WO2022160295A1 - 一种具有正反插接口的装置及检测方法 - Google Patents

一种具有正反插接口的装置及检测方法 Download PDF

Info

Publication number
WO2022160295A1
WO2022160295A1 PCT/CN2021/074512 CN2021074512W WO2022160295A1 WO 2022160295 A1 WO2022160295 A1 WO 2022160295A1 CN 2021074512 W CN2021074512 W CN 2021074512W WO 2022160295 A1 WO2022160295 A1 WO 2022160295A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
node
selection switch
switch circuit
terminal
Prior art date
Application number
PCT/CN2021/074512
Other languages
English (en)
French (fr)
Inventor
张伟兴
钱照华
柯建东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21921897.1A priority Critical patent/EP4276644A4/en
Priority to CN202180062070.8A priority patent/CN116134431A/zh
Priority to PCT/CN2021/074512 priority patent/WO2022160295A1/zh
Publication of WO2022160295A1 publication Critical patent/WO2022160295A1/zh
Priority to US18/361,684 priority patent/US20230376436A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • G06F13/4072Drivers or receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • G06F13/4081Live connection to bus, e.g. hot-plugging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0042Universal serial bus [USB]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a device and a detection method with a positive and negative plug-in interface.
  • the positive and negative plug-in interface refers to an interface that can support positive and negative plug-in C) interface and lightning interface.
  • the positive and negative insertion interface also includes an auxiliary channel for transmitting auxiliary signals, which can be used to implement plug detection, positive and negative insertion detection, and other auxiliary functions of the device.
  • the interface usually includes two auxiliary channels, and these two auxiliary channels are respectively the auxiliary channels during forward insertion and reverse insertion, and the auxiliary channels corresponding to the forward insertion are connected.
  • the interface is in the forward insertion state
  • the auxiliary channel corresponding to the reverse insertion is connected
  • the interface is in the reverse insertion state.
  • the two auxiliary channels in the interface can be represented by the auxiliary signals CC1 and CC2 transmitted respectively; wherein, when the interface is located in the source device (source) device The two auxiliary channels are pulled up to the power terminal through a resistor Rp respectively.
  • the two auxiliary channels are pulled down to the ground terminal through a resistor Rd respectively.
  • the source device and the sink device are pulled down to the ground terminal respectively.
  • the devices are connected by cables. If the channel used to transmit CC1 in the source device is connected to the channel of CC1 or CC2 in the sink device, the USB Type-C interface is in the positive state; if the channel used to transmit CC2 in the source device is connected If it is connected with the channel of CC1 or CC2 in the receiving device, the USB Type-C interface is in the reverse insertion state.
  • the positive and negative plug-in interface provided in the above-mentioned technical solution has only one auxiliary channel in the connected state in the inserted state, so that it can only be used for sending or receiving at the same time, that is, the above-mentioned positive and negative plug-in interface is in the inserted state.
  • the transmission of auxiliary signals It is a half-duplex transmission method, so the transmission efficiency is low.
  • the present application provides a device and a detection method with a positive and negative insertion interface, which can be used to establish a full-duplex transmission path based on two auxiliary channels in the positive and negative insertion interface in an inserted state, thereby improving the transmission efficiency of the auxiliary channel.
  • a device having a positive and negative plug-in interface includes a first auxiliary channel, a second auxiliary channel and a control circuit; wherein, the first auxiliary channel includes: a first selection switch circuit, a first auxiliary channel A selection switch circuit is coupled to the first node, and the first node may be a node used by the first auxiliary channel to receive or transmit data; the second auxiliary channel includes: a second selection switch circuit, which is coupled to the second selection switch circuit node, the second node may be a node used by the second auxiliary channel to receive or send data, the structures of the second selection switch circuit and the first selection switch circuit are asymmetrical; the control circuit is used to control the switching of the first selection switch circuit In order to change the electrical parameter of the first node and control the switching of the second selection switch circuit to change the electrical parameter of the second node, the switching states of the first selection switch circuit and the second selection switch circuit are consistent.
  • the positive and negative plug-in interface has two independent auxiliary channels, and the structures of the first selection switch circuit and the second selection switch circuit in the two auxiliary channels are asymmetrical, that is, the two auxiliary channels are arranged asymmetrically. , so that the electrical parameters (such as voltage or current, etc.) of the first node of the positive and negative plug-in interface in the plug-in state are different from the electrical parameters of the second node, so that the positive and negative plug-in interface of the positive and negative plug-in interface can be effectively distinguished. and reverse insertion.
  • this asymmetrical arrangement enables the two auxiliary channels in the positive and negative plug-in interfaces to be respectively connected to the two auxiliary channels in the opposite-end device interface through two wires in the cable, so that in the inserted state, the The two auxiliary channels are in a connected state, that is, both auxiliary channels can be used to transmit information at the same time, so that in the inserted state, a full-duplex transmission path can be established based on the two auxiliary channels, thereby improving the transmission efficiency of the auxiliary channels.
  • the auxiliary channel in the forward and reverse insertion interface provided by the prior art has two sets of completely symmetrical pins, so that it can work in the state of forward insertion or reverse insertion, but there is only one set of pins whether it is forward insertion or reverse insertion. It is used to transmit data, and another group of pins is not used to transmit data, so the transmission efficiency is low.
  • the first auxiliary channel further includes a first transceiver coupled to the first node, the first auxiliary channel can receive or transmit data through the first transceiver, and the second auxiliary channel also It includes a second transceiver coupled with the second node, the second auxiliary channel can receive or transmit data through the second transceiver, and the control circuit is further configured to: control the electrical parameter of the first node or the electrical parameter of the second node
  • the transceiver state of the first transceiver and the second transceiver for example, controlling one of the first transceiver and the second transceiver to be in a transmit state and the other transceiver to be in a receive state, and the electrical parameter includes voltage or current.
  • control circuit may control the first transceiver and the second transceiver to be in different transceiver states according to the electrical parameters of the first node or the electrical parameters of the second node, for example, control the first transceiver and One of the second transceivers is in the transmitting state, and the other transceiver is in the receiving state, so that the two auxiliary channels can be set as full-duplex transmission paths, so that when data is transmitted through the two auxiliary channels, the The transmission efficiency of the auxiliary channel.
  • control circuit is further configured to: determine the state of the positive and negative plug-in interface according to the electrical parameter of the first node or the electrical parameter of the second node, and the state of the positive and negative plug-in interface
  • the state can be one of unplugged, plugged in, unplugged, plugged in, or plugged back, and the electrical parameter includes voltage or current.
  • the control circuit can effectively distinguish the states of insertion, extraction, forward insertion and reverse insertion of the positive and negative plug-in interface according to the electrical parameters of the first node or the electrical parameters of the second node.
  • the structures of the second selection switch circuit and the first selection switch circuit are asymmetrical, including: the first end of the first selection switch circuit is coupled to the first node, and the first selection switch The second terminal of the circuit is coupled to the first voltage terminal through a first pull-up resistor, the third terminal of the first selection switch circuit is coupled to the ground terminal through a first pull-down resistor; the first terminal of the second selection switch circuit is coupled to the second terminal The nodes are coupled, the second terminal of the second selection switch circuit is coupled to the first voltage terminal through a second pull-up resistor, and the third terminal of the second selection switch circuit is floating.
  • the third terminal of the second selection switch circuit is suspended, so that the second selection switch circuit and the first selection switch circuit are connected to the ground.
  • the structure of the selector switch circuit is asymmetrical.
  • the apparatus further includes: a detection circuit, configured to detect the electrical parameters of the first node and the electrical parameters of the second node and send them to the control circuit.
  • the detection circuit may be an analog circuit
  • the control circuit may be a digital circuit, so that the detection circuit may be used to detect the electrical parameters of the first node and the electrical parameters of the second node, and use the detected
  • the electrical parameters of the first node and the electrical parameters of the second node are sent to the control circuit, so that the control circuit implements the above control function based on the electrical parameters of the first node and the electrical parameters of the second node.
  • the apparatus may be a powered device, and the powered device may also be referred to as a sink device, that is, the device itself does not have power supply capability, and needs to be connected to other devices by (such as a power supply device) supplies power to the device; correspondingly, the device further includes: a DC/DC voltage converter, and a marker resistor coupled between the first node and the ground terminal; wherein the DC/DC voltage converter
  • the input terminal of the device is used to receive the input DC voltage, which can be provided by the power supply device connected to the device, and the voltage value of the DC voltage is related to the resistance value of the marker resistor; the output of the DC/DC voltage converter terminal is used to power the device.
  • the device when the device is a power receiving device, the device can convert the received input terminal to the voltage required by the device to supply power through the DC/DC voltage converter, so as to realize the power supply of the device. ;
  • the voltage value of the DC voltage received by the input end of the DC/DC voltage converter is related to the resistance value of the marked resistor, so that when different power receiving devices need to input different DC voltages, different resistances can be set accordingly.
  • This solution is also applicable to the power supply of high-power-consumption powered devices, which can reduce the power supply cost of high-power-consumption powered devices.
  • the first terminal of the first selection switch circuit is connected to the fourth terminal of the first selection switch circuit by default, and the first terminal of the second selection switch circuit is connected to the second selection switch by default.
  • the fourth terminal of the circuit is connected by default, and the fourth terminal of the first selection switch circuit and the fourth terminal of the second selection switch circuit are both in a floating state.
  • the control circuit is also used to: control The second transceiver is in the transmit state.
  • the control circuit can The second transceiver is controlled to be in the sending state and the first transceiver is in the default receiving state.
  • the device connected to the device will control its first transceiver to be in the sending state and the second transceiver to be the default receiving state, so that the The two auxiliary channels in the forward and reverse insertion interface are set as full-duplex transmission paths, so that the transmission efficiency of the auxiliary channels can be improved when data is transmitted through the two auxiliary channels.
  • the device may be a power supply device, that is, the device itself has an external power supply and the device has power supply capability, and can supply power to other devices through the connector on the device (such as receiving power from
  • the device further includes: a DC/DC voltage converter and a switch, the input terminal of the DC/DC voltage converter is used for receiving the first DC voltage, and the output terminal of the DC/DC voltage converter is connected to The first end of the switch is coupled, and the second end of the switch is used for outputting the second DC voltage.
  • the device when the device is a power supply device, the device can convert the received first DC voltage into a second DC voltage through a DC/DC voltage converter, and can output the second DC voltage when the switch is closed.
  • DC voltage so as to provide the second DC voltage to the device connected to the device (ie, the power receiving device), so as to realize the power supply of the device connected to the device.
  • the apparatus when the apparatus is a power supply device, the apparatus further includes: an AC/DC voltage converter, an input end of the AC/DC voltage converter is used to receive an AC voltage, the The output terminal of the AC/DC voltage converter is used for outputting the first DC voltage.
  • the device when the device is a power supply device, the device can convert the received AC voltage into a first DC voltage through the AC/DC voltage converter, so as to provide the first DC voltage directly or indirectly.
  • the device connected to the device is supplied with power to the device connected to the device.
  • the control circuit is further configured to: if the voltage of the first node or the voltage of the second node is in a preset voltage range and the duration is longer than the first For a preset time, it is determined that the positive and negative plug-in interface is in the plug-in state; if the voltage of the first node or the voltage of the second node is switched from the preset voltage range to the pull-up voltage or the pull-down voltage, it is determined that the positive and negative plug-in interface is unplugged ; If the voltage of the first node or the voltage of the second node is switched between the pull-up voltage or the pull-down voltage, it is determined that the positive and negative plug-in interface is in an unplugged state.
  • the control circuit when the device is a power supply device, when the positive and negative plug interfaces are in different states of being inserted, pulled out or not inserted, the control circuit will correspondingly control the first selection switch circuit and the second selection switch circuit.
  • the connection state of the selection switch circuit for example, controlling the first terminal of the first selection switch circuit to be connected to the second terminal, or controlling the first terminal of the first selection switch circuit to be connected to the third terminal, so that the voltage of the first node and the The voltage of the second node changes, so that the control circuit can determine whether the positive and negative plug-in interface is in the plugged, unplugged or unplugged state according to the voltage of the first node or the different change states of the voltage of the second node.
  • the first end of the first selection switch circuit is communicated with the second end of the first selection switch circuit and the first end of the second selection switch circuit
  • the terminal is connected to the second terminal of the second selection switch circuit
  • the control circuit is further used for: if the voltage of the first node is in the preset voltage range and the duration is longer than the first preset time, it is determined that the positive and negative plug-in interface is in positive plug-in state; if the voltage of the second node is in the preset voltage range and the duration is longer than the first preset time, it is determined that the forward and reverse insertion interface is in the reverse insertion state.
  • the positive and negative plug-in interface when the device is a power supply device and is powered, the positive and negative plug-in interface
  • the voltage of the first node and the voltage of the second node are different, so that the control circuit can determine that the positive and negative insertion interface is in the positive state when the voltage of the first node is in the preset voltage range and the duration is longer than the first preset time.
  • Insertion state when the voltage of the second node is in the preset voltage range and the duration is longer than the first preset time, it is determined that the forward and reverse insertion interface is in the reverse insertion state, that is, the voltage of the first node and the voltage of the second node are determined. Indicates the forward or reverse insertion state of the forward and reverse plug-in interfaces.
  • the control circuit is further configured to: control the first transceiver to be in a sending state when the forward and reverse insertion interface is in the forward insertion state, The second transceiver is in the default receiving state; when the forward and reverse insertion interface is in the reverse insertion state, the second transceiver is controlled to be in the sending state, and the first transceiver is in the default receiving state.
  • the control circuit can control the first transceiver to be in the sending state and the second transceiver to be in the default receiving state.
  • the device When the device is connected to the device, it will control its second transceiver to be in the sending state and the first transceiver to be in the default receiving state, so as to establish a full-duplex transmission path based on the two auxiliary channels in the positive and negative plug-in interface, Further, the transmission efficiency of the auxiliary channel can be improved when data is transmitted through the two auxiliary channels.
  • the control circuit is further configured to: when the forward and reverse plug interfaces are in a forward plug state, adjust the direct current according to the voltage of the first node / the output voltage of the DC voltage converter; when the forward and reverse insertion interface is in the reverse insertion state, the output voltage of the DC / DC voltage converter is adjusted according to the voltage of the second node.
  • adjusting the output voltage of the DC/DC voltage converter according to the voltage of the first node may include: judging the voltage requirement of the connected device according to the voltage of the first node, and then adjusting the voltage of the DC/DC voltage converter.
  • adjusting the output voltage of the DC/DC voltage converter according to the voltage of the second node may include: judging the voltage requirement of the connected device according to the voltage of the second node, and then adjusting the DC/DC voltage converter output voltage of the device.
  • the device when the device is a power supply device, if the positive and negative plug-in interface is in the positive plug state, the voltage of the first node is determined by the voltage division of the marking resistor in the device connected to the device, and the marking resistor The resistance value of the device is related to the voltage required by the device connected to the device, so that the control circuit can adjust the output voltage of the DC/DC voltage converter according to the voltage of the first node, so that the output voltage meets the requirements of the device connected to the device.
  • the positive and negative insertion interface is in the reverse insertion state
  • the voltage of the second node is determined by the voltage division of the marking resistor in the equipment connected to the device, and the resistance value of the marking resistor is related to the device.
  • the voltage required by the connected device is related, so that the control circuit can adjust the output voltage of the DC/DC voltage converter according to the second node voltage, so that the output voltage meets the voltage required by the device connected to the device.
  • control circuit is further configured to: obtain a first output voltage corresponding to the first marker voltage from a preset voltage relationship, where the first marker voltage is the voltage of the first node or the first marker voltage.
  • the voltage of the two nodes, the preset voltage relationship is used to indicate the corresponding relationship between the plurality of marker voltages and the plurality of output voltages; the output voltage of the DC/DC voltage converter is adjusted to be equal to the first output voltage.
  • the preset voltage relationship includes a relationship between a greater number or a higher value of marker voltages and the output voltage , so that more or higher output voltages can be provided based on the preset relationship, thereby meeting the power supply requirements of different high-power devices.
  • control circuit when the device is a power supply device, the control circuit is further configured to: determine the device connected to the positive and negative plug-in interface according to the voltage of the first node or the voltage of the second node type, which is a powered device or a power supply device.
  • the voltage of the first node or the voltage of the second node is related to the type of the device connected to the device. For example, if the voltage of the first node or the voltage of the second node If it is 0, the type of the device connected to the device is a power supply device. If the voltage of the first node or the voltage of the second node is not 0 and is within the marked voltage range, the type of the device connected to the device is a powered device.
  • the apparatus may determine the type of the device connected to the positive and negative plug-in interface according to the voltage of the first node or the voltage of the second node, so as to determine whether the connected device needs to be powered according to the type of the connected device.
  • the first end of the first selection switch circuit is communicated with the third end of the first selection switch circuit
  • the first end of the second selection switch circuit is communicated with the third end of the second selection switch circuit
  • the control circuit is further used for: controlling the second transceiver to be in a transmit state and the first transceiver to be in a default receive state.
  • the device when the device is a power supply device and does not need to supply power to the connected device, when the device can fix the first end of the first selection switch circuit to be connected with the third end of the first selection switch circuit, and the third end of the first selection switch circuit is connected.
  • the first end of the second selection switch circuit is communicated with the third end of the second selection switch circuit.
  • the control circuit can control the second transceiver to be in a sending state and the first transceiver to be in a default receiving state.
  • the first transceiver can be controlled to be in the transmit state and the second transceiver to be in the default receive state, so as to establish a full-duplex transmission path based on the two auxiliary channels in the forward and reverse insertion interface, and then transmit the data through the two auxiliary channels.
  • the transmission efficiency of the auxiliary channel can be improved when the data is used.
  • a method for detecting a forward and reverse insertion interface includes a first auxiliary channel, a second auxiliary channel and a control circuit, the first auxiliary channel includes a first selection switch circuit, and the second auxiliary channel includes The second selection switch circuit, the structures of the first selection switch circuit and the second selection switch circuit are asymmetrical, the first selection switch circuit is coupled to the first node, and the first node may be the node used by the first auxiliary channel to receive or transmit data , the second selection switch circuit is coupled to the second node, and the second node may be a node used by the second auxiliary channel to receive or transmit data, the method includes: the control circuit controls the switching of the first selection switch circuit to change the first node and control the switching of the second selection switch circuit to change the electrical parameters of the second node, the switching states of the first selection switch circuit and the second selection switch circuit are consistent, and the electrical parameters of the first node and the second node.
  • the parameter is used to determine the state of the positive and negative plug-in interface; the state of the positive and negative plug-in interface is determined based on the electrical parameters of the first node or the electrical parameters of the second node, and the state of the positive and negative plug-in interface can be unplugged, plugged in, or unplugged one of out, forward insertion or reverse insertion.
  • the first auxiliary channel further includes a first transceiver coupled to the first node, the first auxiliary channel can receive or transmit data through the first transceiver, and the second auxiliary channel also comprising a second transceiver coupled with the second node, the second auxiliary channel can receive or transmit data through the second transceiver
  • the method further includes: controlling the first node according to the electrical parameter of the first node or the electrical parameter of the second node
  • the transceiver state of the transceiver and the second transceiver for example, controlling one of the first transceiver and the second transceiver to be in a transmit state and the other transceiver to be in a receive state
  • the electrical parameter includes voltage or current.
  • determining the state of the positive and negative plug-in interface based on the electrical parameter of the first node or the electrical parameter of the second node including: if the first node If the voltage of the first node or the voltage of the second node is in the preset voltage range and the duration is longer than the first preset time, it is determined that the positive and negative plug-in interface is in the plug-in state; if the voltage of the first node or the voltage of the second node is from the preset voltage The range is converted to a pull-up voltage or a pull-down voltage, and it is determined that the positive and negative plug-in interface is in the unplugged state; if the voltage of the first node or the voltage of the second node is switched between the pull-up voltage or the pull-down voltage, it is determined that the positive and negative plug-in interface is in an unplugged state.
  • the structures of the first selection switch circuit and the second selection switch circuit are asymmetric, including: the first end of the first selection switch circuit is coupled to the first node, and the first selection switch The second terminal of the circuit is coupled to the first voltage terminal through a first pull-up resistor, the third terminal of the first selection switch circuit is coupled to the ground terminal through a first pull-down resistor; the first terminal of the second selection switch circuit is coupled to the second terminal The nodes are coupled, the second terminal of the second selection switch circuit is coupled to the first voltage terminal through a second pull-up resistor, and the third terminal of the second selection switch circuit is floating.
  • the first terminal of the first selection switch circuit is connected to the third terminal of the first selection switch circuit, and the first terminal of the second selection switch circuit is connected to the second selection switch circuit.
  • the third end is connected, and the second auxiliary channel further includes a second transceiver coupled to the second node.
  • the method further includes: controlling the second transceiver to be in a sending state .
  • the first end of the first selection switch circuit is in communication with the second end of the first selection switch circuit, and the first end of the second selection switch circuit is connected to the second end of the second selection switch circuit.
  • the second end is connected, and the state of the forward and reverse plug-in interface is determined based on the electrical parameter of the first node or the electrical parameter of the second node, and further includes: if the voltage of the first node is within a preset voltage range and the duration is greater than the first For a preset time, it is determined that the forward and reverse insertion interfaces are in a forward insertion state; if the voltage of the second node is within a preset voltage range and the duration is longer than the first preset time, it is determined that the forward and reverse insertion interfaces are in a reverse insertion state.
  • the first auxiliary channel further includes a first transceiver coupled to the first node
  • the second auxiliary channel further includes a second transceiver coupled to the second node, when the device When it is a power supply device, and the first end of the first selection switch circuit is connected to the second end of the first selection switch circuit, and the first end of the second selection switch circuit is connected to the second end of the second selection switch circuit
  • the method It also includes: when the positive and negative insertion interface is in the positive insertion state, controlling the first transceiver to be in the sending state; when the positive and negative insertion interface is in the reverse insertion state, controlling the second transceiver to be in the sending state.
  • the apparatus when the apparatus is a power supply device, the apparatus further includes a DC/DC voltage converter, and the DC/DC voltage converter is configured to convert the received DC voltage into an output voltage
  • the method further includes: when the positive and negative insertion interface is in the positive insertion state, adjusting the output voltage of the DC/DC voltage converter according to the voltage of the first node; and/or, when the positive and negative insertion interface is in the reverse insertion state When , the output voltage of the DC/DC voltage converter is adjusted according to the voltage of the second node.
  • the adjusting the output voltage of the DC/DC voltage converter includes: obtaining the first mark voltage corresponding to the first mark voltage from a preset voltage relationship. an output voltage, the first marker voltage is the voltage of the first node or the voltage of the second node, the preset voltage relationship is used to indicate the corresponding relationship between the marker voltages and the output voltages; adjust the DC/DC voltage The output voltage of the converter is equal to the first output voltage.
  • the method further includes: determining, according to the voltage of the first node or the voltage of the second node, the device of the device connected to the positive and negative plug-in interface Type, the device type is a powered device or a power supply device.
  • a third aspect provides a communication system, the communication system includes a first device and a second device, and at least one of the first device and the second device includes the first aspect or any possible implementation of the first aspect
  • a device with a positive and negative plug interface is provided by the method.
  • any positive and negative plug-in interface provided above include all the contents provided above with positive and negative plug-in interfaces. Therefore, the beneficial effects that can be achieved can be referred to above. The beneficial effects of the interrupt reporting device provided in this article will not be repeated here.
  • Fig. 1 is the schematic diagram of a kind of positive and negative insertion interface in the prior art
  • FIG. 2a is a schematic structural diagram of a device with a positive and negative plug-in interface provided by an embodiment of the application;
  • FIG. 2b is a schematic structural diagram of a device with a positive and negative plug-in interface provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another device with a positive and negative plug-in interface provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another device with a positive and negative plug interface provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another device with a positive and negative plug-in interface provided by an embodiment of the present application.
  • FIG. 6a is a schematic diagram of a connection between a device A and a device B in a positive insertion state according to an embodiment of the application;
  • FIG. 6b is a schematic diagram of a connection between a device A and a device B in a reverse insertion state according to an embodiment of the application;
  • FIG. 7a is a schematic diagram of a device A enabling a first transceiver according to an embodiment of the application
  • 7b is a schematic diagram of a device A enabling a second transceiver according to an embodiment of the application;
  • FIG. 8 is a schematic diagram of a connection between a power supply device A and a power receiving device B according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of the connection of a power supply device A and a power supply device B according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the connection between a power adapter A and a powered device B according to an embodiment of the application;
  • FIG. 11 is a schematic flowchart of a detection method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of detecting insertion and extraction states according to an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of detecting forward insertion and reverse insertion according to an embodiment of the present application.
  • circuits or other components may be described or referred to as “for” performing one or more tasks.
  • “for” is used to connote structure by indicating that the circuit/component includes structure (eg, circuitry) that performs one or more tasks during operation.
  • the specified circuit/component may be said to be used to perform the task even when the specified circuit/component is not currently operational (eg, not turned on).
  • Circuits/components used with the phrase “for” include hardware, such as circuits that perform operations, and the like.
  • At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c or a, b and c, where a, b and c can be It can be single or multiple.
  • the words “first” and “second” are used to distinguish objects with similar names or functions or functions. Those skilled in the art can understand that the words “first” and “second” do not equate quantity. and the order of execution.
  • the term “coupled” is used to denote electrical connection, including direct connection through wires or terminals or indirect connection through other devices. Therefore “coupling” should be regarded as an electronic communication connection in a broad sense.
  • the technical solutions of the present application can be applied to various electronic devices having a positive and negative plug-in interface, and the positive and negative plug-in interface has an auxiliary channel, and the auxiliary channel (for example, the first auxiliary channel CH1 and the second auxiliary channel CH2 hereinafter) It can also be called an auxiliary link (sideband link, SL), and the auxiliary link has functions such as detection, information exchange, and high-speed data training. Or the detection of reverse insertion, and the transmission of low-speed data in the forward and reverse insertion interface, etc.
  • the electronic device can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; the electronic device can also be deployed on water (such as ships, etc.), and can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the electronic device may be a terminal or a base station or the like.
  • the terminal includes but is not limited to: a computer, a mobile phone (mobile phone), a tablet computer, a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device (such as a smart watch, a smart bracelet, a computer Pedestrians, etc.), in-vehicle equipment (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, industrial control ( Terminals in industrial control), smart home devices (e.g.
  • a computer a mobile phone (mobile phone), a tablet computer, a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device (such as a smart watch, a smart bracelet, a computer Pedestrians, etc.), in-vehicle equipment (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc
  • refrigerators TVs, air conditioners, electricity meters, etc.
  • intelligent robots workshop equipment
  • terminals in self-driving remote medical surgery Terminal
  • terminal in smart grid terminal in transportation safety
  • terminal in smart city terminal in smart city
  • flying equipment for example, intelligent robot , hot air balloons, drones, planes
  • FIG. 2a is a schematic structural diagram of a device having a positive and negative plug-in interface provided by an embodiment of the present application, and the device may be the electronic device described above or a chip applied to the above electronic device, or the like.
  • the forward and reverse insertion interface includes a first auxiliary channel CH1, a second auxiliary channel CH2, and a control circuit CTRL coupled with the first auxiliary channel CH1 and the second auxiliary channel CH2.
  • the first auxiliary channel CH1 includes: a first selection switch circuit SW1, which is coupled to the first node A; the second auxiliary channel CH2 includes: a second selection switch circuit SW2, which is coupled to the second selection switch circuit SW2 At the second node, the structures of the second selection switch circuit SW2 and the first selection switch circuit SW1 are asymmetrical. In FIG. 2a, different shapes indicate that the structures of the two selection switch circuits are asymmetrical; the control circuit CTRL is used to control the first selection switch circuit SW1. Switching of the selection switch circuit SW to change the electrical parameter of the first node, and controlling the switching of the second selection switch circuit SW to change the electrical parameter of the second node B, the switching of the first selection switch circuit SW1 and the second selection switch circuit SW2 The status is the same.
  • the structures of the second selection switch circuit SW2 and the first selection switch circuit SW1 are asymmetric, including: the first terminal 1 of the first selection switch circuit SW1 is coupled to the first node A, and the first selection switch circuit SW1 The two terminals 2 are coupled to the first voltage terminal VP through the first pull-up resistor R11, and the third terminal 3 of the first selection switch circuit SW1 is coupled to the ground terminal GND through the first pull-down resistor R12; The first terminal 1 is coupled to the second node B, the second terminal 2 of the second selection switch circuit SW2 is coupled to the first voltage terminal VP through the second pull-up resistor R21, and the third terminal 3 of the second selection switch circuit SW2 is floating , the resistance values of the second pull-up resistor R21 and the first pull-up resistor R11 may be equal.
  • FIG. 2b it is a schematic structural diagram of another device having a positive and negative plug-in interface provided by an embodiment of the present application, and the device may be the electronic device described above or a chip applied to the above electronic device. Wait.
  • the forward and reverse insertion interface includes a first auxiliary channel CH1, a second auxiliary channel CH2, and a control circuit CTRL coupled with the first auxiliary channel CH1 and the second auxiliary channel CH2.
  • the first auxiliary channel CH1 includes: a first transceiver TR1, a first selection switch circuit SW1, a first pull-up resistor R11 and a first pull-down resistor R12, the first end of the first transceiver TR1 and a first selection switch
  • the first terminal 1 of the circuit SW1 is both coupled to the first node A
  • the second terminal 2 of the first selection switch circuit SW1 is coupled to the first voltage terminal VP through the first pull-up resistor R11
  • the second terminal 2 of the first selection switch circuit SW1 is coupled to the first voltage terminal VP.
  • the three-terminal 3 is coupled to the ground terminal GND through the first pull-down resistor R12.
  • the first transceiver TR1 may include a first receiver RX1 and a first transmitter TX1, and the receiving end of the first receiver RX1 and the transmitting end of the first transmitter TX1 are coupled as the first end.
  • the transmitting end of the first receiver RX1 and the receiving end of the first transmitter TX1 may be coupled as the second end of the first transceiver TR1, and the second end of the first transceiver TR1 may be coupled with the control circuit CTRL, It can also be connected to a module for processing or storing data in the device.
  • the second end of the first transceiver TR1 is coupled to the control circuit CTRL as an example for illustration.
  • the first node A can be coupled with the first pin SL1
  • the first pin SL1 can be a pin used by the first auxiliary channel CH1 for receiving or sending data
  • the first pin SL1 can be inserted into the front and back of the first pin SL1.
  • Corresponding pins on the connectors corresponding to the interfaces are coupled.
  • the second auxiliary channel CH2 may further include: a second transceiver TR2, a second selection switch circuit SW2 and a second pull-up resistor R21, the first terminal of the second transceiver TR2 and the first terminal 1 of the second selection switch circuit SW2 are coupled to the second node B, the second terminal 2 of the second selection switch circuit SW2 is coupled to the first voltage terminal VP through the second pull-up resistor R21, the third terminal 3 of the second selection switch circuit SW2 is suspended, the second The resistance values of the pull-up resistor R21 and the first pull-up resistor R11 may be equal.
  • the second transceiver TR2 may include a second receiver RX2 and a second transmitter TX2, and the receiving end of the second receiver RX2 and the transmitting end of the second transmitter TX2 are coupled as the first end.
  • the transmitting end of the second receiver RX2 and the receiving end of the second transmitter TX2 may also be coupled as the second end of the second transceiver TR2, and the second end of the second transceiver TR2 may be coupled to the control circuit CTRL , and can also be connected to a module for processing or storing data in the device.
  • the second end of the second transceiver TR2 is coupled to the control circuit CTRL as an example for illustration.
  • the second node B can be coupled with the first pin SL2, the second pin SL2 can be a pin used by the second auxiliary channel CH2 for receiving or sending data, and the second pin SL2 can be plugged into the positive and negative Corresponding pins on the connectors corresponding to the interfaces are coupled.
  • the control circuit CTRL is used to control the switching of the first selection switch circuit SW1 and the second selection switch circuit SW2, and the switching states of the first selection switch circuit SW1 and the second selection switch circuit SW2 are consistent.
  • the control circuit CTRL can simultaneously control the first terminal 1 of the first selection switch circuit SW1 and the first terminal 1 of the second selection switch circuit SW2 to switch and communicate with the respective second terminal 2 or the third terminal 3 according to a certain timing sequence. , so that the first selection switch circuit SW1 and the second selection switch circuit SW2 are in a pull-up state at the same time, or the first selection switch circuit SW1 is in a pull-down state and the second selection switch circuit SW2 is in a floating state.
  • the first selection switch circuit SW1 when the first terminal 1 of the first selection switch circuit SW1 is connected to the second terminal 2 of the first selection switch circuit SW1, and the first terminal 1 of the second selection switch circuit SW2 is connected to the second terminal 2 of the second selection switch circuit SW2
  • the first selection switch circuit SW1 and the second selection switch circuit SW2 are both in the pull-up state; when the first terminal 1 of the first selection switch circuit SW1 is connected to the third terminal 3 of the first selection switch circuit SW1, And when the first terminal 1 of the second selection switch circuit SW2 is connected to the third terminal 3 of the second selection switch circuit SW2, the first selection switch circuit SW1 is in a pull-down state, and the second selection switch circuit SW2 is in a floating state.
  • the first selection switch circuit SW1 and the second selection switch circuit SW2 may both have the fourth terminal 4 in a floating state (also referred to as floating).
  • the first terminal 1 of the first selection switch circuit SW1 may be connected to the fourth terminal 4 of the first selection switch circuit SW1 by default, and the first terminal 1 of the second selection switch circuit SW2 may be connected to the second selection switch circuit SW2.
  • the fourth terminal 4 is connected by default.
  • both the first selection switch circuit SW1 and the second selection switch circuit SW2 are in a floating state.
  • the forward and reverse insertion interface has two independent auxiliary channels, and the structures of the first selection switch circuit SW1 and the second selection switch circuit SW2 in the two auxiliary channels are asymmetrical, that is, the The two auxiliary channels are set asymmetrically, so that the electrical parameters (for example, voltage or current, etc.) of the first node A and the electrical parameters of the second node B of the positive and negative plug-in interface in the plug-in state are different, so that the electrical parameters of the second node B can be effectively Distinguish forward and reverse insertion of the forward and reverse insertion interface.
  • the electrical parameters for example, voltage or current, etc.
  • this asymmetrical arrangement enables the two auxiliary channels in the positive and negative plug-in interfaces to be respectively connected to the two auxiliary channels in the opposite-end device interface through two wires in the cable, so that in the inserted state, the two auxiliary channels are Both auxiliary channels are in a connected state, that is, both auxiliary channels can be used to transmit information at the same time, so that a full-duplex transmission path can be established based on the two auxiliary channels in the insertion state, thereby improving the transmission efficiency of the auxiliary channels.
  • the auxiliary channel in the forward and reverse insertion interface provided by the prior art has two sets of completely symmetrical pins, so that it can work in the state of forward insertion or reverse insertion, but there is only one set of pins whether it is forward insertion or reverse insertion. It is used to transmit data, and another group of pins is not used to transmit data, so the transmission efficiency is low.
  • control circuit CTRL is further configured to: control the transceiving states of the first transceiver TR1 and the second transceiver TR2, and the transceiving states of the first transceiver TR1 and the second transceiver TR2 are different.
  • the transceiving state of the first transceiver TR1 is the transceiving state of the first auxiliary channel CH1
  • the transceiving state of the second transceiver TR2 is also the transceiving state of the second auxiliary channel CH2, so the above description can also be replaced by: the control circuit CTRL also It is used to control the sending and receiving status of the first auxiliary channel CH1 and the second auxiliary channel CH2.
  • the receiving and sending states of the first transceiver TR1 and the second transceiver TR2 may be the receiving state by default, that is, the receiving states of the first transceiver TR1 and the second transceiver TR2 are connected by default and can be used to receive data.
  • the control circuit CTRL can be used to control the first transceiver TR1 to be in a transmitting state (at this time, the second transceiver TR2 is in a receiving state), or control the second transceiver TR2 to be in a transmitting state (at this time, the first transceiver TR1 is in a receiving state) ), so as to realize that the transceiver states of the first transceiver TR1 and the second transceiver TR2 are different.
  • control circuit CTRL may be configured to send the first enable signal EN1 to the first transmitter TX1 in the first transceiver TR1, when the first enable signal EN1 is valid (for example, active high, inactive low) ), the first transmitter TX1 can be made to work to set the first transceiver TR1 to the transmission state.
  • control circuit CTRL can also be used to send the second enable signal EN2 to the second transmitter TX2 in the second transceiver TR2.
  • the second enable signal EN2 is valid (for example, the high level is valid, the low level is invalid )
  • the second transmitter TX2 can be made to work to set the second transceiver TR2 to the transmission state.
  • control circuit CTRL is further configured to: acquire the voltage of the first node A and the voltage state of the second node B; determine the state of the forward and reverse insertion interface according to the voltage of the first node A or the voltage state of the second node B; And/or, the transceiver states of the first transceiver TR1 and the second transceiver TR2 are controlled according to the voltage of the first node A or the voltage of the second node B.
  • control circuit CTRL may be a digital circuit
  • the device may further include an analog circuit as a detection circuit
  • the detection circuit may be used to detect the voltage of the first node A and the voltage of the second node B, and use the detected first node A to detect the voltage of the second node B.
  • the voltage state of a node A and the voltage state of a second node B are sent to the control circuit CTRL.
  • the detection circuit may or may not be integrated in the positive and negative insertion interface, which is not specifically limited in this embodiment of the present application.
  • control circuit CTRL controls the transceiving states of the first transceiver TR1 and the second transceiver TR2 according to the voltage of the first node A or the voltage of the second node B, and the voltage of the first node A or the second transceiver TR2.
  • the detailed process of determining the state of the positive and negative plug-in interfaces by the voltage of the node B is related to the type of the device and the type of the device connected to the device.
  • the powered device may also be called a sink device, that is, the device itself does not have power supply capability, and needs to be connected to other devices (such as power supply devices) to supply power to the device;
  • the power supply device may also be called a source end (source) device, the device itself has an external power supply, and the device has power supply capability, and can supply power to other devices (such as powered devices) through the connector on the device.
  • DC/DC direct current to direct current
  • the input terminal V IN of the DC/DC voltage converter is used for receiving the DC voltage input from the outside
  • the output terminal V OUT of the DC/DC voltage converter is used for powering the device, for example, the output voltage is the device supply voltage.
  • the output of the DC/DC voltage converter can be used to power the control circuit CTRL.
  • the output end of the DC/DC voltage converter can also be coupled with other modules in the device that need to be powered for direct or indirect power supply to other modules.
  • the connector corresponding to the reversible plug-in interface may further include a power supply pin P BUS , and the input terminal V IN of the DC/DC voltage converter may be coupled with the power supply pin P BUS , so that the externally input DC The voltage can be transmitted to the input terminal V IN of the DC/DC voltage converter through the power supply pin P BUS .
  • the resistance value of the marking resistor Rb may be related to the magnitude of the demanded voltage of the device, and different demanded voltages may correspond to the marking resistances Rb with different resistance values.
  • the corresponding relationship between the resistance value of the marking resistor Rb and the required voltage of the device may be as shown in Table 1 below, which also shows the resistance accuracy of the marking resistor Rb and the voltage range corresponding to the required voltage.
  • Table 1 is only exemplary and does not limit the embodiments of the present application.
  • the resistance value or resistance precision of the marking resistor Rb may also be other values, and the required voltage of the device may also include more or higher The voltage of a numerical value is not specifically limited in this embodiment of the present application.
  • the first terminal 1 of the first selection switch circuit SW1 is connected to the fourth terminal 4 of the first selection switch circuit SW1 by default, and the first terminal 1 of the second selection switch circuit SW2 is connected by default. It is connected with the fourth terminal 4 of the second selection switch circuit SW2 by default.
  • the control circuit CTRL can determine that the forward and reverse insertion interfaces are in the insertion state after the device is powered on; after that, the control circuit CTRL does not need to detect that the forward and reverse insertion interfaces are in the forward insertion state or the reverse insertion state, and only needs to control the first transceiver TR1 and the transceiver state of the second transceiver TR2.
  • the positive insertion state may refer to that the first auxiliary channel CH1 in the device is in communication with the first auxiliary channel CH1 in the opposite device, and the second auxiliary channel CH2 in the device is connected with the second auxiliary channel CH2 in the opposite device.
  • the reverse insertion state may mean that the first auxiliary channel CH1 in the device is connected to the second auxiliary channel CH2 in the opposite end device, and the second auxiliary channel CH2 in the device is connected with the first auxiliary channel in the opposite end device.
  • Channel CH1 is connected.
  • control circuit CTRL is further configured to control the second transceiver TR2 to be in a transmit state, for example, the control circuit CTRL sends a valid second enable to the second transmitter TX2 in the second transceiver TR2 signal EN2 to set the second transceiver TR2 to a transmit state, and the first transceiver TR1 to a receive state, so that the device can receive data through the first receiver RX1 in the first auxiliary channel CH1
  • the second transmitter RX2 in the auxiliary channel CH2 transmits data.
  • the device is a power supply device and requires an external power adapter to provide power.
  • the device may further include: a DC/DC voltage converter and a switch SW0, and the switch SW0 has two states of opening and closing.
  • the input terminal V IN of the DC/DC voltage converter is used to receive the first DC voltage, and the first DC voltage may be the voltage provided by the power adapter or the voltage after conversion of the voltage (that is, the voltage provided by the power adapter).
  • the output terminal V OUT of the DC/DC voltage converter is coupled to the first terminal of the switch SW0 , and the second terminal of the switch SW0 is coupled to the power supply pin P BUS .
  • the control circuit CTRL may be directly or indirectly powered by the voltage provided by the power adapter, which is not specifically limited in this embodiment of the present application.
  • the control circuit CTRL can also detect the state of the positive and negative plug-in interfaces, for example, to detect whether the positive and negative plug-in interfaces are inserted, and in the plugged state, the first selection switch circuit SW1 and the first selection switch circuit SW1 and When the second selection switch circuit SW2 is both in the pull-up state, the forward insertion or reverse insertion state is detected, and the specific process is as follows.
  • the process of the control circuit CTRL detecting whether the forward and reverse plugs are inserted may include: if the voltage of the first node A or the voltage of the second node B is within a preset voltage range and the duration is longer than the first preset time, for example, a preset Set the voltage range to [0.99V, 1.21V] and the first preset time to be 5 milliseconds.
  • the positive and negative plug interface is pulled out; if the voltage of the first node A or the voltage of the second node B is 1.1V and the duration is greater than 5 milliseconds, it can be determined that the positive and negative plug interface is pulled out; if the voltage of the first node A or the voltage of the second node B is at the pull
  • the pull-up voltage is denoted as V PH
  • the pull-down voltage is denoted as V PL
  • the voltage in the preset voltage range is denoted as V PM
  • the voltage VA of the first node A in the plug-in state and the pull-out state is the same as that of the first node A.
  • the theoretical voltage and the actual voltage of the voltage VB of the two nodes can be shown in Table 2 below.
  • the theoretical voltage refers to the voltage in the expected state
  • the actual voltage refers to the voltage in the actual state.
  • V Floating in Table 2 represents the theoretical voltage of the second node B when the first terminal 1 of the second selection switch circuit SW2 is connected to the third terminal 3 (floating) of the second selection switch circuit SW2.
  • the control circuit CTRL can control the first terminal 1 of the first selection switch circuit SW1 to communicate with the second terminal 2, and control the first terminal 1 of the second selection switch circuit SW2 It is connected to the second terminal 2, that is, the first selection switch circuit SW1 and the second selection switch circuit SW2 are both fixed in a pull-up state. At this time, the control circuit CTRL determines the forward insertion or reverse insertion state of the forward and reverse insertion interface according to the voltage of the first node A or the voltage of the second node B.
  • control circuit CTRL is further configured to: if the voltage of the first node A is within the preset voltage range and the duration is longer than the first preset time, for example, the preset voltage range is [0.99V, 1.21V], the first A preset time is 5 seconds.
  • the voltage of the first node A is 1.1V and the duration is greater than 5 seconds, it is determined that the forward and reverse plug interfaces are in the forward plug state; if the voltage of the second node B is within the preset voltage range And the duration is greater than the first preset time, for example, the preset voltage range is [0.99V, 1.21V], the first preset time is 5 seconds, if the voltage of the second node B is 1.1V and the duration is greater than 5 seconds , it is determined that the forward and reverse insertion interface is in the reverse insertion state.
  • control circuit CTRL can also control the sending and receiving states of the first transceiver TR1 and the second transceiver TR2 according to the forward or reverse insertion state of the forward and reverse insertion interfaces, which may specifically include: when the forward and reverse insertion interfaces are in the forward insertion state In the state, the first transceiver TR1 is controlled to be in the transmit state, for example, the control circuit CTRL sends a valid first enable signal EN1 to the first transmitter TX1 in the first transceiver TR1, so as to set the first transceiver TR1 to Sending state, at this time the second transceiver TR2 is in the receiving state; when the forward and reverse insertion interface is in the reverse insertion state, control the second transceiver TR2 to be in the sending state, for example, the control circuit CTRL sends the second transceiver TR2 to the first The second transmitter TX2 transmits a valid second enable signal EN2 to set the second transceiver TR2 to a transmit state, and the first transceiver
  • first preset time, second preset time and preset voltage range may be set in advance, which are not specifically limited in this embodiment of the present application; in addition, the duration of a certain voltage is greater than the preset time Alternatively, this voltage remains stable.
  • the control circuit CTRL can close the switch SW0, for example, the control circuit CTRL can send a valid third enable signal EN3 (for example, active high, low level) to the switch SW0. inactive level) to close the switch SW0, so that the output voltage of the DC/DC voltage converter is output from the power supply pin P BUS .
  • EN3 for example, active high, low level
  • control circuit CTRL may also be used to regulate the output voltage of the DC/DC voltage converter.
  • control circuit CTRL is also used to: when the positive and negative plug-in interface is in the positive plug state, judge the voltage requirement of the connected device according to the voltage of the first node A, and then adjust the output of the DC/DC voltage converter. Voltage; when the positive and negative plug-in interface is in the reverse plug state, the voltage demand of the connected device is determined according to the voltage of the second node B, and then the output voltage of the DC/DC voltage converter is adjusted.
  • the control circuit CTRL can obtain the first marking voltage from the preset voltage relationship.
  • the corresponding first output voltage is adjusted, and the output voltage of the DC/DC voltage converter is adjusted to be equal to the first output voltage, and the preset voltage relationship is used to indicate the corresponding relationship between the plurality of marker voltages and the plurality of output voltages.
  • the preset voltage relationship may be shown in Table 3 below, which shows the output voltages corresponding to different marking voltages, and the minimum, typical, and maximum marking voltages corresponding to the same output voltage. It should be noted that the following Table 3 is only exemplary, and does not limit the embodiments of the present application. The preset voltage relationship may also include more marked voltages, more output voltages that are too high, and the like, This embodiment of the present application does not specifically limit this.
  • control circuit CTRL can also determine the type of the connected device.
  • control circuit CTRL is further configured to: when it is determined that the first output voltage corresponding to the first marker voltage is 0V, determine that the type of the connected device is a power supply device, that is, the device does not need to be connected Power supply to the device; when it is determined that the first output voltage corresponding to the first marked voltage is not 0V and is within the marked voltage range, it is determined that the type of the connected device is a powered device, so that the DC/DC voltage conversion can be adjusted according to the above description output voltage of the device.
  • the control circuit CTRL can adjust the DC/DC according to the above description.
  • the output voltage of the DC voltage converter is 5V, 12V or 20V respectively; if the first output voltage determined by the control circuit CTRL is 0V, it means that the device connected to the device is a power supply device, so the control circuit CTRL does not need to adjust the DC/DC voltage
  • the switch SW0 can be kept in the off state.
  • the power supply device connected to the device can control its own positive and negative plug-in interface after detecting that the positive and negative plug-in interfaces are in the inserted state.
  • the first terminal 1 of the first selection switch circuit SW1 is connected to the third terminal 3, and the first terminal 1 of the second selection switch circuit SW2 is controlled to be connected to the third terminal 3, that is, the first selection switch circuit SW1 is fixed to be pulled down state, the second selection switch circuit SW2 is fixed in a floating state.
  • the power supply equipment connected to the device may not need to detect that its forward and reverse insertion interfaces are in the forward insertion state or the reverse insertion state, but only needs to control the sending and receiving states of the first transceiver TR1 and the second transceiver TR2, for example,
  • the power supply device connected to the device can control the second transceiver TR2 to be in the sending state, and the first transceiver TR1 is in the receiving state at this time, so the power supply device connected to the device can pass the first receiver in the first auxiliary channel CH1 RX1 receives data while sending data through the second transmitter TX2 in the second auxiliary channel CH2.
  • the positive and negative plug-in interface may also include a high-speed data transceiver channel, that is, a channel for transmitting high-speed data, for example,
  • the high-speed data may include audio data, video data, storage data, and the like.
  • the high-speed data is relative to the low-speed data transmitted in the auxiliary channel.
  • the transmission rate of the high-speed data can reach gigabits per second, and the transmission rate of the low-speed data can be several megabits or tens of megabits. per second.
  • the third type the device is a power supply device and is a power adapter in the power supply device.
  • the device may further include: an AC/DC voltage converter and a switch SW0, the switch SW0 has two states of opening and closing, and the input terminal V IN of the AC/DC voltage converter is used for receiving the AC voltage , the output end of the AC/DC voltage converter is coupled with the first end of the switch SW0, and the second end of the switch SW0 is used for outputting a DC voltage.
  • the device may further include: a DC/DC voltage converter coupled between the AC/DC voltage converter and the switch SW0, the input terminal of the DC/DC voltage converter may be connected with the AC/DC voltage converter The output terminal is coupled, the output terminal V OUT of the DC/DC voltage converter is coupled with the first terminal of the switch SW0, the DC/DC voltage converter can realize the conversion of DC voltage, for example, the AC/DC voltage converter The outputted first DC voltage is converted into a second DC voltage.
  • the control circuit CTRL can be directly or indirectly powered by the DC voltage output from the AC/DC voltage converter.
  • the power supply terminal VCC of the control circuit CTRL can be coupled with the output terminal of the AC/DC voltage converter, or with the device other modules are coupled, etc., which are not specifically limited in this embodiment of the present application.
  • the device includes both the AC/DC voltage converter and the DC/DC voltage converter, and the power supply terminal VCC of the control circuit CTRL is coupled with the output terminal of the AC/DC voltage converter as an example for illustration.
  • the control circuit CTRL can control both the first selection switch circuit SW1 and the second selection switch circuit SW2 to be in a pull-up state, and detect the state of the positive and negative plug-in interfaces and detect the connected Device type, control the transceiving state of the first transceiver TR1 and the second transceiver TR2, and adjust the output voltage of the DC/DC voltage converter, etc.
  • the control circuit CTRL in the reversible plug-in interface can fix the first selection switch circuit SW1 and the second selection switch circuit SW2 to the upper position after power-on. Pull state, and control switch SW0 is closed, etc.
  • the positive and negative plug-in interface may not include a high-speed data transceiving channel.
  • device A may be a power supply device
  • device B may be a power receiving device or a power supply device
  • device B may be a power supply device
  • device A may be a power receiving device or a power supply device.
  • Fig. 6a shows a schematic diagram of a connection between a device A and a device B in a positive plugging state.
  • the fact that the device A and the device B are in the positive state specifically refers to: the first pin SL1 of the device A is coupled to the first pin SL1 of the device B, and the second pin SL2 of the device A and the second pin of the device B are coupled. Pin SL2 is coupled to each other.
  • the first selection switch circuit SW1 and the second selection switch circuit SW2 in the device A may both be in the pull-up state, and the first selection switch circuit SW1 in the device B may be in the pull-up state.
  • the second selection switch circuit SW2 may be in a floating state (the device B may be a power supply device at this time), or both the first selection switch circuit SW1 and the second selection switch circuit SW2 in the device B may be in a floating state (this When device B can be a powered device).
  • the first selection switch circuit SW1 in the device B is in a pull-down state and the second selection switch circuit SW2 is in a floating state as an example for description.
  • FIG. 6b shows a schematic diagram of a connection between a device A and a device B in an anti-insertion state.
  • the fact that the device A and the device B are in the reverse insertion state specifically refers to: the first pin SL1 of the device A is coupled with the second pin SL2 of the device B, and the second pin SL2 of the device A and the first pin of the device B are coupled. Pin SL1 is coupled to each other.
  • the first selection switch circuit SW1 and the second selection switch circuit SW2 in the device A may both be in the pull-up state, and the first selection switch circuit SW1 in the device B may be in the pull-down state,
  • the second selection switch circuit SW2 may be in a floating state (the device B may be a power supply device at this time, which is illustrated in FIG. 6b as an example), or the first selection switch circuit SW1 and the second selection switch circuit SW2 in the device B may be are in a floating state (device B can be a powered device at this time).
  • Fig. 7a shows a schematic diagram of a device A enabling the first transceiver TR1.
  • the control circuit CTRL in the device A moves to
  • the first transmitter TX1 in the first transceiver TR1 transmits a valid first enable signal EN1 (indicated by a bold line) to set the first transceiver TR1 to a transmit state. Only part of the structure of device B is shown in FIG. 7a.
  • Figure 7b shows a schematic diagram of a device A enabling the second transceiver TR2.
  • the control circuit CTRL in the device A will send the control circuit CTRL in the device A to the second transceiver TR2.
  • the second transmitter TX2 transmits a valid second enable signal EN2 (indicated by a bold line) to set the second transceiver TR2 to a transmit state.
  • the structure of device B is not shown in Figure 7b.
  • FIGS. 6a-7b only show part of the structure of the device A and the device B, and do not show the voltage converter (for example, the AC/DC voltage converter or the DC/DC voltage converter), the switch SW0 , and/or high-speed data transceiver channels, etc.
  • the voltage converter for example, the AC/DC voltage converter or the DC/DC voltage converter
  • the switch SW0 for example, the switch SW0 , and/or high-speed data transceiver channels, etc.
  • FIG. 8 shows a schematic diagram of the connection between a power supply device A and a powered device B, where the power supply device A may be a power supply device other than a power adapter.
  • the power supply device A may further include a DC/DC voltage converter and a switch SW0
  • the power receiving device B may further include a DC/DC voltage converter.
  • the connector and cable corresponding to the reverse insertion interface may also include a power line, a high-speed data channel, and a ground line GND.
  • the first selection switch circuit SW1 and the second selection switch circuit SW2 in the power supply device A are both in the pull-up state, and when the power supply device A and the power receiving device B are in the positive plug-in state, the power supply device A
  • the control circuit CTRL can send the first transmitter TX1 in its own first transceiver TR1 by sending a valid first enable signal EN1 (indicated by a bold line) to set it to the transmit state.
  • Both the first selection switch circuit SW1 and the second selection switch circuit SW2 in the power receiving device B are in a floating state, and the control circuit CTRL in the power receiving device B can send the second transmission to the second transceiver TR2 of the power receiving device B
  • the device TX2 transmits a valid second enable signal EN2 (indicated by the bold line) to set it to the transmit state.
  • FIG. 9 shows a schematic diagram of the connection of a power supply device A and a power supply device B, where the power supply device A and the power supply device B are both power supply devices other than power adapters.
  • the power supply device A may further include a DC/DC voltage converter and a switch SW0
  • the power supply device B may also include a DC/DC voltage converter and a switch SW0
  • the power supply device A and the power supply device B The connector and cable corresponding to the positive and negative plug-in interface may also include a high-speed data channel and a ground wire GND.
  • the respective first selection switch circuit SW1 and second selection switch circuit SW2 may be at the second end 2 and the third end, respectively. Switch between 3; when the power supply device A and the power supply device B are connected, the first selection switch circuit SW1 and the second selection switch circuit SW2 of one of the two devices can be fixed in a pull-up state, and the other device can be in a pull-up state.
  • the first selection switch circuit SW1 is fixed in a pull-down state
  • the second selection switch circuit SW2 is fixed in a floating state.
  • the power supply device A in the The control circuit CTRL may send a valid first enable signal EN1 (indicated by a bold line) to the first transmitter TX1 in its own first transceiver TR1 to set it to the transmit state.
  • the control circuit CTRL in the power supply device A The transmitter TX2 transmits a valid second enable signal EN2 (indicated by a bold line) to set it to the transmit state.
  • FIG. 9 only two selection switch circuits in the power supply device A are in a pull-up state, the first selection switch circuit SW1 in the power supply device B is in a pull-down state, and the second selection switch circuit SW2 is in a pull-down state.
  • the floating state is taken as an example to illustrate. In practical applications, the first selection switch circuit SW1 in the power supply device A is in a pull-down state, the second selection switch circuit SW2 is in a floating state, and the two selection switches in the power supply device B The switch circuits are all in the pull-up state.
  • FIG. 10 shows a schematic diagram of the connection between a power adapter A and a powered device B.
  • the power adapter A may further include an AC/DC voltage converter, a DC/DC voltage converter and a switch SW0
  • the power receiving device B further includes a DC/DC voltage converter
  • the power adapter A and the power receiving device The connector and cable corresponding to the positive and negative plug-in interfaces in device B also include a ground wire GND.
  • the first selection switch circuit SW1 and the second selection switch circuit SW2 in the power adapter A are both in a pull-up state, and when the power adapter A and the powered device B are in a positive plug-in state, the power adapter A in the The control circuit CTRL can send the first transmitter TX1 in its own first transceiver TR1 by sending a valid first enable signal EN1 (indicated by a bold line) to set it to the transmit state.
  • Both the first selection switch circuit SW1 and the second selection switch circuit SW2 in the power receiving device B may be in a floating state, and the control circuit CTRL in the power receiving device B
  • the transmitter TX2 transmits a valid second enable signal EN2 (indicated by a bold line) to set it to the transmit state.
  • the following detection methods can be used to detect the state of the positive and negative plug-in interface, control the first The transceiver state of the transceiver TR1 or the second transceiver TR2, and/or the output voltage of the DC/DC voltage converter and the state of the switch SW0, etc. are controlled.
  • 11 is a schematic flowchart of a detection method provided by an embodiment of the application, the method includes the following steps: S01. After the device is powered on, the control circuit CTRL switches the first selection switch circuit SW1 and the second selection switch according to a preset timing sequence The circuit SW2 switches between the pull-up state, the pull-down state and the floating state at the same time (if the device is a power adapter, the control circuit CTRL can control the first selection switch circuit SW1 and the second selection switch circuit SW2 to be fixed in the pull-up state) , simultaneously obtain the voltage VA of the first node A and the voltage VB of the second node B ; S02.
  • the voltage VA of the first node A or the voltage VB of the second node B is V PM (V PM is at a preset voltage range) and keep it stable; S03. determine that the positive and negative plug-in interfaces are in the plug-in state; S04. judge the state of the first selection switch circuit SW1 and the second selection switch circuit SW2, if SW1 is in a pull-down state and SW2 is in a floating state, then execute S05a, If it is in the pull-up state at the same time, execute S05b; S05a. If SW1 is in the pull-down state and SW2 is in the floating state, set the second transceiver TR2 to the transmission state, and do not judge the forward or reverse insertion state at this time; S05b.
  • Pull state determine the forward insertion or reverse insertion state; S06. Control the sending and receiving state of the first transceiver TR1 or the second transceiver TR2 according to the forward insertion or reverse insertion state, if it is in the forward insertion state, set the first transceiver TR1 to the sending state , set the second transceiver TR2 as the sending state if it is in the reverse insertion state; S07. Judge the type of the connected device according to the size of VPM , and then determine whether power supply is required, if power supply is required, then execute S08, if no power supply is needed, end ( That is, there is no need to control the DC/DC voltage converter, and the switch SW0 can be in an off state); S08.
  • S06 and S07 may be in no particular order. In FIG. 11 , an example is taken that S06 is located before S07 for description.
  • the forward and reverse insertion interface can realize full-duplex transmission, thereby greatly improving the transmission efficiency of the auxiliary channel, greatly shortening the information exchange time between devices, and at the same time for the link training and state management of high-speed data. and control, etc. are significantly helpful.
  • the power supply device provided by the present application can also supply power to other devices that need power supply, so that the power supply interface of the device can be saved. This can meet the power supply of some high-power-consuming devices, thereby greatly reducing the cost of power supply.
  • FIG. 12 is a schematic flowchart of a method for detecting a positive and negative plug-in interface provided by an embodiment of the present application.
  • the method can be applied to the device with a positive and negative plug-in interface provided above, and the device can be an electronic device or applied to For the chip of the above-mentioned electronic device, etc., the method includes the following steps.
  • the control circuit CTRL controls the switching of the first selection switch circuit SW1 to change the electrical parameter of the first node A, and controls the switching of the second selection switch circuit SW2 to change the electrical parameter of the second node B, the first selection switch circuit SW1 This corresponds to the switching state of the second selection switch circuit SW2.
  • control circuit CTRL can control the first terminal 1 of the first selection switch circuit SW1 to communicate with the second terminal 2 of the first selection switch circuit SW1, and control the first terminal 1 and the second selection switch of the second selection switch circuit SW2
  • the second terminal 2 of the switch circuit SW2 is connected; and/or the control circuit CTRL can control the first terminal 1 of the first selection switch circuit SW1 to communicate with the third terminal 3 of the first selection switch circuit SW1, and control the second selection switch
  • the first terminal 1 of the circuit SW2 communicates with the third terminal 3 of the second selection switch circuit SW2.
  • the control circuit CTRL can control the first end 1 of the first selection switch circuit SW1 and the first end 1 of the second selection switch circuit SW2 to be respectively connected with the respective ones according to a certain sequence.
  • the second end 2 communicates with the third end 3.
  • the control circuit CTRL can communicate with the respective second terminals 2 respectively according to the control of the first terminal 1 of the first selection switch circuit SW1 and the first terminal 1 of the second selection switch circuit SW2.
  • the first terminal 1 of the first selection switch circuit SW1 and the first terminal 1 of the second selection switch circuit SW2 in the device are respectively connected to their default fourth terminals 4 .
  • the control circuit CTRL determines the state of the forward and reverse plug-in interfaces based on the electrical parameter of the first node A or the electrical parameter of the second node B, where the electrical parameter may include voltage or current.
  • the control circuit CTRL can acquire the electrical parameters of the first node A and the electrical parameters of the second node B in real time; determine the electrical parameters of the first node A or the electrical parameters of the second node B in real time;
  • the state of the positive and negative plug-in interface, the state of the positive and negative plug-in interface may include whether it is plugged in, or the positive plug or reverse plug state in the plugged state, and the like.
  • the device does not need to detect the state of the positive and negative plug-in interfaces.
  • the control circuit CTRL determining the state of the forward and reverse plug-in interfaces based on the electrical parameter of the first node A or the electrical parameter of the second node B may include: if the first node The voltage of A or the voltage of the second node B is in the preset voltage range and the duration is longer than the first preset time, it is determined that the positive and negative plug-in interface is in the plug-in state; if the voltage of the first node or the voltage of the second node changes from the preset voltage Assuming that the voltage range is changed to a pull-up voltage or a pull-down voltage and the duration is greater than the second preset time, it is determined that the positive and negative plug-in interface is pulled out; if the voltage of the first node A or the voltage of the second node B is at the pull-up voltage or Switch between the pull-down voltages to confirm that the positive and negative plug-in interface is in the unplugged state.
  • the control circuit CTRL can detect the plug-in and plug-out states of the positive and negative plug-in interfaces through the following steps.
  • the specific steps include: S11. Monitor the voltage VA of the first node A or the voltage VB of the second node B ; S12. Determine that the voltage VA of the first node A or the voltage VB of the second node B appears V PM and keep it Stable, V PM is in the preset voltage range; S13. Determine that the positive and negative plug-in interface is in the plug-in state; S14. Continue to monitor the voltage VA of the first node A or the voltage VB of the second node B ; S15. Determine the first node The voltage VA of A or the voltage VB of the second node B is converted from V PM to a pull-up voltage or a pull-down voltage and remains stable; S16. Determine that the positive and negative plug-in interface is pulled out.
  • control circuit CTRL may further determine the positive plug-in connection of the positive and negative plug-in interfaces based on the electrical parameters of the first node A or the electrical parameters of the second node B state or inverse state.
  • the electrical parameter is a voltage
  • the voltage VA of the first node A is within the preset voltage range and the duration is longer than the first preset time, it is determined that the positive and negative plug-in interface is in the positive plug-in state; if the second node A is in the positive plug-in state;
  • the voltage V B of B is in the preset voltage range and the duration is longer than the first preset time, it is determined that the forward and reverse insertion interface is in the reverse insertion state.
  • the control circuit CTRL can detect the positive and negative plug-in states and reverse plug-in states of the positive and negative plug-in interfaces through the following steps.
  • the specific steps include: S21. Determine the state of the first selection switch circuit SW1 and the second selection switch circuit SW2, if the first selection switch circuit SW1 is in the pull-down state and the second selection switch circuit SW2 is in the floating state, it ends (that is, it cannot detect positive Insertion or reverse insertion), if the first selection switch circuit SW1 and the second selection switch circuit SW2 are both in the pull-up state, then execute S22; S22.
  • V A of the first node A is equal to V PM and the voltage V B of the second node B is equal to the pull-up voltage V PH , it is determined to be in the positive insertion state; S23b. If the voltage V A of the first node A is It is equal to V PH , the voltage V B of the second node B is equal to the pull-up voltage V PM , and it is determined to be in the reverse insertion state.
  • V PM is in the above-mentioned preset voltage range.
  • the method further includes S303: the control circuit CTRL controls the transceiving states of the first transceiver TR1 and the second transceiver TR2 based on the electrical parameters of the first node A or the electrical parameters of the second node B.
  • the second selection switch circuit SW2 when the device is a power supply device, and the first terminal 1 of the first selection switch circuit SW1 is connected to the second terminal 2 of the first selection switch circuit SW1, the second selection switch circuit SW2 In the case where the first terminal 1 is connected to the second terminal 2 of the second selection switch circuit SW2: if the forward and reverse insertion interface is in the forward insertion state, the control circuit CTRL can control the first transceiver TR1 to be in the transmission state, and the second transceiver TR2 may be in the default receiving state; if the forward and reverse insertion interface is in the reverse insertion state, the control circuit CTRL may control the second transceiver TR2 to be in the sending state, and the first transceiver TR1 may be in the default receiving state.
  • the control circuit CTRL determines the forward insertion state or the reverse insertion state of the forward and reverse insertion interface
  • the control circuit CTRL controls the steps of the sending and receiving states of the first transceiver TR1 and the second transceiver TR2. It can include: S24a.
  • the positive and negative insertion interface is in a positive insertion state, and the control circuit CTRL enables the first transmitter TX1 in the first transceiver TR1 to set the first transceiver TR1 to a transmission state;
  • S24b The positive and negative The plug-in interface is in a reverse plug-in state, and the control circuit CTRL enables the second transmitter TX2 in the second transceiver TR2 to set the second transceiver TR2 to a transmit state.
  • the control circuit CTRL can control the second transceiver TR2 to be in a transmitting state, and the first transceiver TR1 can be in a default receiving state.
  • the control circuit CTRL can control the second transceiver TR2 to be in a transmitting state, and the first transceiver TR1 can be in a default receiving state.
  • the positive and negative plug-in interface has two independent auxiliary channels, and the structures of the first selection switch circuit SW1 and the second selection switch circuit SW2 in the two auxiliary channels are asymmetrical, that is, the two auxiliary channels It is set asymmetrically, which will make the electrical parameters (such as voltage or current, etc.) of the first node A and the electrical parameters of the second node B different in the plugged state of the positive and negative plug-in interface, so that the positive and negative plug-in interface can be effectively distinguished.
  • the forward and reverse insertion of the reverse plug interface is set asymmetrically, which will make the electrical parameters (such as voltage or current, etc.) of the first node A and the electrical parameters of the second node B different in the plugged state of the positive and negative plug-in interface.
  • this asymmetrical arrangement enables the two auxiliary channels in the positive and negative plug-in interfaces to be respectively connected to the two auxiliary channels in the opposite-end device interface through two wires in the cable, so that in the inserted state, the two auxiliary channels are Both auxiliary channels are in a connected state, that is, both auxiliary channels can be used to transmit information at the same time, so that a full-duplex transmission path can be established based on the two auxiliary channels in the insertion state, thereby improving the transmission efficiency of the auxiliary channels.
  • a power supply system is also provided, and the power supply system can be any of the above-mentioned devices with positive and negative plug-in interfaces, and the device can specifically be the above-mentioned power supply equipment or power adapter , for the specific description of the device, reference may be made to the descriptions in the device embodiments provided above.
  • a communication system may include a first device and a second device, and at least one of the first device and the second device includes any of the above-mentioned devices.
  • a device with a positive and negative plug-in interface the specific description of the device can refer to the description in the device embodiments provided above.
  • a computer-readable storage medium is also provided, and instructions are stored in the computer-readable storage medium, and when at least one processor of a device executes the instructions, the device causes the device to execute the instructions provided herein.
  • One or more steps in the positive and negative plug interface detection method are also provided, and instructions are stored in the computer-readable storage medium, and when at least one processor of a device executes the instructions, the device causes the device to execute the instructions provided herein.
  • a computer program product in another embodiment, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can be obtained from a computer-readable storage medium. Reading the storage medium reads the computer-executable instructions, and at least one processor executes the computer-executable instructions to cause the device to implement one or more steps in the method for detecting a reversible plug-in interface provided herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)

Abstract

一种具有正反插接口的装置及检测方法,涉及通信技术领域,用于提高辅助通道的传输效率。该装置中的正反插接口包括:第一辅助通道(CH1),包括第一选择开关电路(SW1),第一选择开关电路(SW1)耦合至第一节点(A);第二辅助通道(CH2),包括第二选择开关电路(SW2),第二选择开关电路(SW2)耦合至第二节点(B),第二选择开关电路(SW2)和第一选择开关电路(SW1)的结构不对称;控制电路(CTRL),用于控制第一选择开关电路(SW1)的切换以改变第一节点(A)的电参数,以及控制第二选择开关电路(SW2)的切换以改变第二节点(B)的电参数,第一选择开关电路(SW1)和第二选择开关电路(SW2)的切换状态一致。

Description

一种具有正反插接口的装置及检测方法 技术领域
本申请涉及通信技术领域,尤其涉及一种具有正反插接口的装置及检测方法。
背景技术
目前,大多数移动终端设备都具有正反插接口,该正反插接口是指能够支持正插和反插的接口,比如,通用串行总线类型C(universal serial bus type-C,USB Type-C)接口和闪电(lightning)接口。通常,正反插接口中除了包括高速数据通道外,还会包括用于传输辅助信号的辅助通道,该辅助信号可用于实现设备的插拔检测、正反插检测和其他一些辅助功能等。
现有技术中,对于USB Type-C接口和闪电接口,该接口中通常包括两个辅助通道,这两个辅助通道分别为正插和反插时的辅助通道,当正插对应的辅助通道连通时该接口处于正插状态,当反插对应的辅助通道连通时该接口处于反插状态。比如,以USB Type-C接口为例,如图1所示,该接口中的两个辅助通道可以通过各自传输的辅助信号CC1和CC2表示;其中,当该接口位于源端(source)设备时这两个辅助通道分别通过一个电阻Rp上拉至电源端,当该接口位于收端(sink)设备时这两个辅助通道分别通过一个电阻Rd下拉至接地端,该源端设备和该收端设备之间通过线缆连接。若该源端设备中用于传输CC1的通道与该收端设备中CC1或CC2的通道是连通的,则该USB Type-C接口为正插状态;若源端设备中用于传输CC2的通道与该收端设备中CC1或CC2的通道是连通的,则该USB Type-C接口为反插状态。
上述技术方案中提供的正反插接口在插入状态下,只有一个辅助通道处于连通状态,从而在同一时间只能用于发送或者接收,也即上述正反插接口在插入状态下辅助信号的传输为半双工传输方式,从而传输效率低下。
发明内容
本申请提供一种具有正反插接口的装置及检测方法,可用于在插入状态下基于该正反插接口中的两个辅助通道建立全双工传输路径,进而提高辅助通道的传输效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种具有正反插接口的装置,该正反插接口包括第一辅助通道、第二辅助通道和控制电路;其中,第一辅助通道,包括:第一选择开关电路,第一选择开关电路耦合至第一节点,第一节点可以是第一辅助通道用于接收或者发送数据的节点;第二辅助通道,包括:第二选择开关电路,第二选择开关电路耦合至第二节点,第二节点可以是第二辅助通道用于接收或者发送数据的节点,第二选择开关电路和第一选择开关电路的结构不对称;该控制电路,用于控制第一选择开关电路的切换以改变第一节点的电参数,以及控制第二选择开关电路的切换以改变第二节点的电参数,第一选择开关电路和第二选择开关电路的切换状态一致。
上述技术方案中,该正反插接口具有两个独立的辅助通道,这两个辅助通道中第一选择开关电路和第二选择开关电路的结构不对称,即这两个辅助通道为非对称设置, 这样会使得该正反插接口在插入状态下的第一节点的电参数(比如,电压或电流等)和第二节点的电参数不同,从而可以有效区分出该正反插接口的正插和反插。此外,这种非对称设置可以使得该正反插接口中的这两个辅助通道可通过线缆中的两根导线分别与对端设备接口中的两个辅助通道连接,这样在插入状态下这两个辅助通道均处于连通状态,即这两个辅助通道均可同时用于传输信息,从而在插入状态下可以基于这两个辅助通道建立全双工传输路径,进而提高辅助通道的传输效率。而现有技术提供的正反插接口中的辅助通道具有两组完全对称的引脚,从而在正插或反插状态下都可工作,但无论是正插还是反插,都只有一组引脚被用于传输数据、另外一组引脚不用传输数据,从而传输效率低下。
在第一方面的一种可能的实现方式中,第一辅助通道还包括与第一节点耦合的第一收发器,第一辅助通道可以通过第一收发器接收或发送数据,第二辅助通道还包括与第二节点耦合的第二收发器,第二辅助通道可以通过第二收发器接收或发送数据,该控制电路还用于:根据第一节点的电参数或第二节点的电参数,控制第一收发器和第二收发器的收发状态,比如,控制第一收发器和第二收发器中的一个收发器为发送状态、另一个收发器为接收状态,该电参数包括电压或电流。
上述可能的实现方式中,该控制电路可以根据第一节点的电参数或第二节点的电参数,控制第一收发器和第二收发器为不同的收发状态,比如,控制第一收发器和第二收发器中的一个收发器为发送状态、另一个收发器为接收状态,这样可以将这两个辅助通道设置为全双工传输路径,进而在通过这两个辅助通道传输数据时可以提高辅助通道的传输效率。
在第一方面的一种可能的实现方式中,该控制电路还用于:根据第一节点的电参数或第二节点的电参数,确定该正反插接口的状态,该正反插接口的状态可以为未插入、插入、拔出、正插或反插中的一个,该电参数包括电压或电流。
上述可能的实现方式中,由于第一选择开关电路和第二选择开关电路的结构不对称,使得该正反插接口在插入状态下的第一节点的电参数和第二节点的电参数不同,从而该控制电路可以根据第一节点的电参数或第二节点的电参数,有效区分出该正反插接口的插入、拔出、正插和反插的状态。
在第一方面的一种可能的实现方式中,第二选择开关电路和第一选择开关电路的结构不对称,包括:第一选择开关电路的第一端与第一节点耦合,第一选择开关电路的第二端通过第一上拉电阻与第一电压端耦合,第一选择开关电路的第三端通过第一下拉电阻与接地端耦合;第二选择开关电路的第一端与第二节点耦合,第二选择开关电路的第二端通过第二上拉电阻与第一电压端耦合,第二选择开关电路的第三端悬空。
上述可能的实现方式中,通过将第一选择开关电路的第三端通过第一下拉电阻与接地端耦合,第二选择开关电路的第三端悬空,以使得第二选择开关电路和第一选择开关电路的结构不对称。
在第一方面的一种可能的实现方式中,该装置还包括:检测电路,用于检测第一节点的电参数和第二节点的电参数并发送给该控制电路。
上述可能的实现方式中,该检测电路可以为模拟电路,该控制电路可以为数字电路,从而该检测电路可以用于检测第一节点的电参数和第二节点的电参数,并将检测 到的第一节点的电参数和第二节点的电参数发送给该控制电路,以使该控制电路基于第一节点的电参数和第二节点的电参数实现上述控制功能。
在第一方面的一种可能的实现方式中,该装置可以为受电设备,该受电设备也可以称为收端(sink)设备,即该设备自身不具有供电能力,需要通过连接其他设备(比如供电设备)为该设备供电;相应的,该装置还包括:直流/直流电压转换器、以及耦合在第一节点与该接地端之间的标记电阻;其中,该直流/直流电压转换器的输入端用于接收输入的直流电压,该直流电压可以由与该装置连接的供电设备来提供,该直流电压的电压值与该标记电阻的阻值有关;该直流/直流电压转换器的输出端用于为该装置供电。
上述可能的实现方式中,当该装置为受电设备时,该装置可以通过该直流/直流电压转换器将接收到的输入端转换为该装置供电时所需的电压,从而实现该装置的供电;此外,该直流/直流电压转换器的输入端接收的该直流电压的电压值与该标记电阻的阻值有关,这样在不同的受电设备需要输入不同的直流电压时,可以对应设置不同阻值的标记电阻,从而实现不同电压需求的受电设备的供电,该方案也同样适用于大功耗受电设备的供电,这样可以降低大功耗受电设备的供电成本。
在第一方面的一种可能的实现方式中,第一选择开关电路的第一端与第一选择开关电路的第四端默认连通,第二选择开关电路的第一端默认与第二选择开关电路的第四端默认连通,第一选择开关电路的第四端与第二选择开关电路的第四端均处于浮空状态,当该装置为受电设备时,该控制电路还用于:控制第二收发器为发送状态。
上述可能的实现方式中,当该装置为受电设备时,第一选择开关电路的第一端和第二选择开关电路的第一端默认与各自的第四端连通,此时该控制电路可以控制第二收发器为发送状态、第一收发器为默认的接收状态,同时与该装置连接的设备会控制自身的第一收发器为发送状态、第二收发器为默认的接收状态,从而将正反插接口中的两个辅助通道设置为全双工传输路径,进而在通过这两个辅助通道传输数据时可以提高辅助通道的传输效率。
在第一方面的一种可能的实现方式中,该装置可以为供电设备,即该装置自身带有外部供电电源且设备具有供电能力,能够通过该设备上的连接器为其他设备供电(如受电设备);相应的,该装置还包括:直流/直流电压转换器和开关,该直流/直流电压转换器的输入端用于接收第一直流电压,该直流/直流电压转换器的输出端与该开关的第一端耦合,该开关的第二端用于输出第二直流电压。
上述可能的实现方式中,当该装置为供电设备时,该装置可以通过直流/直流电压转换器将接收到的第一直流电压转换为第二直流电压,并在该开关闭合时可以输出第二直流电压,从而将第二直流电压提供给与该装置连接的设备(即受电设备),实现与该装置连接的设备的供电。
在第一方面的一种可能的实现方式中,当该装置为供电设备时,该装置还包括:交流/直流电压转换器,该交流/直流电压转换器的输入端用于接收交流电压,该交流/直流电压转换器的输出端用于输出第一直流电压。
上述可能的实现方式中,当该装置为供电设备时,该装置可以通过该交流/直流电压转换器将接收到的交流电压转换为第一直流电压,以将第一直流电压直接或者间接地提供 给该装置连接的设备,实现与该装置连接的设备的供电。
在第一方面的一种可能的实现方式中,当该装置为供电设备时,该控制电路还用于:若第一节点的电压或第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于插入状态;若第一节点的电压或第二节点的电压从预设电压范围切换为上拉电压或者下拉电压,确定该正反插接口被拔出;若第一节点的电压或第二节点的电压在上拉电压或者下拉电压之间切换,确定该正反插接口处于未插入状态。
上述可能的实现方式中,在该装置为供电设备的情况下,当该正反插接口处于插入、拔出或未插入的不同状态时,该控制电路会对应控制第一选择开关电路和第二选择开关电路的连接状态,例如控制第一选择开关电路的第一端与第二端连接,或者控制第一选择开关电路的第一端与第三端连接,这样会使得第一节点的电压和第二节点的电压发生变化,从而该控制电路可以根据第一节点的电压或第二节点的电压的不同变化状态确定该正反插接口是处于插入、拔出或者未插入的状态。
在第一方面的一种可能的实现方式中,当该装置为供电设备时,第一选择开关电路的第一端与第一选择开关电路的第二端连通且第二选择开关电路的第一端与第二选择开关电路的第二端连通,该控制电路还用于:若第一节点的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于正插状态;若第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于反插状态。
上述可能的实现方式中,由于该正反插接口中的第一选择开关电路和第二选择开关电路的结构不对称,这样当该装置为供电设备且在供电的情况下,该正反插接口中第一节点的电压和第二节点的压是不同的,从而该控制电路可以在第一节点的电压处于预设电压范围且持续时间大于第一预设时间时确定该正反插接口处于正插状态,在第二节点的电压处于预设电压范围且持续时间大于第一预设时间时确定该正反插接口处于反插状态,即基于第一节点的电压和第二节点的电压确定该正反插接口的正插状态或者反插状态。
在第一方面的一种可能的实现方式中,当该装置为供电设备时,该控制电路还用于:当该正反插接口处于该正插状态时,控制第一收发器为发送状态,第二收发器为默认的接收状态;当该正反插接口处于该反插状态时,控制第二收发器为发送状态,第一收发器为默认的接收状态。
上述可能的实现方式中,当该装置为供电设备,该正反插接口处于该正插状态时,该控制电路可以控制第一收发器为发送状态、第二收发器为默认的接收状态,此时与该装置连接的设备会控制自身的第二收发器为发送状态、第一收发器为默认的接收状态,从而基于该正反插接口中的两个辅助通道建立了全双工传输路径,进而在通过这两个辅助通道传输数据时可以提高辅助通道的传输效率。
在第一方面的一种可能的实现方式中,当该装置为供电设备时,该控制电路还用于:当该正反插接口处于正插状态时,根据第一节点的电压,调节该直流/直流电压转换器的输出电压;当该正反插接口处于反插状态时,根据第二节点的电压,调节该直流/直流电压转换器的输出电压。可选的,根据第一节点的电压,调节该直流/直流电压转换器的输出电压可以包括:根据第一节点的电压大小判断所连接设备的电压需求,进 而调节该DC/DC电压转换器的输出电压;同理,根据第二节点的电压,调节该直流/直流电压转换器的输出电压可以包括:根据第二节点的电压大小判断所连接设备的电压需求,进而调节该DC/DC电压转换器的输出电压。
上述可能的实现方式中,当该装置为供电设备时,若该正反插接口处于正插状态,则第一节点的电压由该装置所连接设备中标记电阻的分压决定,而该标记电阻的阻值又与该装置所连接设备所需的电压有关,从而该控制电路可以根据第一节点的电压调节该直流/直流电压转换器的输出电压,以使该输出电压满足该装置所连接设备所需的电压;同理,若该正反插接口处于反插状态,则第二节点的电压由该装置所连接设备中标记电阻的分压决定,而该标记电阻的阻值又与该装置所连接设备所需的电压有关,从而该控制电路可以根据第二节点电压调节该直流/直流电压转换器的输出电压,以使该输出电压满足该装置所连接设备所需的电压。
在第一方面的一种可能的实现方式中,该控制电路还用于:从预设电压关系中获取第一标记电压对应的第一输出电压,第一标记电压为第一节点的电压或第二节点的电压,该预设电压关系用于指示多个标记电压与多个输出电压之间的对应关系;调节该直流/直流电压转换器的输出电压等于第一输出电压。
上述可能的实现方式中,提供了一种简单有效的确定第一标记电压对应的第一输出电压的方式,该预设电压关系中包括更多数量或更高数值的标记电压与输出电压的关系,从而基于该预设关系可以提供更多或更高数值的输出电压,进而可以满足不同大功率设备的供电需求。
在第一方面的一种可能的实现方式中,当该装置为供电设备时,该控制电路还用于:根据第一节点的电压或第二节点的电压,确定该正反插接口所连接设备的类型,该类型为受电设备或者供电设备。
上述可能的实现方式中,当该装置为供电设备时,第一节点的电压或第二节点的电压与该装置所连接设备的类型有关,比如,若第一节点的电压或第二节点的电压为0则该装置所连接设备的类型为供电设备,若第一节点的电压或第二节点的电压不为0且在标记电压范围内则该装置所连接设备的类型为受电设备,从而该装置可以根据第一节点的电压或第二节点的电压,确定该正反插接口所连接设备的类型,从而根据所连接设备的类型确定是否需要为所连接设备供电。
在第一方面的一种可能的实现方式中,当该装置为供电设备且无需向所连接设备供电时,第一选择开关电路的第一端与第一选择开关电路的第三端连通,且第二选择开关电路的第一端与第二选择开关电路的第三端连通,该控制电路还用于:控制第二收发器为发送状态,第一收发器为默认的接收状态。
上述可能的实现方式中,当该装置为供电设备且无需向所连接设备供电时,当该装置可以固定第一选择开关电路的第一端与第一选择开关电路的第三端连通,且第二选择开关电路的第一端与第二选择开关电路的第三端连通,该控制电路可以控制第二收发器为发送状态、第一收发器为默认的接收状态,此时该装置所连接设备可以控制第一收发器为发送状态、第二收发器为默认的接收状态,从而基于该正反插接口中的两个辅助通道建立了全双工传输路径,进而在通过这两个辅助通道传输数据时可以提高辅助通道的传输效率。
第二方面,提供一种正反插接口的检测方法,该正反插接口包括第一辅助通道、第二辅助通道和控制电路,第一辅助通道包括第一选择开关电路,第二辅助通道包括第二选择开关电路,第一选择开关电路和第二选择开关电路的结构不对称,第一选择开关电路耦合至第一节点,第一节点可以是第一辅助通道用于接收或者发送数据的节点,第二选择开关电路耦合至第二节点,第二节点可以是第二辅助通道用于接收或者发送数据的节点,该方法包括:该控制电路控制第一选择开关电路的切换以改变第一节点的电参数,以及控制第二选择开关电路的切换以改变第二节点的电参数,第一选择开关电路和第二选择开关电路的切换状态一致,第一节点的电参数和第二节点的电参数用于确定该正反插接口的状态;基于第一节点的电参数或第二节点的电参数确定该正反插接口的状态,该正反插接口的状态可以为未插入、插入、拔出、正插或反插中的一个。
在第二方面的一种可能的实现方式中,第一辅助通道还包括与第一节点耦合的第一收发器,第一辅助通道可以通过第一收发器接收或发送数据,第二辅助通道还包括与第二节点耦合的第二收发器,第二辅助通道可以通过第二收发器接收或发送数据,该方法还包括:根据第一节点的电参数或第二节点的电参数,控制第一收发器和第二收发器的收发状态,比如,控制第一收发器和第二收发器中的一个收发器为发送状态、另一个收发器为接收状态,该电参数包括电压或电流。
在第二方面的一种可能的实现方式中,当该电参数包括电压时,基于第一节点的电参数或第二节点的电参数确定该正反插接口的状态,包括:若第一节点的电压或第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于插入状态;若第一节点的电压或第二节点的电压从该预设电压范围变换为上拉电压或者下拉电压,确定该正反插接口处于拔出状态;若第一节点的电压或第二节点的电压在上拉电压或者下拉电压之间切换,确定该正反插接口处于未插入状态。
在第二方面的一种可能的实现方式中,第一选择开关电路和第二选择开关电路的结构不对称,包括:第一选择开关电路的第一端与第一节点耦合,第一选择开关电路的第二端通过第一上拉电阻与第一电压端耦合,第一选择开关电路的第三端通过第一下拉电阻与接地端耦合;第二选择开关电路的第一端与第二节点耦合,第二选择开关电路的第二端通过第二上拉电阻与第一电压端耦合,第二选择开关电路的第三端悬空。
在第二方面的一种可能的实现方式中,第一选择开关电路的第一端与第一选择开关电路的第三端连通,第二选择开关电路的第一端与第二选择开关电路的第三端连通,第二辅助通道还包括与第二节点耦合的第二收发器,当该装置为供电设备且无需向所连接设备供电时,该方法还包括:控制第二收发器为发送状态。
在第二方面的一种可能的实现方式中,第一选择开关电路的第一端与第一选择开关电路的第二端连通且第二选择开关电路的第一端与第二选择开关电路的第二端连通,基于第一节点的该电参数或第二节点的该电参数确定该正反插接口的状态,还包括:若第一节点的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于正插状态;若第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于反插状态。
在第二方面的一种可能的实现方式中,第一辅助通道还包括与第一节点耦合的第一 收发器,第二辅助通道还包括与第二节点耦合的第二收发器,当该装置为供电设备、且第一选择开关电路的第一端与第一选择开关电路的第二端连通且第二选择开关电路的第一端与第二选择开关电路的第二端连通时,该方法还包括:当该正反插接口处于正插状态时,控制第一收发器为发送状态;当该正反插接口处于反插状态时,控制第二收发器为发送状态。
在第二方面的一种可能的实现方式中,当该装置为供电设备时,该装置还包括直流/直流电压转换器,该直流/直流电压转换器用于将接收的直流电压转换为输出电压,该方法还包括:当该正反插接口处于正插状态时,根据第一节点的电压,调节该直流/直流电压转换器的输出电压;和/或,当该正反插接口处于反插状态时,根据第二节点的电压,调节该直流/直流电压转换器的输出电压。
在第二方面的一种可能的实现方式中,当该装置为供电设备时,该调节该直流/直流电压转换器的输出电压,包括:从预设电压关系中获取第一标记电压对应的第一输出电压,第一标记电压为第一节点的电压或第二节点的电压,该预设电压关系用于指示多个标记电压与多个输出电压之间的对应关系;调节该直流/直流电压转换器的输出电压等于第一输出电压。
在第二方面的一种可能的实现方式中,当该装置为供电设备时,该方法还包括:根据第一节点的电压或第二节点的电压,确定该正反插接口所连接设备的设备类型,该设备类型为受电设备或者供电设备。
第三方面,提供一种通信系统,该通信系统包括第一设备和第二设备,第一设备和第二设备中的至少一个设备包括如第一方面或者第一方面的任一种可能的实现方式所提供的一种具有正反插接口的装置。
可以理解地,上述提供的任一种正反插接口的检测方法和通信系统等均包含了上文所提供的具有正反插接口的所有内容,因此,其所能达到的有益效果可参考上文所提供的中断上报装置中的有益效果,此处不再赘述。
附图说明
图1为现有技术中的一种正反插接口的示意图;
图2a为本申请实施例提供的一种具有正反插接口的装置的结构示意图;
图2b为本申请实施例提供的一种具有正反插接口的装置的结构示意图;
图3为本申请实施例提供的另一种具有正反插接口的装置的结构示意图;
图4为本申请实施例提供的又一种具有正反插接口的装置的结构示意图;
图5为本申请实施例提供的另一种具有正反插接口的装置的结构示意图;
图6a为本申请实施例提供的一种设备A和设备B处于正插状态的连接示意图;
图6b为本申请实施例提供的一种设备A和设备B处于反插状态的连接示意图;
图7a为本申请实施例提供的一种设备A使能第一收发器的示意图;
图7b为本申请实施例提供的一种设备A使能第二收发器的示意图;
图8为本申请实施例提供的一种供电设备A和受电设备B的连接示意图;
图9为本申请实施例提供的一种供电设备A和供电设备B的连接示意图;
图10为本申请实施例提供的一种电源适配器A和受电设备B的连接示意图;
图11为本申请实施例提供的一种检测方法的流程示意图;
图12为本申请实施例提供的另一种检测方法的流程示意图;
图13为本申请实施例提供的一种检测插入和拔出状态的流程示意图;
图14为本申请实施例提供的一种检测正插和反插的流程示意图。
具体实施方式
下文将详细论述各实施例的制作和使用。但应了解,本申请提供的许多适用发明概念可实施在多种具体环境中。所论述的具体实施例仅仅说明用以实施和使用本说明和本技术的具体方式,而不限制本申请的范围。
除非另有定义,否则本文所用的所有科技术语都具有与本领域普通技术人员公知的含义相同的含义。
各电路或其它组件可描述为或称为“用于”执行一项或多项任务。在这种情况下,“用于”用来通过指示电路/组件包括在操作期间执行一项或多项任务的结构(例如电路系统)来暗指结构。因此,即使当指定的电路/组件当前不可操作(例如未打开)时,该电路/组件也可以称为用于执行该任务。与“用于”措辞一起使用的电路/组件包括硬件,例如执行操作的电路等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c或a、b和c,其中a、b和c可以是单个,也可以是多个。
本申请的实施例采用了“第一”和“第二”等字样对名称或功能或作用类似的对象进行区分,本领域技术人员可以理解“第一”和“第二”等字样并不对数量和执行次序进行限定。“耦合”一词用于表示电性连接,包括通过导线或连接端直接相连或通过其他器件间接相连。因此“耦合”应被视为是一种广义上的电子通信连接。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的技术方案可以应用于具有正反插接口的各种电子设备中,该正反插接口具有辅助通道,该辅助通道(比如,下文中的第一辅助通道CH1和第二辅助通道CH2)也可以称为辅助链路(sideband link,SL),该辅助链路具有检测、信息交互和高速数据训练等功能,比如,该辅助链路可以用于实现该正反插接口的插入、正插或反插的检测,以及该正反插接口中低速数据的传输等。
在本申请中,该电子设备可以部署在陆地上,包括室内或室外、手持或车载;该电子设备也可以部署在水面上(比如轮船等),还可以部署在空中(例如飞机、气球和卫星上等)。比如,该电子设备可以为终端或者基站等。比如,该终端包括但不限于:计算机、手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网 设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)、车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self-driving)中的终端、远程手术(remote medical surgery)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端,或智慧家庭(smart home)中的终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。
图2a为本申请实施例提供的一种具有正反插接口的装置的结构示意图,该装置可以为上文所描述的电子设备或者应用于上述电子设备的芯片等。如图2a所示,该正反插接口包括第一辅助通道CH1、第二辅助通道CH2、以及与第一辅助通道CH1和第二辅助通道CH2耦合的控制电路CTRL。其中,第一辅助通道CH1包括:第一选择开关电路SW1,第一选择开关电路SW1耦合于第一节点A;第二辅助通道CH2包括:第二选择开关电路SW2,第二选择开关电路SW2耦合于第二节点,第二选择开关电路SW2和第一选择开关电路SW1的结构不对称,图2a中通过不同的形状表示两个选择开关电路的结构不对称;控制电路CTRL,用于控制第一选择开关电路SW的切换以改变第一节点的电参数,以及控制第二选择开关电路SW的切换以改变第二节点B的电参数,第一选择开关电路SW1和第二选择开关电路SW2的切换状态一致。
可选的,第二选择开关电路SW2和第一选择开关电路SW1的结构不对称,包括:第一选择开关电路SW1的第一端1耦合于第一节点A,第一选择开关电路SW1的第二端2通过第一上拉电阻R11与第一电压端V P耦合,第一选择开关电路SW1的第三端3通过第一下拉电阻R12与接地端GND耦合;第二选择开关电路SW2的第一端1耦合于第二节点B,第二选择开关电路SW2的第二端2通过第二上拉电阻R21与第一电压端V P耦合,第二选择开关电路SW2的第三端3悬空,第二上拉电阻R21与第一上拉电阻R11的阻值可以相等。
结合图2a,如图2b所示,为本申请实施例提供的另一种具有正反插接口的装置的结构示意图,该装置可以为上文所描述的电子设备或者应用于上述电子设备的芯片等。如图2b所示,该正反插接口包括第一辅助通道CH1、第二辅助通道CH2、以及与第一辅助通道CH1和第二辅助通道CH2耦合的控制电路CTRL。
其中,第一辅助通道CH1包括:第一收发器TR1、第一选择开关电路SW1、第一上拉电阻R11和第一下拉电阻R12,第一收发器TR1的第一端和第一选择开关电路SW1的第一端1均耦合于第一节点A,第一选择开关电路SW1的第二端2通过第一上拉电阻R11与第一电压端V P耦合,第一选择开关电路SW1的第三端3通过第一下拉电阻R12与接地端GND耦合。其中,第一收发器TR1可以包括第一接收器RX1和第一发送器TX1,第一接收器RX1的接收端和第一发送器TX1的发送端相耦合作为上述第一收发器TR1的第一端。另外,第一接收器RX1的发送端和第一发送器TX1的接收端可以相耦合作为第一收发器TR1的第二端,上述第一收发器TR1的第二端可以与控制电路CTRL耦合,也可以与该装置中用于处理或存储数据的模块连接,图2b中以上述第一收发器TR1的第二端与控制电路CTRL耦合为例进行说明。可选的,第 一节点A可以与第一管脚SL1耦合,第一管脚SL1可以是第一辅助通道CH1用于接收或发送数据的管脚,第一管脚SL1可以与该正反插接口对应的连接器上的对应管脚耦合。
第二辅助通道CH2还可以包括:第二收发器TR2、第二选择开关电路SW2和第二上拉电阻R21,第二收发器TR2的第一端和第二选择开关电路SW2的第一端1均耦合于第二节点B,第二选择开关电路SW2的第二端2通过第二上拉电阻R21与第一电压端V P耦合,第二选择开关电路SW2的第三端3悬空,第二上拉电阻R21与第一上拉电阻R11的阻值可以相等。其中,第二收发器TR2可以包括第二接收器RX2和第二发送器TX2,第二接收器RX2的接收端和第二发送器TX2的发送端相耦合作为上述第二收发器TR2的第一端。另外,第二接收器RX2的发送端和第二发送器TX2的接收端也可以相耦合作为第二收发器TR2的第二端,上述第二收发器TR2的第二端可以与控制电路CTRL耦合,也可以与该装置中用于处理或存储数据的模块连接,图2b中以上述第二收发器TR2的第二端与控制电路CTRL耦合为例进行说明。可选的,第二节点B可以与第一管脚SL2耦合,第二管脚SL2可以是第二辅助通道CH2用于接收或发送数据的管脚,第二管脚SL2可以与该正反插接口对应的连接器上的对应管脚耦合。
控制电路CTRL,用于控制第一选择开关电路SW1和第二选择开关电路SW2的切换,第一选择开关电路SW1和第二选择开关电路SW2的切换状态一致。比如,控制电路CTRL可根据一定的时序同时控制第一选择开关电路SW1的第一端1和第二选择开关电路SW2的第一端1分别与各自的第二端2或第三端3切换连通,以使第一选择开关电路SW1和第二选择开关电路SW2同时处于上拉状态,或者使第一选择开关电路SW1处于下拉状态、第二选择开关电路SW2处于悬空状态。其中,当第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第二端2连通,以及第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第二端2连通时,第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态;当第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第三端3连通,以及第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第三端3连通时,第一选择开关电路SW1处于下拉状态,第二选择开关电路SW2处于悬空状态。
可选的,第一选择开关电路SW1和第二选择开关电路SW2还可以均具有处于浮空状态(也可以称为悬空)的第四端4。相应的,第一选择开关电路SW1的第一端1可以与第一选择开关电路SW1的第四端4默认连通,第二选择开关电路SW2的第一端1可以与第二选择开关电路SW2的第四端4默认连通,此时第一选择开关电路SW1和第二选择开关电路SW2均处于浮空状态。
在本申请实施例提供的该装置中,该正反插接口具有两个独立的辅助通道,这两个辅助通道中第一选择开关电路SW1和第二选择开关电路SW2的结构不对称,即这两个辅助通道为非对称设置,这样会使得该正反插接口在插入状态下的第一节点A的电参数(比如,电压或电流等)和第二节点B的电参数不同,从而可以有效区分出该正反插接口的正插和反插。此外,这种非对称设置可以使得该正反插接口中的这两个辅助通道通过线缆中的两根导线分别与对端设备接口中的两个辅助通道连接,这样在 插入状态下这两个辅助通道均处于连通状态,即这两个辅助通道均可同时用于传输信息,从而在插入状态下可以基于这两个辅助通道建立全双工传输路径,进而提高辅助通道的传输效率。而现有技术提供的正反插接口中的辅助通道具有两组完全对称的引脚,从而在正插或反插状态下都可工作,但无论是正插还是反插,都只有一组引脚被用于传输数据、另外一组引脚不用于传输数据,从而传输效率低下。
在一种可能的实现方式中,控制电路CTRL还用于:控制第一收发器TR1和第二收发器TR2的收发状态,第一收发器TR1和第二收发器TR2的收发状态不同。第一收发器TR1的收发状态也即第一辅助通道CH1的收发状态,第二收发器TR2的收发状态也即第二辅助通道CH2的收发状态,从而上述描述也可以替换为:控制电路CTRL还用于控制第一辅助通道CH1和第二辅助通道CH2的收发状态。
其中,第一收发器TR1和第二收发器TR2的收发状态可以默认为接收状态,即第一收发器TR1和第二收发器TR2的接收状态默认处于连通状态,可用于接收数据。控制电路CTRL可用于控制第一收发器TR1为发送状态(此时,第二收发器TR2为接收状态),或者控制第二收发器TR2为发送状态(此时,第一收发器TR1为接收状态),以实现第一收发器TR1和第二收发器TR2的收发状态不同。
示例性的,控制电路CTRL可用于向第一收发器TR1中的第一发送器TX1发送第一使能信号EN1,当第一使能信号EN1有效(比如,高电平有效、低电平无效)时,可以使得第一发送器TX1工作,以将第一收发器TR1设置为发送状态。同理,控制电路CTRL还可用于向第二收发器TR2中的第二发送器TX2发送第二使能信号EN2,当第二使能信号EN2有效(比如,高电平有效、低电平无效)时,可以使得第二发送器TX2工作,以将第二收发器TR2设置为发送状态。
进一步的,控制电路CTRL还用于:获取第一节点A的电压和第二节点B的电压状态;根据第一节点A的电压或第二节点B的电压状态确定该正反插接口的状态;和/或,根据第一节点A的电压或第二节点B的电压控制第一收发器TR1和第二收发器TR2的收发状态。
可选的,控制电路CTRL可以为数字电路,该装置还可以包括作为检测电路的模拟电路,该检测电路可用于检测第一节点A的电压和第二节点B的电压,并将检测到的第一节点A的电压和第二节点B的电压状态发送给控制电路CTRL。该检测电路可以集成在该正反插接口中,也可以不集成在该正反插接口中,本申请实施例对此不作具体限制。
需要说明的是,该控制电路CTRL根据第一节点A的电压或第二节点B的电压控制第一收发器TR1和第二收发器TR2的收发状态、以及根据第一节点A的电压或第二节点B的电压确定该正反插接口的状态的详细过程与该装置的类型及该装置所连接装置的类型有关,下面分别以该装置的类型为受电设备和供电设备为例进行详细阐述。其中,该受电设备也可以称为收端(sink)设备,即该设备自身不具有供电能力,需要通过连接其他设备(如供电设备)为该设备供电;该供电设备也可以称为源端(source)设备,该设备自身带有外部供电电源,且设备具有供电能力,能够通过该设备上的连接器为其他设备供电(如受电设备)。
第一种:该装置的类型为受电设备。如图3所示,该装置还可以包括:直流/直流 (direct current to direct current,DC/DC)电压转换器、以及耦合在第一节点A与接地端GND之间的标记电阻Rb,该标记电阻Rb可以集成在该正反插接口中或者该装置中,比如,该标记电阻Rb可以集成在该装置的电路板上。
其中,该DC/DC电压转换器的输入端V IN用于接收外部输入的直流电压,该DC/DC电压转换器的输出端V OUT用于为该装置供电,比如,输出的电压为该装置的供电电压。比如,该DC/DC电压转换器的输出端可以用于为控制电路CTRL供电。该DC/DC电压转换器的输出端还可以与该装置中需要供电的其他模块耦合,以用于其他模块直接或者间接供电等。可选的,该正反插接口对应的连接器中还可以包括电源管脚P BUS,该DC/DC电压转换器的输入端V IN可以与该电源管脚P BUS耦合,从而外部输入的直流电压可通过该电源管脚P BUS传输至该DC/DC电压转换器的输入端V IN
另外,标记电阻Rb的阻值可以与该装置的需求电压的大小有关,不同的需求电压可以对应不同阻值的标记电阻Rb。示例性的,标记电阻Rb的阻值与该装置的需求电压之间的对应关系可以如下表1所示,表1中还示出了标记电阻Rb的电阻精度、需求电压对应的电压范围。
表1
Rb的阻值 Rb的电阻精度 该装置的需求电压 对应的电压范围
100KΩ 5% 5V 4.75V~5.25V
200KΩ 5% 12V 11.4V~12.6V
500KΩ 5% 20V 19V~21V
需要说明的是,上述表1仅为示例性的并不对本申请实施例构成限制,标记电阻Rb的阻值或电阻精度还可以为其他数值,该装置的需求电压还可以包括更多或更高数值的电压,本申请实施例对此不作具体限制。
具体的,当该装置为受电设备时,第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第四端4默认连通、以及第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第四端4默认连通。控制电路CTRL可以在该装置供电后即可确定该正反插接口处于插入状态;之后,控制电路CTRL无需检测该正反插接口处于正插状态或者反插状态,只需控制第一收发器TR1和第二收发器TR2的收发状态即可。该正插状态可以是指该装置中的第一辅助通道CH1与对端设备中的第一辅助通道CH1连通、且该装置中的第二辅助通道CH2与对端设备中的第二辅助通道CH2连通;该反插状态可以是指该装置中的第一辅助通道CH1与对端设备中的第二辅助通道CH2连通、且该装置中的第二辅助通道CH2与对端设备中的第一辅助通道CH1连通。在一种可能的实施例中,控制电路CTRL还用于控制第二收发器TR2为发送状态,比如,控制电路CTRL向第二收发器TR2中的第二发送器TX2发送有效的第二使能信号EN2,以将第二收发器TR2设置为发送状态,此时第一收发器TR1为接收状态,从而该装置可以通过第一辅助通道CH1中的第一接收器RX1接收数据,同时通过第二辅助通道CH2中的第二发送器RX2发送数据。
第二种:该装置为供电设备,且需要外部电源适配器提供电源。如图4所示,该装置还可以包括:DC/DC电压转换器和开关SW0,开关SW0具有断开和闭合两种状态。该DC/DC电压转换器的输入端V IN用于接收第一直流电压,第一直流电压可以是 电源适配器提供的电压或者是该电压(即电源适配器提供的电压)经过转换后的电压,该DC/DC电压转换器的输出端V OUT与开关SW0的第一端耦合,开关SW0的第二端耦合至电源管脚P BUS。其中,控制电路CTRL可以由电源适配器提供的电压直接或间接供电,本申请实施例对此不作具体限制。
具体的,当该装置的类型为供电设备时,控制电路CTRL还可以检测该正反插接口的状态,比如,检测该正反插接口是否插入,以及插入状态下且第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态时检测正插或者反插状态,具体过程如下所述。
其中,控制电路CTRL检测该正反插接是否插入的过程可以包括:若第一节点A的电压或第二节点B的电压处于预设电压范围且持续时间大于第一预设时间,比如,预设电压范围为[0.99V,1.21V]、第一预设时间为5毫秒,若第一节点A的电压或第二节点B的电压为1.1V且持续时间大于5毫秒,则可以确定该正反插接口处于插入状态;若第一节点的电压或者第二节点的电压从该预设电压范围变换为上拉电压或下拉电压且持续时间大于第二预设时间,比如,预设电压范围为[0.99V,1.21V]、第二预设时间为5毫秒、上拉电压为3.3V、下拉电压为0V,若第一节点A的电压从1.1V变换为3.3V且持续时间大于5毫秒,或者第二节点B的电压从1.1V变换为0V且持续时间大于5毫秒,则可以确定该正反插接口被拔出;若第一节点A的电压或第二节点B的电压在上拉电压或者下拉电压之间切换,比如,上拉电压为3.3V、下拉电压为0V,若第一节点A的电压在3.3V与0V之间切换、或者第二节点B的电压在3.3V与0V之间切换,则可以确定该正反插接口处于未插入状态。示例性的,若上拉电压表示为V PH、下拉电压表示为V PL、处于预设电压范围的电压表示为V PM,则插入状态和拔出状态下第一节点A的电压V A和第二节点的电压V B的理论电压和实际电压可以如下表2所示,该理论电压是指预期状态下的电压,该实际电压是指实际状态的电压。表2中的V Floating表示第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第三端3(悬空)连通时第二节点B的理论电压。
表2
Figure PCTCN2021074512-appb-000001
另外,在确定该正反插接口处于插入状态时,控制电路CTRL可以控制第一选择开关电路SW1的第一端1与第二端2连通、以及控制第二选择开关电路SW2的第一端1与第二端2连通,即将第一选择开关电路SW1和第二选择开关电路SW2均固定 为上拉状态。此时,控制电路CTRL根据第一节点A的电压或第二节点B的电压确定该正反插接口的正插或者反插状态。具体的,控制电路CTRL还用于:若第一节点A的电压处于该预设电压范围且持续时间大于第一预设时间,比如,该预设电压范围为[0.99V,1.21V]、第一预设时间为5秒,若第一节点A的电压为1.1V且持续时间大于5秒,则确定该正反插接口处于正插状态;若第二节点B的电压处于该预设电压范围且持续时间大于第一预设时间,比如,预设电压范围为[0.99V,1.21V]、第一预设时间为5秒,若第二节点B的电压为1.1V且持续时间大于5秒,则确定该正反插接口处于反插状态。
此外,控制电路CTRL还可以根据该正反插接口的正插或者反插状态控制第一收发器TR1和第二收发器TR2的收发状态,具体可以包括:当该正反插接口处于该正插状态时,控制第一收发器TR1为发送状态,比如,控制电路CTRL向第一收发器TR1中的第一发送器TX1发送有效的第一使能信号EN1,以将第一收发器TR1设置为发送状态,此时第二收发器TR2为接收状态;当该正反插接口处于反插状态时,控制第二收发器TR2为发送状态,比如,控制电路CTRL向第二收发器TR2中的第二发送器TX2发送有效的第二使能信号EN2,以将第二收发器TR2设置为发送状态,此时第一收发器TR1为接收状态。这样,该正反插接口中的第一辅助通道CH1和第二辅助通道CH2中的一个处于发送状态、一个处于接收状态,从而可以同时实现数据的接收和发送。
需要说明的是,上述第一预设时间、第二预设时间和预设电压范围可以是事先设置的,本申请实施例对此不作具体限制;另外,某一电压的持续时间大于预设时间也可以替换为该电压保持稳定。
进一步的,当该装置作为供电设备向其他设备供电时,控制电路CTRL可以闭合开关SW0,比如,控制电路CTRL可以向开关SW0发送有效的第三使能信号EN3(比如,高电平有效、低电平无效)以闭合开关SW0,以使得该DC/DC电压转换器的输出电压从电源管脚P BUS输出。
在一种可能的实施例中,控制电路CTRL还可以用于调节该DC/DC电压转换器的输出电压。可选的,控制电路CTRL还用于:当该正反插接口处于正插状态时,根据第一节点A的电压大小判断所连接设备的电压需求,进而调节该DC/DC电压转换器的输出电压;当该正反插接口处于反插状态时,根据第二节点B的电压大小判断所连接设备的电压需求,进而调节该DC/DC电压转换器的输出电压。示例性的,若将正插状态下第一节点A的电压或反插状态下第二节点B的电压称为第一标记电压,则控制电路CTRL可以从预设电压关系中获取第一标记电压对应的第一输出电压,并调节该DC/DC电压转换器的输出电压等于第一输出电压,该预设电压关系用于指示多个标记电压与多个输出电压之间的对应关系。
比如,该预设电压关系可以如下表3所示,表3中示出了不同标记电压对应的输出电压,以及同一输出电压对应的标记电压的最小值、典型值和最大值。需要说明的是,下述表3仅为示例性的,并不对本申请实施例构成限制,该预设电压关系中还可以包括更多的标记电压、以及更多过更高的输出电压等,本申请实施例对此不作具体限制。
表3
Figure PCTCN2021074512-appb-000002
可选的,控制电路CTRL还可以确定所连接设备的类型。在一种可能的实施例中,控制电路CTRL还用于:当确定第一标记电压对应的第一输出电压为0V时,确定所连接设备的类型为供电设备,即不需要该装置为所连接设备供电;当确定第一标记电压对应的第一输出电压不是0V且在标记电压范围内时,确定所连接设备的类型为受电设备,从而可以根据上文的描述调节该DC/DC电压转换器的输出电压。以上述表2为例,若控制电路CTRL确定的第一输出电压为5V、12V或者20V,则表示该装置所连接设备为受电设备,从而控制电路CTRL可以根据上文的描述调节该DC/DC电压转换器的输出电压分别为5V、12V或者20V;若控制电路CTRL确定的第一输出电压为0V,则表示该装置所连接设备为供电设备,从而控制电路CTRL无需调节该DC/DC电压转换器的输出电压,此时开关SW0可以保持为断开状态。
进一步的,当该装置确定所连接设备为供电设备,即两个供电设备互连时,该装置所连接的供电设备可以在检测到正反插接口处于插入状态后,控制自身的正反插接口中的第一选择开关电路SW1的第一端1与第三端3连通、以及控制第二选择开关电路SW2的第一端1与第三端3连通,即将第一选择开关电路SW1固定为下拉状态、第二选择开关电路SW2固定为悬空状态。此时,该装置所连接的供电设备可以无需检测自身的正反插接口处于正插状态或者反插状态,只需控制第一收发器TR1和第二收发器TR2的收发状态即可,比如,该装置所连接的供电设备可以控制第二收发器TR2为发送状态,此时第一收发器TR1为接收状态,从而该装置所连接的供电设备可以通过第一辅助通道CH1中的第一接收器RX1接收数据,同时通过第二辅助通道CH2中的第二发送器TX2发送数据。
需要说明的是,当该装置的类型为上文所描述的第一种或第二种类型时,该正反插接口还可以包括高速数据收发通道,即用于传输高速数据的通道,比如,该高速数据可以包括音频数据、视频数据和存储数据等。其中,该高速数据是相对于辅助通道中传输的低速数据而言的,比如,该高速数据的传输速率可以达到吉比特每秒等,该低速数据的传输速率可以为几兆或者几十兆比特每秒。
第三种:该装置为供电设备,且为供电设备中的电源适配器。如图5所示,该装置还可以包括:AC/DC电压转换器和开关SW0,开关SW0具有断开和闭合两种状态,该AC/DC电压转换器的输入端V IN用于接收交流电压,该AC/DC电压转换器的输出端与开关SW0的第一端耦合,开关SW0的第二端用于输出直流电压。进一步的,该装置还可以包括:耦合该AC/DC电压转换器与开关SW0之间的DC/DC电压转换器,该DC/DC电压转换器的输入端可以与该AC/DC电压转换器的输出端耦合,该DC/DC电压转换器的输出端V OUT与上述开关SW0的第一端耦合,该DC/DC电压转换器可以 实现直流电压的转换,比如,将该AC/DC电压转换器输出的第一直流电压转换为第二直流电压。其中,控制电路CTRL可以由AC/DC电压转换器的输出的直流电压直接或间接供电,比如,控制电路CTRL的电源端VCC可以与该AC/DC电压转换器的输出端耦合,或者与该装置的其他模块耦合等,本申请实施例对此不作具体限制。图5中以该装置同时包括该AC/DC电压转换器和该DC/DC电压转换器、以及控制电路CTRL的电源端VCC与该AC/DC电压转换器的输出端耦合为例进行说明。
具体的,当该装置的类型为供电设备时,控制电路CTRL可以控制第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态,并检测该正反插接口的状态、检测所连接设备类型、控制第一收发器TR1和第二收发器TR2的收发状态、以及调节该DC/DC电压转换器的输出电压等。其中,关于检测该正反插接口的状态、检测所连接设备类型、控制第一收发器TR1和第二收发器TR2的收发状态、以及调节该DC/DC电压转换器的输出电压的相关描述,与上述第二种的相关描述一致,具体可以参见上述第二种的描述,本申请实施例在此不再赘述。
需要说明的是,当该装置为供电设备中的电源适配器时,该正反插接口中的控制电路CTRL可以在上电后,将第一选择开关电路SW1和第二选择开关电路SW2固定为上拉状态、以及控制开关SW0闭合等。此外,当该装置为供电设备中的电源适配器时,该正反插接口中可以不包括高速数据收发通道。
为便于理解,下面分别以具有该正反插接口的设备A和设备B通过线缆互连为例,对本申请实施例提供的技术方案进行举例说明。其中,设备A可以为供电设备,设备B可以为受电设备或者供电设备;反之,设备B可以为供电设备,设备A可以为受电设备或者供电设备。
图6a示出了一种设备A和设备B处于正插状态的连接示意图。其中,设备A与设备B处于正插状态具体是指:设备A的第一管脚SL1与设备B的第一管脚SL1相耦合、设备A的第二管脚SL2与设备B的第二管脚SL2相耦合。进一步的,设备A与设备B处于正插状态时,设备A中的第一选择开关电路SW1和第二选择开关电路SW2可以均处于上拉状态,设备B中的第一选择开关电路SW1可以处于下拉状态、第二选择开关电路SW2可以处于悬空状态(此时设备B可以为供电设备),或者设备B中的第一选择开关电路SW1和第二选择开关电路SW2可以均处于浮空状态(此时设备B可以为受电设备)。图6a中以设备B中的第一选择开关电路SW1处于下拉状态、第二选择开关电路SW2处于悬空状态为例进行说明。
图6b示出了一种设备A和设备B处于反插状态的连接示意图。其中,设备A与设备B处于反插状态具体是指:设备A的第一管脚SL1与设备B的第二管脚SL2相耦合、设备A的第二管脚SL2与设备B的第一管脚SL1相耦合。设备A与设备B处于反插状态时,设备A中的第一选择开关电路SW1和第二选择开关电路SW2可以均处于上拉状态,设备B中的第一选择开关电路SW1可以处于下拉状态、第二选择开关电路SW2可以处于悬空状态(此时设备B可以为供电设备,图6b中以此为例进行说明),或者设备B中的第一选择开关电路SW1和第二选择开关电路SW2可以均处于浮空状态(此时设备B可以为受电设备)。
图7a示出了一种设备A使能第一收发器TR1的示意图。其中,当设备A与设备 B连接时,若设备A中的第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态且处于正插状态时,则设备A中的控制电路CTRL向第一收发器TR1中的第一发送器TX1发送有效的第一使能信号EN1(通过加粗线表示),以将第一收发器TR1设置为发送状态。图7a中仅示出了设备B的部分结构。
图7b示出了一种设备A使能第二收发器TR2的示意图。其中,当设备A与设备B连接时,若设备A中的第一选择开关电路SW1处于下拉状态、第二选择开关处于悬空状态,则设备A中的控制电路CTRL向第二收发器TR2中的第二发送器TX2发送有效的第二使能信号EN2(通过加粗线表示),以将第二收发器TR2设置为发送状态。图7b中未示出设备B的结构。
需要说明的是,上述图6a-图7b仅示出设备A和设备B中的部分结构,未示出电压转换器(比如,AC/DC电压转换器或者DC/DC电压转换器)、开关SW0、和/或高速数据收发通道等。
图8示出了一种供电设备A和受电设备B的连接示意图,该供电设备A可以为非电源适配器的供电设备。具体的,该供电设备A中还可以包括DC/DC电压转换器和开关SW0,该受电设备B中还可以包括DC/DC电压转换器,该供电设备A和该受电设备B中的正反插接口对应的连接器和线缆中还可以包括电源线、高速数据通道和接地线GND。其中,该供电设备A中的第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态,在该供电设备A和该受电设备B处于正插状态时,该供电设备A中的控制电路CTRL可以向自身的第一收发器TR1中的第一发送器TX1发送通过有效的第一使能信号EN1(通过加粗线表示)以将其设置为发送状态。该受电设备B中的第一选择开关电路SW1和第二选择开关电路SW2均处于浮空状态,该受电设备B中的控制电路CTRL可以向自身的第二收发器TR2中的第二发送器TX2发送有效的第二使能信号EN2(通过加粗线表示)以将其设置为发送状态。
图9示出了一种供电设备A和供电设备B的连接示意图,该供电设备A和该供电设备B均为非电源适配器的供电设备。具体的,该供电设备A中还可以包括DC/DC电压转换器和开关SW0,该供电设备B中也还可以包括DC/DC电压转换器和开关SW0,该供电设备A和该供电设备B中的正反插接口对应的连接器和线缆中还可以包括高速数据通道和接地线GND。其中,在该供电设备A和该供电设备B在上电之后且为相互连接的情况下,各自的第一选择开关电路SW1和第二选择开关电路SW2可以分别在第二端2和第三端3之间切换;当该供电设备A和该供电设备B连接之后,则两个设备中的一个设备的第一选择开关电路SW1和第二选择开关电路SW2可以固定处于上拉状态,另一个设备的第一选择开关电路SW1固定处于下拉状态、第二选择开关电路SW2固定处于悬空状态。以该供电设备A中的第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态为例,在该供电设备A和该供电设备B处于正插状态时,该供电设备A中的控制电路CTRL可以向自身的第一收发器TR1中的第一发送器TX1发送有效的第一使能信号EN1(通过加粗线表示)以将其设置为发送状态。以供电设备B中的第一选择开关电路SW1处于下拉状态、第二选择开关电路SW2处于悬空状态为例,该供电设备A中的控制电路CTRL可以向自身的第二收发器TR2中的第二发送器TX2发送有效的第二使能信号EN2(通过加粗线表示)以将其设置为 发送状态。
需要说明的是,在图9中仅以该供电设备A中的两个选择开关电路处于上拉状态,该供电设备B中的第一选择开关电路SW1处于下拉状态、第二选择开关电路SW2处于悬空状态为例进行说明,在实际应用中也可以是,该供电设备A中的第一选择开关电路SW1处于下拉状态、第二选择开关电路SW2处于悬空状态,该供电设备B中的两个选择开关电路均处于上拉状态。
图10示出了一种电源适配器A和受电设备B的连接示意图。具体的,该电源适配器A中还可以包括AC/DC电压转换器、DC/DC电压转换器和开关SW0,该受电设备B还包括DC/DC电压转换器,该电源适配器A和该受电设备B中的正反插接口对应的连接器和线缆中还包括接地线GND。其中,该电源适配器A中的第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态,在该电源适配器A和该受电设备B处于正插状态时,该电源适配器A中的控制电路CTRL可以向自身的第一收发器TR1中的第一发送器TX1发送通过有效的第一使能信号EN1(通过加粗线表示)以将其设置为发送状态。该受电设备B中的第一选择开关电路SW1和第二选择开关电路SW2可以均处于浮空状态,该受电设备B中的控制电路CTRL可以向自身的第二收发器TR2中的第二发送器TX2发送有效的第二使能信号EN2(通过加粗线表示)以将其设置为发送状态。
需要说明的是,上述图8-图10均以设备A(包括供电设备A和电源适配器A)和设备B处于正插状态为例进行说明,当设备A和设备B处于反插状态时,其不同之处仅在于,设备A使能自身的第二收发器TR2为发送状态。
在本申请实施例提供的具有正反插接口的装置中,无论该装置为非电源适配器的供电设备还是电源适配器,均可以通过下述检测方法来检测该正反插接口的状态、控制第一收发器TR1或第二收发器TR2的收发状态、和/或控制DC/DC电压转换器的输出电压及开关SW0的状态等。
图11为本申请实施例提供的一种检测方法的流程示意图,该方法包括以下步骤:S01.在设备供电后,控制电路CTRL根据预设的时序切换第一选择开关电路SW1和第二选择开关电路SW2同时在上拉状态、及下拉状态和悬空状态之间切换(若该装置为电源适配器,则控制电路CTRL可以控制第一选择开关电路SW1和第二选择开关电路SW2固定为上拉状态),同时获取第一节点A的电压V A和第二节点B的电压V B;S02.第一节点A的电压V A或第二节点B的电压V B为V PM(V PM处于预设电压范围)并保持稳定;S03.确定正反插接口为插入状态;S04.判断第一选择开关电路SW1和第二选择开关电路SW2的状态,若SW1处于下拉状态且SW2处于悬空状态则执行S05a,若同时处于上拉状态则执行S05b;S05a.若SW1处于下拉状态且SW2处于悬空状态,设置第二收发器TR2为发送状态,此时不判断正插或反插状态;S05b.若同时处于上拉状态,确定正插或反插状态;S06.根据正插或反插状态控制第一收发器TR1或第二收发器TR2的收发状态,若处于正插状态设置第一收发器TR1为发送状态,若处于反插状态设置第二收发器TR2为发送状态;S07.根据V PM的大小判断所连接设备的类型,进而确定是否需要供电,若需要供电则执行S08,若不需要供电则结束(即不需要控制DC/DC电压转换器,开关SW0可以为断开状态);S08.若需要供电, 调节DC/DC电压转换器输出对应的输出电压并闭合开关SW0。其中,S06和S07可以不分先后顺序,图11中以S06位于S07之前为例进行说明。
需要说明的是,上述图11中关于步骤S01-S08的详细描述可以参见上文中的装置的相关描述,本申请实施例在此不再赘述。
在本申请实施例中,该正反插接口可实现全双工传输,从而大大提高辅助通道的传输效率,大大缩短了设备之间信息交互的时间,同时对于高速数据的链路训练、状态管理和控制等都有显著帮助。此外,本申请提供的供电设备还可以为其他需要供电的设备进行供电,从而可以节省设备的供电接口,同时通过该正反插接口可同时实现数据传输和供电的能力,且该供电能力可以根据需求进行调节或设置,这样可以满足一些大功耗设备的供电,进而使得供电成本大幅度降低。
图12为本申请实施例提供的一种正反插接口的检测方法的流程示意图,该方法可以应用于上文所提供的具有正反插接口的装置中,该装置可以为电子设备或者应用于上述电子设备的芯片等,该方法包括以下几个步骤。
S301:控制电路CTRL控制第一选择开关电路SW1的切换以改变第一节点A的电参数,以及控制第二选择开关电路SW2的切换以改变第二节点B的电参数,第一选择开关电路SW1和第二选择开关电路SW2的切换状态一致。
具体的,控制电路CTRL可以控制第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第二端2连通、以及控制第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第二端2连通;和/或,控制电路CTRL可以控制第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第三端3连通、以及控制第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第三端3连通。
示例性的,当该装置为非电源适配器的供电设备时,控制电路CTRL可以根据一定时序控制第一选择开关电路SW1的第一端1和第二选择开关电路SW2的第一端1分别与各自的第二端2与第三端3连通。当该装置为电源适配器时,控制电路CTRL可以根据控制第一选择开关电路SW1的第一端1和第二选择开关电路SW2的第一端1分别与各自的第二端2连通。当该装置为受电设备时,该装置中的第一选择开关电路SW1的第一端1和第二选择开关电路SW2的第一端1分别与各自默认的第四端4连通。
S302:控制电路CTRL基于第一节点A的电参数或第二节点B的电参数确定正反插接口的状态,该电参数可以包括电压或者电流。
具体的,当该装置为供电设备时,控制电路CTRL可以实时获取第一节点A的电参数和第二节点B的电参数;根据第一节点A的电参数或第二节点B的电参数确定该正反插接口的状态,该正反插接口的状态可以包括是否插入、或者在插入状态下的正插或者反插状态等。当该装置为受电设备时,该装置无需检测该正反插接口的状态。
在一种可能的实施例中,当该电参数为电压时,控制电路CTRL基于第一节点A的电参数或第二节点B的电参数确定正反插接口的状态可以包括:若第一节点A的电压或第二节点B的电压处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于插入状态;若第一节点的电压或者第二节点的电压从该预设电压范围变换为上拉电压或下拉电压且持续时间大于第二预设时间,确定该正反插接口被拔出;若 第一节点A的电压或第二节点B的电压在上拉电压或者下拉电压之间切换,确定该正反插接口处于未插入状态。
示例性的,如图13所示,控制电路CTRL可以通过以下步骤来检测该正反插接口的插入和拔出状态。具体步骤包括:S11.监测第一节点A的电压V A或第二节点B的电压V B;S12.确定第一节点A的电压V A或第二节点B的电压V B出现V PM并保持稳定,V PM处于预设电压范围;S13.确定该正反插接口处于插入状态;S14.继续监测第一节点A的电压V A或第二节点B的电压V B;S15.确定第一节点A的电压V A或第二节点B的电压V B从V PM变换为上拉电压或者下拉电压并保持稳定;S16.确定该正反插接口被拔出。
在另一种可能的实施例中,当该正反插接口处于插入状态时,控制电路CTRL还可以基于第一节点A的电参数或第二节点B的电参数确定正反插接口的正插状态或者反插状态。具体的,当该电参数为电压时,若第一节点A的电压V A处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于正插状态;若第二节点B的电压V B处于预设电压范围且持续时间大于第一预设时间,确定该正反插接口处于反插状态。
示例性的,在该正反插接口处于插入状态时,如图14所示,控制电路CTRL可以通过以下步骤来检测该正反插接口的正插状态和反插状态。具体步骤包括:S21.判断第一选择开关电路SW1和第二选择开关电路SW2的状态,若第一选择开关电路SW1处于下拉状态且第二选择开关电路SW2处于悬空状态则结束(即无法检测正插或反插),若第一选择开关电路SW1和第二选择开关电路SW2均处于上拉状态,则执行S22;S22.判断第一节点A的电压V A和第二节点B的电压V B的状态;S23a.若第一节点A的电压V A等于V PM、第二节点B的电压V B等于上拉电压V PH,确定处于正插状态;S23b.若第一节点A的电压V A等于V PH、第二节点B的电压V B等于上拉电压V PM,确定处于反插状态。其中,V PM处于上述预设电压范围。
可选的,该方法还包括S303:控制电路CTRL基于第一节点A的电参数或第二节点B的电参数控制第一收发器TR1和第二收发器TR2的收发状态。
在一种可能的实施例中,当该装置为供电设备,且在第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第二端2连通,第二选择开关电路SW2的第一端1与第二选择开关电路SW2的第二端2连通的情况下:若该正反插接口处于正插状态,控制电路CTRL可以控制第一收发器TR1为发送状态,第二收发器TR2可以为默认的接收状态;若该正反插接口处于反插状态,控制电路CTRL可以控制第二收发器TR2为发送状态,第一收发器TR1可以为默认的接收状态。示例性的,如图14所示,在控制电路CTRL确定该正反插接口的正插状态或者反插状态时,控制电路CTRL控制第一收发器TR1和第二收发器TR2的收发状态的步骤可以包括:S24a.该正反插接口处于正插状态,控制电路CTRL使能第一收发器TR1中的第一发送器TX1,以将第一收发器TR1设置为发送状态;S24b.该正反插接口处于反插状态,控制电路CTRL使能第二收发器TR2中的第二发送器TX2,以将第二收发器TR2设置为发送状态。
在另一种可能的实施例中,当该装置为供电设备,且第一选择开关电路SW1的第一端1与第一选择开关电路SW1的第三端3连通,第二选择开关电路SW2的第一端 1与第二选择开关电路SW2的第三端3连通时,控制电路CTRL可以控制第二收发器TR2为发送状态,第一收发器TR1可以为默认的接收状态。此外,当该装置为受电设备时,控制电路CTRL可以控制第二收发器TR2为发送状态,第一收发器TR1可以为默认的接收状态。
需要说明的是,上述方法实施例中涉及的各个细节的详细描述可以参照上文提供的装置实施例中的阐述,即上述装置实施例中的内容均可援引到该方法实施例中,本申请实施例在此不再赘述。
在本申请实施例中,该正反插接口具有两个独立的辅助通道,这两个辅助通道中第一选择开关电路SW1和第二选择开关电路SW2的结构不对称,即这两个辅助通道为非对称设置,这样会使得该正反插接口在插入状态下的第一节点A的电参数(比如,电压或电流等)和第二节点B的电参数不同,从而可以有效区分出该正反插接口的正插和反插。此外,这种非对称设置可以使得该正反插接口中的这两个辅助通道通过线缆中的两根导线分别与对端设备接口中的两个辅助通道连接,这样在插入状态下这两个辅助通道均处于连通状态,即这两个辅助通道均可同时用于传输信息,从而在插入状态下可以基于这两个辅助通道建立全双工传输路径,进而提高辅助通道的传输效率。
在本申请的另一实施例中,还提供一种供电系统,该供电系统可以上文所提供的任一种具有正反插接口的装置,该装置具体可以为上文中的供电设备或电源适配器,关于该装置的具体描述可以参见上文所提供的装置实施例中的阐述。
在本申请的另一实施例中,还提供一种通信系统,该通信系统可以包括第一设备和第二设备,第一设备和第二设备中的至少一个设备包括上文所提供的任一种具有正反插接口的装置,该装置的具体描述可以参见上文所提供的装置实施例中的阐述。
在本申请的另一实施例中,还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当设备的至少一个处理器执行该指令时,使得该设备执行本文所提供的正反插接口检测方法中的一个或者多个步骤。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施本文所提供的正反插接口检测方法中的一个或者多个步骤。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种具有正反插接口的装置,其特征在于,所述正反插接口包括第一辅助通道、第二辅助通道和控制电路;其中,
    所述第一辅助通道,包括:第一选择开关电路,所述第一选择开关电路耦合至第一节点;
    所述第二辅助通道,包括:第二选择开关电路,所述第二选择开关电路耦合至第二节点,所述第二选择开关电路和所述第一选择开关电路的结构不对称;
    所述控制电路,用于控制所述第一选择开关电路的切换以改变所述第一节点的电参数,以及控制所述第二选择开关电路的切换以改变所述第二节点的所述电参数,所述第一选择开关电路和所述第二选择开关电路的切换状态一致。
  2. 根据权利要求1所述的装置,其特征在于,所述第一辅助通道还包括与所述第一节点耦合的第一收发器,所述第二辅助通道还包括与所述第二节点耦合的第二收发器,所述控制电路还用于:
    根据所述第一节点的所述电参数或所述第二节点的所述电参数,控制所述第一收发器和所述第二收发器的收发状态,所述电参数包括电压或电流。
  3. 根据权利要求1或2所述的装置,其特征在于,所述控制电路还用于:
    根据所述第一节点的所述电参数或所述第二节点的所述电参数,确定所述正反插接口的状态,所述电参数包括电压或电流。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,所述第二选择开关电路和所述第一选择开关电路的结构不对称,包括:
    所述第一选择开关电路的第一端与所述第一节点耦合,所述第一选择开关电路的第二端通过第一上拉电阻与第一电压端耦合,所述第一选择开关电路的第三端通过第一下拉电阻与接地端耦合;
    所述第二选择开关电路的第一端与所述第二节点耦合,所述第二选择开关电路的第二端通过第二上拉电阻与所述第一电压端耦合,所述第二选择开关电路的第三端悬空。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述装置还包括:
    检测电路,用于检测所述第一节点的电参数和所述第二节点的电参数并发送给所述控制电路。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,所述装置还包括:直流/直流电压转换器、以及耦合在所述第一节点与所述接地端之间的标记电阻;
    其中,所述直流/直流电压转换器的输入端用于接收输入的直流电压,所述直流电压的电压值与所述标记电阻的阻值有关,所述直流/直流电压转换器的输出端用于为所述装置供电。
  7. 根据权利要求6所述的装置,其特征在于,所述第一选择开关电路的第一端与所述第一选择开关电路的第四端默认连通,所述第二选择开关电路的第一端默认与所述第二选择开关电路的第四端默认连通,所述第一选择开关电路的第四端与所述第二选择开关电路的第四端均处于浮空状态,所述控制电路还用于:
    控制所述第二辅助通道中的第二收发器为发送状态。
  8. 根据权利要求1-5任一项所述的装置,其特征在于,所述装置还包括:直流/直流电压转换器和开关,所述直流/直流电压转换器的输入端用于接收第一直流电压,所述直流/直流电压转换器的输出端与所述开关的第一端耦合,所述开关的第二端用于输出第二直流电压。
  9. 根据权利要求1-5或8中的任一项所述的装置,其特征在于,所述装置还包括:交流/直流电压转换器,所述交流/直流电压转换器的输入端用于接收交流电压,所述交流/直流电压转换器的输出端用于输出第一直流电压。
  10. 根据权利要求8或9所述的装置,其特征在于,所述控制电路还用于:
    若所述第一节点的电压或所述第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定所述正反插接口处于插入状态;
    若所述第一节点的电压或所述第二节点的电压从预设电压范围切换为上拉电压或者下拉电压,确定所述正反插接口被拔出;
    若所述第一节点的电压或所述第二节点的电压在上拉电压或者下拉电压之间切换,确定所述正反插接口处于未插入状态。
  11. 根据权利要求8-10任一项所述的装置,其特征在于,所述第一选择开关电路的第一端与所述第一选择开关电路的第二端连通且所述第二选择开关电路的第一端与所述第二选择开关电路的第二端连通,所述控制电路还用于:
    若所述第一节点的电压处于预设电压范围且持续时间大于第一预设时间,确定所述正反插接口处于正插状态;
    若所述第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定所述正反插接口处于反插状态。
  12. 根据权利要求11所述的装置,其特征在于,所述控制电路还用于:
    当所述正反插接口处于所述正插状态时,控制所述第一辅助通道中的第一收发器为发送状态;
    当所述正反插接口处于所述反插状态时,控制所述第二辅助通道中的第二收发器为发送状态。
  13. 根据权利要求8-12任一项所述的装置,其特征在于,所述控制电路还用于:
    当所述正反插接口处于正插状态时,根据所述第一节点的电压,调节所述直流/直流电压转换器的输出电压;
    当所述正反插接口处于反插状态时,根据所述第二节点的电压,调节所述直流/直流电压转换器的输出电压。
  14. 根据权利要求13所述的装置,其特征在于,所述控制电路还用于:
    从预设电压关系中获取第一标记电压对应的第一输出电压,所述第一标记电压为所述第一节点的电压或所述第二节点的电压,所述预设电压关系用于指示多个标记电压与多个输出电压之间的对应关系;
    调节所述直流/直流电压转换器的输出电压等于所述第一输出电压。
  15. 根据权利要求8-14任一项所述的装置,其特征在于,所述控制电路还用于:
    根据所述第一节点的电压或所述第二节点的电压,确定所述正反插接口所连接设 备的类型,所述类型为受电设备或者供电设备。
  16. 根据权利要求8-10任一项所述的装置,其特征在于,所述第一选择开关电路的第一端与所述第一选择开关电路的第三端连通,且所述第二选择开关电路的第一端与所述第二选择开关电路的第三端连通,所述控制电路还用于:
    控制所述第二收发器为发送状态。
  17. 一种正反插接口的检测方法,其特征在于,所述正反插接口包括第一辅助通道、第二辅助通道和控制电路,所述第一辅助通道包括第一选择开关电路,所述第二辅助通道包括第二选择开关电路,所述第一选择开关电路和所述第二选择开关电路的结构不对称,所述第一选择开关电路耦合至第一节点,所述第二选择开关电路耦合至第二节点,所述方法包括:
    所述控制电路控制所述第一选择开关电路的切换以改变所述第一节点的电参数,以及控制所述第二选择开关电路的切换以改变所述第二节点的所述电参数,所述第一选择开关电路和所述第二选择开关电路的切换状态一致;
    基于所述第一节点的所述电参数或所述第二节点的所述电参数确定所述正反插接口的状态。
  18. 根据权利要求17所述的方法,其特征在于,所述第一辅助通道还包括与所述第一节点耦合的第一收发器,所述第二辅助通道还包括与所述第二节点耦合的第二收发器,所述方法还包括:
    根据所述第一节点的所述电参数或所述第二节点的所述电参数,控制所述第一收发器和所述第二收发器的收发状态,所述电参数包括电压或电流。
  19. 根据权利要求17或18所述的方法,其特征在于,当所述电参数包括电压时,所述基于所述第一节点的所述电参数或所述第二节点的所述电参数确定所述正反插接口的状态,包括:
    若所述第一节点的电压或所述第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定所述正反插接口处于插入状态;
    若所述第一节点的电压或所述第二节点的电压从所述预设电压范围变换为上拉电压或者下拉电压,确定所述正反插接口处于拔出状态;
    若所述第一节点的电压或所述第二节点的电压在上拉电压或者下拉电压之间切换,确定所述正反插接口处于未插入状态。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述第一选择开关电路和所述第二选择开关电路的结构不对称,包括:
    所述第一选择开关电路的第一端与所述第一节点耦合,所述第一选择开关电路的第二端通过第一上拉电阻与第一电压端耦合,所述第一选择开关电路的第三端通过第一下拉电阻与接地端耦合;
    所述第二选择开关电路的第一端与所述第二节点耦合,所述第二选择开关电路的第二端通过第二上拉电阻与所述第一电压端耦合,所述第二选择开关电路的第三端悬空。
  21. 根据权利要求20所述的方法,其特征在于,所述第一选择开关电路的第一端与所述第一选择开关电路的第三端连通,所述第二选择开关电路的第一端与所述第二 选择开关电路的第三端连通,所述第二辅助通道还包括与所述第二节点耦合的第二收发器,所述方法还包括:
    控制所述第二收发器为发送状态。
  22. 根据权利要求20所述的方法,其特征在于,所述第一选择开关电路的第一端与所述第一选择开关电路的第二端连通且所述第二选择开关电路的第一端与所述第二选择开关电路的第二端连通,所述基于所述第一节点的所述电参数或所述第二节点的所述电参数确定所述正反插接口的状态,还包括:
    若所述第一节点的电压处于预设电压范围且持续时间大于第一预设时间,确定所述正反插接口处于正插状态;
    若所述第二节点的电压处于预设电压范围且持续时间大于第一预设时间,确定所述正反插接口处于反插状态。
  23. 根据权利要求22所述的方法,其特征在于,所述第一辅助通道还包括与所述第一节点耦合的第一收发器,所述第二辅助通道还包括与所述第二节点耦合的第二收发器,所述方法还包括:
    当所述正反插接口处于正插状态时,控制所述第一收发器为发送状态;
    当所述正反插接口处于反插状态时,控制所述第二收发器为发送状态。
  24. 根据权利要求17-23任一项所述的方法,其特征在于,所述装置还包括直流/直流电压转换器,所述直流/直流电压转换器用于将接收的直流电压转换为输出电压,所述方法还包括:
    当所述正反插接口处于正插状态时,根据所述第一节点的电压,调节所述直流/直流电压转换器的输出电压;和/或,
    当所述正反插接口处于反插状态时,根据所述第二节点的电压,调节所述直流/直流电压转换器的输出电压。
  25. 根据权利要求24所述的方法,其特征在于,所述调节所述直流/直流电压转换器的输出电压,包括:
    从预设电压关系中获取第一标记电压对应的第一输出电压,所述第一标记电压为所述第一节点的电压或所述第二节点的电压,所述预设电压关系用于指示多个标记电压与多个输出电压之间的对应关系;
    调节所述直流/直流电压转换器的输出电压等于所述第一输出电压。
  26. 根据权利要求17-25任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一节点的电压或所述第二节点的电压,确定所述正反插接口所连接设备的设备类型,所述设备类型为受电设备或者供电设备。
  27. 一种通信系统,其特征在于,所述通信系统包括第一设备和第二设备,所述第一设备和所述第二设备中的至少一个设备包括权利要求1-16任一项所述的一种具有正反插接口的装置。
PCT/CN2021/074512 2021-01-29 2021-01-29 一种具有正反插接口的装置及检测方法 WO2022160295A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21921897.1A EP4276644A4 (en) 2021-01-29 2021-01-29 APPARATUS WITH DIRECT/REVERSE PLUG INTERFACE AND DETECTION METHOD
CN202180062070.8A CN116134431A (zh) 2021-01-29 2021-01-29 一种具有正反插接口的装置及检测方法
PCT/CN2021/074512 WO2022160295A1 (zh) 2021-01-29 2021-01-29 一种具有正反插接口的装置及检测方法
US18/361,684 US20230376436A1 (en) 2021-01-29 2023-07-28 Apparatus with forward-reverse insertion interface and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074512 WO2022160295A1 (zh) 2021-01-29 2021-01-29 一种具有正反插接口的装置及检测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,684 Continuation US20230376436A1 (en) 2021-01-29 2023-07-28 Apparatus with forward-reverse insertion interface and detection method

Publications (1)

Publication Number Publication Date
WO2022160295A1 true WO2022160295A1 (zh) 2022-08-04

Family

ID=82652914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074512 WO2022160295A1 (zh) 2021-01-29 2021-01-29 一种具有正反插接口的装置及检测方法

Country Status (4)

Country Link
US (1) US20230376436A1 (zh)
EP (1) EP4276644A4 (zh)
CN (1) CN116134431A (zh)
WO (1) WO2022160295A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767091A (zh) * 2013-10-10 2015-07-08 诺基亚公司 在双排连接器中的通信控制引脚
CN106104506A (zh) * 2014-03-13 2016-11-09 诺基亚技术有限公司 用于在usb c型接口中进入附件对接模式的方法、装置和计算机程序产品
US20170344508A1 (en) * 2016-05-26 2017-11-30 Silicon Laboratories Inc. System, USB Type-C Connector And Method To Transmit Encoded Data
CN110990320A (zh) * 2019-12-09 2020-04-10 无锡睿勤科技有限公司 Type-C接口的识别系统
CN111817384A (zh) * 2020-07-14 2020-10-23 维沃移动通信有限公司 数据线和充电设备
CN112100102A (zh) * 2020-11-03 2020-12-18 武汉精测电子集团股份有限公司 接口管理电路、图形信号发生器及usb type-c转接线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767091A (zh) * 2013-10-10 2015-07-08 诺基亚公司 在双排连接器中的通信控制引脚
CN106104506A (zh) * 2014-03-13 2016-11-09 诺基亚技术有限公司 用于在usb c型接口中进入附件对接模式的方法、装置和计算机程序产品
US20170344508A1 (en) * 2016-05-26 2017-11-30 Silicon Laboratories Inc. System, USB Type-C Connector And Method To Transmit Encoded Data
CN110990320A (zh) * 2019-12-09 2020-04-10 无锡睿勤科技有限公司 Type-C接口的识别系统
CN111817384A (zh) * 2020-07-14 2020-10-23 维沃移动通信有限公司 数据线和充电设备
CN112100102A (zh) * 2020-11-03 2020-12-18 武汉精测电子集团股份有限公司 接口管理电路、图形信号发生器及usb type-c转接线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4276644A4 *

Also Published As

Publication number Publication date
CN116134431A (zh) 2023-05-16
US20230376436A1 (en) 2023-11-23
CN116134431A8 (zh) 2023-07-21
EP4276644A4 (en) 2024-03-06
EP4276644A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US10873193B2 (en) Intelligent switch system
US7603570B2 (en) Power delivery over ethernet cables
US9009379B1 (en) Communicating with MIPI-compliant devices using non-MIPI interfaces
CN106021150A (zh) Type-C接口设备、通信系统和通信方法
WO2021258255A1 (zh) 一种双接口切换电路及Type-C集线器
CN101872332B (zh) 一种网络接口和串口通信转换设备及液晶电视调试系统
US9948094B1 (en) Power level switching circuit for a dual port adapter
US20120096286A1 (en) Charging management method, charging control circuit and the host apparatus having the same
TW201327126A (zh) 自動偵測控制裝置及其自動偵測控制方法
WO2022160295A1 (zh) 一种具有正反插接口的装置及检测方法
CN107391410B (zh) 桥接器
CN106101028B (zh) 一种以太网交换机及其受电供电电路
CN107070547B (zh) 一种具有故障监控能力的cpci型千兆以太网装置
CN209842613U (zh) 一种数据传输装置
US20160335212A1 (en) Device for switching between communication modes
US20070042745A1 (en) Wireless communication device
CN209913839U (zh) 供电系统
CN112564741B (zh) 一种利用type C接口传输以太网的系统及方法
CN215219002U (zh) 一种otg设备模式自动识别电路
CN211826943U (zh) 一种通讯控制电路及装置
CN211428499U (zh) 可兼容多种工作模式的接口电路、连接线缆及电子设备
CN209913192U (zh) 网络供电转接装置
CN112882967B (zh) 一种串口转换电路及调试方法
CN213094226U (zh) 一种基于cpci总线的can通讯装置
CN212515793U (zh) 一种usb高速转串口卡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180062070.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021921897

Country of ref document: EP

Effective date: 20230808

NENP Non-entry into the national phase

Ref country code: DE