cover 34 can be opened.
  • a light outlet can be opened, and the light inlet and the light outlet can be located on the same axis.
  • the driving device 33 can drive the filter wheel 31 to rotate, so that the plurality of filters 32 are rotated sequentially between the light inlet and the light outlet, and are located on the same axis as the light inlet and the light outlet, so that the light inlet and the light outlet are on the same axis.
  • the optical path is formed between the ports.
  • the white light source emitted by the light source assembly 2 can be irradiated on the filter 32 located between the light inlet and the light outlet through the light inlet, and then the white light source is filtered by the filter 32, so that the monochromatic light of the corresponding wavelength band passes through.
  • the filter 32 is emitted through the light outlet to form incident light with a predetermined wavelength band for irradiating the capillary.
  • the structure of the second optical filter assembly 4 can be the same as that of the first optical filter assembly 3, which will not be repeated here;
  • the number of the filters 32 on the filter assembly 3 is the same and in one-to-one correspondence.
  • the number of filters 32 on the first filter assembly 3 can be four, and the four filters 32 are respectively a red filter, a yellow filter, a green filter and a blue filter ; the red filter is used to pass red light at 607-644nm, the yellow filter is used to pass yellow light at 552-594nm, the green filter is used to pass green light at 509-545nm, the blue Color filters are used to pass blue light at 420-490 nm.
  • the fluorescent substance in the capillary can excite the fluorescence of the corresponding wavelength band, which are red fluorescence, yellow fluorescence, green fluorescence and blue fluorescence respectively.
  • the number of filters on the second filter assembly 4 may also be four, and the four filters are respectively a red fluorescence filter, a yellow fluorescence filter, a green fluorescence filter and a blue fluorescence filter.
  • red fluorescence filter is used to pass red fluorescence at 644-686nm
  • yellow fluorescence filter is used to pass yellow fluorescence at 594-634nm
  • green fluorescence filter 32 is used to pass 545-583nm The green fluorescence passes through, and a blue fluorescence filter is used to pass blue fluorescence from 490-532 nm.
  • the red filter and the red fluorescence filter are respectively rotated to the corresponding optical path channels, so that the light source emits
  • the white light source is filtered by the first filter component 3 to form incident light of 607-644nm, and is covered on the capillary tube, and then the fluorescent substance in the capillary tube is excited to emit red fluorescence; after the red fluorescence is filtered by the second filter component 4,
  • the red fluorescence of 644-686 nm is irradiated into the imaging component 5, and the imaging component 5 is used to obtain a fluorescence imaging photo of a plurality of capillaries formed under the excitation of the incident light of 607-644 nm.
  • the driving devices 33 of the first filter assembly 3 and the second filter assembly 4 can be both stepper motors, so that the corresponding filter wheels can be precisely controlled by the stepper motors 31 to rotate the required filter 32 to the optical path.
  • photoelectric sensors 36 may be provided at the stepper motors of the first filter assembly 3 and the second filter assembly 4 respectively; one end of the output shaft of the stepper motor may be connected to the filter wheel 31 In connection, the other end of the output shaft may be provided with an induction sheet 35 , so that the induction sheet 35 can rotate at the same angle synchronously with the filter wheel 31 .
  • the edge of the sensing piece 35 can extend into the photoelectric sensor 36, and the edge of the sensing piece 35 can be provided with a gap.
  • the filter wheel 31 is in the initial position. Then, based on the initial position, the filter wheel is driven by a stepping motor to rotate at different angles, so that the four filters 32 can be rotated to the optical path in sequence.
  • the light source assembly 2 may include an LED lamp 21 , a light source sleeve 22 , a collimating lens 23 and a heat sink 24 .
  • the light source sleeve 22 can be fixedly arranged on the frame 1, and the light source sleeve 22 can be located on the side of the first optical filter assembly 3 where the light inlet is opened;
  • the ports are coaxially arranged, one end of the light source sleeve 22 away from the first filter assembly 3 can be connected to the LED lamp 21, and the other end of the light source sleeve 22 can extend into the light blocking through the light inlet of the first filter assembly 3 inside the cover 34 and extend to a position close to the filter wheel 31 .
  • the collimating lens 23 can be installed in the light source sleeve 22, the LED lamp 21 can emit white light, and the white light emitted by the LED is corrected by the collimating lens 23 to form a bundle of parallel rays; The incident light in a predetermined wavelength band is then filtered by the filter 32 to be used to excite the fluorescent substance in the capillary.
  • a first optical fiber lens assembly 6 may be provided on the side of the first optical filter assembly 3 on which the light outlet is opened; the first optical fiber lens assembly 6 may include The first sleeve 61 , the first focusing lens 62 and the first fiber holder 63 .
  • the first sleeve 61 can be fixedly arranged on the frame 1, and the first sleeve 61 can be coaxially arranged with the light outlet of the first optical filter assembly 3; one end of the first sleeve 61 can pass through the first optical filter assembly 3
  • the light outlet extends into the light blocking cover 34 of the first filter assembly 3 and extends to the filter wheel 31, and the other end of the first sleeve 61 can be connected to the first optical fiber fixing member 63;
  • the first ports After the first ports converge into one, they can be inserted into the first sleeve 61 through the first optical fiber fixing member 63, the first focusing lens 62 can be installed in the first sleeve 61, and the first port of the optical fiber bundle can be located in the first sleeve 61.
  • a second optical fiber lens assembly 7 may be provided on the side of the second optical filter assembly 4 on which the light inlet is opened, and the second optical fiber lens assembly 7 may include The second sleeve 71 , the second lens 72 and the second fiber holder 73 .
  • the second sleeve 71 can be fixedly arranged on the frame 1, and the second sleeve 71 can be arranged coaxially with the light inlet of the second filter assembly 4; one end of the second sleeve 71 can pass through the second filter assembly
  • the light inlet of 4 extends into the light shield of the second filter assembly 4 and extends to the filter wheel of the second filter assembly 4.
  • the other end of the second sleeve 71 can be connected with the second optical fiber fixing member 73. connected.
  • the third ports of the multiple optical fiber bundles converge into one, they can be inserted into the second sleeve 71 through the second optical fiber fixing member 73, and the second lens 72 can be installed in the second sleeve 71; the fluorescence emitted by the multiple capillaries It can enter the exit fibers of the multiple fiber bundles through the second port of the corresponding fiber bundle, and then transmit to the third port of the multiple fiber bundles through the multiple exit fibers, and send out the capillary through the multiple third ports.
  • the fluorescent light is irradiated on the second lens 72; the second lens 72 is used for correcting the fluorescent light to obtain a parallel fluorescent light beam, so that the parallel fluorescent light beam is irradiated on the filter of the second filter assembly 4 , to filter the fluorescent light beam through the filter of the second filter component 4, so that the fluorescent light beam of the predetermined wavelength band is irradiated into the imaging component 5, so as to obtain a fluorescent imaging photo.
  • the imaging assembly 5 may be disposed on the side of the second filter assembly 4 where the light outlet is opened, and the imaging assembly 5 may include a camera 51 , a first A lens 53 and a camera lens sleeve 52, the first lens 53 can be installed in the camera lens sleeve 52, and the first lens 53 can be arranged coaxially with the camera lens sleeve 52; the camera lens sleeve 52 can be fixedly arranged in the camera On the frame 1, the camera lens sleeve 52 can be arranged coaxially with the light outlet of the second filter assembly 4, and one end of the camera lens sleeve 52 can extend into the second filter through the light outlet of the second filter assembly 4.
  • the first lens 53 and the second lens 72 on both sides of the second filter assembly 4 can be achromatic doublet lenses; the camera 51 can be fixedly arranged on the frame 1, and the other end of the camera lens tube 52 It can be connected with the camera 51, so that the fluorescence emitted by the third port of the fiber bundle passes through the second lens 72, the second filter assembly 4 and the first lens 53 in sequence and then irradiates into the CMOS chip of the camera 51, so that no camera lens is required. That is, the fluorescence signal can be collected by the camera 51 and a fluorescence imaging photograph can be obtained.
  • the optical detection slot 8 may be formed with a plurality of independent detection chambers, the plurality of detection chambers may be arranged side by side at intervals, and the plurality of detection chambers may be One-to-one correspondence with multiple capillaries.
  • the upper end of the optical detection tank 8 may be an open end, and the open end is covered with a silica gel cover plate 84 , so that the plurality of detection chambers are sealed by the silica gel cover plate 84 .
  • a capillary insertion hole may be provided at a position of the silicone cover plate 84 corresponding to each detection chamber, so that a plurality of capillaries can be inserted into the corresponding detection chamber through the capillary insertion hole.
  • a light-passing hole 81 may be respectively opened on a side wall of one side of the optical detection tank 8 at a position corresponding to each detection chamber, and the light-passing hole 81 may face the end of the capillary tube where the sample is loaded.
  • An optical fiber fixing plate 82 can be provided on the side wall of the side where the light-passing hole 81 is opened in the optical detection slot 8, and a plurality of optical fiber fixing holes 83 can be opened on the optical fiber fixing plate 82.
  • the light-passing holes 81 are in one-to-one correspondence, and a corresponding group of light-passing holes 81 and the optical fiber fixing holes 83 may be located on the same axis.
  • the second ports of the plurality of optical fiber bundles can be respectively inserted into the plurality of optical fiber fixing holes 83, and a second focusing lens can be arranged between each group of light-passing holes 81 and the optical fiber fixing holes 83, so that the second focusing lens of the optical fiber bundles is second.
  • the incident light emitted by the port is focused by the corresponding second focusing lens and then irradiated on the corresponding capillary tube, so as to excite the fluorescent substance in the capillary tube to emit fluorescence.
  • a heating sheet may be provided on the bottom wall of the optical detection tank 8, and the optical detection tank 8 can be heated by the heating sheet, so that the detection chamber inside the optical detection tank 8 is at a suitable temperature , so as to ensure the accuracy of fluorescence quantitative detection.
  • a first heat preservation chamber and a second heat preservation chamber may also be formed in the photodetection tank 8, and the first heat preservation chamber may be located in the plurality of detection chambers.
  • the second heat preservation chamber may be located at the other end of the plurality of detection chambers, so as to prevent the temperature of the two detection chambers located at both ends from being too low in the plurality of detection chambers.
  • a thermal insulation layer may be provided outside the optical detection tank 8 to further insulate the plurality of detection chambers to ensure that the temperature in the optical detection tank 8 is within a stable range, thereby improving the accuracy of fluorescence quantitative detection.
  • the present application also provides a molecular diagnostic platform, including the multi-channel fluorescence quantitative detection device of any of the above embodiments.
  • the molecular diagnosis platform may include a multi-channel fluorescence quantitative detection device, so the molecular diagnosis platform has all the beneficial effects of the multi-channel fluorescence quantitative detection device, which will not be repeated here.
  • the present application discloses a channel fluorescence quantitative detection device and a molecular diagnosis platform.
  • the fluorescence quantitative detection device includes a light source component, a first filter component, a second filter component, an imaging component, an optical fiber bundle and a light detection slot.
  • the light detection slot is used to fix a plurality of capillaries; the light source assembly can provide a white light source, and the white light source emitted by the light source assembly is filtered by the first filter assembly to form incident light of a predetermined wavelength band, and then passes through the incident fiber pairs of the plurality of fiber bundles.
  • the capillary is illuminated to excite fluorescence.
  • the fluorescence generated by the multiple capillaries is filtered by the exit fibers of the multiple fiber bundles and the second filter component, the fluorescence of the corresponding wavelength band is formed and irradiated on the imaging component, so that the fluorescence imaging of the multiple capillaries can be conveniently and quickly obtained through the imaging component. Photographs to analyze the concentration of samples in multiple capillaries, and improve the efficiency of fluorescence quantitative detection of samples.
  • the multi-channel fluorescence quantitative detection device and molecular diagnostic platform of the present application are reproducible and can be applied in various industrial applications.
  • the multi-channel fluorescence quantitative detection device and molecular diagnostic platform of the present application can be applied to any substance that requires fluorescence quantitative detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本申请涉及荧光检测技术领域,尤其是涉及多通道荧光定量检测装置及分子诊断平台。荧光定量检测装置包括光源组件、第一滤光组件、第二滤光组件、成像组件、光纤束和光检槽。光检槽用于固定多个毛细管;光源组件能够提供白光源,光源组件发出的白光源通过第一滤光组件过滤形成预定波段的入射光后经由多个光纤束的入射光纤对对应的多个毛细管进行照射,以激发荧光。多个毛细管产生的荧光经由多个光纤束的出射光纤和第二滤光组件的过滤后,形成相应波段的荧光并照射在成像组件,从而方便、快捷地通过成像组件获得多个毛细管的荧光成像照片,以分析多个毛细管内的样品的浓度,提高对样品的荧光定量检测的效率。

Description

多通道荧光定量检测装置及分子诊断平台
相关申请的交叉引用
本申请要求于2021年1月29日提交中国专利局的申请号为202110129513.2、名称为“多通道荧光定量检测装置及分子诊断平台”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及荧光检测技术领域,尤其是涉及多通道荧光定量检测装置及分子诊断平台。
背景技术
荧光定量检测是分子诊断最后步骤中的检测部分,在检测过程中使用预定波长的激发光对毛细管内的荧光物质进行照射,以激发出荧光,然后通过荧光采集装置对荧光进行采集,以实现对反应物的荧光定量检测,但相关技术的荧光定量检测装置存在检测时间过长的问题。
发明内容
本申请提供了多通道荧光定量检测装置及分子诊断平台,以在一定程度上提高荧光检测效率。
本申请提供了一种多通道荧光定量检测装置,所述多通道荧光定量检测装置可以包括机架、光源组件、第一滤光组件、第二滤光组件、成像组件、光纤束和光检槽;
所述光检槽可以设置于所述机架上,所述光检槽可以用于固定装有样品的毛细管;所述光源组件与所述第一滤光组件可以相对设置于所述机架上,所述光源组件可以用于提供白光源,所述白光源能够穿过所述第一滤光组件以形成预定波段的入射光;所述光纤束可以包括三个端口,所述光纤束的第一端口可以与所述第一滤光组件相连接,所述光纤束的第二端口可以与所述光检槽相连接,所述入射光能够通过所述第一端口和所述第二端口之间的入射光纤照射至所述毛细管,以激发荧光;所述第二滤光组件和所述成像组件可以相对设置于所述机架上,所述光纤束的第三端口可以与所述第二滤光组件相连接,以使所述荧光通过所述第二端口和所述第三端口之间的出射光纤照射至所述第二滤光组件;所述第二滤光组件可以用于对所述荧光进行过滤,以使预定波段的荧光照射进所述成像组件,所述成像组件可以用于采集所述荧光并成像;
所述毛细管的数量可以为多个,多个所述毛细管可以并排间隔设置;所述光纤束的数量可以为多个,多个所述光纤束可以与多个所述毛细管一一对应,且多个所述光纤束的第二端口可以分别朝向对应的所述毛细管。
可选地,所述第一滤光组件和所述第二滤光组件可以均包括滤光轮、滤光片和驱动装 置;所述驱动装置可以固定设置于所述机架上,所述驱动装置的驱动端可以与所述滤光轮相连接,以驱动所述滤光轮绕滤光轮的轴线转动。
可选地,所述滤光片的数量可以为多个,多个所述滤光片可以沿滤光轮的周向间隔设置;所述第一滤光组件的多个滤光片可以用于对白光源进行过滤,以获得不同波段的入射光;所述第二滤光组件的多个滤光片可以用于对所述荧光进行过滤,以使预定波段的荧光照射进所述成像组件;所述第二滤光组件的多个滤光片可以与所述第一滤光组件的多个滤光片的数量相同并一一对应。
可选地,所述第一滤光组件和所述第二滤光组件还可以分别包括挡光罩;所述挡光罩罩可以设于所述滤光轮上,且所述挡光罩的两侧的侧壁上可以分别开设有进光口和出光口,所述进光口和所述出光口可以位于同一轴线上;所述滤光轮转动能够依次将多个所述滤光片转动至所述进光口和所述出光口之间,以在所述进光口和所述出光口之间形成光路通道。
可选地,所述第一滤光组件和所述第二滤光组件的所述驱动装置可以均为步进电机;所述第一滤光组件和所述第二滤光组件的所述步进电机处可以分别设置有光电传感器;所述步进电机的输出轴的一端可以与所述滤光轮相连接,并且所述步进电机的所述输出轴的另一端可以设置有感应片。
可选地,所述光源组件可以包括LED灯、光源套筒和准直透镜;所述光源套筒可以固定设置于所述机架上,且所述光源套筒可以与所述第一滤光组件的进光口同轴设置;所述光源套筒的一端可以通过所述第一滤光组件的进光口伸入所述挡光罩内,所述LED灯可以与所述光源套筒的另一端相连接,所述准直透镜可以安装于所述光源套筒内。
可选地,所述光源组件还可以包括散热片;所述散热片可以安装于所述机架上,所述光源套筒可以用于安装所述LED灯的一端与所述散热片相连接,以使所述LED灯夹持于所述光源套筒和所述散热片之间,且所述LED灯的铝基板可以与所述散热片相贴合。
可选地,所述的多通道荧光定量检测装置还可以包括第一光纤透镜组件;所述第一光纤透镜组件可以包括第一套筒、第一聚焦透镜和第一光纤固定件;所述第一套筒可以固定设置于所述机架上,且所述第一套筒可以与所述第一滤光组件的出光口同轴设置;所述第一套筒的一端可以通过所述第一滤光组件的出光口伸入所述第一滤光组件的挡光罩内,所述第一套筒的另一端可以与所述第一光纤固定件相连接;所述光纤束的第一端口可以通过所述第一光纤固定件插接于所述第一套筒内,所述第一聚焦透镜可以安装于所述第一套筒内,且所述光纤束的第一端口可以位于所述第一聚焦透镜的焦面上。
可选地,所述的多通道荧光定量检测装置还可以包括第二光纤透镜组件;所述第二光纤透镜组件可以包括第二套筒、第二透镜和第二光纤固定件;所述第二套筒可以固定设置于所述机架上,且所述第二套筒可以与所述第二滤光组件的进光口同轴设置;所述第二套 筒的一端可以通过所述第二滤光组件的进光口伸入到所述第二滤光组件的挡光罩内,所述第二套筒的另一端可以与所述第二光纤固定件相连接;所述光纤束的第三端口可以通过所述第二光纤固定件插接于所述第二套筒内,所述第二透镜可以安装于所述第二套筒内;所述光纤束的第三端口发出的荧光能够经由所述第二透镜照射至所述第二滤光组件位于工作位的滤光片上。
可选地,所述成像组件可以包括相机、第一透镜和相机透镜套筒;所述第一透镜可以安装于所述相机透镜套筒内,所述相机透镜套筒可以固定设置于所述机架上,且所述相机透镜套筒可以与所述第二滤光组件的出光口同轴设置,所述相机透镜套筒的一端可以通过所述第二滤光组件的出光口伸入到所述第二滤光组件的挡光罩内;所述相机可以固定设置于所述机架上,所述相机透镜套筒的另一端可以与所述相机相连接,以使经过所述第二滤光组件的荧光照射至所述相机的CMOS芯片上。
可选地,所述光检槽可以形成有多个并排间隔设置的检测腔室,多个所述检测腔室可以与多个所述毛细管一一对应;所述光检槽的上端对应每个所述检测腔室的位置处可以开设有毛细管插接孔,以使毛细管插接于对应的所述检测腔室内;所述光检槽的侧壁上可以开设有多个通光孔,多个所述通光孔可以与多个所述检测腔室一一对应并连通。
可选地,所述光检槽的侧壁上可以安装有光纤固定板,所述光纤固定板上对应多个所述通光孔可以开设有多个光纤固定孔,且每个所述光纤固定孔可以与对应的所述通光孔位于同一轴线上;每个所述通光孔和对应的每个所述光纤固定孔之间可以分别装夹有第二聚焦透镜;多个所述光纤束的第二端口可以分别插接于多个所述光纤固定孔内。
可选地,所述光检槽的底壁上可以设置有加热片,以用于对所述光检槽进行加热。
可选地,所述光检槽还可以形成有第一保温腔室和第二保温腔室,多个所述检测腔室可以位于所述第一保温腔室和所述第二保温腔室之间;所述光检槽的外部可以设置有保温层,以对所述光检槽进行保温。
本申请还提供了一种分子诊断平台,所述分子诊断平台可以包括上述任一项所述的多通道荧光定量检测装置。
与现有技术相比,本申请的有益效果至少为:
本申请提供的荧光定量检测装置可以包括机架、光源组件、第一滤光组件、第二滤光组件、成像组件、光纤束和光检槽。光检槽可以放置于机架上,光检槽可以用于对装有待检测样品的多个毛细管进行固定。光源组件能够提供白光源,光源组件与第一滤光组件可以相对设置于机架上,光源组件发出的白光源能够照射在第一滤光组件上,然后通过第一滤光组件对白光源进行过滤,使得预定波段的单色光穿过第一滤光组件,形成用于照射毛细管的具有预定波段的入射光。光纤束的数量可以为多个,多个光纤束可以与多个毛细管 一一对应,多个光纤束的第一端口可以汇聚成一股接入第一滤光组件内,第一滤光组件形成的入射光能够通过多个第一端口均匀地进入到多个入射光纤内。多个光纤束的第二端口可以分别接入光检槽,且多个第二端口可以分别朝向与之对应的毛细管;以使入射光经由第二端口照射在对应的毛细管上,从而激发毛细管内的荧光物质发出相应波段的荧光。第二滤光组件和成像组件可以相对设置于机架上,多个光纤束的第三端口可以汇聚成一股接入第一滤光组件,使得多个毛细管发出的相应波段的荧光能够照射在第二滤光组件上,并经第二滤光组件可以过滤掉杂散光后照射在成像组件,从而方便、快捷地通过成像组件获得多个毛细管的荧光成像照片,以分析样品的浓度,提高对样品的荧光定量检测的效率。
本申请还提供了一种分子诊断平台,所述分子诊断平台可以包括所述多通道荧光定量检测装置,因而所述分子诊断平台也具有多通道荧光定量检测装置的有益效果。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的多通道荧光定量检测装置第一视角下的结构示意图;
图2为本申请实施例提供的多通道荧光定量检测装置第二视角下的结构示意图;
图3为图2中A-A处截面图;
图4为图2中B-B处截面图;
图5为本申请实施例提供的光检槽的结构示意图。
附图标记:
1-机架;
2-光源组件,21-LED灯,22-光源套筒,23-准直透镜,24-散热片;
3-第一滤光组件,31-滤光轮,32-滤光片,33-驱动装置,34-挡光罩,35-感应片,36-光电传感器;
4-第二滤光组件;
5-成像组件,51-相机,52-相机透镜套筒,53-第一透镜;
6-第一光纤透镜组件,61-第一套筒,62-第一聚焦透镜,63-第一光纤固定件;
7-第二光纤透镜组件,71-第二套筒,72-第二透镜,73-第二光纤固定件;
8-光检槽,81-通光孔,82-光纤固定板,83-光纤固定孔,84-硅胶盖板。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例 是本申请一部分实施例,而不是全部的实施例。
通常在此处附图中描述和显示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面参照图1至图5描述根据本申请一些实施例所述的多通道荧光定量检测装置及分子诊断平台。
本申请提供了一种荧光定量检测装置,用于对毛细管内的样品进行荧光定量检测;如图1所示,荧光定量检测装置可以包括机架1、光源组件2、第一滤光组件3、第二滤光组件4、成像组件5、光纤束和光检槽8。
其中光检槽8可以放置于机架1上,光检槽8可以用于对装有待检测样品的毛细管进行固定。毛细管的数量可以为多个,多个毛细管可以并排间隔设置于光检槽8内。
光源组件2能够提供白光源,光源组件2与第一滤光组件3可以相对设置于机架1上,光源组件2发出的白光源能够照射在第一滤光组件3上,然后通过第一滤光组件3对白光源进行过滤,使得预定波段的单色光穿过第一滤光组件3,形成用于照射毛细管的具有预定波段的入射光。
光纤束可以为三端口光纤束,包括第一端口、第二端口和第三端口,第一端口和第二端口之间可以形成有入射光纤,第二端口和第三端口之间可以形成出射光纤。光纤束的数量可以为多个,多个光纤束可以与多个毛细管一一对应,多个光纤束的第一端口可以汇聚成一股接入第一滤光组件3内,第一滤光组件3形成的入射光能够通过多个第一端口均匀地进入到多个入射光纤内。
多个光纤束的第二端口可以分别接入光检槽8,并使多个第二端口分别朝向与之对应的毛细管。入射光可以经由多个入射光纤传输至对应的第二端口处,然后通过第二端口将预定波段的入射光照射在对应的毛细管上,从而激发毛细管内的荧光物质发出相应波段的荧光。
第二滤光组件4可以设置于机架1上,多个光纤束的第三端口可以汇聚成一股接入第二滤光组件4,使得多个毛细管发出的相应波段的荧光能够照射在第二滤光组件4上;成像组件5可以与第二滤光组件4相对设置,荧光能够通过第二滤光组件4照射在成像组件5,并通过第二滤光组件4去掉杂散光,从而方便、快捷地通过成像组件5获得多个毛细管的荧光成像照片,以分析样品的浓度,提高对样品的荧光定量检测的效率。
在本申请的一个实施例中,优选地,如图1至图3所示,第一滤光组件3能够对光源组件2发出的白光源进行过滤,以形成多种具有不同波段的单色光。
优选地,如图3所示,第一滤光组件3可以包括滤光轮31、滤光片32、驱动装置33和挡光罩34;驱动装置33可以固定设置于机架1上,驱动装置33的驱动端可以与滤光轮31相连接,以通过驱动装置33驱动滤光轮31绕滤光轮31的轴线转动。滤光片32的数量可以为多个,多个滤光片32可以沿滤光轮31的周向间隔分布,且多个滤光片32分别能够使不同波段的光线穿过。挡光罩34可以罩设于滤光轮31上,挡光罩34与滤光轮31相对的一侧的侧壁上可以开设有进光口,挡光罩34的另一侧的侧壁上可以开设有出光口,且进光口与出光口可以位于同一轴线上。驱动装置33能够驱动滤光轮31转动,使得多个滤光片32依次转动至进光口和出光口之间,并与进光口和出光口位于同一轴线上,从而在进光口和出光口之间形成光路通道。
光源组件2发出的白光源能够通过进光口照射在位于进光口和出光口之间的滤光片32上,然后通过滤光片32对白光源进行过滤,使对应波段的单色光穿过滤光片32,并经由出光口发出,以形成用于对毛细管进行照射的具有预定波段的入射光。
在该实施例中,优选地,第二滤光组件4的结构可以与第一滤光组件3的结构相同,在此不再赘述;第二滤光组件4上的滤光片可以与第一滤光组件3上的滤光片32的数量相同并一一对应。
优选地,第一滤光组件3上的滤光片32的数量可以为四个,四个滤光片32分别为红色滤光片、黄色滤光片、绿色滤光片和蓝色滤光片;红色滤光片用于使607-644nm的红光穿过,黄色滤光片用于使552-594nm的黄光穿过,绿色滤光片用于使509-545nm的绿光穿过,蓝色滤光片用于使420-490nm的蓝光穿过。
当这四种波段的入射光照射在毛细管上时,能够使毛细管内的荧光物质激发出相应波段的荧光,分别为红色荧光、黄色荧光、绿色荧光和蓝色荧光。对应地,第二滤光组件4 上的滤光片的数量也可以为四个,四个滤光片分别为红色荧光滤光片、黄色荧光滤光片、绿色荧光滤光片和蓝色荧光滤光片;红色荧光滤光片用于使644-686nm的红色荧光穿过,黄色荧光滤光片用于使594-634nm的黄色荧光穿过,绿色荧光滤光片32用于使545-583nm的绿色荧光穿过,蓝色荧光滤光片用于使490-532nm的蓝色荧光穿过。
在具体使用过程中,以红色入射光为例,当需要使用红色的入射光对毛细管进行照射时,分别使红色滤光片和红色荧光滤光片转动至对应的光路通道处,从而使光源发出的白光源经由第一滤光组件3过滤后形成607-644nm的入射光,并罩设在毛细管上,然后激发毛细管内的荧光物质发出红色荧光;红色荧光经由第二滤光组件4过滤后,使644-686nm的红色荧光照射进成像组件5,并通过成像组件5得到多个毛细管在607-644nm的入射光的激发下形成的荧光成像照片。
在本申请的一个实施例中,优选地,第一滤光组件3和第二滤光组件4的驱动装置33可以均为步进电机,从而通过步进电机能够精确地控制对应的滤光轮31的转动角度,以使需要的滤光片32转动至光路通道处。
优选地,如图1所示,第一滤光组件3和第二滤光组件4的步进电机处还可以分别设置有光电传感器36;步进电机的输出轴的一端可以与滤光轮31相连接,输出轴的另一端可以设置有感应片35,使得感应片35能够与滤光轮31同步转动相同的角度。
感应片35的边缘能够伸入到光电传感器36内,且感应片35的边缘可以开设有豁口,当感应片35转动至该豁口位于光电传感器36的感应区内时,滤光轮31处于初始位置;然后以该初始位置为基准,通过步进电机驱动滤光轮转动不同的角度,既能够使四个滤光片32依次转动至光路通道处。
在本申请的一个实施例中,优选地,如图3所示,光源组件2可以包括LED灯21、光源套筒22、准直透镜23和散热片24。光源套筒22可以固定设置于机架1上,且光源套筒22可以位于第一滤光组件3开设有进光口的一侧;光源套筒22可以与第一滤光组件3的进光口同轴设置,光源套筒22远离第一滤光组件3的一端可以与LED灯21相连接,光源套筒22的另一端可以通过第一滤光组件3的进光口伸入到挡光罩34内,并延伸至靠近滤光轮31的位置处。准直透镜23可以安装于光源套筒22内,LED灯21能够发出白光,且LED发出的白光经准直透镜23校正后形成一束平行光线;该平行光线照射在位于光路通道上的滤光片32上,然后通过滤光片32的过滤形成预定波段的入射光,以用于对毛细管中的荧光物质进行激发。
在本申请的一个实施例中,优选地,如图3所示,第一滤光组件3开设有出光口的一侧还可以设置有第一光纤透镜组件6;第一光纤透镜组件6可以包括第一套筒61、第一聚焦透镜62和第一光纤固定件63。
第一套筒61可以固定设置于机架1上,且第一套筒61可以与第一滤光组件3的出光口同轴设置;第一套筒61的一端可以通过第一滤光组件3的出光口伸入第一滤光组件3的挡光罩34内并延伸至滤光轮31处,第一套筒61的另一端可以与第一光纤固定件63相连接;多个光纤束的第一端口汇聚成一股后可以通过第一光纤固定件63插接于第一套筒61内,第一聚焦透镜62可以安装于第一套筒61内,且光纤束的第一端口可以位于第一聚焦透镜62的焦面上;通过第一滤光组件3过滤后得到的预定波段的入射光能够通过第一聚焦透镜62聚焦后均匀地分散进多个光纤束的第一端口内,然后通过多个光纤束的入射光纤传输至对应的第二端口处,然后通过第二端口将预定波段的入射光照射在对应的毛细管上,从而对多个毛细管内的荧光物质进行激发,以产生相应波段的荧光。
在本申请的一个实施例中,优选地,如图4所示,第二滤光组件4开设有进光口的一侧可以设置有第二光纤透镜组件7,第二光纤透镜组件7可以包括第二套筒71、第二透镜72和第二光纤固定件73。第二套筒71可以固定设置于机架1上,且第二套筒71可以与第二滤光组件4的进光口同轴设置;第二套筒71的一端可以通过第二滤光组件4的进光口伸入到第二滤光组件4的挡光罩内并延伸至第二滤光组件4的滤光轮处,第二套筒71的另一端可以与第二光纤固定件73相连接。多个光纤束的第三端口汇聚成一股后可以通过第二光纤固定件73插接于第二套筒71内,第二透镜72可以安装于第二套筒71内;多个毛细管发出的荧光能够通过与之对应的光纤束的第二端口进入到多个光纤束的出射光纤内,然后通过多个出射光纤传输至多个光纤束的第三端口处,并通过多个第三端口将毛细管发出的荧光照射在第二透镜72上;第二透镜72用于对该荧光光线校正后以得到一束平行的荧光光束,使该平行的荧光光束照射在第二滤光组件4的滤光片上,以通过第二滤光组件4的滤光片对该荧光光束进行过滤,使得预定波段的荧光光束照射进成像组件5内,以获得荧光成像照片。
在本申请的一个实施例中,优选地,如图1和图4所示,成像组件5可以设置于第二滤光组件4开设有出光口的一侧,成像组件5可以包括相机51、第一透镜53和相机透镜套筒52,第一透镜53可以安装于相机透镜套筒52内,且第一透镜53可以与相机透镜套筒52同轴设置;相机透镜套筒52可以固定设置于机架1上,且相机透镜套筒52可以与第二滤光组件4的出光口同轴设置,相机透镜套筒52的一端可以通过第二滤光组件4的出光口伸入到第二滤光组件4的挡光罩内并延伸至滤光轮处。优选地,第二滤光组件4的两侧的第一透镜53和第二透镜72可以均为消色差双胶合透镜;相机51可以固定设置于机架1上,相机透镜套筒52的另一端可以与相机51相连接,以使光纤束第三端口发出的荧光依次通过第二透镜72、第二滤光组件4和第一透镜53后照射至相机51的CMOS芯片内,从而,无需相机镜头即可通过相机51对荧光信号进行采集并获得荧光成像照片。
在本申请的一个实施例中,优选地,如图5所示,光检槽8可以形成有多个独立的检测腔室,多个检测腔室可以并排间隔设置,且多个检测腔室可以与多个毛细管一一对应。光检槽8的上端可以为敞口端,且该敞口端上覆盖设置有硅胶盖板84,以通过硅胶盖板84对多个检测腔室进行封闭。硅胶盖板84对应每个检测腔室的位置处可以开设有毛细管插接孔,以使多个毛细管能够通过该毛细管插接孔插入到对应的检测腔室内。
光检槽8的一侧的侧壁上对应每个检测腔室的位置处可以分别开设有通光孔81,该通光孔81可以正对毛细管装有样品的一端管段。光检槽8开设有通光孔81的一侧的侧壁上可以设置有光纤固定板82,光纤固定板82上可以开设有多个光纤固定孔83,多个光纤固定孔83可以与多个通光孔81一一对应,且相对应的一组通光孔81和光纤固定孔83可以位于同一轴线上。多个光纤束的第二端口可以分别插接于多个光纤固定孔83内,且每组通光孔81和光纤固定孔83之间均可以设置有一个第二聚焦透镜,使得光纤束第二端口发出的入射光经由对应的第二聚焦透镜聚焦后照射在对应的毛细管上,以激发毛细管内的荧光物质发出荧光。
在该实施例中,优选地,光检槽8的底壁上可以设置有加热片,通过加热片能够对光检槽8进行加热,以使光检槽8内部的检测腔室处于适宜的温度,从而保证荧光定量检测的准确性。
优选地,为了进一步保证多个检测腔室内处于相同的温度,光检槽8内还可以形成有第一保温腔室和第二保温腔室,第一保温腔室可以位于多个检测腔室的一端,第二保温腔室可以位于多个检测腔室的另一端,从而避免多个检测腔室中位于两端的两个检测腔室温度过低。
优选地,光检槽8的外部还可以设置有保温层,以进一步对多个检测腔室进行保温,保证光检槽8内的温度处于稳定的范围内,提供荧光定量检测的准确性。
本申请还提供了一种分子诊断平台,包括上述任一实施例的多通道荧光定量检测装置。
在该实施例中,分子诊断平台可以包括多通道荧光定量检测装置,因此分子诊断平台具有多通道荧光定量检测装置的全部有益效果,在此不再一一赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
工业实用性
本申请公开了通道荧光定量检测装置及分子诊断平台。荧光定量检测装置包括光源组 件、第一滤光组件、第二滤光组件、成像组件、光纤束和光检槽。光检槽用于固定多个毛细管;光源组件能够提供白光源,光源组件发出的白光源通过第一滤光组件过滤形成预定波段的入射光后经由多个光纤束的入射光纤对对应的多个毛细管进行照射,以激发荧光。多个毛细管产生的荧光经由多个光纤束的出射光纤和第二滤光组件的过滤后,形成相应波段的荧光并照射在成像组件,从而方便、快捷地通过成像组件获得多个毛细管的荧光成像照片,以分析多个毛细管内的样品的浓度,提高对样品的荧光定量检测的效率。
此外,可以理解的是,本申请的多通道荧光定量检测装置及分子诊断平台是可以重现的,并且可以应用在多种工业应用中。例如,本申请的多通道荧光定量检测装置及分子诊断平台可以应用于需要荧光定量检测的任何物质。

Claims (15)

  1. 一种多通道荧光定量检测装置,其特征在于,包括机架、光源组件、第一滤光组件、第二滤光组件、成像组件、光纤束和光检槽;
    所述光检槽设置于所述机架上,所述光检槽用于固定装有样品的毛细管;
    所述光源组件与所述第一滤光组件相对设置于所述机架上,所述光源组件用于提供白光源,所述白光源能够穿过所述第一滤光组件以形成预定波段的入射光;
    所述光纤束包括三个端口,所述光纤束的第一端口与所述第一滤光组件相连接,所述光纤束的第二端口与所述光检槽相连接,所述入射光能够通过所述第一端口和所述第二端口之间的入射光纤照射至所述毛细管,以激发荧光;
    所述第二滤光组件和所述成像组件相对设置于所述机架上,所述光纤束的第三端口与所述第二滤光组件相连接,以使所述荧光通过所述第二端口和所述第三端口之间的出射光纤照射至所述第二滤光组件;
    所述第二滤光组件用于对所述荧光进行过滤,以使预定波段的荧光照射进所述成像组件,所述成像组件用于采集所述荧光并成像;
    所述毛细管的数量为多个,多个所述毛细管并排间隔设置;所述光纤束的数量为多个,多个所述光纤束与多个所述毛细管一一对应,且多个所述光纤束的第二端口分别朝向对应的所述毛细管。
  2. 根据权利要求1所述的多通道荧光定量检测装置,其特征在于,所述第一滤光组件和所述第二滤光组件均包括滤光轮、滤光片和驱动装置;
    所述驱动装置固定设置于所述机架上,所述驱动装置的驱动端与所述滤光轮相连接,以驱动所述滤光轮绕滤光轮的轴线转动。
  3. 根据权利要求2所述的多通道荧光定量检测装置,其特征在于,所述滤光片的数量为多个,多个所述滤光片沿所述滤光轮的周向间隔设置;
    所述第一滤光组件的多个滤光片用于对白光源进行过滤,以获得不同波段的入射光;
    所述第二滤光组件的多个滤光片用于对所述荧光进行过滤,以使预定波段的荧光照射进所述成像组件;
    所述第二滤光组件的多个滤光片与所述第一滤光组件的多个滤光片的数量相同并一一对应。
  4. 根据权利要求3所述的多通道荧光定量检测装置,其特征在于,所述第一滤光组件和所述第二滤光组件还分别包括挡光罩;
    所述挡光罩罩设于所述滤光轮上,且所述挡光罩的两侧的侧壁上分别开设有进光口和 出光口,所述进光口和所述出光口位于同一轴线上;
    所述滤光轮转动能够依次将多个所述滤光片转动至所述进光口和所述出光口之间,以在所述进光口和所述出光口之间形成光路通道。
  5. 根据权利要求2所述的多通道荧光定量检测装置,其特征在于,所述第一滤光组件和所述第二滤光组件的所述驱动装置均为步进电机;
    所述第一滤光组件和所述第二滤光组件的所述步进电机处分别设置有光电传感器;
    所述步进电机的输出轴的一端与所述滤光轮相连接,并且所述步进电机的所述输出轴的另一端设置有感应片。
  6. 根据权利要求4或5所述的多通道荧光定量检测装置,其特征在于,所述光源组件包括LED灯、光源套筒和准直透镜;
    所述光源套筒固定设置于所述机架上,且所述光源套筒与所述第一滤光组件的进光口同轴设置;
    所述光源套筒的一端通过所述第一滤光组件的进光口伸入所述第一滤光组件的挡光罩内,所述LED灯与所述光源套筒的另一端相连接,所述准直透镜安装于所述光源套筒内。
  7. 根据权利要求6所述的多通道荧光定量检测装置,其特征在于,所述光源组件还包括散热片;
    所述散热片安装于所述机架上,所述光源套筒用于安装所述LED灯的一端与所述散热片相连接,以使所述LED灯夹持于所述光源套筒和所述散热片之间,且所述LED灯的铝基板与所述散热片相贴合。
  8. 根据权利要求4至7中的任一项所述的多通道荧光定量检测装置,其特征在于,还包括第一光纤透镜组件;
    所述第一光纤透镜组件包括第一套筒、第一聚焦透镜和第一光纤固定件;
    所述第一套筒固定设置于所述机架上,且所述第一套筒与所述第一滤光组件的出光口同轴设置;所述第一套筒的一端通过所述第一滤光组件的出光口伸入所述第一滤光组件的挡光罩内,所述第一套筒的另一端与所述第一光纤固定件相连接;
    所述光纤束的第一端口通过所述第一光纤固定件插接于所述第一套筒内,所述第一聚焦透镜安装于所述第一套筒内,且所述光纤束的第一端口位于所述第一聚焦透镜的焦面上。
  9. 根据权利要求4至8中的任一项所述的多通道荧光定量检测装置,其特征在于,还包括第二光纤透镜组件;
    所述第二光纤透镜组件包括第二套筒、第二透镜和第二光纤固定件;
    所述第二套筒固定设置于所述机架上,且所述第二套筒与所述第二滤光组件的进光口同轴设置;所述第二套筒的一端通过所述第二滤光组件的进光口伸入到所述第二滤光组件 的挡光罩内,所述第二套筒的另一端与所述第二光纤固定件相连接;
    所述光纤束的第三端口通过所述第二光纤固定件插接于所述第二套筒内,所述第二透镜安装于所述第二套筒内;
    所述光纤束的第三端口发出的荧光能够经由所述第二透镜照射至所述第二滤光组件位于工作位的滤光片上。
  10. 根据权利要求4至9中的任一项所述的多通道荧光定量检测装置,其特征在于,所述成像组件包括相机、第一透镜和相机透镜套筒;
    所述第一透镜安装于所述相机透镜套筒内,所述相机透镜套筒固定设置于所述机架上,且所述相机透镜套筒与所述第二滤光组件的出光口同轴设置,所述相机透镜套筒的一端通过所述第二滤光组件的出光口伸入到所述第二滤光组件的挡光罩内;
    所述相机固定设置于所述机架上,所述相机透镜套筒的另一端与所述相机相连接,以使经过所述第二滤光组件的荧光照射至所述相机的CMOS芯片上。
  11. 根据权利要求1至10中的任一项所述的多通道荧光定量检测装置,其特征在于,所述光检槽形成有多个并排间隔设置的检测腔室,多个所述检测腔室与多个所述毛细管一一对应;
    所述光检槽的上端对应每个所述检测腔室的位置处开设有毛细管插接孔,以使毛细管插接于对应的所述检测腔室内;
    所述光检槽的侧壁上开设有多个通光孔,多个所述通光孔与多个所述检测腔室一一对应并连通。
  12. 根据权利要求11所述的多通道荧光定量检测装置,其特征在于,所述光检槽的侧壁上安装有光纤固定板,所述光纤固定板上对应多个所述通光孔开设有多个光纤固定孔,且每个所述光纤固定孔与对应的所述通光孔位于同一轴线上;
    每个所述通光孔和对应的每个所述光纤固定孔之间分别装夹有第二聚焦透镜;多个所述光纤束的第二端口分别插接于多个所述光纤固定孔内。
  13. 根据权利要求11或12所述的多通道荧光定量检测装置,其特征在于,所述光检槽的底壁上设置有加热片,以用于对所述光检槽进行加热。
  14. 根据权利要求11至13中的任一项所述的多通道荧光定量检测装置,其特征在于,所述光检槽还形成有第一保温腔室和第二保温腔室,多个所述检测腔室位于所述第一保温腔室和所述第二保温腔室之间;
    所述光检槽的外部设置有保温层,以对所述光检槽进行保温。
  15. 一种分子诊断平台,其特征在于,包括权利要求1至14中的任一项所述的多通道荧光定量检测装置。
PCT/CN2021/117496 2021-01-29 2021-09-09 多通道荧光定量检测装置及分子诊断平台 WO2022160726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110129513.2A CN114813665A (zh) 2021-01-29 2021-01-29 多通道荧光定量检测装置及分子诊断平台
CN202110129513.2 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022160726A1 true WO2022160726A1 (zh) 2022-08-04

Family

ID=82526375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117496 WO2022160726A1 (zh) 2021-01-29 2021-09-09 多通道荧光定量检测装置及分子诊断平台

Country Status (2)

Country Link
CN (1) CN114813665A (zh)
WO (1) WO2022160726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389538A (zh) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X射线分析装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815196A (zh) * 2005-02-03 2006-08-09 三星电子株式会社 多通道荧光测量光学系统及多通道荧光样本分析仪
CN104614351A (zh) * 2015-01-21 2015-05-13 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN206594050U (zh) * 2017-03-09 2017-10-27 无锡中德伯尔生物技术有限公司 一种食品安全检测模组
CN209065925U (zh) * 2018-08-31 2019-07-05 北京乐普医疗科技有限责任公司 一种多通道荧光定量pcr仪
CN111830002A (zh) * 2020-08-10 2020-10-27 杭州天微基因科技有限公司 用于实时核酸荧光检测的多通道检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815196A (zh) * 2005-02-03 2006-08-09 三星电子株式会社 多通道荧光测量光学系统及多通道荧光样本分析仪
CN104614351A (zh) * 2015-01-21 2015-05-13 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN206594050U (zh) * 2017-03-09 2017-10-27 无锡中德伯尔生物技术有限公司 一种食品安全检测模组
CN209065925U (zh) * 2018-08-31 2019-07-05 北京乐普医疗科技有限责任公司 一种多通道荧光定量pcr仪
CN111830002A (zh) * 2020-08-10 2020-10-27 杭州天微基因科技有限公司 用于实时核酸荧光检测的多通道检测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389538A (zh) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X射线分析装置及方法
CN115389538B (zh) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X射线分析装置及方法

Also Published As

Publication number Publication date
CN114813665A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US20210293709A1 (en) Device and associated methods for performing luminescence and fluorescence measurements of a sample
EP1830174B1 (en) Multi-channel fluorescence sample analyzer
US7352459B2 (en) Scanning Spectrophotometer for high throughput fluorescence detection and fluorescence polarization
US7295316B2 (en) Fluorescent detector with automatic changing filters
US9932632B2 (en) Real-time optical system for polymerase chain reaction
TWI654309B (zh) 多通道螢光偵測裝置
JP2004264312A (ja) 多パラメータスキャナー
WO2009158451A4 (en) Method and apparatus for melting curve analysis of nucleic acids in microarray format
JP2009515153A (ja) 分析用マルチスペクトル光学検出システム
US20120179383A1 (en) Disc and calibration method of test device using the same
WO2022160726A1 (zh) 多通道荧光定量检测装置及分子诊断平台
WO2022160998A1 (zh) 分子诊断平台
CN104560698A (zh) 一种pcr激发探测系统
CN215066164U (zh) 多通道荧光定量检测装置及分子诊断平台
CN204661702U (zh) 一种pcr激发探测系统
JP2020148547A (ja) 蛍光光度計および観測方法
RU2304277C2 (ru) Устройство для одновременного контроля в реальном масштабе времени множества амплификаций нуклеиновой кислоты
KR20120116778A (ko) 바이오 진단장치
JP3218552U (ja) 小型蛍光検出器
WO2020192331A1 (zh) 荧光信号采集装置及包括其的荧光信号采集系统
CN114806842A (zh) 数字pcr荧光检测装置
CN117347331A (zh) Pcr检测仪、pcr反应装置
CN114703048A (zh) 小型化核酸扩增检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922319

Country of ref document: EP

Kind code of ref document: A1