WO2022158537A1 - Drive device for vehicle - Google Patents

Drive device for vehicle Download PDF

Info

Publication number
WO2022158537A1
WO2022158537A1 PCT/JP2022/002042 JP2022002042W WO2022158537A1 WO 2022158537 A1 WO2022158537 A1 WO 2022158537A1 JP 2022002042 W JP2022002042 W JP 2022002042W WO 2022158537 A1 WO2022158537 A1 WO 2022158537A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
tooth
vehicle
motor
input member
Prior art date
Application number
PCT/JP2022/002042
Other languages
French (fr)
Japanese (ja)
Inventor
将之 田中
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2022158537A1 publication Critical patent/WO2022158537A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/54Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the brakes, e.g. parking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present disclosure relates to a vehicular drive system equipped with a power transmission mechanism having a dog clutch and a rotating electrical machine mounted on a vehicle such as an automobile.
  • a vehicle drive device suitable for use in a vehicle one having a rotary electric machine (motor) as a drive source and a stepped transmission mechanism has been widely used.
  • a stepped transmission mechanism for example, one that has a dog clutch and forms a plurality of gear stages by engaging and disengaging the dog clutch is known (see Patent Document 1).
  • the dog clutch which is a dog clutch
  • the coupler is moved in the axial direction when switching the dog clutch from the released state to the engaged state.
  • a vehicle drive device includes a rotating electrical machine having a stator and a rotor, an input member drivingly connected to the rotor of the rotating electrical machine, an output member drivingly connected to a wheel, and the input member.
  • a power transmission mechanism for outputting from the output member the rotation input to the input member when the dog clutch is engaged; the rotating electric machine and the dog clutch; and a control device for controlling the first toothed teeth while the rotating electric machine is rotating when the control device determines that the meshing clutch is switched from the released state to the engaged state while the vehicle is stopped.
  • the rotary electric machine is caused to output a reverse phase torque that cancels out the inertia torque that is generated as the rotation of the rotary electric machine and the input member is decelerated.
  • the rotary electric machine since the dog clutch is engaged while the differential rotation is provided, the tip ends of the toothed teeth are not maintained in contact with each other. You can suppress the occurrence of discrepancies in the time to completion. Further, according to the present vehicle drive system, when the rotation of the rotary electric machine and the input member is decelerated due to the meshing of the dog clutch, the rotary electric machine outputs torque in the opposite phase so as to cancel the inertia torque. It is also possible to suppress the occurrence of vehicle shock due to
  • FIG. 1 is a schematic diagram showing a skeleton of a vehicle drive system according to a first embodiment
  • FIG. FIG. 4 is a schematic diagram showing the first clutch in a disengaged state
  • FIG. 4 is a schematic diagram showing the first clutch in an engaged state
  • 4 is a flow chart showing a processing procedure in engagement operation of the first clutch in the vehicle drive system according to the first embodiment
  • 4 is a time chart showing the state of each part in the engagement operation of the first clutch in the vehicle drive system according to the first embodiment
  • FIG. 10 is a flow chart showing a processing procedure in the engagement operation of the first clutch in the vehicle drive system according to the second embodiment
  • FIG. FIG. 9 is a time chart showing the state of each part in the engagement operation of the first clutch in the vehicle drive system according to the second embodiment
  • FIG. 1A An electric vehicle 1, which is an example of a vehicle equipped with a vehicle drive system according to the present embodiment, will be described along FIG. 1A.
  • the electric vehicle 1 is a so-called FF (front engine/front drive) type.
  • the electric vehicle 1 is not limited to the FF type, and may be the FR (front engine/rear drive) type.
  • Drive connection refers to a state in which the rotary elements are connected to each other so as to be able to transmit driving force. It is used as a concept that includes a state in which the driving force is connected to each other.
  • the electric vehicle 1 includes a vehicle driving device 2 , front wheels 70 that are an example of wheels, and a braking device 71 .
  • the vehicle drive device 2 includes a motor (M/G) 3 as a rotating electrical machine (motor generator) that is an example of a drive source, an automatic transmission (A/T) 4 that is an example of a power transmission mechanism, and an ECU ( control device) 5 and a hydraulic control device (V/B) 6.
  • the electric vehicle 1 also includes an inverter 7 and a battery 8 .
  • the motor 3 has a stator and rotor (not shown) and is connected to the battery 8 via the inverter 7 .
  • the rotor is drivingly connected to the rotating shaft 3a. Electric power output from the battery 8 is supplied to the motor 3 via the inverter 7, thereby driving the rotor of the motor 3 and the rotating shaft 3a. Further, by idling the rotor of the motor 3 and the rotating shaft 3a during coasting, it is possible to generate electric power and charge the battery 8 .
  • the braking device 71 is, for example, a friction braking device such as a hydraulic brake, and is provided on the axle 61 of the front wheel 70 so as to brake the rotational speed of the front wheel 70 and generate braking torque.
  • the brake device 71 is not limited to a hydraulic brake, and may be a device that brakes rear wheels (not shown) instead of braking the front wheels 70 .
  • the automatic transmission 4 includes an input shaft 40, which is an example of an input member drivingly connected to the rotating shaft 3a of the motor 3, an output shaft 50, which is an example of an output member drivingly connected to the front wheels 70, and an example of a dog clutch. , an actuator 59 that engages and disengages the first clutch C1, a second clutch C2 that is a friction clutch, and a differential portion 60. These devices are integrated and housed in a transmission case. It is The automatic transmission 4 changes the speed of the rotation input to the input shaft 40 and outputs it from the output shaft 50 when forming a gear stage. That is, the automatic transmission 4 outputs the rotation input to the input shaft 40 from the output shaft 50 when the first clutch C1 is engaged.
  • the friction clutch which is the second clutch C2
  • a first counter gear 41 and a second counter gear 42 having a larger diameter than the first counter gear 41 are provided on the input shaft 40 so as to rotate integrally with the input shaft 40 .
  • the output shaft 50 is arranged parallel to the input shaft 40, and the first driven gear 51 meshing with the first counter gear 41 and the second driven gear 52 meshing with the second counter gear 42 rotate relatively coaxially with the output shaft 50. provided as possible. Further, an output gear 53 is provided on the output shaft 50 so as to rotate integrally with the output shaft 50 .
  • the first clutch C1 includes an outer spline 54s provided to rotate integrally with the output shaft 50, an outer spline 51s formed on the first driven gear 51 adjacent to the outer spline 54s, and a second clutch C1 adjacent to the outer spline 54s.
  • An outer spline 52s formed on the second driven gear 52 and a switching sleeve 55 provided on the outer peripheral side of the outer spline 54s are provided.
  • the outer splines 51s, 52s, and 54s have the same outer diameter.
  • the switching sleeve 55 has a sleeve-like shape, and has an inner spline 55s (see FIG.
  • the switching sleeve 55 is, for example, moved (stroked) via a fork by being driven by an electric actuator 59, which is an example of a drive unit.
  • the actuator 59 is not limited to one that is electrically driven, and may be one that is hydraulically driven.
  • the mechanism for moving the switching sleeve 55 is not limited to such an actuator, and any known appropriate mechanism can be applied.
  • the outer spline 51s formed on the first driven gear 51 has a plurality of spline teeth 51t, which are an example of first toothed teeth, provided in parallel along the axial direction.
  • Each spline tooth 51t has a distal end portion 51e that is inclined, for example, by about 45° with respect to the axial direction.
  • the inner spline 55s formed on the switching sleeve 55 has a plurality of spline teeth 55t, which are an example of second protruding teeth, provided in parallel along the axial direction.
  • Each spline tooth 55t has a distal end portion 55e that is inclined, for example, by about 45° with respect to the axial direction.
  • the outer spline 51s and the inner spline 55s are switched from the released state shown in FIG. 1B to the engaged state shown in FIG. 55e enters and engages between spline teeth 51t.
  • the position where the actuator 59 completes the engagement of the spline teeth 51t and the spline teeth 55t is defined as the engagement completion position.
  • the relationship between the outer spline 52s and the inner spline 55s formed on the second driven gear 52 is similarly configured. That is, the actuator 59 strokes at least one of the spline teeth 51t and the spline teeth 55t in the disengagement direction.
  • the switching sleeve 55 moves to connect the output shaft 50 and the first driven gear 51 to form the first gear (see FIG. 1C), and to connect the output shaft 50 and the second driven gear 52. It is possible to switch between three states: a state in which two gears are formed, and a neutral state (see FIG. 1B) as a disengaged state in which neither is coupled.
  • the switching sleeve 55 when the switching sleeve 55 is moved from the neutral state to the first driven gear 51 side, the inner spline 55s of the switching sleeve 55 straddles the outer spline 54s and the outer spline 51s of the first driven gear 51. Then, the switching sleeve 55 connects the output shaft 50 and the first driven gear 51 to form a low speed step formation state. Thereby, the rotation of the input shaft 40 is transmitted to the output shaft 50 via the first counter gear 41 , the first driven gear 51 and the switching sleeve 55 .
  • the switching sleeve 55 when the switching sleeve 55 is moved from the neutral state toward the second driven gear 52, the inner spline 55s of the switching sleeve 55 straddles the outer spline 54s and the outer spline 52s of the second driven gear 52. , and the switching sleeve 55 connects the output shaft 50 and the second driven gear 52 to form a high-speed stage formation state. Thereby, the rotation of the input shaft 40 is transmitted to the output shaft 50 via the second counter gear 42 , the second driven gear 52 and the switching sleeve 55 .
  • the first clutch C1 has spline teeth 51t drivingly connected to the input shaft 40 and spline teeth 55t drivingly connected to the output shaft 50, and the input shaft is driven by disengaging the spline teeth 51t and the spline teeth 55t.
  • the power transmission path between 40 and output shaft 50 is connected or disconnected.
  • the gear ratio of each part is set so that the speed is reduced more greatly when the low-speed stage is formed than when the high-speed stage is formed.
  • the second clutch C2 is a friction clutch that is engaged and disengaged by supplying and discharging engagement pressure to the hydraulic servo 58, for example, a multi-plate clutch. 2 and an inner friction plate 57 drivingly connected to the driven gear 52 .
  • a multi-plate clutch for example, a multi-plate clutch. 2 and an inner friction plate 57 drivingly connected to the driven gear 52 .
  • the present invention is not limited to this, and a single-plate clutch or the like may be applied.
  • Engagement pressure is supplied from the hydraulic control device 6 to the oil chamber of the hydraulic servo 58 to engage the second clutch C2, whereby the second driven gear 52 and the output shaft 50 are driven and connected to form a high-speed stage forming state.
  • the rotation of the input shaft 40 is transmitted to the output shaft 50 via the second counter gear 42, the second driven gear 52, and the second clutch C2.
  • the second driven gear 52 and the output shaft 50 are provided so as to be drive-coupled with either the first clutch C1 or the second clutch C2. Therefore, when forming the second gear, the second clutch C2 is used when the second driven gear 52 and the output shaft 50 are engaged while sliding, and the first clutch C1 is used after the engagement. Therefore, power consumption can be reduced as compared with the case where only the second clutch C2 is used.
  • the first clutch C1 is engaged toward the first driven gear 51 and the second clutch C2 is disengaged. Further, when the second speed, which is a higher speed than the first speed, is to be established, the first clutch C1 is put into the neutral state and the second clutch C2 is put into the engaged state, or the first clutch C1 is put into the engaged state. It is possible to select two systems to engage the second driven gear 52 side.
  • the switching sleeve 55, the outer splines 54s, and the outer splines 51s are released, and the switching sleeve 55, the outer splines 54s, and the outer splines 52s are brought into engagement.
  • the second speed stage can also be formed by the first clutch C1, but the invention is not limited to this. It is sufficient that they are driven and connected.
  • the first clutch C1 can be engaged only when forming the first gear.
  • the differential section 60 is drivingly connected to an axle 61 arranged on an axis parallel to the output shaft 50 .
  • the differential portion 60 includes a differential ring gear 62 meshed with the output gear 53 of the output shaft 50, and the differential ring gear 62 transmits rotation from the differential case to the axle 61 via pinion gears, side gears, and the like. As a result, the rotation of the output shaft 50 is decelerated by the differential portion 60 , and the rotation is transmitted while absorbing the differential rotation between the left and right front wheels 70 .
  • the hydraulic control device 6 is composed of, for example, a valve body, and has a primary regulator valve (not shown) that generates line pressure or the like from hydraulic pressure supplied from a mechanical oil pump (not shown) or an electric oil pump (not shown). Hydraulic pressure can be supplied and discharged to each part based on the control signal from.
  • the hydraulic control device 6 controls the second clutch C2 by supplying and discharging hydraulic pressure to and from the hydraulic servo 58 of the second clutch C2 based on control signals from the ECU 5 .
  • the ECU 5 can freely command-control the motor 3 and the first clutch C1, and electronically control the hydraulic control device 6. That is, the ECU 5 can change the engagement state of the first clutch C1 by controlling the actuator 59, and can change the engagement state of the second clutch C2 by controlling the engagement pressure via the hydraulic control device 6. Can change state.
  • the electric vehicle 1 is also provided with an accelerator pedal 72 and a brake pedal 73, which are connected to the ECU 5, respectively.
  • the ECU 5 acquires the amount of depression of the accelerator pedal 72 as an accelerator opening signal, and acquires the amount of depression of the brake pedal 73 as a brake signal.
  • the vehicle drive device 2 is provided with a rotation speed sensor 9 which is an example of an acceleration detection unit that detects the rotation acceleration of the input shaft 40 .
  • the ECU 5 is connected to a rotation speed sensor 9, acquires a detection value of the rotation speed sensor 9 as an input rotation speed, and can obtain an input rotation acceleration by differentiating the input rotation speed.
  • the vehicle is designed so that the first clutch C1 is engaged with the first driven gear 51 even when the shift lever is in the parking range or the neutral range while the vehicle is stopped.
  • the stopped electric vehicle 1 enters the neutral state is, for example, when the vehicle is stopped during the switching operation of the first clutch C1, such as when the vehicle stops due to sudden braking during gear shifting during running. is mentioned.
  • the specification is not limited to that the first clutch C1 is engaged with the first driven gear 51 side, and the shift lever is in the parking range while the vehicle is stopped.
  • the specification may be such that the first clutch C1 is released when the vehicle is in the neutral range. In this case, the first clutch C1 is released because the shift lever is in the parking range or the neutral range while the vehicle is stopped.
  • step S1 the electric vehicle 1 is stopped and the first clutch C1 is released (t0 in FIG. 3).
  • the ECU 5 determines whether or not the brake signal to the brake device 71 is ON (step S1). When the ECU 5 determines that the brake signal is not ON (NO in step S1), it makes a determination again (step S1).
  • the brake pedal 73 when the brake pedal 73 is stepped on, the shift lever is switched from, for example, the parking range to the drive range to prepare for starting, so a brake signal from the brake pedal 73 is detected.
  • the brake signal to be detected is not limited to the brake signal from the brake pedal 73 .
  • the first clutch C1 when the ignition is turned on without stepping on the brake pedal 73 when the vehicle is stopped in the parking range, the first clutch C1 is detected to be in the released state, thereby switching the first clutch C1 to the first driven gear 51 side. is engaged, the brake pedal 73 is not operated, so a brake signal to a parking brake, which is an example of a brake device, may be detected.
  • the brake signal output from the ECU 5 for activating the automatic brake is detected. can be
  • step S2 determines engagement to switch the first clutch C1 from the neutral state to the engagement state toward the first driven gear 51 side. Then, the rotation speed of the motor 3 is accelerated by rotation speed control (step S2, t2-t3 in FIG. 3). The ECU 5 determines whether or not the rotation speed of the motor 3 has reached the first predetermined rotation speed N1 (step S3). When the ECU 5 determines that the rotation speed of the motor 3 has not reached the first predetermined rotation speed N1 (NO in step S3), the acceleration of the rotation speed of the motor 3 is continued (step S2).
  • step S4 determines whether or not the rotation speed of the motor 3 has reached the second predetermined rotation speed N2 (step S5).
  • step S5 determines whether or not the rotation speed of the motor 3 has reached the second predetermined rotation speed N2 (NO in step S5).
  • step S5 When the ECU 5 determines that the rotation speed of the motor 3 has reached the second predetermined rotation speed N2 (YES in step S5, t4 in FIG. 3), the ECU 5 releases the first clutch C1 from the released state to the first driven gear 51 side.
  • the target stroke position command value for instructing the actuator 59 is stepped up to the engagement start position where the spline teeth 51t and 55t start meshing (step S6, FIG. 3). t4-t5).
  • the ECU 5 determines whether or not the spline tooth 51t has reached the engagement start position (step S7).
  • step S6 When the ECU 5 determines that the spline tooth 51t has not reached the engagement start position (NO in step S7), it continues to output the target command value (step S6).
  • the target command value of the stroke position to be commanded to the actuator 59 is swept up to the engagement completion position ( Step S8, t5-t6 in FIG. 3). That is, the ECU 5 determines that the speed at which at least one of the spline teeth 51t and 55t is stroked in the disengagement direction when switching the first clutch C1 from the disengaged state to the engagement state of the spline teeth 51t and 55t.
  • the actuator 59 is controlled so that the spline teeth 51t and the spline teeth 55t reach the position at which meshing starts later than before reaching the position at which the engagement of the spline teeth 51t and 55t is started.
  • the ECU 5 determines whether or not the input rotational speed has changed rapidly (step S9).
  • the ECU 5 determines whether or not the input rotation speed has changed abruptly based on the detection value of the rotation speed sensor 9 . That is, the ECU 5 determines that the spline teeth 51t and 55t have started meshing when the rotational speed sensor 9 detects a change in the rotational acceleration of the input shaft 40 .
  • step S9 When the ECU 5 determines that the input rotational speed has changed abruptly (YES in step S9), it causes the motor 3 to output reverse phase torque (step S10, t5 in FIG. 3). That is, the ECU 5 strokes the spline teeth 55t to approach the spline teeth 51t while the motor 3 is rotating. 3 and input shaft 40 slow down. At this time, the ECU 5 causes the motor 3 to output a reverse phase torque that cancels out the inertia torque that occurs as the rotation of the motor 3 and the input shaft 40 decelerates. This suppresses the generation of output torque due to the driving force from the motor 3 being transmitted as inertia torque due to the engagement of the first clutch C1, and reduces the shock caused by the inertia torque. can be done.
  • the ECU 5 controls the torque of the motor 3 to be less than the predetermined torque after outputting the torque of the opposite phase from the motor 3 .
  • the predetermined torque here is a torque of a magnitude that can engage the first clutch C1 to the engagement completion position, and is the maximum output that can be generated by the actuator 59, the angle of the tip portion 51e of the spline tooth 51t, and the frictional force. It is set in consideration of coefficients and their individual differences. Note that, in the present embodiment, the torque less than the predetermined torque is set to 0 Nm as an example.
  • the ECU 5 determines whether or not the spline tooth 55t has reached the engagement completion position (step S11).
  • the ECU 5 determines whether or not the spline teeth 55t have reached the engagement completion position, for example, based on a timer that determines whether or not a predetermined period of time has elapsed since the differential rotation of the first clutch C1 was lost. Alternatively, a sensor that detects the position of the switching sleeve 55 may be used.
  • step S11 When the ECU 5 determines that the spline tooth 55t has not reached the engagement completion position (NO in step S11), the sweep-like increase of the target command value of the actuator 59 is continued (step S8, t5 in FIG. 3). -t6).
  • step S9 when the ECU 5 determines that the input rotation speed has not changed rapidly (NO in step S9), the spline teeth 55t do not output the opposite phase torque from the motor 3, and the spline teeth 55t reach the engagement completion position. is reached (step S11).
  • the ECU 5 causes the brake device 71 or the parking brake to generate a braking force until the first clutch C1 is switched from the released state to the engaged state while the vehicle is stopped.
  • the ECU 5 determines that the first clutch C1 is switched from the released state to the engaged state toward the first driven gear 51 while the vehicle is stopped, Then, while the motor 3 is rotating, the spline teeth 51t and the spline teeth 55t are stroked to approach each other. Then, when the spline teeth 51t and the spline teeth 55t are meshed and the input shaft 40 and the output shaft 50 are engaged with each other and the rotation of the motor 3 and the input shaft 40 is decelerated, the ECU 5 rotates the motor 3 and the input shaft from the motor 3. A reverse phase torque that cancels out the inertia torque that occurs with the deceleration of the rotation of 40 is output.
  • the vehicle drive device 2 of the present embodiment when the engagement determination is made while the vehicle is stopped, the spline teeth 51t and the spline teeth 55t are stroked to approach each other while the motor 3 is rotating. Therefore, the time required for engagement of the first clutch C1 is longer than when the rotation is started when the tip end portion 51e of the spline tooth 51t and the tip end portion 54e of the spline tooth 55t are in contact with each other in the axial direction and do not mesh with each other. can be shortened. Therefore, it is possible to suppress the occurrence of a difference in the time until the engagement is completed when the first clutch C1 is engaged.
  • the ECU 5 controls the rotational acceleration of the input shaft 40 by the motor 3 so as to be constant after determining the engagement when the vehicle is stopped, and the rotational acceleration of the input shaft 40 is input by the rotational speed sensor 9.
  • a change in rotational acceleration of the shaft 40 it is determined that the spline teeth 51t and 55t have started meshing, and the motor 3 outputs a torque of opposite phase. Therefore, it is possible to quickly determine that the spline teeth 51t and 55t have started meshing with a simple configuration.
  • the motor 3 is driven to the engagement completion position by the predetermined torque and the actuator 59 in the present embodiment.
  • the torque is controlled to be less than the torque that can engage C1. Therefore, after the torque of the opposite phase is output from the motor 3, the first clutch C1 can be quickly and reliably engaged.
  • the target command value of the stroke position to be instructed to the actuator 59 is set to the engagement of the spline teeth 51t and the spline teeth 55t. Step up to the starting position. After the spline teeth 51t and 55t reach the engagement start position, the ECU 5 sweeps up the stroke position target command value to the actuator 59 to the engagement completion position. That is, the ECU 5 determines that the speed at which at least one of the spline teeth 51t and 55t is stroked in the disengagement direction when switching the first clutch C1 from the disengaged state to the engagement state of the spline teeth 51t and 55t.
  • the actuator 59 is controlled so that the spline teeth 51t and the spline teeth 55t reach the position at which meshing starts later than before reaching the position at which the engagement of the spline teeth 51t and 55t is started.
  • the ECU 5 causes the braking device 71 or the parking brake to generate braking force until the first clutch C1 switches from the released state to the engaged state while the vehicle is stopped. Therefore, since the engagement is completed while the braking force is being applied, it is possible to further reduce the shock caused by the inertia torque when the first clutch C1 is engaged.
  • the ECU 5 determines engagement when the vehicle is stopped and the brake signal to the brake device 71 is turned on. Therefore, it is possible to improve the responsiveness as compared with the case where the engagement determination is made after the accelerator opening signal is turned on.
  • the engagement determination is made when the brake signal is turned on.
  • the present invention is not limited to this. Engagement determination may be made according to other conditions such as the ON state of the accelerator opening signal.
  • the electric vehicle 1 in which the motor 3 is used as a drive source has been described as an example of the vehicle, but the vehicle is not limited to this.
  • the vehicle may be a hybrid vehicle equipped with an engine and a motor as drive sources, that is, any vehicle drive device that utilizes a dog clutch that connects and disconnects a power transmission path between a rotating electric machine and wheels. It may be mounted on such a vehicle.
  • FIG. 5 After the brake signal is turned on, the input rotation speed increases and after reaching the third predetermined rotation speed N3, it remains constant. and have different configurations. However, since other configurations are the same as those of the first embodiment, the same reference numerals are used and detailed description thereof is omitted.
  • steps S1 to S2 (t0 to t2 in FIG. 5) shown in FIG. 4 are the same as those in the first embodiment, the subsequent steps will be described.
  • the ECU 5 determines whether or not the rotation speed of the motor 3 has reached the third predetermined rotation speed N3 (step S13). When the ECU 5 determines that the rotation speed of the motor 3 has not reached the third predetermined rotation speed N3 (NO in step S13), the acceleration of the rotation speed of the motor 3 is continued (step S2).
  • the ECU 5 determines that the rotation speed of the motor 3 has reached the third predetermined rotation speed N3 (YES in step S13, t13 in FIG. 5), the rotation speed of the motor 3 is maintained at the third predetermined rotation speed N3. Then, the motor torque is output (t13-t5 in FIG. 5). At this time, since the input rotational speed is constant, the input rotational acceleration is zero.
  • the ECU 5 sets the target stroke position command value to the actuator 59 so that the first clutch C1 is switched from the disengaged state to the engaged state toward the first driven gear 51, and the spline teeth 51t and 55t start meshing. stepped up to the engaging start position (step S6, t14 in FIG. 5). After that, steps S6 to S11 (t14 to t6 in FIG. 5) shown in FIG. 4 are the same as in the first embodiment, so detailed description thereof will be omitted.
  • the ECU 5 determines that the first clutch C1 is switched from the released state to the engaged state toward the first driven gear 51 while the vehicle is stopped, Then, while the motor 3 is rotating, the spline teeth 51t and the spline teeth 55t are stroked to approach each other. Then, when the spline teeth 51t and the spline teeth 55t are meshed and the input shaft 40 and the output shaft 50 are engaged with each other and the rotation of the motor 3 and the input shaft 40 is decelerated, the ECU 5 rotates the motor 3 and the input shaft from the motor 3. A reverse phase torque that cancels out the inertia torque that occurs with the deceleration of the rotation of 40 is output.
  • the vehicle drive device 2 of the present embodiment when the engagement determination is made while the vehicle is stopped, the spline teeth 51t and the spline teeth 55t are stroked to approach each other while the motor 3 is rotating. Therefore, the time required for engagement of the first clutch C1 is longer than when the rotation is started when the tip end portion 51e of the spline tooth 51t and the tip end portion 54e of the spline tooth 55t are in contact with each other in the axial direction and do not mesh with each other. can be shortened.
  • the ECU 5 accelerates the rotation speed of the motor 3 to the third predetermined rotation speed N3 and then starts engagement of the first clutch C1 without decelerating it. . Therefore, the responsiveness can be improved compared to the case where the engagement of the first clutch C1 is started after the rotation speed of the motor 3 is reduced from the third predetermined rotation speed N3 to the predetermined rotation speed.
  • a vehicle drive system according to the present disclosure can be applied to, for example, a vehicle drive system equipped with a power transmission mechanism having a dog clutch and a rotating electric machine mounted in a vehicle such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is a geared clutch which includes first projecting teeth drive-coupled to an input shaft and second projecting teeth drive-coupled to an output shaft and which cuts a power transmission path between the input shaft and the output shaft by disengaging the first projecting teeth and the second projecting teeth from each other. Also provided is an ECU that, when making an engagement determination to change a first clutch from a disengaged state to an engaged state while a vehicle is stopped, strokes the first projecting teeth and the second projecting teeth while rotating a motor to bring the first projecting teeth and the second projecting teeth close to each other. When the first projecting teeth and the second projecting teeth mesh with each other and the input shaft and the output shaft engage with each other and as a result, the rotations of the motor and the input shaft are decelerated, the ECU causes the motor to output opposite-phase torque that cancels inertial torque generated along with the deceleration of the rotations of the motor and the input shaft.

Description

車両用駆動装置Vehicle drive system
 本開示は、自動車等の車両に搭載される噛合クラッチを有する動力伝達機構及び回転電機を備えた車両用駆動装置に関する。 The present disclosure relates to a vehicular drive system equipped with a power transmission mechanism having a dog clutch and a rotating electrical machine mounted on a vehicle such as an automobile.
 従来、例えば、車両に用いて好適な車両用駆動装置として、駆動源としての回転電機(モータ)と、有段変速機構とを有するものが普及している。有段変速機構としては、例えば、噛合クラッチを有し、噛合クラッチの係脱によって複数の変速段を形成するものが知られている(特許文献1参照)。この車両用駆動装置では、例えば、噛合クラッチであるドグクラッチが、停車中に解放状態で停止しているときに、ドグクラッチを解放状態から係合状態に切り替える場合は、カプラを軸方向に移動させる。このとき、カプラが相手側部材に係合しているべき時間を経過しても係合していることを検出できないときは、ドグクラッチの対向する突歯の先端同士が当接して係合できないものと判断して、モータを回転させて対向する突歯同士をずらして係合を図るようにしている。 Conventionally, for example, as a vehicle drive device suitable for use in a vehicle, one having a rotary electric machine (motor) as a drive source and a stepped transmission mechanism has been widely used. As a stepped transmission mechanism, for example, one that has a dog clutch and forms a plurality of gear stages by engaging and disengaging the dog clutch is known (see Patent Document 1). In this vehicle drive device, for example, when the dog clutch, which is a dog clutch, is stopped in the released state while the vehicle is stopped, the coupler is moved in the axial direction when switching the dog clutch from the released state to the engaged state. At this time, if it is not detected that the coupler is engaged with the mating member even after the expected time has elapsed, it is assumed that the tips of the opposing toothed teeth of the dog clutch are in contact with each other and cannot be engaged. After making a decision, the motor is rotated to displace the opposing protruded teeth to achieve engagement.
特表2016-515688号公報Japanese translation of PCT publication No. 2016-515688
 しかしながら、特許文献1に記載した車両用駆動装置では、停車中にドグクラッチを解放状態から係合状態に切り替えるときに対向する突歯の先端同士が当接している場合、ドグクラッチが係合できていないことを時間経過に基づいて判断したのち、モータを回転させて対向する突歯同士をずらして係合するため、対向する突歯の先端同士が当接していない場合と比べて係合完了までに時間が掛かる。このため、突歯の先端同士が当接しているか否かによってドグクラッチの係合完了までの時間に差異が生じ、その結果、車両が発進できるようになるまでの時間に差異が生じるので、ドライバに違和感を与えてしまう虞がある。 However, in the vehicular drive device described in Patent Document 1, when the tips of the opposing toothed teeth are in contact when switching the dog clutch from the released state to the engaged state while the vehicle is stopped, the dog clutch cannot be engaged. is determined based on the passage of time, and then the motor is rotated to shift and engage the opposing protruding teeth. Therefore, it takes longer to complete the engagement than when the tips of the opposing protruding teeth are not in contact with each other. . Therefore, the time required for the dog clutch to complete engagement differs depending on whether or not the tips of the toothed teeth are in contact with each other. There is a risk of giving
 そこで、噛合クラッチの係合時における係合完了までの時間の差異の発生を抑制できる車両用駆動装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide a vehicular drive system capable of suppressing the occurrence of a difference in the time until the completion of engagement when the dog clutch is engaged.
 本開示に係る車両用駆動装置は、固定子及び回転子を有する回転電機と、前記回転電機の回転子に駆動連結された入力部材と、車輪に駆動連結された出力部材と、前記入力部材に駆動連結された第1突歯と前記出力部材に駆動連結された第2突歯とを有して前記第1突歯及び前記第2突歯の係脱により前記入力部材及び前記出力部材の間の動力伝達経路を接断する噛合クラッチと、を有し、前記噛合クラッチが係合しているときに前記入力部材に入力された回転を前記出力部材から出力する動力伝達機構と、前記回転電機及び前記噛合クラッチを制御する制御装置と、を備え、前記制御装置は、停車中に前記噛合クラッチを解放状態から係合状態に切り替える係合判断をした場合に、前記回転電機を回転した状態で前記第1突歯及び前記第2突歯をストロークして互いに接近させ、前記第1突歯及び前記第2突歯が噛み合って前記入力部材と前記出力部材とが係合して前記回転電機及び前記入力部材の回転が減速するときに、前記回転電機から前記回転電機及び前記入力部材の回転の減速に伴って発生するイナーシャトルクを打ち消す逆位相のトルクを出力させる。 A vehicle drive device according to the present disclosure includes a rotating electrical machine having a stator and a rotor, an input member drivingly connected to the rotor of the rotating electrical machine, an output member drivingly connected to a wheel, and the input member. A power transmission path between the input member and the output member by engaging and disengaging the first tooth and the second tooth. a power transmission mechanism for outputting from the output member the rotation input to the input member when the dog clutch is engaged; the rotating electric machine and the dog clutch; and a control device for controlling the first toothed teeth while the rotating electric machine is rotating when the control device determines that the meshing clutch is switched from the released state to the engaged state while the vehicle is stopped. and the second protruding teeth are stroked to approach each other, the first protruding teeth and the second protruding teeth are meshed, the input member and the output member are engaged, and the rotation of the rotating electric machine and the input member is decelerated. Occasionally, the rotary electric machine is caused to output a reverse phase torque that cancels out the inertia torque that is generated as the rotation of the rotary electric machine and the input member is decelerated.
 本車両用駆動装置によると、差回転を持たせた状態で噛合クラッチを係合させるため、突歯の先端同士が当接する状態が維持されることがなくなるので、噛合クラッチの係合時における係合完了までの時間の差異の発生を抑制できる。また、本車両用駆動装置によると、噛合クラッチが噛み合ったことにより回転電機及び入力部材の回転が減速するときに、イナーシャトルクを打ち消すように回転電機から逆位相のトルクを出力させるので、イナーシャトルクによる車両ショックの発生も抑制できる。 According to the present vehicle drive system, since the dog clutch is engaged while the differential rotation is provided, the tip ends of the toothed teeth are not maintained in contact with each other. You can suppress the occurrence of discrepancies in the time to completion. Further, according to the present vehicle drive system, when the rotation of the rotary electric machine and the input member is decelerated due to the meshing of the dog clutch, the rotary electric machine outputs torque in the opposite phase so as to cancel the inertia torque. It is also possible to suppress the occurrence of vehicle shock due to
第1の実施形態に係る車両用駆動装置のスケルトンを示す概略図である。1 is a schematic diagram showing a skeleton of a vehicle drive system according to a first embodiment; FIG. 解放状態の第1クラッチを示す概略図である。FIG. 4 is a schematic diagram showing the first clutch in a disengaged state; 係合状態の第1クラッチを示す概略図である。FIG. 4 is a schematic diagram showing the first clutch in an engaged state; 第1の実施形態に係る車両用駆動装置における第1クラッチの係合動作での処理手順を示すフローチャートである。4 is a flow chart showing a processing procedure in engagement operation of the first clutch in the vehicle drive system according to the first embodiment; 第1の実施形態に係る車両用駆動装置における第1クラッチの係合動作での各部の状態を示すタイムチャートである。4 is a time chart showing the state of each part in the engagement operation of the first clutch in the vehicle drive system according to the first embodiment; 第2の実施形態に係る車両用駆動装置における第1クラッチの係合動作での処理手順を示すフローチャートである。FIG. 10 is a flow chart showing a processing procedure in the engagement operation of the first clutch in the vehicle drive system according to the second embodiment; FIG. 第2の実施形態に係る車両用駆動装置における第1クラッチの係合動作での各部の状態を示すタイムチャートである。FIG. 9 is a time chart showing the state of each part in the engagement operation of the first clutch in the vehicle drive system according to the second embodiment; FIG.
 <第1の実施形態>
 以下、本開示に係る第1の実施形態を図1A~図3に沿って説明する。まず、図1Aに沿って、本実施形態に係る車両用駆動装置を搭載した車両の一例である電気自動車1について説明する。本実施形態では、電気自動車1は、所謂FF(フロントエンジン・フロントドライブ)型としている。但し、電気自動車1は、FF型には限られず、FR(フロントエンジン・リアドライブ)型であってもよい。また、駆動連結とは、互いの回転要素が駆動力を伝達可能に連結された状態を指し、それら回転要素が一体的に回転するように連結された状態、或いはそれら回転要素がクラッチ等を介して駆動力を伝達可能に連結された状態を含む概念として用いる。
<First embodiment>
A first embodiment according to the present disclosure will be described below with reference to FIGS. 1A to 3. FIG. First, an electric vehicle 1, which is an example of a vehicle equipped with a vehicle drive system according to the present embodiment, will be described along FIG. 1A. In this embodiment, the electric vehicle 1 is a so-called FF (front engine/front drive) type. However, the electric vehicle 1 is not limited to the FF type, and may be the FR (front engine/rear drive) type. Drive connection refers to a state in which the rotary elements are connected to each other so as to be able to transmit driving force. It is used as a concept that includes a state in which the driving force is connected to each other.
 [車両用駆動装置の概略構成]
 図1Aに示すように、電気自動車1は、車両用駆動装置2と、車輪の一例である前輪70と、ブレーキ装置71とを有している。車両用駆動装置2は、駆動源の一例である回転電機(モータジェネレータ)としてのモータ(M/G)3と、動力伝達機構の一例である自動変速機(A/T)4と、ECU(制御装置)5と、油圧制御装置(V/B)6とを備えている。また、電気自動車1は、インバータ7と、バッテリ8とを備えている。
[Schematic Configuration of Vehicle Drive Device]
As shown in FIG. 1A , the electric vehicle 1 includes a vehicle driving device 2 , front wheels 70 that are an example of wheels, and a braking device 71 . The vehicle drive device 2 includes a motor (M/G) 3 as a rotating electrical machine (motor generator) that is an example of a drive source, an automatic transmission (A/T) 4 that is an example of a power transmission mechanism, and an ECU ( control device) 5 and a hydraulic control device (V/B) 6. The electric vehicle 1 also includes an inverter 7 and a battery 8 .
 モータ3は、不図示の固定子及び回転子を有し、インバータ7を介してバッテリ8に接続されている。回転子は、回転軸3aに駆動連結されている。バッテリ8から出力された電力がインバータ7を介してモータ3に給電されることで、モータ3の回転子及び回転軸3aが駆動される。また、惰性走行(コースト走行)時にモータ3の回転子及び回転軸3aを空回転させることで、電力を発生させてバッテリ8に充電することが可能である。 The motor 3 has a stator and rotor (not shown) and is connected to the battery 8 via the inverter 7 . The rotor is drivingly connected to the rotating shaft 3a. Electric power output from the battery 8 is supplied to the motor 3 via the inverter 7, thereby driving the rotor of the motor 3 and the rotating shaft 3a. Further, by idling the rotor of the motor 3 and the rotating shaft 3a during coasting, it is possible to generate electric power and charge the battery 8 .
 ブレーキ装置71は、例えば、油圧ブレーキ等の摩擦制動装置からなり、前輪70の回転速度を制動し、ブレーキトルク(制動トルク)を発生するように、前輪70の車軸61に設けられている。但し、ブレーキ装置71としては、油圧ブレーキには限られず、また、前輪70の制動ではなく不図示の後輪の制動を行うものであってもよい。 The braking device 71 is, for example, a friction braking device such as a hydraulic brake, and is provided on the axle 61 of the front wheel 70 so as to brake the rotational speed of the front wheel 70 and generate braking torque. However, the brake device 71 is not limited to a hydraulic brake, and may be a device that brakes rear wheels (not shown) instead of braking the front wheels 70 .
 [自動変速機]
 自動変速機4は、モータ3の回転軸3aに駆動連結された入力部材の一例である入力軸40と、前輪70に駆動連結された出力部材の一例である出力軸50と、噛合クラッチの一例である第1クラッチC1と、第1クラッチC1を係脱するアクチュエータ59と、摩擦クラッチからなる第2クラッチC2と、ディファレンシャル部60とを備えており、これら装置が一体化されてミッションケースに収納されている。自動変速機4は、変速段を形成しているときに、入力軸40に入力された回転を変速して、出力軸50から出力する。即ち、自動変速機4は、第1クラッチC1が係合しているときに、入力軸40に入力された回転を出力軸50から出力する。尚、第2クラッチC2である摩擦クラッチとしては、2つの回転要素の間を接断する係合要素の他に、1つの回転要素と1つの固定要素との間を接断する係合要素(ブレーキ)も含むものとする。
[Automatic transmission]
The automatic transmission 4 includes an input shaft 40, which is an example of an input member drivingly connected to the rotating shaft 3a of the motor 3, an output shaft 50, which is an example of an output member drivingly connected to the front wheels 70, and an example of a dog clutch. , an actuator 59 that engages and disengages the first clutch C1, a second clutch C2 that is a friction clutch, and a differential portion 60. These devices are integrated and housed in a transmission case. It is The automatic transmission 4 changes the speed of the rotation input to the input shaft 40 and outputs it from the output shaft 50 when forming a gear stage. That is, the automatic transmission 4 outputs the rotation input to the input shaft 40 from the output shaft 50 when the first clutch C1 is engaged. As the friction clutch, which is the second clutch C2, in addition to the engagement element that engages and disconnects between the two rotating elements, an engagement element that connects and disconnects between one rotating element and one fixed element ( brakes) shall also be included.
 入力軸40には、第1カウンタギヤ41と、第1カウンタギヤ41より大径の第2カウンタギヤ42とが、入力軸40と一体回転するように設けられている。出力軸50は入力軸40と平行に配置され、第1カウンタギヤ41に噛合する第1ドリブンギヤ51と、第2カウンタギヤ42に噛合する第2ドリブンギヤ52とが出力軸50と同軸上に相対回転可能に設けられている。また、出力軸50には、出力ギヤ53が出力軸50と一体回転するように設けられている。 A first counter gear 41 and a second counter gear 42 having a larger diameter than the first counter gear 41 are provided on the input shaft 40 so as to rotate integrally with the input shaft 40 . The output shaft 50 is arranged parallel to the input shaft 40, and the first driven gear 51 meshing with the first counter gear 41 and the second driven gear 52 meshing with the second counter gear 42 rotate relatively coaxially with the output shaft 50. provided as possible. Further, an output gear 53 is provided on the output shaft 50 so as to rotate integrally with the output shaft 50 .
 第1クラッチC1は、出力軸50と一体回転するよう設けられた外スプライン54sと、外スプライン54sに隣接して第1ドリブンギヤ51に形成された外スプライン51sと、外スプライン54sに隣接して第2ドリブンギヤ52に形成された外スプライン52sと、外スプライン54sの外周側に設けられる切替スリーブ55と、を備えている。各外スプライン51s,52s,54sの外径は、同径になっている。切替スリーブ55は、スリーブ状で、内周部に各外スプライン51s,52s,54sに係合可能な内スプライン55s(図1B参照)を備え、外スプライン51s,52s,54sに対して軸方向に移動可能に設けられている。 The first clutch C1 includes an outer spline 54s provided to rotate integrally with the output shaft 50, an outer spline 51s formed on the first driven gear 51 adjacent to the outer spline 54s, and a second clutch C1 adjacent to the outer spline 54s. An outer spline 52s formed on the second driven gear 52 and a switching sleeve 55 provided on the outer peripheral side of the outer spline 54s are provided. The outer splines 51s, 52s, and 54s have the same outer diameter. The switching sleeve 55 has a sleeve-like shape, and has an inner spline 55s (see FIG. 1B) that can be engaged with each of the outer splines 51s, 52s, and 54s on its inner periphery, and axially moves with respect to the outer splines 51s, 52s, and 54s. provided to be movable.
 切替スリーブ55は、例えば、駆動部の一例である電動のアクチュエータ59の駆動によりフォークを介して移動(ストローク)するものとしている。但し、アクチュエータ59としては、電動により駆動するものに限られず、油圧により駆動するものであってもよい。また、切替スリーブ55を移動させるための機構としては、このようなアクチュエータに限られず、既知の適宜な機構を適用することができる。 The switching sleeve 55 is, for example, moved (stroked) via a fork by being driven by an electric actuator 59, which is an example of a drive unit. However, the actuator 59 is not limited to one that is electrically driven, and may be one that is hydraulically driven. Further, the mechanism for moving the switching sleeve 55 is not limited to such an actuator, and any known appropriate mechanism can be applied.
 図1Bに示すように、第1ドリブンギヤ51に形成された外スプライン51sは、軸方向に沿って平行に設けられた第1突歯の一例である複数のスプライン歯51tを有している。各スプライン歯51tの軸方向の先端部分には、軸方向に対して例えば45°程度傾斜した先端部51eが形成されている。また、切替スリーブ55に形成された内スプライン55sは、軸方向に沿って平行に設けられた第2突歯の一例である複数のスプライン歯55tを有している。各スプライン歯55tの軸方向の先端部分には、軸方向に対して例えば45°程度傾斜した先端部55eが形成されている。外スプライン51sと内スプライン55sとが図1Bに示す解放状態から図1Cに示す係合状態に切り替わるときは、アクチュエータ59によって切替スリーブ55が第1ドリブンギヤ51側にストロークされ、スプライン歯55tの先端部55eがスプライン歯51tの間に入り込んで係合する。本実施形態では、アクチュエータ59によってスプライン歯51t及びスプライン歯55tの噛み合いを完了した状態(図1Cに示す状態)とする位置を、係合完了位置とする。尚、図示していないが、第2ドリブンギヤ52に形成された外スプライン52sと内スプライン55sとの関係も同様に構成されている。即ち、アクチュエータ59は、スプライン歯51t及びスプライン歯55tの少なくとも一方を係脱させる方向にストロークさせる。 As shown in FIG. 1B, the outer spline 51s formed on the first driven gear 51 has a plurality of spline teeth 51t, which are an example of first toothed teeth, provided in parallel along the axial direction. Each spline tooth 51t has a distal end portion 51e that is inclined, for example, by about 45° with respect to the axial direction. In addition, the inner spline 55s formed on the switching sleeve 55 has a plurality of spline teeth 55t, which are an example of second protruding teeth, provided in parallel along the axial direction. Each spline tooth 55t has a distal end portion 55e that is inclined, for example, by about 45° with respect to the axial direction. When the outer spline 51s and the inner spline 55s are switched from the released state shown in FIG. 1B to the engaged state shown in FIG. 55e enters and engages between spline teeth 51t. In this embodiment, the position where the actuator 59 completes the engagement of the spline teeth 51t and the spline teeth 55t (the state shown in FIG. 1C) is defined as the engagement completion position. Although not shown, the relationship between the outer spline 52s and the inner spline 55s formed on the second driven gear 52 is similarly configured. That is, the actuator 59 strokes at least one of the spline teeth 51t and the spline teeth 55t in the disengagement direction.
 これにより、切替スリーブ55は、移動により、出力軸50と第1ドリブンギヤ51とを連結して1速段を形成する状態(図1C参照)、出力軸50と第2ドリブンギヤ52とを連結して2速段を形成する状態、いずれも連結しない解放状態としてのニュートラル状態(図1B参照)との3つの状態に切り替わることができる。 As a result, the switching sleeve 55 moves to connect the output shaft 50 and the first driven gear 51 to form the first gear (see FIG. 1C), and to connect the output shaft 50 and the second driven gear 52. It is possible to switch between three states: a state in which two gears are formed, and a neutral state (see FIG. 1B) as a disengaged state in which neither is coupled.
 この第1クラッチC1では、切替スリーブ55がニュートラル状態から第1ドリブンギヤ51側に移動されると、切替スリーブ55の内スプライン55sは、外スプライン54sと第1ドリブンギヤ51の外スプライン51sとに跨って係合し、切替スリーブ55が出力軸50と第1ドリブンギヤ51とを連結する低速段形成状態になる。これにより、入力軸40の回転は、第1カウンタギヤ41、第1ドリブンギヤ51、切替スリーブ55を介して、出力軸50に伝達される。 In the first clutch C1, when the switching sleeve 55 is moved from the neutral state to the first driven gear 51 side, the inner spline 55s of the switching sleeve 55 straddles the outer spline 54s and the outer spline 51s of the first driven gear 51. Then, the switching sleeve 55 connects the output shaft 50 and the first driven gear 51 to form a low speed step formation state. Thereby, the rotation of the input shaft 40 is transmitted to the output shaft 50 via the first counter gear 41 , the first driven gear 51 and the switching sleeve 55 .
 また、第1クラッチC1では、切替スリーブ55がニュートラル状態から第2ドリブンギヤ52側に移動されると、切替スリーブ55の内スプライン55sは、外スプライン54sと第2ドリブンギヤ52の外スプライン52sとに跨って係合し、切替スリーブ55が出力軸50と第2ドリブンギヤ52とを連結する高速段形成状態になる。これにより、入力軸40の回転は、第2カウンタギヤ42、第2ドリブンギヤ52、切替スリーブ55を介して、出力軸50に伝達される。 In the first clutch C1, when the switching sleeve 55 is moved from the neutral state toward the second driven gear 52, the inner spline 55s of the switching sleeve 55 straddles the outer spline 54s and the outer spline 52s of the second driven gear 52. , and the switching sleeve 55 connects the output shaft 50 and the second driven gear 52 to form a high-speed stage formation state. Thereby, the rotation of the input shaft 40 is transmitted to the output shaft 50 via the second counter gear 42 , the second driven gear 52 and the switching sleeve 55 .
 即ち、第1クラッチC1は、入力軸40に駆動連結されたスプライン歯51tと出力軸50に駆動連結されたスプライン歯55tとを有して、スプライン歯51t及びスプライン歯55tの係脱により入力軸40及び出力軸50の間の動力伝達経路を接断する。また、第1クラッチC1では、低速段形成時は、高速段形成時に比べてより大きく減速するように、各部のギヤ比が設定されている。 That is, the first clutch C1 has spline teeth 51t drivingly connected to the input shaft 40 and spline teeth 55t drivingly connected to the output shaft 50, and the input shaft is driven by disengaging the spline teeth 51t and the spline teeth 55t. The power transmission path between 40 and output shaft 50 is connected or disconnected. Further, in the first clutch C1, the gear ratio of each part is set so that the speed is reduced more greatly when the low-speed stage is formed than when the high-speed stage is formed.
 第2クラッチC2は、油圧サーボ58に係合圧が給排されることで係脱される摩擦クラッチ、例えば、多板式クラッチからなり、出力軸50に駆動連結された外摩擦板56と、第2ドリブンギヤ52に駆動連結された内摩擦板57とを有している。本実施形態では、第2クラッチC2は多板クラッチからなる場合について説明しているが、これには限られず、例えば単板クラッチなどを適用してもよい。 The second clutch C2 is a friction clutch that is engaged and disengaged by supplying and discharging engagement pressure to the hydraulic servo 58, for example, a multi-plate clutch. 2 and an inner friction plate 57 drivingly connected to the driven gear 52 . In the present embodiment, the case where the second clutch C2 is a multi-plate clutch is described, but the present invention is not limited to this, and a single-plate clutch or the like may be applied.
 油圧制御装置6から油圧サーボ58の油室に係合圧が供給されて第2クラッチC2が係合することにより、第2ドリブンギヤ52と出力軸50とが駆動連結された高速段形成状態になり、入力軸40の回転は、第2カウンタギヤ42、第2ドリブンギヤ52、第2クラッチC2を介して、出力軸50に伝達される。即ち、本実施形態では、第2ドリブンギヤ52と出力軸50とは第1クラッチC1と第2クラッチC2とのいずれでも駆動連結可能に設けられている。このため、2速段を形成する場合に、第2ドリブンギヤ52と出力軸50とを滑らせながら係合する際には第2クラッチC2を用い、係合後は第1クラッチC1を用いるようにして、第2クラッチC2のみを使用する場合に比べて消費電力の低減を図ることができる。 Engagement pressure is supplied from the hydraulic control device 6 to the oil chamber of the hydraulic servo 58 to engage the second clutch C2, whereby the second driven gear 52 and the output shaft 50 are driven and connected to form a high-speed stage forming state. , the rotation of the input shaft 40 is transmitted to the output shaft 50 via the second counter gear 42, the second driven gear 52, and the second clutch C2. That is, in the present embodiment, the second driven gear 52 and the output shaft 50 are provided so as to be drive-coupled with either the first clutch C1 or the second clutch C2. Therefore, when forming the second gear, the second clutch C2 is used when the second driven gear 52 and the output shaft 50 are engaged while sliding, and the first clutch C1 is used after the engagement. Therefore, power consumption can be reduced as compared with the case where only the second clutch C2 is used.
 即ち、この自動変速機4では、1速段を形成する際には、第1クラッチC1を第1ドリブンギヤ51側に係合状態にすると共に第2クラッチC2を解放状態にする。また、1速段よりも高速段である2速段を形成する際には、第1クラッチC1をニュートラル状態にすると共に第2クラッチC2を係合状態にするか、あるいは、第1クラッチC1を第2ドリブンギヤ52側に係合状態にするかの2系統を選択することができる。また、第1クラッチC1を第2ドリブンギヤ52側に係合状態にすることで2速段を形成する際は、切替スリーブ55と外スプライン54sと外スプライン51sとを解放状態にすると共に、切替スリーブ55と外スプライン54sと外スプライン52sとを係合状態にする。 That is, in the automatic transmission 4, when forming the first gear, the first clutch C1 is engaged toward the first driven gear 51 and the second clutch C2 is disengaged. Further, when the second speed, which is a higher speed than the first speed, is to be established, the first clutch C1 is put into the neutral state and the second clutch C2 is put into the engaged state, or the first clutch C1 is put into the engaged state. It is possible to select two systems to engage the second driven gear 52 side. Further, when the second gear is formed by engaging the first clutch C1 to the second driven gear 52 side, the switching sleeve 55, the outer splines 54s, and the outer splines 51s are released, and the switching sleeve 55, the outer splines 54s, and the outer splines 52s are brought into engagement.
 本実施の形態では、第1クラッチC1によっても2速段を形成可能である場合について説明しているが、これには限られず、少なくとも第2クラッチC2により第2ドリブンギヤ52と出力軸50とが駆動連結されるようになっていればよい。この場合、第1クラッチC1は、1速段を形成するときのみ係合するようにできる。 In the present embodiment, a case is described in which the second speed stage can also be formed by the first clutch C1, but the invention is not limited to this. It is sufficient that they are driven and connected. In this case, the first clutch C1 can be engaged only when forming the first gear.
 ディファレンシャル部60は、出力軸50と平行な軸上に配置された車軸61に駆動連結されている。ディファレンシャル部60は、出力軸50の出力ギヤ53に噛合されたデフリングギヤ62を備えており、デフリングギヤ62は、デフケースからピニオンギヤやサイドギヤ等を介して車軸61に回転を伝達する。これにより、出力軸50の回転をディファレンシャル部60によって減速し、かつ、左右の前輪70の差回転を吸収しつつ回転を伝達する。 The differential section 60 is drivingly connected to an axle 61 arranged on an axis parallel to the output shaft 50 . The differential portion 60 includes a differential ring gear 62 meshed with the output gear 53 of the output shaft 50, and the differential ring gear 62 transmits rotation from the differential case to the axle 61 via pinion gears, side gears, and the like. As a result, the rotation of the output shaft 50 is decelerated by the differential portion 60 , and the rotation is transmitted while absorbing the differential rotation between the left and right front wheels 70 .
 油圧制御装置6は、例えばバルブボディにより構成されており、不図示の機械式オイルポンプや電動オイルポンプから供給された油圧からライン圧等を生成する不図示のプライマリレギュレータバルブ等を有し、ECU5からの制御信号に基づいて各部に油圧を給排可能になっている。例えば、油圧制御装置6は、ECU5からの制御信号に基づいて第2クラッチC2の油圧サーボ58に油圧を給排することにより、第2クラッチC2を制御する。 The hydraulic control device 6 is composed of, for example, a valve body, and has a primary regulator valve (not shown) that generates line pressure or the like from hydraulic pressure supplied from a mechanical oil pump (not shown) or an electric oil pump (not shown). Hydraulic pressure can be supplied and discharged to each part based on the control signal from. For example, the hydraulic control device 6 controls the second clutch C2 by supplying and discharging hydraulic pressure to and from the hydraulic servo 58 of the second clutch C2 based on control signals from the ECU 5 .
 ECU5は、モータ3や第1クラッチC1を自在に指令制御し得ると共に、油圧制御装置6を電子制御する。即ち、ECU5は、アクチュエータ59を制御することにより第1クラッチC1の係合状態を変更可能であり、また、油圧制御装置6を介して係合圧を制御することにより第2クラッチC2の係合状態を変更可能である。また、電気自動車1にはアクセルペダル72とブレーキペダル73とが設けられており、それぞれECU5に接続されている。ECU5は、アクセルペダル72の踏み込み量をアクセル開度信号として取得し、ブレーキペダル73の踏み込み量をブレーキ信号として取得する。 The ECU 5 can freely command-control the motor 3 and the first clutch C1, and electronically control the hydraulic control device 6. That is, the ECU 5 can change the engagement state of the first clutch C1 by controlling the actuator 59, and can change the engagement state of the second clutch C2 by controlling the engagement pressure via the hydraulic control device 6. Can change state. The electric vehicle 1 is also provided with an accelerator pedal 72 and a brake pedal 73, which are connected to the ECU 5, respectively. The ECU 5 acquires the amount of depression of the accelerator pedal 72 as an accelerator opening signal, and acquires the amount of depression of the brake pedal 73 as a brake signal.
 また、車両用駆動装置2には、入力軸40の回転加速度を検出する加速度検出部の一例である回転速度センサ9が設けられている。ECU5は、回転速度センサ9に接続されており、回転速度センサ9の検出値を入力回転速度として取得し、入力回転速度を微分することにより入力回転加速度を得ることができる。 Further, the vehicle drive device 2 is provided with a rotation speed sensor 9 which is an example of an acceleration detection unit that detects the rotation acceleration of the input shaft 40 . The ECU 5 is connected to a rotation speed sensor 9, acquires a detection value of the rotation speed sensor 9 as an input rotation speed, and can obtain an input rotation acceleration by differentiating the input rotation speed.
 [停車時における第1クラッチの係合動作について]
 次に、電気自動車1が停車しており、第1クラッチC1が解放状態から係合状態に切り替えられる際の動作について、図2のフローチャートと図3のタイムチャートを用いて詳細に説明する。ここでは、電気自動車1は停車中で、自動変速機4は第1クラッチC1及び第2クラッチC2を解放状態にしてニュートラル状態であるものとする。そして、ブレーキペダル73が踏まれることで、発進の準備のために第1クラッチC1を第1ドリブンギヤ51側に係合させて1速段を形成するものとする。
[Regarding the engagement operation of the first clutch when the vehicle is stopped]
Next, the operation when the electric vehicle 1 is stopped and the first clutch C1 is switched from the released state to the engaged state will be described in detail with reference to the flow chart of FIG. 2 and the time chart of FIG. Here, it is assumed that the electric vehicle 1 is stopped and the automatic transmission 4 is in the neutral state with the first clutch C1 and the second clutch C2 released. Then, when the brake pedal 73 is stepped on, the first clutch C1 is engaged with the first driven gear 51 side in preparation for starting, and the first gear is established.
 尚、本実施形態では、停車中にシフトレバーがパーキングレンジやニュートラルレンジである場合でも、第1クラッチC1が第1ドリブンギヤ51側に係合している仕様の車両としている。このため、停車している電気自動車1がニュートラル状態になる例としては、例えば、走行時の変速中に急ブレーキで停車した場合など、第1クラッチC1の切り替わり動作中に止められてしまった場合が挙げられる。但し、停車中にシフトレバーがパーキングレンジやニュートラルレンジである場合でも第1クラッチC1が第1ドリブンギヤ51側に係合している仕様であることには限られず、停車中にシフトレバーがパーキングレンジやニュートラルレンジである場合に第1クラッチC1を解放状態とする仕様としてもよい。この場合、停車中にシフトレバーがパーキングレンジやニュートラルレンジであることで、第1クラッチC1が解放状態になる。 In this embodiment, the vehicle is designed so that the first clutch C1 is engaged with the first driven gear 51 even when the shift lever is in the parking range or the neutral range while the vehicle is stopped. For this reason, an example of when the stopped electric vehicle 1 enters the neutral state is, for example, when the vehicle is stopped during the switching operation of the first clutch C1, such as when the vehicle stops due to sudden braking during gear shifting during running. is mentioned. However, even if the shift lever is in the parking range or the neutral range while the vehicle is stopped, the specification is not limited to that the first clutch C1 is engaged with the first driven gear 51 side, and the shift lever is in the parking range while the vehicle is stopped. Alternatively, the specification may be such that the first clutch C1 is released when the vehicle is in the neutral range. In this case, the first clutch C1 is released because the shift lever is in the parking range or the neutral range while the vehicle is stopped.
 まず、電気自動車1は停車中で、第1クラッチC1を解放状態としている(図3のt0)。ECU5は、ブレーキ装置71に対するブレーキ信号がオン状態であるか否かを判断する(ステップS1)。ECU5は、ブレーキ信号がオン状態でないと判断した場合は(ステップS1のNO)、再び判断する(ステップS1)。 First, the electric vehicle 1 is stopped and the first clutch C1 is released (t0 in FIG. 3). The ECU 5 determines whether or not the brake signal to the brake device 71 is ON (step S1). When the ECU 5 determines that the brake signal is not ON (NO in step S1), it makes a determination again (step S1).
 ここで、本実施形態では、ブレーキペダル73を踏むことで、シフトレバーを例えばパーキングレンジからドライブレンジに切り替えて発進の準備を行うため、ブレーキペダル73からのブレーキ信号を検出するようにしている。但し、検出するブレーキ信号は、ブレーキペダル73からのブレーキ信号には限られない。例えば、仕様によって、パーキングレンジで停車時にブレーキペダル73を踏まずにイグニションをオン状態にしたときに第1クラッチC1が解放状態であることを検知することで第1クラッチC1を第1ドリブンギヤ51側に係合するようにした場合は、ブレーキペダル73は操作されないのでブレーキ装置の一例としてのパーキングブレーキへのブレーキ信号を検出するようにしてもよい。あるいは、例えば、ブレーキペダル73が踏まれていない場合に、何らかの条件に応じてブレーキ装置71により自動ブレーキを作動させる場合は、自動ブレーキを作動させるためにECU5から出力されるブレーキ信号を検出するようにしてもよい。 Here, in this embodiment, when the brake pedal 73 is stepped on, the shift lever is switched from, for example, the parking range to the drive range to prepare for starting, so a brake signal from the brake pedal 73 is detected. However, the brake signal to be detected is not limited to the brake signal from the brake pedal 73 . For example, depending on the specification, when the ignition is turned on without stepping on the brake pedal 73 when the vehicle is stopped in the parking range, the first clutch C1 is detected to be in the released state, thereby switching the first clutch C1 to the first driven gear 51 side. is engaged, the brake pedal 73 is not operated, so a brake signal to a parking brake, which is an example of a brake device, may be detected. Alternatively, for example, when the brake pedal 73 is not stepped on and the brake device 71 is to operate the automatic brake according to some condition, the brake signal output from the ECU 5 for activating the automatic brake is detected. can be
 ECU5は、ブレーキ信号がオン状態であると判断した場合は(ステップS1のYES、図3のt1)、第1クラッチC1をニュートラル状態から第1ドリブンギヤ51側への係合状態に切り替える係合判断をし、モータ3の回転速度を回転数制御により加速する(ステップS2、図3のt2-t3)。ECU5は、モータ3の回転速度が第1所定回転速度N1に到達したか否かを判断する(ステップS3)。ECU5は、モータ3の回転速度が第1所定回転速度N1に到達していないと判断した場合は(ステップS3のNO)、モータ3の回転速度の加速を継続する(ステップS2)。 When the ECU 5 determines that the brake signal is in the ON state (YES in step S1, t1 in FIG. 3), the ECU 5 determines engagement to switch the first clutch C1 from the neutral state to the engagement state toward the first driven gear 51 side. Then, the rotation speed of the motor 3 is accelerated by rotation speed control (step S2, t2-t3 in FIG. 3). The ECU 5 determines whether or not the rotation speed of the motor 3 has reached the first predetermined rotation speed N1 (step S3). When the ECU 5 determines that the rotation speed of the motor 3 has not reached the first predetermined rotation speed N1 (NO in step S3), the acceleration of the rotation speed of the motor 3 is continued (step S2).
 ECU5は、モータ3の回転速度が第1所定回転速度N1に到達したと判断した場合は(ステップS3のYES、図3のt3)、モータトルクをオフ状態(0Nm)にする(ステップS4)。これにより、入力回転速度は減速し、入力軸40の入力回転加速度が負の一定値になる(図3のt3-t5)。ECU5は、モータ3の回転速度が第2所定回転速度N2に到達したか否かを判断する(ステップS5)。ECU5は、モータ3の回転速度が第2所定回転速度N2に到達していないと判断した場合は(ステップS5のNO)、モータトルクをオフ状態にした状態を継続する(ステップS4)。 When the ECU 5 determines that the rotation speed of the motor 3 has reached the first predetermined rotation speed N1 (YES in step S3, t3 in FIG. 3), the motor torque is turned off (0 Nm) (step S4). As a result, the input rotation speed is reduced and the input rotation acceleration of the input shaft 40 becomes a constant negative value (t3-t5 in FIG. 3). The ECU 5 determines whether or not the rotation speed of the motor 3 has reached the second predetermined rotation speed N2 (step S5). When the ECU 5 determines that the rotation speed of the motor 3 has not reached the second predetermined rotation speed N2 (NO in step S5), the motor torque is kept off (step S4).
 ECU5は、モータ3の回転速度が第2所定回転速度N2に到達したと判断した場合は(ステップS5のYES、図3のt4)、第1クラッチC1を解放状態から第1ドリブンギヤ51側への係合状態に切り替えるように、アクチュエータ59に指令するストローク位置の目標指令値を、スプライン歯51t及びスプライン歯55tが噛み合いを開始する係合開始位置までステップ状に上昇させる(ステップS6、図3のt4-t5)。ECU5は、スプライン歯51tが係合開始位置まで到達したか否かを判断する(ステップS7)。ECU5は、スプライン歯51tが係合開始位置まで到達していないと判断した場合は(ステップS7のNO)、目標指令値の出力を継続する(ステップS6)。ECU5は、スプライン歯51tが係合開始位置まで到達したと判断した場合は(ステップS7のYES)、アクチュエータ59に指令するストローク位置の目標指令値を、係合完了位置までスイープ状に上昇させる(ステップS8、図3のt5-t6)。即ち、ECU5は、第1クラッチC1を解放状態から係合状態に切り替える際のスプライン歯51t及びスプライン歯55tの少なくとも一方を係脱させる方向にストロークさせる速度が、スプライン歯51t及びスプライン歯55tが噛み合いを開始する位置に到達する前に比べて、スプライン歯51t及びスプライン歯55tが噛み合いを開始する位置に到達した後が遅くなるようにアクチュエータ59を制御する。 When the ECU 5 determines that the rotation speed of the motor 3 has reached the second predetermined rotation speed N2 (YES in step S5, t4 in FIG. 3), the ECU 5 releases the first clutch C1 from the released state to the first driven gear 51 side. In order to switch to the engaged state, the target stroke position command value for instructing the actuator 59 is stepped up to the engagement start position where the spline teeth 51t and 55t start meshing (step S6, FIG. 3). t4-t5). The ECU 5 determines whether or not the spline tooth 51t has reached the engagement start position (step S7). When the ECU 5 determines that the spline tooth 51t has not reached the engagement start position (NO in step S7), it continues to output the target command value (step S6). When the ECU 5 determines that the spline teeth 51t have reached the engagement start position (YES in step S7), the target command value of the stroke position to be commanded to the actuator 59 is swept up to the engagement completion position ( Step S8, t5-t6 in FIG. 3). That is, the ECU 5 determines that the speed at which at least one of the spline teeth 51t and 55t is stroked in the disengagement direction when switching the first clutch C1 from the disengaged state to the engagement state of the spline teeth 51t and 55t. The actuator 59 is controlled so that the spline teeth 51t and the spline teeth 55t reach the position at which meshing starts later than before reaching the position at which the engagement of the spline teeth 51t and 55t is started.
 ここで、ECU5は、入力回転速度が急激に変化したか否かを判断する(ステップS9)。ECU5は、入力回転速度が急激に変化したか否かを、回転速度センサ9の検出値に基づいて判断する。即ち、ECU5は、回転速度センサ9により入力軸40の回転加速度の変化を検出したときに、スプライン歯51t及びスプライン歯55tが噛み合い開始したことを判断する。 Here, the ECU 5 determines whether or not the input rotational speed has changed rapidly (step S9). The ECU 5 determines whether or not the input rotation speed has changed abruptly based on the detection value of the rotation speed sensor 9 . That is, the ECU 5 determines that the spline teeth 51t and 55t have started meshing when the rotational speed sensor 9 detects a change in the rotational acceleration of the input shaft 40 .
 ECU5は、入力回転速度が急激に変化したと判断した場合は(ステップS9のYES)、モータ3から逆位相のトルクを出力させる(ステップS10、図3のt5)。即ち、ECU5は、モータ3を回転した状態でスプライン歯55tをストロークしてスプライン歯51tに接近させ、スプライン歯51t及びスプライン歯55tが噛み合って入力軸40と出力軸50とが係合してモータ3及び入力軸40の回転が減速する。このとき、ECU5は、モータ3から、モータ3及び入力軸40の回転の減速に伴って発生するイナーシャトルクを打ち消す逆位相のトルクを出力させる。これにより、モータ3からの駆動力が第1クラッチC1の係合によってイナーシャトルクとして伝達されることで出力トルクを発生してしまうことを抑制し、イナーシャトルクに起因するショックの発生を軽減することができる。 When the ECU 5 determines that the input rotational speed has changed abruptly (YES in step S9), it causes the motor 3 to output reverse phase torque (step S10, t5 in FIG. 3). That is, the ECU 5 strokes the spline teeth 55t to approach the spline teeth 51t while the motor 3 is rotating. 3 and input shaft 40 slow down. At this time, the ECU 5 causes the motor 3 to output a reverse phase torque that cancels out the inertia torque that occurs as the rotation of the motor 3 and the input shaft 40 decelerates. This suppresses the generation of output torque due to the driving force from the motor 3 being transmitted as inertia torque due to the engagement of the first clutch C1, and reduces the shock caused by the inertia torque. can be done.
 ECU5は、モータ3から逆位相のトルクを出力した後、モータ3を所定トルク未満のトルクに制御する。ここでの所定トルクは、係合完了位置まで第1クラッチC1を係合させることができる大きさのトルクであり、アクチュエータ59が発生し得る最大出力、スプライン歯51tの先端部51eの角度や摩擦係数とそれらの個体差等を考慮して設定される。なお、本実施形態では、所定トルク未満のトルクを、一例として0Nmとしている。 The ECU 5 controls the torque of the motor 3 to be less than the predetermined torque after outputting the torque of the opposite phase from the motor 3 . The predetermined torque here is a torque of a magnitude that can engage the first clutch C1 to the engagement completion position, and is the maximum output that can be generated by the actuator 59, the angle of the tip portion 51e of the spline tooth 51t, and the frictional force. It is set in consideration of coefficients and their individual differences. Note that, in the present embodiment, the torque less than the predetermined torque is set to 0 Nm as an example.
 ECU5は、スプライン歯55tが係合完了位置に到達したか否かを判断する(ステップS11)。ECU5は、スプライン歯55tが係合完了位置に到達したか否かを、例えば、第1クラッチC1の差回転が無くなってから所定時間を経過したか否かのタイマに基づいて判断する。あるいは、切替スリーブ55の位置を検出するセンサを利用するようにしてもよい。ECU5は、スプライン歯55tが係合完了位置に到達したと判断した場合は(ステップS11のYES)、処理を終了する。 The ECU 5 determines whether or not the spline tooth 55t has reached the engagement completion position (step S11). The ECU 5 determines whether or not the spline teeth 55t have reached the engagement completion position, for example, based on a timer that determines whether or not a predetermined period of time has elapsed since the differential rotation of the first clutch C1 was lost. Alternatively, a sensor that detects the position of the switching sleeve 55 may be used. When the ECU 5 determines that the spline tooth 55t has reached the engagement completion position (YES in step S11), the process ends.
 ECU5は、スプライン歯55tが係合完了位置に到達していないと判断した場合は(ステップS11のNO)、アクチュエータ59の目標指令値のスイープ状の上昇を継続する(ステップS8、図3のt5-t6)。尚、ステップS9において、ECU5は入力回転速度が急激に変化していないと判断した場合は(ステップS9のNO)、モータ3から逆位相トルクを出力することなく、スプライン歯55tが係合完了位置に到達したか否かを判断する(ステップS11)。なお、ECU5は、停車中に第1クラッチC1が解放状態から係合状態に切り替わるまでの間、ブレーキ装置71あるいはパーキングブレーキにおいて制動力を発生させている。 When the ECU 5 determines that the spline tooth 55t has not reached the engagement completion position (NO in step S11), the sweep-like increase of the target command value of the actuator 59 is continued (step S8, t5 in FIG. 3). -t6). In step S9, when the ECU 5 determines that the input rotation speed has not changed rapidly (NO in step S9), the spline teeth 55t do not output the opposite phase torque from the motor 3, and the spline teeth 55t reach the engagement completion position. is reached (step S11). The ECU 5 causes the brake device 71 or the parking brake to generate a braking force until the first clutch C1 is switched from the released state to the engaged state while the vehicle is stopped.
 以上説明したように、本実施形態の車両用駆動装置2によると、ECU5は、停車中に第1クラッチC1を解放状態から第1ドリブンギヤ51側への係合状態に切り替える係合判断をした場合に、モータ3を回転した状態でスプライン歯51t及びスプライン歯55tをストロークして互いに接近させる。そして、ECU5は、スプライン歯51t及びスプライン歯55tが噛み合って入力軸40と出力軸50とが係合してモータ3及び入力軸40の回転が減速するときに、モータ3からモータ3及び入力軸40の回転の減速に伴って発生するイナーシャトルクを打ち消す逆位相のトルクを出力させる。このため、モータ3からの駆動力が第1クラッチC1の係合によってイナーシャトルクとして伝達されることで出力トルクを発生してしまうことを抑制し、イナーシャトルクに起因するショックの発生を軽減することができる。また、これにより、ドライバの乗り心地を向上することができる。 As described above, according to the vehicle drive system 2 of the present embodiment, when the ECU 5 determines that the first clutch C1 is switched from the released state to the engaged state toward the first driven gear 51 while the vehicle is stopped, Then, while the motor 3 is rotating, the spline teeth 51t and the spline teeth 55t are stroked to approach each other. Then, when the spline teeth 51t and the spline teeth 55t are meshed and the input shaft 40 and the output shaft 50 are engaged with each other and the rotation of the motor 3 and the input shaft 40 is decelerated, the ECU 5 rotates the motor 3 and the input shaft from the motor 3. A reverse phase torque that cancels out the inertia torque that occurs with the deceleration of the rotation of 40 is output. Therefore, it is possible to suppress the generation of output torque due to the driving force from the motor 3 being transmitted as inertia torque by the engagement of the first clutch C1, thereby reducing the occurrence of shock caused by the inertia torque. can be done. In addition, this makes it possible to improve the riding comfort of the driver.
 また、本実施形態の車両用駆動装置2によると、停車中に係合判断をした場合に、モータ3を回転した状態でスプライン歯51t及びスプライン歯55tをストロークして互いに接近させる。このため、スプライン歯51tの先端部51eとスプライン歯55tの先端部54eとが軸方向に当接して噛み合わない場合に回転を開始する場合に比べて、第1クラッチC1の係合に要する時間を短縮することができる。このため、第1クラッチC1の係合時における係合完了までの時間の差異の発生を抑制できる。 Further, according to the vehicle drive device 2 of the present embodiment, when the engagement determination is made while the vehicle is stopped, the spline teeth 51t and the spline teeth 55t are stroked to approach each other while the motor 3 is rotating. Therefore, the time required for engagement of the first clutch C1 is longer than when the rotation is started when the tip end portion 51e of the spline tooth 51t and the tip end portion 54e of the spline tooth 55t are in contact with each other in the axial direction and do not mesh with each other. can be shortened. Therefore, it is possible to suppress the occurrence of a difference in the time until the engagement is completed when the first clutch C1 is engaged.
 また、本実施形態の車両用駆動装置2によると、ECU5は、停車時に係合判断をした後、モータ3により入力軸40の回転加速度を一定となるように制御し、回転速度センサ9により入力軸40の回転加速度の変化を検出したときに、スプライン歯51t及びスプライン歯55tが噛み合い開始したことを判断して、モータ3から逆位相のトルクを出力する。このため、スプライン歯51t及びスプライン歯55tが噛み合い開始したことを、簡易な構成で迅速に判断できるようになる。 Further, according to the vehicle drive system 2 of the present embodiment, the ECU 5 controls the rotational acceleration of the input shaft 40 by the motor 3 so as to be constant after determining the engagement when the vehicle is stopped, and the rotational acceleration of the input shaft 40 is input by the rotational speed sensor 9. When a change in rotational acceleration of the shaft 40 is detected, it is determined that the spline teeth 51t and 55t have started meshing, and the motor 3 outputs a torque of opposite phase. Therefore, it is possible to quickly determine that the spline teeth 51t and 55t have started meshing with a simple configuration.
 また、本実施形態の車両用駆動装置2によると、ECU5は、モータ3から逆位相のトルクを出力した後、モータ3を所定トルク、本実施形態ではアクチュエータ59によって係合完了位置まで第1クラッチC1を係合させることができる大きさのトルク未満のトルクに制御する。このため、モータ3から逆位相のトルクを出力した後、第1クラッチC1の係合を速やか、かつ、確実にできるようになる。 Further, according to the vehicle drive system 2 of the present embodiment, after the ECU 5 outputs the torque of the opposite phase from the motor 3, the motor 3 is driven to the engagement completion position by the predetermined torque and the actuator 59 in the present embodiment. The torque is controlled to be less than the torque that can engage C1. Therefore, after the torque of the opposite phase is output from the motor 3, the first clutch C1 can be quickly and reliably engaged.
 また、本実施形態の車両用駆動装置2によると、ECU5は、停車時に係合判断をした場合に、アクチュエータ59に指令するストローク位置の目標指令値を、スプライン歯51t及びスプライン歯55tの係合開始位置までステップ状に上昇させる。また、ECU5は、スプライン歯51t及びスプライン歯55tが係合開始位置に到達した後は、アクチュエータ59に指令するストローク位置の目標指令値を、係合完了位置までスイープ状に上昇させる。即ち、ECU5は、第1クラッチC1を解放状態から係合状態に切り替える際のスプライン歯51t及びスプライン歯55tの少なくとも一方を係脱させる方向にストロークさせる速度が、スプライン歯51t及びスプライン歯55tが噛み合いを開始する位置に到達する前に比べて、スプライン歯51t及びスプライン歯55tが噛み合いを開始する位置に到達した後が遅くなるようにアクチュエータ59を制御する。これにより、係合開始位置まではレスポンス性を優先し、係合開始位置に達した後は徐々に係合することで確実な係合動作を担保することができる。 Further, according to the vehicle drive system 2 of the present embodiment, when the ECU 5 determines the engagement when the vehicle is stopped, the target command value of the stroke position to be instructed to the actuator 59 is set to the engagement of the spline teeth 51t and the spline teeth 55t. Step up to the starting position. After the spline teeth 51t and 55t reach the engagement start position, the ECU 5 sweeps up the stroke position target command value to the actuator 59 to the engagement completion position. That is, the ECU 5 determines that the speed at which at least one of the spline teeth 51t and 55t is stroked in the disengagement direction when switching the first clutch C1 from the disengaged state to the engagement state of the spline teeth 51t and 55t. The actuator 59 is controlled so that the spline teeth 51t and the spline teeth 55t reach the position at which meshing starts later than before reaching the position at which the engagement of the spline teeth 51t and 55t is started. As a result, by prioritizing responsiveness up to the engagement start position and gradually engaging after reaching the engagement start position, a reliable engagement operation can be ensured.
 また、本実施形態の車両用駆動装置2によると、ECU5は、停車中に第1クラッチC1が解放状態から係合状態に切り替わるまでの間、ブレーキ装置71あるいはパーキングブレーキにおいて制動力を発生させる。このため、制動力を掛けながら係合完了させるので、第1クラッチC1の係合時におけるイナーシャトルクによるショックの発生をさらに低減することができる。 Further, according to the vehicle drive system 2 of the present embodiment, the ECU 5 causes the braking device 71 or the parking brake to generate braking force until the first clutch C1 switches from the released state to the engaged state while the vehicle is stopped. Therefore, since the engagement is completed while the braking force is being applied, it is possible to further reduce the shock caused by the inertia torque when the first clutch C1 is engaged.
 また、本実施形態の車両用駆動装置2によると、ECU5は、停車中で、かつ、ブレーキ装置71に対するブレーキ信号がオン状態になった場合に、係合判断をする。このため、アクセル開度信号がオン状態になってから係合判断する場合に比べて、レスポンス性の向上を図ることができる。 Further, according to the vehicle drive system 2 of the present embodiment, the ECU 5 determines engagement when the vehicle is stopped and the brake signal to the brake device 71 is turned on. Therefore, it is possible to improve the responsiveness as compared with the case where the engagement determination is made after the accelerator opening signal is turned on.
 上述した本実施形態の車両用駆動装置2では、ブレーキ信号がオン状態になることにより係合判断をしているが、これには限られず、ブレーキ信号がオフ状態のままであっても、例えばアクセル開度信号のオン状態など、他の条件によって係合判断をするようにしてもよい。 In the vehicle drive system 2 of the present embodiment described above, the engagement determination is made when the brake signal is turned on. However, the present invention is not limited to this. Engagement determination may be made according to other conditions such as the ON state of the accelerator opening signal.
 また、本実施形態の車両用駆動装置2では、噛合クラッチの一例としてスプライン歯同士が噛合する第1クラッチC1を適用した場合について説明したが、これには限られず、噛合クラッチとしてドグクラッチなどを適用してもよい。また、本実施形態の車両用駆動装置2では、噛合クラッチを自動変速機4に適用した場合について説明したが、これには限られず、動力伝達経路を接断する噛合クラッチを利用する動力伝達機構の全般に適用することができる。 In addition, in the vehicle drive system 2 of the present embodiment, the case where the first clutch C1 in which the spline teeth mesh with each other is applied as an example of the dog clutch has been described, but the present invention is not limited to this, and a dog clutch or the like is applied as the dog clutch. You may In addition, in the vehicle drive system 2 of the present embodiment, the case where the dog clutch is applied to the automatic transmission 4 has been described, but the present invention is not limited to this, and the power transmission mechanism using the dog clutch for connecting and disconnecting the power transmission path. can be applied to the general
 また、本実施形態では、モータ3が駆動源として用いられる電気自動車1を車両の一例として説明したが、これには限られない。例えば駆動源としてエンジンとモータとを搭載したハイブリッド車両であっても構わず、つまり回転電機と車輪との間の動力伝達経路を接断する噛合クラッチを利用する車両用駆動装置であれば、どのような車両に搭載されても構わない。 Also, in the present embodiment, the electric vehicle 1 in which the motor 3 is used as a drive source has been described as an example of the vehicle, but the vehicle is not limited to this. For example, it may be a hybrid vehicle equipped with an engine and a motor as drive sources, that is, any vehicle drive device that utilizes a dog clutch that connects and disconnects a power transmission path between a rotating electric machine and wheels. It may be mounted on such a vehicle.
 <第2の実施形態>
 次に、本開示の第2の実施形態を、図4及び図5を参照しながら詳細に説明する。本実施形態では、図5に示すように、ブレーキ信号がオン状態にされてから入力回転速度が上昇し第3所定回転速度N3まで上昇した後、そのまま一定になる点で、第1の実施形態と構成を異にしている。但し、それ以外の構成については、第1の実施形態と同様であるので、符号を同じくして詳細な説明を省略する。
<Second embodiment>
Next, a second embodiment of the present disclosure will be described in detail with reference to FIGS. 4 and 5. FIG. In the present embodiment, as shown in FIG. 5, after the brake signal is turned on, the input rotation speed increases and after reaching the third predetermined rotation speed N3, it remains constant. and have different configurations. However, since other configurations are the same as those of the first embodiment, the same reference numerals are used and detailed description thereof is omitted.
 [停車時における第1クラッチの係合動作について]
 本実施形態において、電気自動車1が停車しており、第1クラッチC1が解放状態から係合状態に切り替えられる際の動作について、図4のフローチャートと図5のタイムチャートを用いて詳細に説明する。尚、図4のフローチャートと図5のタイムチャートにおいても、第1の実施形態と同様の処理については符号を同じくして詳細な説明を省略する。ここでは、電気自動車1は停車中で、自動変速機4は第1クラッチC1及び第2クラッチC2を解放状態にしてニュートラル状態であるものとする。そして、ブレーキペダル73が踏まれることで、発進の準備のために第1クラッチC1を第1ドリブンギヤ51側に係合させて1速段を形成するものとする。また、図4に示すステップS1~ステップS2(図5のt0-t2)については、第1の実施形態と同様であるので、それ以降について説明する。
[Regarding the engagement operation of the first clutch when the vehicle is stopped]
In this embodiment, the operation when the electric vehicle 1 is stopped and the first clutch C1 is switched from the released state to the engaged state will be described in detail with reference to the flowchart of FIG. 4 and the time chart of FIG. . In the flowchart of FIG. 4 and the time chart of FIG. 5 as well, the same processing as in the first embodiment is denoted by the same reference numerals, and detailed description thereof will be omitted. Here, it is assumed that the electric vehicle 1 is stopped and the automatic transmission 4 is in the neutral state with the first clutch C1 and the second clutch C2 released. Then, when the brake pedal 73 is stepped on, the first clutch C1 is engaged with the first driven gear 51 side in preparation for starting, and the first gear is established. Also, since steps S1 to S2 (t0 to t2 in FIG. 5) shown in FIG. 4 are the same as those in the first embodiment, the subsequent steps will be described.
 ECU5は、モータ3の回転速度が第3所定回転速度N3に到達したか否かを判断する(ステップS13)。ECU5は、モータ3の回転速度が第3所定回転速度N3に到達していないと判断した場合は(ステップS13のNO)、モータ3の回転速度の加速を継続する(ステップS2)。 The ECU 5 determines whether or not the rotation speed of the motor 3 has reached the third predetermined rotation speed N3 (step S13). When the ECU 5 determines that the rotation speed of the motor 3 has not reached the third predetermined rotation speed N3 (NO in step S13), the acceleration of the rotation speed of the motor 3 is continued (step S2).
 ECU5は、モータ3の回転速度が第3所定回転速度N3に到達したと判断した場合は(ステップS13のYES、図5のt13)、モータ3の回転速度を第3所定回転速度N3のまま維持するように、モータトルクを出力する(図5のt13-t5)。尚、このとき、入力回転速度が一定であるので、入力回転加速度は0となる。 When the ECU 5 determines that the rotation speed of the motor 3 has reached the third predetermined rotation speed N3 (YES in step S13, t13 in FIG. 5), the rotation speed of the motor 3 is maintained at the third predetermined rotation speed N3. Then, the motor torque is output (t13-t5 in FIG. 5). At this time, since the input rotational speed is constant, the input rotational acceleration is zero.
 ECU5は、第1クラッチC1を解放状態から第1ドリブンギヤ51側への係合状態に切り替えるように、アクチュエータ59に指令するストローク位置の目標指令値を、スプライン歯51t及びスプライン歯55tが噛み合いを開始する係合開始位置までステップ状に上昇させる(ステップS6、図5のt14)。この後、図4に示すステップS6~ステップS11(図5のt14-t6)については、第1の実施形態と同様であるので、詳細な説明を省略する。 The ECU 5 sets the target stroke position command value to the actuator 59 so that the first clutch C1 is switched from the disengaged state to the engaged state toward the first driven gear 51, and the spline teeth 51t and 55t start meshing. stepped up to the engaging start position (step S6, t14 in FIG. 5). After that, steps S6 to S11 (t14 to t6 in FIG. 5) shown in FIG. 4 are the same as in the first embodiment, so detailed description thereof will be omitted.
 以上説明したように、本実施形態の車両用駆動装置2によると、ECU5は、停車中に第1クラッチC1を解放状態から第1ドリブンギヤ51側への係合状態に切り替える係合判断をした場合に、モータ3を回転した状態でスプライン歯51t及びスプライン歯55tをストロークして互いに接近させる。そして、ECU5は、スプライン歯51t及びスプライン歯55tが噛み合って入力軸40と出力軸50とが係合してモータ3及び入力軸40の回転が減速するときに、モータ3からモータ3及び入力軸40の回転の減速に伴って発生するイナーシャトルクを打ち消す逆位相のトルクを出力させる。このため、モータ3からの駆動力が第1クラッチC1の係合によってイナーシャトルクとして伝達されることで出力トルクを発生してしまうことを抑制し、イナーシャトルクに起因するショックの発生を軽減することができる。また、これにより、ドライバの乗り心地を向上することができる。 As described above, according to the vehicle drive system 2 of the present embodiment, when the ECU 5 determines that the first clutch C1 is switched from the released state to the engaged state toward the first driven gear 51 while the vehicle is stopped, Then, while the motor 3 is rotating, the spline teeth 51t and the spline teeth 55t are stroked to approach each other. Then, when the spline teeth 51t and the spline teeth 55t are meshed and the input shaft 40 and the output shaft 50 are engaged with each other and the rotation of the motor 3 and the input shaft 40 is decelerated, the ECU 5 rotates the motor 3 and the input shaft from the motor 3. A reverse phase torque that cancels out the inertia torque that occurs with the deceleration of the rotation of 40 is output. Therefore, it is possible to suppress the generation of output torque due to the driving force from the motor 3 being transmitted as inertia torque by the engagement of the first clutch C1, thereby reducing the occurrence of shock caused by the inertia torque. can be done. In addition, this makes it possible to improve the riding comfort of the driver.
 また、本実施形態の車両用駆動装置2によると、停車中に係合判断をした場合に、モータ3を回転した状態でスプライン歯51t及びスプライン歯55tをストロークして互いに接近させる。このため、スプライン歯51tの先端部51eとスプライン歯55tの先端部54eとが軸方向に当接して噛み合わない場合に回転を開始する場合に比べて、第1クラッチC1の係合に要する時間を短縮することができる。 Further, according to the vehicle drive device 2 of the present embodiment, when the engagement determination is made while the vehicle is stopped, the spline teeth 51t and the spline teeth 55t are stroked to approach each other while the motor 3 is rotating. Therefore, the time required for engagement of the first clutch C1 is longer than when the rotation is started when the tip end portion 51e of the spline tooth 51t and the tip end portion 54e of the spline tooth 55t are in contact with each other in the axial direction and do not mesh with each other. can be shortened.
 また、本実施形態の車両用駆動装置2によると、ECU5は、モータ3の回転速度を第3所定回転速度N3まで加速してから減速することなく第1クラッチC1の係合を開始している。このため、モータ3の回転速度を第3所定回転速度N3から所定回転速度まで減速してから第1クラッチC1の係合を開始する場合に比べて、レスポンス性を向上することができる。 Further, according to the vehicle drive system 2 of the present embodiment, the ECU 5 accelerates the rotation speed of the motor 3 to the third predetermined rotation speed N3 and then starts engagement of the first clutch C1 without decelerating it. . Therefore, the responsiveness can be improved compared to the case where the engagement of the first clutch C1 is started after the rotation speed of the motor 3 is reduced from the third predetermined rotation speed N3 to the predetermined rotation speed.
 本開示に係る車両用駆動装置は、例えば、自動車等の車両に搭載される噛合クラッチを有する動力伝達機構及び回転電機を備えた車両用駆動装置に適用することが可能である。 A vehicle drive system according to the present disclosure can be applied to, for example, a vehicle drive system equipped with a power transmission mechanism having a dog clutch and a rotating electric machine mounted in a vehicle such as an automobile.
2…車両用駆動装置、3…モータ(回転電機)、4…自動変速機(動力伝達機構)、5…ECU(制御装置)、9…回転速度センサ(加速度検出部)、40…入力軸(入力部材)、50…出力軸(出力部材)、51t…スプライン歯(第1突歯)、55t…スプライン歯(第2突歯)、59…アクチュエータ(駆動部)、70…前輪(車輪)、71…ブレーキ装置、C1…第1クラッチ(噛合クラッチ) 2... Vehicle drive device, 3... Motor (rotary electric machine), 4... Automatic transmission (power transmission mechanism), 5... ECU (control device), 9... Rotational speed sensor (acceleration detector), 40... Input shaft ( Input member) 50 Output shaft (output member) 51t Spline tooth (first tooth) 55t Spline tooth (second tooth) 59 Actuator (drive unit) 70 Front wheel (wheel) 71 Brake device, C1... First clutch (meshing clutch)

Claims (5)

  1.  固定子及び回転子を有する回転電機と、
     前記回転電機の回転子に駆動連結された入力部材と、車輪に駆動連結された出力部材と、前記入力部材に駆動連結された第1突歯と前記出力部材に駆動連結された第2突歯とを有して前記第1突歯及び前記第2突歯の係脱により前記入力部材及び前記出力部材の間の動力伝達経路を接断する噛合クラッチと、を有し、前記噛合クラッチが係合しているときに前記入力部材に入力された回転を前記出力部材から出力する動力伝達機構と、
     前記回転電機及び前記噛合クラッチを制御する制御装置と、を備え、
     前記制御装置は、停車中に前記噛合クラッチを解放状態から係合状態に切り替える係合判断をした場合に、前記回転電機を回転した状態で前記第1突歯及び前記第2突歯をストロークして互いに接近させ、前記第1突歯及び前記第2突歯が噛み合って前記入力部材と前記出力部材とが係合して前記回転電機及び前記入力部材の回転が減速するときに、前記回転電機から前記回転電機及び前記入力部材の回転の減速に伴って発生するイナーシャトルクを打ち消す逆位相のトルクを出力させる車両用駆動装置。
    a rotating electric machine having a stator and a rotor;
    An input member drivingly connected to the rotor of the rotating electric machine, an output member drivingly connected to the wheel, a first toothed tooth drivingly connected to the input member, and a second toothed tooth drivingly connected to the output member. a dog clutch for connecting and disconnecting the power transmission path between the input member and the output member by engaging and disengaging the first tooth and the second tooth, wherein the dog clutch is engaged. a power transmission mechanism that outputs the rotation input to the input member from the output member;
    a control device that controls the rotating electric machine and the dog clutch;
    When the control device makes an engagement determination to switch the dog clutch from the disengaged state to the engaged state while the vehicle is stopped, the control device strokes the first protruding tooth and the second protruding tooth while rotating the rotating electric machine to When the input member and the output member are brought into engagement with each other and the rotation of the rotating electrical machine and the input member is decelerated, the rotation of the rotating electrical machine and the input member is decelerated. and a vehicle driving device for outputting reverse phase torque for canceling inertia torque generated with deceleration of rotation of the input member.
  2.  前記入力部材の回転加速度を検出する加速度検出部を備え、
     前記制御装置は、前記係合判断をした後、前記回転電機により前記入力部材の回転加速度を一定となるように制御し、前記加速度検出部により前記入力部材の回転加速度の変化を検出したときに、前記第1突歯及び前記第2突歯が噛み合い開始したことを判断して、前記回転電機から前記逆位相のトルクを出力する請求項1に記載の車両用駆動装置。
    An acceleration detection unit that detects rotational acceleration of the input member,
    After making the engagement determination, the control device causes the rotating electrical machine to control the rotational acceleration of the input member to be constant, and when the acceleration detection unit detects a change in the rotational acceleration of the input member, 2. The vehicular driving device according to claim 1, wherein said rotating electric machine outputs said opposite phase torque after judging that said first tooth and said second tooth begin to mesh with each other.
  3.  前記制御装置は、前記回転電機から前記逆位相のトルクを出力した後、前記回転電機を所定トルク未満のトルクに制御する請求項1又は2に記載の車両用駆動装置。 The vehicle driving device according to claim 1 or 2, wherein the control device controls the rotating electrical machine to a torque less than a predetermined torque after outputting the reverse phase torque from the rotating electrical machine.
  4.  前記第1突歯及び前記第2突歯の少なくとも一方を係脱させる方向にストロークさせる駆動部を備え、
     前記制御装置は、前記噛合クラッチを解放状態から係合状態に切り替える際の前記第1突歯及び前記第2突歯の少なくとも一方を係脱させる方向にストロークさせる速度が、前記第1突歯及び前記第2突歯が噛み合いを開始する位置に到達する前に比べて、前記第1突歯及び前記第2突歯が噛み合いを開始する位置に到達した後が遅くなるように前記駆動部を制御する請求項3に記載の車両用駆動装置。
    a drive unit that strokes at least one of the first tooth and the second tooth in a direction to engage and disengage,
    The control device is configured such that a stroke speed of at least one of the first toothed teeth and the second toothed teeth in a disengaging direction when switching the dog clutch from a disengaged state to an engaged state is set to 4. The driving unit according to claim 3, wherein the drive unit is controlled such that after reaching the position where the first tooth and the second tooth start meshing is later than before the teeth reach the position where meshing starts. vehicle drive unit.
  5.  前記制御装置は、停車中に前記噛合クラッチが解放状態から係合状態に切り替わるまでの間、車輪の回転速度を制動するブレーキ装置において制動力を発生させる請求項1乃至4のいずれか1項に記載の車両用駆動装置。 5. The control device according to any one of claims 1 to 4, wherein the control device generates a braking force in a brake device that brakes the rotational speed of the wheels until the dog clutch is switched from the released state to the engaged state while the vehicle is stopped. A drive system for a vehicle as described.
PCT/JP2022/002042 2021-01-21 2022-01-20 Drive device for vehicle WO2022158537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-008290 2021-01-21
JP2021008290 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022158537A1 true WO2022158537A1 (en) 2022-07-28

Family

ID=82549493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002042 WO2022158537A1 (en) 2021-01-21 2022-01-20 Drive device for vehicle

Country Status (1)

Country Link
WO (1) WO2022158537A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319211A (en) * 1993-02-18 1994-11-15 Steyr Daimler Puch Ag Driving device for electric motorcar
JP2006038136A (en) * 2004-07-28 2006-02-09 Toyota Motor Corp Driving device
JP2016515688A (en) * 2013-04-05 2016-05-30 ルノー エス.ア.エス. How to control stationary clutching of a gearbox
JP2020148325A (en) * 2019-03-15 2020-09-17 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319211A (en) * 1993-02-18 1994-11-15 Steyr Daimler Puch Ag Driving device for electric motorcar
JP2006038136A (en) * 2004-07-28 2006-02-09 Toyota Motor Corp Driving device
JP2016515688A (en) * 2013-04-05 2016-05-30 ルノー エス.ア.エス. How to control stationary clutching of a gearbox
JP2020148325A (en) * 2019-03-15 2020-09-17 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Similar Documents

Publication Publication Date Title
JP5017450B2 (en) Hybrid power unit
JP5648428B2 (en) Transmission device for hybrid vehicle
JP3556893B2 (en) Power transmission mechanism
EP2081789B1 (en) Hybrid transmissions with planetary gearsets
EP2574515B1 (en) Control device for hybrid vehicle
US20140213410A1 (en) Vehicle parking apparatus and method for parking vehicle
JP2019156016A (en) Drive device of hybrid vehicle
US9695933B2 (en) Automatic transmission control device
US20140083247A1 (en) Manual transmission
CA2958941C (en) Automatic transmission and control method of automatic transmission
US10160348B2 (en) Starting control device for electrically driven vehicle
KR102040633B1 (en) Method and system for starting a combustion engine
EP2548780A2 (en) Power transmission control device for vehicle
JP4894609B2 (en) Vehicle driving force control device
US9694808B2 (en) Method for a vehicle having an electric machine
WO2022158537A1 (en) Drive device for vehicle
WO2014136364A1 (en) Vehicle shift control device
US20170248199A1 (en) Automatic transmission and control method of automatic transmission
JP2015009691A (en) Power transmission device
WO2022118896A1 (en) Drive device for vehicle
WO2022071445A1 (en) Vehicular drive device
JP7363842B2 (en) Vehicle drive system
JP2022087708A (en) Vehicle drive device
WO2022210116A1 (en) Vehicle drive device
JP2023005065A (en) Control device of transmission for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP