WO2022158498A1 - Fine cellulose fiber–containing solvent, practical liquid, and practical liquid preparation method - Google Patents

Fine cellulose fiber–containing solvent, practical liquid, and practical liquid preparation method Download PDF

Info

Publication number
WO2022158498A1
WO2022158498A1 PCT/JP2022/001864 JP2022001864W WO2022158498A1 WO 2022158498 A1 WO2022158498 A1 WO 2022158498A1 JP 2022001864 W JP2022001864 W JP 2022001864W WO 2022158498 A1 WO2022158498 A1 WO 2022158498A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine cellulose
mass
cellulose fibers
liquid
anionic
Prior art date
Application number
PCT/JP2022/001864
Other languages
French (fr)
Japanese (ja)
Inventor
さくら 森光
朱十 西村
Original Assignee
丸住製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸住製紙株式会社 filed Critical 丸住製紙株式会社
Priority to JP2022576726A priority Critical patent/JPWO2022158498A1/ja
Publication of WO2022158498A1 publication Critical patent/WO2022158498A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a fine cellulose fiber-containing solvent, application liquid, and application liquid preparation method. More specifically, it relates to a fine cellulose fiber-containing solvent containing fine cellulose fibers having an anionic functional group, an application liquid containing this fine cellulose fiber-containing solvent, and a method for preparing an application liquid for preparing this application liquid.
  • spraying pesticides is essential to protect crops from pests and the like.
  • a method of spraying agricultural chemicals on crops a method of spraying a spray liquid obtained by diluting a stock solution of the agricultural chemical with water using a sprayer or the like is generally adopted.
  • a wax layer that easily repels water is formed on the surface of the leaves of crops. For this reason, most of the spray liquid that has been sprayed runs off, and the effect of the agricultural chemical cannot be sufficiently exhibited. Therefore, a spreading agent is usually added to the spray solution.
  • This spreading agent is a solvent containing a surfactant as a main component, and improves the wettability of the spray liquid adhering to the crops.
  • Patent Document 1 discloses a water-soluble carboxymethyl cellulose (CMC) and a granular wettable powder using its sodium salt as a spreading agent.
  • Patent Document 2 discloses, as a spreading agent, a spreader composition for agricultural chemicals containing a polysaccharide such as starch.
  • Patent Document 3 discloses an agricultural spreading agent containing a cellulose derivative of water-soluble hydroxypropylcellulose (HPC) or hydroxypropylmethylcellulose (HPMC) as a spreading agent.
  • HPC water-soluble hydroxypropylcellulose
  • HPMC hydroxypropylmethylcellulose
  • Patent Documents 1 to 3 have a certain degree of viscosity, they are used after being diluted several hundred to 1,000 times before use. not be suppressed to Therefore, in the conventional technology, even if a spray liquid containing a functional composition such as an agricultural chemical or a fertilizer is sprayed on agricultural crops, most of it runs off and the effect of the functional composition contained in the spray liquid is not sufficiently obtained. The reality is that it has not been able to demonstrate.
  • a functional composition such as an agricultural chemical or a fertilizer
  • the present invention provides a fine cellulose fiber-containing solvent capable of appropriately exhibiting the effects of a functional composition such as an agricultural chemical contained in a spray liquid, an application liquid containing the fine cellulose fiber-containing solvent, and such an application liquid.
  • the object is to provide a method for preparing an application liquid, which is the preparation method of
  • the fine cellulose fiber-containing solvent of the present invention is a solvent used for improving the wettability of the liquid contained in the functional composition and suppressing dripping, and part of the hydroxyl groups are substituted with anionic functional groups.
  • the application liquid of the present invention is a liquid containing water, a functional composition, and the fine cellulose fiber-containing solvent of the present invention used for improving wettability and suppressing dripping.
  • the application liquid preparation method of the present invention is a method of preparing a liquid containing water, a functional composition, and the fine cellulose fiber-containing solvent of the present invention used for improving wettability and suppressing dripping.
  • the solvent contains anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm in which some of the hydroxyl groups are substituted with an anionic functional group, and the solid content concentration of the anionic fine cellulose fibers is , 0.3% by mass to 1.0% by mass.
  • the present invention it is possible to provide a fine cellulose fiber-containing solvent capable of exhibiting excellent wettability and suppression of liquid dripping.
  • the application liquid containing the fine cellulose fiber-containing solvent of the present invention is used, the application liquid can adhere appropriately to the object and efficiently exhibit the functions of the application liquid, and the application liquid can be obtained.
  • a method of preparation can be provided.
  • FIG. 10 is a diagram showing experimental results of Experiment 1; 1 is a diagram showing an example of a conductivity titration curve of Experiment 1.
  • FIG. 1 is a diagram showing an example of a conductivity titration curve of Experiment 1.
  • FIG. 1 is a diagram showing an example of a conductivity titration curve of Experiment 1.
  • FIG. 10 is a schematic explanatory diagram of a method for evaluating liquid dripping in Experiment 2;
  • FIG. 10 is a schematic illustration of a wettability evaluation method in Experiment 2;
  • FIG. 10 is a diagram showing experimental results of Experiment 2;
  • FIG. 10 is a diagram showing experimental results of Experiment 2;
  • FIG. 10 is a diagram showing experimental results of Experiment 2;
  • FIG. 10 is a diagram showing experimental results of Experiment 2;
  • FIG. 10 is a diagram showing experimental results of Experiment 2;
  • FIG. 10 is a diagram showing experimental results of Experiment 2
  • the fine cellulose fiber-containing solvent of the present embodiment contains the anionic fine cellulose fibers
  • the liquid using the fine cellulose fiber-containing solvent can be appropriately adhered to the surface of the object. It is characterized by being able to efficiently exhibit the function based on the functional composition possessed by.
  • the fine cellulose fiber-containing solvent of the present embodiment can exhibit excellent wettability and excellent suppression of dripping with respect to the liquid containing the fine cellulose fiber-containing solvent. By applying this liquid to an object, the liquid can be appropriately adhered to the object. Therefore, it is possible to efficiently exhibit the function of the liquid based on the functional composition on the object.
  • the application liquid of this embodiment is a liquid containing water, the functional composition, and the fine cellulose fiber-containing solvent of this embodiment. That is, the application liquid of the present embodiment corresponds to the liquid containing the fine cellulose fiber-containing solvent of the present embodiment in the description of the fine cellulose fiber-containing solvent of the present embodiment described above.
  • the object to which the application liquid of the present embodiment is applied can be appropriately selected according to the function of the contained functional composition.
  • functional compositions include agricultural chemicals, fertilizers, fungicides, disinfectants, soil conditioners, and plant growth promoters. Details of the functional composition will be described later.
  • the functional composition is an agricultural chemical or a plant growth promoter
  • agricultural crops including trees and agricultural and forestry products
  • the functional composition is a fertilizer
  • crops are also subject. That is, when the functional composition is an agricultural composition such as an agricultural chemical or a fertilizer, the target object can be mainly agricultural products.
  • the functional composition is a bactericide or a disinfectant, river water, agricultural water, etc. are the subject matter.
  • the functional composition is a disinfectant, if diluted, it can be used for domestic animals, pets, and the like.
  • soil is the subject.
  • the water used for the application liquid in this embodiment is not particularly limited.
  • general tap water pure water such as ion-exchanged water or distilled water, ultrapure water, river water, agricultural water, or other water that does not affect the object may be used.
  • the fine cellulose fiber-containing solvent of the present embodiment (hereinafter simply referred to as fine cellulose fiber-containing solvent) is a solvent containing fine cellulose fibers having an anionic functional group.
  • This fine cellulose fiber-containing solvent contains the fine cellulose fibers so that the solid content concentration is, for example, 0.1% by mass to 2.0% by mass.
  • " ⁇ " includes values before and after.
  • a solid content concentration of 0.1 mass % to 2.0 mass % indicates a range including solid content concentrations of 0.1 mass % and 2.0 mass %.
  • the content of the fine cellulose fibers is preferably 0.2% by mass or more and 2.0% by mass or less in terms of solid concentration. It is more preferably 0.3% by mass or more and 1.0% by mass or less, and still more preferably 0.5% by mass or more and 1.0% by mass or less.
  • the content of the fine cellulose fibers is less than 0.1% by mass, the thickening action is not sufficient and the liquid dripping suppression effect is not exhibited. Also, if the content of the fine cellulose fibers is more than 2.0% by mass, the cellulose fibers gel when mixed with a desired liquid, which may result in poor handleability.
  • the above fine cellulose fibers are anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm, in which a portion of the hydroxyl groups of cellulose are substituted with an anionic functional group.
  • these fine cellulose fibers are simply referred to as anionic fine cellulose fibers (unless otherwise specified, chemically modified fine cellulose fibers refer to these anionic fine cellulose fibers).
  • the average fiber width of the anionic fine cellulose fibers is, for example, 1 nm or more and 500 nm or less. It is preferably 1 nm or more and 100 nm or less, more preferably 3 nm or more and 30 nm or less.
  • the average fiber width of the anionic fine cellulose fibers is smaller than 1 nm, the cellulose molecules will dissolve in water, making it difficult for the fine cellulose fibers to exhibit high viscosity.
  • the average fiber width of the anionic fine cellulose fibers is larger than 1000 nm, it cannot be said that they are fine cellulose fibers, but are merely fibers contained in ordinary pulp, so that it is difficult to develop high viscosity as fine cellulose fibers. Also, clogging occurs in devices having narrow flow paths, resulting in poor handling.
  • Anionic fine cellulose fibers are fine fibers that exhibit a predetermined viscosity when dispersed in pure water. Specifically, the viscosity of the anionic fine cellulose fibers is measured by using a B-type viscometer to determine the viscosity of the dispersion in pure water so that the solid content concentration is 0.3% by mass to 1.0% by mass. measured using For example, the B-type viscosity of the anionic fine cellulose fibers (20° C., rotation speed 6 rpm, 3 minutes) is preferably 1000 mPa ⁇ s or more and 50000 mPa ⁇ s or less.
  • the B-type viscosity of the anionic fine cellulose fibers is lower than 1000 mPa ⁇ s, the fluidity is high, so it is difficult to contribute to the suppression of liquid dripping when used in the liquid containing the functional composition.
  • the B-type viscosity of the anionic fine cellulose fibers is higher than 50000 mPa ⁇ s, it becomes difficult to mix when used in the liquid containing the functional composition, resulting in poor handleability.
  • the present inventors have found for the first time that droplets containing anionic fine cellulose fibers exhibit wettability. That is, the present inventors found that when a liquid containing anionic fine cellulose fibers is applied to an object, the liquid adhering to the surface of the object is not repelled on the object surface. It was found for the first time that it can be attached so as to spread over the surface. In addition, the evaluation method of wettability is evaluated by the method described in Examples described later.
  • the fine cellulose fiber-containing solvent contains the above-mentioned anionic fine cellulose fibers, when added to a desired liquid, it can exhibit wettability to this liquid. Further, since the anionic fine cellulose fibers exhibit the above-mentioned viscosity when dispersed in water, the viscosity can be imparted to the liquid to which the fine cellulose fiber-containing solvent is added. Therefore, when the liquid to which the fine cellulose fiber-containing solvent is added is applied to the object, the liquid adheres to the surface of the object so as to spread and dripping of the adhered liquid can be suppressed. That is, dripping of the liquid after application can be suppressed. In addition, the evaluation of this liquid sagging can be performed by the method described in Examples described later.
  • the liquid can be appropriately adhered to the surface of the subject.
  • the liquid containing the fine cellulose fiber-containing solvent when the liquid containing the fine cellulose fiber-containing solvent is applied to the object, the applied liquid spreads along the surface of the object without being repelled on the surface of the object. can be attached to Moreover, since the liquid adhering to the surface of the object can be prevented from dripping down, it is possible to maintain the state of spreading and adhering along the surface of the object.
  • the surface of the object after application can be covered with the applied liquid. Moreover, the state can be maintained for a long period of time.
  • the liquid contains a functional composition such as an agricultural chemical, the effect of the functional composition can be exhibited continuously and appropriately.
  • the amount of the fine cellulose fiber-containing solvent to be added may be adjusted so that the solid content concentration (% by mass) of the anionic fine cellulose fibers in the liquid is within a predetermined range.
  • anionic fine cellulose fibers are obtained by substituting some of the hydroxyl groups of the cellulose fibers represented by the general formula (1) (hereinafter simply referred to as cellulose) with anionic functional groups.
  • anionic functional group examples include, for example, a sulfo group represented by general formula (2), a phosphoric acid group represented by general formula (3), a phosphorous acid group represented by general formula (4), and a general formula (5).
  • a carboxy group represented by the formula (6) and a carboxymethyl group represented by the general formula (6) can be mentioned.
  • the anionic fine cellulose fibers may be substituted with one or a mixture of two or more of the above functional groups.
  • a known method can be employed for substituting the hydroxyl groups of the anionic fine cellulose fibers with various functional groups. Each production method has advantages and disadvantages, but among these, the method of substituting the sulfo group has the advantage of being easier to carry out than the other production methods.
  • substitution refers to the replacement of hydroxyl groups of cellulose with anionic functional groups. It means a state in which a functional group is bonded. Specifically, in the present specification, the hydroxyl groups of cellulose are substituted with anionic functional groups, meaning that at least part of the hydroxyl groups (—OH groups) of cellulose are substituted with anionic functional groups. A part of the hydroxyl group means to include not only "H” (hydrogen atom) of "--OH group” but also "OH".
  • an anionic functional group for example, general formula (2) ⁇ General formula (6)
  • an anionic functional group is bonded to the carbon of cellulose and the oxygen atom (O) of the hydroxyl group and an anionic functional group (a so-called ester bond, for example, in the case of general formula (2), general
  • general formula (8) for general formula (7) and general formula (3), general formula (13) for general formula (4), and general formula (9) for general formula (5) A structure in which an anionic functional group is directly bonded to the carbon to which the hydroxyl group of cellulose is bonded by bonding an anionic functional group instead of the "OH" of the hydroxyl group (for example, in the case of general formula (2), the general formula (10), general formula (11) for general formula (3), general formula (14) for general formula (4), general formula (12) for general formula (5), general formula (6) ), general formula (15)) is also included.
  • the anionic functional group is a sulfo group or a phosphate group
  • some of the hydroxyl groups of cellulose are replaced (that is, substituted) by a sulfo group or a phosphate group through a substitution reaction.
  • the functional group of is a carboxy group, it is a structure in which a part of the hydroxyl group is replaced (that is, substituted) with the carboxy group by an oxidation reaction.
  • Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.
  • Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.
  • Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the sulfo group in general formula (7) can be represented by (--SO 3 ⁇ ) r ⁇ Z r+ .
  • Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the phosphate group in general formula (8) can be represented by (-PO 3 2- ) r ⁇ Z r+ .
  • Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the carboxy group in general formula (9) can be represented by ( -CO2- ) rZr + .
  • Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the sulfo group in general formula (10) can also be represented in the same manner as in general formula (7), and Z can also include similar compounds.
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the phosphate group in general formula (11) can also be represented in the same manner as in general formula (8), and Z can also include similar compounds.
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the carboxy group in general formula (12) can also be represented in the same manner as in general formula (9), and Z can also include similar compounds.
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the phosphite group in general formula (13) can be represented by (-HPO 2 ⁇ ) r ⁇ Z r+ .
  • Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • phosphorous acid in general formula (14) can also be represented in the same manner as in general formula (13), and Z can also include similar compounds.
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the carboxymethyl group in general formula (15) can be represented by (--CH 2 CO 2 ⁇ ) r ⁇ Z r+ .
  • Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
  • anionic fine cellulose fiber in which a part of hydroxyl groups of cellulose is substituted with a sulfo group will be described as a representative.
  • the anionic fine cellulose fibers substituted with sulfo groups are referred to as sulfonated fine cellulose fibers.
  • the sulfonated fine cellulose fibers contain a plurality of finer cellulose fibers (hereinafter referred to as unit fibers). Specifically, the sulfonated fine cellulose fibers are fibers formed by connecting a plurality of unit fibers. In this unit fiber, at least part of the hydroxyl groups (--OH groups) of the cellulose (a chain polymer in which D-glucose is ⁇ (1 ⁇ 4) glycoside-bonded) constituting the fiber is a sulfo group as described above. is replaced by In the sulfonated fine cellulose fibers, functional groups other than sulfo groups may be bonded to some of the hydroxyl groups of the fine cellulose fibers as described above. In the following description, the case where only sulfo groups are introduced into the hydroxyl groups of the cellulose fibers constituting the sulfonated fine cellulose fibers will be described as a representative.
  • the amount of sulfo groups introduced into the sulfonated fine cellulose fibers is not particularly limited.
  • the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.1 mmol/g to 3.0 mmol/g. It is more preferably 0.1 mmol/g or more and 2.0 mmol/g or less, and still more preferably 0.1 mmol/g or more and 1.5 mmol/g or less.
  • the lower limit is preferably 0.5 mmol/g or more. More preferably, it is 1.0 mmol/g or more.
  • the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is less than 0.1 mmol/g, the hydrogen bonding between fibers is strong, and dispersibility tends to decrease. Conversely, when the amount of the sulfo group introduced is 0.1 mmol/g or more, the dispersibility can be easily improved, and when it is 0.4 mmol/g or more, the electronic repulsion can be strengthened. It becomes easier to stably maintain the dispersed state.
  • the amount of sulfo groups introduced into the sulfonated fine cellulose fibers can be evaluated by directly measuring the sulfo groups, and can also be evaluated by the amount of sulfur introduced due to the sulfo groups.
  • the conductivity can be calculated based on the value obtained by measuring the electrical conductivity while dropping an aqueous sodium hydroxide solution.
  • the latter measurement method is, for example, burning a predetermined amount of sulfonated fine cellulose fibers, measuring the sulfur content in the burned material using a combustion ion chromatograph by a method conforming to IEC 62321, and obtaining the value. calculated based on
  • the amount of sulfur introduced is 1:1.
  • the amount of sulfur introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.1 mmol/g
  • the amount of sulfo groups introduced is naturally 0.1 mmol/g.
  • a 1/10 volume ratio of a strongly acidic ion exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned ) is added and shaken for 1 hour or longer (treatment with ion exchange resin). Then, it is poured onto a mesh with an opening of about 90 ⁇ m to 200 ⁇ m to separate the resin from the slurry. In the subsequent titration with alkali, the change in electrical conductivity value is measured while adding 0.5N aqueous sodium hydroxide solution to the slurry containing sulfonated fine cellulose fibers after treatment with the ion exchange resin.
  • a strongly acidic ion exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned ) is added and shaken for 1 hour or longer (treatment with ion exchange resin). Then, it is poured onto a mesh with an opening of about 90 ⁇ m to 200 ⁇ m to separate the resin from the slurry.
  • the change in electrical conductivity value is measured while
  • the titration amount of sodium hydroxide at this point of inflection corresponds to the amount of sulfo groups, and the amount of sodium hydroxide at this point of inflection is divided by the solid content of the sulfonated fine cellulose fibers used for measurement, thereby introducing sulfo groups. You can ask for the quantity.
  • the sulfonated fine cellulose fibers are, as described above, fine cellulose fibers obtained by refining cellulose fibers, and the fibers are very fine fibers.
  • the average fiber width of the sulfonated fine cellulose fibers can be measured using known techniques. For example, sulfonated fine cellulose fibers are dispersed in a solvent such as pure water to prepare a mixed solution having a predetermined mass %. Then, this mixed solution is spin-coated on a silica substrate coated with PEI (polyethyleneimine), and sulfonated fine cellulose fibers on this silica substrate are observed.
  • PEI polyethyleneimine
  • a scanning probe microscope eg, SPM-9700 manufactured by Shimadzu Corporation
  • SPM-9700 manufactured by Shimadzu Corporation
  • the sulfonated pulp manufactured by the sulfonated pulp manufacturing method can be manufactured by subjecting the sulfonated pulp to a micronization treatment, but the manufacturing method is not limited thereto.
  • the outline of this sulfonated pulp manufacturing method is to manufacture sulfonated pulp (hereinafter simply referred to as sulfonated pulp) as a raw material by subjecting a fiber raw material containing cellulose (for example, wood pulp) to a chemical treatment process.
  • sulfonated pulp sulfonated pulp
  • This chemical treatment process is a method in which the supplied fiber raw material is brought into contact with a reaction liquid (contact process), and then subjected to a heating reaction (reaction process) to sulfonate the hydroxyl groups of cellulose.
  • the fiber material refers to fibrous pulp containing cellulose molecules.
  • Pulp is a fibrous member in which multiple celluloses are aggregated.
  • This cellulose is an aggregate of a plurality of fine fibers (for example, microfibrils, etc.).
  • These fine fibers are aggregates of a plurality of cellulose molecules (hereinafter sometimes simply referred to as cellulose), which are chain polymers in which D-glucose is ⁇ (1 ⁇ 4) glycoside-bonded.
  • pulp is an aggregated fiber of cellulose having a size of 200-mesh or 235-mesh residue. Details of the fiber raw material will be described later.
  • the chemical treatment step includes a contacting step of contacting cellulose, which is a fiber raw material containing cellulose such as pulp, with sulfamic acid, which is a sulfonating agent having a sulfo group, and urea, and adding and a reaction step of substituting and introducing a sulfo group into at least part of the hydroxyl groups of the cellulose obtained.
  • a contacting step of contacting cellulose which is a fiber raw material containing cellulose such as pulp
  • sulfamic acid which is a sulfonating agent having a sulfo group, and urea
  • adding and a reaction step of substituting and introducing a sulfo group into at least part of the hydroxyl groups of the cellulose obtained.
  • the contacting step is a step of bringing sulfamic acid and urea into contact with a fibrous raw material containing cellulose.
  • This contacting step is not particularly limited as long as it is a method capable of causing the above contact.
  • the fibrous raw material for example, wood pulp
  • the fibrous raw material may be immersed in a reaction liquid obtained by dissolving sulfamic acid and urea in a solvent to impregnate the fibrous raw material with the reaction liquid.
  • sulfamic acid and urea may be separately applied, impregnated, or sprayed onto the fiber raw material.
  • the solvent for dissolving sulfamic acid and urea is not particularly limited.
  • water alone including pure water such as ion-exchanged water and distilled water, as well as tap water, etc.
  • ammonia water polar solvents acetone, ethyl acetate, tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile, dimethylsulfoxide (DMSO), dimethylsulfide (DMS), aprotic polar solvents such as dimethylacetamide (DMA),
  • Non-polar solvents such as diethyl ether, benzene, toluene, hexane, chloroform, and 1,4-dioxane can be mentioned, and these may be used alone or in combination of two or more. may In particular, water is preferable from the viewpoint of easily
  • the mixing ratio of sulfamic acid and urea contained in the reaction liquid is not particularly limited.
  • the mixing ratio is adjusted to that described in Examples described later.
  • the concentration ratio (g/L) of the sulfonating agent and urea or/and its derivative is 4:1 (1:0.25), 2:1 (1:0.5), 1:1, 2 : 3 (1:1.5) and 1:2.5.
  • the amount of the reaction liquid brought into contact with the fiber raw material is such that the sulfamic acid and urea in the reaction liquid are brought into contact with the fiber raw material at a predetermined ratio.
  • the sulfonating agent contained in the reaction liquid is 1 part by mass to 20,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material.
  • the amount of urea and/or its derivative contained in is 1 part by mass to 100,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material.
  • the fiber material impregnated with the reaction liquid when subjected to the reaction process of the next step is in the state of being impregnated with the reaction liquid, that is, the state of contact between the fiber material and the reaction liquid.
  • Examples include a state in which no reaction is performed, and a state in which water is actively removed from a state in which the fiber raw material and the reaction liquid are brought into contact with each other.
  • the fiber raw material is taken out from the state in which the reaction liquid and the fiber raw material are brought into contact with each other, and the fiber raw material is dried naturally by air drying or the like.
  • prepared by further air-drying the dehydrated and filtered material further drying the dehydrated and filtered material using a circulating air dryer, and further heating the dehydrated and filtered material.
  • Those prepared by drying using a type dryer, those prepared by drying the reaction liquid and the fiber raw material in contact with each other using a circulating air dryer or a heating dryer, etc. is meant to contain
  • the fiber raw material impregnated with the reaction liquid when subjected to the next reaction step is in a state where the above-mentioned active water removal is not performed, or in a state where a certain amount of water is removed after active water removal. may be of Further, when the moisture is removed by drying, there is no particular problem even if the moisture content after drying is about 1%.
  • reaction step The fiber raw material impregnated with the reaction solution prepared in the contacting step as described above is supplied to the reaction step in the next step.
  • this reaction step the cellulose, sulfamic acid, and urea contained in the fiber raw material supplied from the contacting step are reacted to substitute the sulfo groups of sulfamic acid for the cellulose hydroxyl groups in the cellulose, thereby producing the fiber raw material.
  • It is a step of introducing a sulfo group into the cellulose contained in. That is, this reaction step is a step of carrying out a sulfonation reaction in which sulfo groups are substituted for the cellulose hydroxyl groups in the cellulose contained in the fiber raw material impregnated with the reaction solution.
  • This reaction step is not particularly limited as long as it is a method capable of performing a sulfonation reaction in which hydroxyl groups of cellulose in the fiber raw material are substituted with sulfo groups.
  • a method can be employed in which the sulfonation reaction is accelerated by heating the fiber raw material.
  • the case where the sulfonation reaction is performed by this heating method will be described as a representative.
  • the reaction temperature in the reaction step is not particularly limited as long as it is a temperature at which a sulfo group can be introduced into the cellulose constituting the fiber raw material while suppressing thermal decomposition and hydrolysis reaction of the fiber.
  • the ambient temperature of the fiber raw material supplied to the reaction step is adjusted to 100° C. or higher and 200° C. or lower.
  • the ambient temperature is preferably 120° C. or higher and 200° C. or lower.
  • thermal decomposition of the fibers may occur, or discoloration of the fibers may proceed more rapidly.
  • the reaction temperature is lower than 100°C, the resulting sulfonated pulp tends to be less transparent.
  • the reaction temperature (specifically, the ambient temperature) in the reaction step is 100° C. or higher and 200° C. or lower, preferably 120° C. or higher and 180° C. or lower.
  • the temperature is preferably 120°C or higher and 160°C or lower.
  • the heater or the like used in the reaction step is not particularly limited as long as it can directly or indirectly heat the fiber raw material after the contact step while satisfying the above requirements.
  • a hot press method using a known dryer, vacuum dryer, microwave heating device, autoclave, infrared heating device, or heat press for example, AH-2003C manufactured by AS ONE Co., Ltd.
  • the heating time (that is, the reaction time) when the above heating method is employed as the reaction step is not particularly limited as long as the sulfo group can be appropriately introduced into the cellulose as described above.
  • the reaction time in the reaction step is adjusted to be 1 minute or more in the above range.
  • the time is preferably 5 minutes or longer, more preferably 10 minutes or longer, and still more preferably 15 minutes or longer.
  • the reaction time when the reaction time is shorter than 1 minute it is presumed that the substitution reaction of the sulfo group with respect to the hydroxyl group of cellulose hardly proceeds.
  • the reaction time when the above heating method is employed as the reaction step is not particularly limited, but from the viewpoint of the reaction time and operability, it is preferably 5 minutes or more and 300 minutes or less, more preferably 5 minutes or more and 120 minutes or less.
  • the fiber raw material used in the sulfonated pulp manufacturing method is not particularly limited as long as it contains cellulose as described above.
  • pulp what is generally called pulp may be used, and what contains cellulose isolated from sea squirts, seaweed, etc. can be used as the fiber raw material, but as long as it is composed of cellulose molecules, , can be anything.
  • the pulp include wood pulp (hereinafter simply referred to as wood pulp), dissolving pulp, cotton pulp such as cotton linter, straw, bagasse, kozo, mitsumata, hemp, kenaf, fruits, and the like.
  • wood pulp wood pulp
  • this wood pulp there are various types of this wood pulp, but there is no particular limitation in use. Examples thereof include softwood kraft pulp (NBKP), hardwood kraft pulp (LBKP), thermomechanical pulp (TMP) and other papermaking pulps. When the above pulp is used as the fiber raw material, one type of the pulp described above may be used alone, or two or more types may be mixed and used.
  • a washing step of washing the sulfonated pulp after introduction of the sulfo group may be included.
  • the surface of the sulfonated pulp after introduction of the sulfo group is acidified due to the influence of the sulfonating agent.
  • unreacted reaction liquid also exists. For this reason, if a washing step is provided to ensure that the reaction is completed and to neutralize the excess reaction solution by removing the excess reaction solution, the handleability can be improved.
  • This washing step is not particularly limited as long as the sulfonated pulp after introduction of the sulfo group can be made substantially neutral.
  • a method of washing with pure water or the like until the sulfonated pulp after introduction of the sulfo group becomes neutral can be adopted.
  • neutralization cleaning using an alkali or the like may be performed.
  • an inorganic alkali compound, an organic alkali compound, etc. are mentioned as an alkali compound contained in an alkali solution.
  • inorganic alkali compounds include hydroxides, carbonates, and phosphates of alkali metals.
  • organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds, and hydroxides of heterocyclic compounds.
  • the sulfonated pulp prepared using the sulfonated pulp manufacturing method as described above is supplied to the micronization process.
  • the sulfonated pulp supplied to the refining treatment step is refined to become sulfonated fine cellulose fibers.
  • the sulfonated pulp is dried until its moisture content (%) reaches an equilibrium state before being supplied to the pulverization treatment step.
  • the refining step is a step of refining the sulfonated pulp into fine fibers of a predetermined size (for example, nano-level).
  • a processing apparatus used in this miniaturization process is not particularly limited as long as it has the above functions.
  • low-pressure homogenizers, high-pressure homogenizers, grinders (stone mill type pulverizers), ball mills, cutter mills, jet mills, short-screw extruders, twin-screw extruders, ultrasonic stirrers, household mixers and the like can be used.
  • the processing device is not limited to these devices. Among the processing devices, a high pressure homogenizer is preferred because it can uniformly apply force to the material and is excellent in homogenization.
  • the sulfonated pulp described above is supplied in a state of being dispersed in a mixed solution of water and a water-soluble solvent.
  • a state in which the sulfonated pulp is dispersed in this mixed solution is called a slurry.
  • the solid content concentration (% by mass) of the sulfonated pulp in this slurry is not particularly limited.
  • a solution adjusted so that the solid content concentration of the sulfonated pulp in the slurry is 0.1% by mass to 20% by mass is supplied to a processing apparatus such as a high-pressure homogenizer.
  • a processing apparatus such as a high-pressure homogenizer.
  • a processing device such as a high-pressure homogenizer
  • sulfonated fine cellulose fibers having the same solid content concentration are dispersed in the mixed solution. A dispersion is obtained.
  • a mixture of the sulfonated pulp slurry and a water-soluble solvent may be subjected to refining treatment.
  • a slurry in which a water-soluble solvent, a sulfonated pulp and water are mixed at a predetermined ratio may be supplied to a processing apparatus for micronization.
  • the blending ratio of water, water-soluble solvent, and sulfonated fine cellulose fibers in the dispersion obtained after the pulverization treatment is the same as the blending ratio of water, water-soluble solvent, and sulfonated pulp supplied to the processor. . That is, a dispersion is obtained in which water, a water-soluble solvent, and sulfonated fine cellulose fibers are mixed in a predetermined ratio at the same time as the micronization treatment.
  • a thickening agent, an ultraviolet absorber, an ultraviolet dispersant, a moisturizing agent, and the like may be mixed in the sulfonated pulp slurry to be supplied to the pulverization treatment.
  • the amount of phosphate groups introduced into the phosphorylated fine cellulose fibers is not particularly limited.
  • the amount of phosphoric acid groups introduced per 1 g (mass) of phosphorylated fine cellulose fibers is 0.1 mmol/g to 3.0 mmol/g. It is more preferably 0.1 mmol/g or more and 2.5 mmol/g or less, and still more preferably 0.1 mmol/g or more and 2.0 mmol/g or less.
  • the lower limit is preferably 0.3 mmol/g or more. It is more preferably 0.4 mmol/g or more, still more preferably 1.0 mmol/g or more.
  • the amount of phosphoric acid groups introduced per 1 g (mass) of phosphorylated fine cellulose fibers is less than 0.1 mmol/g, the hydrogen bonding between fibers is strong, so dispersibility tends to decrease.
  • the introduction amount of the phosphate group is 0.1 mmol/g or more, the dispersibility can be easily improved, and when it is 0.5 mmol/g or more, the electronic repulsion can be made stronger. , it becomes easier to stably maintain the dispersed state.
  • the amount of phosphate groups introduced into the phosphorylated fine cellulose fibers can be evaluated by measuring the electrical conductivity as in Examples described later.
  • the evaluation method such as the method for measuring the average fiber width of the phosphorylated fine cellulose fibers is measured or calculated in the same manner as when the functional group is a sulfo group.
  • the phosphorylated pulp manufactured by the phosphorylated pulp manufacturing method can be manufactured by subjecting it to a micronization treatment, but the manufacturing method is not limited thereto.
  • a phosphate esterification reaction can be used to introduce phosphoric acid groups into pulp, which is a fiber raw material.
  • pulp which is a fiber raw material.
  • ammonium dihydrogen phosphate-phosphorylating agent/urea-catalyst is brought into contact with the fiber raw material in water, and the mixture is heated at 120.degree. C. to 180.degree.
  • this phosphorylation reaction see, for example, Yuichi Noguchi, Ikue Homma and Yusuke Matsubara, Cellulose, 24, 1295-1305 (2017).
  • a compound having a phosphoric acid-derived group is used as the compound that reacts with the fiber raw material, it is not particularly limited, but it consists of phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, or salts or esters thereof. At least one selected from the group. Among these, compounds having a phosphoric acid group are preferable because they are low in cost and easy to handle, but they are not particularly limited.
  • the compound having a phosphate group is not particularly limited.
  • Examples thereof include phosphoric acid and lithium salts of phosphoric acid such as lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate, lithium pyrophosphate, and lithium polyphosphate.
  • Examples include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, and sodium polyphosphate, which are sodium salts of phosphoric acid.
  • Examples include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, and potassium polyphosphate, which are potassium salts of phosphoric acid.
  • Examples include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium polyphosphate, which are ammonium salts of phosphoric acid.
  • phosphoric acid, sodium phosphoric acid, potassium phosphoric acid, and ammonium phosphoric acid are preferable from the viewpoint of high efficiency of introduction of a phosphoric acid group and ease of industrial application. More preferred are sodium dihydrogen phosphate, disodium hydrogen phosphate and ammonium dihydrogen phosphate. More preferred is ammonium dihydrogen phosphate.
  • the heat treatment temperature for introducing the phosphate group is not particularly limited.
  • the temperature range is such that thermal decomposition or hydrolysis of the fiber raw material is unlikely to occur.
  • the temperature is preferably 250° C. or less from the viewpoint of the thermal decomposition temperature.
  • heat treatment at 100 to 180° C. is preferable.
  • the heat treatment time is desirably short from the viewpoint of suppressing thermal decomposition, hydrolysis, etc. of the fiber raw material and from the viewpoint of production efficiency. For example, the heat treatment time is set to 2 hours or less.
  • carboxylated fine cellulose fiber (carboxylated fine cellulose fiber)
  • anionic fine cellulose fibers substituted with carboxy groups are referred to as carboxylated fine cellulose fibers.
  • the amount of phosphate groups introduced into the carboxylated fine cellulose fibers is not particularly limited.
  • the amount of carboxyl groups introduced per 1 g (mass) of carboxylated fine cellulose fibers is 0.1 mmol/g to 3.0 mmol/g. More preferably, it is 0.1 mmol/g or more and 2.5 mmol/g or less, and still more preferably 0.1 mmol/g or more and 2.0 mmol/g or less.
  • the lower limit is preferably 0.3 mmol/g or more. It is more preferably 0.4 mmol/g or more, still more preferably 1.0 mmol/g or more.
  • the amount of carboxyl groups introduced into the carboxylated fine cellulose fibers can be evaluated by measuring electrical conductivity as in Examples described later.
  • the evaluation method such as the method for measuring the average fiber width of the carboxylated fine cellulose fibers is measured or calculated in the same manner as when the functional group is a sulfo group.
  • the carboxylated pulp manufactured by the carboxylated pulp manufacturing method can be manufactured by subjecting the carboxylated pulp to a micronization treatment, but the manufacturing method is not limited thereto.
  • a TEMPO oxidation catalytic reaction can be employed to introduce carboxyl groups into pulp, which is a fiber raw material.
  • TEMPO or its derivative
  • TEMPO-catalyst/sodium bromide-oxidizing agent/sodium hypochlorite-oxidizing agent is brought into contact with the fiber raw material in water, and the carboxyl group is removed by reacting at room temperature. can be introduced.
  • this TEMPO oxidation catalytic reaction see, for example, Tsuguyuki Saito, Satoshi Kimura, Yoshiharu Nishiyama and Akira Isogai, Biomacromolecules, 8 (8), 2485-2491 (2007).
  • TEMPO oxidation catalyst A derivative having a molecular skeleton of 2,2,6,6-tetramethyl-1-piperidine-N-oxyl is used as the TEMPO oxidation catalyst for oxidizing the fiber raw material.
  • this derivative for example, a compound generating 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine-N-oxy radical is preferable.
  • bromide or iodide used for oxidizing the fiber raw material a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used.
  • the amount of bromide or iodide to be used may be appropriately selected within a range capable of promoting the oxidation reaction.
  • the oxidizing agent used for oxidizing the fiber raw material is an oxidizing agent capable of promoting the desired oxidation reaction, such as halogen, hypohalous acid, halogenous acid, perhalogen acid or salts thereof, halogen oxides, and peroxides. If there is, it is not particularly limited. From the viewpoint of production costs, sodium hypochlorite, which is generally used in industrial processes and is inexpensive and has a low environmental impact, is preferable.
  • the TEMPO oxidation catalytic reaction allows the oxidation reaction of the fiber raw material to proceed smoothly and efficiently even under mild conditions. Therefore, the reaction temperature may be room temperature of about 15 to 30°C. Since carboxyl groups are generated in the cellulose as the reaction progresses, the pH of the reaction solution decreases. Therefore, in order to allow the oxidation reaction to proceed efficiently, it is desirable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at about 9-12, preferably about 10-11. The end point of the reaction is desirably carried out until no decrease in pH is observed. On the other hand, if the fiber raw material is contacted with the alkaline solution for a long period of time, the fibers may be decomposed into short fibers, and the production efficiency is lowered. Therefore, the reaction time is preferably within 2 hours.
  • anionic pulp the above-described sulfonated pulp, phosphorylated pulp, and carboxylated pulp are referred to as anionic pulp (unless otherwise specified, chemically modified pulp refers to this anionic pulp).
  • the anionic fine cellulose fibers preferably have a predetermined thixotropic index (TI value) in addition to the viscosity described above.
  • the anionic fine cellulose fibers By having the anionic fine cellulose fibers have a predetermined TI value, dripping of the liquid to which the fine cellulose fiber-containing solvent has been added can be more appropriately suppressed. Specifically, if the liquid to which the fine cellulose fiber-containing solvent is added is applied to the object, the state of adhering to the surface of the object can be maintained for a longer period of time. Then, the function of this liquid (function based on the functional composition) can be exhibited more appropriately.
  • the TI value of the anionic fine cellulose fibers is obtained by using a B-type viscometer obtained from the following formula (1) in a state of being dispersed in pure water so that the solid content concentration is 0.3% by mass to 1.0% by mass. measured using
  • the TI value of the anionic fine cellulose fibers is preferably 4.0 or more according to the following formula (1). More preferably 4.0 to 10, still more preferably 4.0 to 8.0, even more preferably 5.0 to 8.0.
  • Thixotropic index (TI value) (viscosity at 20°C and rotation speed of 6 rpm)/(20°C and viscosity at rotation speed of 60 rpm) (1)
  • anionic fine cellulose fibers have a TI value within the above range, the following advantages in terms of handleability can be obtained when applying a liquid to which a fine cellulose fiber-containing solvent is added to an object.
  • an anionic fine cellulose fiber with a TI value in the above range maintains high viscosity when the acting shear stress (external force in this specification) is small, as shown in the above formula (1). , has the property of maintaining a low viscosity as the external force increases. For this reason, when applying the above-mentioned liquid to an object, if an application method using a device or the like that changes the form of the liquid is adopted, problems with the device can be prevented. For example, this applies to the case of using a sprayer or the like that atomizes a liquid and applies it to an object.
  • a sprayer includes a liquid storage section that stores liquid, a discharge section that discharges liquid in the form of a mist, and a flow path that connects the two. When the sprayer is operated, the liquid contained in the liquid containing portion passes through the flow path and is sprayed in the form of a mist from the discharge portion.
  • liquids such as pesticides contain a spreading agent to give them viscosity.
  • the conventional technology has the problem that it is difficult to control the viscosity of such a liquid. For example, when the liquid as described above is put into a sprayer and used, problems such as clogging of the flow path in the sprayer and clogging of the opening at the tip of the discharge occur.
  • anionic fine cellulose fibers can exhibit a given TI value as described above. Therefore, if a liquid containing a fine cellulose fiber-containing solvent containing anionic fine cellulose fibers is added to a sprayer and used, an external force is applied when the liquid stored in the liquid storage part is sucked into the flow path. As a result, the viscosity of the liquid drops sharply. In other words, the state of high viscosity (that is, a liquid state with low fluidity) existing in the container can be completely changed to a state of low fluidity like water. Then, it is possible to move from the containing portion of the sprayer to the tip opening of the discharge portion with the same properties as water.
  • the liquid stored in the storage portion of the sprayer can be discharged in the form of mist from the tip opening.
  • the liquid discharged from the tip opening of the ejection part of the atomizer reaches the surface of the object while being in the form of droplets before reaching the object.
  • the external force decreases, so the viscosity increases again, and the state of adhering to the surface of the object is maintained.
  • the fine cellulose fiber-containing solvent may contain a surfactant. By containing a surfactant, the wettability of the fine cellulose fiber-containing solvent can be further improved.
  • the content ratio of the surfactant is not particularly limited.
  • the surfactant is contained so as to be 0.1% by mass to 5.0% by mass when the fine cellulose fiber-containing solvent is added to the liquid described above.
  • the content of the surfactant is preferably 0.1% by mass to 2.0% by mass, more preferably 0.1% by mass to 1.0% by mass, and still more preferably 0.1% by mass to 0.1% by mass. 0.5 mass %.
  • the type of surfactant is not particularly limited. Components used as general surfactants such as cationic surfactants, anionic surfactants, amphoteric surfactants and nonionic surfactants can be used. One type of surfactant may be used, or two or more types may be used in combination.
  • the fine cellulose fiber-containing solvent contains a surfactant
  • the viscosity of this fine cellulose fiber-containing solvent is such that the surfactant is 0.5% by mass and the anionic fine cellulose fiber is dispersed in pure water so that the solid content concentration is 0.3% to 1.0% by mass. In the state, it is measured using a B-type viscometer.
  • the B-type viscosity of the fine cellulose fiber-containing solvent (20° C., rotation speed 6 rpm, 3 minutes) is preferably 1000 mPa ⁇ s or more and 20000 mPa ⁇ s or less.
  • the fine cellulose fiber-containing solvent contains a surfactant and has a viscosity within the above range, the wettability of the liquid to which the fine cellulose fiber-containing solvent is added is further improved, and the liquid drips appropriately. can be suppressed to In other words, it is possible to exhibit excellent wettability while preventing dripping that occurs in conventional spreading agents containing surfactants.
  • the TI value of the fine cellulose fiber-containing solvent is a predetermined range by including a surfactant in the fine cellulose fiber-containing solvent.
  • the TI value of this fine cellulose fiber-containing solvent is dispersed in pure water so that the surfactant is 0.5% by mass and the solid content concentration of the anionic fine cellulose fiber is 0.3% to 1.0% by mass. In this state, the viscosity is measured using a Brookfield viscometer obtained from the above formula (1).
  • the TI value of the fine cellulose fiber-containing solvent is preferably 4.0 or more and 8.0 or less. More preferably 4.5 to 8.0, still more preferably 5.0 to 8.0.
  • the fine cellulose fiber-containing solvent contains a surfactant and has a TI value within the above range, aggregation of the fine cellulose fibers can be suppressed regardless of the presence of the surfactant. Therefore, a predetermined viscosity can be exhibited appropriately. Therefore, even if a surfactant is contained, there is an advantage that dripping can be more appropriately prevented.
  • the application liquid of the present embodiment (hereinafter simply referred to as application liquid) is a liquid to which the fine cellulose fiber-containing solvent is added.
  • the application liquid is a liquid containing water, a functional composition, and a fine cellulose fiber-containing solvent. That is, the application liquid is a liquid containing at least water, the functional composition, and the anionic fine cellulose fibers.
  • the functional composition contained in the application liquid is not particularly limited as long as it is a composition having a desired function.
  • the functional composition can be agricultural chemicals such as insecticides, fungicides, plant growth regulators, and germination inhibitors, fertilizers, soil fertilizers, and the like.
  • a disinfectant or the like can be used as the functional composition.
  • the subject is river water, agricultural water, or the like, a fungicide or the like can be used as the functional composition.
  • the application liquid exhibits excellent wettability even in the form of droplets by containing the anionic fine cellulose fibers at a predetermined concentration.
  • the application liquid contains anionic fine cellulose fibers so that the solid content concentration is 0.3% by mass to 1.0% by mass.
  • the content is preferably 0.3% by mass or more and 0.8% by mass or less, more preferably 0.3% by mass or more and 0.7% by mass or less, and still more preferably 0.5% by mass. Above, it is below 0.7 mass %.
  • the content of the anionic fine cellulose fibers is less than 0.3% by mass, the wettability of the applied liquid to the target object will be reduced.
  • the content of the anionic fine cellulose fibers is more than 1.0% by mass, it tends to be difficult to handle, for example, the stirring time during mixing increases.
  • the wettability of the liquid to be applied is evaluated by the method described in the examples below, similar to the description of the fine cellulose fiber-containing solvent.
  • This application liquid contains an anionic fine Contains cellulose fibers. That is, the viscosity of the application liquid can be adjusted based on the anionic fine cellulose fibers it contains. When the application liquid has a viscosity within the above range, the application liquid can be maintained in a state of adhering to the object. In other words, it is possible to appropriately suppress dripping when the application liquid is applied to the object.
  • the viscosity of this application liquid is preferably 1000 mPa ⁇ s to 25000 mPa ⁇ s. It is more preferably 1000 mPa ⁇ s to 20000 mPa ⁇ s, still more preferably 1000 mPa ⁇ s to 10000 mPa ⁇ s.
  • the sagging of the applied liquid can be evaluated by the method described in the examples below, in the same manner as the fine cellulose fiber-containing solvent.
  • the application liquid preferably contains anionic fine cellulose fibers so that the TI value measured using a Brookfield viscometer obtained from the formula (1) is 4.0 or more.
  • the TI value of this application liquid can be adjusted based on the anionic fine cellulose fibers it contains as described above.
  • this liquid to be applied has a TI value within the above range, it is possible to improve the handleability in the same manner as in the case of the fine cellulose fiber-containing solvent described above.
  • the TI value of this application liquid is preferably 4.0 to 8.0. More preferably 4.0 to 7.6, still more preferably 5.0 to 7.6.
  • the application liquid may contain surfactants.
  • the wettability of the application liquid can be further improved by containing the surfactant in the application liquid.
  • the content of the surfactant is not particularly limited as long as the viscosity of the application liquid is not rapidly lowered.
  • the surfactant content is preferably 0.1% by mass to 10% by mass. It is more preferably 0.1% by mass to 5% by mass, still more preferably 0.1% by mass to 1% by mass, and even more preferably 0.1% by mass to 0.5% by mass.
  • the type of surfactant is not particularly limited.
  • the same ingredients as in the fine cellulose fiber-containing solvent described above can be employed.
  • the application liquid contains a surfactant
  • the viscosity and TI value in the application liquid can be adjusted based on the anionic fine cellulose fibers contained.
  • the viscosity of the application liquid containing the surfactant is measured using a Brookfield viscometer in the same manner as described above.
  • the B-type viscosity (20° C., rotation speed 6 rpm, 3 minutes) of this application liquid is preferably 1000 mPa ⁇ s or more and 50000 mPa ⁇ s or less. It is more preferably 1000 mPa ⁇ s to 25000 mPa ⁇ s, still more preferably 9000 mPa ⁇ s to 25000 mPa ⁇ s, and even more preferably 9000 mPa ⁇ s to 20000 mPa ⁇ s.
  • the TI value of the application liquid containing the surfactant is calculated from the above formula (1) in the same manner as described above.
  • the TI value of this application liquid is preferably 4.0 or more and 8.0 or less. It is more preferably 4.0 to 7.8, even more preferably 4.0 to 7.6, even more preferably 4.5 to 7.6.
  • the application liquid preparation method of the present embodiment is a method for preparing the application liquid described above. Specifically, in the application liquid preparation method of the present embodiment, by adjusting the solid content concentration of the anionic fine cellulose fibers in the application liquid to be within the above range, the viscosity and TI value of the application liquid are adjusted to predetermined values. Adjust within range.
  • the liquid to be applied By adjusting the concentration of the anionic fine cellulose fibers to a predetermined concentration, the liquid to be applied exhibits excellent wettability after being applied to an object, and the liquid to be applied suppresses dripping. be able to. Therefore, the function of the applied liquid can be exhibited appropriately. For example, if it is prepared so as to contain a functional composition such as an agricultural chemical, the effect of this functional composition can be exhibited appropriately.
  • Example 1 In Experiment 1, the fine cellulose fiber-containing solvent of the present invention and the anionic fine cellulose fibers used in the application liquid of the present invention were prepared, and their properties were evaluated. From the results of using a water-soluble cellulose derivative (for example, hydroxypropyl cellulose (HPC)) as a material for comparison, it was confirmed that the anionic fine cellulose fiber used in the present invention is a material suitable as a spreading agent. Confirmed from the viewpoint of viscosity and sprayability.
  • a water-soluble cellulose derivative for example, hydroxypropyl cellulose (HPC)
  • sulfonated fine cellulose fiber dispersions (samples ⁇ -1, ⁇ -2, ⁇ -3) containing sulfonated fine cellulose fibers introduced with sulfo groups as functional groups of the anionic fine cellulose fibers were prepared as follows. prepared.
  • Softwood bleached kraft pulp (NBKP) manufactured by Marusumi Paper Co., Ltd. was used as a fiber raw material.
  • the NBKP used had a freeness of 720 mL, an average fiber length of 2.57 mm, and was not beaten. Below, the NBKP used in the experiment will be simply described as pulp.
  • the pulp is washed on a stainless steel sieve with an opening of 75 ⁇ m (200 mesh) using pure water (pH 5.0 to 8.0, electrical conductivity 1.0 to 1.5 ⁇ S / cm) manufactured by Marusumi Paper Co., Ltd. After that, water was drained, and the pulp adjusted to a solid content concentration of 25.0% by mass was subjected to the experiment.
  • This pulp is wet pulp that has never been dried.
  • 400 g of wet pulp (hereinafter referred to as wet pulp) used in the experiment contained 100 g of pulp in terms of solid mass.
  • the “solid mass (g)” of pulp refers to the dry mass of the pulp itself to be measured.
  • the weight of the dry pulp was measured by drying at 105° C. for 2 hours using a drier until the moisture content reached equilibrium.
  • the method of evaluating the equilibrium state in the experiment is to set the temperature of the constant temperature bath to a predetermined temperature (e.g., 50 ° C. or 105 ° C.) in the above dryer for 1 hour, and then measure the weight twice in succession. A state in which the amount of change was within 1% of the weight at the start of drying was considered to be in an equilibrium state (however, the second weight measurement was made to be at least half the drying time required for the first time).
  • the measurement of moisture content was calculated by the following formula.
  • Moisture content (%) 100 - (solid mass of pulp (g)/pulp mass (g) at moisture content measurement) x 100
  • the degree of washing was determined by confirming that the electrical conductivity of the pulp filtrate was 20 ⁇ S/cm or less.
  • a water quality meter manufactured by Toa DKK Co., model number: MM-43X
  • an electrical conductivity electrode manufactured by Toa DKK Co., Ltd., model number: CT-58101B
  • the reliability of the electrical conductivity value was confirmed using an electrical conductivity standard solution (12.9 mS/cm, manufactured by HORIBA).
  • a sulfo group was used as an anionic functional group.
  • the wet pulp was put into a container containing the reaction liquid, and the pulp was impregnated with the reaction liquid. This step corresponds to the "contact step” in the "chemical treatment step” of the present embodiment.
  • sulfamic acid purity 99.8%, manufactured by Fuso Chemical Industry Co., Ltd.
  • urea purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent
  • the pulp impregnated with the reaction liquid is taken out from the container, spread thinly and uniformly, and dried in a dryer (manufactured by Yamato Scientific Co., Ltd., model number: DKN602) under an atmosphere of 80 ° C. to obtain the reaction liquid-impregnated pulp impregnated with the reaction liquid. prepared.
  • the step of drying the pulp impregnated with the reaction solution corresponds to the drying step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
  • thermo reaction Next, the prepared reaction solution-impregnated pulp was subjected to the heating reaction step of the next step, and heat reaction was performed to prepare sulfonated pulp (reacted pulp constituting sulfamic acid/urea treated pulp).
  • the moisture content of the supplied reaction liquid-impregnated pulp was 5% or less.
  • the above heating reaction corresponds to the reaction step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
  • reaction conditions were as follows. A dryer (manufactured by Yamato Scientific Co., model number: DKN602) was used for heating. Dryer constant temperature bath temperature: 140°C, heating time: 30 minutes
  • the temperature of the reaction conditions in the above heating reaction corresponds to the reaction temperature in the reaction step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
  • the heating time of the reaction conditions in the above heating reaction corresponds to the reaction time of the reaction step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
  • the reacted pulp was suspended in pure water and neutralized with sodium bicarbonate until no bubbles were generated.
  • the neutralized pulp was washed with pure water on a stainless steel sieve (300 mesh) with an opening of 46 ⁇ m until it became neutral. The degree of washing was determined by confirming that the electric conductivity of the pulp filtrate was 50 ⁇ S/cm or less.
  • the above water quality meter was used for the electrical conductivity measurement.
  • the step of washing the reacted pulp with pure water until it becomes neutral corresponds to the washing step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
  • sulfonated pulp and pure water were mixed to prepare a pulp slurry adjusted to a solid content concentration of 1.0% by mass of sulfonated pulp. That is, this pulp slurry is prepared so that the composition ratio of sulfonated pulp and pure water is 99.0 parts by mass of pure water per 1.0 part by mass of sulfonated pulp (solid content mass (g)). It is what was done.
  • this pulp slurry was subjected to a high-pressure homogenizer (conditions below) to prepare a dispersion containing fine cellulose fibers (sulfonated fine cellulose fibers) (sulfonated fine cellulose fiber dispersion).
  • the prepared sulfonated fine cellulose fiber dispersion had a composition ratio of sulfonated fine cellulose fibers and pure water of 99% pure water per 1.0 part by mass of sulfonated fine cellulose fibers (solid content mass (g)). .0 parts by mass. That is, the sulfonated fine cellulose fiber dispersion is prepared so that the solid concentration of the sulfonated fine cellulose fibers is 1.0% by mass.
  • the conditions for the refinement process are shown below.
  • the pulp slurry adjusted to 1.0% by mass was subjected to a high-pressure homogenizer (manufactured by Yoshida Kikai Kogyo Co., Ltd., product name: NanoVater, model number: L-ES008-D10).
  • Processing conditions Set pressure 60 MPa, processing times 5 times
  • the solid content concentration of the fine cellulose fibers of the present embodiment is a value calculated according to the dilution ratio when the known solid content concentration calculated in this measurement is diluted.
  • Solid content concentration (mass%) of the sulfonated fine cellulose fiber dispersion (solid content mass (g) after drying)/(mass (g) fractionated during solid content concentration measurement) x 100
  • the physical properties of the prepared sulfonated fine cellulose fiber dispersion were evaluated by the following measurement methods.
  • the amount of sulfur introduced due to sulfo groups in the sulfonated fine cellulose fibers was measured by titration with an aqueous sodium hydroxide solution after treating the prepared sulfonated fine cellulose fibers with an ion exchange resin.
  • a strongly acidic ion-exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned) was added to 100 g of a slurry containing sulfonated fine cellulose fibers adjusted to 0.2% by mass, and the mixture was stirred for 1 hour. gone. After that, it was poured onto a mesh with an opening of 200 ⁇ m to separate the resin and the slurry.
  • a slurry containing sulfonated fine cellulose fibers after treatment with an ion-exchange resin was added with a 0.1 M sodium hydroxide aqueous solution or a 1.0 M sodium hydroxide aqueous solution (both manufactured by Fujifilm Wako Pure Chemical Industries, model number for volumetric analysis) is added at a time of 10 ⁇ L to 50 ⁇ L, and the change in the electrical conductivity value is measured, and the electrical conductivity is plotted on the vertical axis and the sodium hydroxide titration amount on the horizontal axis to obtain a curve, An inflection point was confirmed from the obtained curve.
  • the titration amount of sodium hydroxide at this inflection point corresponds to the amount of sulfo groups. Therefore, the amount of sulfo groups introduced into the sulfonated fine cellulose fibers was measured by dividing the amount of sodium hydroxide at this inflection point by the amount of solids contained in the sulfonated fine cellulose fibers used for measurement. Electrical conductivity was measured using a water quality meter connected to the electrical conductivity electrode described above. The reliability of the electrical conductivity value was confirmed using an electrical conductivity standard solution (12.9 mS/cm, manufactured by HORIBA) in the same manner as described above.
  • the amount of sulfo group introduced was measured by the following operation.
  • 75 g of a slurry containing 0.2 mass % sulfonated fine cellulose fibers separated from the ion exchange resin was prepared, and an electrical conductivity electrode was immersed in the slurry while stirring at 400 rpm.
  • 10 to 50 ⁇ L of 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution was added dropwise using a micropipette.
  • the slurry is acidic, and the protons of the sulfo group and sodium hydroxide are neutralized to shift the slurry to basic.
  • the point at which the solution became neutral was the inflection point, and the amount of sodium hydroxide added up to the inflection point was determined. After that, the amount of sodium hydroxide (mmol) added up to the inflection point was divided by 0.150 g, which is the solid mass of the slurry containing sulfonated fine cellulose fibers used for measurement, to obtain the amount of sulfo groups (mmol/ g) was obtained.
  • the amount of sulfo groups is calculated as follows from the electrical conductivity measurement (shown in FIG. 2) of sample ⁇ -2 obtained by the method described below.
  • the inflection points of the graph are indicated by dashed lines.
  • Amount of sodium hydroxide added up to the inflection point 0.15 mmol
  • Cellulose solid content mass in measurement sample 0.150 g
  • Amount of sulfo group 1.00 mmol/g
  • An optional glass cell (part number: 2277, square cell, optical path length 10 mm ⁇ width 40 ⁇ height 55) of the spectroscopic haze meter filled with pure water was used as a blank measurement value, and the light transmittance of the measurement solution was measured.
  • the light source was D65
  • the field of view was 10°
  • the measurement wavelength range was 380 to 780 nm.
  • the total light transmittance (%) and the haze value (%) were calculated using the numerical values obtained from the control unit of the spectroscopic haze meter (model number CUII, Ver2.00.02).
  • the conditions and the like for viscosity measurement are shown below.
  • the B-type viscometer used was manufactured by Eiko Seiki Co., Ltd. (model number: DV2T). Measurement conditions: rotation speed 6 rpm, measurement temperature 20° C., measurement time 3 minutes, spindle No. 6.
  • Single point data recording method Single point is a recording method setting item that acquires only the value at the end of the measurement in the Brookfield viscometer used in this experiment. In other words, the instantaneous value after 3 minutes from the start of measurement is recorded.
  • fiber raw material As a fiber raw material, a softwood kraft pulp (NBKP) sheet (average fiber length: 2.6 mm) manufactured by Marusumi Paper Co., Ltd. was dried at 105° C. and adjusted to a moisture content of 10%.
  • NNKP softwood kraft pulp
  • reaction solution was prepared as follows. A reaction solution was prepared by mixing sulfamic acid (purity 98.5%, manufactured by Fuso Chemical Industries, Ltd.) and urea (purity 99%, manufactured by Wako Pure Chemical Industries, model number; special grade reagent).
  • Pulp was added to the prepared reaction solution to prepare a slurry.
  • a reaction liquid having a sulfamic acid/urea ratio ((g/L)/(g/L)) of 273/393 3.0 g of the reaction liquid is added to 1.0 g of pulp to The pulp was impregnated.
  • the prepared slurry was kneaded by hand for 30 minutes. After 30 minutes, the pulp impregnated with the reaction liquid was suction-filtered until no more water droplets fell, to prepare pulp impregnated with the reaction liquid (reaction liquid-impregnated pulp).
  • the step of drying the reaction liquid-impregnated pulp corresponds to the drying step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
  • thermo reaction Next, the prepared reaction solution-impregnated pulp was subjected to the next heating reaction step to carry out a heating reaction to prepare a sulfonated pulp.
  • the reaction conditions were as follows. A dryer (manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115) was used for the heating reaction. Thermostatic bath temperature: 140°C, heating time: 30 minutes
  • sulfonated pulp and pure water were mixed in the same manner as in sample ⁇ -1 to prepare a pulp slurry, and then, in the same manner as in sample ⁇ -1, a high-pressure homogenizer (a homogenizer manufactured by Kosunijuuichi Co., Ltd., model number ;N2000-2C-045 type) to prepare a sulfonated fine cellulose fiber dispersion.
  • a high-pressure homogenizer a homogenizer manufactured by Kosunijuuichi Co., Ltd., model number ;N2000-2C-045 type
  • Treatment conditions 2 times at a set pressure of 10 MPa, 1 time at a set pressure of 50 MPa, 5 times at a set pressure of 60 MPa
  • the amount of sulfur introduced into the sulfonated fine cellulose fibers in the sulfonated fine cellulose fiber dispersion was 1.4 mmol/g.
  • the physical properties of the prepared sulfonated fine cellulose fiber dispersion were evaluated by the following measurement methods.
  • Observation of fiber morphology and measurement of fiber width using SPM Observation of the sulfonated fine cellulose fibers was performed using an electron microscope. A sulfonated fine cellulose fiber was prepared with pure water to a solid content concentration of 0.001 to 0.005% by mass, and a thin film was formed on a silica substrate coated with PEI (polyethyleneimine) by spin coating. Observation of the fine cellulose fibers was performed using a scanning probe microscope (manufactured by Shimadzu Corporation, model number: SPM-9700). The fiber width and fiber length were measured by randomly selecting 20 fibers in the observed image. The average fiber width was 30 nm or less. The average fiber width of other fine cellulose fibers can be calculated in the same manner.
  • TEMPO-oxidized fine cellulose fiber dispersions (samples ⁇ -1, ⁇ -2, ⁇ -3) containing TEMPO-oxidized fine cellulose fibers into which carboxyl groups were introduced as functional groups of the anionic fine cellulose fibers were prepared as follows. Prepared as follows.
  • a wet pulp adjusted to a solid content concentration of 25.0% by mass shown in sample ⁇ -1 was used for the experiment as a fiber raw material.
  • Carboxyl groups were introduced into pulp in the presence of hypochlorite using 2,2,6,6-tetramethyl-1-piperidine-oxy radical (hereinafter referred to as TEMPO) and bromide as catalysts.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • TEMPO manufactured by Alfa Aesar, model number (purity); free radical, 98+%) and sodium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) were added to 500 mL of pure water in a 1 L beaker. 8 mg was added to prepare a catalyst solution. 20 g of wet pulp (5 g of solid mass) was added to the prepared catalyst solution and stirred until uniform to prepare a pulp slurry containing a catalyst component.
  • the effective chlorine concentration of the sodium hypochlorite aqueous solution was confirmed by titration with potassium iodide/sulfuric acid/sodium thiosulfate using starch as an indicator, which is generally known as a chemical experiment method.
  • the prepared TEMPO-oxidized pulp was subjected to refining treatment under the same conditions as for sample ⁇ -1 to prepare a 1.0% by mass TEMPO-oxidized fine cellulose fiber dispersion (sample ⁇ -1).
  • sample ⁇ -1 Using sample ⁇ -1, the amount of carboxyl groups introduced (described later), the total light transmittance, the haze value, the B-type viscosity, and the sprayability test were measured. The measurement conditions and equipment were the same as those for sample ⁇ -1.
  • the slurry containing TEMPO oxidized fine cellulose fibers after acidification of the slurry with hydrochloric acid was added with a 0.1 M sodium hydroxide aqueous solution or a 1.0 M sodium hydroxide aqueous solution (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., While adding 10 ⁇ L to 50 ⁇ L of model number for volumetric analysis), measure the change in the electrical conductivity value, plot the electrical conductivity on the vertical axis and the titration amount of sodium hydroxide on the horizontal axis to obtain a curve. , the inflection point was confirmed from the obtained curve.
  • the electrical conductivity was measured using the same device as for sample ⁇ -1. Using the titration curve obtained as shown in FIG. 3, from the point (point A) where the decrease in the electric conductivity at equal intervals from the start of dropping the sodium hydroxide aqueous solution is no longer observed, the electric conductivity starts to increase at equal intervals.
  • the titration amount of sodium hydroxide used up to the point (point B) corresponds to the amount of carboxyl groups (A and B are indicated in FIG. 3, and the amount of sodium hydroxide is indicated by a dashed line). Therefore, the amount of carboxyl groups introduced into the oxidized TEMPO fine cellulose fibers was measured by dividing the amount of sodium hydroxide in this range by the amount of solids contained in the oxidized TEMPO fine cellulose fibers used for measurement.
  • the amount of carboxyl group introduced was measured by the following operation. Prepare 72.3 g of slurry containing 0.3% by mass TEMPO oxidized fine cellulose fibers in a 200 mL glass beaker, add 300 to 400 ⁇ L of 1 M hydrochloric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent), and add pure water. and adjusted the total amount to 140 g. After stirring this solution for 1 hour, the conductivity electrode was immersed while stirring at 400 rpm. After the electrical conductivity was stabilized, 10 to 50 ⁇ L of 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution was added dropwise using a micropipette.
  • 1 M hydrochloric acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent
  • the slurry is acidic, and the protons of the carboxyl group and sodium hydroxide are neutralized to shift the slurry to basic.
  • the amount of sodium hydroxide (mmol) used from point A to point B was divided by 0.217 g, which is the solid content mass of the slurry containing TEMPO oxidized fine cellulose fibers used for measurement, to obtain the amount of carboxyl groups ( mmol/g) was obtained.
  • the amount of carboxyl groups is calculated as follows from the electrical conductivity measurement (shown in FIG. 3) of sample ⁇ -3 obtained by the method described below.
  • Amount of sodium hydroxide used from point A to point B 0.34 mmol
  • Cellulose solid content mass in measurement sample 0.217 g
  • Carboxyl group amount 1.56 mol / g
  • Sample ⁇ -2 was prepared and evaluated in the same manner as sample ⁇ -1, except that a reaction solution prepared under the conditions of TEMPO 23.2 (mg), sodium bromide 514 mg, and sodium hypochlorite 34 mL was used. rice field.
  • Sample ⁇ -3 was prepared and evaluated in the same manner as sample ⁇ -1, except that a reaction solution prepared under the conditions of 156 mg of TEMPO, 514 mg of sodium bromide, and 34 mL of sodium hypochlorite was used.
  • phosphorylated fine cellulose fiber dispersions (Samples ⁇ -1, ⁇ -2, ⁇ -3) containing phosphorylated fine cellulose fibers into which phosphoric acid groups were introduced as functional groups of the anionic fine cellulose fibers were prepared as follows. Prepared as follows.
  • sample ⁇ -1 As a fiber raw material, wet pulp adjusted to a solid content concentration of 25.0% by mass shown in sample ⁇ -1 was used in the experiment. Phosphate groups were introduced into the pulp using ammonium dihydrogen phosphate and urea.
  • ammonium dihydrogen phosphate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent
  • urea purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent
  • Ammonium dihydrogen phosphate and urea were stirred at room temperature until completely dissolved to prepare a reaction solution.
  • the pulp impregnated with the reaction liquid was taken out from the container and dried in the same manner as sample ⁇ -1 to prepare the reaction liquid-impregnated pulp.
  • reaction solution-impregnated pulp was subjected to a reaction step, and subjected to a heating reaction to prepare a phosphorylated pulp.
  • the moisture content of the supplied reaction liquid-impregnated pulp was 5% or less.
  • reaction conditions were as follows. A dryer (same as sample ⁇ -1) was used for heating Temperature of constant temperature bath of dryer: 140°C Heating time: 11 minutes
  • the phosphorylated pulp prepared by the chemical treatment step was subjected to the next step of pulverization treatment.
  • the prepared phosphorylated pulp was subjected to refining treatment under the same conditions as for sample ⁇ -1 to prepare a 1.0% by mass phosphorylated fine cellulose fiber dispersion ( ⁇ -1).
  • ⁇ -1 the amount of phosphate group introduced (described later), the total light transmittance, the haze value, the B-type viscosity, and the sprayability test were measured.
  • the measurement conditions and equipment were the same as those for sample ⁇ -1.
  • the amount of phosphate groups introduced due to phosphate groups was measured by titration with an aqueous sodium hydroxide solution after treating the prepared phosphorylated fine cellulose fibers with an ion-exchange resin.
  • a strongly acidic ion-exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned) was added to 100 g of a slurry containing phosphorylated fine cellulose fibers adjusted to 0.2% by mass, and the mixture was stirred for 1 hour. gone. After that, it was poured onto a mesh with an opening of 200 ⁇ m to separate the resin and the slurry.
  • the amount of phosphate groups introduced into the phosphorylated fine cellulose fibers was measured by dividing the amount of sodium hydroxide at this inflection point by the amount of solids contained in the phosphorylated fine cellulose fibers used for measurement.
  • a phosphate group is a divalent anionic functional group (a sulfo group is a monovalent anionic functional group). Therefore, there are two points of inflection.
  • the amount of phosphate group introduced herein means the amount required up to the second inflection point.
  • the amount of phosphate group introduced was measured by the following operation.
  • a slurry containing 0.2 mass % phosphorylated fine cellulose fibers separated from the ion exchange resin was prepared, and an electrical conductivity electrode was immersed in the slurry while stirring at 400 rpm.
  • 10 to 50 ⁇ L of 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution was added dropwise using a micropipette.
  • the slurry is acidic, and the protons of the phosphate group and sodium hydroxide are neutralized, thereby shifting the slurry to basic.
  • the point at which the first of the two protons present in the phosphate group reaches neutrality is the first inflection point, and the second inflection point is obtained by further adding sodium hydroxide. An inflection point appears. After that, the amount of sodium hydroxide (mmol) added up to the first inflection point was divided by 0.183 g, which is the solid content mass of the phosphorylated fine cellulose fiber-containing slurry used for measurement, to obtain the amount of phosphate groups. (mmol/g) was obtained.
  • the amount of phosphate groups is calculated as follows from electrical conductivity measurement (shown in FIG. 4) of sample ⁇ -2 obtained by the method described later. In the graph of FIG. 4, dashed lines are drawn at the first inflection point and the second inflection point. Amount of sodium hydroxide added up to the first inflection point: 0.23 mmol Amount of sodium hydroxide added from the first inflection point to the second inflection point: 0.23 mmol Cellulose solid content mass in measurement sample: 0.183 g Phosphate group amount: 1.26 mmol / g
  • Sample ⁇ -2 was prepared and evaluated in the same manner as sample ⁇ -1, except that the pulp was reacted under the conditions that the temperature of the constant temperature bath of the dryer in the reaction process was 140 ° C. and the heating time was 30 minutes. rice field.
  • Sample ⁇ -3 was prepared and evaluated in the same manner as sample ⁇ -1, except that the pulp was reacted under the conditions that the temperature of the constant temperature bath of the dryer in the reaction process was 140 ° C. and the heating time was 40 minutes. gone.
  • Example ⁇ > A sample ⁇ was prepared as a comparative example.
  • hydroxypropyl cellulose (HPC, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number: 1000 to 5000 cP) was used instead of fine cellulose fibers. Solutions were prepared as follows. With a total mass of 100 g, 0.5 g to 3.0 g of HPC was weighed with an electronic balance, 97.0 to 99.5 g (20° C.) of pure water was added, and the mixture was stirred until completely dissolved. Evaluation was performed as follows.
  • Figure 1 shows the physical properties of each sample.
  • Figures 2, 3, and 4 show typical examples of conductivity titration curves of the anion-modified fine cellulose fibers, respectively.
  • FIG. 1 shows the results of characterization of the cellulose component used in the application liquid containing fine cellulose fibers. It has been reported that a cellulose fine fiber dispersion prepared by introducing an anionic functional group exhibits excellent effects in terms of transparency and viscosity. First, total light transmittance and haze value were measured as the transparency of the cellulose fine fiber dispersion. The total light transmittance of the cellulose fine fiber dispersion was 99.0% or higher in all of the prepared samples. As for the haze value, as the amount of functional group introduced increased, the haze value decreased and the transparency increased as a tendency for all the prepared samples. This result agreed with the characteristics of anionic fine cellulose fiber dispersions reported so far.
  • a water-soluble HPC aqueous solution (sample ⁇ ), which is a comparative material, also exhibited high transparency.
  • the anionic fine cellulose fiber dispersions exhibited high B-type viscosity values at low solids concentrations of 0.5 and 1.0 wt% solids.
  • the water-soluble HPC aqueous solution (sample ⁇ ), which is a comparative material, showed a viscosity lower than 1000 mPa ⁇ s at the same solid content concentration as the anionic fine cellulose fiber dispersion.
  • an aqueous solution with a solid content concentration higher than 2.0% by mass is required. However, at this solid content concentration, desirable sprayability was not obtained.
  • the present invention we envisioned a spreading agent that imparts viscosity to the pesticide spray liquid, and focused on anionic fine cellulose fibers as a new spreading agent material.
  • water-soluble cellulose such as HPC has been the most advanced technology as a cellulose material used as a spreading agent material.
  • the anionic fine cellulose fiber is a material that can solve these problems, and the characteristics as a spreading agent were evaluated in subsequent experiments.
  • Example 2 In Experiment 1, physical properties of each anionic fine cellulose fiber and HPC were confirmed. In Experiment 2, physical properties that are more important when used as a spreading agent were evaluated, and suitability as an application liquid was examined.
  • Samples and reagents used in Experiment 2 Samples ⁇ -1 to 3, ⁇ -1 to 3, and ⁇ -1 to ⁇ -3 prepared in Experiment 1 and having a solid concentration of 1.0% by mass were used as cellulose components. Sample ⁇ was used as a comparative example.
  • surfactant components As surfactant components, (A) sodium lauryl sulfate (manufactured by Tokyo Chemical Industry, model number: S0588), (B) dodecyldimethyl(3-sulfopropyl) ammonium hydroxide inner salt (manufactured by Tokyo Chemical Industry, model number: D3860) , (C) polyoxyethylene sorbitan monolaurate (manufactured by Tokyo Chemical Industry Co., Ltd., model number; T2530, Tween20), and (D) polyoxyethylene sorbitan monooleate (manufactured by Tokyo Chemical Industry Co., Ltd., model number; T2533, Tween80).
  • Example 1 is indicated as S-1
  • Comparative Example 1 is indicated as C-1.
  • the same notation is used in other examples and comparative examples.
  • Example 1 Application liquid containing ⁇ -1 having a solid concentration of 1.0% by mass
  • Sample ⁇ -1 having a solid content concentration of 1.0% by mass was used as it was.
  • Example 2 Application liquid containing diluted ⁇ -1) 60 g of sample ⁇ -1 having a solid content concentration of 1.0% by mass was weighed in a 300 mL beaker with an electronic balance, and 40 g of pure water (20° C.) was added. Stirring for 10 minutes with a stirrer (300 rpm, manufactured by AS ONE, model number: CHPS-170DF) using a stirrer ( ⁇ 8 ⁇ 40), sample ⁇ -1 and pure water are uniformly mixed to obtain sulfonated fine cellulose fibers. An application liquid having a solid content concentration of 0.6% by mass was prepared.
  • Example 5 Application liquid containing surfactant-blended ⁇ -1) 40 g of sample ⁇ -1 having a solid concentration of 1.0% by mass was weighed into a 300 mL beaker with an electronic balance, and 60 g of pure water (20° C.) was added. Further, 0.5 g of surfactant component (A) sodium lauryl sulfate was added, and the mixture was stirred for 10 minutes with a stirrer (300 rpm, manufactured by AS ONE, model number: CHPS-170DF) using a stirrer ( ⁇ 8 ⁇ 40). By uniformly mixing sample ⁇ -1 in pure water and dissolving the surfactant component, the solid content concentration of the sulfonated fine cellulose fibers containing the surfactant component was applied to 0.6% by mass. A liquid was prepared.
  • Comparative Example 47 was pure water containing no cellulose component and no surfactant component (Fig. 16).
  • Viscosity measurement was performed after putting 100 g of the prepared application liquid into a screw tube (manufactured by SANYO, model number: 84-0741/No. 8) and allowing it to stand for 24 hours. Measurement was performed using a B-type viscometer (manufactured by Brookfield, model number: DV2T (RV type), spindle No. 6).
  • the viscosity measurement conditions were as follows. Liquid temperature of applied liquid: 20°C Measurement time: 3 minutes Rotation speed: Rotation speed 6 rpm and 60 rpm Data recording method: Single point (Method of acquiring only the value 3 minutes after the start of measurement)
  • TI value (viscosity at 6 rpm)/(viscosity at 60 rpm)
  • a stand (manufactured by Shibata Kagaku, model number: 050700-1) is equipped with a double-open clamp (manufactured by Yamanaka, model number: NC-4S, product number: 1-7209-01), and this clamp The proximal end of the evaluation plate was fixed. At this time, the surface of the OPP film was directed upward, and the surface of the OPP film of the evaluation plate was adjusted to be horizontal.
  • This evaluation plate is attached to a stand so that the tip on the opposite side can be swung downward with the base end as a fulcrum. In other words, the evaluation plate is mounted so as to be rotatable with the proximal end as a fulcrum.
  • the tip portion may be supported by a jack (manufactured by ASPALAND, model number: 2019-817-06-12-06-07-05-28) so that the surface of the OPP film of the evaluation plate is stabilized.
  • the horizontal state of the surface of the OPP film of the evaluation plate is taken as the reference plane (the sliding angle at this time is 0°).
  • a sample droplet of 0.1 g is left still on the surface of the OPP film of the evaluation plate with a sliding angle of 0°.
  • the base end of the evaluation plate is used as a fulcrum to swing the tip downward, and the surface of the OPP film of the evaluation plate after swinging and the reference surface are aligned.
  • the evaluation plate is tilted downward so that the angle ⁇ formed by , that is, the sliding angle (°) ( ⁇ shown in FIG. 5) gradually increases.
  • the downward tilting speed of the evaluation plate is adjusted so that the sliding angle is 10°/min.
  • the droplet started to slide down the evaluation plate was stopped from swinging, and the sliding angle was measured using a protractor.
  • Measurement range of sliding angle 0° to 180° Measurement atmosphere; ambient temperature 20°C, humidity 30-50%
  • the characteristics of the OPP film were measured as follows.
  • Wettability was evaluated by the following method. Evaluation of the wettability of the application liquid was evaluated based on the droplet size. An outline is shown in FIG. First, using the same stand and clamp as above, a micropipette (manufactured by NICHIRYO, model number: 00-NPX2-1000, inner diameter of pipette tip mouthpiece 4 mm) was fixed to the clamp. The micropipette is attached to a pipette tip (manufactured by VIOLAMO, model number: 3-6629-13) prepared so that the end face of the connecting port of the micropipette comes to a position 15 mm inward from the end face of the mouthpiece.
  • the pipette tip is attached to the micropipette so that the end face of the connection port of the micropipette and the end face of the mouthpiece of the pipette tip are parallel to each other.
  • An OPP film manufactured by Nippon Paper Industries, model number: #40 30*45
  • #40 30*45 measuring 5 cm square is placed below the micropipette fixed to the stunt, that is, on the vertical line. Adjust the distance from the tip of the pipette tip of the micropipette to the OPP film to be 30 cm.
  • the droplets dropped during the evaluation may be elliptical, only droplets with a difference between the maximum diameter and the minimum diameter of 2 mm or less were measured.
  • the droplet diameter is high viscosity, the correct amount cannot be aspirated with the micropipette, or if it remains in the pipette tip and the correct amount cannot be dropped, "N/A (not applicable)" evaluated.
  • N/A (not applicable) in this experiment means that it does not meet the measurement standards and lacks accuracy when expressed as a numerical value.
  • Sprayability test In the sprayability test, 20 mL of the prepared application liquid is placed in a spray bottle (manufactured by Brothers Co., Ltd., model number: YE10089, capacity 30 mL, type that becomes misty when using pure water), and it is sprayed to evaluate whether it becomes misty. did. If the spray was misty, it was evaluated as ⁇ , and if it was sprayed differently from when pure water was used, it was evaluated as x.
  • FIG. 17 is a diagram showing the relationship between the B-type viscosity and the TI value of the application liquid containing fine cellulose fibers ( ⁇ -1, ⁇ -1, ⁇ -1) having a functional group amount of about 0.5 mmol/g. be.
  • FIG. 18 is a diagram showing the relationship between the B-type viscosity and the TI value of the application liquid containing fine cellulose fibers ( ⁇ -2, ⁇ -2, ⁇ -2) having a functional group amount of about 1.0 mmol/g. be.
  • FIG. 19 is a diagram showing the relationship between the B-type viscosity and the TI value of the application liquid containing fine cellulose fibers ( ⁇ -3, ⁇ -3, ⁇ -3) having a functional group amount of about 1.5 mmol/g. be.
  • the portion where the B-type viscosity is 1000 mPa ⁇ s is indicated by a broken line, and the range of TI values of 4 to 10 is indicated by oblique lines.
  • the graph in (a) of the figure shows the overall image of the graph.
  • the graph in (b) of the figure is an enlarged view of the portion enclosed by the dashed line in the graph in (a).
  • black plots ( ⁇ , ⁇ , ⁇ ) indicate Example (S)
  • white plots ( ⁇ , ⁇ , ⁇ ) indicate Comparative Example (C).
  • the application liquid containing fine cellulose fibers exhibited a TI value of 4 or more and 10 or less when the B-type viscosity was 1000 mPa ⁇ s or more and 50000 mPa ⁇ s or less.
  • the TI value was lower than 4 in the viscosity range lower than 1000 mPa ⁇ s.
  • the present invention three types of anionic functional groups (sulfo group, carboxy group and phosphate group) were used as fine cellulose fibers used in the application liquid. Moreover, it prepared so that the amount of functional groups may differ. As a result, when viscosity characteristics were evaluated as application liquids, surprisingly similar results were obtained regardless of the types and amounts of functional groups. On the other hand, the HPC-containing application liquids (C-42 to 46) (comparative test) shown in FIG. 16 had a B-type viscosity of 200 mPa ⁇ s or less and a TI value of about 1.0.
  • FIG. 20 is a diagram showing the relationship between the B-type viscosity and the sliding angle of an application liquid containing sulfonated fine cellulose fibers.
  • FIG. 21 is a diagram showing the relationship between the B-type viscosity and the sliding angle of an application liquid containing TEMPO-oxidized fine cellulose fibers.
  • FIG. 22 is a diagram showing the relationship between the B-type viscosity of the application liquid containing phosphorylated fine cellulose fibers and the sliding angle.
  • a dashed line indicates the point where the B-type viscosity is 1000 mPa ⁇ s.
  • the graph in (a) of the figure shows the overall image of the graph.
  • the graph in (b) of the figure is an enlarged view of the portion enclosed by the dashed line in the graph in (a).
  • black plots ( ⁇ ) indicate Example (S)
  • white plots ( ⁇ ) indicate Comparative Example (C).
  • the application liquid containing fine cellulose fibers tended to increase the sliding angle when the B-type viscosity was 1000 mPa ⁇ s or more.
  • the dripping property that measures the sliding angle is assumed to be applied to the leaves of plants (0 to 90 degrees), the stems and trunks that support the plant's own weight (about 90 degrees), and the undersides of leaves (90 to 180 degrees). This is an experimental reflection of the current usage situation. Some plants have surfaces that easily repel water. Therefore, in this experiment, an OPP film showing a water contact angle of 90° or more was used.
  • the sliding angle is about 20° or more and 180° or less.
  • the sliding angle of the application liquid containing HPC of the comparative example was 10° to 18° (Fig. 16).
  • the application liquid of the present invention can cover a wide range of uses of the spray liquid. Moreover, it is suggested that the application liquid of the present invention is an unprecedented technology. Therefore, when the application liquid of the present invention is sprayed on crops, the application liquid can be appropriately attached to the leaves of the crops even if the leaves of the crops are slanted. Moreover, the adhered state can be maintained. In addition, since the application liquid of the present invention has a high viscosity, it can be applied appropriately to plants (for example, plants of the Gramineae family) whose leaf surface angle is nearly vertical while suppressing dripping. suggested that it could be done. In addition, since the application liquid of the present invention can be appropriately adhered to crops and the like, it is possible to efficiently apply a functional composition (for example, an agricultural chemical, a fertilizer plant growth promoter, etc.) to the application liquid to the crops. can.
  • a functional composition for example, an agricultural chemical, a fertilizer plant growth promoter, etc.
  • Some agricultural chemicals have low safety to humans and the environment.
  • the solvent containing fine cellulose fibers of the present invention is used in the same manner as a conventional spreading agent, agricultural chemicals can adhere to the surface of crops for a longer period of time than the spray liquid containing the conventional spreading agent. can be kept Therefore, compared with conventional spray solutions, the amount of agricultural chemicals used can be reduced, which is economical.
  • the amount of environmentally hazardous substances such as pesticides used can be reduced, environmental pollution via soil and water quality can be reduced.
  • Figure 23 shows the effect on viscosity of adding a surfactant to an application liquid containing sulfonated fine cellulose fibers.
  • the graph of (a) is the application liquid using sample ⁇ -1 (see FIG. 7)
  • the graph of (b) is the application liquid using sample ⁇ -2 (see FIG. 8)
  • the graph showed the results of the application liquid (see Figure 9) using sample ⁇ -3.
  • the graph in (a) of FIG. 23 corresponds to S-4, S-5, S-6, S-7 and S-8 in FIG. 7 in order from the bottom.
  • the graph in (b) of FIG. 23 corresponds to S-12, S-13, S-14, S-15 and S-16 in FIG. 8 in order from the bottom.
  • the graph in (c) of FIG. 23 corresponds to S-20, S-22, S-24, S-26 and S-28 in FIG. 9 in order from the bottom.
  • Figure 24 shows the effect on viscosity of adding a surfactant to an application liquid containing TEMPO-oxidized microcellulose fibers.
  • the graph of (a) is the application liquid using sample ⁇ -1 (see FIG. 10)
  • the graph of (b) is the application liquid using sample ⁇ -2 (see FIG. 11)
  • the graph of (a) in FIG. 24 corresponds to S-32, S-33, S-34, S-35 and S-36 in FIG. 10 from the bottom.
  • the graph in FIG. 24(b) corresponds to S-42, S-43, S-44, S-45 and S-46 in FIG. 11 from the bottom.
  • the graph of (c) in FIG. 24 corresponds to S-50, S-51, S-52, S-53 and S-54 in FIG. 12 from the bottom.
  • FIG. 25 is a diagram showing the effect on viscosity when a surfactant is added to an application liquid containing phosphorylated microcellulose fibers.
  • the graph of (a) is the applied liquid using sample ⁇ -1 (see FIG. 13)
  • the graph of (b) is the applied liquid using sample ⁇ -2 (see FIG. 14)
  • the graph showed the results of the application liquid (see Figure 15) using sample ⁇ -3.
  • the graph in (a) of FIG. 25 corresponds to S-58, S-59, S-60, S-61 and S-62 in FIG. 13 from the bottom.
  • the graph in FIG. 25(b) corresponds to S-70, S-71, S-72, S-73, and S-74 in FIG. 14 in order from the bottom.
  • the graph of (c) in FIG. 25 corresponds to S-82, S-83, S-84, S-85 and S-86 in FIG. 15 in order from the bottom.
  • the portion where the B-type viscosity is 1000 mPa ⁇ s is indicated by a broken line, and the range of TI values of 4 to 10 is indicated by oblique lines.
  • black indicates the B-type viscosity
  • white indicates the TI value.
  • the conditions for each sample in the graph were that the application liquid was prepared so that the cellulose component was 4 parts by mass, the surfactant component was 0 or 5 parts by mass, and the water component was 996 parts by mass (see FIGS. 7 to 15). See Preparation Conditions).
  • FIG. 23 As shown in FIGS. 24 and 25, the viscosity of the application liquid containing fine cellulose fibers to which a surfactant was added decreased depending on the type of surfactant, but the decrease in viscosity before and after the addition was almost zero. did not occur.
  • surfactants in spreading agents are often added for the purpose of alleviating the tendency of plants to repel water and increasing the contact area with spray liquids and the like.
  • FIG. 16 it was confirmed that the liquid containing the conventional surfactant (comparative example) was not viscous. For this reason, it is suggested that conventional spreading agents do not adequately exhibit the effects and efficacy of functional compositions such as agricultural chemicals contained in spray liquids.
  • the application liquid containing the fine cellulose fibers of the present invention can be dispersed in water, it is naturally possible to exhibit hydrophilicity. Therefore, by including a surfactant in the application liquid of the present invention, the surface of plants can be coated with the application liquid more than conventional spreading, and thus a further expansion of the range of applications can be expected.
  • Experiment 3 determined the definition of the atomization state of the sprayability test for the application liquid of the present invention.
  • the atomization state of the sprayability test is classified as "foggy" or “otherwise.”
  • the sprayed state is circular with a diameter of 10 cm or more and 15 cm or less (specifically, the shape of the liquid application amount area on the spray plate is circular, and the area area is 78.5 cm). 2 or more and 176.6 cm 2 or less), it is defined as sprayed “atomized”. In this case, it is written as " ⁇ " in the figure.
  • the sprayed state formed a circular shape with a diameter smaller than 10 cm (specifically, the shape of the liquid application amount region on the spray plate is circular and the region area is smaller than 78.5 cm 2 ). defined as sprayed in the “otherwise” condition. In such a spraying state, the spray liquid may drip within 5 minutes after spraying, or the spray may not be sprayed in the first place. In this case, it is written as "x" in the figure.
  • Sample ⁇ -1 could be sprayed "foggy" (forming circles with a diameter of 11.5 cm after spraying). No dripping was observed when the liquid was sprayed and allowed to stand for 5 minutes. On the other hand, sample ⁇ was in an “other” spray state (diameter 5.5 cm), and dripping was observed when the spray was left standing for 5 minutes. In the case of pure water, it could be sprayed in a "mist form” (forming a circle with a diameter of 14.5 cm) as in the sample ⁇ -1. However, liquid dripping was confirmed by observation when sprayed and allowed to stand for 5 minutes.
  • the application liquid of the present invention when the application liquid of the present invention is sprayed onto an object using a sprayer or the like, even if it has a high viscosity in the static state accommodated in the bottle, during use (when using the spray) ) can be used in the same way as water without problems such as clogging in the liquid feed tube of the spray container or clogging at the tip of the nozzle. For this reason, it was confirmed that the application liquid could be sprayed in a "mist form" onto the target object. Moreover, by adjusting the size of the pores of the nozzle of the spray container, the size of the droplets of the application liquid can be appropriately adjusted, so that the "fog-like" particle size of the application liquid can be adjusted according to the target object. was suggested to be adjustable.
  • the fine cellulose fiber-containing solvent of the present invention is suitable as a solvent that exhibits wettability and viscosity with respect to liquids.
  • the application liquid and the application liquid preparation method of the present invention are suitable for applying a liquid to an object.

Abstract

[Problem] To provide: a fine cellulose fiber–containing solvent that makes it possible to suitably exploit the effects of a functional composition, such as an agrochemical, that is included in a spray; a practical liquid that includes the fine cellulose fiber–containing solvent; and a preparation method for the practical liquid. [Solution] This fine cellulose fiber–containing solvent is for improving the wetting properties and suppressing drippage of a liquid that contains a functional composition. The fine cellulose fiber–containing solvent contains anionic fine cellulose fibers that have had some of the hydroxyl groups thereof replaced with an anionic functional group and have an average fiber width of 1–1000 nm. When the anionic fine cellulose fibers have been dispersed in pure water such that the solid concentration is 0.2–1.0 mass%, the type-B viscosity as measured using a type-B viscometer is 1000–50000 mPa·s. The fine cellulose fiber–containing solvent makes it possible for a practical liquid to exhibit excellent wetting properties and drippage suppression and can thereby improve the functionality of the practical liquid.

Description

微細セルロース繊維含有溶剤、施用液体および施用液体調製方法Solvent containing fine cellulose fibers, application liquid and method for preparing application liquid
 本発明は、微細セルロース繊維含有溶剤、施用液体および施用液体調製方法に関する。さらに詳しくは、アニオン性の官能基を有する微細セルロース繊維が含有した微細セルロース繊維含有溶剤、この微細セルロース繊維含有溶剤を含む施用液体およびこの施用液体を調製する施用液体調製方法に関する。 The present invention relates to a fine cellulose fiber-containing solvent, application liquid, and application liquid preparation method. More specifically, it relates to a fine cellulose fiber-containing solvent containing fine cellulose fibers having an anionic functional group, an application liquid containing this fine cellulose fiber-containing solvent, and a method for preparing an application liquid for preparing this application liquid.
 通常、農作物を害虫等から守るためには農薬の散布が欠かせない。農薬を農作物に散布する方法としては、一般的に農薬の原液を水で希釈した散布液を噴霧器等を用いて散布する方法が採用されている。ここで、農作物の葉の表面には、水をはじきやすいワックス層が形成されている。このため、散布した散布液の多くは流れ落ちてしまい農薬の効果を十分に発揮せることができない。そこで、通常、散布液には、展着剤が添加されている。この展着剤は、界面活性剤を主成分とした溶剤であり、農作物に付着した散布液のぬれ性を向上させる。一方、農作物に付着した散布液が流れ落ち易い(液ダレし易い)という現象が生じる。
 そこで、従来、農作物に付着した散布液の液ダレを抑制するために、増粘剤を配合させた展着剤が提案されている(例えば、特許文献1~3)。
 特許文献1には、水溶性カルボキシメチルセルロース(CMC)およびそのナトリウム塩を用いた顆粒状水和剤が展着剤として開示されている。また、特許文献2には、デンプンなどの多糖類を配合した農薬用展着剤組成物が展着剤として開示されている。そして、特許文献3には、水溶性ヒドロキシプロピルセルロース(HPC)またはヒドロキシプロピルメチルセルロース(HPMC)のセルロース誘導体を配合した農業用展着剤が展着剤として開示されている。
In general, spraying pesticides is essential to protect crops from pests and the like. As a method of spraying agricultural chemicals on crops, a method of spraying a spray liquid obtained by diluting a stock solution of the agricultural chemical with water using a sprayer or the like is generally adopted. Here, a wax layer that easily repels water is formed on the surface of the leaves of crops. For this reason, most of the spray liquid that has been sprayed runs off, and the effect of the agricultural chemical cannot be sufficiently exhibited. Therefore, a spreading agent is usually added to the spray solution. This spreading agent is a solvent containing a surfactant as a main component, and improves the wettability of the spray liquid adhering to the crops. On the other hand, a phenomenon occurs in which the spray liquid adhering to the crops easily flows down (easily drips).
Therefore, conventionally, a spreader containing a thickener has been proposed in order to suppress dripping of the spray liquid adhering to the crops (eg, Patent Documents 1 to 3).
Patent Document 1 discloses a water-soluble carboxymethyl cellulose (CMC) and a granular wettable powder using its sodium salt as a spreading agent. Further, Patent Document 2 discloses, as a spreading agent, a spreader composition for agricultural chemicals containing a polysaccharide such as starch. Patent Document 3 discloses an agricultural spreading agent containing a cellulose derivative of water-soluble hydroxypropylcellulose (HPC) or hydroxypropylmethylcellulose (HPMC) as a spreading agent.
特開2005-132741号公報JP-A-2005-132741 特開2012-72116号公報JP 2012-72116 A 特開2011-207828号公報JP 2011-207828 A
 しかしながら、特許文献1~3の展着剤は、展着剤そのものがある程度の粘性を有するものの、使用時に数百倍から1000倍程度に希釈して使用されるため、散布液の液ダレを十分に抑制できていない。
 したがって、従来の技術では、農作物に対して農薬や肥料等の機能性組成物を含有した散布液を散布しても、多くが流れ落ちてしまい散布液に含まれる機能性組成物の効果を十分に発揮できていないというのが、実情である。
However, although the spreading agents of Patent Documents 1 to 3 have a certain degree of viscosity, they are used after being diluted several hundred to 1,000 times before use. not be suppressed to
Therefore, in the conventional technology, even if a spray liquid containing a functional composition such as an agricultural chemical or a fertilizer is sprayed on agricultural crops, most of it runs off and the effect of the functional composition contained in the spray liquid is not sufficiently obtained. The reality is that it has not been able to demonstrate.
 本発明は上記事情に鑑み、散布液に含まれる農薬等の機能性組成物の効果を適切に発揮させることができる微細セルロース繊維含有溶剤、この微細セルロース繊維含有溶剤を含む施用液体及びかかる施用液体の調製方法である施用液体調製方法を提供することを目的とする。 In view of the above circumstances, the present invention provides a fine cellulose fiber-containing solvent capable of appropriately exhibiting the effects of a functional composition such as an agricultural chemical contained in a spray liquid, an application liquid containing the fine cellulose fiber-containing solvent, and such an application liquid. The object is to provide a method for preparing an application liquid, which is the preparation method of
 本発明者らは、上記課題を解決すべき鋭意検討を重ねた結果、微細セルロース繊維を含有させることにより液体に対してぬれ性及び粘性を発揮させることを見出し、本発明の完成に至った。 As a result of extensive studies aimed at solving the above problems, the present inventors found that the inclusion of fine cellulose fibers exhibited wettability and viscosity with respect to liquids, and completed the present invention.
 本発明の微細セルロース繊維含有溶剤は、機能性組成物が含有した液体のぬれ性の向上と液ダレの抑制に使用される溶剤であり、水酸基の一部がアニオン性の官能基で置換された、平均繊維幅が1nm~1000nmのアニオン性微細セルロース繊維を含有しており、該アニオン性微細セルロース繊維は、固形分濃度が0.3質量%~1.0質量%となるように純水に分散した状態における、B型粘度計を用いて測定したB型粘度(20℃、回転数6rpm、3分)が1000mPa・s以上、50000mPa・s以下であることを特徴とする。
 本発明の施用液体は、水と、機能性組成物と、ぬれ性の向上と液ダレの抑制に使用される本発明の微細セルロース繊維含有溶剤を含む液体である。
 本発明の施用液体調製方法は、水と、機能性組成物と、ぬれ性の向上と液ダレの抑制に使用される本発明の微細セルロース繊維含有溶剤と、を含む液体の調製方法であって、前記溶剤が、水酸基の一部がアニオン性の官能基で置換された、平均繊維幅が1nm~1000nmのアニオン性微細セルロース繊維を含有しており、該アニオン性微細セルロース繊維の固形分濃度が、0.3質量%~1.0質量%となるように調整することを特徴とする。
The fine cellulose fiber-containing solvent of the present invention is a solvent used for improving the wettability of the liquid contained in the functional composition and suppressing dripping, and part of the hydroxyl groups are substituted with anionic functional groups. , contains anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm, and the anionic fine cellulose fibers are added to pure water so that the solid content concentration is 0.3% to 1.0% by mass. It is characterized by having a B-type viscosity of 1000 mPa·s or more and 50000 mPa·s or less in a dispersed state measured using a B-type viscometer (20° C., rotation speed 6 rpm, 3 minutes).
The application liquid of the present invention is a liquid containing water, a functional composition, and the fine cellulose fiber-containing solvent of the present invention used for improving wettability and suppressing dripping.
The application liquid preparation method of the present invention is a method of preparing a liquid containing water, a functional composition, and the fine cellulose fiber-containing solvent of the present invention used for improving wettability and suppressing dripping. , the solvent contains anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm in which some of the hydroxyl groups are substituted with an anionic functional group, and the solid content concentration of the anionic fine cellulose fibers is , 0.3% by mass to 1.0% by mass.
 本発明によれば、液体に対して優れたぬれ性と液ダレ抑制を発揮させることができる微細セルロース繊維含有溶剤を提供することができる。そして、本発明の微細セルロース繊維含有溶剤が含有した施用液体を用いれば、被対象物に対して適切に付着して施用液体が有する機能を効率よく発揮させることができる施用液体及びかかる施用液体の調製方法を提供することができる。 According to the present invention, it is possible to provide a fine cellulose fiber-containing solvent capable of exhibiting excellent wettability and suppression of liquid dripping. When the application liquid containing the fine cellulose fiber-containing solvent of the present invention is used, the application liquid can adhere appropriately to the object and efficiently exhibit the functions of the application liquid, and the application liquid can be obtained. A method of preparation can be provided.
実験1の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 1; 実験1の電気伝導度滴定曲線の一例を示す図である。1 is a diagram showing an example of a conductivity titration curve of Experiment 1. FIG. 実験1の電気伝導度滴定曲線の一例を示す図である。1 is a diagram showing an example of a conductivity titration curve of Experiment 1. FIG. 実験1の電気伝導度滴定曲線の一例を示す図である。1 is a diagram showing an example of a conductivity titration curve of Experiment 1. FIG. 実験2の液ダレの評価方法の概略説明図である。FIG. 10 is a schematic explanatory diagram of a method for evaluating liquid dripping in Experiment 2; 実験2のぬれ性の評価方法の概略説明図である。FIG. 10 is a schematic illustration of a wettability evaluation method in Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2; 実験2の実験結果を示す図である。FIG. 10 is a diagram showing experimental results of Experiment 2;
 以下、本発明の実施形態を図面に基づき説明する。
 本実施形態の微細セルロース繊維含有溶剤は、アニオン性微細セルロース繊維を含有させることにより、当該微細セルロース繊維含有溶剤を使用した液体を被対象物の表面に適切に付着させることができるので、当該液体が有する機能性組成物に基づく機能を効率的に発揮させることができるようにしたことに特徴を有している。
 具体的には、本実施形態の微細セルロース繊維含有溶剤は、当該微細セルロース繊維含有溶剤を含有した液体に対して優れたぬれ性および優れた液ダレ抑制を発揮させることができるようになる。そして、この液体を被対象物に施用すれば、被対象物に当該液体を適切に付着させることができる。このため、液体が有する機能性組成物に基づく機能を被対象物に対して効率的に発揮させることができるようになる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described based on the drawings.
Since the fine cellulose fiber-containing solvent of the present embodiment contains the anionic fine cellulose fibers, the liquid using the fine cellulose fiber-containing solvent can be appropriately adhered to the surface of the object. It is characterized by being able to efficiently exhibit the function based on the functional composition possessed by.
Specifically, the fine cellulose fiber-containing solvent of the present embodiment can exhibit excellent wettability and excellent suppression of dripping with respect to the liquid containing the fine cellulose fiber-containing solvent. By applying this liquid to an object, the liquid can be appropriately adhered to the object. Therefore, it is possible to efficiently exhibit the function of the liquid based on the functional composition on the object.
 本実施形態の施用液体は、水と、機能性組成物と、本実施形態の微細セルロース繊維含有溶剤と、を含む液体である。つまり、本実施形態の施用液体は、上述した本実施形態の微細セルロース繊維含有溶剤の説明における本実施形態の微細セルロース繊維含有溶剤を含有した液体に相当する。 The application liquid of this embodiment is a liquid containing water, the functional composition, and the fine cellulose fiber-containing solvent of this embodiment. That is, the application liquid of the present embodiment corresponds to the liquid containing the fine cellulose fiber-containing solvent of the present embodiment in the description of the fine cellulose fiber-containing solvent of the present embodiment described above.
 本実施形態の施用液体の施用対象物(被対象物)は、含まれる機能性組成物の機能に応じて適宜選択できる。機能性組成物としては、例えば、農薬、肥料、殺菌剤、消毒剤、土壌改良材、植物生長促進剤などを挙げることができる。機能性組成物の詳細は後述する。
 例えば、機能性組成物が農薬や植物生長促進剤の場合、農作物(樹木及び農林産物を含む)が被対象物となる。また、機能性組成物が肥料の場合も同様に農作物が被対象物となる。つまり、機能性組成物が農薬や肥料などの農業用組成物の場合、被対象物は、農作物を主な対象物としてあげることができる。機能性組成物が殺菌剤、消毒剤の場合、河川水、農業用水などが被対象物となる。また、機能性組成物が消毒剤の場合、希釈すれば家畜や愛玩動物なども被対象物となる。さらに、機能性組成物が土壌改良剤や植物生長促進剤の場合、土壌が被対象物となる。
The object to which the application liquid of the present embodiment is applied (object to be applied) can be appropriately selected according to the function of the contained functional composition. Examples of functional compositions include agricultural chemicals, fertilizers, fungicides, disinfectants, soil conditioners, and plant growth promoters. Details of the functional composition will be described later.
For example, when the functional composition is an agricultural chemical or a plant growth promoter, agricultural crops (including trees and agricultural and forestry products) are targets. Also, when the functional composition is a fertilizer, crops are also subject. That is, when the functional composition is an agricultural composition such as an agricultural chemical or a fertilizer, the target object can be mainly agricultural products. When the functional composition is a bactericide or a disinfectant, river water, agricultural water, etc. are the subject matter. In addition, when the functional composition is a disinfectant, if diluted, it can be used for domestic animals, pets, and the like. Furthermore, when the functional composition is a soil improver or a plant growth promoter, soil is the subject.
 なお、本実施形態の施用液体に用いられる水は、とくに限定されない。例えば、一般的な水道水のほか、イオン交換水や蒸留水のような純水や超純水、その他、河川水や農業用水など被対象物に対して影響を与えない水であればよい。 Note that the water used for the application liquid in this embodiment is not particularly limited. For example, general tap water, pure water such as ion-exchanged water or distilled water, ultrapure water, river water, agricultural water, or other water that does not affect the object may be used.
(本実施形態の微細セルロース繊維含有溶剤)
 本実施形態の微細セルロース繊維含有溶剤(以下、単に微細セルロース繊維含有溶剤という)は、アニオン性の官能基を有する微細セルロース繊維を含有した溶剤である。
 この微細セルロース繊維含有溶剤は、上記の微細セルロース繊維が、例えば、固形分濃度0.1質量%~2.0質量%となるように含有している。なお、本明細書では、とくに断らない限り、「~」は、前後の値を含む。例えば、固形分濃度0.1質量%~2.0質量%とは、固形分濃度0.1質量%及び2.0質量%を含んだ範囲を示す。
 上記の微細セルロース繊維の含有量は、固形分濃度で、0.2質量%以上、2.0質量%以下であることが好ましい。より好ましくは0.3質量%以上、1.0質量%以下であり、さらに好ましくは0.5質量%以上、1.0質量%以下である。
(Fine cellulose fiber-containing solvent of the present embodiment)
The fine cellulose fiber-containing solvent of the present embodiment (hereinafter simply referred to as fine cellulose fiber-containing solvent) is a solvent containing fine cellulose fibers having an anionic functional group.
This fine cellulose fiber-containing solvent contains the fine cellulose fibers so that the solid content concentration is, for example, 0.1% by mass to 2.0% by mass. In this specification, unless otherwise specified, "~" includes values before and after. For example, a solid content concentration of 0.1 mass % to 2.0 mass % indicates a range including solid content concentrations of 0.1 mass % and 2.0 mass %.
The content of the fine cellulose fibers is preferably 0.2% by mass or more and 2.0% by mass or less in terms of solid concentration. It is more preferably 0.3% by mass or more and 1.0% by mass or less, and still more preferably 0.5% by mass or more and 1.0% by mass or less.
 一方、上記の微細セルロース繊維の含有量が、0.1質量%よりも少ないと、増粘作用が十分でないゆえ液ダレ抑制効果が発揮されない。また、上記の微細セルロース繊維の含有量が、2.0質量%よりも多いと、所望の液体に混合した際にゲル化するゆえ取扱性が低下する場合がある。 On the other hand, if the content of the fine cellulose fibers is less than 0.1% by mass, the thickening action is not sufficient and the liquid dripping suppression effect is not exhibited. Also, if the content of the fine cellulose fibers is more than 2.0% by mass, the cellulose fibers gel when mixed with a desired liquid, which may result in poor handleability.
(アニオン性微細セルロース繊維の平均繊維幅)
 上記の微細セルロース繊維は、セルロースの水酸基の一部がアニオン性の官能基で置換された、平均繊維幅が1nm~1000nmのアニオン性微細セルロース繊維である。以下、この微細セルロース繊維を単にアニオン性微細セルロース繊維(なお、特に断らない限り、化学変性微細セルロース繊維は、このアニオン性微細セルロース繊維を示す)という。
 このアニオン性微細セルロース繊維の平均繊維幅は、例えば、1nm以上、500nm以下である。好ましくは1nm以上、100nm以下であり、より好ましくは3nm以上、30nm以下である。
(Average fiber width of anionic fine cellulose fibers)
The above fine cellulose fibers are anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm, in which a portion of the hydroxyl groups of cellulose are substituted with an anionic functional group. Hereinafter, these fine cellulose fibers are simply referred to as anionic fine cellulose fibers (unless otherwise specified, chemically modified fine cellulose fibers refer to these anionic fine cellulose fibers).
The average fiber width of the anionic fine cellulose fibers is, for example, 1 nm or more and 500 nm or less. It is preferably 1 nm or more and 100 nm or less, more preferably 3 nm or more and 30 nm or less.
 一方、アニオン性微細セルロース繊維の平均繊維幅が1nmよりも小さいと、セルロース分子として水に溶解してしまい、微細セルロース繊維としての高い粘性が発現しにくくなる。また、アニオン性微細セルロース繊維の平均繊維幅が1000nmよりも大きいと、微細セルロース繊維とは言えず、通常のパルプに含まれる繊維にすぎないゆえ、微細セルロース繊維としての高い粘性が発現しにくくなったり、狭い流路を有する機器内で詰まりが生じたりして、取扱性が低下する。 On the other hand, if the average fiber width of the anionic fine cellulose fibers is smaller than 1 nm, the cellulose molecules will dissolve in water, making it difficult for the fine cellulose fibers to exhibit high viscosity. On the other hand, if the average fiber width of the anionic fine cellulose fibers is larger than 1000 nm, it cannot be said that they are fine cellulose fibers, but are merely fibers contained in ordinary pulp, so that it is difficult to develop high viscosity as fine cellulose fibers. Also, clogging occurs in devices having narrow flow paths, resulting in poor handling.
(アニオン性微細セルロース繊維の粘度)
 アニオン性微細セルロース繊維は、純水に分散させた状態において、所定の粘性を発揮する微細繊維である。具体的には、アニオン性微細セルロース繊維の粘度は、固形分濃度が0.3質量%~1.0質量%となるように純水に分散した状態において、この分散液をB型粘度計を用いて測定される。
 例えば、アニオン性微細セルロース繊維のB型粘度(20℃、回転数6rpm、3分)は、1000mPa・s以上、50000mPa・s以下であることが好ましい。より好ましくは1000mPa・s~25000mPa・sであり、さらに好ましくは9000mPa・s~25000mPa・sであり、よりさらに好ましくは9000mPa・s~20000mPa・sである。
(Viscosity of anionic fine cellulose fibers)
Anionic fine cellulose fibers are fine fibers that exhibit a predetermined viscosity when dispersed in pure water. Specifically, the viscosity of the anionic fine cellulose fibers is measured by using a B-type viscometer to determine the viscosity of the dispersion in pure water so that the solid content concentration is 0.3% by mass to 1.0% by mass. measured using
For example, the B-type viscosity of the anionic fine cellulose fibers (20° C., rotation speed 6 rpm, 3 minutes) is preferably 1000 mPa·s or more and 50000 mPa·s or less. It is more preferably 1000 mPa·s to 25000 mPa·s, still more preferably 9000 mPa·s to 25000 mPa·s, still more preferably 9000 mPa·s to 20000 mPa·s.
 一方、アニオン性微細セルロース繊維のB型粘度が1000mPa・sよりも低いと流動性が高くなるので、機能性組成物が含有した液体に使用した際の液ダレの抑制に寄与しにくくなる。また、アニオン性微細セルロース繊維のB型粘度が50000mPa・sよりも高いと機能性組成物が含有した液体に使用した際に混合しにくくなるので、取り扱い性が低下する。 On the other hand, when the B-type viscosity of the anionic fine cellulose fibers is lower than 1000 mPa·s, the fluidity is high, so it is difficult to contribute to the suppression of liquid dripping when used in the liquid containing the functional composition. In addition, when the B-type viscosity of the anionic fine cellulose fibers is higher than 50000 mPa·s, it becomes difficult to mix when used in the liquid containing the functional composition, resulting in poor handleability.
 ここで、本発明者らは、アニオン性微細セルロース繊維を含む液滴がぬれ性を発揮することを初めて見出した。つまり、本発明者らは、アニオン性微細セルロース繊維を含有させた液体を被対象物に施用すれば、被対象物の表面に付着した液体が被対象物表面において、はじかれることなく被対象物表面に広がるように付着させることができることを初めて見出した。
 なお、ぬれ性の評価方法は、後述する実施例に記載の方法で評価する。
Here, the present inventors have found for the first time that droplets containing anionic fine cellulose fibers exhibit wettability. That is, the present inventors found that when a liquid containing anionic fine cellulose fibers is applied to an object, the liquid adhering to the surface of the object is not repelled on the object surface. It was found for the first time that it can be attached so as to spread over the surface.
In addition, the evaluation method of wettability is evaluated by the method described in Examples described later.
 微細セルロース繊維含有溶剤は、上述したアニオン性微細セルロース繊維を含有しているので、所望の液体に加えれば、この液体に対してぬれ性を発揮させることができる。そして、このアニオン性微細セルロース繊維が、水に分散させた際に上述した粘性を発揮するので、微細セルロース繊維含有溶剤を加えた液体に対して粘性を付与できる。
 このため、微細セルロース繊維含有溶剤を加えた液体を被対象物に対して施用すれば、被対象物の表面に広がるように付着し、かつ付着した液体のタレ落ちを抑制することができる。つまり施用後の液体の液ダレを抑制することができる。なお、この液ダレの評価は、後述する実施例に記載の方法で評価することができる。
Since the fine cellulose fiber-containing solvent contains the above-mentioned anionic fine cellulose fibers, when added to a desired liquid, it can exhibit wettability to this liquid. Further, since the anionic fine cellulose fibers exhibit the above-mentioned viscosity when dispersed in water, the viscosity can be imparted to the liquid to which the fine cellulose fiber-containing solvent is added.
Therefore, when the liquid to which the fine cellulose fiber-containing solvent is added is applied to the object, the liquid adheres to the surface of the object so as to spread and dripping of the adhered liquid can be suppressed. That is, dripping of the liquid after application can be suppressed. In addition, the evaluation of this liquid sagging can be performed by the method described in Examples described later.
 以上のごとく、微細セルロース繊維含有溶剤を所望の液体に加え、この液体を被対象物に対して施用すれば、かかる液体を適切に被対象物の表面に付着させることができる。具体的には、被対象物に対して微細セルロース繊維含有溶剤が含有した液体を施用すれば、被対象物表面において、はじかれることなく被対象物の表面に沿って、施用した液体が広がるように付着させることができる。しかも、被対象物表面に付着した液体がタレ落ちるのを抑制できるので、被対象物表面に沿って広がって付着した状態を維持させることができる。つまり、微細セルロース繊維含有溶剤を所望の液体に含有することにより、施用後の被対象物では、被対象物の表面が施用した液体で覆うような状態にできる。しかも、その状態を長期間にわたって維持させることができる。このため、液体が農薬等の機能性組成物を有していれば、この機能性組成物の効果を持続的かつ適切に発揮させることができる。
 なお、微細セルロース繊維含有溶剤を加える量は、液体におけるアニオン性微細セルロース繊維の固形分濃度(質量%)が所定の範囲内となるように調整すればよい。
As described above, by adding a fine cellulose fiber-containing solvent to a desired liquid and applying this liquid to a subject, the liquid can be appropriately adhered to the surface of the subject. Specifically, when the liquid containing the fine cellulose fiber-containing solvent is applied to the object, the applied liquid spreads along the surface of the object without being repelled on the surface of the object. can be attached to Moreover, since the liquid adhering to the surface of the object can be prevented from dripping down, it is possible to maintain the state of spreading and adhering along the surface of the object. In other words, by including the fine cellulose fiber-containing solvent in the desired liquid, the surface of the object after application can be covered with the applied liquid. Moreover, the state can be maintained for a long period of time. Therefore, if the liquid contains a functional composition such as an agricultural chemical, the effect of the functional composition can be exhibited continuously and appropriately.
The amount of the fine cellulose fiber-containing solvent to be added may be adjusted so that the solid content concentration (% by mass) of the anionic fine cellulose fibers in the liquid is within a predetermined range.
(アニオン性微細セルロース繊維)
 アニオン性微細セルロース繊維は、一般式(1)に示すセルロース繊維(以下、単にセルロースという)の水酸基の一部がアニオン性の官能基で置換されたものである。
(Anionic fine cellulose fiber)
The anionic fine cellulose fibers are obtained by substituting some of the hydroxyl groups of the cellulose fibers represented by the general formula (1) (hereinafter simply referred to as cellulose) with anionic functional groups.
(一般式(1))
Figure JPOXMLDOC01-appb-C000001
 
(general formula (1))
Figure JPOXMLDOC01-appb-C000001
 このアニオン性の官能基としては、例えば、一般式(2)で示すスルホ基、一般式(3)で示すリン酸基、一般式(4)で示す亜リン酸基、一般式(5)で示すカルボキシ基、一般式(6)で示すカルボキシメチル基をあげることができる。
 アニオン性微細セルロース繊維は、上記の官能基が1種でもよく2種以上が混合して置換されていてもよい。なお、アニオン性微細セルロース繊維の水酸基を各種の官能基で置換する方法は、公知の方法を採用することができる。各製法にはそれぞれ一長一短が存在するが、この中でもスルホ基を置換する方法が、他の製法と比べて行い易いという利点がある。
Examples of the anionic functional group include, for example, a sulfo group represented by general formula (2), a phosphoric acid group represented by general formula (3), a phosphorous acid group represented by general formula (4), and a general formula (5). A carboxy group represented by the formula (6) and a carboxymethyl group represented by the general formula (6) can be mentioned.
The anionic fine cellulose fibers may be substituted with one or a mixture of two or more of the above functional groups. A known method can be employed for substituting the hydroxyl groups of the anionic fine cellulose fibers with various functional groups. Each production method has advantages and disadvantages, but among these, the method of substituting the sulfo group has the advantage of being easier to carry out than the other production methods.
 なお、本明細書における置換とは、セルロースの水酸基をアニオン性の官能基で置き換えることをいい、反応後にセルロースを構成する少なくとも一部の水酸基が置換反応や酸化反応などにより、所定のアニオン性の官能基が結合した状態のことを意味する。
 具体的には、本明細書のセルロースの水酸基がアニオン性の官能基で置換するとは、セルロースの水酸基(-OH基)の少なくとも一部がアニオン性の官能基で置換されたものを意味する。水酸基の一部とは、「-OH基」の「H」(水素原子)のほか、「OH」も含むことを意味する。つまり、セルロースの水酸基の一部がアニオン性の官能基で置換された構造には、水酸基の酸素原子に対して水素原子(H)の代わりにアニオン性の官能基(例えば、一般式(2)~一般式(6))が結合してセルロースの炭素と水酸基の酸素原子(O)とアニオン性の官能基が結合した構造(いわゆるエステル結合したもの、例えば、一般式(2)の場合は一般式(7)、一般式(3)の場合は一般式(8)、一般式(4)の場合は一般式(13)、一般式(5)の場合は一般式(9))のほか、水酸基の「OH」の代わりにアニオン性の官能基が結合してセルロースの水酸基が結合している炭素にアニオン性の官能基が直接結合した構造(例えば、一般式(2)の場合は一般式(10)、一般式(3)の場合は一般式(11)、一般式(4)の場合は一般式(14)、一般式(5)の場合は一般式(12)、一般式(6)の場合は一般式(15))も含まれる。
The term “substitution” as used herein refers to the replacement of hydroxyl groups of cellulose with anionic functional groups. It means a state in which a functional group is bonded.
Specifically, in the present specification, the hydroxyl groups of cellulose are substituted with anionic functional groups, meaning that at least part of the hydroxyl groups (—OH groups) of cellulose are substituted with anionic functional groups. A part of the hydroxyl group means to include not only "H" (hydrogen atom) of "--OH group" but also "OH". That is, in the structure in which a part of the hydroxyl groups of cellulose is substituted with an anionic functional group, an anionic functional group (for example, general formula (2) ~General formula (6)) is bonded to the carbon of cellulose and the oxygen atom (O) of the hydroxyl group and an anionic functional group (a so-called ester bond, for example, in the case of general formula (2), general In addition to general formula (8) for general formula (7) and general formula (3), general formula (13) for general formula (4), and general formula (9) for general formula (5), A structure in which an anionic functional group is directly bonded to the carbon to which the hydroxyl group of cellulose is bonded by bonding an anionic functional group instead of the "OH" of the hydroxyl group (for example, in the case of general formula (2), the general formula (10), general formula (11) for general formula (3), general formula (14) for general formula (4), general formula (12) for general formula (5), general formula (6) ), general formula (15)) is also included.
 なお、アニオン性の官能基がスルホ基やリン酸基の場合には、セルロースの水酸基の一部が置換反応でスルホ基やリン酸基に置き換わった(つまり置換された)構造であり、アニオン性の官能基がカルボキシ基の場合には、水酸基の一部が酸化反応でカルボキシ基に置き換わった(つまり置換された)構造である。 When the anionic functional group is a sulfo group or a phosphate group, some of the hydroxyl groups of cellulose are replaced (that is, substituted) by a sulfo group or a phosphate group through a substitution reaction. When the functional group of is a carboxy group, it is a structure in which a part of the hydroxyl group is replaced (that is, substituted) with the carboxy group by an oxidation reaction.
(一般式(2))
Figure JPOXMLDOC01-appb-C000002
 
(式中、Zは水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (2))
Figure JPOXMLDOC01-appb-C000002

(In the formula, Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.)
(一般式(3))
Figure JPOXMLDOC01-appb-C000003
 
(式中、Zは水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (3))
Figure JPOXMLDOC01-appb-C000003

(In the formula, Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.)
(一般式(4))
Figure JPOXMLDOC01-appb-C000004
 
(式中、Zは水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (4))
Figure JPOXMLDOC01-appb-C000004

(In the formula, Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.)
(一般式(5))
Figure JPOXMLDOC01-appb-C000005
(式中、Zは水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (5))
Figure JPOXMLDOC01-appb-C000005
(In the formula, Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.)
(一般式(6))
Figure JPOXMLDOC01-appb-C000006
 
(式中、Zは水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (6))
Figure JPOXMLDOC01-appb-C000006

(In the formula, Z represents a hydrogen ion, metal ion, onium ion or cationic organic compound.)
(一般式(7))
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (7))
Figure JPOXMLDOC01-appb-C000007
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、スルホ基は、セルロースのD-グルコースに最大で3個結合することができる。
 このため、一般式(7)中のスルホ基は、(-SO ・Zr+で表すことができる。すると、Zが、水素イオン、アルカリ金属の陽イオン、1価の遷移金属イオン、オニウムイオン(アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオン等)、カチオン性高分子よりなる群から選ばれる少なくとも1種である。また、Zが、アルカリ土類金属の陽イオンまたは多価金属の陽イオン、ジアミンのようなカチオン性官能基を分子内に2以上含有する化合物よりなる群から選ばれる少なくとも1種の場合もある。
A maximum of three sulfo groups can be bonded to D-glucose of cellulose.
Therefore, the sulfo group in general formula (7) can be represented by (--SO 3 ) r ·Z r+ . Then, Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
(一般式(8))
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (8))
Figure JPOXMLDOC01-appb-C000008
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、リン酸基は、セルロースのD-グルコースに最大で3個結合することができる。
 このため、一般式(8)中のリン酸基は、(-PO 2-・Zr+で表すことができる。すると、Zが、水素イオン、アルカリ金属の陽イオン、1価の遷移金属イオン、オニウムイオン(アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオン等)、カチオン性高分子よりなる群から選ばれる少なくとも1種である。また、Zが、アルカリ土類金属の陽イオンまたは多価金属の陽イオン、ジアミンのようなカチオン性官能基を分子内に2以上含有する化合物よりなる群から選ばれる少なくとも1種の場合もある。
A maximum of three phosphate groups can be bound to D-glucose of cellulose.
Therefore, the phosphate group in general formula (8) can be represented by (-PO 3 2- ) r ·Z r+ . Then, Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
(一般式(9))
Figure JPOXMLDOC01-appb-C000009
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (9))
Figure JPOXMLDOC01-appb-C000009
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、カルボキシ基は、セルロースのD-グルコースに最大で3個結合することができる。このため、一般式(9)中のカルボキシ基は、(-CO ・Zr+で表すことができる。すると、Zが、水素イオン、アルカリ金属の陽イオン、1価の遷移金属イオン、オニウムイオン(アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオン等)、カチオン性高分子よりなる群から選ばれる少なくとも1種である。また、Zが、アルカリ土類金属の陽イオンまたは多価金属の陽イオン、ジアミンのようなカチオン性官能基を分子内に2以上含有する化合物よりなる群から選ばれる少なくとも1種の場合もある。 A maximum of three carboxy groups can be bound to D-glucose of cellulose. Therefore, the carboxy group in general formula (9) can be represented by ( -CO2- ) rZr + . Then, Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
(一般式(10))
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (10))
Figure JPOXMLDOC01-appb-C000010
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、一般式(10)中のスルホ基も一般式(7)の場合と同様に表すことができ、Zも同様の化合物を挙げることができる。 The sulfo group in general formula (10) can also be represented in the same manner as in general formula (7), and Z can also include similar compounds.
(一般式(11))
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (11))
Figure JPOXMLDOC01-appb-C000011
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、一般式(11)中のリン酸基も一般式(8)の場合と同様に表すことができ、Zも同様の化合物を挙げることができる。 The phosphate group in general formula (11) can also be represented in the same manner as in general formula (8), and Z can also include similar compounds.
(一般式(12))
Figure JPOXMLDOC01-appb-C000012
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (12))
Figure JPOXMLDOC01-appb-C000012
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、一般式(12)中のカルボキシ基も一般式(9)の場合と同様に表すことができ、Zも同様の化合物を挙げることができる。 The carboxy group in general formula (12) can also be represented in the same manner as in general formula (9), and Z can also include similar compounds.
 また、亜リン酸基、カルボキシメチル基の場合では、下記のように示すことができる。 In addition, in the case of a phosphite group and a carboxymethyl group, it can be shown as follows.
(一般式(13))
Figure JPOXMLDOC01-appb-C000013
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (13))
Figure JPOXMLDOC01-appb-C000013
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、亜リン酸基もリン酸基と同様にセルロースのD-グルコースに最大で3個結合することができる。
 このため、一般式(13)中の亜リン酸基は、(-HPO ・Zr+で表すことができる。すると、Zが、水素イオン、アルカリ金属の陽イオン、1価の遷移金属イオン、オニウムイオン(アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオン等)、カチオン性高分子よりなる群から選ばれる少なくとも1種である。また、Zが、アルカリ土類金属の陽イオンまたは多価金属の陽イオン、ジアミンのようなカチオン性官能基を分子内に2以上含有する化合物よりなる群から選ばれる少なくとも1種の場合もある。
Incidentally, like the phosphate group, up to three phosphite groups can be bound to D-glucose of cellulose.
Therefore, the phosphite group in general formula (13) can be represented by (-HPO 2 ) r ·Z r+ . Then, Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
(一般式(14))
Figure JPOXMLDOC01-appb-C000014
 
 
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (14))
Figure JPOXMLDOC01-appb-C000014


(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、一般式(14)中の亜リン酸も一般式(13)の場合と同様に表すことができ、Zも同様の化合物を挙げることができる。 In addition, phosphorous acid in general formula (14) can also be represented in the same manner as in general formula (13), and Z can also include similar compounds.
(一般式(15))
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (15))
Figure JPOXMLDOC01-appb-C000015
(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、カルボキシメチル基もカルボキシ基と同様にセルロースのD-グルコースに最大で3個結合することができる。
 このため、一般式(15)中のカルボキシメチル基は、(-CHCO ・Zr+で表すことができる。すると、Zが、水素イオン、アルカリ金属の陽イオン、1価の遷移金属イオン、オニウムイオン(アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオン等)、カチオン性高分子よりなる群から選ばれる少なくとも1種である。また、Zが、アルカリ土類金属の陽イオンまたは多価金属の陽イオン、ジアミンのようなカチオン性官能基を分子内に2以上含有する化合物よりなる群から選ばれる少なくとも1種の場合もある。
Incidentally, like the carboxy group, a maximum of three carboxymethyl groups can be bound to D-glucose of cellulose.
Therefore, the carboxymethyl group in general formula (15) can be represented by (--CH 2 CO 2 ) r ·Z r+ . Then, Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
(スルホン化微細セルロース繊維) (sulfonated fine cellulose fiber)
 以下では、セルロースの水酸基の一部にスルホ基が置換したアニオン性微細セルロース繊維の場合を代表として説明する。
 なお、スルホ基が置換したアニオン性微細セルロース繊維を、スルホン化微細セルロース繊維という。
In the following, an anionic fine cellulose fiber in which a part of hydroxyl groups of cellulose is substituted with a sulfo group will be described as a representative.
The anionic fine cellulose fibers substituted with sulfo groups are referred to as sulfonated fine cellulose fibers.
 スルホン化微細セルロース繊維には、さらに微細なセルロース繊維(以下、ユニット繊維という)を複数含んでいる。具体的には、スルホン化微細セルロース繊維は、複数のユニット繊維が連結して形成された繊維である。そして、このユニット繊維は、かかる繊維を構成するセルロース(D-グルコースがβ(1→4)グリコシド結合した鎖状の高分子)の水酸基(-OH基)の少なくとも一部が上記のごとくスルホ基で置換されたものである。
 なお、スルホン化微細セルロース繊維は、上述したようにスルホ基以外の他の官能基が微細セルロース繊維の水酸基の一部に結合していてもよい。
 以下の説明では、スルホン化微細セルロース繊維を構成するセルロース繊維の水酸基にスルホ基だけを導入する場合を代表として説明する。
The sulfonated fine cellulose fibers contain a plurality of finer cellulose fibers (hereinafter referred to as unit fibers). Specifically, the sulfonated fine cellulose fibers are fibers formed by connecting a plurality of unit fibers. In this unit fiber, at least part of the hydroxyl groups (--OH groups) of the cellulose (a chain polymer in which D-glucose is β(1→4) glycoside-bonded) constituting the fiber is a sulfo group as described above. is replaced by
In the sulfonated fine cellulose fibers, functional groups other than sulfo groups may be bonded to some of the hydroxyl groups of the fine cellulose fibers as described above.
In the following description, the case where only sulfo groups are introduced into the hydroxyl groups of the cellulose fibers constituting the sulfonated fine cellulose fibers will be described as a representative.
 スルホン化微細セルロース繊維のスルホ基の導入量は、とくに限定されない。
 例えば、スルホン化微細セルロース繊維1g(質量)あたりのスルホ基の導入量は、0.1mmol/g~3.0mmol/gである。より好ましくは、0.1mmol/g以上、2.0mmol/g以下であり、さらに好ましくは0.1mmol/g以上、1.5mmol/g以下である。
 また、下限値としては好ましくは、0.5mmol/g以上である。より好ましくは1.0mmol/g以上である。
The amount of sulfo groups introduced into the sulfonated fine cellulose fibers is not particularly limited.
For example, the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.1 mmol/g to 3.0 mmol/g. It is more preferably 0.1 mmol/g or more and 2.0 mmol/g or less, and still more preferably 0.1 mmol/g or more and 1.5 mmol/g or less.
Moreover, the lower limit is preferably 0.5 mmol/g or more. More preferably, it is 1.0 mmol/g or more.
 スルホン化微細セルロース繊維1g(質量)あたりのスルホ基の導入量が0.1mmol/gよりも低い場合には、繊維間の水素結合が強固なため分散性が低下する傾向にある。その逆に、スルホ基の導入量が0.1mmol/g以上にすることによって分散性が向上させやすくなり、0.4mmol/g以上とすれば電子的反発性をより強くさせることができるので、分散した状態を安定して維持させやすくなる。一方、かかるスルホ基が3.0mmol/gを超えると結晶性の低下や溶解が懸念され、所望の粘性を発揮しにくくなったり、スルホ基を導入する際のコストも増加する傾向にある。 When the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is less than 0.1 mmol/g, the hydrogen bonding between fibers is strong, and dispersibility tends to decrease. Conversely, when the amount of the sulfo group introduced is 0.1 mmol/g or more, the dispersibility can be easily improved, and when it is 0.4 mmol/g or more, the electronic repulsion can be strengthened. It becomes easier to stably maintain the dispersed state. On the other hand, if the amount of sulfo groups exceeds 3.0 mmol/g, there is a concern that the crystallinity will be lowered or the polymer will be dissolved, making it difficult to achieve the desired viscosity, and the cost of introducing the sulfo groups tends to increase.
 スルホン化微細セルロース繊維に対するスルホ基の導入量は、直接的にスルホ基を測定することで評価することができ、また、スルホ基に起因する硫黄導入量で評価することができる。 The amount of sulfo groups introduced into the sulfonated fine cellulose fibers can be evaluated by directly measuring the sulfo groups, and can also be evaluated by the amount of sulfur introduced due to the sulfo groups.
 前者の測定方法としては、例えば、スルホン化微細セルロース繊維をイオン交換樹脂で処理した後に水酸化ナトリウム水溶液を滴下しながら電気伝導度を測定して得られた値に基づいて算出することができる。
 後者の測定方法は、例えば、スルホン化微細セルロース繊維の所定量を燃焼させて、燃焼イオンクロマトグラフを用いて燃焼物に含まれる硫黄分をIEC 62321に準拠した方法で測定し、得られた値に基づいて算出される。
In the former measurement method, for example, after treating sulfonated fine cellulose fibers with an ion-exchange resin, the conductivity can be calculated based on the value obtained by measuring the electrical conductivity while dropping an aqueous sodium hydroxide solution.
The latter measurement method is, for example, burning a predetermined amount of sulfonated fine cellulose fibers, measuring the sulfur content in the burned material using a combustion ion chromatograph by a method conforming to IEC 62321, and obtaining the value. calculated based on
 なお、スルホ基中の硫黄の原子数は1であるので、硫黄導入量:スルホ基導入量=1:1である。例えば、スルホン化微細セルロース繊維1g(質量)あたりの硫黄導入量が0.1mmol/gの場合には、スルホ基の導入量も当然に0.1mmol/gとなる。 Since the number of sulfur atoms in the sulfo group is 1, the amount of sulfur introduced: the amount of sulfo groups introduced is 1:1. For example, when the amount of sulfur introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.1 mmol/g, the amount of sulfo groups introduced is naturally 0.1 mmol/g.
 前者の測定方法をより具体的に説明すると、まず、0.2質量%の微細セルロース繊維含有スラリーに体積比で1/10の強酸性イオン交換樹脂(オルガノ株式会社製、アンバージェット1024;コンディショニング済)を加え、1時間以上振とう処理を行う(イオン交換樹脂による処理)。ついで、目開き90μm~200μm程度のメッシュ上に注ぎ、樹脂とスラリーを分離する。その後のアルカリを用いた滴定では、イオン交換樹脂による処理後のスルホン化微細セルロース繊維含有スラリーに、0.5Nの水酸化ナトリウム水溶液を加えながら、電気伝導度の値の変化を計測する。得られた計測データは、縦軸に電気伝導度、横軸に水酸化ナトリウム滴定量としてプロットすると曲線が得られ、変曲点が確認できる。この変曲点での水酸化ナトリウム滴定量がスルホ基量に相当し、この変曲点の水酸化ナトリウム量を測定に供したスルホン化微細セルロース繊維固形分量で除することで、スルホ基の導入量を求めることができる。 To explain the former measurement method more specifically, first, a 1/10 volume ratio of a strongly acidic ion exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned ) is added and shaken for 1 hour or longer (treatment with ion exchange resin). Then, it is poured onto a mesh with an opening of about 90 μm to 200 μm to separate the resin from the slurry. In the subsequent titration with alkali, the change in electrical conductivity value is measured while adding 0.5N aqueous sodium hydroxide solution to the slurry containing sulfonated fine cellulose fibers after treatment with the ion exchange resin. Plotting the obtained measurement data with the electrical conductivity on the vertical axis and the titration amount of sodium hydroxide on the horizontal axis yields a curve, and an inflection point can be confirmed. The titration amount of sodium hydroxide at this point of inflection corresponds to the amount of sulfo groups, and the amount of sodium hydroxide at this point of inflection is divided by the solid content of the sulfonated fine cellulose fibers used for measurement, thereby introducing sulfo groups. You can ask for the quantity.
 なお、後述するように化学処理したスルホン化パルプを微細化処理してスルホン化微細セルロース繊維を調製する場合には、微細化処理する前のスルホン化パルプにおける硫黄導入量から求めてもよい。 As will be described later, when chemically treated sulfonated pulp is pulverized to prepare sulfonated fine cellulose fibers, it may be determined from the amount of sulfur introduced into the sulfonated pulp before pulverization.
 スルホン化微細セルロース繊維は、上述したように、セルロース繊維が微細化された微細セルロース繊維であり、その繊維は非常に細い繊維である。
 このスルホン化微細セルロース繊維の平均繊維幅は、公知の技術を用いて測定することができる。例えば、スルホン化微細セルロース繊維を純水等の溶媒に分散させて、所定の質量%となるように混合溶液を調整する。そしてこの混合溶液を、PEI(ポリエチレンイミン)をコーティングしたシリカ基盤上にスピンコートを行い、このシリカ基盤上のスルホン化微細セルロース繊維を観察する。
The sulfonated fine cellulose fibers are, as described above, fine cellulose fibers obtained by refining cellulose fibers, and the fibers are very fine fibers.
The average fiber width of the sulfonated fine cellulose fibers can be measured using known techniques. For example, sulfonated fine cellulose fibers are dispersed in a solvent such as pure water to prepare a mixed solution having a predetermined mass %. Then, this mixed solution is spin-coated on a silica substrate coated with PEI (polyethyleneimine), and sulfonated fine cellulose fibers on this silica substrate are observed.
 観察方法としては、例えば、走査型プローブ顕微鏡(例えば、島津製作所製;SPM-9700)を用いることができる。得られた観察画像中のスルホン化微細セルロース繊維をランダムに20本選び、各繊維幅を測定し平均化すればスルホン化微細セルロース繊維の平均繊維幅を求めることができる。 As an observation method, for example, a scanning probe microscope (eg, SPM-9700 manufactured by Shimadzu Corporation) can be used. By randomly selecting 20 sulfonated fine cellulose fibers in the observed image and measuring and averaging the width of each fiber, the average fiber width of the sulfonated fine cellulose fibers can be obtained.
(スルホン化微細セルロース繊維の製造方法)
 つぎに、スルホン化微細セルロース繊維を製造する方法について説明する。
 なお、以下の製法では、スルホン化パルプ製法により製造されたスルホン化パルプを微細化処理することにより製造することができるが、かかる製法に限定されない。
(Method for producing sulfonated fine cellulose fibers)
Next, a method for producing sulfonated fine cellulose fibers will be described.
In addition, in the following manufacturing method, the sulfonated pulp manufactured by the sulfonated pulp manufacturing method can be manufactured by subjecting the sulfonated pulp to a micronization treatment, but the manufacturing method is not limited thereto.
 このスルホン化パルプ製法の概略は、セルロースを含む繊維原料(例えば木材パルプなど)を化学処理工程に供することによって原料となるスルホン化パルプ(以下、単にスルホン化パルプという)を製造する方法である。 The outline of this sulfonated pulp manufacturing method is to manufacture sulfonated pulp (hereinafter simply referred to as sulfonated pulp) as a raw material by subjecting a fiber raw material containing cellulose (for example, wood pulp) to a chemical treatment process.
 この化学処理工程は、供給された繊維原料を反応液に接触(接触工程)させた後、加熱反応(反応工程)に供してセルロースの水酸基をスルホン化させるという方法である。 This chemical treatment process is a method in which the supplied fiber raw material is brought into contact with a reaction liquid (contact process), and then subjected to a heating reaction (reaction process) to sulfonate the hydroxyl groups of cellulose.
 本明細書において、繊維原料とは、セルロース分子を含む繊維状のパルプなどをいう。パルプとは、複数のセルロースが集合した繊維状の部材である。このセルロースは、複数の微細繊維(例えば、ミクロフィブリル等)が集合したものである。そして、この微細繊維とは、D-グルコースがβ(1→4)グリコシド結合した鎖状の高分子であるセルロース分子(以下、単にセルロースということもある)が複数集合したものである。 In this specification, the fiber material refers to fibrous pulp containing cellulose molecules. Pulp is a fibrous member in which multiple celluloses are aggregated. This cellulose is an aggregate of a plurality of fine fibers (for example, microfibrils, etc.). These fine fibers are aggregates of a plurality of cellulose molecules (hereinafter sometimes simply referred to as cellulose), which are chain polymers in which D-glucose is β(1→4) glycoside-bonded.
 なお、用いられる繊維原料は、事前に洗浄することが好ましい。例えば、200メッシュもしくは235メッシュのふるい上で水を使ってろ過脱水することで、微細繊維やゴミをふるい落とすことができ、製造時の取扱性が向上するため望ましい。言い換えれば、200メッシュや235メッシュの残渣となり得るサイズのセルロースが集合した繊維がパルプである。繊維原料については詳細を後述する。 It should be noted that it is preferable to wash the fiber raw material to be used in advance. For example, filtration and dehydration using water on a 200-mesh or 235-mesh sieve is desirable because fine fibers and dust can be sieved out, and handleability during production is improved. In other words, pulp is an aggregated fiber of cellulose having a size of 200-mesh or 235-mesh residue. Details of the fiber raw material will be described later.
 化学処理工程は、上述したようにパルプ等のセルロースを含む繊維原料のセルロースに対してスルホ基を有するスルホン化剤であるスルファミン酸と尿素を接触させる接触工程と、この接触工程後のパルプに含まれるセルロースの水酸基の少なくとも一部にスルホ基を置換導入する反応工程とを含んでいる。以下、各工程を順に説明する。 As described above, the chemical treatment step includes a contacting step of contacting cellulose, which is a fiber raw material containing cellulose such as pulp, with sulfamic acid, which is a sulfonating agent having a sulfo group, and urea, and adding and a reaction step of substituting and introducing a sulfo group into at least part of the hydroxyl groups of the cellulose obtained. Each step will be described in order below.
(接触工程)
 接触工程は、セルロースを含む繊維原料に対してスルファミン酸と尿素を接触させる工程である。この接触工程は、上記接触を起こさせることができる方法であれば、とくに限定されない。
 例えば、スルファミン酸と尿素を溶媒に溶解させた反応液に繊維原料(例えば、木材パルプ)を浸漬等して反応液を繊維原料に含浸させてもよいし、繊維原料に対してかかる反応液を塗布してもよいし、繊維原料に対してスルファミン酸と尿素をそれぞれ別々に塗布したり、含浸させたり、スプレー噴霧してもよい。例えば、反応液に繊維原料を浸漬させて繊維原料に反応液を含浸させる方法を採用すれば、均質にスルファミン酸と尿素を繊維原料に対して接触させ易いという利点が得られる。
(Contact process)
The contacting step is a step of bringing sulfamic acid and urea into contact with a fibrous raw material containing cellulose. This contacting step is not particularly limited as long as it is a method capable of causing the above contact.
For example, the fibrous raw material (for example, wood pulp) may be immersed in a reaction liquid obtained by dissolving sulfamic acid and urea in a solvent to impregnate the fibrous raw material with the reaction liquid. Alternatively, sulfamic acid and urea may be separately applied, impregnated, or sprayed onto the fiber raw material. For example, if a method of impregnating the fiber raw material with the reaction liquid by immersing the fiber raw material in the reaction liquid is adopted, it is possible to obtain the advantage that the sulfamic acid and the urea are easily brought into contact with the fiber raw material uniformly.
 なお、スルファミン酸と尿素を溶解させる溶媒は特に限定されない。
 例えば、水(イオン交換水や蒸留水等の純水はもちろんのこと水道水等を含む)のみの場合のほか、エタノールやメタノール、酢酸、ギ酸、2‐プロパノール、ニトロメタン、アンモニア水のようなプロトン性極性溶媒や、アセトンや、酢酸エチル、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルスルフィド(DMS)、ジメチルアセトアミド(DMA)等の非プロトン性極性溶媒や、ジエチルエーテルや、ベンゼン、トルエン、ヘキサン、クロロホルム、1,4-ジオキサン等の非極性溶媒などを挙げることができ、これらを単体で使用してもよいし、2種以上を混合したものを使用してもよい。特に、スルファミン酸と尿素を溶かしやすい観点から、水が好ましい。
The solvent for dissolving sulfamic acid and urea is not particularly limited.
For example, in addition to water alone (including pure water such as ion-exchanged water and distilled water, as well as tap water, etc.), ethanol, methanol, acetic acid, formic acid, 2-propanol, nitromethane, and protons such as ammonia water polar solvents, acetone, ethyl acetate, tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile, dimethylsulfoxide (DMSO), dimethylsulfide (DMS), aprotic polar solvents such as dimethylacetamide (DMA), Non-polar solvents such as diethyl ether, benzene, toluene, hexane, chloroform, and 1,4-dioxane can be mentioned, and these may be used alone or in combination of two or more. may In particular, water is preferable from the viewpoint of easily dissolving sulfamic acid and urea.
(反応液の混合比)
 反応液に繊維原料を浸漬させて繊維原料に対して反応液を含浸させる方法を採用する場合、反応液に含まれるスルファミン酸と尿素の混合比は、とくに限定されない。後述する実施例に記載の混合比に調整する。
 例えば、スルホン化剤と尿素または/およびその誘導体は、濃度比(g/L)において、4:1(1:0.25)、2:1(1:0.5)、1:1、2:3(1:1.5)、1:2.5となるように調整する。
(Mixing ratio of reaction solution)
When adopting the method of impregnating the fiber raw material with the reaction liquid by immersing the fiber raw material in the reaction liquid, the mixing ratio of sulfamic acid and urea contained in the reaction liquid is not particularly limited. The mixing ratio is adjusted to that described in Examples described later.
For example, the concentration ratio (g/L) of the sulfonating agent and urea or/and its derivative is 4:1 (1:0.25), 2:1 (1:0.5), 1:1, 2 : 3 (1:1.5) and 1:2.5.
(反応液の接触量)
 繊維原料に接触させる反応液の量は、繊維原料に対して反応液中のスルファミン酸と尿素が所定の割合となるように接触させる。
 例えば、反応液と繊維原料を接触させた状態において、反応液に含まれるスルホン化剤が、繊維原料の乾燥質量100質量部に対して、1質量部~20,000質量部であり、反応液に含まれる尿素または/およびその誘導体が、繊維原料の乾燥質量100質量部に対して、1質量部~100,000質量部となるように調製する。
(Contact amount of reaction liquid)
The amount of the reaction liquid brought into contact with the fiber raw material is such that the sulfamic acid and urea in the reaction liquid are brought into contact with the fiber raw material at a predetermined ratio.
For example, in a state in which the reaction liquid and the fiber raw material are brought into contact, the sulfonating agent contained in the reaction liquid is 1 part by mass to 20,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material. The amount of urea and/or its derivative contained in is 1 part by mass to 100,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material.
 次工程の反応工程に供する際の反応液を含浸させた繊維原料は、例えば、反応液を含浸させたそのままの状態つまり繊維原料と反応液を接触させた状態のままで積極的な水分除去を行わない状態のもの、繊維原料と反応液を接触させた状態のものから水分を積極的に除去した状態のもの、などが挙げられる。 The fiber material impregnated with the reaction liquid when subjected to the reaction process of the next step, for example, is in the state of being impregnated with the reaction liquid, that is, the state of contact between the fiber material and the reaction liquid. Examples include a state in which no reaction is performed, and a state in which water is actively removed from a state in which the fiber raw material and the reaction liquid are brought into contact with each other.
 後者の方法としては、例えば、反応液と繊維原料を接触させた状態から繊維原料を取り出して風乾等により自然乾燥させて調製したもの、反応液と繊維原料を接触させた状態のものを脱水ろ過して調製したもの、この脱水ろ過したものをさらに風乾して調製したもの、この脱水ろ過したものをさらに循環送風式の乾燥機を用いて乾燥し調製したもの、この脱水ろ過したものをさらに加熱式の乾燥機を用いて乾燥して調製したもの、反応液と繊維原料を接触させた状態のものを循環送風式の乾燥機や加熱式の乾燥機を用いて乾燥して調製したもの、などを含むことを意味する。 As the latter method, for example, the fiber raw material is taken out from the state in which the reaction liquid and the fiber raw material are brought into contact with each other, and the fiber raw material is dried naturally by air drying or the like. prepared by further air-drying the dehydrated and filtered material, further drying the dehydrated and filtered material using a circulating air dryer, and further heating the dehydrated and filtered material. Those prepared by drying using a type dryer, those prepared by drying the reaction liquid and the fiber raw material in contact with each other using a circulating air dryer or a heating dryer, etc. is meant to contain
 次工程の反応工程に供する際の反応液を含浸させた繊維原料は、上述した積極的な水分除去を行わない状態のもの、積極的な水分除去を行ってある程度の水分を除去した状態のままのもの、であってよい。また、乾燥により水分を除去する場合には、乾燥後の水分率が1%程度であってもとくに問題がない。 The fiber raw material impregnated with the reaction liquid when subjected to the next reaction step is in a state where the above-mentioned active water removal is not performed, or in a state where a certain amount of water is removed after active water removal. may be of Further, when the moisture is removed by drying, there is no particular problem even if the moisture content after drying is about 1%.
(反応工程)
 上記のごとく接触工程で調製された反応液を含浸させた繊維原料は、次工程の反応工程へ供給される。
 この反応工程は、接触工程から供給された繊維原料に含まれるセルロースと、スルファミン酸と、尿素とを反応させて、セルロース中のセルロース水酸基に対してスルファミン酸のスルホ基を置換させて、繊維原料に含まれるセルロースにスルホ基を導入する工程である。つまり、この反応工程は、反応液を含浸した繊維原料に含まれるセルロース中のセルロース水酸基にスルホ基を置換するスルホン化反応を行う工程である。
(Reaction step)
The fiber raw material impregnated with the reaction solution prepared in the contacting step as described above is supplied to the reaction step in the next step.
In this reaction step, the cellulose, sulfamic acid, and urea contained in the fiber raw material supplied from the contacting step are reacted to substitute the sulfo groups of sulfamic acid for the cellulose hydroxyl groups in the cellulose, thereby producing the fiber raw material. It is a step of introducing a sulfo group into the cellulose contained in. That is, this reaction step is a step of carrying out a sulfonation reaction in which sulfo groups are substituted for the cellulose hydroxyl groups in the cellulose contained in the fiber raw material impregnated with the reaction solution.
 この反応工程は、上記繊維原料中のセルロースの水酸基にスルホ基を置換するスルホン化反応が可能な方法であれば、とくに限定されない。
 例えば、上記繊維原料を加熱することによりスルホン化反応を促進させる方法を採用できる。以下、この加熱方法により、スルホン化反応を行う場合を代表として説明する。
This reaction step is not particularly limited as long as it is a method capable of performing a sulfonation reaction in which hydroxyl groups of cellulose in the fiber raw material are substituted with sulfo groups.
For example, a method can be employed in which the sulfonation reaction is accelerated by heating the fiber raw material. Hereinafter, the case where the sulfonation reaction is performed by this heating method will be described as a representative.
(反応工程における反応温度)
 反応工程における反応温度は、繊維の熱分解や加水分解反応を抑えながら、上記繊維原料を構成するセルロースにスルホ基を導入できる温度であれば、とくに限定されない。
 例えば、反応工程に供給した上記繊維原料の雰囲気温度が100℃以上200℃以下となるように調整する。好ましくは雰囲気温度が120℃以上200℃以下である。
 一方、加熱時における雰囲気温度が200℃よりも高くなると、繊維の熱分解が起こったり、繊維の変色の進行が早くなったりする。また、反応温度が100℃よりも低くなると、得られるスルホン化パルプの透明性が低下する傾向にある。
 したがって、得られるスルホン化パルプの透明性の観点では、反応工程における反応温度(具体的には雰囲気温度)は、100℃以上200℃以下であり、好ましくは120℃以上180℃以下であり、さらに好ましくは120℃以上160℃以下である。
(Reaction temperature in reaction step)
The reaction temperature in the reaction step is not particularly limited as long as it is a temperature at which a sulfo group can be introduced into the cellulose constituting the fiber raw material while suppressing thermal decomposition and hydrolysis reaction of the fiber.
For example, the ambient temperature of the fiber raw material supplied to the reaction step is adjusted to 100° C. or higher and 200° C. or lower. The ambient temperature is preferably 120° C. or higher and 200° C. or lower.
On the other hand, if the ambient temperature during heating is higher than 200° C., thermal decomposition of the fibers may occur, or discoloration of the fibers may proceed more rapidly. Further, when the reaction temperature is lower than 100°C, the resulting sulfonated pulp tends to be less transparent.
Therefore, from the viewpoint of the transparency of the obtained sulfonated pulp, the reaction temperature (specifically, the ambient temperature) in the reaction step is 100° C. or higher and 200° C. or lower, preferably 120° C. or higher and 180° C. or lower. The temperature is preferably 120°C or higher and 160°C or lower.
 なお、反応工程に用いられる加熱器などは、接触工程後の上記繊維原料を直接的または間接的に上記要件を満たしながら加熱することができるものであれば、とくに限定されない。
 例えば、公知の乾燥機や、減圧乾燥機、マイクロ波加熱装置、オートクレーブ、赤外線加熱装置、熱プレス機(例えば、アズワン(株)製、AH―2003C)を用いたホットプレス法等が採用できる。とくに、操作性の観点では、反応工程でガスが発生する可能性があるので、循環送風式の乾燥機を使用するのが好ましい。
The heater or the like used in the reaction step is not particularly limited as long as it can directly or indirectly heat the fiber raw material after the contact step while satisfying the above requirements.
For example, a hot press method using a known dryer, vacuum dryer, microwave heating device, autoclave, infrared heating device, or heat press (for example, AH-2003C manufactured by AS ONE Co., Ltd.) can be employed. In particular, from the viewpoint of operability, it is preferable to use a circulating air dryer because gas may be generated in the reaction process.
(反応工程における反応時間)
 反応工程として上記加熱方法を採用した場合の加熱時間(つまり反応時間)は、上述したようにセルロースにスルホ基を適切に導入することができれば、とくに限定されない。
 例えば、反応工程における反応時間は、上記範囲の場合、1分以上となるように調整する。好ましくは、5分以上であり、より好ましくは10分以上であり、さらに好ましくは15分以上である。
 一方、反応時間が1分よりも短い場合は、セルロースの水酸基に対するスルホ基の置換反応がほとんど進行していないと推察される。また、加熱時間をあまり長くしてもスルホ基の導入量の向上が期待できない傾向にある。
 したがって、反応工程として上記加熱方法を採用した場合の反応時間は、とくに限定されないが、反応時間や操作性の観点から、5分以上300分以内が好ましく、より好ましくは5分以上120分以内とするのがよい。
(Reaction time in reaction step)
The heating time (that is, the reaction time) when the above heating method is employed as the reaction step is not particularly limited as long as the sulfo group can be appropriately introduced into the cellulose as described above.
For example, the reaction time in the reaction step is adjusted to be 1 minute or more in the above range. The time is preferably 5 minutes or longer, more preferably 10 minutes or longer, and still more preferably 15 minutes or longer.
On the other hand, when the reaction time is shorter than 1 minute, it is presumed that the substitution reaction of the sulfo group with respect to the hydroxyl group of cellulose hardly proceeds. Also, even if the heating time is too long, there is a tendency that an increase in the amount of sulfo groups introduced cannot be expected.
Therefore, the reaction time when the above heating method is employed as the reaction step is not particularly limited, but from the viewpoint of the reaction time and operability, it is preferably 5 minutes or more and 300 minutes or less, more preferably 5 minutes or more and 120 minutes or less. Better to
(繊維原料)
 スルホン化パルプ製法に用いられる繊維原料は、上述したようにセルロースを含むものであれば、とくに限定されない。
 例えば、一般的にパルプといわれるものを用いてもよいし、ホヤや海藻などから単離されるセルロースなどを含むものを繊維原料として採用することができるが、セルロース分子で構成されたものであれば、どのようなものであってもよい。
 上記パルプとしては、例えば、木材系のパルプ(以下単に木材パルプという)や、溶解パルプ、コットンリンタなどの綿系のパルプ、麦わらや、バガス、楮、三椏、麻、ケナフのほか、果物等などの非木材系のパルプ、新聞古紙、雑誌古紙やダンボール古紙などから製造された古紙系のパルプなどを挙げることができるが、これらに限定されない。なお、入手のし易さの観点から、木材パルプが繊維原料として採用しやすい。
(fiber raw material)
The fiber raw material used in the sulfonated pulp manufacturing method is not particularly limited as long as it contains cellulose as described above.
For example, what is generally called pulp may be used, and what contains cellulose isolated from sea squirts, seaweed, etc. can be used as the fiber raw material, but as long as it is composed of cellulose molecules, , can be anything.
Examples of the pulp include wood pulp (hereinafter simply referred to as wood pulp), dissolving pulp, cotton pulp such as cotton linter, straw, bagasse, kozo, mitsumata, hemp, kenaf, fruits, and the like. Non-wood pulp, waste paper pulp produced from waste newspaper, waste magazine paper, waste cardboard, etc., but not limited to these. From the standpoint of availability, wood pulp is easy to employ as a fiber raw material.
 この木材パルプには、様々な種類が存在するが、使用に際してとくに限定されない。
 例えば、針葉樹クラフトパルプ(NBKP)、広葉樹クラフトパルプ(LBKP)、サーモメカニカルパルプ(TMP)などの製紙用パルプなどが挙げられる。なお、繊維原料として、上記パルプを使用する場合に上述した種類のパルプ1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
There are various types of this wood pulp, but there is no particular limitation in use.
Examples thereof include softwood kraft pulp (NBKP), hardwood kraft pulp (LBKP), thermomechanical pulp (TMP) and other papermaking pulps. When the above pulp is used as the fiber raw material, one type of the pulp described above may be used alone, or two or more types may be mixed and used.
(反応工程の後の洗浄工程)
 化学処理工程における反応工程の後に、スルホ基を導入した後のスルホン化パルプを洗浄する洗浄工程を含んでもよい。
 スルホ基を導入した後のスルホン化パルプは、スルホン化剤の影響により表面が酸性になっている。また、未反応の反応液も存在した状態となっている。このため、反応を確実に終了させ、余分な反応液を除去して中性状態にする洗浄工程を設ければ、取り扱い性を向上できる。
(Washing process after reaction process)
After the reaction step in the chemical treatment step, a washing step of washing the sulfonated pulp after introduction of the sulfo group may be included.
The surface of the sulfonated pulp after introduction of the sulfo group is acidified due to the influence of the sulfonating agent. In addition, unreacted reaction liquid also exists. For this reason, if a washing step is provided to ensure that the reaction is completed and to neutralize the excess reaction solution by removing the excess reaction solution, the handleability can be improved.
 この洗浄工程は、スルホ基を導入した後のスルホン化パルプがほぼ中性になるようにできれば、とくに限定されない。
 例えば、スルホ基を導入した後のスルホン化パルプが中性になるまで純水等で洗浄するという方法が採用できる。また、アルカリ等を用いた中和洗浄を行ってもよい。中和洗浄を行う場合、アルカリ溶液に含まれるアルカリ化合物としては、無機アルカリ化合物、有機アルカリ化合物などが挙げられる。無機アルカリ化合物としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩等が挙げられる。有機アルカリ化合物としては、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物、複素環式化合物の水酸化物などが挙げられる。
This washing step is not particularly limited as long as the sulfonated pulp after introduction of the sulfo group can be made substantially neutral.
For example, a method of washing with pure water or the like until the sulfonated pulp after introduction of the sulfo group becomes neutral can be adopted. Further, neutralization cleaning using an alkali or the like may be performed. When performing neutralization washing, an inorganic alkali compound, an organic alkali compound, etc. are mentioned as an alkali compound contained in an alkali solution. Examples of inorganic alkali compounds include hydroxides, carbonates, and phosphates of alkali metals. Examples of organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds, and hydroxides of heterocyclic compounds.
 つぎに、上記のごとくスルホン化パルプ製法を用いて調製されたスルホン化パルプを微細化処理工程に供給する。微細化処理工程に供給されたスルホン化パルプは微細化されて、スルホン化微細セルロース繊維となる。
 なお、微細化処理工程に供給する前にスルホン化パルプは、水分率(%)が平衡状態になるまで乾燥する。
Next, the sulfonated pulp prepared using the sulfonated pulp manufacturing method as described above is supplied to the micronization process. The sulfonated pulp supplied to the refining treatment step is refined to become sulfonated fine cellulose fibers.
In addition, the sulfonated pulp is dried until its moisture content (%) reaches an equilibrium state before being supplied to the pulverization treatment step.
(微細化処理工程)
 微細化処理工程は、スルホン化パルプを微細化して所定の大きさの(例えば、ナノレベル)微細繊維にする工程である。
 この微細化処理工程に用いられる処理装置は、上記機能を有するものであれば、とくに限定されない。
 例えば、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー(石臼型粉砕機)、ボールミル、カッターミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用のミキサーなどを使用できる。処理装置は、これらの装置に限定されない。処理装置のうち、材料に均等に力を加えることができ、均質化に優れているという点で、高圧ホモジナイザーを用いるのが望ましい。
(Miniaturization process)
The refining step is a step of refining the sulfonated pulp into fine fibers of a predetermined size (for example, nano-level).
A processing apparatus used in this miniaturization process is not particularly limited as long as it has the above functions.
For example, low-pressure homogenizers, high-pressure homogenizers, grinders (stone mill type pulverizers), ball mills, cutter mills, jet mills, short-screw extruders, twin-screw extruders, ultrasonic stirrers, household mixers and the like can be used. The processing device is not limited to these devices. Among the processing devices, a high pressure homogenizer is preferred because it can uniformly apply force to the material and is excellent in homogenization.
 微細化処理工程において、高圧ホモジナイザーを用いる場合、上述したスルホン化パルプを水と水溶性溶剤の混合溶液に分散させた状態で供給する。なお、この混合溶液にスルホン化パルプを分散させた状態のものを、スラリーという。 When using a high-pressure homogenizer in the micronization process, the sulfonated pulp described above is supplied in a state of being dispersed in a mixed solution of water and a water-soluble solvent. A state in which the sulfonated pulp is dispersed in this mixed solution is called a slurry.
 このスラリー中のスルホン化パルプの固形分濃度(質量%)は、とくに限定されない。
 例えば、このスラリーのスルホン化パルプの固形分濃度が、0.1質量%~20質量%となるように調整した溶液を高圧ホモジナイザー等の処理装置に供給する。
 スルホン化パルプの固形分濃度が0.5質量%となるように調整したスラリーを高圧ホモジナイザー等の処理装置に供給した場合、同じ固形分濃度のスルホン化微細セルロース繊維が混合溶液に分散した状態の分散体を得られる。
The solid content concentration (% by mass) of the sulfonated pulp in this slurry is not particularly limited.
For example, a solution adjusted so that the solid content concentration of the sulfonated pulp in the slurry is 0.1% by mass to 20% by mass is supplied to a processing apparatus such as a high-pressure homogenizer.
When the slurry adjusted so that the solid content concentration of the sulfonated pulp is 0.5% by mass is supplied to a processing device such as a high-pressure homogenizer, sulfonated fine cellulose fibers having the same solid content concentration are dispersed in the mixed solution. A dispersion is obtained.
 なお、上記例では、スルホン化パルプを水に分散させたスラリーを微細化処理する場合について説明したが、水以外に他の溶剤等を混合してもよい。
 例えば、微細化処理工程において、上記スルホン化パルプのスラリーに水溶性溶剤を混合したものを微細化処理してもよい。具体的には、水溶性溶剤とスルホン化パルプと水を所定の割合で混合した状態のスラリーを処理装置に供給して微細化処理を行ってもよい。この場合、微細化処理後に得られる分散体中の水と水溶性溶剤とスルホン化微細セルロース繊維の配合割合は、処理装置に供給した水と水溶性溶剤とスルホン化パルプの配合割合と同様となる。つまり、微細化処理と同時に水と水溶性溶剤とスルホン化微細セルロース繊維が所定の割合で混合した分散体が得られる。
 また、微細化処理に供給するスルホン化パルプのスラリーには、上記水溶性溶剤以外にも、増粘剤や紫外線吸収剤、紫外線分散剤、保湿剤などを混合してもよい。
In the above example, the case where the slurry obtained by dispersing the sulfonated pulp in water is subjected to the micronization treatment is explained, but other solvent or the like may be mixed in addition to water.
For example, in the refining treatment step, a mixture of the sulfonated pulp slurry and a water-soluble solvent may be subjected to refining treatment. Specifically, a slurry in which a water-soluble solvent, a sulfonated pulp and water are mixed at a predetermined ratio may be supplied to a processing apparatus for micronization. In this case, the blending ratio of water, water-soluble solvent, and sulfonated fine cellulose fibers in the dispersion obtained after the pulverization treatment is the same as the blending ratio of water, water-soluble solvent, and sulfonated pulp supplied to the processor. . That is, a dispersion is obtained in which water, a water-soluble solvent, and sulfonated fine cellulose fibers are mixed in a predetermined ratio at the same time as the micronization treatment.
In addition to the water-soluble solvent, a thickening agent, an ultraviolet absorber, an ultraviolet dispersant, a moisturizing agent, and the like may be mixed in the sulfonated pulp slurry to be supplied to the pulverization treatment.
(リン酸化微細セルロース繊維)
 以下では、セルロースの水酸基の一部にリン酸基が置換したアニオン性微細セルロース繊維の場合を代表として説明する。
 なお、リン酸基が置換したアニオン性微細セルロース繊維を、リン酸化微細セルロース繊維という。
(Phosphorylated fine cellulose fiber)
In the following, an anionic fine cellulose fiber in which some of the hydroxyl groups of cellulose are substituted with phosphoric acid groups will be described as a representative.
The anionic fine cellulose fibers substituted with phosphate groups are referred to as phosphorylated fine cellulose fibers.
 リン酸化微細セルロース繊維のリン酸基の導入量は、とくに限定されない。
 例えば、リン酸化微細セルロース繊維1g(質量)あたりのリン酸基の導入量は、0.1mmol/g~3.0mmol/gである。より好ましくは、0.1mmol/g以上、2.5mmol/g以下であり、さらに好ましくは0.1mmol/g以上、2.0mmol/g以下である。
 また、下限値としては好ましくは、0.3mmol/g以上である。より好ましくは0.4mmol/g以上であり、さらに好ましくは1.0mmol/g以上である。
The amount of phosphate groups introduced into the phosphorylated fine cellulose fibers is not particularly limited.
For example, the amount of phosphoric acid groups introduced per 1 g (mass) of phosphorylated fine cellulose fibers is 0.1 mmol/g to 3.0 mmol/g. It is more preferably 0.1 mmol/g or more and 2.5 mmol/g or less, and still more preferably 0.1 mmol/g or more and 2.0 mmol/g or less.
Moreover, the lower limit is preferably 0.3 mmol/g or more. It is more preferably 0.4 mmol/g or more, still more preferably 1.0 mmol/g or more.
 リン酸化微細セルロース繊維1g(質量)あたりのリン酸基の導入量が0.1mmol/gよりも低い場合には、繊維間の水素結合が強固なため分散性が低下する傾向にある。その逆に、リン酸基の導入量が0.1mmol/g以上にすることによって分散性が向上させやすくなり、0.5mmol/g以上とすれば電子的反発性をより強くさせることができるので、分散した状態を安定して維持させやすくなる。一方、かかるリン酸基が3.0mmol/gを超えると結晶性の低下や溶解が懸念され、所望の粘性を発揮しにくくなったり、スルホ基を導入する際のコストも増加する傾向にある。 When the amount of phosphoric acid groups introduced per 1 g (mass) of phosphorylated fine cellulose fibers is less than 0.1 mmol/g, the hydrogen bonding between fibers is strong, so dispersibility tends to decrease. Conversely, when the introduction amount of the phosphate group is 0.1 mmol/g or more, the dispersibility can be easily improved, and when it is 0.5 mmol/g or more, the electronic repulsion can be made stronger. , it becomes easier to stably maintain the dispersed state. On the other hand, if the phosphate group content exceeds 3.0 mmol/g, there is a concern that the crystallinity will be lowered or the polymer will be dissolved, making it difficult to exhibit the desired viscosity, and the cost of introducing the sulfo group tends to increase.
 リン酸化微細セルロース繊維に対するリン酸基の導入量は、後述する実施例のように電気伝導度を測定することで評価することができる。 The amount of phosphate groups introduced into the phosphorylated fine cellulose fibers can be evaluated by measuring the electrical conductivity as in Examples described later.
 なお、リン酸化微細セルロース繊維の平均繊維幅の測定方法などの評価方法は、官能基がスルホ基の場合と同様にして測定または算出される。 The evaluation method such as the method for measuring the average fiber width of the phosphorylated fine cellulose fibers is measured or calculated in the same manner as when the functional group is a sulfo group.
(リン酸化微細セルロース繊維の製造方法)
 つぎに、リン酸化微細セルロース繊維の製造方法について説明する。
 以下の製法では、リン酸化パルプ製法により製造されたリン酸化パルプを微細化処理することにより製造することができるが、かかる製法に限定されない。
(Method for producing phosphorylated fine cellulose fibers)
Next, a method for producing phosphorylated fine cellulose fibers will be described.
In the following manufacturing method, the phosphorylated pulp manufactured by the phosphorylated pulp manufacturing method can be manufactured by subjecting it to a micronization treatment, but the manufacturing method is not limited thereto.
 繊維原料であるパルプへのリン酸基の導入には、リン酸エステル化反応を採用することができる。例えば、繊維原料に対して水中でリン酸二水素アンモニウム-リン酸化剤/尿素-触媒を接触させ、120℃から180℃で加熱反応することによりリン酸基が導入される。このリン酸化反応の具体的な操作に関しては、例えば Yuichi Noguchi, Ikue Homma and Yusuke Matsubara, Cellulose, 24, 1295-1305 (2017). を参考文献とする。 A phosphate esterification reaction can be used to introduce phosphoric acid groups into pulp, which is a fiber raw material. For example, ammonium dihydrogen phosphate-phosphorylating agent/urea-catalyst is brought into contact with the fiber raw material in water, and the mixture is heated at 120.degree. C. to 180.degree. For the specific operation of this phosphorylation reaction, see, for example, Yuichi Noguchi, Ikue Homma and Yusuke Matsubara, Cellulose, 24, 1295-1305 (2017).
(リン酸化剤)
 繊維原料と反応するような化合物として、リン酸由来の基を有する化合物を用いる場合、特に限定されないが、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらの塩またはエステルからなる群より選ばれる少なくとも1種である。これらの中でも、低コストであり、扱いやすく、リン酸基を有する化合物が好ましいが、特に限定されない。
(Phosphorylating agent)
When a compound having a phosphoric acid-derived group is used as the compound that reacts with the fiber raw material, it is not particularly limited, but it consists of phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, or salts or esters thereof. At least one selected from the group. Among these, compounds having a phosphoric acid group are preferable because they are low in cost and easy to handle, but they are not particularly limited.
 リン酸基を有する化合物としては特に限定されない。
 例えば、リン酸、リン酸のリチウム塩であるリン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、ポリリン酸リチウムが挙げられる。
 リン酸のナトリウム塩であるリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウムが挙げられる。
 リン酸のカリウム塩であるリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、ポリリン酸カリウムが挙げられる。
 リン酸のアンモニウム塩であるリン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウムなどが挙げられる。
 これらのうち、リン酸基導入の効率が高く、工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましい。より好ましくは、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウムである。さらに好ましくは、リン酸二水素アンモニウムである。
The compound having a phosphate group is not particularly limited.
Examples thereof include phosphoric acid and lithium salts of phosphoric acid such as lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate, lithium pyrophosphate, and lithium polyphosphate.
Examples include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, and sodium polyphosphate, which are sodium salts of phosphoric acid.
Examples include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, and potassium polyphosphate, which are potassium salts of phosphoric acid.
Examples include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium polyphosphate, which are ammonium salts of phosphoric acid.
Among these, phosphoric acid, sodium phosphoric acid, potassium phosphoric acid, and ammonium phosphoric acid are preferable from the viewpoint of high efficiency of introduction of a phosphoric acid group and ease of industrial application. More preferred are sodium dihydrogen phosphate, disodium hydrogen phosphate and ammonium dihydrogen phosphate. More preferred is ammonium dihydrogen phosphate.
(リン酸基導入工程)
 繊維原料へのリン酸基導入時の反応を促進するため、加熱する方法が好ましい。
 リン酸基の導入における加熱処理温度は、とくに限定されない。例えば、繊維原料の熱分解や加水分解等が起こりにくい温度帯であることが好ましい。とくに、繊維原料としてセルロースを含む繊維原料を選択した場合、熱分解温度の観点から、250℃以下が好ましい。また、セルロースの加水分解を抑える観点では、100~180℃で加熱処理することが好ましい。
 加熱処理時間は、繊維原料の熱分解や加水分解等を抑制する観点、製造効率の観点から短時間であることが望ましい。例えば、加熱時処理時間は、2時間以内とする。
(Phosphate group introduction step)
A heating method is preferred in order to promote the reaction during the introduction of the phosphate group into the fiber raw material.
The heat treatment temperature for introducing the phosphate group is not particularly limited. For example, it is preferable that the temperature range is such that thermal decomposition or hydrolysis of the fiber raw material is unlikely to occur. In particular, when a fiber raw material containing cellulose is selected as the fiber raw material, the temperature is preferably 250° C. or less from the viewpoint of the thermal decomposition temperature. Further, from the viewpoint of suppressing hydrolysis of cellulose, heat treatment at 100 to 180° C. is preferable.
The heat treatment time is desirably short from the viewpoint of suppressing thermal decomposition, hydrolysis, etc. of the fiber raw material and from the viewpoint of production efficiency. For example, the heat treatment time is set to 2 hours or less.
(カルボキシ化微細セルロース繊維)
 以下では、セルロースの水酸基の一部にカルボキシ基が置換したアニオン性微細セルロース繊維の場合を代表として説明する。
 なお、カルボキシ基が置換したアニオン性微細セルロース繊維を、カルボキシ化微細セルロース繊維という。
(carboxylated fine cellulose fiber)
In the following, the case of anionic fine cellulose fibers in which some of the hydroxyl groups of cellulose are substituted with carboxy groups will be described as a representative.
The anionic fine cellulose fibers substituted with carboxy groups are referred to as carboxylated fine cellulose fibers.
 カルボキシ化微細セルロース繊維のリン酸基の導入量は、とくに限定されない。
 例えば、カルボキシ化微細セルロース繊維1g(質量)あたりのカルボキシ基の導入量は、0.1mmol/g~3.0mmol/gである。より好ましくは、0.1mmol/g以上、2.5mmol/g以下であり、さらに好ましくは0.1mmol/g以上、2.0mmol/g以下である。
 また、下限値としては好ましくは、0.3mmol/g以上である。より好ましくは0.4mmol/g以上であり、さらに好ましくは1.0mmol/g以上である。
The amount of phosphate groups introduced into the carboxylated fine cellulose fibers is not particularly limited.
For example, the amount of carboxyl groups introduced per 1 g (mass) of carboxylated fine cellulose fibers is 0.1 mmol/g to 3.0 mmol/g. More preferably, it is 0.1 mmol/g or more and 2.5 mmol/g or less, and still more preferably 0.1 mmol/g or more and 2.0 mmol/g or less.
Moreover, the lower limit is preferably 0.3 mmol/g or more. It is more preferably 0.4 mmol/g or more, still more preferably 1.0 mmol/g or more.
 カルボキシ化微細セルロース繊維1g(質量)あたりのカルボキシ基の導入量が0.1mmol/gよりも低い場合には、繊維間の水素結合が強固なため分散性が低下する傾向にある。その逆に、カルボキシ基の導入量が0.1mmol/g以上にすることによって分散性が向上させやすくなり、0.5mmol/g以上とすれば電子的反発性をより強くさせることができるので、分散した状態を安定して維持させやすくなる。一方、かかるカルボキシ基が3.0mmol/gを超えると結晶性の低下や溶解が懸念され、所望の粘性を発揮しにくくなったり、スルホ基を導入する際のコストも増加する傾向にある。 When the amount of carboxyl groups introduced per 1 g (mass) of carboxylated fine cellulose fibers is less than 0.1 mmol/g, hydrogen bonding between fibers is strong, and dispersibility tends to decrease. Conversely, when the amount of the carboxyl group introduced is 0.1 mmol/g or more, the dispersibility can be easily improved, and when the amount is 0.5 mmol/g or more, the electronic repulsion can be strengthened. It becomes easier to stably maintain the dispersed state. On the other hand, if the carboxyl group content exceeds 3.0 mmol/g, there is a concern that the crystallinity may be lowered or the polymer may be dissolved, making it difficult to exhibit the desired viscosity, and the cost of introducing the sulfo group tends to increase.
 カルボキシ化微細セルロース繊維に対するカルボキシ基の導入量は、後述する実施例のように電気伝導度を測定することで評価することができる。 The amount of carboxyl groups introduced into the carboxylated fine cellulose fibers can be evaluated by measuring electrical conductivity as in Examples described later.
 なお、カルボキシ化微細セルロース繊維の平均繊維幅の測定方法などの評価方法は、官能基がスルホ基の場合と同様にして測定または算出される。 The evaluation method such as the method for measuring the average fiber width of the carboxylated fine cellulose fibers is measured or calculated in the same manner as when the functional group is a sulfo group.
(カルボキシ化微細セルロース繊維の製造方法)
 つぎに、カルボキシ化微細セルロース繊維の製造方法について説明する。
 以下の製法では、カルボキシ化パルプ製法により製造されたカルボキシ化パルプを微細化処理することにより製造することができるが、かかる製法に限定されない。
(Method for producing carboxylated fine cellulose fibers)
Next, a method for producing carboxylated fine cellulose fibers will be described.
In the following manufacturing method, the carboxylated pulp manufactured by the carboxylated pulp manufacturing method can be manufactured by subjecting the carboxylated pulp to a micronization treatment, but the manufacturing method is not limited thereto.
 繊維原料であるパルプへのカルボキシ基の導入には、TEMPO酸化触媒反応が採用できる。具体的には、繊維原料に対して水中でTEMPO(またはその誘導体)-触媒/臭化ナトリウム-酸化促進剤/次亜塩素酸ナトリウム-酸化剤を接触させ、室温で反応することによりカルボキシ基を導入することができる。
 このTEMPO酸化触媒反応の具体的な操作に関しては、例えば Tsuguyuki Saito, Satoshi Kimura, Yoshiharu Nishiyama and Akira Isogai, Biomacromolecules, 8 (8), 2485-2491 (2007).を参考とする。
A TEMPO oxidation catalytic reaction can be employed to introduce carboxyl groups into pulp, which is a fiber raw material. Specifically, TEMPO (or its derivative)-catalyst/sodium bromide-oxidizing agent/sodium hypochlorite-oxidizing agent is brought into contact with the fiber raw material in water, and the carboxyl group is removed by reacting at room temperature. can be introduced.
For the specific operation of this TEMPO oxidation catalytic reaction, see, for example, Tsuguyuki Saito, Satoshi Kimura, Yoshiharu Nishiyama and Akira Isogai, Biomacromolecules, 8 (8), 2485-2491 (2007).
(TEMPO酸化触媒)
 繊維原料を酸化する際に用いるTEMPO酸化触媒としては、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシルの分子骨格を有する誘導体が用いられる。この誘導体としては、例えば、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカルを発生する化合物が好ましい。
(TEMPO oxidation catalyst)
A derivative having a molecular skeleton of 2,2,6,6-tetramethyl-1-piperidine-N-oxyl is used as the TEMPO oxidation catalyst for oxidizing the fiber raw material. As this derivative, for example, a compound generating 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine-N-oxy radical is preferable.
(酸化促進剤)
 繊維原料の酸化に用いる臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で適宜選択すればよい。
(Promoting agent)
As the bromide or iodide used for oxidizing the fiber raw material, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used. The amount of bromide or iodide to be used may be appropriately selected within a range capable of promoting the oxidation reaction.
(酸化剤)
 繊維原料の酸化に用いる酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、とくに限定されない。生産コストの観点では、一般手的に工業プロセスにおいて汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。
(Oxidant)
The oxidizing agent used for oxidizing the fiber raw material is an oxidizing agent capable of promoting the desired oxidation reaction, such as halogen, hypohalous acid, halogenous acid, perhalogen acid or salts thereof, halogen oxides, and peroxides. If there is, it is not particularly limited. From the viewpoint of production costs, sodium hypochlorite, which is generally used in industrial processes and is inexpensive and has a low environmental impact, is preferable.
 TEMPO酸化触媒反応は、温和な条件であっても繊維原料の酸化反応を円滑に効率良く進行させることができる。このため、反応温度は、15~30℃程度の室温でよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。そこで、酸化反応を効率良く進行させる上で、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して反応液のpHを9~12、好ましくは10~11程度に維持することが望ましい。
 反応の終点は、pHの低下が認められなくなるまで行うことが望ましい。一方、長時間アルカリ性溶液に繊維原料を接触すると繊維の分解によって短繊維化を生じる恐れがあり、また生産効率が低くなることから、反応時間は2時間以内が望ましい。
The TEMPO oxidation catalytic reaction allows the oxidation reaction of the fiber raw material to proceed smoothly and efficiently even under mild conditions. Therefore, the reaction temperature may be room temperature of about 15 to 30°C. Since carboxyl groups are generated in the cellulose as the reaction progresses, the pH of the reaction solution decreases. Therefore, in order to allow the oxidation reaction to proceed efficiently, it is desirable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at about 9-12, preferably about 10-11.
The end point of the reaction is desirably carried out until no decrease in pH is observed. On the other hand, if the fiber raw material is contacted with the alkaline solution for a long period of time, the fibers may be decomposed into short fibers, and the production efficiency is lowered. Therefore, the reaction time is preferably within 2 hours.
 なお、本明細書では、上述したスルホン化パルプ、リン酸化パルプ、カルボキシ化パルプをアニオン性パルプという(なお、とくに断らない限り化学変性パルプは、このアニオン性パルプを示す)。 In this specification, the above-described sulfonated pulp, phosphorylated pulp, and carboxylated pulp are referred to as anionic pulp (unless otherwise specified, chemically modified pulp refers to this anionic pulp).
(アニオン性微細セルロース繊維のTI値)
 アニオン性微細セルロース繊維は、上述した粘性に加えて、所定のチキソトロピー性指数(TI値)を有するものが好ましい。
(TI value of anionic fine cellulose fibers)
The anionic fine cellulose fibers preferably have a predetermined thixotropic index (TI value) in addition to the viscosity described above.
 アニオン性微細セルロース繊維が所定のTI値を有することにより、微細セルロース繊維含有溶剤を加えた液体の液ダレをより適切に抑制できる。具体的には、微細セルロース繊維含有溶剤を加えた液体を被対象物に対して施用すれば、被対象物の表面に付着した状態をより長時間にわたって維持させることができる。すると、この液体が有する機能(機能性組成物に基づく機能)をより適切に発揮させることができる。 By having the anionic fine cellulose fibers have a predetermined TI value, dripping of the liquid to which the fine cellulose fiber-containing solvent has been added can be more appropriately suppressed. Specifically, if the liquid to which the fine cellulose fiber-containing solvent is added is applied to the object, the state of adhering to the surface of the object can be maintained for a longer period of time. Then, the function of this liquid (function based on the functional composition) can be exhibited more appropriately.
 アニオン性微細セルロース繊維のTI値は、固形分濃度が0.3質量%~1.0質量%となるように純水に分散した状態において、下記(1)式より求められるB型粘度計を用いて測定される。
 例えば、アニオン性微細セルロース繊維のTI値は、下記(1)式から4.0以上であることが好ましい。より好ましくは4.0~10であり、さらに好ましくは4.0~8.0であり、よりさらに好ましくは5.0~8.0である。
 
チキソトロピー性指数(TI値)=(20℃、回転数6rpmでの粘度)/(20℃、回転数60rpmでの粘度)・・・(1)
The TI value of the anionic fine cellulose fibers is obtained by using a B-type viscometer obtained from the following formula (1) in a state of being dispersed in pure water so that the solid content concentration is 0.3% by mass to 1.0% by mass. measured using
For example, the TI value of the anionic fine cellulose fibers is preferably 4.0 or more according to the following formula (1). More preferably 4.0 to 10, still more preferably 4.0 to 8.0, even more preferably 5.0 to 8.0.

Thixotropic index (TI value) = (viscosity at 20°C and rotation speed of 6 rpm)/(20°C and viscosity at rotation speed of 60 rpm) (1)
 アニオン性微細セルロース繊維が上記範囲のTI値を有していれば、微細セルロース繊維含有溶剤を加えた液体を被対象物に施用する際に以下のような取り扱い性の観点における利点が得られる。 If the anionic fine cellulose fibers have a TI value within the above range, the following advantages in terms of handleability can be obtained when applying a liquid to which a fine cellulose fiber-containing solvent is added to an object.
 例えば、TI値が上記のごとき範囲のアニオン性微細セルロース繊維は、上記式(1)に示すように、作用するせん断応力(本明細書でいう外力)が小さい状態では高い粘性を維持しつつも、外力が大きくなれば低い粘性を維持するという性質を有する。
 このため、被対象物に上記液体を施用する際に、液体の形態を変化させるような器具等を用いた施用方法を採用する場合、器具への不具合を防止できる。例えば、液体を霧状にして被対象物に対して施用する噴霧器などを用いる場合が該当する。噴霧器は、液体を収容する液体収容部と液体を霧状に吐出する吐出部と、両者を連結する流路とを備えている。噴霧器を作動させると液体収容部に収容された液体は流路を通り吐出部から霧状にして噴射される。
For example, an anionic fine cellulose fiber with a TI value in the above range maintains high viscosity when the acting shear stress (external force in this specification) is small, as shown in the above formula (1). , has the property of maintaining a low viscosity as the external force increases.
For this reason, when applying the above-mentioned liquid to an object, if an application method using a device or the like that changes the form of the liquid is adopted, problems with the device can be prevented. For example, this applies to the case of using a sprayer or the like that atomizes a liquid and applies it to an object. A sprayer includes a liquid storage section that stores liquid, a discharge section that discharges liquid in the form of a mist, and a flow path that connects the two. When the sprayer is operated, the liquid contained in the liquid containing portion passes through the flow path and is sprayed in the form of a mist from the discharge portion.
 ここで、従来、農薬などの液体には、粘性を付与するために展着剤が含有されている。しかし、従来の技術では、このような液体の粘性をコントロールすることが難しいという問題がある。例えば、上記のような液体を噴霧器に入れて使用した場合、噴霧器内の流路で詰まったり、吐出物の先端の開口で詰まったりするなどの不具合が発生している。 Here, conventionally, liquids such as pesticides contain a spreading agent to give them viscosity. However, the conventional technology has the problem that it is difficult to control the viscosity of such a liquid. For example, when the liquid as described above is put into a sprayer and used, problems such as clogging of the flow path in the sprayer and clogging of the opening at the tip of the discharge occur.
 しかしながら、アニオン性微細セルロース繊維が上記のごとく所定のTI値を発揮することができる。このため、アニオン性微細セルロース繊維を含有する微細セルロース繊維含有溶剤を加えた液体を噴霧器に入れて使用すれば、液体収容部に収容された液体が流路に吸引された際に外力が加えられることにより、液体の粘性が急激に低下する。
 つまり、収容部内に存在している高い粘性(つまり流動性の低い液体状態)状態から一変して水のように流動性の低い状態へ変化させることができる。
 すると、噴霧器の収容部から吐出部の先端開口まで水と同様の性状で移動させることができる。そして、噴霧器の収容部に収容した液体を先端開口から霧状に放出させることができる。このとき、噴霧器の吐出部の先端開口から放出された液体は、被対象物に到達するまでの間に液滴の状態になりながら被対象物表面に到達する。そして、被対象物表面に到達すると、外力が低下するので粘性が再度高くなり、被対象物表面に付着した状態が維持される。
However, anionic fine cellulose fibers can exhibit a given TI value as described above. Therefore, if a liquid containing a fine cellulose fiber-containing solvent containing anionic fine cellulose fibers is added to a sprayer and used, an external force is applied when the liquid stored in the liquid storage part is sucked into the flow path. As a result, the viscosity of the liquid drops sharply.
In other words, the state of high viscosity (that is, a liquid state with low fluidity) existing in the container can be completely changed to a state of low fluidity like water.
Then, it is possible to move from the containing portion of the sprayer to the tip opening of the discharge portion with the same properties as water. Then, the liquid stored in the storage portion of the sprayer can be discharged in the form of mist from the tip opening. At this time, the liquid discharged from the tip opening of the ejection part of the atomizer reaches the surface of the object while being in the form of droplets before reaching the object. Then, when it reaches the surface of the object, the external force decreases, so the viscosity increases again, and the state of adhering to the surface of the object is maintained.
(界面活性剤)
 微細セルロース繊維含有溶剤は、界面活性剤を含有してもよい。
 界面活性剤を含有することにより、微細セルロース繊維含有溶剤のぬれ性をより向上させることができる。
(Surfactant)
The fine cellulose fiber-containing solvent may contain a surfactant.
By containing a surfactant, the wettability of the fine cellulose fiber-containing solvent can be further improved.
 界面活性剤の含有割合は、とくに限定されない。
 例えば、界面活性剤は、微細セルロース繊維含有溶剤を上述した液体に加えた状態において、0.1質量%~5.0質量%となるように含有される。界面活性剤の含有量は、0.1質量%~2.0質量%が好ましく、より好ましくは0.1質量%~1.0質量%であり、さらに好ましくは、0.1質量%~0.5質量%である。
The content ratio of the surfactant is not particularly limited.
For example, the surfactant is contained so as to be 0.1% by mass to 5.0% by mass when the fine cellulose fiber-containing solvent is added to the liquid described above. The content of the surfactant is preferably 0.1% by mass to 2.0% by mass, more preferably 0.1% by mass to 1.0% by mass, and still more preferably 0.1% by mass to 0.1% by mass. 0.5 mass %.
 界面活性剤の種類は、とくに限定されない。
 陽イオン性界面活性剤や陰イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤など一般的な界面活性剤として用いられている成分を採用できる。界面活性剤は、1種類でもよいし、2種類以上を組み合わせてもよい。
The type of surfactant is not particularly limited.
Components used as general surfactants such as cationic surfactants, anionic surfactants, amphoteric surfactants and nonionic surfactants can be used. One type of surfactant may be used, or two or more types may be used in combination.
 微細セルロース繊維含有溶剤が界面活性剤を含有する場合、微細セルロース繊維含有溶剤の粘度は、所定の範囲となるように調整するのが好ましい。
 この微細セルロース繊維含有溶剤の粘度は、界面活性剤が0.5質量%、アニオン性微細セルロース繊維の固形分濃度が0.3質量%~1.0質量%となるように純水に分散した状態において、B型粘度計を用いて測定される。
 例えば、微細セルロース繊維含有溶剤のB型粘度(20℃、回転数6rpm、3分)は、1000mPa・s以上、20000mPa・s以下であることが好ましい。より好ましくは1000mPa・s~25000mPa・sであり、さらに好ましくは9000mPa・s~25000mPa・sであり、よりさらに好ましくは9000mPa・s~20000mPa・sである。
When the fine cellulose fiber-containing solvent contains a surfactant, it is preferable to adjust the viscosity of the fine cellulose fiber-containing solvent within a predetermined range.
The viscosity of this fine cellulose fiber-containing solvent is such that the surfactant is 0.5% by mass and the anionic fine cellulose fiber is dispersed in pure water so that the solid content concentration is 0.3% to 1.0% by mass. In the state, it is measured using a B-type viscometer.
For example, the B-type viscosity of the fine cellulose fiber-containing solvent (20° C., rotation speed 6 rpm, 3 minutes) is preferably 1000 mPa·s or more and 20000 mPa·s or less. It is more preferably 1000 mPa·s to 25000 mPa·s, still more preferably 9000 mPa·s to 25000 mPa·s, still more preferably 9000 mPa·s to 20000 mPa·s.
 微細セルロース繊維含有溶剤が界面活性剤を含有した上で、上記範囲の粘性を有していれば、微細セルロース繊維含有溶剤を加えた液体のぬれ性をより向上させ、かつ液体の液ダレを適切に抑制することができる。つまり、従来の界面活性剤を加えた展着剤に見られるような液ダレを防止しつつ、優れたぬれ性を発揮させることができる。 If the fine cellulose fiber-containing solvent contains a surfactant and has a viscosity within the above range, the wettability of the liquid to which the fine cellulose fiber-containing solvent is added is further improved, and the liquid drips appropriately. can be suppressed to In other words, it is possible to exhibit excellent wettability while preventing dripping that occurs in conventional spreading agents containing surfactants.
 また、微細セルロース繊維含有溶剤が界面活性剤を含有することにより、微細セルロース繊維含有溶剤のTI値は、所定の範囲となるように調整するのが好ましい。
 この微細セルロース繊維含有溶剤のTI値は、界面活性剤が0.5質量%、アニオン性微細セルロース繊維の固形分濃度が0.3質量%~1.0質量%となるように純水に分散した状態において、上記(1)式より求められるB型粘度計を用いて測定される。
 例えば、微細セルロース繊維含有溶剤のTI値は、4.0以上、8.0以下であることが好ましい。より好ましくは4.5~8.0であり、さらに好ましくは5.0~8.0である。
Moreover, it is preferable to adjust the TI value of the fine cellulose fiber-containing solvent to a predetermined range by including a surfactant in the fine cellulose fiber-containing solvent.
The TI value of this fine cellulose fiber-containing solvent is dispersed in pure water so that the surfactant is 0.5% by mass and the solid content concentration of the anionic fine cellulose fiber is 0.3% to 1.0% by mass. In this state, the viscosity is measured using a Brookfield viscometer obtained from the above formula (1).
For example, the TI value of the fine cellulose fiber-containing solvent is preferably 4.0 or more and 8.0 or less. More preferably 4.5 to 8.0, still more preferably 5.0 to 8.0.
 微細セルロース繊維含有溶剤が界面活性剤を含有した上で、上記範囲のTI値を有していれば、界面活性剤が含有しているにかかわらず、微細セルロース繊維同士が凝集するのを抑制できるので、所定の粘性を適切に発揮させることができる。このため、界面活性剤を含有していても、液ダレをより適切に防止できるという利点が得られる。 If the fine cellulose fiber-containing solvent contains a surfactant and has a TI value within the above range, aggregation of the fine cellulose fibers can be suppressed regardless of the presence of the surfactant. Therefore, a predetermined viscosity can be exhibited appropriately. Therefore, even if a surfactant is contained, there is an advantage that dripping can be more appropriately prevented.
(本実施形態の施用液体)
 本実施形態の施用液体(以下、単に施用液体という)は、上述した微細セルロース繊維含有溶剤を加える対象となる液体である。具体的には、施用液体は、水と、機能性組成物と微細セルロース繊維含有溶剤と、を含む液体である。つまり、施用液体は、少なくとも、水と、機能性組成物と、上記のアニオン性微細セルロース繊維と、を含有する液体である。
(Application liquid of the present embodiment)
The application liquid of the present embodiment (hereinafter simply referred to as application liquid) is a liquid to which the fine cellulose fiber-containing solvent is added. Specifically, the application liquid is a liquid containing water, a functional composition, and a fine cellulose fiber-containing solvent. That is, the application liquid is a liquid containing at least water, the functional composition, and the anionic fine cellulose fibers.
 施用液体に含まれる機能性組成物は、所望の機能を有する組成物であれば、とくに限定されない。
 例えば、上述したように、被対象物が農作物の場合、機能性組成物は、殺虫剤、殺菌剤、植物生長調整剤、発芽抑制剤などの農薬や、肥料、土壌肥料などが使用できる。また、被対象物が家畜や愛玩動物などの動物の場合、機能性組成物は、消毒剤などが使用できる。さらに、被対象物が河川水、農業用水などの場合、機能性組成物は、殺菌剤などが使用できる。
The functional composition contained in the application liquid is not particularly limited as long as it is a composition having a desired function.
For example, as described above, when the subject is agricultural crops, the functional composition can be agricultural chemicals such as insecticides, fungicides, plant growth regulators, and germination inhibitors, fertilizers, soil fertilizers, and the like. In addition, when the subject is an animal such as a livestock or a pet animal, a disinfectant or the like can be used as the functional composition. Furthermore, when the subject is river water, agricultural water, or the like, a fungicide or the like can be used as the functional composition.
 施用液体は、アニオン性微細セルロース繊維が所定の濃度となるように含有することにより、液滴となった状態でも優れたぬれ性を発揮する。
 例えば、施用液体にはアニオン性微細セルロース繊維が、固形分濃度で0.3質量%~1.0質量%となるように含有されている。この含有量は、0.3質量%以上、0.8質量%以下でることが好ましく、より好ましくは0.3質量%以上、0.7質量%以下であり、さらに好ましくは0.5質量%以上、0.7質量%以下である。
The application liquid exhibits excellent wettability even in the form of droplets by containing the anionic fine cellulose fibers at a predetermined concentration.
For example, the application liquid contains anionic fine cellulose fibers so that the solid content concentration is 0.3% by mass to 1.0% by mass. The content is preferably 0.3% by mass or more and 0.8% by mass or less, more preferably 0.3% by mass or more and 0.7% by mass or less, and still more preferably 0.5% by mass. Above, it is below 0.7 mass %.
 一方、アニオン性微細セルロース繊維の含有量が0.3質量%よりも低くなると、施用液体の被対象物に対するぬれ性が低下してしまう。また、アニオン性微細セルロース繊維の含有量が1.0質量%よりも大きくなると、混合時の攪拌時間が増加したり等取り扱いにくくなる傾向にある。 On the other hand, if the content of the anionic fine cellulose fibers is less than 0.3% by mass, the wettability of the applied liquid to the target object will be reduced. On the other hand, when the content of the anionic fine cellulose fibers is more than 1.0% by mass, it tends to be difficult to handle, for example, the stirring time during mixing increases.
 施用液体のぬれ性は、微細セルロース繊維含有溶剤の説明と同様に、後述する実施例に記載の方法により評価される。 The wettability of the liquid to be applied is evaluated by the method described in the examples below, similar to the description of the fine cellulose fiber-containing solvent.
 この施用液体には、B型粘度計を用いて測定した際のB型粘度(20℃、回転数6rpm、3分)が、1000mPa・s以上、50000mPa・s以下となるように、アニオン性微細セルロース繊維が含有されている。つまり、施用液体の粘度は、含有するアニオン性微細セルロース繊維に基づいて調整できる。
 この施用液体が上記範囲の粘性を有することにより、施用液体を被対象物に付着した状態を維持させることができる。つまり被対象物に対して施用液体を施用した際の液ダレを適切に抑制できる。
This application liquid contains an anionic fine Contains cellulose fibers. That is, the viscosity of the application liquid can be adjusted based on the anionic fine cellulose fibers it contains.
When the application liquid has a viscosity within the above range, the application liquid can be maintained in a state of adhering to the object. In other words, it is possible to appropriately suppress dripping when the application liquid is applied to the object.
 この施用液体の粘度は、1000mPa・s~25000mPa・sであることが好ましい。より好ましくは1000mPa・s~20000mPa・sであり、さらに好ましくは1000mPa・s~10000mPa・sである。 The viscosity of this application liquid is preferably 1000 mPa·s to 25000 mPa·s. It is more preferably 1000 mPa·s to 20000 mPa·s, still more preferably 1000 mPa·s to 10000 mPa·s.
 一方、1000mPa・sよりも低いと流動性が高いゆえ液ダレしやすくなる。また、50000mPa・sよりも高いと流路を備える機器内で詰まりやすくなるゆえ取扱性が低下する。 On the other hand, if the viscosity is lower than 1000 mPa·s, fluidity is high and the liquid tends to drip. On the other hand, if the viscosity is higher than 50000 mPa·s, clogging is likely to occur in a device having a flow path, resulting in poor handleability.
 施用液体の液ダレは、微細セルロース繊維含有溶剤の説明と同様に、後述する実施例に記載の方法により評価することができる。 The sagging of the applied liquid can be evaluated by the method described in the examples below, in the same manner as the fine cellulose fiber-containing solvent.
 とくに、この施用液体は、上記(1)式より求められるB型粘度計を用いて測定したTI値が4.0以上となるように、アニオン性微細セルロース繊維を含有するのが好ましい。この施用液体のTI値は、上述と同様に含有するアニオン性微細セルロース繊維に基づいて調整できる。
 この施用液体が上記範囲のTI値を有することにより、上述した微細セルロース繊維含有溶剤で説明した場合と同様に、取り扱い性を向上させることができる。
In particular, the application liquid preferably contains anionic fine cellulose fibers so that the TI value measured using a Brookfield viscometer obtained from the formula (1) is 4.0 or more. The TI value of this application liquid can be adjusted based on the anionic fine cellulose fibers it contains as described above.
When this liquid to be applied has a TI value within the above range, it is possible to improve the handleability in the same manner as in the case of the fine cellulose fiber-containing solvent described above.
 この施用液体のTI値は、4.0~8.0であることが好ましい。より好ましくは4.0~7.6であり、さらに好ましくは5.0~7.6である。 The TI value of this application liquid is preferably 4.0 to 8.0. More preferably 4.0 to 7.6, still more preferably 5.0 to 7.6.
 この施用液体は、界面活性剤を含有してもよい。
 施用液体が界面活性剤を含有することにより、施用液体のぬれ性をより向上させることが可能となる。
The application liquid may contain surfactants.
The wettability of the application liquid can be further improved by containing the surfactant in the application liquid.
 界面活性剤の含有量は、施用液体の粘性を急激に低下させない程度であれば、とくに限定されない。
 例えば、界面活性剤の含有量は、0.1質量%~10質量%であることが好ましい。より好ましくは0.1質量%~5質量%であり、さらに好ましくは0.1質量%~1質量%であり、よりさらに好ましくは、0.1質量%~0.5質量%である。
The content of the surfactant is not particularly limited as long as the viscosity of the application liquid is not rapidly lowered.
For example, the surfactant content is preferably 0.1% by mass to 10% by mass. It is more preferably 0.1% by mass to 5% by mass, still more preferably 0.1% by mass to 1% by mass, and even more preferably 0.1% by mass to 0.5% by mass.
 界面活性剤の種類は、とくに限定されない。上述した微細セルロース繊維含有溶剤の場合と同様の成分を採用することができる。 The type of surfactant is not particularly limited. The same ingredients as in the fine cellulose fiber-containing solvent described above can be employed.
 施用液体が界面活性剤を含有する場合、その粘性およびTI値は以下の範囲内となるように調製するのが望ましい。この範囲内となるように調製することにより、上述した液ダレ抑制や取り扱い性を適切に維持することができる。
 なお、施用液体における粘度及びTI値は、含有するアニオン性微細セルロース繊維に基づいて調整することができる。
When the application liquid contains a surfactant, it is desirable to adjust its viscosity and TI value within the following ranges. By preparing to fall within this range, it is possible to appropriately maintain the liquid dripping suppression and handleability described above.
In addition, the viscosity and TI value in the application liquid can be adjusted based on the anionic fine cellulose fibers contained.
 例えば、界面活性剤を含有した施用液体の粘性は、上述と同様にB型粘度計を用いて測定される。例えば、この施用液体のB型粘度(20℃、回転数6rpm、3分)は、1000mPa・s以上、50000mPa・s以下であることが好ましい。より好ましくは、1000mPa・s~25000mPa・sであり、さらに好ましくは9000mPa・s~25000mPa・sであり、よりさらに好ましくは9000mPa・s~20000mPa・sである。 For example, the viscosity of the application liquid containing the surfactant is measured using a Brookfield viscometer in the same manner as described above. For example, the B-type viscosity (20° C., rotation speed 6 rpm, 3 minutes) of this application liquid is preferably 1000 mPa·s or more and 50000 mPa·s or less. It is more preferably 1000 mPa·s to 25000 mPa·s, still more preferably 9000 mPa·s to 25000 mPa·s, and even more preferably 9000 mPa·s to 20000 mPa·s.
 また、例えば、界面活性剤を含有した施用液体のTI値は、上述と同様に上記(1)式より算出される。例えば、この施用液体のTI値は、4.0以上、8.0以下であることが好ましい。より好ましくは4.0~7.8であり、さらに好ましくは4.0~7.6であり、よりさらに好ましくは4.5~7.6である。 Also, for example, the TI value of the application liquid containing the surfactant is calculated from the above formula (1) in the same manner as described above. For example, the TI value of this application liquid is preferably 4.0 or more and 8.0 or less. It is more preferably 4.0 to 7.8, even more preferably 4.0 to 7.6, even more preferably 4.5 to 7.6.
(本実施形態の施用液体調製方法)
 本実施形態の施用液体調製方法は、上述した施用液体を調製する方法である。
 具体的には、本実施形態の施用液体調製方法は、施用液体のアニオン性微細セルロース繊維の固形分濃度が上記範囲内となるように調整することにより、施用液体の粘度、TI値が所定の範囲内となるように調整する。
(Application liquid preparation method of the present embodiment)
The application liquid preparation method of the present embodiment is a method for preparing the application liquid described above.
Specifically, in the application liquid preparation method of the present embodiment, by adjusting the solid content concentration of the anionic fine cellulose fibers in the application liquid to be within the above range, the viscosity and TI value of the application liquid are adjusted to predetermined values. Adjust within range.
 アニオン性微細セルロース繊維が所定の濃度となるように調整することにより、被対象物に対して施用した後の施用液体に優れたぬれ性を発揮させ、かつ液ダレが抑制した施用液体を調製することができる。
 このため、施用液体の機能を適切に発揮させることができる。例えば、農薬等の機能性組成物を含有するように調製すれば、この機能性組成物の効果を適切に発揮させることができる。
By adjusting the concentration of the anionic fine cellulose fibers to a predetermined concentration, the liquid to be applied exhibits excellent wettability after being applied to an object, and the liquid to be applied suppresses dripping. be able to.
Therefore, the function of the applied liquid can be exhibited appropriately. For example, if it is prepared so as to contain a functional composition such as an agricultural chemical, the effect of this functional composition can be exhibited appropriately.
 つぎに、実施例によりさらに詳細に本発明を説明する。ただし、本発明は、以下の実施例によってなんら制限を受けるものではない。なお、とくに断らない限り、%は質量%を示す。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is in no way limited by the following examples. In addition, unless otherwise indicated, % shows the mass %.
(実験1)
 実験1では、本発明の微細セルロース繊維含有溶剤および本発明の施用液体に用いるアニオン性微細セルロース繊維を調製し、特性の評価を確認した。比較対象の素材として水溶性セルロース誘導体(例えば、ヒドロキシプロピルセルロース(HPC))を用いた結果から、本発明に用いるアニオン性微細セルロース繊維が展着剤として適した素材であることを水分散性、粘性およびスプレー性の観点から確認した。
(Experiment 1)
In Experiment 1, the fine cellulose fiber-containing solvent of the present invention and the anionic fine cellulose fibers used in the application liquid of the present invention were prepared, and their properties were evaluated. From the results of using a water-soluble cellulose derivative (for example, hydroxypropyl cellulose (HPC)) as a material for comparison, it was confirmed that the anionic fine cellulose fiber used in the present invention is a material suitable as a spreading agent. Confirmed from the viewpoint of viscosity and sprayability.
<スルホン化微細セルロース繊維分散液の調製>
 まず、アニオン性微細セルロース繊維の官能基として、スルホ基を導入したスルホン化微細セルロース繊維を含有したスルホン化微細セルロース繊維分散液(試料α-1、α-2、α-3)を以下のとおり調製した。
<Preparation of sulfonated fine cellulose fiber dispersion>
First, sulfonated fine cellulose fiber dispersions (samples α-1, α-2, α-3) containing sulfonated fine cellulose fibers introduced with sulfo groups as functional groups of the anionic fine cellulose fibers were prepared as follows. prepared.
<試料α-1> <Sample α-1>
(繊維原料)
 繊維原料として、丸住製紙社製の針葉樹晒クラフトパルプ(NBKP)を用いた。このNBKPはフリーネス720mL、平均繊維長2.57mmで叩解処理がされていないものを使用した。以下では、実験に供したNBKPを単にパルプとして説明する。
(fiber raw material)
Softwood bleached kraft pulp (NBKP) manufactured by Marusumi Paper Co., Ltd. was used as a fiber raw material. The NBKP used had a freeness of 720 mL, an average fiber length of 2.57 mm, and was not beaten. Below, the NBKP used in the experiment will be simply described as pulp.
 パルプは、丸住製紙社製の純水(pH5.0~8.0、電気伝導度1.0~1.5μS/cm)を用いて、目開き75μm(200メッシュ)のステンレスふるい上で洗浄後、水を切り、固形分濃度を25.0質量%に調整したパルプを実験に供した。なお、このパルプは、乾燥履歴が一度もない湿潤状態のパルプである。
 例えば、実験に供した湿潤状態のパルプ(以下、湿潤パルプという)400gには、固形分質量で100gのパルプ含有されたものを使用した。
The pulp is washed on a stainless steel sieve with an opening of 75 μm (200 mesh) using pure water (pH 5.0 to 8.0, electrical conductivity 1.0 to 1.5 μS / cm) manufactured by Marusumi Paper Co., Ltd. After that, water was drained, and the pulp adjusted to a solid content concentration of 25.0% by mass was subjected to the experiment. This pulp is wet pulp that has never been dried.
For example, 400 g of wet pulp (hereinafter referred to as wet pulp) used in the experiment contained 100 g of pulp in terms of solid mass.
 パルプの「固形分質量(g)」とは、測定対象のパルプ自体の乾燥質量をいう。
 乾燥パルプの重量は、乾燥機を用いて温度105℃、2時間乾燥したものを測定して、水分率が平衡状態になるまで乾燥した。
 実験での平衡状態の評価方法は、恒温槽の温度を所定の温度(例えば、50℃もしくは105℃)に設定した上記乾燥機にて1時間乾燥後、連続して測定した2回の重量の変化量が乾燥開始時の重量に対して1%以内となった状態を平衡状態にあるとした(ただし、2回目の重量の測定は1回目に要した乾燥時間の半分以上とした)。
 水分率の測定は、下記式により算出した。
 
 水分率(%)=100-(パルプの固形分質量(g)/水分率測定時におけるパルプ質量(g))×100
The “solid mass (g)” of pulp refers to the dry mass of the pulp itself to be measured.
The weight of the dry pulp was measured by drying at 105° C. for 2 hours using a drier until the moisture content reached equilibrium.
The method of evaluating the equilibrium state in the experiment is to set the temperature of the constant temperature bath to a predetermined temperature (e.g., 50 ° C. or 105 ° C.) in the above dryer for 1 hour, and then measure the weight twice in succession. A state in which the amount of change was within 1% of the weight at the start of drying was considered to be in an equilibrium state (however, the second weight measurement was made to be at least half the drying time required for the first time).
The measurement of moisture content was calculated by the following formula.

Moisture content (%) = 100 - (solid mass of pulp (g)/pulp mass (g) at moisture content measurement) x 100
 洗浄度合いはパルプ濾水液の電気伝導度が20μS/cm以下になっていることを確認することにより行った。
 電気伝導度測定には、電気伝導度電極(東亜ディーケーケー社製、型番;CT-58101B)を接続した水質計(東亜ディーケーケー社製、型番;MM-43X)を用いた。電気伝導度の数値の信頼性は、電気伝導率標準液(12.9mS/cm、HORIBA社製)を用いて確認した。
The degree of washing was determined by confirming that the electrical conductivity of the pulp filtrate was 20 μS/cm or less.
For the electrical conductivity measurement, a water quality meter (manufactured by Toa DKK Co., model number: MM-43X) connected to an electrical conductivity electrode (manufactured by Toa DKK Co., Ltd., model number: CT-58101B) was used. The reliability of the electrical conductivity value was confirmed using an electrical conductivity standard solution (12.9 mS/cm, manufactured by HORIBA).
(化学処理工程)
 以下の化学処理工程を行うことにより繊維原料中のセルロースの水酸基をアニオン性の官能基で置換した化学変性パルプを調製した。
(Chemical treatment process)
A chemically modified pulp was prepared by substituting hydroxyl groups of cellulose in fiber raw materials with anionic functional groups by performing the following chemical treatment steps.
 実験では、アニオン性の官能基としてスルホ基を用いた。
 まず、反応液が入った容器に湿潤パルプを入れて、パルプに反応液を含浸させた。この工程が、本実施形態の「化学処理工程」における「接触工程」に相当する。
In the experiments, a sulfo group was used as an anionic functional group.
First, the wet pulp was put into a container containing the reaction liquid, and the pulp was impregnated with the reaction liquid. This step corresponds to the "contact step" in the "chemical treatment step" of the present embodiment.
(反応液の調製)
 反応液は、以下のように調製した。
 1Lビーカーに純水600mLを入れ、スルホン化剤としてのスルファミン酸(純度99.8%、扶桑化学工業製)と尿素(純度99.0%、富士フィルム和光純薬社製、型番;特級試薬)をスルファミン酸(g)/尿素(g)=70/17.5の比率で添加した。スルファミン酸と尿素は室温で完全に溶解するまで撹拌し、反応液を調整した。
(Preparation of reaction solution)
A reaction solution was prepared as follows.
Put 600 mL of pure water in a 1 L beaker, and add sulfamic acid (purity 99.8%, manufactured by Fuso Chemical Industry Co., Ltd.) and urea (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) as sulfonating agents. was added at a ratio of sulfamic acid (g)/urea (g)=70/17.5. Sulfamic acid and urea were stirred at room temperature until completely dissolved to prepare a reaction solution.
(反応液とパルプの接触方法)
 調製した反応液に対して湿潤パルプを400g加えて、約10分含浸させた。
(Method of Contacting Reaction Liquid with Pulp)
400 g of wet pulp was added to the prepared reaction solution and impregnated for about 10 minutes.
 反応液を含浸させたパルプを容器から取り出し、薄く均一に広げて80℃雰囲気下の乾燥機(ヤマト科学社製、型番;DKN602)に入れて乾燥し、反応液が含浸した反応液含浸パルプを調製した。 The pulp impregnated with the reaction liquid is taken out from the container, spread thinly and uniformly, and dried in a dryer (manufactured by Yamato Scientific Co., Ltd., model number: DKN602) under an atmosphere of 80 ° C. to obtain the reaction liquid-impregnated pulp impregnated with the reaction liquid. prepared.
 上記の反応液を含浸させたパルプを乾燥させる工程が、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における乾燥工程に相当する。 The step of drying the pulp impregnated with the reaction solution corresponds to the drying step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
(加熱反応)
 つぎに、調製した反応液含浸パルプを、次工程の加熱反応工程に供し、加熱反応を行いスルホン化パルプ(スルファミン酸/尿素処理パルプを構成する反応パルプ)を調製した。
 なお、供した反応液含浸パルプの水分率は、5%以下であった。
(heating reaction)
Next, the prepared reaction solution-impregnated pulp was subjected to the heating reaction step of the next step, and heat reaction was performed to prepare sulfonated pulp (reacted pulp constituting sulfamic acid/urea treated pulp).
The moisture content of the supplied reaction liquid-impregnated pulp was 5% or less.
 上記の加熱反応が、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における反応工程に相当する。 The above heating reaction corresponds to the reaction step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
 反応条件は以下のとおりとした。
 加熱には、乾燥機(ヤマト科学社製、型番;DKN602)を用いた。
 乾燥機の恒温槽の温度:140℃、加熱時間:30分
The reaction conditions were as follows.
A dryer (manufactured by Yamato Scientific Co., model number: DKN602) was used for heating.
Dryer constant temperature bath temperature: 140°C, heating time: 30 minutes
 上記の加熱反応における反応条件の温度が、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における反応工程の反応温度に相当する。
 上記の加熱反応における反応条件の加熱時間が、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における反応工程の反応時間に相当する。
The temperature of the reaction conditions in the above heating reaction corresponds to the reaction temperature in the reaction step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
The heating time of the reaction conditions in the above heating reaction corresponds to the reaction time of the reaction step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
 加熱反応後、反応させたパルプを純水に懸濁させ、炭酸水素ナトリウムで泡が出なくなるまで中和した。中和したパルプは、目開き46μmのステンレスふるい(300メッシュ)上で中性になるまで純水で洗浄した。
 なお、洗浄度合いはパルプ濾水液の電気伝導度が50μS/cm以下になっていることを確認することにより行った。電気伝導度測定には上記の水質計を用いた。
After the heat reaction, the reacted pulp was suspended in pure water and neutralized with sodium bicarbonate until no bubbles were generated. The neutralized pulp was washed with pure water on a stainless steel sieve (300 mesh) with an opening of 46 μm until it became neutral.
The degree of washing was determined by confirming that the electric conductivity of the pulp filtrate was 50 μS/cm or less. The above water quality meter was used for the electrical conductivity measurement.
 上記の反応させたパルプを中性になるまで純水で洗浄する工程が、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における洗浄工程に相当する。 The step of washing the reacted pulp with pure water until it becomes neutral corresponds to the washing step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
(スルホン化パルプの固形分濃度測定)
 次工程の微細化処理工程において、所定の固形分濃度の微細セルロース繊維を調製するために、水分を含んだ状態のスルホン化パルプの固形分濃度(質量%)を測定した。
 上記洗浄工程後のスルホン化パルプを分取して、質量を電子天秤で秤量した(この時の質量を下記式の固形分濃度測定時に分取した質量とする)。
 このサンプルを105℃に設定した乾燥機で2時間以上乾燥させ恒量に達したときの質量を電子天秤で秤量し(この時の質量を下記式の乾燥後の質量とした)、下記式を用いて固形分濃度を算出した。
 
スルホン化パルプの固形分濃度(質量%)=(乾燥後の固形分質量(g))/(固形分濃度測定時に分取した質量(g))×100
(Measurement of solid content concentration of sulfonated pulp)
In order to prepare fine cellulose fibers having a predetermined solid content concentration in the next step of micronization, the solid content concentration (% by mass) of the sulfonated pulp containing moisture was measured.
The sulfonated pulp after the washing step was fractionated and the mass was weighed with an electronic balance (the mass at this time is defined as the mass fractionated when measuring the solid content concentration in the following formula).
The sample was dried in a dryer set at 105 ° C. for 2 hours or more and the mass when it reached a constant weight was weighed with an electronic balance (the mass at this time was the mass after drying in the following formula), and the following formula was used. was used to calculate the solid content concentration.

Solid content concentration of sulfonated pulp (mass%) = (mass of solid content after drying (g))/(mass (g) fractionated when measuring solid content concentration) x 100
(微細化処理工程)
 つぎに、化学処理工程により調製したスルホン化パルプを次工程の微細化処理工程に供し、スルホン化微細セルロース繊維を調製した。
(Miniaturization process)
Next, the sulfonated pulp prepared by the chemical treatment step was subjected to the next micronization step to prepare sulfonated fine cellulose fibers.
 まず、スルホン化パルプと純水とを混合して、スルホン化パルプの固形分濃度が1.0質量%にした調整したパルプスラリーを調製した。つまり、このパルプスラリーは、スルホン化パルプと純水の組成比が、スルホン化パルプ(固形分質量(g))1.0質量部に対して純水が99.0質量部となるように調製されたものである。 First, sulfonated pulp and pure water were mixed to prepare a pulp slurry adjusted to a solid content concentration of 1.0% by mass of sulfonated pulp. That is, this pulp slurry is prepared so that the composition ratio of sulfonated pulp and pure water is 99.0 parts by mass of pure water per 1.0 part by mass of sulfonated pulp (solid content mass (g)). It is what was done.
 ついで、このパルプスラリーを高圧ホモジナイザー(下記条件)に供して、微細セルロース繊維(スルホン化微細セルロース繊維)を含有する分散液(スルホン化微細セルロース繊維分散液)を調製した。調製したスルホン化微細セルロース繊維分散液は、スルホン化微細セルロース繊維と純水の組成比が、スルホン化微細セルロース繊維(固形分質量(g))の1.0質量部に対して純水が99.0質量部である。つまり、スルホン化微細セルロース繊維分散液は、スルホン化微細セルロース繊維の固形分濃度が1.0質量%の分散液となるように調製されたものである。 Next, this pulp slurry was subjected to a high-pressure homogenizer (conditions below) to prepare a dispersion containing fine cellulose fibers (sulfonated fine cellulose fibers) (sulfonated fine cellulose fiber dispersion). The prepared sulfonated fine cellulose fiber dispersion had a composition ratio of sulfonated fine cellulose fibers and pure water of 99% pure water per 1.0 part by mass of sulfonated fine cellulose fibers (solid content mass (g)). .0 parts by mass. That is, the sulfonated fine cellulose fiber dispersion is prepared so that the solid concentration of the sulfonated fine cellulose fibers is 1.0% by mass.
 微細化処理の条件を以下に示す。
 1.0質量%に調整したパルプスラリーを高圧ホモジナイザー(吉田機械興業社製、製品名;NanoVater、型番;L-ES008-D10)に供した。
 処理条件:設定圧力60MPa、処理回数5回
The conditions for the refinement process are shown below.
The pulp slurry adjusted to 1.0% by mass was subjected to a high-pressure homogenizer (manufactured by Yoshida Kikai Kogyo Co., Ltd., product name: NanoVater, model number: L-ES008-D10).
Processing conditions: Set pressure 60 MPa, processing times 5 times
 (スルホン化微細セルロース繊維分散液の固形分濃度測定)
 微細化処理工程前後において、分散液中の固形分濃度に変化がないことを確認した。
 調製したスルホン化微細セルロース繊維分散液から一定量を分取して、質量を電子天秤で秤量した(この時の質量を下記式の固形分濃度測定時に分取した質量とする)。
 このサンプルを105℃に設定した乾燥機で2時間以上乾燥させ恒量に達したときの質量を電子天秤で秤量し(この時の質量を下記式の乾燥後の質量とした)、下記式を用いて固形分濃度を算出した。
 なお、本実施形態の微細セルロース繊維の固形分濃度とは、本測定にて算出した既知の固形分濃度を希釈したときの希釈倍率に応じて算出した値である。
 
スルホン化微細セルロース繊維分散液の固形分濃度(質量%)=(乾燥後の固形分質量(g))/(固形分濃度測定時に分取した質量(g))×100
(Measurement of solid content concentration of sulfonated fine cellulose fiber dispersion)
It was confirmed that there was no change in the solid content concentration in the dispersion before and after the micronization process.
A certain amount was taken from the prepared sulfonated fine cellulose fiber dispersion, and the mass was weighed with an electronic balance (the mass at this time is defined as the mass taken when measuring the solid content concentration in the following formula).
The sample was dried in a dryer set at 105 ° C. for 2 hours or more and the mass when it reached a constant weight was weighed with an electronic balance (the mass at this time was the mass after drying in the following formula), and the following formula was used. to calculate the solid content concentration.
The solid content concentration of the fine cellulose fibers of the present embodiment is a value calculated according to the dilution ratio when the known solid content concentration calculated in this measurement is diluted.

Solid content concentration (mass%) of the sulfonated fine cellulose fiber dispersion = (solid content mass (g) after drying)/(mass (g) fractionated during solid content concentration measurement) x 100
 調製したスルホン化微細セルロース繊維分散液の各物性は、以下の測定方法で評価した。 The physical properties of the prepared sulfonated fine cellulose fiber dispersion were evaluated by the following measurement methods.
(電気伝導度測定による硫黄導入量の測定)
 スルホン化微細セルロース繊維のスルホ基に起因する硫黄導入量は、調製されたスルホン化微細セルロース繊維をイオン交換樹脂で処理した後、水酸化ナトリウム水溶液による滴定によって測定した。
 イオン交換樹脂による処理では、0.2質量%に調製したスルホン化微細セルロース繊維含有スラリー100gに強酸性イオン交換樹脂(オルガノ株式会社製、アンバージェット1024;コンディショニング済)を加え、1時間撹拌処理を行った。その後、目開き200μmのメッシュ上に注ぎ、樹脂とスラリーを分離した。
(Measurement of sulfur introduction amount by electrical conductivity measurement)
The amount of sulfur introduced due to sulfo groups in the sulfonated fine cellulose fibers was measured by titration with an aqueous sodium hydroxide solution after treating the prepared sulfonated fine cellulose fibers with an ion exchange resin.
In the ion-exchange resin treatment, a strongly acidic ion-exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned) was added to 100 g of a slurry containing sulfonated fine cellulose fibers adjusted to 0.2% by mass, and the mixture was stirred for 1 hour. gone. After that, it was poured onto a mesh with an opening of 200 μm to separate the resin and the slurry.
 アルカリを用いた滴定では、イオン交換樹脂による処理後のスルホン化微細セルロース繊維含有スラリーに、0.1M水酸化ナトリウム水溶液または1.0M水酸化ナトリウム水溶液(どちらも富士フィルム和光純薬社製、型番;容量分析用 for Volumetric Analysis)を10μL~50μLずつ加えながら、電気伝導度の値の変化を計測し、縦軸に電気伝導度、横軸に水酸化ナトリウム滴定量としてプロットし曲線を得て、得られた曲線から変曲点を確認した。
 この変曲点での水酸化ナトリウム滴定量がスルホ基量に相当する。このため、この変曲点の水酸化ナトリウム量を測定に供したスルホン化微細セルロース繊維含固形分量で除することで、スルホン化微細セルロース繊維中のスルホ基導入量を測定した。
 電気伝導度は上述した電気伝導度電極に接続した水質計を用いて測定した。電気伝導度の数値の信頼性は、上記と同様に電気伝導率標準液(12.9mS/cm、HORIBA社製)を用いて確認した。
In the titration using alkali, a slurry containing sulfonated fine cellulose fibers after treatment with an ion-exchange resin was added with a 0.1 M sodium hydroxide aqueous solution or a 1.0 M sodium hydroxide aqueous solution (both manufactured by Fujifilm Wako Pure Chemical Industries, model number for volumetric analysis) is added at a time of 10 μL to 50 μL, and the change in the electrical conductivity value is measured, and the electrical conductivity is plotted on the vertical axis and the sodium hydroxide titration amount on the horizontal axis to obtain a curve, An inflection point was confirmed from the obtained curve.
The titration amount of sodium hydroxide at this inflection point corresponds to the amount of sulfo groups. Therefore, the amount of sulfo groups introduced into the sulfonated fine cellulose fibers was measured by dividing the amount of sodium hydroxide at this inflection point by the amount of solids contained in the sulfonated fine cellulose fibers used for measurement.
Electrical conductivity was measured using a water quality meter connected to the electrical conductivity electrode described above. The reliability of the electrical conductivity value was confirmed using an electrical conductivity standard solution (12.9 mS/cm, manufactured by HORIBA) in the same manner as described above.
 具体的には以下のような操作により、スルホ基導入量を測定した。
 200mLガラスビーカーにイオン交換樹脂を分離した0.2質量%スルホン化微細セルロース繊維含有スラリー75gを準備し、400rpmで撹拌しながら電気伝導度電極を浸した。電気伝導度の数値が安定後、マイクロピペットを用いて0.1M水酸化ナトリウム水溶液または1.0M水酸化ナトリウム水溶液を10~50μLの範囲で任意に滴下した。滴下開始時はスラリーが酸性であり、スルホ基のプロトンと水酸化ナトリウムの中和されることによってスラリーが塩基性へシフトする。中性に達した点が変曲点であり、変曲点までに添加した水酸化ナトリウム量を求めた。
 その後、変曲点までに添加した水酸化ナトリウム量(mmol)を、測定に用いたスルホン化微細セルロース繊維含有スラリーの固形分質量である0.150gで除することにより、スルホ基量(mmol/g)を求めた。
Specifically, the amount of sulfo group introduced was measured by the following operation.
In a 200 mL glass beaker, 75 g of a slurry containing 0.2 mass % sulfonated fine cellulose fibers separated from the ion exchange resin was prepared, and an electrical conductivity electrode was immersed in the slurry while stirring at 400 rpm. After the electrical conductivity was stabilized, 10 to 50 μL of 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution was added dropwise using a micropipette. At the start of dropping, the slurry is acidic, and the protons of the sulfo group and sodium hydroxide are neutralized to shift the slurry to basic. The point at which the solution became neutral was the inflection point, and the amount of sodium hydroxide added up to the inflection point was determined.
After that, the amount of sodium hydroxide (mmol) added up to the inflection point was divided by 0.150 g, which is the solid mass of the slurry containing sulfonated fine cellulose fibers used for measurement, to obtain the amount of sulfo groups (mmol/ g) was obtained.
 例として、スルホ基量は、後述する方法で得られる試料α-2の電気伝導度測定(図2に示す)から、以下のように算出される。なお、図2には、グラフの変曲点箇所を破線で示す。
 変曲点までに添加した水酸化ナトリウム量:0.15mmol
 測定サンプル中のセルロース固形分質量:0.150g
 スルホ基量:1.00mmol/g
As an example, the amount of sulfo groups is calculated as follows from the electrical conductivity measurement (shown in FIG. 2) of sample α-2 obtained by the method described below. In FIG. 2, the inflection points of the graph are indicated by dashed lines.
Amount of sodium hydroxide added up to the inflection point: 0.15 mmol
Cellulose solid content mass in measurement sample: 0.150 g
Amount of sulfo group: 1.00 mmol/g
(スルホン化微細セルロース繊維分散液の全光線透過率およびヘイズ値の測定)
 スルホン化微細セルロース繊維分散液の透明性評価として、ヘーズメーターを用いて全光線透過率およびヘイズ値を測定した。
 純水で0.5質量%に希釈混合したスルホン化微細セルロース繊維分散液を所定量分取し、この分取した測定溶液を分光ヘーズメーター(日本電色工業社製、型番;SH-7000、Ver2.00.02)にセットして、全光線透過率およびヘイズ値を以下のとおり測定した。なお、測定方法は、JIS K 7105の方法に準拠して行った。
(Measurement of total light transmittance and haze value of sulfonated fine cellulose fiber dispersion)
To evaluate the transparency of the sulfonated fine cellulose fiber dispersion, the total light transmittance and haze value were measured using a haze meter.
A predetermined amount of the sulfonated fine cellulose fiber dispersion diluted and mixed with pure water to 0.5% by mass was collected, and the measured solution thus collected was measured using a spectroscopic haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number: SH-7000, Ver 2.00.02), and the total light transmittance and haze value were measured as follows. In addition, the measuring method was performed based on the method of JISK7105.
 純水を入れた上記分光ヘーズメーターのオプションのガラスセル(部品番号:2277、角セル、光路長10mm×幅40×高さ55)をブランク測定値とし、測定溶液の光透過度を測定した。光源はD65とし、視野は10°とし、測定波長の範囲は、380~780nmとした。
 全光線透過率(%)およびヘイズ値(%)の算出は、分光ヘーズメーターのコントロールユニット(型番CUII、Ver2.00.02)により得られた数値とした。
An optional glass cell (part number: 2277, square cell, optical path length 10 mm×width 40×height 55) of the spectroscopic haze meter filled with pure water was used as a blank measurement value, and the light transmittance of the measurement solution was measured. The light source was D65, the field of view was 10°, and the measurement wavelength range was 380 to 780 nm.
The total light transmittance (%) and the haze value (%) were calculated using the numerical values obtained from the control unit of the spectroscopic haze meter (model number CUII, Ver2.00.02).
(スルホン化微細セルロース繊維分散液のB型粘度測定)
 1.0質量%のスルホン化微細セルロース繊維分散液または純水で0.5質量%に希釈混合したスルホン化微細セルロース繊維分散液をスクリュー管(SANYO製、型番;84-0741/No.8)にいれて、24時間静置後に行った。
 B型粘度計(ブルックフィールド社製、型番;DV2T(RV型)、スピンドルNo.6)を用いて、測定を行った。
(B-type viscosity measurement of sulfonated fine cellulose fiber dispersion)
A 1.0% by mass sulfonated fine cellulose fiber dispersion or a 0.5% by mass diluted sulfonated fine cellulose fiber dispersion with pure water was added to a screw tube (manufactured by SANYO, model number: 84-0741/No. 8). It was placed in a container and allowed to stand for 24 hours.
Measurement was performed using a Brookfield viscometer (manufactured by Brookfield, model number: DV2T (RV type), spindle No. 6).
 粘度測定の条件等を以下に示す。
 B型粘度計は、英弘精機社製(型番;DV2T)を使用した。
 測定条件:回転数6rpm、測定温度20℃、測定時間3分、スピンドルはNo.6、データの記録方法はシングルポイント
 シングルポイントとは、本実験に用いたB型粘度計における測定終了時の値のみを取得する記録方法の設定項目である。つまり、測定開始時から3分経過時の瞬間値を記録している。
The conditions and the like for viscosity measurement are shown below.
The B-type viscometer used was manufactured by Eiko Seiki Co., Ltd. (model number: DV2T).
Measurement conditions: rotation speed 6 rpm, measurement temperature 20° C., measurement time 3 minutes, spindle No. 6. Single point data recording method Single point is a recording method setting item that acquires only the value at the end of the measurement in the Brookfield viscometer used in this experiment. In other words, the instantaneous value after 3 minutes from the start of measurement is recorded.
(スルホン化微細セルロース繊維分散液のスプレー性試験)
 スプレー性試験は、後述する実験3に記載の試験方法で評価した。
(Sprayability test of sulfonated fine cellulose fiber dispersion)
The sprayability test was evaluated by the test method described in Experiment 3 below.
<試料α-2>
 試料α-2は、スルファミン酸(g)/尿素(g)=70/35の条件で調製した反応液を用いたこと以外、α-1と同様にスルホン化微細セルロース繊維分散液を調製し、評価を行った。
<Sample α-2>
For sample α-2, a sulfonated fine cellulose fiber dispersion was prepared in the same manner as α-1, except that a reaction solution prepared under the conditions of sulfamic acid (g)/urea (g) = 70/35 was used. made an evaluation.
<試料α-3> <Sample α-3>
(繊維原料)
 繊維原料として、丸住製紙製の針葉樹クラフトパルプ(NBKP)シート(平均繊維長が2.6mm)を105℃で乾燥し、水分率10%に調整したものを使用した。以下、実験に使用した繊維原料を単にパルプという。
(fiber raw material)
As a fiber raw material, a softwood kraft pulp (NBKP) sheet (average fiber length: 2.6 mm) manufactured by Marusumi Paper Co., Ltd. was dried at 105° C. and adjusted to a moisture content of 10%. Hereinafter, the fiber raw material used in the experiment is simply referred to as pulp.
(化学処理工程)
 実験では、以下の化学処理工程を行うことにより繊維原料中のセルロースの水酸基をアニオン性の官能基で置換した化学変性パルプを得た。
 実験では、試料α-1と同様にアニオン性の官能基としてスルホ基を用いた。
(Chemical treatment process)
In the experiment, a chemically modified pulp in which the hydroxyl groups of cellulose in the fiber raw material were substituted with anionic functional groups was obtained by performing the following chemical treatment steps.
In the experiment, a sulfo group was used as an anionic functional group as in sample α-1.
(反応液の調製)
 反応液は、以下のように調製した。
 スルファミン酸(純度98.5%、扶桑化学工業製)と、尿素(純度99%、和光純薬工業製、型番;特級試薬)と、を混合して反応液を調製した。
(Preparation of reaction solution)
A reaction solution was prepared as follows.
A reaction solution was prepared by mixing sulfamic acid (purity 98.5%, manufactured by Fuso Chemical Industries, Ltd.) and urea (purity 99%, manufactured by Wako Pure Chemical Industries, model number; special grade reagent).
 反応液の調製方法の一例を以下に示す。
 両者の混合比は、濃度比(g/L)において、1:1.4なるように混合した。
 例えば、1Lビーカーにスルファミン酸100g、尿素144g、純水366mlを加え、スルファミン酸と尿素が、スルファミン酸/尿素比((g/L)/(g/L))=273/393の反応液を調製した。この反応液には、尿素が、スルファミン酸100質量部に対して144質量部となるように混合されている。
An example of the method for preparing the reaction solution is shown below.
Both were mixed so that the concentration ratio (g/L) was 1:1.4.
For example, 100 g of sulfamic acid, 144 g of urea, and 366 ml of pure water are added to a 1 L beaker, and the sulfamic acid and urea create a reaction solution with a sulfamic acid/urea ratio ((g/L)/(g/L))=273/393. prepared. This reaction solution contains 144 parts by mass of urea per 100 parts by mass of sulfamic acid.
(反応液とパルプの接触方法)
 調製した反応液に対してパルプを加えて、スラリーを調製した。このスラリーは、パルプ(固形分質量)と反応液との比率が、パルプ:薬品=1:1.2となるように調製した。
 例えば、スルファミン酸/尿素比((g/L)/(g/L))が273/393の反応液の場合、パルプ1.0gに対して、反応液を3.0g加えて、反応液をパルプに含浸させた。このとき、パルプに反応液を均一に含浸させるために、調製したスラリーを30分間手でもみほぐした。30分後、反応液を含浸させたパルプを水滴が落ちなくなるまで吸引ろ過して、反応液が含浸したパルプ(反応液含浸パルプ)を調製した。
(Method of Contacting Reaction Liquid with Pulp)
Pulp was added to the prepared reaction solution to prepare a slurry. This slurry was prepared so that the ratio of pulp (solid content mass) to reaction liquid was pulp:chemical=1:1.2.
For example, in the case of a reaction liquid having a sulfamic acid/urea ratio ((g/L)/(g/L)) of 273/393, 3.0 g of the reaction liquid is added to 1.0 g of pulp to The pulp was impregnated. At this time, in order to uniformly impregnate the pulp with the reaction solution, the prepared slurry was kneaded by hand for 30 minutes. After 30 minutes, the pulp impregnated with the reaction liquid was suction-filtered until no more water droplets fell, to prepare pulp impregnated with the reaction liquid (reaction liquid-impregnated pulp).
(乾燥工程)
 ついで、吸引ろ過後の反応液含浸パルプを乾燥機(いすゞ製作所製、型番;VTR-115、105℃)を用いて乾燥した。乾燥は、パルプの水分率が平衡状態になるまで行った。乾燥後の反応液含浸パルプの水分率は、5%以下であった。水分率の測定は、試料α-1と同様に行った。
(Drying process)
Then, the reaction solution-impregnated pulp after suction filtration was dried using a dryer (manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115, 105° C.). Drying was carried out until the moisture content of the pulp reached equilibrium. The moisture content of the reaction liquid-impregnated pulp after drying was 5% or less. The moisture content was measured in the same manner as for sample α-1.
 上記の反応液含浸パルプを乾燥させる工程が、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における乾燥工程に相当する。 The step of drying the reaction liquid-impregnated pulp corresponds to the drying step in the chemical treatment step of the method for producing sulfonated fine cellulose fibers of the present embodiment.
(加熱反応)
 つぎに、調製した反応液含浸パルプを次工程の加熱反応の工程に供して加熱反応を行いスルホン化パルプを調製した。
(heating reaction)
Next, the prepared reaction solution-impregnated pulp was subjected to the next heating reaction step to carry out a heating reaction to prepare a sulfonated pulp.
 反応条件は以下のとおりとした。
 加熱反応には、乾燥機(いすゞ製作所製、型番;VTR―115)を用いた。
 恒温槽の温度:140℃、加熱時間:30分
The reaction conditions were as follows.
A dryer (manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115) was used for the heating reaction.
Thermostatic bath temperature: 140°C, heating time: 30 minutes
 加熱反応後、試料α-1と同様に中和処理して、スルホン化パルプ(スルファミン酸/尿素処理パルプ)を調製した。 After the heat reaction, neutralization was performed in the same manner as sample α-1 to prepare sulfonated pulp (sulfamic acid/urea treated pulp).
 (スルホン化パルプの固形分濃度測定)
 水分を含んだ状態のスルホン化パルプの固形分濃度(質量%)は、試料α-1と同様に測定した。
(Measurement of solid content concentration of sulfonated pulp)
The solid content concentration (% by mass) of the sulfonated pulp containing moisture was measured in the same manner as for sample α-1.
(微細化処理工程)
 つぎに、化学処理工程により調製したスルホン化パルプを次工程の微細化処理工程に供し、スルホン化微細セルロース繊維を調製した。
(Miniaturization process)
Next, the sulfonated pulp prepared by the chemical treatment step was subjected to the next micronization step to prepare sulfonated fine cellulose fibers.
 微細化処理工程では、試料α-1と同様にスルホン化パルプと純水とを混合してパルプスラリーを調製した後、試料α-1と同様に高圧ホモジナイザー(株式会社コスにじゅういち社製ホモゲナイザー、型番;N2000-2C-045型)を用いて微細化処理を行い、スルホン化微細セルロース繊維分散液を調製した。 In the micronization step, sulfonated pulp and pure water were mixed in the same manner as in sample α-1 to prepare a pulp slurry, and then, in the same manner as in sample α-1, a high-pressure homogenizer (a homogenizer manufactured by Kosunijuuichi Co., Ltd., model number ;N2000-2C-045 type) to prepare a sulfonated fine cellulose fiber dispersion.
 微細化処理の条件を以下に示す。
  処理条件:設定圧力10MPaで2回
  設定圧力50MPaで1回
  設定圧力60MPaで5回
The conditions for the refinement process are shown below.
Treatment conditions: 2 times at a set pressure of 10 MPa, 1 time at a set pressure of 50 MPa, 5 times at a set pressure of 60 MPa
 なお、スルホン化微細セルロース繊維分散液中のスルホン化微細セルロース繊維の硫黄導入量は、1.4mmol/gであった。 The amount of sulfur introduced into the sulfonated fine cellulose fibers in the sulfonated fine cellulose fiber dispersion was 1.4 mmol/g.
 調製したスルホン化微細セルロース繊維分散液の各物性は、以下の測定方法で評価した。 The physical properties of the prepared sulfonated fine cellulose fiber dispersion were evaluated by the following measurement methods.
(電気伝導度測定による硫黄導入量の測定)
 スルホン化微細セルロース繊維のスルホ基に起因する硫黄導入量は、試料α-1と同様に行った。
(Measurement of sulfur introduction amount by electrical conductivity measurement)
The amount of sulfur introduced due to the sulfo groups in the sulfonated fine cellulose fibers was determined in the same manner as in sample α-1.
(SPMを用いた繊維形態の観察および繊維幅の測定)
 スルホン化微細セルロース繊維の観察を電子顕微鏡を用いて行った。
 スルホン化微細セルロース繊維を純水で固形分濃度0.001~0.005質量%に調製し、PEI(ポリエチレンイミン)をコーティングしたシリカ基盤上にスピンコート法より薄膜を作製した。微細セルロース繊維の観察は、走査型プローブ顕微鏡(島津製作所製、型番;SPM―9700)を用いて行った。
 繊維幅および繊維長の測定は、観察画像中の繊維をランダムに20本選び測定した。
平均繊維幅は、30nm以下であった。
 なお、他の微細セルロース繊維についても同様の方法で平均繊維幅を算出できる。
(Observation of fiber morphology and measurement of fiber width using SPM)
Observation of the sulfonated fine cellulose fibers was performed using an electron microscope.
A sulfonated fine cellulose fiber was prepared with pure water to a solid content concentration of 0.001 to 0.005% by mass, and a thin film was formed on a silica substrate coated with PEI (polyethyleneimine) by spin coating. Observation of the fine cellulose fibers was performed using a scanning probe microscope (manufactured by Shimadzu Corporation, model number: SPM-9700).
The fiber width and fiber length were measured by randomly selecting 20 fibers in the observed image.
The average fiber width was 30 nm or less.
The average fiber width of other fine cellulose fibers can be calculated in the same manner.
 その他、試料α-3のスルホン化微細セルロース繊維分散液の全光線透過率およびヘイズ値の測定、B型粘度測定、スプレー性試験は、試料α-1と同様に行った。 In addition, the measurement of the total light transmittance and haze value of the sulfonated fine cellulose fiber dispersion of sample α-3, the B-type viscosity measurement, and the sprayability test were performed in the same manner as for sample α-1.
<TEMPO酸化微細セルロース繊維分散液の調製>
 つぎに、アニオン性微細セルロース繊維の官能基として、カルボキシル基を導入したTEMPO酸化微細セルロース繊維が含有したTEMPO酸化微細セルロース繊維分散液(試料β-1、β-2、β-3)を以下のとおり調製した。
<Preparation of TEMPO oxidized fine cellulose fiber dispersion>
Next, TEMPO-oxidized fine cellulose fiber dispersions (samples β-1, β-2, β-3) containing TEMPO-oxidized fine cellulose fibers into which carboxyl groups were introduced as functional groups of the anionic fine cellulose fibers were prepared as follows. Prepared as follows.
<試料β-1> <Sample β-1>
 繊維原料として試料α-1で示した固形分濃度25.0質量%に調整した湿潤パルプを実験に供した。
 2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと記載する)と臭化物を触媒として、次亜塩素酸塩存在下でパルプにカルボキシル基を導入した。
A wet pulp adjusted to a solid content concentration of 25.0% by mass shown in sample α-1 was used for the experiment as a fiber raw material.
Carboxyl groups were introduced into pulp in the presence of hypochlorite using 2,2,6,6-tetramethyl-1-piperidine-oxy radical (hereinafter referred to as TEMPO) and bromide as catalysts.
 具体的には、1Lビーカーに純水500mLへTEMPO(AlfaAesar社製、型番(純度);free radical, 98+%)8mgと臭化ナトリウム(富士フィルム和光純薬社製、型番;特級試薬)102.8mgを添加し触媒溶液を調製した。
 調製した触媒溶液に湿潤パルプ20g(固形分質量5g)を加え均一になるまで撹拌し、触媒成分が入ったパルプスラリーを調製した。
Specifically, 8 mg of TEMPO (manufactured by Alfa Aesar, model number (purity); free radical, 98+%) and sodium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) were added to 500 mL of pure water in a 1 L beaker. 8 mg was added to prepare a catalyst solution.
20 g of wet pulp (5 g of solid mass) was added to the prepared catalyst solution and stirred until uniform to prepare a pulp slurry containing a catalyst component.
 調製したパルプスラリーに有効塩素濃度11%次亜塩素酸ナトリウム水溶液(フィルム和光純薬社製、型番;化学用)を6.8mL添加した後、1.0M塩酸(フィルム和光純薬工業社製、型番(純度);特級試薬(5.0+%))を添加しpH10.5に調整し、酸化反応を開始した。
 酸化反応中は、pHが経時的に低下していくが、1.0M水酸化ナトリウム水溶液(富士フィルム和光純薬工業社製、型番;容量分析用)を適時添加することにより、pHを10.5に保持した。
After adding 6.8 mL of an aqueous solution of sodium hypochlorite with an effective chlorine concentration of 11% (manufactured by Film Wako Pure Chemical Industries, model number; for chemical use) to the prepared pulp slurry, 1.0 M hydrochloric acid (manufactured by Film Wako Pure Chemical Industries, Ltd., Model number (purity); guaranteed reagent (5.0+%)) was added to adjust the pH to 10.5, and the oxidation reaction was initiated.
During the oxidation reaction, the pH decreased with time, but the pH was adjusted to 10.0 by adding a 1.0 M sodium hydroxide aqueous solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; for volumetric analysis). held at 5.
 なお、次亜塩素酸ナトリウム水溶液の有効塩素濃度は、化学実験法として一般的に知られているでんぷんを指示薬としたヨウ化カリウム/硫酸/チオ硫酸ナトリウムによる滴定により確認した。 The effective chlorine concentration of the sodium hypochlorite aqueous solution was confirmed by titration with potassium iodide/sulfuric acid/sodium thiosulfate using starch as an indicator, which is generally known as a chemical experiment method.
 酸化反応開始から2時間後、エタノール(和光純薬工業社製、型番;一級試薬)を添加し反応を停止させた後、純水を用いて目開き46μmのステンレスふるい(300メッシュ)上で洗浄しTEMPO酸化パルプを得た。
 なお、洗浄度合いはパルプ濾水液の電気伝導度が60μS/cm以下になっていることを確認することにより行った。電気伝導度測定には試料α-1と同様の水質計を用いた。
After 2 hours from the start of the oxidation reaction, ethanol (manufactured by Wako Pure Chemical Industries, Ltd., model number; first grade reagent) was added to stop the reaction, and then washed with pure water on a stainless steel sieve (300 mesh) with an opening of 46 μm. TEMPO oxidized pulp was obtained.
The degree of washing was determined by confirming that the electric conductivity of the pulp filtrate was 60 μS/cm or less. A water quality meter similar to that for sample α-1 was used to measure electrical conductivity.
 調製したTEMPO酸化パルプは、試料α-1と同様の条件で微細化処理を行い、1.0質量%TEMPO酸化微細セルロース繊維分散液(試料β-1)を調製した。 The prepared TEMPO-oxidized pulp was subjected to refining treatment under the same conditions as for sample α-1 to prepare a 1.0% by mass TEMPO-oxidized fine cellulose fiber dispersion (sample β-1).
 試料β-1を用いて、カルボキシル基導入量の測定(後述)、全光線透過率、ヘイズ値、B型粘度、スプレー性試験の測定を行った。測定条件や装置は試料α-1と同様に行った。 Using sample β-1, the amount of carboxyl groups introduced (described later), the total light transmittance, the haze value, the B-type viscosity, and the sprayability test were measured. The measurement conditions and equipment were the same as those for sample α-1.
(電気伝導度測定によるカルボキシル基導入量の測定)
 TEMPO酸化により導入されたカルボキシル基導入量は、調製された0.3質量%TEMPO酸化微細セルロース繊維スラリーに塩酸を添加しpHを酸性に調整した後、水酸化ナトリウム水溶液による電気伝導度滴定によって測定した。
(Measurement of carboxyl group introduction amount by electrical conductivity measurement)
The amount of carboxyl groups introduced by TEMPO oxidation was measured by conducting conductivity titration with an aqueous sodium hydroxide solution after adding hydrochloric acid to the prepared 0.3% by mass TEMPO-oxidized fine cellulose fiber slurry to adjust the pH to acidic. did.
 アルカリを用いた滴定では、塩酸によるスラリーの酸性化後のTEMPO酸化微細セルロース繊維含有スラリーに、0.1M水酸化ナトリウム水溶液または1.0M水酸化ナトリウム水溶液(どちらも富士フィルム和光純薬社製、型番;容量分析用 for Volumetric Analysis)を10μL~50μLずつ加えながら、電気伝導度の値の変化を計測し、縦軸に電気伝導度、横軸に水酸化ナトリウム滴定量としてプロットし曲線を得て、得られた曲線から変曲点を確認した。 In the titration using alkali, the slurry containing TEMPO oxidized fine cellulose fibers after acidification of the slurry with hydrochloric acid was added with a 0.1 M sodium hydroxide aqueous solution or a 1.0 M sodium hydroxide aqueous solution (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., While adding 10 μL to 50 μL of model number for volumetric analysis), measure the change in the electrical conductivity value, plot the electrical conductivity on the vertical axis and the titration amount of sodium hydroxide on the horizontal axis to obtain a curve. , the inflection point was confirmed from the obtained curve.
 電気伝導度は、試料α-1と同様の装置を用いて測定した。
 図3のように得られた滴定曲線を用いて、水酸化ナトリウム水溶液滴下開始から等間隔の電気伝導度の低下が見られなくなる点(A点)から、等間隔に電気伝導度が増加し始める点(B点)までに用いた水酸化ナトリウム滴定量がカルボキシル基量に相当する(図3中にAとBを記載し、水酸化ナトリウム量を破線で示した)。このため、この範囲の水酸化ナトリウム量を測定に供したTEMPO酸化微細セルロース繊維含固形分量で除することで、TEMPO酸化微細セルロース繊維中のカルボキシル基導入量を測定した。
The electrical conductivity was measured using the same device as for sample α-1.
Using the titration curve obtained as shown in FIG. 3, from the point (point A) where the decrease in the electric conductivity at equal intervals from the start of dropping the sodium hydroxide aqueous solution is no longer observed, the electric conductivity starts to increase at equal intervals. The titration amount of sodium hydroxide used up to the point (point B) corresponds to the amount of carboxyl groups (A and B are indicated in FIG. 3, and the amount of sodium hydroxide is indicated by a dashed line). Therefore, the amount of carboxyl groups introduced into the oxidized TEMPO fine cellulose fibers was measured by dividing the amount of sodium hydroxide in this range by the amount of solids contained in the oxidized TEMPO fine cellulose fibers used for measurement.
 具体的には以下のような操作により、カルボキシル基導入量を測定した。
 200mLガラスビーカーに0.3質量%TEMPO酸化微細セルロース繊維含有スラリー72.3gを準備し、1M塩酸(富士フィルム和光純薬社製、型番;特級試薬)を300~400μL添加し、純水を添加して全量を140gに調整した。この溶液を1時間撹拌後、400rpmで撹拌しながら電気伝導度電極を浸した。電気伝導度の数値が安定後、マイクロピペットを用いて0.1M水酸化ナトリウム水溶液または1.0M水酸化ナトリウム水溶液を10~50μLの範囲で任意に滴下した。滴下開始時はスラリーが酸性であり、カルボキシル基のプロトンと水酸化ナトリウムの中和されることによってスラリーが塩基性へシフトする。
 その後、A点からB点までに用いた水酸化ナトリウム量(mmol)を、測定に用いたTEMPO酸化微細セルロース繊維含有スラリーの固形分質量である0.217gで除することにより、カルボキシル基量(mmol/g)を求めた。
Specifically, the amount of carboxyl group introduced was measured by the following operation.
Prepare 72.3 g of slurry containing 0.3% by mass TEMPO oxidized fine cellulose fibers in a 200 mL glass beaker, add 300 to 400 μL of 1 M hydrochloric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent), and add pure water. and adjusted the total amount to 140 g. After stirring this solution for 1 hour, the conductivity electrode was immersed while stirring at 400 rpm. After the electrical conductivity was stabilized, 10 to 50 μL of 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution was added dropwise using a micropipette. At the start of dropping, the slurry is acidic, and the protons of the carboxyl group and sodium hydroxide are neutralized to shift the slurry to basic.
After that, the amount of sodium hydroxide (mmol) used from point A to point B was divided by 0.217 g, which is the solid content mass of the slurry containing TEMPO oxidized fine cellulose fibers used for measurement, to obtain the amount of carboxyl groups ( mmol/g) was obtained.
 例として、カルボキシル基量は、後述する方法で得られる試料β-3の電気伝導度測定(図3に示す)から、以下のように計算される。
 A点からB点までに用いた水酸化ナトリウム量:0.34mmol
 測定サンプル中のセルロース固形分質量:0.217g
 カルボキシル基量:1.56mol/g
As an example, the amount of carboxyl groups is calculated as follows from the electrical conductivity measurement (shown in FIG. 3) of sample β-3 obtained by the method described below.
Amount of sodium hydroxide used from point A to point B: 0.34 mmol
Cellulose solid content mass in measurement sample: 0.217 g
Carboxyl group amount: 1.56 mol / g
<試料β-2>
 試料β-2は、TEMPO23.2(mg)、臭化ナトリウム514mg、次亜塩素酸ナトリウム34mLの条件で調製した反応液を用いたこと以外、試料β-1と同様の調製し、評価を行った。
<Sample β-2>
Sample β-2 was prepared and evaluated in the same manner as sample β-1, except that a reaction solution prepared under the conditions of TEMPO 23.2 (mg), sodium bromide 514 mg, and sodium hypochlorite 34 mL was used. rice field.
<試料β-3>
 試料β-3は、TEMPO156mg、臭化ナトリウム514mg、次亜塩素酸ナトリウム34mLの条件で調製した反応液を用いたこと以外、試料β-1と同様の調製し、評価を行った。
<Sample β-3>
Sample β-3 was prepared and evaluated in the same manner as sample β-1, except that a reaction solution prepared under the conditions of 156 mg of TEMPO, 514 mg of sodium bromide, and 34 mL of sodium hypochlorite was used.
<リン酸化微細セルロース繊維分散液の調製>
 つぎに、アニオン性微細セルロース繊維の官能基として、リン酸基を導入したリン酸化微細セルロース繊維が含有したリン酸化微細セルロース繊維分散液(試料γ-1、γ-2、γ-3)を以下のとおり調製した。
<Preparation of phosphorylated fine cellulose fiber dispersion>
Next, phosphorylated fine cellulose fiber dispersions (Samples γ-1, γ-2, γ-3) containing phosphorylated fine cellulose fibers into which phosphoric acid groups were introduced as functional groups of the anionic fine cellulose fibers were prepared as follows. Prepared as follows.
<試料γ-1>
 繊維原料として、試料α-1で示した固形分濃度25.0質量%に調整した湿潤パルプを実験に供した。
 リン酸二水素アンモニウムと尿素を用いてパルプにリン酸基を導入した。
<Sample γ-1>
As a fiber raw material, wet pulp adjusted to a solid content concentration of 25.0% by mass shown in sample α-1 was used in the experiment.
Phosphate groups were introduced into the pulp using ammonium dihydrogen phosphate and urea.
 具体的には、300mLビーカーに純水70mLを入れ、リン酸二水素アンモニウム(富士フィルム和光純薬社製、型番;特級試薬)と尿素(純度99.0%、富士フィルム和光純薬社製、型番;特級試薬)をリン酸二水素アンモニウム(g)/尿素(g)=5.6/15.0の比率で添加した。リン酸二水素アンモニウムと尿素は室温で完全に溶解するまで撹拌し、反応液を調整した。 Specifically, 70 mL of pure water is placed in a 300 mL beaker, ammonium dihydrogen phosphate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) and urea (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) was added at a ratio of ammonium dihydrogen phosphate (g)/urea (g)=5.6/15.0. Ammonium dihydrogen phosphate and urea were stirred at room temperature until completely dissolved to prepare a reaction solution.
(反応液とパルプの接触方法)
 調製した反応液に湿潤パルプを40g添加し、約10分含浸させた。
(Method of Contacting Reaction Liquid with Pulp)
40 g of wet pulp was added to the prepared reaction liquid and impregnated for about 10 minutes.
 反応液を含浸させたパルプを容器から取り出し、試料α-1と同様に乾燥させて反応液含浸パルプを調製した。 The pulp impregnated with the reaction liquid was taken out from the container and dried in the same manner as sample α-1 to prepare the reaction liquid-impregnated pulp.
(加熱反応)
 つぎに、調製した反応液含浸パルプを反応工程に供し、加熱反応を行いリン酸化パルプを調製した。
 なお、供した反応液含浸パルプの水分率は、5%以下であった。
(heating reaction)
Next, the prepared reaction solution-impregnated pulp was subjected to a reaction step, and subjected to a heating reaction to prepare a phosphorylated pulp.
The moisture content of the supplied reaction liquid-impregnated pulp was 5% or less.
 反応条件は以下のとおりとした。
 加熱には、乾燥機(試料α-1と同様)を用いた
 乾燥機の恒温槽の温度:140℃、加熱時間:11分
The reaction conditions were as follows.
A dryer (same as sample α-1) was used for heating Temperature of constant temperature bath of dryer: 140°C Heating time: 11 minutes
 加熱反応後、試料α-1と同様に中和処理して、リン酸化パルプを調製した。 After the heat reaction, neutralization was performed in the same manner as sample α-1 to prepare phosphorylated pulp.
 つぎに、化学処理工程により調製したリン酸化パルプを次工程の微細化処理工程に供した。調製したリン酸化パルプを試料α-1と同様の条件で微細化処理を行い、1.0質量%のリン酸化微細セルロース繊維分散液(γ-1)を調製した。
 試料γ-1を用いて、リン酸基導入量の測定(後述)、全光線透過率、ヘイズ値、B型粘度、スプレー性試験の測定を行った。測定条件や装置は試料α-1と同様で行った。
Next, the phosphorylated pulp prepared by the chemical treatment step was subjected to the next step of pulverization treatment. The prepared phosphorylated pulp was subjected to refining treatment under the same conditions as for sample α-1 to prepare a 1.0% by mass phosphorylated fine cellulose fiber dispersion (γ-1).
Using the sample γ-1, the amount of phosphate group introduced (described later), the total light transmittance, the haze value, the B-type viscosity, and the sprayability test were measured. The measurement conditions and equipment were the same as those for sample α-1.
(電気伝導度測定によるリン酸基導入量の測定)
 リン酸基に起因するリン酸基導入量は、調製されたリン酸化微細セルロース繊維をイオン交換樹脂で処理した後、水酸化ナトリウム水溶液による滴定によって測定した。
 イオン交換樹脂による処理では、0.2質量%に調製したリン酸化微細セルロース繊維含有スラリー100gに強酸性イオン交換樹脂(オルガノ株式会社製、アンバージェット1024;コンディショニング済)を加え、1時間撹拌処理を行った。その後、目開き200μmのメッシュ上に注ぎ、樹脂とスラリーを分離した。
(Measurement of phosphate group introduction amount by electrical conductivity measurement)
The amount of phosphate groups introduced due to phosphate groups was measured by titration with an aqueous sodium hydroxide solution after treating the prepared phosphorylated fine cellulose fibers with an ion-exchange resin.
In the ion-exchange resin treatment, a strongly acidic ion-exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned) was added to 100 g of a slurry containing phosphorylated fine cellulose fibers adjusted to 0.2% by mass, and the mixture was stirred for 1 hour. gone. After that, it was poured onto a mesh with an opening of 200 μm to separate the resin and the slurry.
 アルカリを用いた滴定では、イオン交換樹脂による処理後のリン酸化微細セルロース繊維含有スラリーに、0.1M水酸化ナトリウム水溶液または1.0M水酸化ナトリウム水溶液(どちらも富士フィルム和光純薬社製、型番;容量分析用)を10μL~50μLずつ加えながら、電気伝導度の値の変化を計測し、縦軸に電気伝導度、横軸に水酸化ナトリウム滴定量としてプロットし曲線を得て、得られた曲線から変曲点を確認した。
 電気伝導度は、試料α-1と同様の装置を用いて測定した。
 得られた変曲点での水酸化ナトリウム滴定量がリン酸基量に相当する。このため、この変曲点の水酸化ナトリウム量を測定に供したリン酸化微細セルロース繊維含固形分量で除することで、リン酸化微細セルロース繊維中のリン酸基導入量を測定した。
 なお、リン酸基は2価のアニオン性官能基である(スルホ基は1価のアニオン性官能基)。そのため、変曲点は2点存在する。本明細書におけるリン酸基導入量とは、第2変曲点までに要した量を示す。
In the titration using alkali, 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number ; for volumetric analysis) was added in increments of 10 μL to 50 μL, the change in the electrical conductivity value was measured, and the electrical conductivity was plotted on the vertical axis and the sodium hydroxide titration amount on the horizontal axis to obtain a curve. An inflection point was confirmed from the curve.
The electrical conductivity was measured using the same device as for sample α-1.
The titration amount of sodium hydroxide at the obtained inflection point corresponds to the amount of phosphate groups. Therefore, the amount of phosphate groups introduced into the phosphorylated fine cellulose fibers was measured by dividing the amount of sodium hydroxide at this inflection point by the amount of solids contained in the phosphorylated fine cellulose fibers used for measurement.
A phosphate group is a divalent anionic functional group (a sulfo group is a monovalent anionic functional group). Therefore, there are two points of inflection. The amount of phosphate group introduced herein means the amount required up to the second inflection point.
 具体的には以下のような操作により、リン酸基導入量を測定した。
 200mLガラスビーカーにイオン交換樹脂を分離した0.2質量%リン酸化微細セルロース繊維含有スラリー93.2gを準備し、400rpmで撹拌しながら電気伝導度電極を浸した。電気伝導度の数値が安定後、マイクロピペットを用いて0.1M水酸化ナトリウム水溶液または1.0M水酸化ナトリウム水溶液を10~50μLの範囲で任意に滴下した。滴下開始時はスラリーが酸性であり、リン酸基のプロトンと水酸化ナトリウムが中和されることによってスラリーが塩基性へシフトする。図4のように、リン酸基に存在する2つのプロトンのうち1つ目が中性に達した点が第1変曲点であり、さらに水酸化ナトリウムを添加していくことによって第2変曲点が表れる。
 その後、第1変曲点までに添加した水酸化ナトリウム量(mmol)を、測定に用いたリン酸化微細セルロース繊維含有スラリーの固形分質量である0.183gで除することにより、リン酸基量(mmol/g)を求めた。
Specifically, the amount of phosphate group introduced was measured by the following operation.
In a 200 mL glass beaker, 93.2 g of a slurry containing 0.2 mass % phosphorylated fine cellulose fibers separated from the ion exchange resin was prepared, and an electrical conductivity electrode was immersed in the slurry while stirring at 400 rpm. After the electrical conductivity was stabilized, 10 to 50 μL of 0.1 M sodium hydroxide aqueous solution or 1.0 M sodium hydroxide aqueous solution was added dropwise using a micropipette. At the start of dropping, the slurry is acidic, and the protons of the phosphate group and sodium hydroxide are neutralized, thereby shifting the slurry to basic. As shown in FIG. 4, the point at which the first of the two protons present in the phosphate group reaches neutrality is the first inflection point, and the second inflection point is obtained by further adding sodium hydroxide. An inflection point appears.
After that, the amount of sodium hydroxide (mmol) added up to the first inflection point was divided by 0.183 g, which is the solid content mass of the phosphorylated fine cellulose fiber-containing slurry used for measurement, to obtain the amount of phosphate groups. (mmol/g) was obtained.
 例として、リン酸基量は、後述する方法で得られる試料γ-2の電気伝導度測定(図4に示す)から、下のように算出される。なお、図4のグラフ中へ、第1変曲点および第2変曲点の箇所に破線を記した。
 第1変曲点までに添加した水酸化ナトリウム量:0.23mmol
 第1変曲点から第2変曲点までに添加した水酸化ナトリウム量:0.23mmol
 測定サンプル中のセルロース固形分質量:0.183g
 リン酸基量:1.26mmol/g
As an example, the amount of phosphate groups is calculated as follows from electrical conductivity measurement (shown in FIG. 4) of sample γ-2 obtained by the method described later. In the graph of FIG. 4, dashed lines are drawn at the first inflection point and the second inflection point.
Amount of sodium hydroxide added up to the first inflection point: 0.23 mmol
Amount of sodium hydroxide added from the first inflection point to the second inflection point: 0.23 mmol
Cellulose solid content mass in measurement sample: 0.183 g
Phosphate group amount: 1.26 mmol / g
<試料γ-2>
 試料γ-2は反応工程における乾燥機の恒温槽の温度を140℃、加熱時間を30分の条件で反応させたパルプを用いたこと以外、試料γ-1と同様の調製し、評価を行った。
<Sample γ-2>
Sample γ-2 was prepared and evaluated in the same manner as sample γ-1, except that the pulp was reacted under the conditions that the temperature of the constant temperature bath of the dryer in the reaction process was 140 ° C. and the heating time was 30 minutes. rice field.
<試料γ-3>
 試料γ-3は、反応工程における乾燥機の恒温槽の温度を140℃、加熱時間を40分の条件で反応させたパルプを用いたこと以外、試料γ-1と同様の調製し、評価を行った。
<Sample γ-3>
Sample γ-3 was prepared and evaluated in the same manner as sample γ-1, except that the pulp was reacted under the conditions that the temperature of the constant temperature bath of the dryer in the reaction process was 140 ° C. and the heating time was 40 minutes. gone.
<試料δ>
 比較例として試料δを調製した。
 この試料δには、微細セルロース繊維の代わりにヒドロキシプロピルセルロース(HPC、富士フィルム和光純薬株式会社製、型番;1000~5000cP)を用いた。
 溶液の調製は次のように行った。
 全質量を100gとし、HPC0.5g~3.0gを電子天秤で測り取り、純水97.0~99.5g(20℃)を加え完全溶解するまで攪拌した。
 評価は次のように行った。
 0.5質量%で調製したHPC溶液を用いて試料α-1と同様に全光線透過率、ヘイズ値、B型粘度、スプレー性試験の測定を行った。1.0質量%~3.0質量%HPC溶液を用いて、試料α-1と同様にB型粘度、スプレー性試験の測定を行った。
<Sample δ>
A sample δ was prepared as a comparative example.
For this sample δ, hydroxypropyl cellulose (HPC, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number: 1000 to 5000 cP) was used instead of fine cellulose fibers.
Solutions were prepared as follows.
With a total mass of 100 g, 0.5 g to 3.0 g of HPC was weighed with an electronic balance, 97.0 to 99.5 g (20° C.) of pure water was added, and the mixture was stirred until completely dissolved.
Evaluation was performed as follows.
Using an HPC solution prepared at 0.5% by mass, the total light transmittance, haze value, B-type viscosity, and sprayability test were measured in the same manner as for sample α-1. Using 1.0% by mass to 3.0% by mass HPC solution, measurement of B-type viscosity and sprayability test was performed in the same manner as sample α-1.
(実験1の結果)
 図1に各試料の物性値を示す。
 図2、3、4に各アニオン変性微細セルロース繊維の電気伝導度滴定曲線の代表例をそれぞれ示す。
(Results of Experiment 1)
Figure 1 shows the physical properties of each sample.
Figures 2, 3, and 4 show typical examples of conductivity titration curves of the anion-modified fine cellulose fibers, respectively.
 図1には、微細セルロース繊維を含有する施用液体に用いるセルロース成分の特性分析を行った結果を示した。
 アニオン性官能基を導入し調製されるセルロース微細繊維分散液は、透明性や粘性に優れた効果が発揮されることが報告されている。まず、セルロース微細繊維分散液の透明性として、全光線透過率およびヘイズ値を測定した。セルロース微細繊維分散液の全光線透過率は、調製した試料のすべてにおいて99.0%以上の値を示した。ヘイズ値は、調製した試料すべての傾向として官能基導入量が増加するに従いヘイズ値が低くなり透明性が増加した。この結果は、これまでに報告されているアニオン性微細セルロース繊維分散液の特徴と一致した。比較素材である水溶性のHPC水溶液(試料δ)に関しても高い透明性を示した。
 アニオン性微細セルロース繊維分散液は、固形分濃度0.5および1.0質量%という低固形分濃度で高いB型粘度値を示した。一方で、比較素材である水溶性のHPC水溶液(試料δ)は、アニオン性微細セルロース繊維分散液と同等の固形分濃度では粘度が1000mPa・sよりも低い値を示した。アニオン性微細セルロース繊維分散液と同等の粘度値を発揮するためには、固形分濃度2.0質量%よりも高い水溶液を要する。しかしながら、この固形分濃度ではスプレー性が望ましい結果が得られなかった。
FIG. 1 shows the results of characterization of the cellulose component used in the application liquid containing fine cellulose fibers.
It has been reported that a cellulose fine fiber dispersion prepared by introducing an anionic functional group exhibits excellent effects in terms of transparency and viscosity. First, total light transmittance and haze value were measured as the transparency of the cellulose fine fiber dispersion. The total light transmittance of the cellulose fine fiber dispersion was 99.0% or higher in all of the prepared samples. As for the haze value, as the amount of functional group introduced increased, the haze value decreased and the transparency increased as a tendency for all the prepared samples. This result agreed with the characteristics of anionic fine cellulose fiber dispersions reported so far. A water-soluble HPC aqueous solution (sample δ), which is a comparative material, also exhibited high transparency.
The anionic fine cellulose fiber dispersions exhibited high B-type viscosity values at low solids concentrations of 0.5 and 1.0 wt% solids. On the other hand, the water-soluble HPC aqueous solution (sample δ), which is a comparative material, showed a viscosity lower than 1000 mPa·s at the same solid content concentration as the anionic fine cellulose fiber dispersion. In order to exhibit a viscosity value equivalent to that of an anionic fine cellulose fiber dispersion, an aqueous solution with a solid content concentration higher than 2.0% by mass is required. However, at this solid content concentration, desirable sprayability was not obtained.
 本発明は、農薬の散布液に粘性を付与する展着剤を想定し、新規展着剤素材としてアニオン性微細セルロース繊維に注目した。従来では、展着剤素材に用いられるセルロース素材として、HPCのような水溶性セルロースが先端技術であったが、前述の通り粘度の付与とスプレー性を両立することは至難の業であった。本発明は、アニオン性微細セルロース繊維がこれらの問題を解消できる可能性のある素材として、以降の実験で展着剤としての特性を評価した。 In the present invention, we envisioned a spreading agent that imparts viscosity to the pesticide spray liquid, and focused on anionic fine cellulose fibers as a new spreading agent material. Conventionally, water-soluble cellulose such as HPC has been the most advanced technology as a cellulose material used as a spreading agent material. In the present invention, the anionic fine cellulose fiber is a material that can solve these problems, and the characteristics as a spreading agent were evaluated in subsequent experiments.
(実験2)
 実験1において各アニオン性微細セルロース繊維及びHPCの物性について確認できた。実験2では、展着剤として用いる上でより重要となる物性を評価し、施用液体として適しているかを検討した。
(Experiment 2)
In Experiment 1, physical properties of each anionic fine cellulose fiber and HPC were confirmed. In Experiment 2, physical properties that are more important when used as a spreading agent were evaluated, and suitability as an application liquid was examined.
(実験2で用いた試料および試薬)
 セルロース成分として、実験1で調製した固形分濃度1.0質量%の試料α-1~3、試料β-1~3、試料γ-1~3を使用した。なお、比較例として試料δを使用した。
(Samples and reagents used in Experiment 2)
Samples α-1 to 3, β-1 to 3, and γ-1 to γ-3 prepared in Experiment 1 and having a solid concentration of 1.0% by mass were used as cellulose components. Sample δ was used as a comparative example.
 界面活性剤成分として、(A)ラウリル硫酸ナトリウム(東京化成工業製、型番;S0588)、(B)ドデシルジメチル(3-スルホプロピル)アンモニウムヒドロキシド分子内塩(東京化成工業製、型番;D3860)、(C)ポリオキシエチレンソルビタンモノラウラート(東京化成工業製、型番;T2530、Tween20)、(D)ポリオキシエチレンソルビタンモノオレアート(東京化成工業製、型番;T2533、Tween80)を使用した。 As surfactant components, (A) sodium lauryl sulfate (manufactured by Tokyo Chemical Industry, model number: S0588), (B) dodecyldimethyl(3-sulfopropyl) ammonium hydroxide inner salt (manufactured by Tokyo Chemical Industry, model number: D3860) , (C) polyoxyethylene sorbitan monolaurate (manufactured by Tokyo Chemical Industry Co., Ltd., model number; T2530, Tween20), and (D) polyoxyethylene sorbitan monooleate (manufactured by Tokyo Chemical Industry Co., Ltd., model number; T2533, Tween80).
(α-1含有施用液体の調製)
 α-1含有施用液体は、図7に示した組成比で調製した(実施例1~8、比較例1~6)。
(Preparation of application liquid containing α-1)
Application liquids containing α-1 were prepared with the composition ratios shown in FIG. 7 (Examples 1 to 8, Comparative Examples 1 to 6).
 図中において、実施例をS、比較例をCと表記した。例えば、実施例1はS-1、比較例1はC-1と表記した。また、とくに断らない限り、他の実施例および比較例においても、同様の表記とした。 In the figure, the example is indicated by S and the comparative example by C. For example, Example 1 is indicated as S-1, and Comparative Example 1 is indicated as C-1. In addition, unless otherwise specified, the same notation is used in other examples and comparative examples.
 以下に調製方法の代表例を示す。 A representative example of the preparation method is shown below.
(実施例1:固形分濃度1.0質量%のα-1含有施用液体)
 固形分濃度が1.0質量%の試料α-1をそのまま使用した。
(Example 1: Application liquid containing α-1 having a solid concentration of 1.0% by mass)
Sample α-1 having a solid content concentration of 1.0% by mass was used as it was.
(実施例2:希釈α-1含有施用液体)
 300mLビーカーに固形分濃度が1.0質量%の試料α-1を60g電子天秤で測り取り、純水40g(20℃)を加えた。撹拌子(φ8×40)を用いてスターラー(300rpm、アズワン社製、型番;CHPS-170DF)で10分撹拌し、試料α-1と純水が均一に混合させることで、スルホン化微細セルロース繊維の固形分濃度が0.6質量%である施用液体を調製した。
(Example 2: Application liquid containing diluted α-1)
60 g of sample α-1 having a solid content concentration of 1.0% by mass was weighed in a 300 mL beaker with an electronic balance, and 40 g of pure water (20° C.) was added. Stirring for 10 minutes with a stirrer (300 rpm, manufactured by AS ONE, model number: CHPS-170DF) using a stirrer (φ8 × 40), sample α-1 and pure water are uniformly mixed to obtain sulfonated fine cellulose fibers. An application liquid having a solid content concentration of 0.6% by mass was prepared.
(実施例5:界面活性剤配合α-1含有施用液体)
 300mLビーカーに固形分濃度が1.0質量%の試料α-1を40g電子天秤で測り取り、純水60g(20℃)を加えた。さらに、界面活性剤成分(A)ラウリル硫酸ナトリウムを0.5g添加し、撹拌子(φ8×40)を用いてスターラー(300rpm、アズワン社製、型番;CHPS-170DF)で10分撹拌した。試料α-1を純水に均一に混合させ、かつ界面活性剤成分を溶解させることにより、界面活性剤成分が配合されたスルホン化微細セルロース繊維の固形分濃度が0.6質量%である施用液体を調製した。
(Example 5: Application liquid containing surfactant-blended α-1)
40 g of sample α-1 having a solid concentration of 1.0% by mass was weighed into a 300 mL beaker with an electronic balance, and 60 g of pure water (20° C.) was added. Further, 0.5 g of surfactant component (A) sodium lauryl sulfate was added, and the mixture was stirred for 10 minutes with a stirrer (300 rpm, manufactured by AS ONE, model number: CHPS-170DF) using a stirrer (φ8×40). By uniformly mixing sample α-1 in pure water and dissolving the surfactant component, the solid content concentration of the sulfonated fine cellulose fibers containing the surfactant component was applied to 0.6% by mass. A liquid was prepared.
(α-2含有施用液体の調製)
 α-2含有施用液体は、図8に示した組成比で調製した(実施例9~16、比較例7~12)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing α-2)
Application liquids containing α-2 were prepared with the composition ratios shown in FIG. 8 (Examples 9 to 16, Comparative Examples 7 to 12).
The preparation method was the same as for the application liquid containing α-1.
(α-3含有施用液体の調製)
 α-3含有施用液体は、図9に示した組成比で調製した(実施例9~16、比較例7~12)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing α-3)
Application liquids containing α-3 were prepared with the composition ratios shown in FIG. 9 (Examples 9 to 16, Comparative Examples 7 to 12).
The preparation method was the same as for the application liquid containing α-1.
(β-1含有施用液体の調製)
 β-1含有施用液体は、図10に示した組成比で調製した(実施例29~38、比較例19~22)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing β-1)
Application liquids containing β-1 were prepared with the composition ratios shown in FIG. 10 (Examples 29 to 38, Comparative Examples 19 to 22).
The preparation method was the same as for the application liquid containing α-1.
(β-2含有施用液体の調製)
 β-2含有施用液体は、図11に示した組成比で調製した(実施例39~46、比較例23~28)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing β-2)
Application liquids containing β-2 were prepared with the composition ratios shown in FIG. 11 (Examples 39-46, Comparative Examples 23-28).
The preparation method was the same as for the application liquid containing α-1.
(β-3含有施用液体の調製)
 β-3含有施用液体は、図12に示した組成比で調製した(実施例47~54、比較例29~34)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing β-3)
Application liquids containing β-3 were prepared with the composition ratios shown in FIG. 12 (Examples 47 to 54, Comparative Examples 29 to 34).
The preparation method was the same as for the application liquid containing α-1.
(γ-1含有施用液体の調製)
 δ-1含有施用液体は、図13に示した組成比で調製した(実施例55~66、比較例35~36)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing γ-1)
Application liquids containing δ-1 were prepared with the composition ratios shown in FIG. 13 (Examples 55 to 66, Comparative Examples 35 to 36).
The preparation method was the same as for the application liquid containing α-1.
(試料γ-2含有施用液体の調製)
 γ-2含有施用液体は、図14に示した組成比で調製した(実施例67~78、比較例37~38)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of Application Liquid Containing Sample γ-2)
Application liquids containing γ-2 were prepared with the composition ratios shown in FIG. 14 (Examples 67-78, Comparative Examples 37-38).
The preparation method was the same as for the application liquid containing α-1.
(試料γ-3含有施用液体の調製)
 γ-3含有施用液体は、図15に示した組成比で調製した(実施例79~89、比較例39~41)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of Application Liquid Containing Sample γ-3)
Application liquids containing γ-3 were prepared with the composition ratios shown in FIG. 15 (Examples 79 to 89, Comparative Examples 39 to 41).
The preparation method was the same as for the application liquid containing α-1.
(δ含有施用液体の調製)
 δ含有施用液体は、図16に示した組成比で調製した(比較例42~47)。
 調製方法は、α-1含有施用液体と同様の方法で行った。
(Preparation of application liquid containing δ)
Application liquids containing δ were prepared with the composition ratio shown in FIG. 16 (Comparative Examples 42 to 47).
The preparation method was the same as for the application liquid containing α-1.
(比較例47の調製)
 比較例47は、セルロース成分および界面活性剤成分を含有しない純水とした(図16)。
(Preparation of Comparative Example 47)
Comparative Example 47 was pure water containing no cellulose component and no surfactant component (Fig. 16).
(微細セルロース繊維含有施用液体の特性評価)
 調製した実施例および比較例を用いて、以下に示す特性評価を行った。
(Characteristic evaluation of application liquid containing fine cellulose fibers)
Using the prepared examples and comparative examples, the following property evaluations were performed.
(粘度の測定)
 粘度測定は、調整した施用液体100gをスクリュー管(SANYO製、型番;84-0741/No.8)にいれて、24時間静置後に行った。
 B型粘度計(ブルックフィールド社製、型番;DV2T(RV型)、スピンドルNo.6)を用いて、測定を行った。
(Measurement of viscosity)
Viscosity measurement was performed after putting 100 g of the prepared application liquid into a screw tube (manufactured by SANYO, model number: 84-0741/No. 8) and allowing it to stand for 24 hours.
Measurement was performed using a B-type viscometer (manufactured by Brookfield, model number: DV2T (RV type), spindle No. 6).
  粘度測定条件は、以下の通りにした。
  施用液体の液温:20℃
  測定時間:3分
  回転数:回転数6rpmおよび60rpm
  データの記録方法:シングルポイント(測定開始から3分経過したときの値のみを取得する方法)
The viscosity measurement conditions were as follows.
Liquid temperature of applied liquid: 20°C
Measurement time: 3 minutes Rotation speed: Rotation speed 6 rpm and 60 rpm
Data recording method: Single point (Method of acquiring only the value 3 minutes after the start of measurement)
 (TI値の測定)
 チキソトロピー性指数(TI値)は、以下のように測定した。
 TI値の算出は、上述のB型粘度計を用いて、回転数6rpmと60rpmで測定を行い、各々の粘度を下記式より算出した。その他条件は上述のとおりとした。
 
TI値=(回転数6rpmでの粘度)/(回転数60rpmでの粘度)
(Measurement of TI value)
The thixotropic index (TI value) was measured as follows.
Calculation of the TI value was carried out using the Brookfield viscometer described above, and measurements were carried out at rotation speeds of 6 rpm and 60 rpm, and the respective viscosities were calculated from the following formula. Other conditions were as described above.

TI value = (viscosity at 6 rpm)/(viscosity at 60 rpm)
(液ダレの評価)
 施用液体の液ダレの評価は、以下に示す液ダレ試験の方法で、滑落角から評価した。
 概略を図5に示す。
 まず、板状の基材(例えば、クリップボード(ライオン事務器製、型番;No.5))の片面にOPPフィルムム(日本紙工製、型番;♯40 30*45)をしわにならないように取り付けた評価板を作製した。
 ついで、図5に示すように、スタンド(柴田化学製、型番;050700-1)に両空きクランプ(ヤマナカ製、型番;NC-4S、品番;1-7209-01)を装着し、このクランプで評価板の基端部を固定した。このときOPPフィルムの面が上方に向き、かつ評価板のOPPフィルムの面が水平の状態となるように調整した。
 この評価板は、基端を支点として反対側の先端を下方に揺動させることができるようにスタンドに装着されている。つまり、この評価板は、基端を支点として回転できるように装着されている。
 なお、評価板のOPPフィルムの面が安定するように先端部をジャッキ(ASPALAND製、型番;2019-817-06-12-06-07-05-28)で支持してもよい。
(Evaluation of liquid dripping)
The dripping of the application liquid was evaluated from the sliding angle by the method of the dripping test described below.
An outline is shown in FIG.
First, an OPP film (manufactured by Nippon Paper Industries, model number: #40 30*45) is attached to one side of a plate-shaped base material (for example, a clipboard (manufactured by Lion Office, model number: No. 5)) so as not to wrinkle. An evaluation plate was produced.
Next, as shown in FIG. 5, a stand (manufactured by Shibata Kagaku, model number: 050700-1) is equipped with a double-open clamp (manufactured by Yamanaka, model number: NC-4S, product number: 1-7209-01), and this clamp The proximal end of the evaluation plate was fixed. At this time, the surface of the OPP film was directed upward, and the surface of the OPP film of the evaluation plate was adjusted to be horizontal.
This evaluation plate is attached to a stand so that the tip on the opposite side can be swung downward with the base end as a fulcrum. In other words, the evaluation plate is mounted so as to be rotatable with the proximal end as a fulcrum.
In addition, the tip portion may be supported by a jack (manufactured by ASPALAND, model number: 2019-817-06-12-06-07-05-28) so that the surface of the OPP film of the evaluation plate is stabilized.
 本評価方法では、評価板のOPPフィルムの面が水平の状態を基準面(このときの滑落角は0°)とする。
 図5(a)に示すように、滑落角が0°の状態で評価板のOPPフィルムの表面上にサンプルの液滴0.1gを静置する。
 ついで、図5(b)、図5(c)に示すように、評価板の基端を支点として先端を下方に揺動させて、揺動後の評価板のOPPフィルムの面と基準面とで形成されるなす角θ、つまり滑落角(°)(図5に示すθ)が徐々に大きくなるように評価板を下傾させる。このとき、評価板の下傾速度は、滑落角10°/minとなるように調整する。
 そして、液滴が滑落し始めた時に、評価板の揺動を停止させ、滑落角を分度器を用いて測定した。
In this evaluation method, the horizontal state of the surface of the OPP film of the evaluation plate is taken as the reference plane (the sliding angle at this time is 0°).
As shown in FIG. 5(a), a sample droplet of 0.1 g is left still on the surface of the OPP film of the evaluation plate with a sliding angle of 0°.
Next, as shown in FIGS. 5(b) and 5(c), the base end of the evaluation plate is used as a fulcrum to swing the tip downward, and the surface of the OPP film of the evaluation plate after swinging and the reference surface are aligned. The evaluation plate is tilted downward so that the angle θ formed by , that is, the sliding angle (°) (θ shown in FIG. 5) gradually increases. At this time, the downward tilting speed of the evaluation plate is adjusted so that the sliding angle is 10°/min.
Then, when the droplet started to slide down, the evaluation plate was stopped from swinging, and the sliding angle was measured using a protractor.
 滑落角の測定範囲;0°~180°
 測定雰囲気;環境温度20℃、湿度30~50%
Measurement range of sliding angle; 0° to 180°
Measurement atmosphere; ambient temperature 20°C, humidity 30-50%
 本実験で採用したOPPフィルムの特性を以下に示す。
 厚さ:41μm
 60秒後の接触角:92.3°(オモテ面)、3.9°(ウラ面)
The properties of the OPP film employed in this experiment are shown below.
Thickness: 41 μm
Contact angle after 60 seconds: 92.3° (front surface), 3.9° (back surface)
 材質評価として接触角測定を行ったところ、OPPフィルムは表面の裏表で接触角が異なっていた。このため、本明細書でのOPPフィルムを用いるすべての実験において、液体と接触する面をオモテ面に統一した。 When the contact angle was measured as a material evaluation, the OPP film had different contact angles on the front and back of the surface. For this reason, in all experiments using OPP films in this specification, the liquid-contacting surface was unified to the front surface.
 なお、OPPフィルムの特性評価は、以下のように測定した。 The characteristics of the OPP film were measured as follows.
(厚さ測定)
 デジタルマイクロメーター(TECLOCK CORPORATION社製、型番;J Type PG-02)を用いて測定した。
(接触角測定)
 純水(20℃)が入ったマイクロシリンジ(協和界面化学社製、型番;商品NO584、シリンジ内径;0.4mm)が取り付けられた接触角計(協和界面化学社製、型番;DROPMASTER DMs400)を用いて測定した。接触角の算出処理は、装置のマニュアルに従い行った。
(thickness measurement)
It was measured using a digital micrometer (manufactured by TECLOCK CORPORATION, model number: J Type PG-02).
(contact angle measurement)
A contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number: DROPMASTER DMs400) equipped with a microsyringe (manufactured by Kyowa Interface Science Co., Ltd., model number: product NO584, syringe inner diameter: 0.4 mm) containing pure water (20 ° C.) was used. was measured using The contact angle calculation process was performed according to the manual of the apparatus.
(ぬれ性の評価)
 ぬれ性の評価は、以下の方法で評価した。
 施用液体のぬれ性の評価は、液滴径に基づいて評価した。
 概略を図6に示す。
 まず、上記と同様のスタンドとクランプを用いて、クランプにマイクロピペット(NICHIRYO製、型番;00-NPX2-1000、ピペットチップ吸い口の内径4mm)を固定した。
 マイクロピペットは、ピペットチップ(VIOLAMO社製、型番;3-6629-13)の吸い口の端面から内方15mmの位置にマイクロピペットの接続口の端面がくるように調製したピペットチップを取り付ける。このとき、マイクロピペットは、ピペットチップを取り付けた状態において、マイクロピペットの接続口の端面とピペットチップの吸い口の端面が平行となるようにピペットチップを取り付ける。
 スタントに固定した状態のマイクロピペットの下方、つまり鉛直線上に5cm角に採寸したOPPフィルム(日本紙工製、型番;♯40 30*45)を設置する。
 マイクロピペットのピペットチップの先端からOPPフィルムまでの距離を30cmとなるように調節する。
(Evaluation of wettability)
Wettability was evaluated by the following method.
Evaluation of the wettability of the application liquid was evaluated based on the droplet size.
An outline is shown in FIG.
First, using the same stand and clamp as above, a micropipette (manufactured by NICHIRYO, model number: 00-NPX2-1000, inner diameter of pipette tip mouthpiece 4 mm) was fixed to the clamp.
The micropipette is attached to a pipette tip (manufactured by VIOLAMO, model number: 3-6629-13) prepared so that the end face of the connecting port of the micropipette comes to a position 15 mm inward from the end face of the mouthpiece. At this time, the pipette tip is attached to the micropipette so that the end face of the connection port of the micropipette and the end face of the mouthpiece of the pipette tip are parallel to each other.
An OPP film (manufactured by Nippon Paper Industries, model number: #40 30*45) measuring 5 cm square is placed below the micropipette fixed to the stunt, that is, on the vertical line.
Adjust the distance from the tip of the pipette tip of the micropipette to the OPP film to be 30 cm.
 本評価方法では、マイクロピペットで施用液体を0.10g±10%はかり取り、OPPフィルムに滴下した時の、液滴の広がり(液滴径(mm))をものさし(メモリ間隔1.0mm)で測定し評価した。
 液滴の形状が真円の場合、液滴径は直径として算出する。一方、液滴の形状が楕円形状の場合、長軸方向の長さaと、長軸方向に直交する短軸方法の長さbとの和を2で除した値を測定値とする(図6(b)参照)。
In this evaluation method, 0.10 g ± 10% of the applied liquid is weighed with a micropipette, and when it is dropped on the OPP film, the spread of the droplet (droplet diameter (mm)) is measured (memory interval 1.0 mm). measured and evaluated.
When the shape of the droplet is a perfect circle, the diameter of the droplet is calculated as the diameter. On the other hand, when the shape of the droplet is elliptical, the sum of the length a in the major axis direction and the length b in the minor axis direction perpendicular to the major axis direction divided by 2 is taken as the measured value (Fig. 6(b)).
 なお、評価の際に滴下した液滴が楕円状となる場合があるが、最大径と最小径の差が2mm以内となっているもののみを測定した。
 また、液滴径が施用液体が高粘度のためマイクロピペットで正しい量を吸引できない場合、や、ピペットチップ内に残留して正しい量を滴下できない場合は、「N/A(適用外)」として評価した。
Note that although the droplets dropped during the evaluation may be elliptical, only droplets with a difference between the maximum diameter and the minimum diameter of 2 mm or less were measured.
In addition, if the droplet diameter is high viscosity, the correct amount cannot be aspirated with the micropipette, or if it remains in the pipette tip and the correct amount cannot be dropped, "N/A (not applicable)" evaluated.
 なお本実験における「N/A(適用外)」とは、測定の規格に当てはまらず、数値として示すと正確さを欠くものを意味する。 In addition, "N/A (not applicable)" in this experiment means that it does not meet the measurement standards and lacks accuracy when expressed as a numerical value.
(スプレー性試験)
 スプレー性試験は、調整した施用液体をスプレーボトル(ブラザーズ株式会社製、型番;YE10089、容量30mL、純水使用時、霧状となるタイプ)に20mL入れて、噴霧し霧状となるかで評価した。霧状となれば○、純水使用時と異なる噴霧となれば×とした。
(Sprayability test)
In the sprayability test, 20 mL of the prepared application liquid is placed in a spray bottle (manufactured by Brothers Co., Ltd., model number: YE10089, capacity 30 mL, type that becomes misty when using pure water), and it is sprayed to evaluate whether it becomes misty. did. If the spray was misty, it was evaluated as ◯, and if it was sprayed differently from when pure water was used, it was evaluated as x.
(実験2の結果)
 実験結果を図7~図25を示す。
(Results of Experiment 2)
Experimental results are shown in FIGS. 7 to 25. FIG.
(微細セルロース繊維のアニオン性官能基量と施用液体の粘度付与の関係)
 図17は、官能基量が約0.5mmol/gの微細セルロース繊維(α-1、β-1、γ-1)を含有する施用液体のB型粘度とTI値の関係を示した図である。
 図18は、官能基量が約1.0mmol/gの微細セルロース繊維(α-2、β-2、γ-2)を含有する施用液体のB型粘度とTI値の関係を示した図である。
 図19は、官能基量が約1.5mmol/gの微細セルロース繊維(α-3、β-3、γ-3)を含有する施用液体のB型粘度とTI値の関係を示した図である。
(Relationship between amount of anionic functional groups in fine cellulose fibers and imparting viscosity of application liquid)
FIG. 17 is a diagram showing the relationship between the B-type viscosity and the TI value of the application liquid containing fine cellulose fibers (α-1, β-1, γ-1) having a functional group amount of about 0.5 mmol/g. be.
FIG. 18 is a diagram showing the relationship between the B-type viscosity and the TI value of the application liquid containing fine cellulose fibers (α-2, β-2, γ-2) having a functional group amount of about 1.0 mmol/g. be.
FIG. 19 is a diagram showing the relationship between the B-type viscosity and the TI value of the application liquid containing fine cellulose fibers (α-3, β-3, γ-3) having a functional group amount of about 1.5 mmol/g. be.
 図中には、B型粘度が1000mPa・sの箇所を破線で示し、TI値が4~10の範囲を斜線で示した。図の(a)のグラフは、グラフの全体像を示したものである。図の(b)のグラフは、(a)のグラフの破線で囲った部分を拡大したものである。
 グラフにおいて、黒塗りのプロット(●、▲、■)は実施例(S)を示し、白塗りのプロット(○、△、□)は比較例(C)を示している。
In the figure, the portion where the B-type viscosity is 1000 mPa·s is indicated by a broken line, and the range of TI values of 4 to 10 is indicated by oblique lines. The graph in (a) of the figure shows the overall image of the graph. The graph in (b) of the figure is an enlarged view of the portion enclosed by the dashed line in the graph in (a).
In the graph, black plots (●, ▲, ■) indicate Example (S), and white plots (○, Δ, □) indicate Comparative Example (C).
 図17、18、19の結果から、微細セルロース繊維を含有する施用液体は、B型粘度が1000mPa・s以上50000mPa・s以下において、TI値が4以上、10以下を示した。1000mPa・sよりも低い粘度領域では、TI値が4よりも低かった。 From the results of FIGS. 17, 18, and 19, the application liquid containing fine cellulose fibers exhibited a TI value of 4 or more and 10 or less when the B-type viscosity was 1000 mPa·s or more and 50000 mPa·s or less. The TI value was lower than 4 in the viscosity range lower than 1000 mPa·s.
 本発明では、施用液体に用いる微細セルロース繊維として3種類のアニオン性官能基(スルホ基、カルボキシ基およびリン酸基)を用いた。また、官能基量が異なるように調製した。
 その結果、施用液体として粘度特性を評価したところ、驚くべきことに官能基の種類や量に依存せず、いずれも類似する結果を示した。
 一方で、図16に示すHPC含有施用液体(C-42~46)(比較試験)では、B型粘度が200mPa・s以下であり、TI値もおよそ1.0であった。
In the present invention, three types of anionic functional groups (sulfo group, carboxy group and phosphate group) were used as fine cellulose fibers used in the application liquid. Moreover, it prepared so that the amount of functional groups may differ.
As a result, when viscosity characteristics were evaluated as application liquids, surprisingly similar results were obtained regardless of the types and amounts of functional groups.
On the other hand, the HPC-containing application liquids (C-42 to 46) (comparative test) shown in FIG. 16 had a B-type viscosity of 200 mPa·s or less and a TI value of about 1.0.
 以上の結果から、粘度だけでなくTI値が高いと展着剤の散布液付与時だけでなく、散布した後の液体保持性(例えば角度のある対象物へ散布後も液体がたれ落ちず保持させる能力)も向上しているのではないかと考察し、次にこの性質を滑落角という値で評価した。 From the above results, not only the viscosity but also the TI value is high, not only when the spreading agent is applied, but also after spraying (for example, after spraying on an object with an angle, the liquid is retained without dripping). This property was evaluated by the sliding angle.
(施用液体の粘度と滑落角の関係)
 図20は、スルホン化微細セルロース繊維を含有する施用液体のB型粘度と滑落角の関係を示した図である。
 図21は、TEMPO酸化微細セルロース繊維を含有する施用液体のB型粘度と滑落角の関係を示した図である。
 図22は、リン酸化微細セルロース繊維を含有する施用液体のB型粘度と滑落角の関係を示した図である。
(Relationship between viscosity of applied liquid and sliding angle)
FIG. 20 is a diagram showing the relationship between the B-type viscosity and the sliding angle of an application liquid containing sulfonated fine cellulose fibers.
FIG. 21 is a diagram showing the relationship between the B-type viscosity and the sliding angle of an application liquid containing TEMPO-oxidized fine cellulose fibers.
FIG. 22 is a diagram showing the relationship between the B-type viscosity of the application liquid containing phosphorylated fine cellulose fibers and the sliding angle.
 図中には、B型粘度が1000mPa・sの箇所を破線を示した。図の(a)のグラフは、グラフの全体像を示したものである。図の(b)のグラフは、(a)のグラフの破線で囲った部分を拡大したものである。
 グラフにおいて、黒塗りのプロット(●)は実施例(S)を示し、白塗りのプロット(○)は比較例(C)を示している。
In the figure, a dashed line indicates the point where the B-type viscosity is 1000 mPa·s. The graph in (a) of the figure shows the overall image of the graph. The graph in (b) of the figure is an enlarged view of the portion enclosed by the dashed line in the graph in (a).
In the graph, black plots () indicate Example (S), and white plots (◯) indicate Comparative Example (C).
 図20、21、22の結果から、微細セルロース繊維を含有する施用液体は、B型粘度が1000mPa・s以上であるとき、滑落角が増加する傾向にあった。
 滑落角を測定する液ダレ性は、植物の葉(0~90°)や植物の自重を支える茎や幹など(90°程度)、葉の裏(90~180°)など、施用液体が想定される使用状況を実験的に反映したものである。
 植物は、表面が水をはじきやすい特性を有するものも存在する。そこで、本実験では、水接触角90°以上を示したOPPフィルムを用いて行った。
 実験結果から、B型粘度が1000~10000mPa・sであれば滑落角が約20°以上180°以下を有することが確認できた。一方、比較例のHPCを含有する施用液体の滑落角は10°から18°であった(図16)。
From the results of FIGS. 20, 21 and 22, the application liquid containing fine cellulose fibers tended to increase the sliding angle when the B-type viscosity was 1000 mPa·s or more.
The dripping property that measures the sliding angle is assumed to be applied to the leaves of plants (0 to 90 degrees), the stems and trunks that support the plant's own weight (about 90 degrees), and the undersides of leaves (90 to 180 degrees). This is an experimental reflection of the current usage situation.
Some plants have surfaces that easily repel water. Therefore, in this experiment, an OPP film showing a water contact angle of 90° or more was used.
From the experimental results, it was confirmed that when the B-type viscosity is 1000 to 10000 mPa·s, the sliding angle is about 20° or more and 180° or less. On the other hand, the sliding angle of the application liquid containing HPC of the comparative example was 10° to 18° (Fig. 16).
 したがって、本発明の施用液体は、散布液の用途を幅広くカバーすることができる。しかも、本発明の施用液体は、これまでにない技術であると示唆される。
 よって、本発明の施用液体を農作物に散布等した場合、農作物の葉に傾斜があったとしても葉に対して施用液体を適切に付着させることができる。しかも付着した状態を保持させておくことができる。また、本発明の施用液体は、高い粘性を有するので、葉の表面の角度が垂直に近い植物(例えば、イネ科の植物)に対しても液ダレを抑制させながら、適切に付着させることができることが示唆された。
 そして、農作物等に本発明の施用液体を適切に付着させることができるので、施用液体に機能性組成物(例えば、農薬や肥料植物生長促進剤など)を農作物に対して効率よく付与することができる。
Therefore, the application liquid of the present invention can cover a wide range of uses of the spray liquid. Moreover, it is suggested that the application liquid of the present invention is an unprecedented technology.
Therefore, when the application liquid of the present invention is sprayed on crops, the application liquid can be appropriately attached to the leaves of the crops even if the leaves of the crops are slanted. Moreover, the adhered state can be maintained. In addition, since the application liquid of the present invention has a high viscosity, it can be applied appropriately to plants (for example, plants of the Gramineae family) whose leaf surface angle is nearly vertical while suppressing dripping. suggested that it could be done.
In addition, since the application liquid of the present invention can be appropriately adhered to crops and the like, it is possible to efficiently apply a functional composition (for example, an agricultural chemical, a fertilizer plant growth promoter, etc.) to the application liquid to the crops. can.
 比較例の結果から、従来の展着剤は、TI値が低いと散布液が散布対象物(例えば、農作物等)に保持させることが難しいと思われる。つまり、散布対象物に対して、従来の展着剤が含有する散布液を散布等した場合、農作物の葉の表面ではじかれたり、液ダレを起こすなどして、葉や茎などの表面に長期間、適切に保持させておくことができない。このため、散布液の効能が適切に発揮され難いので、定期的に短い間隔で散布液を散布する必要がある。また、散布対象が農作物の場合、散布液には、機能性組成物として農薬が含有されることが多い。そして、農薬は、人や環境に対して安全性が低いものも存在する。
 一方、本発明の微細セルロース繊維含有溶剤を従来の展着剤と同様に用いれば、農薬等を、農作物等の表面に従来の展着剤が含有する散布液と比べて、長期間付着させておくことができる。このため、従来の散布液と比べて、農薬量使用量を少なくすることができるので、経済的である。しかも、農薬等の環境負荷物質の使用量を低減できるので、土壌や水質を経由した環境汚染を低減できる。
From the results of the comparative examples, it seems that it is difficult for the conventional spreading agent to retain the spray liquid on the object to be sprayed (for example, crops) when the TI value is low. In other words, when spraying a spray liquid containing a conventional spreading agent on an object to be sprayed, it may be repelled by the surface of the leaves of the crop, or the liquid may drip, causing the surface of the leaves and stems to It cannot be maintained properly for a long period of time. For this reason, it is difficult for the effect of the spray liquid to be exhibited appropriately, so it is necessary to spray the spray liquid periodically at short intervals. In addition, when the target of spraying is crops, the spray solution often contains an agricultural chemical as a functional composition. Some agricultural chemicals have low safety to humans and the environment.
On the other hand, if the solvent containing fine cellulose fibers of the present invention is used in the same manner as a conventional spreading agent, agricultural chemicals can adhere to the surface of crops for a longer period of time than the spray liquid containing the conventional spreading agent. can be kept Therefore, compared with conventional spray solutions, the amount of agricultural chemicals used can be reduced, which is economical. Moreover, since the amount of environmentally hazardous substances such as pesticides used can be reduced, environmental pollution via soil and water quality can be reduced.
(施用液体への界面活性剤添加による影響)
 図23は、スルホン化微細セルロース繊維を含有する施用液体へ界面活性剤を添加した時の粘度への影響を示した図である。
 図23の、(a)のグラフは試料α-1を使用した施用液体(図7参照)、(b)のグラフは試料α-2を使用した施用液体(図8参照)、(c)のグラフは試料α-3を使用した施用液体(図9参照)の結果を示した。図23の(a)のグラフは、下から順に図7のS-4、S-5、S-6、S-7、S-8に対応する。図23の(b)のグラフは、下から順に図8のS-12、S-13、S-14、S-15、S-16に対応する。図23の(c)のグラフは、下から順に図9のS-20、S-22、S-24、S-26、S-28に対応する。
(Effect of addition of surfactant to applied liquid)
Figure 23 shows the effect on viscosity of adding a surfactant to an application liquid containing sulfonated fine cellulose fibers.
In FIG. 23, the graph of (a) is the application liquid using sample α-1 (see FIG. 7), the graph of (b) is the application liquid using sample α-2 (see FIG. 8), and (c) The graph showed the results of the application liquid (see Figure 9) using sample α-3. The graph in (a) of FIG. 23 corresponds to S-4, S-5, S-6, S-7 and S-8 in FIG. 7 in order from the bottom. The graph in (b) of FIG. 23 corresponds to S-12, S-13, S-14, S-15 and S-16 in FIG. 8 in order from the bottom. The graph in (c) of FIG. 23 corresponds to S-20, S-22, S-24, S-26 and S-28 in FIG. 9 in order from the bottom.
 図24は、TEMPO酸化微細セルロース繊維を含有する施用液体へ界面活性剤を添加した時の粘度への影響を示した図である。
 図24の、(a)のグラフは試料β-1を使用した施用液体(図10参照)、(b)のグラフは試料β-2を使用した施用液体(図11参照)、(c)のグラフはβ-3を使用した施用液体(図12参照)の結果を示した。図24の(a)のグラフは、下から順に図10のS-32、S-33、S-34、S-35、S-36に対応する。図24の(b)のグラフは、下から順に図11のS-42、S-43、S-44、S-45、S-46に対応する。図24の(c)のグラフは、下から順に図12のS-50、S-51、S-52、S-53、S-54に対応する。
Figure 24 shows the effect on viscosity of adding a surfactant to an application liquid containing TEMPO-oxidized microcellulose fibers.
In FIG. 24, the graph of (a) is the application liquid using sample β-1 (see FIG. 10), the graph of (b) is the application liquid using sample β-2 (see FIG. 11), and (c) The graph showed the results of the application liquid using β-3 (see Figure 12). The graph of (a) in FIG. 24 corresponds to S-32, S-33, S-34, S-35 and S-36 in FIG. 10 from the bottom. The graph in FIG. 24(b) corresponds to S-42, S-43, S-44, S-45 and S-46 in FIG. 11 from the bottom. The graph of (c) in FIG. 24 corresponds to S-50, S-51, S-52, S-53 and S-54 in FIG. 12 from the bottom.
 図25は、リン酸化微細セルロース繊維を含有する施用液体へ界面活性剤を添加した時の粘度への影響を示した図である。
 図25の、(a)のグラフは試料γ-1を使用した施用液体(図13参照)、(b)のグラフは試料γ-2を使用した施用液体(図14参照)、(c)のグラフは試料γ-3を使用した施用液体(図15参照)の結果を示した。図25の(a)のグラフは、下から順に図13のS-58、S-59、S-60、S-61、S-62に対応する。図25の(b)のグラフは、下から順に図14のS-70、S-71、S-72、S-73、S-74に対応する。図25の(c)のグラフは、下から順に図15のS-82、S-83、S-84、S-85、S-86に対応する。
FIG. 25 is a diagram showing the effect on viscosity when a surfactant is added to an application liquid containing phosphorylated microcellulose fibers.
In FIG. 25, the graph of (a) is the applied liquid using sample γ-1 (see FIG. 13), the graph of (b) is the applied liquid using sample γ-2 (see FIG. 14), and (c) The graph showed the results of the application liquid (see Figure 15) using sample γ-3. The graph in (a) of FIG. 25 corresponds to S-58, S-59, S-60, S-61 and S-62 in FIG. 13 from the bottom. The graph in FIG. 25(b) corresponds to S-70, S-71, S-72, S-73, and S-74 in FIG. 14 in order from the bottom. The graph of (c) in FIG. 25 corresponds to S-82, S-83, S-84, S-85 and S-86 in FIG. 15 in order from the bottom.
 図中には、B型粘度が1000mPa・sの箇所を破線で示し、TI値が4~10の範囲を斜線で示した。
 グラフにおいて、黒塗りはB型粘度を示し、白塗りはTI値を示している。
 グラフの各試料の条件は、セルロース成分が4質量部、界面活性剤成分が0または5質量部、水成分996質量部となるように施用液体を調製したものである(図7~図15の調製条件を参照)。
In the figure, the portion where the B-type viscosity is 1000 mPa·s is indicated by a broken line, and the range of TI values of 4 to 10 is indicated by oblique lines.
In the graph, black indicates the B-type viscosity, and white indicates the TI value.
The conditions for each sample in the graph were that the application liquid was prepared so that the cellulose component was 4 parts by mass, the surfactant component was 0 or 5 parts by mass, and the water component was 996 parts by mass (see FIGS. 7 to 15). See Preparation Conditions).
 図23。図24、図25に示すように、界面活性剤を添加した微細セルロース繊維を含有する施用液体は、界面活性剤の種類によって粘度が低下するものが見られたものの、添加前後における粘度低下はほとんど生じなかった。
 一般的に展着剤における界面活性剤は、水をはじきやすい植物の特性を緩和し、散布液などとの接触面積を増加させることを目的に添加されている場合が多い。その一方で、図16に示すように、従来の界面活性剤を含有する液体(比較例)では、粘性を有さないことが確認できた。このため、従来の展着剤では、散布液に含まれる農薬等の機能性組成物の効果効能が適切に発揮できていなかいものと示唆される。
 一方、本発明の微細セルロース繊維を含有する施用液体は、水に分散させることができるので、当然のことながら親水性を発揮させることができる。このため、本発明の施用液体に界面活性剤を含有させることにより、従来の展着と比べてより植物の表面を施用液体でコーティングできるので、さらなる用途範囲の拡大が期待できる。
FIG. 23. As shown in FIGS. 24 and 25, the viscosity of the application liquid containing fine cellulose fibers to which a surfactant was added decreased depending on the type of surfactant, but the decrease in viscosity before and after the addition was almost zero. did not occur.
In general, surfactants in spreading agents are often added for the purpose of alleviating the tendency of plants to repel water and increasing the contact area with spray liquids and the like. On the other hand, as shown in FIG. 16, it was confirmed that the liquid containing the conventional surfactant (comparative example) was not viscous. For this reason, it is suggested that conventional spreading agents do not adequately exhibit the effects and efficacy of functional compositions such as agricultural chemicals contained in spray liquids.
On the other hand, since the application liquid containing the fine cellulose fibers of the present invention can be dispersed in water, it is naturally possible to exhibit hydrophilicity. Therefore, by including a surfactant in the application liquid of the present invention, the surface of plants can be coated with the application liquid more than conventional spreading, and thus a further expansion of the range of applications can be expected.
(実験3)
 実験3では、本発明の施用液体におけるスプレー性試験の噴霧状態の定義を決定した。
(Experiment 3)
Experiment 3 determined the definition of the atomization state of the sprayability test for the application liquid of the present invention.
(スプレー性試験による噴霧状態の定義)
 スプレー性試験の噴霧状態は、「霧状」または「それ以外」で分類される。
 以下に示す方法で噴霧した後、噴霧状態が、直径10cm以上15cm以下の円状(具体的には、吹付板における液体の塗布量領域の形状が円状であり、その領域面積が78.5cm以上176.6cm以下)を形成した場合、「霧状」に噴霧されたと定義する。この場合、図中には「○」と表記する。
 一方、噴霧状態が、直径10cmよりも小さい円状(具体的には、吹付板における液体の塗布量領域の形状が円状であり、その領域面積が78.5cmよりも小さい)を形成した場合、「それ以外」の状態で噴霧されたと定義する。このような噴霧状態では、噴霧後5分間以内に噴霧液が液ダレを生じたり、そもそもスプレー噴霧ができない状態になる。この場合、図中には「×」と表記する。
(Definition of atomization state by sprayability test)
The atomization state of the sprayability test is classified as "foggy" or "otherwise."
After spraying by the method shown below, the sprayed state is circular with a diameter of 10 cm or more and 15 cm or less (specifically, the shape of the liquid application amount area on the spray plate is circular, and the area area is 78.5 cm). 2 or more and 176.6 cm 2 or less), it is defined as sprayed “atomized”. In this case, it is written as "○" in the figure.
On the other hand, the sprayed state formed a circular shape with a diameter smaller than 10 cm (specifically, the shape of the liquid application amount region on the spray plate is circular and the region area is smaller than 78.5 cm 2 ). defined as sprayed in the “otherwise” condition. In such a spraying state, the spray liquid may drip within 5 minutes after spraying, or the spray may not be sprayed in the first place. In this case, it is written as "x" in the figure.
(スプレー性試験)
 スプレー容器として、ブラザーズ株式会社製のスプレーボトル(型番;YE10089、容量30mL、純水使用時に霧状となるタイプ)を用いた。
 吹付板には、クリップボード(ライオン事務器製、型番;No.5)を用いた。この吹付板を垂直に設置した。そして、スプレーボトル内に試験液20gを入れて、スプレーボトルのノズル先端面が吹付板の表面に対して対向するように設置した。このとき、スプレーボトルは、ノズル先端面から吹付板の表面までの距離が15cmとなるように配置した。ついで、吹付板に対して試験液を5回吹付けた。吹付後、5分間静置して液ダレの有無を確認した。
 実験では、試験液として試料α-1、試料δおよび純水を用いた。
(Sprayability test)
As a spray container, a spray bottle manufactured by Brothers Co., Ltd. (model number: YE10089, capacity: 30 mL, atomized type when pure water is used) was used.
A clipboard (manufactured by Lion Office Equipment, model number: No. 5) was used as the spray plate. The spray plate was installed vertically. Then, 20 g of the test liquid was placed in a spray bottle, and the tip of the nozzle of the spray bottle was placed so as to face the surface of the spray plate. At this time, the spray bottle was arranged so that the distance from the tip of the nozzle to the surface of the spray plate was 15 cm. Then, the test solution was sprayed five times against the spray plate. After the spraying, the liquid was allowed to stand for 5 minutes, and the presence or absence of dripping was confirmed.
In the experiment, sample α-1, sample δ and pure water were used as test liquids.
(実験結果)
 試料α-1は、「霧状」(吹付後に直径が11.5cmの円状を形成)に噴霧できた。そして吹付して5分間静置した際の観察では、液ダレは確認されなかった。一方、試料δでは、「それ以外」の噴霧状態(直径5.5cm)であり、吹付して5分間静置した際の観察では、液ダレが確認された。そして、純水の場合には、試料α-1と同様に「霧状」(直径が14.5cmの円状を形成)に噴霧できた。しかし、吹付して5分間静置した際の観察では、液ダレが確認された。
(Experimental result)
Sample α-1 could be sprayed "foggy" (forming circles with a diameter of 11.5 cm after spraying). No dripping was observed when the liquid was sprayed and allowed to stand for 5 minutes. On the other hand, sample δ was in an “other” spray state (diameter 5.5 cm), and dripping was observed when the spray was left standing for 5 minutes. In the case of pure water, it could be sprayed in a "mist form" (forming a circle with a diameter of 14.5 cm) as in the sample α-1. However, liquid dripping was confirmed by observation when sprayed and allowed to stand for 5 minutes.
 以上の結果から、本発明の施用液体を噴霧器などを用い被対象物に対してスプレーする場合、ボトル内に収容した静止状態では高い粘性を有していても、使用時(スプレーを使用する際)にスプレー容器の送液チューブ内で詰まったり、ノズル先端で詰まったりするといった不具合を生じることなく、水と同じような感覚で使用できることが確認できた。このため、被対象物に対して施用液体を「霧状」に噴霧(スプレー)できることが確認できた。しかも、スプレー容器のノズルの細孔の大きさを調整すれば、施用液体の液滴の大きさを適宜調整することができるので、被対象物に応じて施用液体の「霧状」の粒子サイズを調整できることが示唆された。 From the above results, when the application liquid of the present invention is sprayed onto an object using a sprayer or the like, even if it has a high viscosity in the static state accommodated in the bottle, during use (when using the spray) ) can be used in the same way as water without problems such as clogging in the liquid feed tube of the spray container or clogging at the tip of the nozzle. For this reason, it was confirmed that the application liquid could be sprayed in a "mist form" onto the target object. Moreover, by adjusting the size of the pores of the nozzle of the spray container, the size of the droplets of the application liquid can be appropriately adjusted, so that the "fog-like" particle size of the application liquid can be adjusted according to the target object. was suggested to be adjustable.
 本発明の微細セルロース繊維含有溶剤は、液体に対してぬれ性及び粘性を発揮させる溶剤として適している。また、本発明の施用液体および施用液体調製方法は、被対象物に対して液体を付着させるのに適している。 The fine cellulose fiber-containing solvent of the present invention is suitable as a solvent that exhibits wettability and viscosity with respect to liquids. In addition, the application liquid and the application liquid preparation method of the present invention are suitable for applying a liquid to an object.

Claims (16)

  1.  機能性組成物を含有した液体のぬれ性の向上と液ダレの抑制に使用される溶剤であり、
    水酸基の一部がアニオン性の官能基で置換された、平均繊維幅が1nm~1000nmのアニオン性微細セルロース繊維を含有しており、
    該アニオン性微細セルロース繊維は、
    固形分濃度が0.2質量%以上1.0質量%以下となるように純水に分散した状態における、B型粘度計を用いて測定したB型粘度(20℃、回転数6rpm、3分)が1000mPa・s以上50000mPa・s以下である
    ことを特徴とする微細セルロース繊維含有溶剤。
    A solvent used to improve the wettability of a liquid containing a functional composition and to suppress dripping,
    Contains anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm in which a part of the hydroxyl groups are substituted with an anionic functional group,
    The anionic fine cellulose fibers are
    B-type viscosity measured using a B-type viscometer in a state dispersed in pure water so that the solid content concentration is 0.2% by mass or more and 1.0% by mass or less (20 ° C., rotation speed 6 rpm, 3 minutes ) is 1000 mPa·s or more and 50000 mPa·s or less.
  2.  前記アニオン性の官能基の導入量が、0.1mmol/g以上3.0mmol/g以下である
    ことを特徴とする請求項1記載の微細セルロース繊維含有溶剤。
    2. The fine cellulose fiber-containing solvent according to claim 1, wherein the amount of the anionic functional group introduced is 0.1 mmol/g or more and 3.0 mmol/g or less.
  3.  前記アニオン性の官能基が、スルホ基、リン酸基、亜リン酸基、カルボキシ基、カルボキシメチル基から選択される少なくとも1種である
    ことを特徴とする請求項1または2記載の微細セルロース繊維含有溶剤。
    3. The fine cellulose fibers according to claim 1, wherein the anionic functional group is at least one selected from a sulfo group, a phosphate group, a phosphite group, a carboxy group, and a carboxymethyl group. Containing solvent.
  4.  前記アニオン性微細セルロース繊維の固形分濃度が0.2質量%以上1.0質量%以下となるように純水に分散した状態における、下記式より求められるB型粘度計を用いて測定したチキソトロピー性指数が、4.0以上である
    ことを特徴とする請求項1、2または3記載の微細セルロース繊維含有溶剤。
     
    チキソトロピー性指数=(20℃、回転数6rpmでの粘度)/(20℃、回転数60rpmでの粘度)
     
    Thixotropy measured using a B-type viscometer obtained from the following formula in a state dispersed in pure water so that the solid content concentration of the anionic fine cellulose fibers is 0.2% by mass or more and 1.0% by mass or less 4. The solvent containing fine cellulose fibers according to claim 1, 2 or 3, which has a sex index of 4.0 or more.

    Thixotropic index = (viscosity at 20°C and 60 rpm)/(viscosity at 20°C and 60 rpm)
  5.  界面活性剤を含む
    ことを特徴とする請求項1、2、3または4記載の微細セルロース繊維含有溶剤。
    5. The solvent containing fine cellulose fibers according to claim 1, 2, 3 or 4, further comprising a surfactant.
  6.  前記界面活性剤が0.5質量%、前記アニオン性微細セルロース繊維の固形分濃度が0.2質量%以上1.0質量%以下となるように純水に分散した状態における、B型粘度計を用いて測定したB型粘度(20℃、回転数6rpm、3分)が1000mPa・s以上20000mPa・s以下である
    ことを特徴とする請求項5記載の微細セルロース繊維含有溶剤。
    B-type viscometer in a state in which the surfactant is 0.5% by mass and the anionic fine cellulose fibers are dispersed in pure water so that the solid content concentration is 0.2% by mass or more and 1.0% by mass or less. 6. The fine cellulose fiber-containing solvent according to claim 5, wherein the B-type viscosity (20° C., rotation speed 6 rpm, 3 minutes) measured using the above is 1000 mPa·s or more and 20000 mPa·s or less.
  7.  前記界面活性剤が0.5質量%、前記アニオン性微細セルロース繊維の固形分濃度が0.2質量%以上1.0質量%以下となるように純水に分散した状態における、下記式より求められるB型粘度計を用いて測定したチキソトロピー性指数が、4.0以上8.0以下である
    ことを特徴とする請求項5または6記載の微細セルロース繊維含有溶剤。
     
    チキソトロピー性指数=(20℃、回転数6rpmでの粘度)/(20℃、回転数60rpmでの粘度)
     
    Calculated from the following formula in a state in which the surfactant is 0.5% by mass and the anionic fine cellulose fiber is dispersed in pure water so that the solid content concentration is 0.2% by mass or more and 1.0% by mass or less. 7. The solvent containing fine cellulose fibers according to claim 5 or 6, having a thixotropic index of 4.0 or more and 8.0 or less as measured using a Brookfield viscometer.

    Thixotropic index = (viscosity at 20°C and 60 rpm)/(viscosity at 20°C and 60 rpm)
  8.  水と、機能性組成物と、ぬれ性の向上と液ダレの抑制に使用される溶剤と、を含む液体であって、
    前記溶剤が、請求項1乃至7のいずれかに記載の微細セルロース繊維含有溶剤である
    ことを特徴とする施用液体。
    A liquid containing water, a functional composition, and a solvent used to improve wettability and suppress dripping,
    A liquid for application, wherein the solvent is the solvent containing fine cellulose fibers according to any one of claims 1 to 7.
  9.  前記機能性組成物が、農薬、肥料、殺菌剤、消毒剤、土壌改良材、又は、植物生長促進剤である
    ことを特徴とする請求項8記載の施用液体。
    9. The application liquid according to claim 8, wherein the functional composition is an agricultural chemical, fertilizer, fungicide, disinfectant, soil conditioner, or plant growth promoter.
  10.  水と、機能性組成物と、ぬれ性の向上と液ダレの抑制に使用される溶剤と、を含む液体の調製方法であって、
    前記溶剤が、
    水酸基の一部がアニオン性の官能基で置換された、平均繊維幅が1nm~1000nmのアニオン性微細セルロース繊維を含有しており、
    該アニオン性微細セルロース繊維の固形分濃度が、0.2質量%以上1.0質量%以下となるように調整する
    ことを特徴とする施用液体調製方法。
    A method for preparing a liquid containing water, a functional composition, and a solvent used for improving wettability and suppressing dripping,
    the solvent is
    Contains anionic fine cellulose fibers having an average fiber width of 1 nm to 1000 nm in which a part of the hydroxyl groups are substituted with an anionic functional group,
    A method for preparing a liquid to be applied, characterized in that the solid content concentration of the anionic fine cellulose fibers is adjusted to 0.2% by mass or more and 1.0% by mass or less.
  11.  前記アニオン性の官能基の導入量が、0.1mmol/g以上3.0mmol/g以下である
    ことを特徴とする請求項10記載の施用液体調製方法。
    11. The method for preparing a liquid for application according to claim 10, wherein the amount of the anionic functional group introduced is 0.1 mmol/g or more and 3.0 mmol/g or less.
  12.  前記アニオン性の官能基が、スルホ基、リン酸基、亜リン酸基、カルボキシ基、カルボキシメチル基から選択される少なくとも1種である
    ことを特徴とする請求項10または11記載の施用液体調製方法。
    12. The application liquid preparation according to claim 10 or 11, wherein the anionic functional group is at least one selected from a sulfo group, a phosphate group, a phosphite group, a carboxy group, and a carboxymethyl group. Method.
  13.  界面活性剤を混合する
    ことを特徴とする請求項10、11または12記載の施用液体調製方法。
    13. The method for preparing an application liquid according to claim 10, 11 or 12, characterized by mixing a surfactant.
  14.  前記溶剤を加える際に、B型粘度計を用いて測定したB型粘度(20℃、回転数6rpm、3分)が1000mPa・s以上50000mPa・s以下となるように調整する
    ことを特徴とする請求項10、11、12または13記載の施用液体調製方法。
    When adding the solvent, the B-type viscosity measured using a B-type viscometer (20 ° C., rotation speed 6 rpm, 3 minutes) is adjusted to be 1000 mPa s or more and 50000 mPa s or less. 14. The method of preparing an application liquid according to claim 10, 11, 12 or 13.
  15.  前記溶剤を加える際に、下記式より求められるB型粘度計を用いて測定したチキソトロピー性指数が、4.0以上となるように調整する
    ことを特徴とする請求項10、11、12、13または14記載の施用液体調製方法。
     
    チキソトロピー性指数=(20℃、回転数6rpmでの粘度)/(20℃、回転数60rpmでの粘度)
     
    10, 11, 12, and 13, wherein the solvent is adjusted so that the thixotropic index measured using a Brookfield viscometer obtained from the following formula is 4.0 or more when adding the solvent. Or the application liquid preparation method according to 14.

    Thixotropic index = (viscosity at 20°C and 60 rpm)/(viscosity at 20°C and 60 rpm)
  16.  前記機能性組成物が、農薬、肥料、殺菌剤、消毒剤、土壌改良材、又は、植物生長促進剤である
    ことを特徴とする請求項10、11、12、13、14または15記載の施用液体調製方法。

     
    16. Application according to claim 10, 11, 12, 13, 14 or 15, characterized in that said functional composition is an agricultural chemical, fertilizer, fungicide, disinfectant, soil conditioner, or plant growth promoter. Liquid preparation method.

PCT/JP2022/001864 2021-01-20 2022-01-19 Fine cellulose fiber–containing solvent, practical liquid, and practical liquid preparation method WO2022158498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576726A JPWO2022158498A1 (en) 2021-01-20 2022-01-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021007307 2021-01-20
JP2021-007307 2021-04-07

Publications (1)

Publication Number Publication Date
WO2022158498A1 true WO2022158498A1 (en) 2022-07-28

Family

ID=82549465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001864 WO2022158498A1 (en) 2021-01-20 2022-01-19 Fine cellulose fiber–containing solvent, practical liquid, and practical liquid preparation method

Country Status (2)

Country Link
JP (1) JPWO2022158498A1 (en)
WO (1) WO2022158498A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186055A1 (en) * 2015-05-15 2016-11-24 日本製紙株式会社 Anion-modified cellulose nanofiber dispersion liquid and composition
US20170049107A1 (en) * 2014-02-14 2017-02-23 Nanjing Scienx Biological Technology Co., Ltd. Environmentally-friendly emamectin benzoate preparation and preparation method therefor
JP2017066273A (en) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 Fine fibrous cellulose inclusion
WO2018116660A1 (en) * 2016-12-21 2018-06-28 日本製紙株式会社 Acid-type carboxymethylated cellulose nanofibers and production method therefor
US20180255772A1 (en) * 2015-09-16 2018-09-13 Attune Agriculture, Llc Improved adjuvants for agricultural chemicals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170049107A1 (en) * 2014-02-14 2017-02-23 Nanjing Scienx Biological Technology Co., Ltd. Environmentally-friendly emamectin benzoate preparation and preparation method therefor
WO2016186055A1 (en) * 2015-05-15 2016-11-24 日本製紙株式会社 Anion-modified cellulose nanofiber dispersion liquid and composition
US20180255772A1 (en) * 2015-09-16 2018-09-13 Attune Agriculture, Llc Improved adjuvants for agricultural chemicals
JP2017066273A (en) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 Fine fibrous cellulose inclusion
WO2018116660A1 (en) * 2016-12-21 2018-06-28 日本製紙株式会社 Acid-type carboxymethylated cellulose nanofibers and production method therefor

Also Published As

Publication number Publication date
JPWO2022158498A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7006375B2 (en) Thickeners, compositions and sheets
JP7095595B2 (en) Method for producing fibrous cellulose-containing material and fibrous cellulose-containing material
US9850623B2 (en) Water, grease and heat resistant bio-based products and method of making same
JP6713590B1 (en) Method for producing dry solid containing fine cellulose fibers
JP6822420B2 (en) Resin composite and manufacturing method of resin composite
JP2020097733A (en) Fine cellulose fiber-containing dry solid, and fine cellulose fiber re-dispersion liquid
WO2022158498A1 (en) Fine cellulose fiber–containing solvent, practical liquid, and practical liquid preparation method
JP6861972B2 (en) Manufacturing method of dried cellulose nanofibers
JPH0261196A (en) Sizing method of paper and similar product
CA2511651A1 (en) Multi-function starch compositions
WO2020080393A1 (en) Fibrous cellulose, fibrous cellulose dispersion, and production method for fibrous cellulose
JP6299939B1 (en) Thickener, composition and sheet
JP2020063351A (en) Fibrous cellulose, fibrous cellulose dispersion and production method of fibrous cellulose
JP7010206B2 (en) Fibrous cellulose
JP2019202434A (en) Laminate
WO2020129855A1 (en) Production method for dry solid containing fine cellulose fibers, dry solid containing fine cellulose fibers, redispersion of fine cellulose fibers
KR20210040430A (en) Fibrous cellulose-containing composition, liquid composition, and molded article
CN100540803C (en) Powder composition for paper manufacturing
JP2022075638A (en) Insect-repellent composition, insect repellent and pest repelling method
JP7107267B2 (en) Composition
JP7232072B2 (en) MODIFIED CELLULOSE NANOFIBER, GAS BARRIER MATERIAL AND GAS BARRIER MOLDED PRODUCT
CN102505557A (en) Chemical composition for controlling organic pollutant deposition in pulping papermaking production and papermaking method
US20220024826A1 (en) Fibrous cellulose
JP2022020607A (en) Fibrous cellulose-containing substance, and application thereof
FI127954B (en) A method for controlling spray formation, a method for manufacturing multi-layered cardboard and a multiply cardboard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742620

Country of ref document: EP

Kind code of ref document: A1