WO2022158539A1 - Cutting method and device used in said cutting method - Google Patents

Cutting method and device used in said cutting method Download PDF

Info

Publication number
WO2022158539A1
WO2022158539A1 PCT/JP2022/002046 JP2022002046W WO2022158539A1 WO 2022158539 A1 WO2022158539 A1 WO 2022158539A1 JP 2022002046 W JP2022002046 W JP 2022002046W WO 2022158539 A1 WO2022158539 A1 WO 2022158539A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting method
electrode
gas nozzle
current
arc
Prior art date
Application number
PCT/JP2022/002046
Other languages
French (fr)
Japanese (ja)
Inventor
浩 神野
太郎 神野
Original Assignee
オオノ開發株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オオノ開發株式会社 filed Critical オオノ開發株式会社
Publication of WO2022158539A1 publication Critical patent/WO2022158539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means

Definitions

  • the present invention relates to a method of cutting a metal material using a torch that generates arc discharge and an apparatus used in this cutting method.
  • An object of the present invention is to obtain a cutting method capable of suppressing scattering of slag and generation of dust, and an apparatus used in such a cutting method.
  • the present invention provides the following items.
  • (Item 1) A method for cutting a metal member using a TIG torch,
  • the TIG torch includes an electrode for generating an arc and a gas nozzle for discharging inert gas, The cutting method, wherein the current for generating the arc is about 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more.
  • (Item 2) The cutting method according to item 1, wherein the structure of the TIG torch is such that the tip of the electrode protrudes from the tip of the gas nozzle, or the tip of the electrode substantially coincides with the tip of the gas nozzle.
  • the electrode has a diameter of about 2 mm to about 10 mm
  • the gas nozzle has an inner diameter of about 4 mm to about 18 mm.
  • FIG. 1 is a diagram for explaining a cutting method according to Embodiment 1 of the present invention.
  • FIG. 1A is a diagram for explaining the current for arc generation in the cutting method according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining Example 1 of the present invention, showing the result of cutting a stainless steel plate M1 having a thickness of about 30 mm by the cutting method of the present invention.
  • FIG. 3 is a diagram for explaining Example 2 of the present invention, showing the result of cutting a stainless steel plate (SUS304) M2 having a thickness of about 12 mm by the cutting method of the present invention.
  • FIG. 4 is a diagram for explaining Comparative Example 1, and shows a situation in which an attempt was made to cut a stainless steel plate M1' having a thickness of about 30 mm with an arc current of about 350A.
  • the phrase “substantially coincides” in the phrase “the tip of the electrode substantially matches the tip of the gas nozzle” means that the tip of the electrode and the tip of the gas nozzle are at the same axial position, or the tip of the electrode is the tip of the gas nozzle. It is meant to be in a retracted position at a distance of up to about 2 mm relative to the tip position.
  • An object of the present invention is to obtain a cutting method that can suppress scattering of slag and generation of dust
  • a method for cutting a metal material using a TIG torch comprising: A TIG torch includes an electrode for generating an arc and a gas nozzle for discharging an inert gas,
  • TIG torch configuration Therefore, if the cutting method of the present invention uses a TIG torch, the current for generating an arc is about 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more. , and other configurations may be arbitrary.
  • the TIG torch has a structure in which the gas nozzle does not restrict the spread of the arc that moves from the electrode to the metal material as it approaches the metal material.
  • the structure of such a TIG torch has a structure (specifically, a narrowing structure) that restricts the arc transferred from the electrode to the metal material by the gas nozzle so that it does not spread on the metal material side, as in the plasma torch. are different.
  • the structure in which the gas nozzle does not restrict the spread of the arc transferred from the electrode to the metal member as it approaches the metal material may be a structure in which the tip of the electrode protrudes from the tip of the gas nozzle.
  • a structure in which the tip substantially coincides with the tip of the gas nozzle may be used.
  • TIG torch Although such a TIG torch is conventionally well known as being widely used in welding work, its use in cutting work has never been considered.
  • the present inventor anticipates that by adjusting the processing conditions of the TIG torch, the TIG torch, which has conventionally been used only for welding, can be used for cutting, and that the problems in cutting with conventional plasma torches can be solved. found outside.
  • the material to be cut in the cutting method of the present invention can be any material as long as it is a metallic material having conductivity.
  • it may be a stainless steel material such as SUS304, which is used as a machine material, or a non-ferrous metal such as an aluminum alloy.
  • the electrode of the TIG torch contains tungsten. Tungsten alone may be used, or a composite with other materials may be used.
  • the size of the electrode can be arbitrarily selected depending on the cutting conditions (size of the cut portion, etc.).
  • the diameter of the electrodes is about 2 mm or greater, preferably about 2 mm to about 10 mm. In one embodiment, it is about 3 mm, although the invention is not so limited. If the diameter of the electrode is too small, the current that causes the arc will heat up and damage the electrode, and if the diameter of the electrode is too large, it will unnecessarily increase material costs or increase the size of the structure of the torch. becomes.
  • the inner diameter size of the gas nozzle can be arbitrarily selected depending on the cutting conditions (size of electrode, size of cutting portion, cutting speed, etc.).
  • the gap between the outer diameter of the electrode and the inner diameter of the gas nozzle is about 1 mm to about 4 mm (ie, about 2 mm to about 8 mm in diameter), more preferably about 2 mm to about 3 mm (ie, about 4 mm to about 6 mm in diameter).
  • the inner diameter size of the gas nozzle is about 4 mm to 18 mm.
  • the inner diameter of the gas nozzle is about 8 mm for an electrode of about 3 mm diameter.
  • the angle of the tip of the electrode can be arbitrary, preferably about 60° to about 90°.
  • a sharp tip angle narrows the arc and allows for precision cutting, but sharper angles than about 60° can lead to faster electrode tip damage.
  • the angle of the tip obtuse By making the angle of the tip obtuse, the arc spreads and it becomes possible to perform a wide range of processing efficiently. can be difficult.
  • the constituent material of the gas nozzle can be arbitrary.
  • the gas nozzle may be made of an insulating material such as ceramic, or it may be made of a highly corrosion-resistant conductive material. In one embodiment, the gas nozzle is ceramic.
  • any type of inert gas may be used.
  • the inert gas may be argon gas or helium gas.
  • the inert gas is argon gas.
  • the cutting method of the present invention is characterized in that the current input to the electrode of the TIG torch is about 400 A or more, and the discharge pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more.
  • the current is about 150 A to about 300 A and the gas discharge pressure is about 2 kg/cm 2 to about 3 kg/cm 2 .
  • the current for generating the arc is approximately 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is approximately 5 kg/cm 2 or more.
  • the current is about 500 A or less and/or the inert gas discharge pressure is about 10 kg/cm 2 or less. obtain. If the electric current and/or the inert gas supply pressure are too high, the energy density may increase, which may promote slag scattering and dust generation.
  • the current may be greater than or equal to about 400A and less than or equal to about 500A.
  • the gas discharge pressure may be about 5 kg/cm 2 or more and about 10 kg/cm 2 or less.
  • the form of power (fusing power) for generating an arc and fusing the material to be cut can be arbitrary.
  • it may be DC power (DC current W1) (see FIG. 1A(a)) or AC power (AC current W2) (see FIG. 1A(b)).
  • the arc is generated with DC power.
  • Generating an arc with DC power may be preferable from the viewpoint of arc stability.
  • the arc is generated with AC power.
  • Generating an arc with AC power may be preferable because the configuration of the power source that generates the power is simplified.
  • arcing may be controlled at low frequency (eg, about 5 Hz to about 50 Hz, more specifically about 20 Hz to about 40 Hz) or medium frequency (eg, about 50 Hz to about 300 Hz, more specifically about 100 Hz to about 200 Hz). ) (that is, the fusing power (fusing current Wc3) shown in FIG. 1A(c)).
  • low frequency eg, about 5 Hz to about 50 Hz, more specifically about 20 Hz to about 40 Hz
  • medium frequency eg, about 50 Hz to about 300 Hz, more specifically about 100 Hz to about 200 Hz.
  • the fusing current Wc3 is obtained by superimposing the base current Bc as a DC component and the pulse current Pc.
  • the current value is the sum of the pulse height Ph of the current Pc and the current value A1a of the base current Bc.
  • a specific pulse height Ph of the pulse current Pc ranges from about 30% to about 80% of the current value A1a of the base current Bc, more specifically from about 40% to about 40% of the current value A1a of the base current Bc. Included in the range of 70%.
  • the discharge amount of the inert gas is not limited, it is preferably about 10 L/min or more, preferably about 20 L/min or more.
  • the discharge rate of the inert gas is preferably about 10 L/min or more, it is possible to prevent the member to be cut from being oxidized.
  • the discharge rate of the inert gas is set to about 20 L/min or more, it is possible to obtain the effect of flying (moving) the molten pool and/or the effect of efficiently cooling the periphery of the molten pool.
  • the cutting method of the present invention includes the step of cutting a metal material using a TIG torch, the torch including an electrode and a gas nozzle, and a current of about 400 A or more for generating an arc, from the gas nozzle.
  • the discharge pressure of the discharged inert gas is not particularly limited as long as it is about 5 kg/cm 2 or more.
  • FIG. 1 is a diagram for explaining a cutting method according to Embodiment 1 of the present invention
  • FIG. 1(a) shows how a metal material (high-pressure pipe) M is cut using a TIG welding device.
  • FIG. 1(b) is a sectional view taken along the line XX of FIG. 1(a).
  • FIG. 1A is a diagram for explaining the form of fusing power (fusing current) for arc generation in the cutting method according to Embodiment 1 of the present invention.
  • FIG. 1A(b) shows a fusing current Wc2 which is an alternating current
  • FIG. 1A(c) shows a fusing current Wc3 including a pulse current.
  • the TIG torch 10 has a torch body 10a, a gas nozzle 12 attached to the tip of the torch body 10a, and an electrode 11 attached to the torch body 10a so as to be accommodated in the gas nozzle 12. .
  • the TIG torch 10 has a TIG torch unique structure in which the gas nozzle 12 does not restrict the spread of the arc A moving from the electrode 11 to the metal member M as it approaches the metal material M. Specifically, this unique structure of the TIG torch is realized by aligning the tip of the electrode 11 with the tip of the gas nozzle 12 (see FIG. 1(b)).
  • the structure unique to the TIG torch is not limited to the arrangement of the electrode 11 and the gas nozzle 12 described above, and can be realized by aligning the tip of the electrode 11 with the tip of the gas nozzle 12.
  • the electrode 11 is a tungsten electrode having a diameter of about 2 mm to about 10 mm (for example, about 3 mm) made of tungsten
  • the gas nozzle 12 is a cylindrical body made of a ceramic material, and its inner diameter is about It has a value in the range of 8 mm to about 10 mm (for example, about 8 mm).
  • the negative terminal of the power supply 20 is connected to the tungsten electrode 11 of the TIG torch 10, and the positive terminal of the power supply 20 is connected to the high-pressure pipe M.
  • the power supply device 20 supplies a predetermined current (for example, a DC current Wc1 in the range of about 400 A to about 500 A (see FIG. 1A (a))) to the tungsten electrode 11 of the TIG torch 10.
  • the gas supply device 30 supplies a predetermined amount (eg, about 20 L/min) of inert gas (eg, argon) Ga to the gas nozzle 12 of the TIG torch 10 from the gas supply device 30, and discharges it from the gas nozzle 12.
  • the pressure of inert gas Ga is adjusted to a predetermined pressure (for example, approximately 5 Kg/cm 2 ).
  • the operator operates the TIG torch 10 so that the tip of the tungsten electrode 11 approaches the cut portion of the high-pressure pipe M to start arc discharge.
  • the arc discharge starts in the TIG torch 10
  • the arc is applied to the cut portion of the high-pressure pipe M
  • the inert gas Ga supplied from the gas supply device 30 to the gas nozzle 12 of the TIG torch 10 flows through the gas nozzle 12 and the tungsten electrode. 11 and is discharged from the tip of the gas nozzle 12 toward the cut portion of the high-pressure pipe M.
  • the melting of the constituent material of the high-pressure pipe M progresses gradually from the surface side in the thickness direction due to the heat of the arc.
  • the inert gas Ga is discharged from the gas nozzle 12 so as to surround the arc, the metal melted by the arc irradiation is prevented from coming into contact with air.
  • the molten metal is inhibited from combining with oxygen in the air to form oxides.
  • the tip of the electrode 11 is substantially aligned with the tip of the gas nozzle 12.
  • the arc A moving from the electrode 11 spreads as it approaches the metal material M without any obstruction from the end of the electrode. After that, when the molten pool (melting region) expands to a depth corresponding to the thickness of the high-pressure pipe M, a hole is formed in the arc-irradiated portion of the high-pressure pipe M, and the melted material of the high-pressure pipe M drops.
  • the worker operates the TIG torch 10 so that the arc moves in the cutting direction (arrow Cd) along the outer circumference of the high-pressure pipe M to cut the outer wall of the high-pressure pipe M.
  • the arc moves in the cutting direction (arrow Cd) along the outer circumference of the high-pressure pipe M to cut the outer wall of the high-pressure pipe M.
  • the cut portion of the high-pressure pipe M melts and falls, so the slag formed by melting the cut portion is , can be easily recovered as melted-down metal lumps, and for this reason, scattering can also be prevented.
  • the inert gas discharged from the gas nozzle 12 prevents the molten metal from combining with oxygen in the air to form an oxide, thereby suppressing the generation of dust.
  • Example 1 In Example 1, a stainless steel plate M1 of SUS304 having a thickness (wall thickness) of about 30 mm was cut by the method of the present invention.
  • the DC current Wc1 (see FIG. 1A(a)) supplied to the tungsten electrode 11 of the TIG torch 10 was set to about 400 A, and the pressure of the inert gas Ga consisting of argon gas discharged from the gas nozzle 12 was set to about 5 kg/cm 2 .
  • the tungsten electrode 11 one having a diameter of about 3 mm was used, and as the gas nozzle 12, a ceramic one having an inner diameter of about 10 mm was used.
  • the supply amount of the inert gas Ga supplied to the gas nozzle 12 was about 20 L/min.
  • FIG. 2 is a photograph showing the result of cutting the stainless steel plate M1 by the cutting method of the present invention. As shown in FIG. 2, when the TIG torch 10 was used to cut the SUS304 stainless steel plate M1 under the above conditions, a sufficiently large molten pool was formed in the arc irradiated portion, and good cutting was performed. I know you are.
  • the TIG torch 10 successfully fuses the stainless steel plate M1 of SUS304 with a thickness of about 30 mm into two pieces to form the penetrating portion S1.
  • Example 2 A SUS304 stainless steel plate M2 having a thickness of about 12 mm was cut by the cutting method of the present invention.
  • the DC current Wc1 (see FIG. 1A(a)) supplied to the tungsten electrode 11 of the TIG torch 10 was set to about 400 A, and the pressure of the inert gas Ga consisting of argon gas discharged from the gas nozzle 12 was set to about 5 kg/cm 2 .
  • the tungsten electrode 11 one having a diameter of about 3 mm was used, and as the gas nozzle 12, a ceramic one having an inner diameter of about 10 mm was used.
  • the supply amount of the inert gas Ga supplied to the gas nozzle 12 was about 20 L/min.
  • Example 3 is a diagram for explaining Example 2 of the present invention, and is a photograph showing the result of cutting a stainless steel plate (SUS304) M2 having a thickness of about 12 mm by the cutting method of the present invention.
  • SUS304 stainless steel plate
  • FIG. 3 in the case of the SUS304 stainless steel plate M2 having a thickness of about 12 mm, the TIG torch 10 easily penetrates the cut portion (S2), and it can be confirmed that the cutting can be performed satisfactorily. rice field.
  • Comparative example 1 In Comparative Example 1, the stainless steel plate was cut under the same conditions as in Example 1, except that the current supplied to the tungsten electrode 11 of the TIG torch 10 was about 350A.
  • Comparative Example 1 As shown in FIG. 4, even if an attempt was made to melt the stainless steel plate M1′ having a thickness of about 30 mm by the heat of the arc, the heat diffusion inside the stainless steel plate M1′ was superior to the heating by the arc. Although the irradiated portion melted locally, a sufficiently large molten pool was not formed, and the depth of the concave portion S3 formed by processing was not deep, and good cutting was not possible.
  • Comparative example 2 In Comparative Example 2, the stainless steel plate was cut under the same conditions as in Example 1, except that the inert gas Ga pressure was about 4 kg/cm 2 .
  • the present invention is useful as it can provide an arc cutting method capable of suppressing slag scattering and dust generation, and an apparatus using such a cutting method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

The problem to be addressed by the present invention is obtaining a cutting method with which the scattering of slag and the creation of dust can be inhibited, as well as obtaining a device with which such a cutting method can be used. The cutting method according to the present invention is a method for cutting a metallic material M using a TIG torch 10, wherein: the torch 10 comprises an electrode 11 that generates an arc K, and a gas nozzle 12 for discharging an inert gas; and the metallic material is cut using an electric current of at least approximately 400 A for generating the arc, and a pressure of the inert gas Ga that is discharged from the gas nozzle 12 of at least approximately 5 kg/cm2.

Description

切断方法およびその切断方法に用いられる装置Cutting method and equipment used for the cutting method
 本発明は、アーク放電を発生するトーチを用いて金属材料を切断する方法およびこの切断方法に用いられる装置に関するものである。 The present invention relates to a method of cutting a metal material using a torch that generates arc discharge and an apparatus used in this cutting method.
 従来から、金属材料を切断する技術としてアーク放電を用いて金属材料の切断を行う技術があり、例えば、特許文献1には、プラズマアークにより被切断材料を溶断するプラズマトーチが開示されている。 Conventionally, there is a technique for cutting metal materials using arc discharge as a technique for cutting metal materials.
特開平7-88657号公報JP-A-7-88657
 ところが、従来のプラズマトーチによる溶断では、スラグ(溶接の際に金属から出てくるカス)が飛散したり、多量の粉塵が発生したりするという問題がある。 However, conventional fusion cutting with a plasma torch has the problem of scattering slag (residue that comes out of the metal during welding) and generating a large amount of dust.
 本発明は、スラグの飛散および粉塵の発生を抑制することができる切断方法およびこのような切断方法に用いられる装置を得ることを目的とする。 An object of the present invention is to obtain a cutting method capable of suppressing scattering of slag and generation of dust, and an apparatus used in such a cutting method.
 本発明は、以下の項目を提供する。
(項目1)
 TIGトーチを用いて金属部材を切断する方法であって、
 前記TIGトーチは、アークを発生させる電極と、不活性ガスを吐出するためのガスノズルとを含み、
 前記アークを発生させるための電流が約400A以上、前記ガスノズルから吐出される前記不活性ガスの圧力が約5kg/cmで以上である、切断方法。
(項目2)
 前記TIGトーチの構造は、前記電極の先端が前記ガスノズルの先端より突出する、または前記電極の先端が前記ガスノズルの先端に略一致する構造である、項目1に記載の切断方法。
(項目3)
 前記不活性ガスの流量は、約20L/min以上である、項目1または2に記載の切断方法。
(項目4)
 前記電流が約500A以下である、項目1~3のいずれか一項に記載の切断方法。
(項目5)
 前記電流はパルス電流である、項目1~4のいずれか一項に記載の切断方法。
(項目6)
 前記電極の直径は、約2mm~約10mmであり、前記ガスノズルの内径は、約4mm~約18mmである、項目1~5のいずれか一項に切断方法。
(項目7)
 前記ガスノズルはセラミックを含む、項目1~6のいずれか一項に切断方法。
(項目8)
 前記電極の先端の角度は約60°~約90°である、項目1~7のいずれか一項に記載の切断方法。
(項目9)
 項目1~8のいずれかに記載の切断方法に用いられる装置であって、
 前記TIGトーチと、
 前記TIGトーチの電極に前記電流を供給する電源装置と、
 前記TIGトーチに不活性ガスを供給するガス供給装置と
 を備えた、装置。
The present invention provides the following items.
(Item 1)
A method for cutting a metal member using a TIG torch,
The TIG torch includes an electrode for generating an arc and a gas nozzle for discharging inert gas,
The cutting method, wherein the current for generating the arc is about 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more.
(Item 2)
The cutting method according to item 1, wherein the structure of the TIG torch is such that the tip of the electrode protrudes from the tip of the gas nozzle, or the tip of the electrode substantially coincides with the tip of the gas nozzle.
(Item 3)
3. The cutting method according to item 1 or 2, wherein the inert gas has a flow rate of about 20 L/min or more.
(Item 4)
4. The cutting method of any one of items 1-3, wherein the current is about 500 A or less.
(Item 5)
5. The cutting method according to any one of items 1 to 4, wherein the current is a pulse current.
(Item 6)
The method of any one of items 1-5, wherein the electrode has a diameter of about 2 mm to about 10 mm, and the gas nozzle has an inner diameter of about 4 mm to about 18 mm.
(Item 7)
7. The method of any one of items 1-6, wherein the gas nozzle comprises a ceramic.
(Item 8)
8. The cutting method according to any one of items 1 to 7, wherein the tip angle of the electrode is about 60° to about 90°.
(Item 9)
A device used in the cutting method according to any one of items 1 to 8,
the TIG torch;
a power supply that supplies the current to the electrode of the TIG torch;
and a gas supply device that supplies an inert gas to the TIG torch.
 本発明によれば、スラグの飛散および粉塵の発生を抑制することができる切断方法およびこのような切断方法に用いられる装置を得ることができる。 According to the present invention, it is possible to obtain a cutting method capable of suppressing scattering of slag and generation of dust, and an apparatus used in such a cutting method.
図1は、本発明の実施形態1による切断方法を説明するための図である。FIG. 1 is a diagram for explaining a cutting method according to Embodiment 1 of the present invention. 図1Aは、本発明の実施形態1による切断方法におけるアーク発生のための電流を説明するための図である。FIG. 1A is a diagram for explaining the current for arc generation in the cutting method according to Embodiment 1 of the present invention. 図2は、本発明の実施例1を説明するための図であり、本発明の切断方法による厚さ約30mmのステンレス鋼板M1を切断した結果を示す。FIG. 2 is a diagram for explaining Example 1 of the present invention, showing the result of cutting a stainless steel plate M1 having a thickness of about 30 mm by the cutting method of the present invention. 図3は、本発明の実施例2を説明するための図であり、本発明の切断方法による厚さ約12mmのステンレス鋼板(SUS304)M2の切断した結果を示す。FIG. 3 is a diagram for explaining Example 2 of the present invention, showing the result of cutting a stainless steel plate (SUS304) M2 having a thickness of about 12 mm by the cutting method of the present invention. 図4は、比較例1を説明するための図であり、アーク電流約350Aで厚さ約30mmのステンレス鋼板M1’の切断を試みた状況を示す。FIG. 4 is a diagram for explaining Comparative Example 1, and shows a situation in which an attempt was made to cut a stainless steel plate M1' having a thickness of about 30 mm with an arc current of about 350A.
 以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 The present invention will be described below. It should be understood that the terms used herein have the meanings commonly used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification (including definitions) will control.
 本明細書において、「約」とは、後に続く数字の±10%の範囲内をいう。 As used herein, "about" means within ±10% of the number that follows.
 本発明書において、電極の先端がガスノズルの先端に略一致するにおける「略一致する」とは、電極の先端とガスノズルの先端との軸方向の位置が同じであるか、電極の先端がガスノズルの先端の位置に対して約2mmまでの距離で後退する位置にあることを意味する。 In the present specification, the phrase “substantially coincides” in the phrase “the tip of the electrode substantially matches the tip of the gas nozzle” means that the tip of the electrode and the tip of the gas nozzle are at the same axial position, or the tip of the electrode is the tip of the gas nozzle. It is meant to be in a retracted position at a distance of up to about 2 mm relative to the tip position.
 本発明は、スラグの飛散および粉塵の発生を抑制することができる切断方法を得ることを課題とし、
 TIGトーチを用いて金属材料を切断する方法であって、
 TIGトーチは、アークを発生させる電極と、不活性ガスを吐出するためのガスノズルとを含み、
 金属材料の切断工程では、アークを発生させるための電流が約400A以上、ガスノズルから吐出される不活性ガスの圧力が、約5kg/cm以上である、方法を提供することにより、上記の課題を解決したものである。
An object of the present invention is to obtain a cutting method that can suppress scattering of slag and generation of dust,
A method for cutting a metal material using a TIG torch, comprising:
A TIG torch includes an electrode for generating an arc and a gas nozzle for discharging an inert gas,
By providing a method in which, in the step of cutting a metal material, the current for generating an arc is about 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more, the above problems are solved. is solved.
 (トーチの構成)
 従って、本発明の切断方法は、TIGトーチを用い、アークを発生させるための電流を約400A以上とし、ガスノズルから吐出される不活性ガスの圧力を約5kg/cm以上とするものであれば、その他の構成は任意であり得る。
(Torch configuration)
Therefore, if the cutting method of the present invention uses a TIG torch, the current for generating an arc is about 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more. , and other configurations may be arbitrary.
 TIGトーチは、電極から金属材料に移行するアークが金属材料に近づくほど広がるのをガスノズルが制限しない構造となっている。このようなTIGトーチの構造は、プラズマトーチにおけるような、電極から金属材料に移行するアークが金属材料側で広がらないようにガスノズルにより制限する構造(具体的には、絞り込む構造)を有するものとは異なるものである。 The TIG torch has a structure in which the gas nozzle does not restrict the spread of the arc that moves from the electrode to the metal material as it approaches the metal material. The structure of such a TIG torch has a structure (specifically, a narrowing structure) that restricts the arc transferred from the electrode to the metal material by the gas nozzle so that it does not spread on the metal material side, as in the plasma torch. are different.
 具体的には、電極から金属部材に移行するアークが金属材料に近いほど広がるのをガスノズルが制限しない構造は、電極の先端がガスノズルの先端より突出する構造であってもよいし、あるいは電極の先端がガスノズルの先端に略一致する構造であってもよい。 Specifically, the structure in which the gas nozzle does not restrict the spread of the arc transferred from the electrode to the metal member as it approaches the metal material may be a structure in which the tip of the electrode protrudes from the tip of the gas nozzle. A structure in which the tip substantially coincides with the tip of the gas nozzle may be used.
 このようなTIGトーチは、従来より、溶接作業において広く使用されるものとして周知のものであるが、これまで切断作業に用いることは一切検討されてこなかった。 Although such a TIG torch is conventionally well known as being widely used in welding work, its use in cutting work has never been considered.
 しかしながら、本発明者は、TIGトーチの加工条件を調整することにより、従来溶接作業にしか用いられなかったTIGトーチを切断作業に使用でき、従来のプラズマトーチによる切断における課題を解決できることを、予想外に発見した。 However, the present inventor anticipates that by adjusting the processing conditions of the TIG torch, the TIG torch, which has conventionally been used only for welding, can be used for cutting, and that the problems in cutting with conventional plasma torches can be solved. found outside.
 本発明の切断方法における被切断材料は、導電性を有する金属材料であれば任意の材料であり得る。例えば、SUS304などの機械材料に使用されるステンレス材料であってもよいし、アルミ合金などの非鉄金属であってもよい。 The material to be cut in the cutting method of the present invention can be any material as long as it is a metallic material having conductivity. For example, it may be a stainless steel material such as SUS304, which is used as a machine material, or a non-ferrous metal such as an aluminum alloy.
 また、本発明において、TIGトーチの電極は、タングステンを含んでいる。タングステン単体であってもよいし、他の材料との複合であってもよい。 Also, in the present invention, the electrode of the TIG torch contains tungsten. Tungsten alone may be used, or a composite with other materials may be used.
 また、電極のサイズは、切断条件(切断箇所の大きさなど)によって任意に選択し得る。例えば、電極の直径は、約2mm以上、好ましくは約2mm~約10mmである。1つの実施形態において、約3mmであるが、本発明はこれに限定されない。電極の直径が小さすぎると、アークを発生させる電流により電極が加熱されて破損する恐れがあり、電極の直径が大きすぎると、トーチの不必要な材料コストの増大あるいは構造の大型化を招くこととなる。 Also, the size of the electrode can be arbitrarily selected depending on the cutting conditions (size of the cut portion, etc.). For example, the diameter of the electrodes is about 2 mm or greater, preferably about 2 mm to about 10 mm. In one embodiment, it is about 3 mm, although the invention is not so limited. If the diameter of the electrode is too small, the current that causes the arc will heat up and damage the electrode, and if the diameter of the electrode is too large, it will unnecessarily increase material costs or increase the size of the structure of the torch. becomes.
 また、ガスノズルの内径サイズは、切断条件(電極のサイズ、切断箇所の大きさ、切断速度など)によって任意に選択し得る。好ましくは、電極の外径とガスノズルの内径との間の隙間が約1mm~約4mm(すなわち直径で約2mm~約8mm)、さらに好ましくは約2mm~約3mm(すなわち直径で約4mm~約6mm)であり得る。例えば、約2mm~約10mmの直径の電極に対して、ガスノズルの内径サイズは、約4mm~18mmである。1つの実施形態において、約3mmの直径の電極に対して、ガスノズルの内径は約8mmである。 In addition, the inner diameter size of the gas nozzle can be arbitrarily selected depending on the cutting conditions (size of electrode, size of cutting portion, cutting speed, etc.). Preferably, the gap between the outer diameter of the electrode and the inner diameter of the gas nozzle is about 1 mm to about 4 mm (ie, about 2 mm to about 8 mm in diameter), more preferably about 2 mm to about 3 mm (ie, about 4 mm to about 6 mm in diameter). ). For example, for electrodes with a diameter of about 2 mm to about 10 mm, the inner diameter size of the gas nozzle is about 4 mm to 18 mm. In one embodiment, the inner diameter of the gas nozzle is about 8 mm for an electrode of about 3 mm diameter.
 電極の先端の角度は任意であり得、好ましくは、約60°~約90°である。先端の角度を鋭角にすることでアークが細くなり、精密な切断が可能となるが、約60°よりも鋭角になると、電極先端部の損傷が速くなり得る。先端の角度を鈍角にすることによりアークが広がり、効率的に広範囲な加工を行うことが可能となるが、約90°よりも鈍角になると、熱が周辺に分散してしまうことにより精密な切断が難しくなり得る。 The angle of the tip of the electrode can be arbitrary, preferably about 60° to about 90°. A sharp tip angle narrows the arc and allows for precision cutting, but sharper angles than about 60° can lead to faster electrode tip damage. By making the angle of the tip obtuse, the arc spreads and it becomes possible to perform a wide range of processing efficiently. can be difficult.
 本発明において、ガスノズルの構成材料は任意であり得る。ガスノズルは、セラミックなどの絶縁性材料で構成されていてもよいし、あるいは、耐腐食性に富んだ導電性材料で構成されていてもよい。1つの実施形態において、ガスノズルはセラミックである。 In the present invention, the constituent material of the gas nozzle can be arbitrary. The gas nozzle may be made of an insulating material such as ceramic, or it may be made of a highly corrosion-resistant conductive material. In one embodiment, the gas nozzle is ceramic.
 本発明において、不活性ガスの種類は任意であり得る。例えば、不活性ガスはアルゴンガスであってもよいし、ヘリウムガスであってもよい、1つの実施形態において、不活性ガスはアルゴンガスである。 In the present invention, any type of inert gas may be used. For example, the inert gas may be argon gas or helium gas. In one embodiment, the inert gas is argon gas.
 本発明の切断方法では、TIGトーチの電極に入力する電流を約400A以上、ガスノズルから吐出される不活性ガスの吐出圧力を約5kg/cm以上とすることを特徴としている。従来より行われているTIGトーチによる溶接作業においては電流が約150A~約300A、ガス吐出圧力が約2kg/cm~約3kg/cmであるのに対して、本発明者は試行錯誤を何度も繰り返した後、溶接時よりも一定程度大きい電流および高いガス吐出圧力とすることで、TIGトーチにおいて効果的に切断可能であることを予想外にはじめて発見した。 The cutting method of the present invention is characterized in that the current input to the electrode of the TIG torch is about 400 A or more, and the discharge pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more. In conventional welding work using a TIG torch, the current is about 150 A to about 300 A and the gas discharge pressure is about 2 kg/cm 2 to about 3 kg/cm 2 . After many iterations, it was unexpectedly discovered for the first time that cutting was possible effectively with a TIG torch by setting the current to a certain extent higher and the gas discharge pressure higher than those for welding.
 (電流および不活性ガスの圧力)
 本発明の切断方法は、アークを発生させるための電流が約400A以上であり、ガスノズルから吐出される不活性ガスの圧力は、約5kg/cm以上である。
(current and inert gas pressure)
In the cutting method of the present invention, the current for generating the arc is approximately 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is approximately 5 kg/cm 2 or more.
 理論に拘束されることを意図しないが、電流が400W未満であると、被切断材料に対してアーク入熱で溶断しようとする作用よりも被切断材料内での熱拡散が勝り、局所的には溶けるが被切断材料を切断することは困難である。それに対して400A以上とすることで、瞬発的に局所加熱が発生し、被切断材料内での熱拡散よりも勝ることで、切断することが可能となる。 Although not intending to be bound by theory, when the current is less than 400 W, heat diffusion within the material to be cut outweighs the action of melting the material to be cut by the arc heat input, resulting in localized melts, but it is difficult to cut the material to be cut. On the other hand, by setting the current to 400 A or more, instantaneous local heating occurs, which overcomes thermal diffusion in the material to be cut, thereby enabling cutting.
 電流および不活性ガスの圧力についての上限は当業者が適宜設定し得るが、典型的には、電流は約500A以下、および/または不活性ガスの吐出圧力は、約10kg/cm以下であり得る。電流および/または不活性ガスの供給圧力が大きすぎると、エネルギー密度が大きくなってスラグの飛散および粉塵の発生が促進される恐れが生じる。好ましくは、電流は、約400A以上約500A以下であり得る。また、ガス吐出圧力は約5kg/cm以上約10kg/cm以下であり得る。 Although the upper limits of the current and inert gas pressure can be appropriately set by those skilled in the art, typically the current is about 500 A or less and/or the inert gas discharge pressure is about 10 kg/cm 2 or less. obtain. If the electric current and/or the inert gas supply pressure are too high, the energy density may increase, which may promote slag scattering and dust generation. Preferably, the current may be greater than or equal to about 400A and less than or equal to about 500A. Also, the gas discharge pressure may be about 5 kg/cm 2 or more and about 10 kg/cm 2 or less.
 また、アークを発生させて被切断材料を溶断するための電力(溶断電力)の形態は任意であり得る。例えば、直流電力(直流電流W1)であってもよいし(図1A(a)参照)、交流電力(交流電流W2)でもあってもよい(図1A(b)参照)。 In addition, the form of power (fusing power) for generating an arc and fusing the material to be cut can be arbitrary. For example, it may be DC power (DC current W1) (see FIG. 1A(a)) or AC power (AC current W2) (see FIG. 1A(b)).
 一つの実施形態においては、アークの発生を直流電力で行う。アークの発生を直流電力で行うことは、アークの安定性の観点から好ましくあり得る。 In one embodiment, the arc is generated with DC power. Generating an arc with DC power may be preferable from the viewpoint of arc stability.
 一つの実施形態において、アークの発生を交流電力で行う。アークの発生を交流電力で行うことは、電力を発生する電源の構成が簡略になるため好ましくあり得る。 In one embodiment, the arc is generated with AC power. Generating an arc with AC power may be preferable because the configuration of the power source that generates the power is simplified.
 さらに、アークの発生を低周波数(例えば、約5Hz~約50Hz、より具体的には約20Hz~約40Hz)または中周波数(例えば、約50Hz~約300Hz、より具体的には約100Hz~約200Hz)のパルス電力(パルス電流)を含む条件(つまり、図1A(c)に示す溶断電力(溶断電流Wc3))で行ってもよい。この場合、被切断材料のうちの溶融した金属が溶融池からはじき出されることで、被切断材料の切断効率が高まることが期待できる。 Further, arcing may be controlled at low frequency (eg, about 5 Hz to about 50 Hz, more specifically about 20 Hz to about 40 Hz) or medium frequency (eg, about 50 Hz to about 300 Hz, more specifically about 100 Hz to about 200 Hz). ) (that is, the fusing power (fusing current Wc3) shown in FIG. 1A(c)). In this case, it can be expected that the cutting efficiency of the material to be cut is increased by ejecting the molten metal of the material to be cut from the molten pool.
 なお、溶断電流Wc3は、図1A(c)に示すように、直流成分としてのベース電流Bcと、パルス電流Pcとを重ね合わせたものであり、この場合の溶断電流Wc3のピーク値は、パルス電流Pcのパルス高さPhとベース電流Bcの電流値A1aとを加えた電流値となる。パルス電流Pcの具体的なパルス高さPhは、ベース電流Bcの電流値A1aの約30%~約80%の範囲、より具体的には、ベース電流Bcの電流値A1aの約40%~約70%の範囲に含まれる。 As shown in FIG. 1A(c), the fusing current Wc3 is obtained by superimposing the base current Bc as a DC component and the pulse current Pc. The current value is the sum of the pulse height Ph of the current Pc and the current value A1a of the base current Bc. A specific pulse height Ph of the pulse current Pc ranges from about 30% to about 80% of the current value A1a of the base current Bc, more specifically from about 40% to about 40% of the current value A1a of the base current Bc. Included in the range of 70%.
 さらに、不活性ガスの吐出量も限定されるものではないが、約10L/min以上であり、好ましくは約20L/min以上であることが好ましい。不活性ガスの吐出量を約10L/min以上とすることにより、被切断部材の酸化を防止することが可能となる。さらに不活性ガスの吐出量を約20L/min以上にすることで、溶融だまりを飛ばす(移動させる)効果および/または溶融だまり周辺を効率的に冷却する効果を得ることが可能となる。 Furthermore, although the discharge amount of the inert gas is not limited, it is preferably about 10 L/min or more, preferably about 20 L/min or more. By setting the discharge rate of the inert gas to about 10 L/min or more, it is possible to prevent the member to be cut from being oxidized. Furthermore, by setting the discharge rate of the inert gas to about 20 L/min or more, it is possible to obtain the effect of flying (moving) the molten pool and/or the effect of efficiently cooling the periphery of the molten pool.
 このように、本発明の切断方法は、TIGトーチを用いて金属材料を切断する工程を含み、トーチは、電極と、ガスノズルとを含み、アークを発生させるための電流が約400A以上、ガスノズルから吐出される不活性ガスの吐出圧力が、約5kg/cm以上であるものであれば、特に限定されるものではない。 Thus, the cutting method of the present invention includes the step of cutting a metal material using a TIG torch, the torch including an electrode and a gas nozzle, and a current of about 400 A or more for generating an arc, from the gas nozzle. The discharge pressure of the discharged inert gas is not particularly limited as long as it is about 5 kg/cm 2 or more.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施形態1)
 図1は、本発明の実施形態1による切断方法を説明するための図であり、図1(a)は、TIG溶接装置を用いて金属材料(高圧配管)Mを切断している様子を示し、図1(b)は、図1(a)のX-X線断面図である。図1Aは、本発明の実施形態1による切断方法におけるアーク発生のための溶断電力(溶断電流)の形態を説明するための図であり、図1A(a)は、直流である溶断電流Wc1、図1A(b)は交流である溶断電流Wc2、図1A(c)はパルス電流を含む溶断電流Wc3を示す。
(Embodiment 1)
FIG. 1 is a diagram for explaining a cutting method according to Embodiment 1 of the present invention, and FIG. 1(a) shows how a metal material (high-pressure pipe) M is cut using a TIG welding device. , and FIG. 1(b) is a sectional view taken along the line XX of FIG. 1(a). FIG. 1A is a diagram for explaining the form of fusing power (fusing current) for arc generation in the cutting method according to Embodiment 1 of the present invention. FIG. 1A(b) shows a fusing current Wc2 which is an alternating current, and FIG. 1A(c) shows a fusing current Wc3 including a pulse current.
 以下の説明では、TIGトーチ10を用いて高圧配管からなる金属部材Mを外周方向に沿って切断する方法を示す。 In the following description, a method of cutting the metal member M made of high-pressure piping along the outer peripheral direction using the TIG torch 10 will be described.
 ここで、TIGトーチ10は、トーチ本体10aと、トーチ本体10aの先端に取り付けられたガスノズル12と、ガスノズル12内に収容されるようにトーチ本体10aに取り付けられた電極11とを有している。 Here, the TIG torch 10 has a torch body 10a, a gas nozzle 12 attached to the tip of the torch body 10a, and an electrode 11 attached to the torch body 10a so as to be accommodated in the gas nozzle 12. .
 TIGトーチ10は、電極11から金属部材Mに移行するアークAが金属材料Mに近づくほど広がるのをガスノズル12が制限しないTIGトーチ独自の構造を有する。具体的には、このTIGトーチ独自の構造は、電極11の先端を、ガスノズル12の先端と略一致させることにより実現されている(図1(b)参照)。なお、このTIGトーチ独自の構造は、上述した電極11とガスノズル12との配置に限定されず、電極11の先端を、ガスノズル12の先端に一致させることにより実現することも可能である。 The TIG torch 10 has a TIG torch unique structure in which the gas nozzle 12 does not restrict the spread of the arc A moving from the electrode 11 to the metal member M as it approaches the metal material M. Specifically, this unique structure of the TIG torch is realized by aligning the tip of the electrode 11 with the tip of the gas nozzle 12 (see FIG. 1(b)). The structure unique to the TIG torch is not limited to the arrangement of the electrode 11 and the gas nozzle 12 described above, and can be realized by aligning the tip of the electrode 11 with the tip of the gas nozzle 12.
 また、電極11は、タングステンで構成された直径約2mm~約10mm(例えば、約3mm)のタングステン電極であり、また、ガスノズル12はセラミック材料で構成された筒状体であり、その内径は約8mm~約10mmの範囲の値(例えば、約8mm)となっている。 Further, the electrode 11 is a tungsten electrode having a diameter of about 2 mm to about 10 mm (for example, about 3 mm) made of tungsten, and the gas nozzle 12 is a cylindrical body made of a ceramic material, and its inner diameter is about It has a value in the range of 8 mm to about 10 mm (for example, about 8 mm).
 このTIGトーチ10を用いて高圧配管Mの切断を行う場合、まず、電源装置20の負端子をTIGトーチ10のタングステン電極11に接続し、電源装置20の正端子を高圧配管Mに接続する。このとき、電源装置20は、電源装置20から所定の電流(例えば、約400A~約500Aの範囲の直流電流Wc1(図1A(a)参照))がTIGトーチ10のタングステン電極11に供給されるように調整される。また、ガス供給装置30は、ガス供給装置30からTIGトーチ10のガスノズル12に所定量(例えば、約20L/min)の不活性ガス(例えば、アルゴン)Gaが供給され、ガスノズル12から吐出される不活性ガスGaの圧力が所定の圧力(例えば、約5Kg/cm)となるように調整される。 When the TIG torch 10 is used to cut the high-pressure pipe M, first, the negative terminal of the power supply 20 is connected to the tungsten electrode 11 of the TIG torch 10, and the positive terminal of the power supply 20 is connected to the high-pressure pipe M. At this time, the power supply device 20 supplies a predetermined current (for example, a DC current Wc1 in the range of about 400 A to about 500 A (see FIG. 1A (a))) to the tungsten electrode 11 of the TIG torch 10. adjusted to In addition, the gas supply device 30 supplies a predetermined amount (eg, about 20 L/min) of inert gas (eg, argon) Ga to the gas nozzle 12 of the TIG torch 10 from the gas supply device 30, and discharges it from the gas nozzle 12. The pressure of inert gas Ga is adjusted to a predetermined pressure (for example, approximately 5 Kg/cm 2 ).
 このような条件で、作業者は、TIGトーチ10をそのタングステン電極11の先端が高圧配管Mの切断部分に近づくように操作してアーク放電を開始する。 Under these conditions, the operator operates the TIG torch 10 so that the tip of the tungsten electrode 11 approaches the cut portion of the high-pressure pipe M to start arc discharge.
 TIGトーチ10でアーク放電が開始すると、高圧配管Mの切断部分にアークが照射され、また、ガス供給装置30からTIGトーチ10のガスノズル12に供給された不活性ガスGaは、ガスノズル12とタングステン電極11との隙間を通ってガスノズル12の先端から高圧配管Mの切断部分に向けて吐出される。 When the arc discharge starts in the TIG torch 10, the arc is applied to the cut portion of the high-pressure pipe M, and the inert gas Ga supplied from the gas supply device 30 to the gas nozzle 12 of the TIG torch 10 flows through the gas nozzle 12 and the tungsten electrode. 11 and is discharged from the tip of the gas nozzle 12 toward the cut portion of the high-pressure pipe M.
 アークが照射されている部分では、アークの熱により高圧配管Mの構成材料の溶融が表面側から肉厚の深さ方向に徐々に進行する。この状態では、不活性ガスGaがアークを囲むようにガスノズル12から吐出されているので、アークの照射により溶融した金属が空気に触れるのが妨げられる。その結果、溶融した金属が空気中の酸素と結合して酸化物が形成されるのが抑制される。また、TIGトーチ10は、上述したように、電極11の先端がガスノズル12の先端に対して略一致しているので、プラズマトーチとは異なり、アークの照射状態では、電極11から移行するアークAは、電極端部から何ら邪魔されることなく金属材料Mに近づくほど広がるようになっている。その後、溶融池(溶融領域)が高圧配管Mの厚さに相当する深さまで拡大すると、高圧配管Mのアークの照射部分に穴があき、溶融した高圧配管Mの材料が落ちる。 In the arc-irradiated portion, the melting of the constituent material of the high-pressure pipe M progresses gradually from the surface side in the thickness direction due to the heat of the arc. In this state, since the inert gas Ga is discharged from the gas nozzle 12 so as to surround the arc, the metal melted by the arc irradiation is prevented from coming into contact with air. As a result, the molten metal is inhibited from combining with oxygen in the air to form oxides. Further, in the TIG torch 10, as described above, the tip of the electrode 11 is substantially aligned with the tip of the gas nozzle 12. Therefore, unlike the plasma torch, in the arc irradiation state, the arc A moving from the electrode 11 spreads as it approaches the metal material M without any obstruction from the end of the electrode. After that, when the molten pool (melting region) expands to a depth corresponding to the thickness of the high-pressure pipe M, a hole is formed in the arc-irradiated portion of the high-pressure pipe M, and the melted material of the high-pressure pipe M drops.
 その後、作業者は、アークが高圧配管Mの外周方向に沿って切断方向(矢印Cd)に移動するようにTIGトーチ10を操作して、高圧配管Mの外壁を切断していく。このようにして、TIGトーチ10のアークによる高圧配管Mの切断を高圧配管Mの外壁の1周に渡って行うことにより、高圧配管Mの切断部分の全体を切断することが可能である。 After that, the worker operates the TIG torch 10 so that the arc moves in the cutting direction (arrow Cd) along the outer circumference of the high-pressure pipe M to cut the outer wall of the high-pressure pipe M. In this way, by cutting the high-pressure pipe M by the arc of the TIG torch 10 over one circumference of the outer wall of the high-pressure pipe M, the entire cut portion of the high-pressure pipe M can be cut.
 この実施形態1の切断方法では、TIGトーチ10によるアークを高圧配管Mの切断部分に照射することにより、高圧配管Mの切断部分が溶融して落ちるので、切断部分が溶融してできたスラグは、溶け落ちた金属塊として簡単に回収することができ、このため、飛散も防ぐことが可能となる。また、ガスノズル12から吐出される不活性ガスにより、溶融した金属が空気中の酸素と結合して酸化物が形成されるのが抑制されることで粉塵の発生も抑制できる。 In the cutting method of Embodiment 1, by irradiating the cut portion of the high-pressure pipe M with the arc from the TIG torch 10, the cut portion of the high-pressure pipe M melts and falls, so the slag formed by melting the cut portion is , can be easily recovered as melted-down metal lumps, and for this reason, scattering can also be prevented. In addition, the inert gas discharged from the gas nozzle 12 prevents the molten metal from combining with oxygen in the air to form an oxide, thereby suppressing the generation of dust.
 (実施例1)
 実施例1では、厚さ(肉厚)約30mmのSUS304のステンレス鋼板M1を本発明の方法によって切断した。TIGトーチ10のタングステン電極11に供給される直流電流Wc1(図1A(a)参照)を約400A、ガスノズル12から吐出されるアルゴンガスからなる不活性ガスGaの圧力は約5Kg/cmとした。また、タングステン電極11としては、直径が約3mmのものを用い、ガスノズル12として内径が約10mmのセラミック製のものを用いた。そして、ガスノズル12に供給する不活性ガスGaの供給量は、約20L/minとした。
(Example 1)
In Example 1, a stainless steel plate M1 of SUS304 having a thickness (wall thickness) of about 30 mm was cut by the method of the present invention. The DC current Wc1 (see FIG. 1A(a)) supplied to the tungsten electrode 11 of the TIG torch 10 was set to about 400 A, and the pressure of the inert gas Ga consisting of argon gas discharged from the gas nozzle 12 was set to about 5 kg/cm 2 . . As the tungsten electrode 11, one having a diameter of about 3 mm was used, and as the gas nozzle 12, a ceramic one having an inner diameter of about 10 mm was used. The supply amount of the inert gas Ga supplied to the gas nozzle 12 was about 20 L/min.
 図2は、本件発明の切断方法によってステンレス鋼板M1の切断した結果を示す写真である。図2に示すように、TIGトーチ10を用いて上記の条件でSUS304のステンレス鋼板M1の切断を行った場合、アークの照射部分には十分な大きさの溶融池ができ、良好に切断できているのがわかる。 FIG. 2 is a photograph showing the result of cutting the stainless steel plate M1 by the cutting method of the present invention. As shown in FIG. 2, when the TIG torch 10 was used to cut the SUS304 stainless steel plate M1 under the above conditions, a sufficiently large molten pool was formed in the arc irradiated portion, and good cutting was performed. I know you are.
 図2をみてわかるとおり、TIGトーチ10で、厚さ約30mmのSUS304のステンレス鋼板M1が良好に2つに溶断されて貫通部分S1になっているのが確認できる。 As can be seen from FIG. 2, it can be confirmed that the TIG torch 10 successfully fuses the stainless steel plate M1 of SUS304 with a thickness of about 30 mm into two pieces to form the penetrating portion S1.
 (実施例2)
 本発明の切断方法によって、厚さ約12mmのSUS304のステンレス鋼板M2を切断した。TIGトーチ10のタングステン電極11に供給される直流電流Wc1(図1A(a)参照)を約400A、ガスノズル12から吐出されるアルゴンガスからなる不活性ガスGaの圧力は約5Kg/cmとした。また、タングステン電極11としては、直径が約3mmのものを用い、ガスノズル12として内径が約10mmのセラミック製のものを用いた。そして、ガスノズル12に供給する不活性ガスGaの供給量は、約20L/minとした。図3は、本発明の実施例2を説明するための図であり、本発明の切断方法による厚さ約12mmのステンレス鋼板(SUS304)M2を切断した結果を示す写真である。図3に示すように、厚さ約12mmのSUS304のステンレス鋼板M2の場合、TIGトーチ10で、簡単に切断箇所の部分が貫通し(S2)、切断加工が良好に行われ得ることが確認できた。
(Example 2)
A SUS304 stainless steel plate M2 having a thickness of about 12 mm was cut by the cutting method of the present invention. The DC current Wc1 (see FIG. 1A(a)) supplied to the tungsten electrode 11 of the TIG torch 10 was set to about 400 A, and the pressure of the inert gas Ga consisting of argon gas discharged from the gas nozzle 12 was set to about 5 kg/cm 2 . . As the tungsten electrode 11, one having a diameter of about 3 mm was used, and as the gas nozzle 12, a ceramic one having an inner diameter of about 10 mm was used. The supply amount of the inert gas Ga supplied to the gas nozzle 12 was about 20 L/min. FIG. 3 is a diagram for explaining Example 2 of the present invention, and is a photograph showing the result of cutting a stainless steel plate (SUS304) M2 having a thickness of about 12 mm by the cutting method of the present invention. As shown in FIG. 3, in the case of the SUS304 stainless steel plate M2 having a thickness of about 12 mm, the TIG torch 10 easily penetrates the cut portion (S2), and it can be confirmed that the cutting can be performed satisfactorily. rice field.
 (比較例1)
 比較例1では、TIGトーチ10のタングステン電極11に供給される電流が約350Aである点を除いて実施例1と同一の条件で、ステンレス鋼板の切断を行った。
(Comparative example 1)
In Comparative Example 1, the stainless steel plate was cut under the same conditions as in Example 1, except that the current supplied to the tungsten electrode 11 of the TIG torch 10 was about 350A.
 比較例1では、図4に示すように、厚さ約30mmのステンレス鋼板M1’をアークによる熱で溶かそうとしてもステンレス鋼板M1’の内部での熱拡散がアークによる加熱に勝り、アークの照射部分が局所的に溶けるものの、十分な大きさの溶融池はできず、加工によって形成される凹部S3の深さが深くならず、良好に切断することはできなかった。 In Comparative Example 1, as shown in FIG. 4, even if an attempt was made to melt the stainless steel plate M1′ having a thickness of about 30 mm by the heat of the arc, the heat diffusion inside the stainless steel plate M1′ was superior to the heating by the arc. Although the irradiated portion melted locally, a sufficiently large molten pool was not formed, and the depth of the concave portion S3 formed by processing was not deep, and good cutting was not possible.
 (比較例2)
 比較例2では、不活性ガスGaの圧力が約4Kg/cmである点を除いて実施例1と同一の条件で、ステンレス鋼板の切断を行った。
(Comparative example 2)
In Comparative Example 2, the stainless steel plate was cut under the same conditions as in Example 1, except that the inert gas Ga pressure was about 4 kg/cm 2 .
 この場合も、上記比較例1と同様に、ステンレス鋼板M1を良好に切断できなかった。 Also in this case, similarly to Comparative Example 1, the stainless steel plate M1 could not be cut satisfactorily.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been illustrated using preferred embodiments of the present invention, but the present invention should not be construed as being limited to these embodiments. It is understood that the invention is to be construed in scope only by the claims. It is understood that a person skilled in the art can implement an equivalent range from the description of specific preferred embodiments of the present invention based on the description of the present invention and common technical knowledge. It is understood that the documents cited herein are to be incorporated by reference herein in the same manner as if the contents themselves were specifically set forth herein.
 本発明は、スラグの飛散および粉塵の発生を抑制することができるアーク切断方法およびこのような切断方法を用いられる装置を得ることができるものとして有用である。 The present invention is useful as it can provide an arc cutting method capable of suppressing slag scattering and dust generation, and an apparatus using such a cutting method.
 10 TIGトーチ
 11 放電電極
 12 ガスノズル
 20 電源装置
 30 ガス供給装置
 100 TIG溶接装置
REFERENCE SIGNS LIST 10 TIG torch 11 discharge electrode 12 gas nozzle 20 power supply device 30 gas supply device 100 TIG welding device

Claims (9)

  1.  TIGトーチを用いて金属部材を切断する方法であって、
     前記TIGトーチは、アークを発生させる電極と、不活性ガスを吐出するためのガスノズルとを含み、
     前記アークを発生させるための電流が約400A以上、前記ガスノズルから吐出される前記不活性ガスの圧力が約5kg/cmで以上である、切断方法。
    A method for cutting a metal member using a TIG torch,
    The TIG torch includes an electrode for generating an arc and a gas nozzle for discharging inert gas,
    The cutting method, wherein the current for generating the arc is about 400 A or more, and the pressure of the inert gas discharged from the gas nozzle is about 5 kg/cm 2 or more.
  2.  前記TIGトーチの構造は、前記電極の先端が前記ガスノズルの先端より突出する、または前記電極の先端が前記ガスノズルの先端に略一致する構造である、請求項1に記載の切断方法。 The cutting method according to claim 1, wherein the structure of the TIG torch is such that the tip of the electrode protrudes from the tip of the gas nozzle, or the tip of the electrode substantially coincides with the tip of the gas nozzle.
  3.  前記不活性ガスの流量は、約20L/min以上である、請求項1または2に記載の切断方法。 The cutting method according to claim 1 or 2, wherein the inert gas has a flow rate of about 20 L/min or more.
  4.  前記電流が約500A以下である、請求項1~3のいずれか一項に記載の切断方法。 The cutting method according to any one of claims 1 to 3, wherein the current is about 500 A or less.
  5.  前記電流はパルス電流である、請求項1~4のいずれか一項に記載の切断方法。 The cutting method according to any one of claims 1 to 4, wherein the current is a pulse current.
  6.  前記電極の直径は、約2mm~約10mmであり、前記ガスノズルの内径は、約4mm~約18mmである、請求項1~5のいずれか一項に切断方法。 The cutting method according to any one of claims 1 to 5, wherein the electrode has a diameter of about 2 mm to about 10 mm, and the gas nozzle has an inner diameter of about 4 mm to about 18 mm.
  7.  前記ガスノズルはセラミックを含む、請求項1~6のいずれか一項に切断方法。 The cutting method according to any one of claims 1 to 6, wherein the gas nozzle contains ceramic.
  8.  前記電極の先端の角度は約60°~約90°である、請求項1~7のいずれか一項に記載の切断方法。 The cutting method according to any one of claims 1 to 7, wherein the angle of the tip of the electrode is about 60° to about 90°.
  9.  請求項1~8のいずれかに記載の切断方法に用いられる装置であって、
     前記TIGトーチと、
     前記TIGトーチの電極に前記電流を供給する電源装置と、
     前記TIGトーチに不活性ガスを供給するガス供給装置と
     を備えた、装置。
    A device used in the cutting method according to any one of claims 1 to 8,
    the TIG torch;
    a power supply that supplies the current to the electrode of the TIG torch;
    and a gas supply device that supplies an inert gas to the TIG torch.
PCT/JP2022/002046 2021-01-21 2022-01-20 Cutting method and device used in said cutting method WO2022158539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008132A JP2022112333A (en) 2021-01-21 2021-01-21 Cutting method and device used in cutting method
JP2021-008132 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022158539A1 true WO2022158539A1 (en) 2022-07-28

Family

ID=82549476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002046 WO2022158539A1 (en) 2021-01-21 2022-01-20 Cutting method and device used in said cutting method

Country Status (2)

Country Link
JP (1) JP2022112333A (en)
WO (1) WO2022158539A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024010816A (en) 2022-07-13 2024-01-25 山洋電気株式会社 axial fan
JP7376859B1 (en) 2023-04-21 2023-11-09 太郎 神野 torch nozzle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220425B1 (en) * 1969-09-04 1977-06-03
JPS55134073U (en) * 1979-03-14 1980-09-24
JPH0647576A (en) * 1992-07-30 1994-02-22 Showa Alum Corp Electrode for tig welding
JPH11504861A (en) * 1995-05-05 1999-05-11 アレクサンダー ビンツェル ゲーエムベーハー ウント ツェーオー. カーゲー Gas lens housing for arc welding or cutting torches with non-consumable electrodes
JP2008264818A (en) * 2007-04-19 2008-11-06 Taiyo Nippon Sanso Corp Method and equipment of non-consumable electrode type welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220425B1 (en) * 1969-09-04 1977-06-03
JPS55134073U (en) * 1979-03-14 1980-09-24
JPH0647576A (en) * 1992-07-30 1994-02-22 Showa Alum Corp Electrode for tig welding
JPH11504861A (en) * 1995-05-05 1999-05-11 アレクサンダー ビンツェル ゲーエムベーハー ウント ツェーオー. カーゲー Gas lens housing for arc welding or cutting torches with non-consumable electrodes
JP2008264818A (en) * 2007-04-19 2008-11-06 Taiyo Nippon Sanso Corp Method and equipment of non-consumable electrode type welding

Also Published As

Publication number Publication date
JP2022112333A (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2022158539A1 (en) Cutting method and device used in said cutting method
JP6487417B2 (en) Non-transfer type plasma arc system, adapter kit for conversion, non-transfer type plasma arc torch
Pardal et al. Laser stabilization of GMAW additive manufacturing of Ti-6Al-4V components
JP2007000933A (en) Tig welding or braze welding with metal transfer via liquid bridge
JP2016179501A (en) Method and system for additive manufacture using high energy source and hot wire
JP2005334974A (en) Laser welding method
US3239648A (en) Apparatus for arc welding
WO2018145544A1 (en) Welding torch used for laser beam-plasma arc hybrid welding
US20150027997A1 (en) Welding torch, welding apparatus and method of welding using hollow electrode and filler material
US4058698A (en) Method and apparatus for DC reverse polarity plasma-arc working of electrically conductive materials
CN107073632B (en) Tungsten electrode protection welding method
Mahrle et al. Laser-assisted plasma arc welding of stainless steel
JP2012200734A (en) Plasma mig welding torch
US5734144A (en) Plasma arc welding method and apparatus in which a swirling flow is imparted to a plasma gas to stabilize a plasma arc
CN106466759B (en) Utilize the modified method and device in the modified surface of laser overlaying welding device to hole inner wall surface
Eriksson et al. Guidelines in the choice of parameters for hybrid laser arc welding with fiber lasers
AU2020416708B2 (en) Methods for operating a plasma torch
KR20200055710A (en) Torch body for thermal bonding
JP2002331373A (en) Welding method for aluminum
JPS6245680B2 (en)
JPH10225771A (en) Shield structure of welding torch
JP3726813B2 (en) Powder plasma welding apparatus and welding method
JP3189678B2 (en) Nozzle for plasma arc welding and plasma arc welding method
JP7376859B1 (en) torch nozzle
Zheng et al. Parameters optimization for the generation of a keyhole weld pool during the start-up segment in variable-polarity plasma arc welding of aluminium alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742658

Country of ref document: EP

Kind code of ref document: A1