WO2022160424A1 - 一种用于桩基离心试验的压桩垂直度控制贯入装置 - Google Patents

一种用于桩基离心试验的压桩垂直度控制贯入装置 Download PDF

Info

Publication number
WO2022160424A1
WO2022160424A1 PCT/CN2021/080898 CN2021080898W WO2022160424A1 WO 2022160424 A1 WO2022160424 A1 WO 2022160424A1 CN 2021080898 W CN2021080898 W CN 2021080898W WO 2022160424 A1 WO2022160424 A1 WO 2022160424A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
plate
guide
fixed
model
Prior art date
Application number
PCT/CN2021/080898
Other languages
English (en)
French (fr)
Inventor
闫子壮
王剑
周燕国
汪玉冰
刘凯
李超
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022160424A1 publication Critical patent/WO2022160424A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures

Definitions

  • the invention belongs to the technical field of centrifugal tests, and in particular relates to a device for controlling the verticality of a pressed pile for centrifugal testing of pile foundations.
  • the pile foundation can be penetrated into the seabed soil, and by changing the spacing of the guide plates, it can be suitable for the driving of piles of different pile diameters, and the verticality of the pressed piles can be ensured during the penetration process to meet the later test test. Require.
  • offshore pile foundation is installed on the seabed surface by driving penetration or static pressure penetration to support the superstructure, such as offshore wind turbines, fixed offshore oil and gas platforms, etc.
  • this foundation type occupies an important position in the foundation form of shallow sea marine structures.
  • the bearing capacity of the pile foundation is generally determined by means of a model test. If the test is carried out under the condition of constant gravity, it will be quite different from the actual result, because soil is a material related to its own weight. In geotechnical engineering, the self-weight stress of soil usually dominates, and the mechanical properties of soil vary with the stress level. The conventional small-scale model cannot reproduce the characteristics of the prototype because its self-weight stress is much lower than that of the prototype.
  • the hypergravity centrifugal model test compensates for the self-weight loss of geotechnical structures caused by the scale of the model by subjecting the model to centrifugal acceleration greater than the gravitational acceleration, thereby reproducing the prototype rock and soil mass and structural characteristics.
  • the soil material in the hypergravity simulation has been able to better reflect the characteristics of the prototype soil, such as granularity, stress correlation, friction characteristics, strong nonlinearity, dilatancy, heterogeneity, and stress history correlation.
  • the hypergravity centrifugal model test is particularly effective for simulating the properties of geotechnical structures with self-weight as the main load, so it has been widely used.
  • the present invention proposes a device for controlling the verticality of a pile pressing for centrifugal test of a pile foundation.
  • the pile foundation can be penetrated into the seabed soil, and the distance between the guide plates can be changed to be suitable for pressing piles of different pile diameters. Enter the soil, and ensure the verticality of the pressed pile during the penetration process to meet the requirements of the later test and test.
  • the present invention adopts following technical scheme:
  • a pile-pressing verticality control penetration device for centrifugal test of pile foundation including model pile, loading penetration system, verticality control system and centrifuge model box;
  • the model pile is a rigid pile pipe pile to be tested, and its specific size is determined by the test requirements, and the model pile is partially buried in the soil;
  • the loading penetration system is used to load the model pile, so as to penetrate the model pile into the seabed soil;
  • the verticality control system includes a guide plate, a guide plate fixing rod, a guide groove, a fixed lower plate, a fixed upper plate, an upper and lower plate connecting rod, a bracket rod, and a bracket fixing device; the bracket fixing device is fixed on the top plate and is fixed with the bracket rod It is used to support the verticality control system.
  • Four support rods are arranged in the circumferential direction of the model pile, and the bottom is consolidated with the fixed upper plate; the fixed upper plate and the fixed lower plate are arranged in parallel, both of which are annular plates.
  • the fixed upper plate is fixedly connected to the fixed lower plate through 4 upper and lower plate connecting rods; the guide The inner side of the plate is in close contact with the model pile, and the outer side is limited by the guide plate fixing rod.
  • the loading penetration system includes a hydraulic jack, a jack fixing device, a jack guide rod and a pile buffer plate; the hydraulic jack is fixed on the top plate by the jack fixing device, the hydraulic jack is vertically downward, and the jack is vertically downward.
  • One end of the guide rod is connected to the jack, and the other end is connected to the pile buffer plate to contact the top of the model pile.
  • the pile buffer plate is used to buffer the load of the jack to prevent the buckling damage caused by too much stress at the pile end.
  • the guide plate is arranged with a guide bearing on the side close to the pile, and the guide bearing is used to reduce the resistance during the penetration process; balls are arranged on the upper and lower sides of the guide plate to reduce the guide Friction between plate and guide groove.
  • the guide groove is divided into two parts, and the two parts pass through the fixed upper plate and the fixed lower plate together: the first part is the area where the guide plate is located, and the groove depth is 1/3 of the thickness of the fixed upper plate and the fixed lower plate;
  • the second part is used to fix the guide plate fixing rod.
  • the guide plate fixing rod passes through the guide grooves of the fixed lower plate and the fixed upper plate to limit the upper guide rod and the lower guide rod.
  • the groove width of the second part is smaller than that of the first part; Both ends of the guide plate fixing rod are fixed by upper and lower bolts.
  • angle between any two adjacent guide grooves is 90°.
  • the jack fixing device is fixed on the top plate by four bolts and screws.
  • the present invention is a device for controlling the verticality of the pile pressing for centrifugal test of the pile foundation, through which the pile foundation can be penetrated into the seabed soil, and the distance between the guide plates can be changed to be suitable for pressing piles of different pile diameters. Enter the soil, and ensure the verticality of the pressed pile during the penetration process to meet the requirements of the later test and test.
  • FIG. 1 sub-module schematic diagram of the present invention
  • Figure 2 is a front view of the present invention
  • FIG. 3 cross-section A-A top view of the present invention
  • Figure 4 is a top view of section B-B of the present invention.
  • Figure 5 is a front view of the guide plate of the present invention.
  • Figure 6 is a top view of the guide plate of the present invention.
  • model pile 1 loading penetration system 2
  • verticality control system 3 centrifuge model box 4
  • hydraulic jack 5 jack fixing device 6
  • jack guide rod 7 pile buffer plate 8
  • top plate 9 guide plate 10
  • Guide plate fixing rod 11 guide groove 12
  • fixed lower plate 13 fixed upper plate 14, upper and lower plate connecting rod 15
  • bracket rod 16 bracket fixing device 17, upper and lower bolts 18, bolt channel 19, guide bearing 20, ball 21.
  • Figures 1 and 2 are a pile-pressing verticality control penetration device for pile foundation centrifugal test according to the present invention, the device includes a model pile 1, a loading penetration system 2, a verticality control system 3 and a centrifuge model box 4;
  • the top of the centrifuge model box 4 is provided with a top plate 9, and soil is housed inside;
  • the model pile 1 is a rigid pile pipe pile to be tested, and its specific size is determined by the test requirements, and the model pile 1 is partially buried in the soil;
  • the loading penetration system 2 is used for loading the model pile 1, so as to penetrate the model pile 1 into the seabed soil;
  • the verticality control system 3 includes a guide plate 10, a guide plate fixing rod 11, a guide groove 12, a fixed lower plate 13, a fixed upper plate 14, an upper and lower plate connecting rod 15, a bracket rod 16, and a bracket fixing device 17; the bracket fixing device 17 is fixed on the top plate 9 and is fixedly connected with the support rod 16 to support the verticality control system 3.
  • the fixed upper plate 14 is arranged in parallel, both of which are annular plates, and the model pile 1 is located at the center of the annular plate; the fixed upper plate 14 is provided with four guide grooves 12 along the radial direction, and the fixed lower plate 13
  • the same guide groove 12 is also opened on the upper part corresponding to the fixed upper plate 14 to provide constraints for the guide plate 10; the upper and lower ends of the guide plate 10 are located in the guide groove 12 and can move radially in the guide groove 12 , so as to adapt to the installation requirements of different pile diameters;
  • the fixed upper plate 14 is fixedly connected to the fixed lower plate 13 through four upper and lower plate connecting rods 15; the inner side of the guide plate 10 is in close contact with the model pile 1, and the outer side is limited by the guide plate fixing rod 11. bit.
  • the loading penetration system 2 includes a hydraulic jack 5, a jack fixing device 6, a jack guide rod 7 and a pile buffer plate 8; the hydraulic jack 5 is fixed on the top plate 9 through the jack fixing device 6, and the hydraulic jack 5 is vertically downward, One end of the jack guide rod 7 is connected to the jack, and the other end is connected to the pile buffer plate 8 to contact the top of the model pile 1 .
  • the guide plate 10 is arranged with a guide bearing 20 on the side close to the pile, and the guide bearing 20 is used to reduce the resistance during the penetration process; The friction between the small guide plate 10 and the guide groove 12 .
  • the guide groove 12 is divided into two parts, and the two parts pass through the fixed upper plate 14 and the fixed lower plate 13 together: the first part is the area where the guide plate 10 is located, and the groove depth is 1/1 of the thickness of the fixed upper plate 14 and the fixed lower plate 13. 3;
  • the second part is the bolt channel 19, which is used to fix the guide plate fixing rod 11, and the guide plate fixing rod 11 passes through the guide groove 12 of the fixed lower plate 13 and the fixed upper plate 14 to meet the upper guide rod 17 and the lower guide rod 18.
  • the groove width of the second part is smaller than that of the first part; the two ends of the guide plate fixing rod 11 are fixed by the upper and lower bolts 18 .
  • the angle between any two adjacent guide grooves 12 is 90°.
  • the jack fixing device 6 is fixed on the top plate 9 by four bolts and screws.

Abstract

本发明公开了一种用于桩基离心试验的压桩垂直度控制贯入装置,该装置包括模型桩、加载贯入系统、垂直度控制系统和离心机模型箱。所述的垂直度控制系统包括平行设置的固定上板与固定下板,二者均为圆环状板,模型桩位于圆环状板的圆心处;在固定上板上沿径向开有4道导向槽,在固定下板上与固定上板对应位置也开有相同的导向槽,用于为导向板提供约束;导向板的上下两端均位于导向槽内,可以在导向槽中沿径向运动,从而适应不同桩径的安装要求。通过该装置可以将桩基贯入海床土体,并且可以通过改变导向板的间距进而适合不同桩径的压桩入土,并在贯入过程中保证压桩的垂直度,以满足后期的试验测试要求。

Description

一种用于桩基离心试验的压桩垂直度控制贯入装置 技术领域
本发明属于离心试验技术领域,具体涉及一种用于桩基离心试验的压桩垂直度控制贯入装置。通过该装置可以将桩基贯入海床土体,并且可以通过改变导向板的间距进而适合不同桩径的压桩入土,并在贯入过程中保证压桩的垂直度,以满足后期的试验测试要求。
背景技术
海上桩基作为一种重要的基础类型,它是一种通过打入贯入或者静压贯入的方式安装在海床表面,用来支撑上部结构,如海上风机、固定式海上油气平台等,目前该基础类型在浅海海洋结构的基础形式中占有重要的地位。
为探究桩基的承载力,一般都会采取模型试验的方式确定桩基础的承载力,若采用常重力条件下进行测试,则与实际结果相差较大,因为土是一种自重相关的材料。在岩土工程中,土的自重应力通常占支配地位,而土的力学特性随应力水平而变化,常规小比尺模型由于其自重应力远低于原型,因而不能再现原型的特性。超重力离心模型试验通过让模型承受大于重力加速度的离心加速度的作用,补偿因模型缩尺带来的土工构筑物的自重损失,从而再现原型岩土体和结构特性。超重力模拟中的土体材料已能较好地反映原型土体的散粒性、应力相关性、摩擦特性、强非线性、剪胀性、多相性、应力历史相关性等特性。超重力离心模型试验对模拟以自重为主要荷载的岩土结构物性状的研究特别有效,因此获得了广泛的应用。
然而在离心模型试验中,首先需要将桩静压安装至海床土体中,目前一般都会采用千斤顶直接压入,但是采用这种方式桩在压入过程中极有可能产生倾斜,造成初始的试验误差,即使有一些可以对其垂直度进行控制的装置,也无法适用于不同桩直径的情况。
发明内容
本发明提出一种用于桩基离心试验的压桩垂直度控制贯入装置,通过该装置可以将桩基贯入海床土体,并且可以通过改变导向板的间距进而适合不同桩径的 压桩入土,并在贯入过程中保证压桩的垂直度,以满足后期的试验测试要求。
本发明采取以下技术方案:
一种用于桩基离心试验的压桩垂直度控制贯入装置,包括模型桩、加载贯入系统、垂直度控制系统和离心机模型箱;所述离心机模型箱顶部设有顶板,内部装有土;所述模型桩为被测试刚性桩管桩,其具体尺寸由测试要求而定,模型桩部分埋入土内;所述加载贯入系统用于对模型桩进行加载,从而将模型桩贯入海床土体;
所述垂直度控制系统包括导向板、导向板固定杆、导向槽、固定下板、固定上板、上下板连接杆、支架杆、支架固定装置;支架固定装置固定在顶板上,与支架杆固定连接,用于支撑垂直度控制系统,支架杆沿模型桩环向布置4根,底部与固定上板固结;固定上板与固定下板平行设置,二者均为圆环状板,模型桩位于圆环状板的圆心处;在固定上板上沿径向开有4道导向槽,在固定下板上与固定上板对应位置也开有相同的导向槽,用于为导向板提供约束;导向板的上下两端均位于导向槽内,可以在导向槽中沿径向运动,从而适应不同桩径的安装要求;固定上板通过4根上下板连接杆与固定下板固定连接;导向板内侧与模型桩紧密接触,外侧通过导向板固定杆进行限位。
上述技术方案中,进一步地,所述加载贯入系统包括液压千斤顶、千斤顶固定装置、千斤顶导杆和桩缓冲板;所述液压千斤顶通过千斤顶固定装置固定在顶板上,液压千斤顶垂直向下,千斤顶导杆一端连接千斤顶,一端连接桩缓冲板进而接触模型桩的顶端,桩缓冲板用于缓冲千斤顶荷载,防止桩端应力太大导致屈曲破坏。
进一步地,所述的导向板在贴近桩的一侧边布置有导向轴承,导向轴承用于减小贯入过程中的阻力;在导向板上下侧正反面都布置有滚珠,用于减小导向板与导向槽之间的摩擦。
进一步地,所述导向槽分为两部分,两部分共同贯穿固定上板和固定下板:第一部分为导向板所在区域,其槽深为固定上板和固定下板厚度的1/3;第二部分用于固定导向板固定杆,导向板固定杆穿过固定下板和固定上板的导向槽从而对上导向杆和下导向杆进行限位,第二部分的槽宽小于第一部分;所述导向板固定杆的两端通过上下螺栓进行固定。
进一步地,任意两道相邻的导向槽之间的角度为90°。
进一步地,所述千斤顶固定装置由四根螺栓螺钉固定在顶板上。
本发明具有以下优点:
本发明的一种用于桩基离心试验的压桩垂直度控制贯入装置,通过该装置可以将桩基贯入海床土体,并且可以通过改变导向板的间距进而适合不同桩径的压桩入土,并在贯入过程中保证压桩的垂直度,以满足后期的试验测试要求。
附图说明
图1本发明的分模块示意图;
图2本发明的主视图;
图3本发明的断面A-A俯视图;
图4本发明的断面B-B俯视图;
图5本发明的导向板主视图;
图6本发明的导向板俯视图;
其中,模型桩1、加载贯入系统2、垂直度控制系统3、离心机模型箱4、液压千斤顶5、千斤顶固定装置6、千斤顶导杆7、桩缓冲板8、顶板9、导向板10、导向板固定杆11、导向槽12、固定下板13、固定上板14、上下板连接杆15、支架杆16、支架固定装置17、上下螺栓18、螺栓通道19、导向轴承20、滚珠21。
具体实施方式
如图1和2为本发明的一种用于桩基离心试验的压桩垂直度控制贯入装置,该装置包括模型桩1、加载贯入系统2、垂直度控制系统3和离心机模型箱4;所述离心机模型箱4顶部设有顶板9,内部装有土;所述模型桩1为被测试刚性桩管桩,其具体尺寸由测试要求而定,模型桩1部分埋入土内;所述加载贯入系统2用于对模型桩1进行加载,从而将模型桩1贯入海床土体;
所述垂直度控制系统3包括导向板10、导向板固定杆11、导向槽12、固定下板13、固定上板14、上下板连接杆15、支架杆16、支架固定装置17;支架固定装置17固定在顶板9上,与支架杆16固定连接,用于支撑垂直度控制系统3,支架杆16沿模型桩1环向布置4根,底部与固定上板14固结;固定上板14与固定下板13平行设置,二者均为圆环状板,模型桩1位于圆环状板的圆心处; 在固定上板14上沿径向开有4道导向槽12,在固定下板13上与固定上板14对应位置也开有相同的导向槽12,用于为导向板10提供约束;导向板10的上下两端均位于导向槽12内,可以在导向槽12中沿径向运动,从而适应不同桩径的安装要求;固定上板14通过4根上下板连接杆15与固定下板13固定连接;导向板10内侧与模型桩1紧密接触,外侧通过导向板固定杆11进行限位。
所述加载贯入系统2包括液压千斤顶5、千斤顶固定装置6、千斤顶导杆7和桩缓冲板8;所述液压千斤顶5通过千斤顶固定装置6固定在顶板9上,液压千斤顶5垂直向下,千斤顶导杆7一端连接千斤顶,一端连接桩缓冲板8进而接触模型桩1的顶端,桩缓冲板8用于缓冲千斤顶荷载,防止桩端应力太大导致屈曲破坏。
所述的导向板10在贴近桩的一侧边布置有导向轴承20,导向轴承20用于减小贯入过程中的阻力;在导向板10上下侧正反面都布置有滚珠21,用于减小导向板10与导向槽12之间的摩擦。
所述导向槽12分为两部分,两部分共同贯穿固定上板14和固定下板13:第一部分为导向板10所在区域,其槽深为固定上板14和固定下板13厚度的1/3;第二部分为螺栓通道19,用于固定导向板固定杆11,导向板固定杆11穿过固定下板13和固定上板14的导向槽12从而对上导向杆17和下导向杆18进行限位,第二部分的槽宽小于第一部分;所述导向板固定杆11的两端通过上下螺栓18进行固定。
任意两道相邻的导向槽12之间的角度为90°。
所述千斤顶固定装置6由四根螺栓螺钉固定在顶板9上。

Claims (5)

  1. 一种用于桩基离心试验的压桩垂直度控制贯入装置,其特征在于,包括模型桩(1)、加载贯入系统(2)、垂直度控制系统(3)和离心机模型箱(4);所述离心机模型箱(4)顶部设有顶板(9),内部装有土;所述模型桩(1)为被测试刚性桩管桩,其具体尺寸由测试要求而定,模型桩(1)部分埋入土内;所述加载贯入系统(2)用于对模型桩(1)进行加载,从而将模型桩(1)贯入海床土体;
    所述垂直度控制系统(3)包括导向板(10)、导向板固定杆(11)、导向槽(12)、固定下板(13)、固定上板(14)、上下板连接杆(15)、支架杆(16)、支架固定装置(17);支架固定装置(17)固定在顶板(9)上,与支架杆(16)固定连接,用于支撑垂直度控制系统(3),支架杆(16)沿模型桩(1)环向布置4根,底部与固定上板(14)固结;固定上板(14)与固定下板(13)平行设置,二者均为圆环状板,模型桩(1)位于圆环状板的圆心处;在固定上板(14)上沿径向开有4道导向槽(12),在固定下板(13)上与固定上板(14)对应位置也开有相同的导向槽(12),用于为导向板(10)提供约束;导向板(10)的上下两端均位于导向槽(12)内,可以在导向槽(12)中沿径向运动,从而适应不同桩径的安装要求;固定上板(14)通过4根上下板连接杆(15)与固定下板(13)固定连接;导向板(10)内侧与模型桩(1)紧密接触,外侧通过导向板固定杆(11)进行限位;所述导向槽(12)分为两部分,两部分共同贯穿固定上板(14)和固定下板(13):第一部分为导向板(10)所在区域,其槽深为固定上板(14)和固定下板(13)厚度的1/3;第二部分用于固定导向板固定杆(11),导向板固定杆(11)穿过固定下板(13)和固定上板(14)的导向槽(12)从而对上导向杆(17)和下导向杆(18)进行限位,第二部分的槽宽小于第一部分;所述导向板固定杆(11)的两端通过上下螺栓(18)进行固定。
  2. 根据权利要求1所述的一种用于桩基离心试验的压桩垂直度控制贯入装置,其特征在于,所述加载贯入系统(2)包括液压千斤顶(5)、千斤顶固定装置(6)、千斤顶导杆(7)和桩缓冲板(8);所述液压千斤顶(5)通过千斤顶固定装置(6)固定在顶板(9)上,液压千斤顶(5)垂直向下,千斤顶 导杆(7)一端连接千斤顶,一端连接桩缓冲板(8)进而接触模型桩(1)的顶端,桩缓冲板(8)用于缓冲千斤顶荷载,防止桩端应力太大导致屈曲破坏。
  3. 根据权利要求1所述的一种用于桩基离心试验的压桩垂直度控制贯入装置,其特征在于,所述的导向板(10)在贴近桩的一侧边布置有导向轴承(20),导向轴承(20)用于减小贯入过程中的阻力;在导向板(10)上下侧正反面都布置有滚珠(21),用于减小导向板(10)与导向槽(12)之间的摩擦。
  4. 根据权利要求1所述的一种用于桩基离心试验的压桩垂直度控制贯入装置,其特征在于,任意两道相邻的导向槽(12)之间的角度为90°。
  5. 根据权利要求1所述的一种用于桩基离心试验的压桩垂直度控制贯入装置,其特征在于,所述千斤顶固定装置(6)由四根螺栓螺钉固定在顶板(9)上。
PCT/CN2021/080898 2021-02-01 2021-03-16 一种用于桩基离心试验的压桩垂直度控制贯入装置 WO2022160424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110138614.6 2021-02-01
CN202110138614.6A CN112962685B (zh) 2021-02-01 2021-02-01 一种用于桩基离心试验的压桩垂直度控制贯入装置

Publications (1)

Publication Number Publication Date
WO2022160424A1 true WO2022160424A1 (zh) 2022-08-04

Family

ID=76272979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080898 WO2022160424A1 (zh) 2021-02-01 2021-03-16 一种用于桩基离心试验的压桩垂直度控制贯入装置

Country Status (2)

Country Link
CN (1) CN112962685B (zh)
WO (1) WO2022160424A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202577380U (zh) * 2012-05-29 2012-12-05 中国建筑第四工程局有限公司 立柱桩施工用的钢构件垂直度的校正装置
CN103953074A (zh) * 2014-04-28 2014-07-30 青岛理工大学 一种开口管桩锤击贯入和静荷载模拟实验装置及实验方法
CN105714861A (zh) * 2016-04-18 2016-06-29 青岛理工大学 一种模拟静压桩沉桩过程的垂直加载方法
US20160238498A1 (en) * 2015-02-18 2016-08-18 Marcos Silva Carceles Impact generating equipment for dynamic loading tests
WO2019225023A1 (ja) * 2018-05-25 2019-11-28 株式会社地盤試験所 杭の急速載荷試験装置
CN210049296U (zh) * 2019-03-22 2020-02-11 福建荔建工程技术有限公司 一种桩基高应变检测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU975916A1 (ru) * 1981-03-16 1982-11-23 Sev Vnii Str Magistralnykh Tru > УСТРОЙСТВО ДЛЯ СТАТИЧЕСКИХ ИСПЫТАНИЙ ФУНДАМЕНТОВ 1 2
KR100914058B1 (ko) * 2008-04-24 2009-08-28 백규호 제거식 가력장치를 갖는 말뚝의 연직재하시험장치 및 그방법
CN102912812A (zh) * 2011-08-03 2013-02-06 同济大学 一种模拟静压桩沉桩过程的模型试验装置
CN204690808U (zh) * 2015-06-09 2015-10-07 长安大学 一种用于桩基模型试验的桩位约束装置
CN204803928U (zh) * 2015-07-21 2015-11-25 中铁隧道集团有限公司 一种大直径超长试验桩消阻套筒
CN207891932U (zh) * 2017-12-28 2018-09-21 浙江大学 一种可控制围压用于模拟闭口桩安装过程的实验装置
CN111456117B (zh) * 2020-04-02 2021-09-24 中北大学 一种劲性复合桩成桩加载模型试验装置和方法
CN112160349A (zh) * 2020-09-01 2021-01-01 温州大学 打入桩全寿命周期土工离心机试验装置及其操作方法
CN112160353A (zh) * 2020-09-01 2021-01-01 温州大学 一种组合循环荷载作用下的桩土相互作用室内试验装置及安装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202577380U (zh) * 2012-05-29 2012-12-05 中国建筑第四工程局有限公司 立柱桩施工用的钢构件垂直度的校正装置
CN103953074A (zh) * 2014-04-28 2014-07-30 青岛理工大学 一种开口管桩锤击贯入和静荷载模拟实验装置及实验方法
US20160238498A1 (en) * 2015-02-18 2016-08-18 Marcos Silva Carceles Impact generating equipment for dynamic loading tests
CN105714861A (zh) * 2016-04-18 2016-06-29 青岛理工大学 一种模拟静压桩沉桩过程的垂直加载方法
WO2019225023A1 (ja) * 2018-05-25 2019-11-28 株式会社地盤試験所 杭の急速載荷試験装置
CN210049296U (zh) * 2019-03-22 2020-02-11 福建荔建工程技术有限公司 一种桩基高应变检测装置

Also Published As

Publication number Publication date
CN112962685B (zh) 2022-04-26
CN112962685A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Kelly et al. A comparison of field and laboratory tests of caisson foundations in sand and clay
Wang et al. Vertical performance of suction bucket foundation for offshore wind turbines in sand
Wang et al. Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling
Cox et al. Centrifuge study on the cyclic performance of caissons in sand
Xie et al. Centrifuge modelling of spudcan–pile interaction in soft clay
Lee et al. An experimental study of the interaction of vertically loaded pile groups in sand
Fan et al. Centrifuge study on effect of installation method on lateral response of monopiles in sand
Li et al. Centrifuge modeling of the impact of local and global scour erosion on the monotonic lateral response of a monopile in sand
Stewart et al. Spudcan-footprint interaction during jack-up workovers
KR20180035427A (ko) 중앙 집중식 와이어로프를 이용한 말뚝 정재하 시험 장치
CN115200815A (zh) 一种海底吸力式三桶基础的动力响应测试装置及其测试方法
CN111855426A (zh) 一种工程桩竖向抗压静载试验装置
Likins et al. A solution for high damping constants in sands
CN109750692B (zh) 一种模拟桩顶水平滑移和嵌固约束的试验装置及使用方法
US11396732B2 (en) Free-sliding seabed mudmat foundation
WO2022160424A1 (zh) 一种用于桩基离心试验的压桩垂直度控制贯入装置
Cao et al. Penetration resistance of suction caissons in clay
Sparrevik Offshore wind turbine foundations state of the art
US11486804B1 (en) Device for simulating full-scale pile-sinking process of static pressure pile by air bag preloading and test method thereof
CN112942451B (zh) 一种用于斜桩安装控制的离心试验装置
Kim et al. Bearing capacity of hybrid suction foundation on sand with loading direction via centrifuge model test
CN110409519B (zh) 超大直径端承桩承载力的检验装置及检测方法
CN215801842U (zh) 一种地基于基下组合结构的工程桩静载试验装置
Falcon et al. Spudcan–pile interaction in sand-over-clay: Centrifuge modelling
Falcon et al. Model Study on Spudcan-pile Interaction in Uniform Clay and Sand-over-clay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922023

Country of ref document: EP

Kind code of ref document: A1