WO2022158437A1 - Detection kit and detection method - Google Patents

Detection kit and detection method Download PDF

Info

Publication number
WO2022158437A1
WO2022158437A1 PCT/JP2022/001528 JP2022001528W WO2022158437A1 WO 2022158437 A1 WO2022158437 A1 WO 2022158437A1 JP 2022001528 W JP2022001528 W JP 2022001528W WO 2022158437 A1 WO2022158437 A1 WO 2022158437A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
nanoparticles
detection
probe
metal
Prior art date
Application number
PCT/JP2022/001528
Other languages
French (fr)
Japanese (ja)
Inventor
康郎 新留
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2022576681A priority Critical patent/JPWO2022158437A1/ja
Publication of WO2022158437A1 publication Critical patent/WO2022158437A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to detection kits and detection methods.
  • Antibody-modified gold nanoparticles are widely used as probes (markers) for immunodetection such as immunoaffinity chromatography and ELISA (Enzyme-Linked Immuno Sorbent Assay). Since gold nanoparticles can be ionized without using matrix molecules, gold nanoparticles are useful for detecting large-molecular-weight proteins that are difficult to ionize by MALDI (Matrix Assisted Laser Desorption/Ionization).
  • MALDI Microdetection/Ionization
  • Gold nanoparticles also function as ultra-sensitive mass probes that efficiently emit gold ions by MALDI-MS (Mass Spectrometry). Furthermore, even in the case of the immunodetection described above, it can be detected with ultrahigh sensitivity by mass spectrometry.
  • gold ions or gold clusters are obtained by fixing an immunoaffinity chromatogram membrane using antibody-modified gold nanoparticles as probes on a substrate for MALDI-MS measurement and irradiating with laser light.
  • a target substance detection method for detecting desorption of ions is disclosed. According to this detection method, even very small amounts of gold nanoparticles that cannot be observed with the naked eye can be detected, thereby greatly improving analytical sensitivity.
  • Some of the gold nanoparticles are non-specifically adsorbed to the membrane or the like. Signals over 1000 times the detection limit of the mass spectrometer are detected from non-specific adsorption alone. In the case of immunodetection by normal fluorescence or color development, nonspecific adsorption can be reduced to a level that does not interfere with detection by performing blocking treatment according to a standard method. However, for gold nanoparticles, even if optimized blocking treatment is applied, it is considered difficult to reduce non-specific adsorption to the level required for mass spectrometry. For this reason, it has not yet been possible to fully utilize the ultrahigh sensitivity of gold nanoparticle probes reaching 10 ⁇ 18 mol/mm 2 .
  • the present invention has been made in view of the above circumstances, and aims to provide a detection kit and a detection method that can detect a target to be detected with high sensitivity without being hindered by nonspecific adsorption.
  • the detection kit comprises a first carrier carrying a first probe that binds to a detection target and containing a first metal; a second carrier carrying a second probe that binds to the detection target and containing a second metal different from the first metal; with When energy is supplied to the first carrier and the second carrier that are close to each other by binding to the detection target through the first probe and the second probe, specific ions are desorbed.
  • the first carrier is a gold-silver alloy nanoparticle, wherein the second carrier is a gold-palladium alloy nanoparticle; You can do it.
  • the first carrier is a gold nanoparticle
  • the second carrier is platinum nanoparticles, You can do it.
  • first probe and the second probe are An antibody that specifically binds to the detection target, You can do it.
  • a detection method comprises: carrying a first probe that binds to the target of detection, carrying a first carrier containing a first metal, and carrying a second probe that binds to the target of detection, a second metal different from the first metal a binding step of binding a second carrier containing a metal to the detection target via the first probe and the second probe, respectively; a supply step of supplying energy to the first carrier and the second carrier bound to the detection target; Detection of unique ions that are desorbed by supplying the energy to the first carrier and the second carrier that are adjacent to each other by binding to the detection target through the first probe and the second probe. a detection step for including.
  • the detection target can be detected with high sensitivity without being interfered with by non-specific adsorption.
  • FIG. 3 is a diagram showing the m/z of desorbed ions from gold-silver alloy (AuAg) nanoparticles and gold-palladium alloy (AuPd) nanoparticles, and the predicted intensity of each desorbed ion calculated from the isotope abundance ratio.
  • FIG. 4 is a diagram showing absorption spectra of gold nanoparticles; FIG. 4 shows absorption spectra of palladium-shell gold nanoparticles; FIG. 4 shows absorption spectra of AuPd nanoparticles; FIG. 4 shows absorption spectra of silver-shelled gold nanoparticles; FIG. 4 shows absorption spectra of AuAg nanoparticles; FIG.
  • FIG. 3 shows absorption spectra of goat normal immunoglobulin G (IgG)-AuAg nanoparticles.
  • FIG. 4 shows absorption spectra of anti-goat IgG-AuPd nanoparticles.
  • FIG. 4 shows the ionization behavior of complexes of anti-goat IgG-AuPd nanoparticles and normal goat IgG-AuAg nanoparticles.
  • FIG. 2 shows the ionization behavior of AuAg nanoparticles and AuPd nanoparticles cast on a substrate. It is a figure which shows the absorption spectrum of platinum nanoparticles.
  • FIG. 4 is a diagram showing absorption spectra of grown platinum nanoparticles; FIG.
  • FIG. 4 shows absorption spectra of anti-goat IgG-platinum nanoparticles.
  • FIG. 3 shows absorption spectra of goat normal IgG-gold nanoparticles.
  • FIG. 10 shows the intensity of signals on membranes cast with normal goat IgG.
  • FIG. 4 shows the ionization behavior of complexes of anti-goat IgG-platinum nanoparticles and normal goat IgG-gold nanoparticles.
  • FIG. 4 shows absorption spectra of AuPd nanoparticles;
  • FIG. 3 shows the ionization behavior of a sample according to Example 3 that does not contain prostate-specific antigen.
  • FIG. 3 shows the ionization behavior of a sample according to Example 3 containing prostate specific antigen.
  • FIG. 10 is a diagram showing the relationship between the concentration of PSA solution and the signal intensity of AgPd + ions in a sample containing no whole blood according to Example 3;
  • FIG. 10 is a diagram showing the relationship between the concentration of a PSA solution and the signal intensity of AgPd + ions in a sample containing whole blood according to Example 3;
  • FIG. 10 is a diagram showing ionization behavior after mixing of a sample according to Example 4;
  • FIG. 10 is a diagram showing the relationship between the elapsed time after mixing the sample and the signal intensity according to Example 4;
  • FIG. 10 is a diagram showing platinum nanoparticles according to Example 5 imaged with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the detection kit includes carrier 1 (first carrier) and carrier 2 (second carrier).
  • a carrier 1 carries a probe 10 (first probe) that binds to a detection target. Objects to be detected include peptides, proteins, nucleic acids, sugar chains, lipids, and the like.
  • the carrier 2 carries probes 20 (second probes) that bind to the target of detection independently of the carrier 1 .
  • the probe 20 may be the same as or different from the probe 10 as long as it binds to the target of detection.
  • the probes 10 and 20 are also collectively referred to as "probes”.
  • the probe is not particularly limited as long as it binds to the detection target. Modes of binding with the detection target include interaction due to van der Waals forces, hydrogen bonding, coordinate bonding, alloying, and the like.
  • binding between the probe and the target to be detected for example, binding between antigen and antibody fragment or antibody, hybridization of nucleic acid or peptide nucleic acid, binding of aptamer, binding between receptor and ligand, redox reaction, and the like can be used.
  • the probe specifically binds to the target of detection. "Specific" means that the probe does not show any significant binding to a substance other than the substance to be detected.
  • Antibodies and antibody fragments include all types of antibodies that specifically bind to detection targets.
  • the antibody is a monoclonal antibody, polyclonal antibody, single chain antibody, chimeric antibody and any fragment or derivative of such antibody capable of binding to a detection target. Fragments and derivatives include bispecific antibodies, synthetic antibodies, Fab, F(ab)2, Fv or scFv fragments or any chemically modified derivatives of these antibodies.
  • Antibodies and antibody fragments can be obtained by methods known in the art.
  • the probe is an antibody that specifically binds to what is to be detected.
  • Nucleic acids include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and chemically modified derivatives thereof. Nucleic acids can be used particularly when the object to be detected is a nucleic acid. In this case, the nucleic acid is partially or completely complementary to the nucleic acid to be detected or part thereof.
  • Aptamers include nucleic acid and peptide aptamers.
  • Nucleic acids as aptamers in addition to forming base pairs with nucleic acids, specifically bind to targets such as small molecules, proteins, cells, tissues and microorganisms.
  • Peptide nucleic acids are artificially synthesized polymers with a nucleic acid-like backbone composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. Various purine and pyrimidine bases are linked to the backbone by methylene bridges and carbonyl groups. Peptide nucleic acids have similar biological properties to nucleic acids and can bind to targets of detection.
  • the receptor as a probe specifically interacts with the ligand to be detected.
  • a ligand as a probe specifically interacts with the receptor to be detected.
  • the carrier 1 contains metal 11 (first metal).
  • Carrier 2 contains a metal 21 (second metal) different from metal 11 .
  • the carriers 1 and 2 are also collectively referred to as “carriers”, and the metals 11 and 21 are also collectively referred to as "metals”.
  • a carrier is, for example, a particle containing a metal.
  • the particle size of the particles is not particularly limited, and may be on the order of micrometers or on the order of nanometers.
  • the metal may be contained in the carrier not only as a single metal element but also as an alloy in which metal elements are combined. Note that when the metal 11 and the metal 21 are an alloy, the metal 21 different from the metal 11 means that the metal 21 contains at least one metal atom that is not contained in the metal 11 .
  • the carrier is metal nanoparticles or alloy nanoparticles.
  • metal nanoparticles Several preparation methods are known for metal nanoparticles, and different sizes and various surface modifications are possible.
  • Gold nanoparticles are particularly preferred because they are chemically stable and methods for immobilizing various physiologically active substances on their surfaces are known.
  • gold nanoparticles are preferable as carriers because of the high desorption efficiency of gold ions and gold cluster ions when irradiated with pulsed laser light.
  • Silver nanoparticles are also suitable for carriers because their preparation methods are widely known, and the efficiency of desorption of silver ions and silver cluster ions when irradiated with pulsed laser light is high.
  • Other metal nanoparticles include nanoparticles of platinum, palladium, iridium, copper, nickel, manganese, and the like.
  • carrier 1 is gold nanoparticles and carrier 2 is platinum nanoparticles.
  • alloy nanoparticles As the alloy nanoparticles, alloy nanoparticles obtained by combining two or more metals related to the above metal nanoparticles are preferable.
  • alloy nanoparticles include AuAg nanoparticles and AuPd nanoparticles.
  • Alloy nanoparticles can be prepared by known methods.
  • alloy nanoparticles are obtained by alloying nanoparticles containing a core containing a metal and a shell containing a metal different from the metal contained in the core and covering the core with a pulsed laser.
  • the alloy nanoparticles are not limited to binary alloys containing two kinds of metal elements, and may be ternary alloys, quaternary alloys, or the like.
  • the carrier may also be a silicate such as silicon dioxide (silica) containing metals as metal ions.
  • a silicate such as silicon dioxide (silica)
  • the carrier may be microparticles, polymers, and the like.
  • the carrier is obtained by ionically bonding a manganese ion to an anion of silicate.
  • the method for supporting the probe on the carrier is not particularly limited.
  • probes are adsorbed or covalently attached to a support.
  • the carrier is a metal nanoparticle and the probe is a protein (immunoglobulin) such as an antibody
  • the metal nanoparticles prepared by reduction with a reducing agent such as citric acid or tannic acid are treated with the protein under predetermined conditions. Just mix.
  • the protein binds to the carrier via electrostatic interactions, hydrogen bonds, free thiol groups with high affinity contained in the protein, and the like.
  • the protein used as the probe can be chemically modified and immobilized on the carrier through covalent bonding with a thiol group or the like.
  • an antibody immobilization technique using a protein protein A, protein G, protein A/G or protein L
  • the carrier contains gold
  • peptides with gold-reducing and gold-binding ability may be used.
  • ions When energy is supplied to the carrier 1 and the carrier 2 which are close to each other by binding to the detection target through the probe 10 and the probe 20, specific ions are desorbed.
  • “Intrinsic” means an ion that is desorbed only when carrier 1 and carrier 2 are brought into close proximity due to binding to the target of detection.
  • the carrier 1 is a gold nanoparticle and the carrier 2 is a platinum nanoparticle
  • energy is supplied to the adjacent carrier 1 and the carrier 2, so that gold platinum ions as ions specific to the adjacent carrier 1 and carrier 2 (AuPt + ) is eliminated.
  • the carrier 1 is AuAg nanoparticles and the carrier 2 is AuPd nanoparticles
  • energy is supplied to the carriers 1 and 2 that are in close proximity to fuse the two types of nanoparticles to form a ternary alloy.
  • Silver palladium ions (AgPd + ) are released as unique ions from the ternary alloy.
  • the carrier 1 may be silica or protein that occludes metal ions, and the carrier 2 may be metal nanoparticles.
  • Metal ions include manganese ions, copper ions, cobalt ions, tin ions, and the like, which do not exist in large amounts in nature.
  • the carrier 1 is silica that absorbs manganese ions
  • the carrier 2 is platinum nanoparticles
  • manganese ions are desorbed from the carrier 1 by supplying energy to the carrier 1 and the carrier 2 that are in close proximity due to binding to the detection target. do.
  • the carrier 1 is silica that occludes manganese ions and the carrier 2 is a gold nanoparticle, energy is supplied to the carriers 1 and 2 that are close to each other due to binding to the detection target, so that alloy ions (AuMn 2+ ) desorbs.
  • Energy can be supplied using known methods such as the electron impact method, the chemical ionization method, the field desorption method, the ion beam method, and the particle impact method.
  • the energy is supplied by electromagnetic radiation that is absorbed by the nanoparticles.
  • the electromagnetic waves are optimized for desorption ionization of the material forming the carrier rather than from the detection target itself.
  • An electromagnetic wave is, for example, a pulsed electromagnetic wave of 10 milliseconds to 10 femtoseconds.
  • the energy is supplied to the carrier by irradiation with a pulsed laser having a wavelength in the ultraviolet to near-infrared range and having a pulse width of 100 nanoseconds to 1 picosecond.
  • a pulsed laser having a wavelength in the ultraviolet to near-infrared range and having a pulse width of 100 nanoseconds to 1 picosecond.
  • the use of a pulsed laser is efficient in selective desorption and ionization from the detection target.
  • a device that combines a pulse laser and a time-of-flight mass spectrometer is a suitable analytical instrument for the detection kit according to this embodiment.
  • a combination of a pulsed laser and a time-of-flight mass spectrometer is generally widely used as MALDI-MS using matrix molecules.
  • a widely used laser is an ultraviolet pulsed laser, but visible light or near-infrared light pulsed laser
  • the ultraviolet pulsed laser light of the MALDI-MS device is applied to the carriers 1 and 2 that are in close proximity due to binding to the detection target.
  • the ultraviolet pulsed laser light of the MALDI-MS device is applied to the carriers 1 and 2 that are in close proximity due to binding to the detection target.
  • desorption of AuPt + occurs with high efficiency.
  • the presence of carrier 1 and carrier 2 isolated without proximity gives no competing signal to AuPt + . Therefore, when AuPt + is detected, it indicates that the target of detection is contained in the sample.
  • the carrier 1 contains AuAg nanoparticles and the carrier 2 contains AuPd nanoparticles
  • the ultraviolet pulsed laser light of the MALDI-MS apparatus is irradiated to the carriers 1 and 2 that are close to each other due to binding to the detection target
  • AgPd + elimination occurs with high efficiency.
  • AgPd + can be detected at the corresponding m/z of 219 signal magnitude. Since palladium is less likely to be desorbed and ionized than gold and silver, AgPd + can be detected even at a signal magnitude of m/z 215 corresponding to 109 Ag 106 Pd and 107 Ag 108 Pd.
  • carrier 1 and carrier 2 which are not in close proximity and isolated, do not give a signal that competes with AgPd + . Therefore, the detection of AgPd + indicates that the sample contains a factor that brings carrier 1 and carrier 2 closer to each other, that is, the detection target.
  • the detection method includes a binding step, a supply step, and a detection step.
  • carrier 1 and carrier 2 are bound to the detection target via probe 10 and probe 20, respectively.
  • the binding of the carrier to the detection target is performed by a known method, and for example, the sample may be exposed to carrier 1 and carrier 2.
  • the sample may be exposed to the carrier 1 and then to the carrier 2, or, for example, by immersing the sample in a dispersion containing the carrier 1 and the carrier 2, the sample may be combined with the carrier 1 and the carrier 2. It may be exposed to carrier 2 simultaneously.
  • the supply step energy is supplied as described above to the carrier 1 and carrier 2 bound to the detection target.
  • the detection step the unique ions desorbed by binding to the detection target via the probes 10 and 20 and supplying energy to the adjacent carriers 1 and 2 are detected.
  • the above probes may be antibodies.
  • ions specific to carrier 1 and carrier 2 that are close to each other can be detected.
  • the detection kit can also be applied to a blotting method in which DNA, RNA, and protein are transferred to a membrane and analyzed.
  • the carrier may be exposed to the specimen transferred to the blotting membrane, and the blotting membrane may be irradiated with a pulse laser.
  • the carrier may be exposed to the sample immobilized on the ELISA plate and irradiated with a pulsed laser.
  • Detection is also possible using other mass spectrometry methods, such as quadrupole mass spectrometers, ion trap mass spectrometers, and Fourier transform mass spectrometers.
  • the detection kit it is possible to identify ions bound to the detection target, that is, ions that are desorbed only when the carrier 1 and the carrier 2 are in close proximity. Therefore, competing signals (background signals) due to ions derived from carrier 1 and carrier 2 non-specifically adsorbed on the membrane or the like and not bound to the detection target can be excluded from the analysis. As a result, the detection target can be detected with high sensitivity without being interfered with by non-specific adsorption.
  • the detection kit according to the present embodiment uses mass spectrometry to detect the presence of a target to be detected in a sample having a complex composition such as a tissue section and an insulating sample having a certain thickness such as a membrane with high sensitivity. has the advantage of being able to detect Furthermore, there is an advantage that the distribution of the detection target can be visualized using the technique of imaging mass spectrometry.
  • the detection kit according to the present embodiment may further include a substrate on the surface of which a capturing substance that binds to at least one of probes 10 and 20 is immobilized.
  • the capture substance is not particularly limited as long as it binds to the probe.
  • the capture agent is an antibody that specifically binds to the probe.
  • the target to be detected to which the carrier 1 and the carrier 2 are bound is preferably transferred to the substrate via at least one of the probe 10 and the probe 20 between the binding step and the supply step described above.
  • a capture step is included which captures the capture material above.
  • the detection method further includes, between the capturing step and the supplying step, a removing step of washing the substrate to remove substances not captured on the substrate from the substrate.
  • a removing step of washing the substrate to remove substances not captured on the substrate from the substrate By removing substances other than the target to be detected, carrier 1 and carrier 2 using a capture substance, it is possible to exclude signals due to organic fragments generated by photoheating such as metal nanoparticles. As a result, for example, even if a biological sample such as whole blood containing various contaminants is analyzed as it is, the detection target can be detected with high sensitivity without being interfered with by non-specific adsorption.
  • Example 1 AuAg-AuPd
  • 100 mL of pure water and 0.7 mL of HAuCl 4 (42 mM) were added to a 500 mL three-necked flask and heated under reflux. After boiling, 2 mL of 1% by weight trisodium citrate was added to the reaction solution and heating was continued for 60 minutes.
  • the spectrum of the reaction solution was measured using an absorption photometer (V-670, manufactured by JASCO Corporation) (see FIG. 2) to confirm the progress of the reaction.
  • the reflux tube was removed from the three-necked flask, and the reaction solution was concentrated by heating for 10 minutes.
  • the reaction solution was cooled to room temperature, divided into 2 mL aliquots, and centrifuged at 5000 ⁇ G and 30° C. for 10 minutes. The supernatant was removed, and 1.3 mM trisodium citrate was added to the obtained gold nanoparticles to redisperse them, and the total volume was adjusted to 10 mL.
  • the spectrum was measured by diluting the gold nanoparticle dispersion 10-fold (see FIG. 2).
  • the reaction solution was irradiated with laser light from an Nd-YAG laser (manufactured by NEWWAVE Research) (532 nm, 10 ns, 20 Hz, 250 mW). Each 8 mL of the reaction solution was transferred to a 15 mL tube and centrifuged at 5000 ⁇ G and 30° C. for 10 minutes. The supernatant was removed and 4 mL of 1.3 mM trisodium citrate was added to each tube to redisperse the resulting AuPd (alloy) nanoparticles. The AuPd nanoparticle dispersion was transferred to a screw tube and the spectrum was measured (see Figure 4).
  • Nd-YAG laser manufactured by NEWWAVE Research
  • the reaction solution was irradiated with laser light from an Nd-YAG laser (manufactured by NEWWAVE Research) (532 nm, 10 ns, 20 Hz, 200 mW). Each 8 mL of the reaction solution was transferred to a 15 mL tube and centrifuged at 5000 ⁇ G and 30° C. for 10 minutes. The supernatant was removed and 4 mL of 1.3 mM trisodium citrate was added to each tube to redisperse the resulting AuAg (alloy) nanoparticles. The AuAg nanoparticle dispersion was transferred to a screw tube and the spectrum was measured (see Figure 6).
  • Nd-YAG laser manufactured by NEWWAVE Research
  • Anti-goat IgG-AuPd nanoparticles were prepared in a total volume of 100 ⁇ L such that their OD 355 values were those of normal goat IgG- AuAg nanoparticles. 100 ⁇ L of the prepared anti-goat IgG-AuPd nanoparticle dispersion and 100 ⁇ L of normal goat IgG-AuAg nanoparticles were mixed and allowed to stand for 1 hour. Dispersions were prepared by further diluting the prepared dispersion with phosphate buffered saline (1 ⁇ PBS) 10-fold, 100-fold and 1000-fold. The resulting dispersion was cast onto a transparent conductive film (ITO) substrate.
  • ITO transparent conductive film
  • Mass spectrometry was performed using Autoflex Speed (manufactured by Bruker) (number of laser shots: 500, laser power: 90%, reflector voltage: 9.9, random walk: OFF)
  • Example 2 Au-Pt [Preparation of platinum nanoparticles] 50 mL of pure water and 144 ⁇ L of H 2 PtCl 6 (96.5 mM) were added to a 100 mL three-necked flask and heated under reflux. After boiling, add 1.1 mL of citrate buffer (1 wt% trisodium citrate and 0.05 wt% citric acid), 30 seconds later add 0.8 wt% NaBH4 buffer ( 0.8 wt% per mL of citrate buffer). 550 ⁇ L of 0.08 w/v % NaBH 4 buffer obtained by 10-fold dilution of NaBH 4 (0.044 g) was added. Continue heating for 10 minutes and cool to room temperature. The spectrum of the resulting product was measured (see Figure 11).
  • the product was centrifuged at 5000 x G and 30°C for 10 minutes. The supernatant was discarded, and 1.3 mM trisodium citrate was used to adjust the total amount of the platinum nanoparticle dispersion to 10 mL.
  • Anti-goat IgG-platinum nanoparticles were prepared in a total volume of 100 ⁇ L such that their OD 355 values were the OD 355 values of normal goat IgG-gold nanoparticles prepared in Example 1. 100 ⁇ L of the prepared anti-goat IgG-platinum nanoparticle dispersion and 100 ⁇ L of normal goat IgG-gold nanoparticle dispersion were mixed and allowed to stand for 1 hour, and the resulting dispersion was cast on an ITO substrate. Mass spectrometry was performed under the same conditions as in Example 1.
  • FIG. 16 shows a mass spectrum obtained by measuring the ITO substrate. AuPt + signals specific to the antigen-antibody reaction were observed at m/z 392 and 395.
  • Example 3 PSA sandwich assay
  • Two types of antibody-modified alloy nanoparticles AuAg nanoparticles and AuPd nanoparticles are used to sandwich the prostate-specific antigen (PSA) as the target substance, and the two types of alloy nanoparticles are close to each other.
  • Immunodetection was performed using the resulting cluster ions (AgPd + ions) as reporter ions.
  • the AuPd nanoparticle dispersion prepared in this example and the AuAg nanoparticle dispersion prepared in Example 1 were diluted with 10 mM phosphate buffer, and the absorbance at 355 nm was adjusted to 0.6 cm ⁇ 1 .
  • the antibody of the PSA detection ELISA kit Human PSA ELISA Kit, manufactured by Abcam, ab264615. was used.
  • BSA bovine serum albumin
  • Mass spectrometry was performed using Autoflex Speed (manufactured by Bruker) (number of laser shots: 100, laser power: 90%, reflector voltage: 9.9)
  • FIG. 18 shows the mass spectrum of the sample without PSA.
  • Three strong signals from Ag 2+ (m/z 214, 216, 218) were observed from samples without PSA, and only weak noise was observed at the other m/z.
  • FIG. 19 shows the mass spectrum of a sample to which 10 ⁇ L of 4 ng/mL PSA solution was added. When PSA was added to the sample solution, the peak intensities of m/z 212, 213, 215, 217 and 219 increased, and signals of AgPd + ions could be observed.
  • FIG. 20 shows the signal intensity of AgPd + ions (m/z 215) versus the concentration of added PSA solution.
  • the signal intensity at m/z 215 increased depending on the amount of PSA added.
  • AgPd + ions were found to function as reporter ions for antigen-antibody reactions.
  • FIG. 21 the sample to which 10 ⁇ L of carp whole blood was added decreased the signal intensity, but the tendency of the signal intensity to increase depending on the PSA concentration did not change. It was found that immunodetection using reporter ions is possible.
  • Example 4 Examination of acceleration of analysis
  • the sample solution is concentrated on the substrate and dried. Without waiting for the antigen-antibody reaction to proceed in the solution, the reaction proceeds during concentration and drying, enabling rapid analysis.
  • Example 2 AuPd nanoparticles and AuAg nanoparticles were modified with goat IgG and normal goat IgG, respectively.
  • the sample mixed with the modified nanoparticle dispersion was subjected to mass spectrometry at predetermined time intervals under the same conditions as in Example 1.
  • FIG. 22 shows mass spectra for each elapsed time after mixing.
  • FIG. 23 shows signal intensity (m/z 217) versus time elapsed after mixing. Even when casting and measuring immediately after mixing, AgPd + ions (m/z 217) could be detected with about half the intensity when waiting for 60 minutes. The concentration of nanoparticles is 4.4 ⁇ 10 ⁇ 12 M. Given sufficient signal intensity, little waiting time is required after sample mixing. In order to obtain the ultimate detection sensitivity, it is better to wait until the antigen-antibody reaction occurs sufficiently in the solution. signal can be detected even
  • Example 5 Preparation of platinum nanoparticles and ionization behavior
  • 144 ⁇ L of 96.5 mM chloroplatinic acid was added to 50 mL of water and brought to a boil.
  • 1.1 mL of 0.1 M citrate buffer was added, 550 ⁇ L of 0.08 wt % NaBH 4 was added, and the mixture was boiled for 10 minutes to prepare platinum nanoparticles.
  • the prepared dispersion was diluted 10-fold with phosphate buffered saline (1 ⁇ PBS) to prepare a dispersion.
  • the dispersion liquid was cast on an ITO substrate and subjected to mass spectrometry under the same conditions as in Example 1.
  • FIG. 24 shows platinum nanoparticles imaged by TEM.
  • the particle size of the platinum nanoparticles obtained from the TEM image was 4.9 ⁇ 1 nm.
  • FIG. 25 shows a mass spectrum obtained by measuring the ITO substrate. Platinum signals were observed at m/z 194, 195 and 196. It is generally understood that platinum has a high melting point and is difficult to ionize, but it has been shown that if the laser light irradiation intensity is sufficient, ions are desorbed at a level at which cluster ions with silver or palladium can be detected. rice field.
  • the present invention is suitable for detecting trace components.

Abstract

This detection kit comprises a first carrier that supports a first probe bonding to an object being detected and that contains a first metal, and a second carrier that supports a second probe bonding to the object being detected and that contains a second metal different from the first metal. When energy is supplied to the first carrier and the second carrier that have come into proximity by bonding to the object being detected via the first probe and the second probe, intrinsic ions are desorbed.

Description

検出キット及び検出方法Detection kit and detection method
 本発明は、検出キット及び検出方法に関する。 The present invention relates to detection kits and detection methods.
 抗体を修飾した金ナノ粒子は、イムノアフィニティクロマトグラフ及びELISA(Enzyme-Linked Immuno Sorbent Assay)等の免疫検出用のプローブ(マーカー)として広く用いられている。金ナノ粒子はマトリックス分子を用いることなくイオン化できるため、MALDI(Matrix Assisted Laser Desorption/Ionization)法ではイオン化しにくい大分子量のタンパク質等を検出するのに金ナノ粒子は有用である。 Antibody-modified gold nanoparticles are widely used as probes (markers) for immunodetection such as immunoaffinity chromatography and ELISA (Enzyme-Linked Immuno Sorbent Assay). Since gold nanoparticles can be ionized without using matrix molecules, gold nanoparticles are useful for detecting large-molecular-weight proteins that are difficult to ionize by MALDI (Matrix Assisted Laser Desorption/Ionization).
 金ナノ粒子は、MALDI-MS(Mass Spectrometry)によって金イオンを効率良く放出する超高感度マスプローブとしても機能する。さらに、上記の免疫検出の場合でも質量分析によって超高感度で検出できる。特許文献1には、抗体を修飾した金ナノ粒子をプローブとして用いたイムノアフィニティクロマトグラムのメンブレンをMALDI-MS測定用の基板上に固定し、レーザー光照射を行うことで、金イオン又は金クラスターイオンの脱離を検出する対象物質の検出方法が開示されている。当該検出方法によれば、肉眼で観察できない極めて少量の金ナノ粒子も検出できることから、分析感度が大幅に向上する。 Gold nanoparticles also function as ultra-sensitive mass probes that efficiently emit gold ions by MALDI-MS (Mass Spectrometry). Furthermore, even in the case of the immunodetection described above, it can be detected with ultrahigh sensitivity by mass spectrometry. In Patent Document 1, gold ions or gold clusters are obtained by fixing an immunoaffinity chromatogram membrane using antibody-modified gold nanoparticles as probes on a substrate for MALDI-MS measurement and irradiating with laser light. A target substance detection method for detecting desorption of ions is disclosed. According to this detection method, even very small amounts of gold nanoparticles that cannot be observed with the naked eye can be detected, thereby greatly improving analytical sensitivity.
特開2015-1453号公報JP 2015-1453 A
 金ナノ粒子の一部はメンブレン等に非特異的に吸着してしまう。非特異吸着だけで質量分析機器の検出限界の1000倍を超えるシグナルが検出される。通常の蛍光又は発色による免疫検出の場合、定法に従ってブロッキング処理を行うことで検出を妨害しないレベルにまで非特異吸着を減らすことができる。しかしながら、金ナノ粒子に関しては、最適化したブロッキング処理を適用しても、質量分析の要求するレベルにまで非特異吸着を低減することは難しいと考えられる。このため、10-18mol/mmに達する金ナノ粒子プローブの超高感度性を十分に活かすことはいまだにできていない。 Some of the gold nanoparticles are non-specifically adsorbed to the membrane or the like. Signals over 1000 times the detection limit of the mass spectrometer are detected from non-specific adsorption alone. In the case of immunodetection by normal fluorescence or color development, nonspecific adsorption can be reduced to a level that does not interfere with detection by performing blocking treatment according to a standard method. However, for gold nanoparticles, even if optimized blocking treatment is applied, it is considered difficult to reduce non-specific adsorption to the level required for mass spectrometry. For this reason, it has not yet been possible to fully utilize the ultrahigh sensitivity of gold nanoparticle probes reaching 10 −18 mol/mm 2 .
 本発明は、上記実情に鑑みてなされたものであり、非特異吸着に妨害されずに検出対象を高感度に検出できる検出キット及び検出方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a detection kit and a detection method that can detect a target to be detected with high sensitivity without being hindered by nonspecific adsorption.
 本発明の第1の観点に係る検出キットは、
 検出対象に結合する第1のプローブを担持し、第1の金属を含有する第1の担体と、
 前記検出対象に結合する第2のプローブを担持し、前記第1の金属と異なる第2の金属を含有する第2の担体と、
 を備え、
 前記第1のプローブ及び前記第2のプローブを介して前記検出対象に結合することで近接した前記第1の担体と前記第2の担体にエネルギーが供給されると固有のイオンが脱離する。
The detection kit according to the first aspect of the present invention comprises
a first carrier carrying a first probe that binds to a detection target and containing a first metal;
a second carrier carrying a second probe that binds to the detection target and containing a second metal different from the first metal;
with
When energy is supplied to the first carrier and the second carrier that are close to each other by binding to the detection target through the first probe and the second probe, specific ions are desorbed.
 前記第1の担体は、金銀合金ナノ粒子であって、
 前記第2の担体は、金パラジウム合金ナノ粒子である、
 こととしてもよい。
The first carrier is a gold-silver alloy nanoparticle,
wherein the second carrier is a gold-palladium alloy nanoparticle;
You can do it.
 また、前記第1の担体は、金ナノ粒子であって、
 前記第2の担体は、白金ナノ粒子である、
 こととしてもよい。
Further, the first carrier is a gold nanoparticle,
The second carrier is platinum nanoparticles,
You can do it.
 また、前記第1のプローブ及び前記第2のプローブは、
 前記検出対象に特異的に結合する抗体である、
 こととしてもよい。
Further, the first probe and the second probe are
An antibody that specifically binds to the detection target,
You can do it.
 本発明の第2の観点に係る検出方法は、
 検出対象に結合する第1のプローブを担持し、第1の金属を含有する第1の担体、及び前記検出対象に結合する第2のプローブを担持し、前記第1の金属と異なる第2の金属を含有する第2の担体を、それぞれ前記第1のプローブ及び前記第2のプローブを介して前記検出対象に結合させる結合ステップと、
 前記検出対象に結合した前記第1の担体及び前記第2の担体にエネルギーを供給する供給ステップと、
 前記第1のプローブ及び前記第2のプローブを介して前記検出対象に結合することで近接した前記第1の担体及び前記第2の担体への前記エネルギーの供給により脱離した固有のイオンを検出する検出ステップと、
 を含む。
A detection method according to a second aspect of the present invention comprises:
carrying a first probe that binds to the target of detection, carrying a first carrier containing a first metal, and carrying a second probe that binds to the target of detection, a second metal different from the first metal a binding step of binding a second carrier containing a metal to the detection target via the first probe and the second probe, respectively;
a supply step of supplying energy to the first carrier and the second carrier bound to the detection target;
Detection of unique ions that are desorbed by supplying the energy to the first carrier and the second carrier that are adjacent to each other by binding to the detection target through the first probe and the second probe. a detection step for
including.
 本発明によれば、非特異吸着に妨害されずに検出対象を高感度に検出できる。 According to the present invention, the detection target can be detected with high sensitivity without being interfered with by non-specific adsorption.
金銀合金(AuAg)ナノ粒子及び金パラジウム合金(AuPd)ナノ粒子からの脱離イオンのm/zと、同位体存在比から算出される各脱離イオンの強度予測を示す図である。FIG. 3 is a diagram showing the m/z of desorbed ions from gold-silver alloy (AuAg) nanoparticles and gold-palladium alloy (AuPd) nanoparticles, and the predicted intensity of each desorbed ion calculated from the isotope abundance ratio. 金ナノ粒子の吸収スペクトルを示す図である。FIG. 4 is a diagram showing absorption spectra of gold nanoparticles; パラジウムシェル金ナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of palladium-shell gold nanoparticles; AuPdナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of AuPd nanoparticles; 銀シェル金ナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of silver-shelled gold nanoparticles; AuAgナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of AuAg nanoparticles; ヤギ正常免疫グロブリンG(IgG)-AuAgナノ粒子の吸収スペクトルを示す図である。FIG. 3 shows absorption spectra of goat normal immunoglobulin G (IgG)-AuAg nanoparticles. 抗ヤギIgG-AuPdナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of anti-goat IgG-AuPd nanoparticles. 抗ヤギIgG-AuPdナノ粒子とヤギ正常IgG-AuAgナノ粒子との複合体のイオン化挙動を示す図である。FIG. 4 shows the ionization behavior of complexes of anti-goat IgG-AuPd nanoparticles and normal goat IgG-AuAg nanoparticles. 基板にキャストされたAuAgナノ粒子とAuPdナノ粒子のイオン化挙動を示す図である。FIG. 2 shows the ionization behavior of AuAg nanoparticles and AuPd nanoparticles cast on a substrate. 白金ナノ粒子の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of platinum nanoparticles. 成長させた白金ナノ粒子の吸収スペクトルを示す図である。FIG. 4 is a diagram showing absorption spectra of grown platinum nanoparticles; 抗ヤギIgG-白金ナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of anti-goat IgG-platinum nanoparticles. ヤギ正常IgG-金ナノ粒子の吸収スペクトルを示す図である。FIG. 3 shows absorption spectra of goat normal IgG-gold nanoparticles. ヤギ正常IgGをキャストしたメンブレンにおけるシグナルの強度を示す図である。FIG. 10 shows the intensity of signals on membranes cast with normal goat IgG. 抗ヤギIgG-白金ナノ粒子とヤギ正常IgG-金ナノ粒子との複合体のイオン化挙動を示す図である。FIG. 4 shows the ionization behavior of complexes of anti-goat IgG-platinum nanoparticles and normal goat IgG-gold nanoparticles. AuPdナノ粒子の吸収スペクトルを示す図である。FIG. 4 shows absorption spectra of AuPd nanoparticles; 前立腺特異抗原を含まない実施例3に係る試料のイオン化挙動を示す図である。FIG. 3 shows the ionization behavior of a sample according to Example 3 that does not contain prostate-specific antigen. 前立腺特異抗原を含む実施例3に係る試料のイオン化挙動を示す図である。FIG. 3 shows the ionization behavior of a sample according to Example 3 containing prostate specific antigen. 実施例3に係る全血を含まない試料におけるPSA溶液の濃度とAgPdイオンのシグナル強度との関係を示す図である。FIG. 10 is a diagram showing the relationship between the concentration of PSA solution and the signal intensity of AgPd + ions in a sample containing no whole blood according to Example 3; 実施例3に係る全血を含む試料におけるPSA溶液の濃度とAgPdイオンのシグナル強度との関係を示す図である。FIG. 10 is a diagram showing the relationship between the concentration of a PSA solution and the signal intensity of AgPd + ions in a sample containing whole blood according to Example 3; 実施例4に係る試料の混合後のイオン化挙動を示す図である。FIG. 10 is a diagram showing ionization behavior after mixing of a sample according to Example 4; 実施例4に係る試料の混合後の経過時間とシグナル強度との関係を示す図である。FIG. 10 is a diagram showing the relationship between the elapsed time after mixing the sample and the signal intensity according to Example 4; 透過電子顕微鏡(TEM)で撮像した実施例5に係る白金ナノ粒子を示す図である。FIG. 10 is a diagram showing platinum nanoparticles according to Example 5 imaged with a transmission electron microscope (TEM). 基板にキャストされた実施例5に係る白金ナノ粒子のイオン化挙動を示す図である。FIG. 10 is a diagram showing ionization behavior of platinum nanoparticles according to Example 5 cast on a substrate.
 本発明に係る実施の形態について図面を参照して説明する。なお、本発明は下記の実施の形態及び図面によって限定されるものではない。なお、下記の実施の形態において、“有する”、“含む”又は“含有する”といった表現は、“からなる”又は“から構成される”という意味も包含する。 An embodiment according to the present invention will be described with reference to the drawings. The present invention is not limited by the following embodiments and drawings. In the following embodiments, expressions such as "have", "include" and "contain" also include the meaning of "consisting of" or "consisting of".
 本実施の形態に係る検出キットは、担体1(第1の担体)と担体2(第2の担体)とを備える。担体1は、検出対象に結合するプローブ10(第1のプローブ)を担持する。検出対象は、ペプチド、タンパク質、核酸、糖鎖及び脂質等である。担体2は、当該検出対象に結合するプローブ20(第2のプローブ)を、担体1とは独立して担持する。プローブ20は、検出対象に結合する限り、プローブ10と同じでもよいし、異なっていてもよい。以下では、プローブ10及びプローブ20を総称して“プローブ”ともいう。 The detection kit according to the present embodiment includes carrier 1 (first carrier) and carrier 2 (second carrier). A carrier 1 carries a probe 10 (first probe) that binds to a detection target. Objects to be detected include peptides, proteins, nucleic acids, sugar chains, lipids, and the like. The carrier 2 carries probes 20 (second probes) that bind to the target of detection independently of the carrier 1 . The probe 20 may be the same as or different from the probe 10 as long as it binds to the target of detection. Hereinafter, the probes 10 and 20 are also collectively referred to as "probes".
 プローブは、検出対象と結合する限り特に限定されない。検出対象との結合の態様としては、ファンデアワールス力による相互作用、水素結合、配位結合及び合金化等が挙げられる。プローブと検出対象との結合には、例えば、抗原と抗体フラグメント又は抗体との結合、核酸又はペプチド核酸のハイブリダイズ、アプタマーの結合、受容体とリガンドとの結合及び酸化還元反応等が利用可能である。好ましくは、プローブは特異的に検出対象に結合する。“特異的”とは、プローブが検出対象以外の物質の対象に対しては何ら有意な結合を示さないことをいう。 The probe is not particularly limited as long as it binds to the detection target. Modes of binding with the detection target include interaction due to van der Waals forces, hydrogen bonding, coordinate bonding, alloying, and the like. For the binding between the probe and the target to be detected, for example, binding between antigen and antibody fragment or antibody, hybridization of nucleic acid or peptide nucleic acid, binding of aptamer, binding between receptor and ligand, redox reaction, and the like can be used. be. Preferably, the probe specifically binds to the target of detection. "Specific" means that the probe does not show any significant binding to a substance other than the substance to be detected.
 抗体及び抗体フラグメントは、検出対象に特異的に結合するすべてのタイプの抗体を包含する。例えば、抗体は、モノクローナル抗体、ポリクローナル抗体、単鎖抗体、キメラ抗体及び検出対象に結合し得るそのような抗体の任意のフラグメント又は誘導体である。フラグメント及び誘導体は、二重特異性抗体、合成抗体、Fab、F(ab)2、Fv若しくはscFvフラグメント、又はこれらの抗体の任意の化学的に改変された誘導体を包含する。抗体及び抗体フラグメントは、本技術分野における公知の方法で得ることができる。好適には、プローブは、検出対象に特異的に結合する抗体である。 Antibodies and antibody fragments include all types of antibodies that specifically bind to detection targets. For example, the antibody is a monoclonal antibody, polyclonal antibody, single chain antibody, chimeric antibody and any fragment or derivative of such antibody capable of binding to a detection target. Fragments and derivatives include bispecific antibodies, synthetic antibodies, Fab, F(ab)2, Fv or scFv fragments or any chemically modified derivatives of these antibodies. Antibodies and antibody fragments can be obtained by methods known in the art. Preferably, the probe is an antibody that specifically binds to what is to be detected.
 核酸は、デオキシリボ核酸(DNA)、リボ核酸(RNA)及び化学的に改変されたそれらの誘導体のすべてを包含する。核酸は、検出対象が核酸である場合に特に使用され得る。この場合、核酸は、検出対象の核酸又はその一部と部分的にまたは完全に相補性である。 Nucleic acids include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and chemically modified derivatives thereof. Nucleic acids can be used particularly when the object to be detected is a nucleic acid. In this case, the nucleic acid is partially or completely complementary to the nucleic acid to be detected or part thereof.
 アプタマーは、核酸及びペプチドアプタマーを包含する。アプタマーとしての核酸は、核酸との塩基対の形成に加え、低分子、タンパク質、細胞、組織及び微生物等の標的に特異的に結合する。 Aptamers include nucleic acid and peptide aptamers. Nucleic acids as aptamers, in addition to forming base pairs with nucleic acids, specifically bind to targets such as small molecules, proteins, cells, tissues and microorganisms.
 ペプチド核酸は、ペプチド結合により連結された反復するN-(2-アミノエチル)-グリシン単位で構成された核酸様骨格を有する人工的に合成されたポリマーである。種々のプリン及びピリミジン塩基は、メチレン架橋及びカルボニル基により骨格に連結される。ペプチド核酸は、核酸と同様の生物学的性質を有し、検出対象に結合し得る。 Peptide nucleic acids are artificially synthesized polymers with a nucleic acid-like backbone composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. Various purine and pyrimidine bases are linked to the backbone by methylene bridges and carbonyl groups. Peptide nucleic acids have similar biological properties to nucleic acids and can bind to targets of detection.
 プローブとしての受容体は、検出対象であるリガンドに特異的に相互作用する。プローブとしてのリガンドは、検出対象である受容体に特異的に相互作用する。 The receptor as a probe specifically interacts with the ligand to be detected. A ligand as a probe specifically interacts with the receptor to be detected.
 担体1は、金属11(第1の金属)を含有する。担体2は、金属11と異なる金属21(第2の金属)を含有する。以下では、担体1及び担体2を総称して“担体”、金属11及び金属21を総称して“金属”ともいう。担体は、例えば、金属を含む粒子である。粒子の粒径は特に限定されず、マイクロメートルオーダーであってもナノメートルオーダーであってもよい。金属は、金属元素単体に限らず金属元素を組み合わせた合金として担体に含有されていてもよい。なお、金属11及び金属21が合金である場合、金属11と異なる金属21とは、金属21が、金属11に含まれない少なくとも1種の金属原子を含有することを意味する。 The carrier 1 contains metal 11 (first metal). Carrier 2 contains a metal 21 (second metal) different from metal 11 . Hereinafter, the carriers 1 and 2 are also collectively referred to as "carriers", and the metals 11 and 21 are also collectively referred to as "metals". A carrier is, for example, a particle containing a metal. The particle size of the particles is not particularly limited, and may be on the order of micrometers or on the order of nanometers. The metal may be contained in the carrier not only as a single metal element but also as an alloy in which metal elements are combined. Note that when the metal 11 and the metal 21 are an alloy, the metal 21 different from the metal 11 means that the metal 21 contains at least one metal atom that is not contained in the metal 11 .
 好ましくは、担体は、金属ナノ粒子又は合金ナノ粒子である。金属ナノ粒子については複数の調製法が知られており、異なるサイズ、様々な表面修飾が可能である。特に金ナノ粒子は化学的に安定しており、多様な生理活性物質を表面に固定する方法が知られている点で好ましい。また、パルスレーザー光を照射した時の金イオン及び金クラスターイオンの脱離効率が高い点でも、金ナノ粒子は担体として好ましい。銀ナノ粒子もその調製法が広く知られているうえ、パルスレーザー光を照射した時の銀イオン及び銀クラスターイオンの脱離効率が高いため担体に適している。その他、金属ナノ粒子としては、白金、パラジウム、イリジウム、銅、ニッケル及びマンガン等のナノ粒子が挙げられる。好ましくは、担体1は、金ナノ粒子であって、担体2は、白金ナノ粒子である。 Preferably, the carrier is metal nanoparticles or alloy nanoparticles. Several preparation methods are known for metal nanoparticles, and different sizes and various surface modifications are possible. Gold nanoparticles are particularly preferred because they are chemically stable and methods for immobilizing various physiologically active substances on their surfaces are known. In addition, gold nanoparticles are preferable as carriers because of the high desorption efficiency of gold ions and gold cluster ions when irradiated with pulsed laser light. Silver nanoparticles are also suitable for carriers because their preparation methods are widely known, and the efficiency of desorption of silver ions and silver cluster ions when irradiated with pulsed laser light is high. Other metal nanoparticles include nanoparticles of platinum, palladium, iridium, copper, nickel, manganese, and the like. Preferably, carrier 1 is gold nanoparticles and carrier 2 is platinum nanoparticles.
 合金ナノ粒子としては、上記の金属ナノ粒子に係る金属2種類以上を組み合わせた合金ナノ粒子が好ましい。例えば、合金ナノ粒子は、AuAgナノ粒子及びAuPdナノ粒子等である。合金ナノ粒子は、公知の方法で調製できる。例えば、合金ナノ粒子は、金属を含有するコアと、コアに含まれる金属と異なる金属を含有し、当該コアを被覆するシェルと、を含むナノ粒子にパルスレーザーを照射する合金化によって得られる。合金ナノ粒子は、2種類の金属元素を含む2元合金に限らず、3元合金又は4元合金等であってもよい。 As the alloy nanoparticles, alloy nanoparticles obtained by combining two or more metals related to the above metal nanoparticles are preferable. For example, alloy nanoparticles include AuAg nanoparticles and AuPd nanoparticles. Alloy nanoparticles can be prepared by known methods. For example, alloy nanoparticles are obtained by alloying nanoparticles containing a core containing a metal and a shell containing a metal different from the metal contained in the core and covering the core with a pulsed laser. The alloy nanoparticles are not limited to binary alloys containing two kinds of metal elements, and may be ternary alloys, quaternary alloys, or the like.
 また、担体は、金属イオンとして金属を含有する二酸化ケイ素(シリカ)等のケイ酸塩であってもよい。担体がケイ酸塩を含む場合、担体の態様はマイクロ粒子及びポリマー等であってもよい。例えば、担体は、ケイ酸塩が有するアニオンにマンガンイオンをイオン結合させたものである。 The carrier may also be a silicate such as silicon dioxide (silica) containing metals as metal ions. When the carrier comprises a silicate, embodiments of the carrier may be microparticles, polymers, and the like. For example, the carrier is obtained by ionically bonding a manganese ion to an anion of silicate.
 プローブを担体に担持させる方法は、特に限定されない。例えば、プローブは、担体に吸着又は共有結合によって担持される。担体が金属ナノ粒子であって、プローブが抗体等のタンパク質(免疫グロブリン)の場合、クエン酸又はタンニン酸等の還元剤により還元することで調製した金属ナノ粒子を、所定の条件下でタンパク質と混合すればよい。これにより、静電相互作用、水素結合及びタンパク質に含まれる高い親和性を持つフリーのチオール基等を介して、タンパク質が担体に結合する。 The method for supporting the probe on the carrier is not particularly limited. For example, probes are adsorbed or covalently attached to a support. When the carrier is a metal nanoparticle and the probe is a protein (immunoglobulin) such as an antibody, the metal nanoparticles prepared by reduction with a reducing agent such as citric acid or tannic acid are treated with the protein under predetermined conditions. Just mix. As a result, the protein binds to the carrier via electrostatic interactions, hydrogen bonds, free thiol groups with high affinity contained in the protein, and the like.
 また、プローブとしてのタンパク質を化学修飾し、チオール基等による共有結合を介して担体に固定することもできる。抗体を効率良く担体に固定する方法として、抗体と特異的に結合するタンパク質(プロテインA、プロテインG、プロテインA/G又はプロテインL)を用いた抗体固定化技術を利用してもよい。担体が金を含む場合、金還元能及び金結合能を有するペプチドを使用してもよい。 Alternatively, the protein used as the probe can be chemically modified and immobilized on the carrier through covalent bonding with a thiol group or the like. As a method for efficiently immobilizing an antibody on a carrier, an antibody immobilization technique using a protein (protein A, protein G, protein A/G or protein L) that specifically binds to the antibody may be used. When the carrier contains gold, peptides with gold-reducing and gold-binding ability may be used.
 プローブ10及びプローブ20を介して検出対象に結合することで近接した担体1と担体2にエネルギーが供給されると固有のイオンが脱離する。“固有”とは、検出対象への結合によって担体1と担体2とが近接した場合にのみ脱離するイオンであることを意味する。例えば、担体1が金ナノ粒子で、担体2が白金ナノ粒子の場合、近接した担体1及び担体2にエネルギーが供給されることで、近接した担体1及び担体2に固有のイオンとして金白金イオン(AuPt)が脱離する。また、担体1がAuAgナノ粒子で、担体2がAuPdナノ粒子の場合、近接した担体1及び担体2にエネルギーが供給されることで、2種類のナノ粒子が融合し、3元合金が生成する。当該3元合金からは固有のイオンとして銀パラジウムイオン(AgPd)が脱離する。 When energy is supplied to the carrier 1 and the carrier 2 which are close to each other by binding to the detection target through the probe 10 and the probe 20, specific ions are desorbed. "Intrinsic" means an ion that is desorbed only when carrier 1 and carrier 2 are brought into close proximity due to binding to the target of detection. For example, when the carrier 1 is a gold nanoparticle and the carrier 2 is a platinum nanoparticle, energy is supplied to the adjacent carrier 1 and the carrier 2, so that gold platinum ions as ions specific to the adjacent carrier 1 and carrier 2 (AuPt + ) is eliminated. In addition, when the carrier 1 is AuAg nanoparticles and the carrier 2 is AuPd nanoparticles, energy is supplied to the carriers 1 and 2 that are in close proximity to fuse the two types of nanoparticles to form a ternary alloy. . Silver palladium ions (AgPd + ) are released as unique ions from the ternary alloy.
 担体1が金属イオンを吸蔵するシリカ又はタンパク質で、担体2が金属ナノ粒子でもよい。金属イオンとしては、天然に大量に存在しないマンガンイオン、銅イオン、コバルトイオン及びスズイオン等が挙げられる。担体1がマンガンイオンを吸蔵するシリカで、担体2が白金ナノ粒子の場合、検出対象への結合によって近接した担体1及び担体2にエネルギーが供給されることで、担体1からマンガンイオンが脱離する。また、担体1がマンガンイオンを吸蔵するシリカで、担体2が金ナノ粒子の場合、検出対象への結合によって近接した担体1及び担体2にエネルギーが供給されることで、合金イオン(AuMn2+)が脱離する。 The carrier 1 may be silica or protein that occludes metal ions, and the carrier 2 may be metal nanoparticles. Metal ions include manganese ions, copper ions, cobalt ions, tin ions, and the like, which do not exist in large amounts in nature. When the carrier 1 is silica that absorbs manganese ions, and the carrier 2 is platinum nanoparticles, manganese ions are desorbed from the carrier 1 by supplying energy to the carrier 1 and the carrier 2 that are in close proximity due to binding to the detection target. do. Further, when the carrier 1 is silica that occludes manganese ions and the carrier 2 is a gold nanoparticle, energy is supplied to the carriers 1 and 2 that are close to each other due to binding to the detection target, so that alloy ions (AuMn 2+ ) desorbs.
 エネルギーの供給は、電子衝撃法、化学イオン化法、フィールドディソープション法、イオンビーム法及び粒子衝撃法等の公知の方法を利用すればよい。好ましくは、エネルギーは、ナノ粒子に吸収される電磁波の照射で供給される。好ましくは、電磁波は、検出対象そのものからではなく担体を形成する材料の脱離イオン化に最適化されている。 Energy can be supplied using known methods such as the electron impact method, the chemical ionization method, the field desorption method, the ion beam method, and the particle impact method. Preferably, the energy is supplied by electromagnetic radiation that is absorbed by the nanoparticles. Preferably, the electromagnetic waves are optimized for desorption ionization of the material forming the carrier rather than from the detection target itself.
 電磁波は、例えば、10ミリ秒から10フェムト秒のパルス的電磁波である。好適には、エネルギーは、紫外域から近赤外の波長を有し、100ナノ秒から1ピコ秒のパルス幅を有するパルスレーザーの照射によって、担体に供給される。パルスレーザーを用いることで、検出対象からの選択的脱離とイオン化において効率がよい。特にパルスレーザーと飛行時間型質量分析装置を組み合わせた装置は、本実施の形態に係る検出キットに好適な分析機器である。パルスレーザーと飛行時間型質量分析装置の組み合わせは、一般的にはマトリックス分子を用いたMALDI-MSとして広く用いられる。広く用いられるレーザーは紫外線のパルスレーザーであるが、可視光又は近赤外光パルスレーザー光を利用してもよい。 An electromagnetic wave is, for example, a pulsed electromagnetic wave of 10 milliseconds to 10 femtoseconds. Preferably, the energy is supplied to the carrier by irradiation with a pulsed laser having a wavelength in the ultraviolet to near-infrared range and having a pulse width of 100 nanoseconds to 1 picosecond. The use of a pulsed laser is efficient in selective desorption and ionization from the detection target. In particular, a device that combines a pulse laser and a time-of-flight mass spectrometer is a suitable analytical instrument for the detection kit according to this embodiment. A combination of a pulsed laser and a time-of-flight mass spectrometer is generally widely used as MALDI-MS using matrix molecules. A widely used laser is an ultraviolet pulsed laser, but visible light or near-infrared light pulsed laser light may also be used.
 より具体的には、担体1が金ナノ粒子を含み、担体2が白金ナノ粒子を含む場合、MALDI-MS装置の紫外線パルスレーザー光を、検出対象への結合によって近接した担体1及び担体2に照射すると、AuPtの脱離が高効率で起こる。近接せずに孤立した担体1及び担体2が存在していてもAuPtに競合するシグナルを与えない。よって、AuPtが検出された場合、検体中に検出対象が含まれることを示す。 More specifically, when the carrier 1 contains gold nanoparticles and the carrier 2 contains platinum nanoparticles, the ultraviolet pulsed laser light of the MALDI-MS device is applied to the carriers 1 and 2 that are in close proximity due to binding to the detection target. Upon irradiation, desorption of AuPt + occurs with high efficiency. The presence of carrier 1 and carrier 2 isolated without proximity gives no competing signal to AuPt + . Therefore, when AuPt + is detected, it indicates that the target of detection is contained in the sample.
 また、担体1がAuAgナノ粒子を含み、担体2がAuPdナノ粒子を含む場合、MALDI-MS装置の紫外線パルスレーザー光を、検出対象への結合によって近接した担体1及び担体2に照射すると、AgPdの脱離が高効率で起こる。詳細には、図1に示す7種類のAgPdが脱離するが、AgPdのみを含む109Ag108Pd及び107Ag110Pdに対応するm/zが217のシグナル、並びに109Ag110Pdに対応するm/zが219のシグナルの大きさでAgPdを検出できる。なお、パラジウムは金及び銀と比較して脱離イオン化されにくいため、109Ag106Pd及び107Ag108Pdに対応するm/zが215のシグナルの大きさでもAgPdを検出できる。一方、近接せずに孤立した担体1及び担体2は、AgPdに競合するシグナルを与えない。よって、AgPdの検出は、担体1と担体2とを近接させる因子、すなわち検出対象が検体中に含まれることを示す。 Further, when the carrier 1 contains AuAg nanoparticles and the carrier 2 contains AuPd nanoparticles, when the ultraviolet pulsed laser light of the MALDI-MS apparatus is irradiated to the carriers 1 and 2 that are close to each other due to binding to the detection target, AgPd + elimination occurs with high efficiency. Specifically , the seven types of AgPd + shown in FIG . AgPd + can be detected at the corresponding m/z of 219 signal magnitude. Since palladium is less likely to be desorbed and ionized than gold and silver, AgPd + can be detected even at a signal magnitude of m/z 215 corresponding to 109 Ag 106 Pd and 107 Ag 108 Pd. On the other hand, carrier 1 and carrier 2, which are not in close proximity and isolated, do not give a signal that competes with AgPd + . Therefore, the detection of AgPd + indicates that the sample contains a factor that brings carrier 1 and carrier 2 closer to each other, that is, the detection target.
 次に、本実施の形態に係る検出キットによる検出方法について説明する。当該検出方法は、結合ステップと、供給ステップと、検出ステップと、を含む。結合ステップでは、担体1及び担体2を、それぞれプローブ10及びプローブ20を介して検出対象に結合させる。担体の検出対象への結合は、公知の方法で行われ、例えば、担体1及び担体2に検体を暴露すればよい。結合ステップでは、担体1に検体を暴露した後に担体2に当該検体を暴露してもよいし、例えば、担体1及び担体2を含む分散液等に検体を浸漬することで、検体を担体1及び担体2に同時に暴露してもよい。 Next, a detection method using the detection kit according to this embodiment will be described. The detection method includes a binding step, a supply step, and a detection step. In the binding step, carrier 1 and carrier 2 are bound to the detection target via probe 10 and probe 20, respectively. The binding of the carrier to the detection target is performed by a known method, and for example, the sample may be exposed to carrier 1 and carrier 2. In the binding step, the sample may be exposed to the carrier 1 and then to the carrier 2, or, for example, by immersing the sample in a dispersion containing the carrier 1 and the carrier 2, the sample may be combined with the carrier 1 and the carrier 2. It may be exposed to carrier 2 simultaneously.
 供給ステップでは、検出対象に結合した担体1及び担体2に上述のようにエネルギーを供給する。検出ステップでは、プローブ10及びプローブ20を介して検出対象に結合することで近接した担体1及び担体2へのエネルギーの供給により脱離した固有のイオンを検出する。 In the supply step, energy is supplied as described above to the carrier 1 and carrier 2 bound to the detection target. In the detection step, the unique ions desorbed by binding to the detection target via the probes 10 and 20 and supplying energy to the adjacent carriers 1 and 2 are detected.
 この脱離イオン化特性を利用した免疫検出によって、検体中の検出対象としてのウイルス、生体内分子及び疾患マーカーの検出が可能である。例えば、イムノアフィニティクロマトグラムの場合、上記のプローブを抗体とすればよい。クロマトグラム用のメンブレンをMALDI-MS測定用の基板上に固定し、パルスレーザーを照射すれば、近接した担体1及び担体2に固有のイオンを検出できる。また、当該検出キットは、DNA、RNA、タンパク質をメンブレンに転写して分析するブロッティング法にも応用できる。ブロッティング用メンブレンに転写した検体に担体を暴露し、ブロッティング用メンブレンにパルスレーザーを照射すればよい。ELISAへの応用では、ELISA用プレートに固定した検体に担体を暴露し、パルスレーザーを照射すればよい。 It is possible to detect viruses, biomolecules, and disease markers as detection targets in specimens by immunodetection using this desorption ionization property. For example, in the case of immunoaffinity chromatograms, the above probes may be antibodies. By fixing a membrane for chromatogram on a substrate for MALDI-MS measurement and irradiating a pulsed laser, ions specific to carrier 1 and carrier 2 that are close to each other can be detected. The detection kit can also be applied to a blotting method in which DNA, RNA, and protein are transferred to a membrane and analyzed. The carrier may be exposed to the specimen transferred to the blotting membrane, and the blotting membrane may be irradiated with a pulse laser. In the application to ELISA, the carrier may be exposed to the sample immobilized on the ELISA plate and irradiated with a pulsed laser.
 また、パルスレーザーを集光し、狭い面積からの脱離イオンを検出し、検体のレーザー照射位置を走査して行くことで、検体における検出対象の分布の2次元的なマッピングが可能である。 In addition, by condensing the pulsed laser, detecting desorbed ions from a narrow area, and scanning the laser irradiation position of the specimen, it is possible to map the distribution of the detection target in the specimen two-dimensionally.
 なお、その他の質量分析法、例えば四重極質量分析装置、イオントラップ質量分析装置及びフーリエ変換質量分析装置等を利用しても検出は可能である。 Detection is also possible using other mass spectrometry methods, such as quadrupole mass spectrometers, ion trap mass spectrometers, and Fourier transform mass spectrometers.
 本実施の形態に係る検出キットによれば、検出対象に結合した、すなわち担体1と担体2とが近接した場合のみに脱離するイオンを識別できる。このため、メンブレン等において検出対象に結合していない非特異吸着した担体1及び担体2由来のイオンによる競合するシグナル(バックグラウンドシグナル)を解析で除外できる。これにより、非特異吸着に妨害されずに検出対象を高感度に検出できる。 According to the detection kit according to the present embodiment, it is possible to identify ions bound to the detection target, that is, ions that are desorbed only when the carrier 1 and the carrier 2 are in close proximity. Therefore, competing signals (background signals) due to ions derived from carrier 1 and carrier 2 non-specifically adsorbed on the membrane or the like and not bound to the detection target can be excluded from the analysis. As a result, the detection target can be detected with high sensitivity without being interfered with by non-specific adsorption.
 本実施の形態に係る検出キットは、組織切片のように複雑な組成を有する検体、及びメンブレンのように一定の厚みを有する絶縁性の検体中に存在する検出対象の存在を質量分析によって高感度に検出できるという利点がある。さらに、イメージング質量分析の技術を用いて検出対象の分布を可視化できるという利点がある。 The detection kit according to the present embodiment uses mass spectrometry to detect the presence of a target to be detected in a sample having a complex composition such as a tissue section and an insulating sample having a certain thickness such as a membrane with high sensitivity. has the advantage of being able to detect Furthermore, there is an advantage that the distribution of the detection target can be visualized using the technique of imaging mass spectrometry.
 なお、本実施の形態に係る検出キットは、プローブ10及びプローブ20の少なくとも一方に結合する捕捉物質を表面に固定した基板をさらに備えてもよい。捕捉物質は、プローブと結合する限り特に限定されない。例えば、捕捉物質はプローブに特異的に結合する抗体である。当該基板を備える検出キットを用いた検出方法は、好ましくは上述の結合ステップと供給ステップとの間に、担体1及び担体2が結合した検出対象をプローブ10及びプローブ20の少なくとも一方を介して基板上の捕捉物質に補足させる捕捉ステップを含む。 It should be noted that the detection kit according to the present embodiment may further include a substrate on the surface of which a capturing substance that binds to at least one of probes 10 and 20 is immobilized. The capture substance is not particularly limited as long as it binds to the probe. For example, the capture agent is an antibody that specifically binds to the probe. In the detection method using the detection kit comprising the substrate, the target to be detected to which the carrier 1 and the carrier 2 are bound is preferably transferred to the substrate via at least one of the probe 10 and the probe 20 between the binding step and the supply step described above. A capture step is included which captures the capture material above.
 さらに好ましくは、当該検出方法では、捕捉ステップと供給ステップとの間に、基板を洗浄して基板上に捕捉されていない物質を基板上から除去する除去ステップをさらに含む。捕捉物質を用いて検出対象、担体1及び担体2以外の物質を除去することで、金属ナノ粒子等の光加熱に伴って発生する有機物フラグメントに起因するシグナルを除外することができる。この結果、例えば、多様な夾雑物を含む全血等の生体試料をそのまま分析しても、非特異吸着に妨害されずに高感度に検出対象を検出できる。 More preferably, the detection method further includes, between the capturing step and the supplying step, a removing step of washing the substrate to remove substances not captured on the substrate from the substrate. By removing substances other than the target to be detected, carrier 1 and carrier 2 using a capture substance, it is possible to exclude signals due to organic fragments generated by photoheating such as metal nanoparticles. As a result, for example, even if a biological sample such as whole blood containing various contaminants is analyzed as it is, the detection target can be detected with high sensitivity without being interfered with by non-specific adsorption.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be explained more specifically by the following examples, but the present invention is not limited by the examples.
 (実施例1:AuAg-AuPd)
 [金ナノ粒子の調製]
 500mL三ツ口フラスコに100mLの純水とHAuCl(42mM)を0.7mL加え、還流下で加熱した。沸騰後、反応液に1重量%クエン酸三ナトリウムを2mL加え、60分間、加熱を続けた。反応液について、吸光光度計(V-670、日本分光社製)を用いてスペクトルを測定し(図2参照)、反応の進行を確認した。
(Example 1: AuAg-AuPd)
[Preparation of gold nanoparticles]
100 mL of pure water and 0.7 mL of HAuCl 4 (42 mM) were added to a 500 mL three-necked flask and heated under reflux. After boiling, 2 mL of 1% by weight trisodium citrate was added to the reaction solution and heating was continued for 60 minutes. The spectrum of the reaction solution was measured using an absorption photometer (V-670, manufactured by JASCO Corporation) (see FIG. 2) to confirm the progress of the reaction.
 三ツ口フラスコから還流管を取り外し、反応液を10分間加熱することで濃縮した。反応液を室温まで冷まし、2mLずつ分注し、5000×G、30℃で10分間遠心した。上清を除き、得られた金ナノ粒子に1.3mMクエン酸三ナトリウムを加え再分散させて全量を10mLにした。金ナノ粒子分散液を10倍希釈してスペクトルを測定した(図2参照)。 The reflux tube was removed from the three-necked flask, and the reaction solution was concentrated by heating for 10 minutes. The reaction solution was cooled to room temperature, divided into 2 mL aliquots, and centrifuged at 5000×G and 30° C. for 10 minutes. The supernatant was removed, and 1.3 mM trisodium citrate was added to the obtained gold nanoparticles to redisperse them, and the total volume was adjusted to 10 mL. The spectrum was measured by diluting the gold nanoparticle dispersion 10-fold (see FIG. 2).
 [パラジウムシェル金ナノ粒子の調製及びパルスレーザー照射による合金化]
 50mLバイアル瓶に1.3mMクエン酸三ナトリウムを30mL、10mM HPdClを100μL、上記で調製した金ナノ粒子分散液を330μL添加した。なお、金ナノ粒子分散液の量はスペクトル波長355nmの吸光度から算出した。さらにバイアル瓶に100mM L-アスコルビン酸10mLを500μLずつ加え、4℃で30分間撹拌した。スペクトルを測定しながら反応の進行を確認した(図3参照)。
[Preparation of Palladium Shell Gold Nanoparticles and Alloying by Pulsed Laser Irradiation]
30 mL of 1.3 mM trisodium citrate, 100 μL of 10 mM HPdCl 4 and 330 μL of the gold nanoparticle dispersion prepared above were added to a 50 mL vial. The amount of the gold nanoparticle dispersion liquid was calculated from the absorbance at a spectral wavelength of 355 nm. Further, 500 μL of 10 mL of 100 mM L-ascorbic acid was added to each vial and stirred at 4° C. for 30 minutes. The progress of the reaction was confirmed while measuring the spectrum (see FIG. 3).
 スペクトルの経時変化を評価しながら、反応液にNd-YAGレーザー(NEWWAVE Research社製)でレーザー光を照射した(532nm、10ns、20Hz、250mW)。15mLチューブに反応液を8mLずつ移し、5000×G、30℃で10分間遠心した。上清を除き、1.3mMクエン酸三ナトリウムを4mLずつチューブに添加し、得られたAuPd(合金)ナノ粒子を再分散させた。AuPdナノ粒子分散液をスクリュー管に移し、スペクトルを測定した(図4参照)。 While evaluating the spectral change over time, the reaction solution was irradiated with laser light from an Nd-YAG laser (manufactured by NEWWAVE Research) (532 nm, 10 ns, 20 Hz, 250 mW). Each 8 mL of the reaction solution was transferred to a 15 mL tube and centrifuged at 5000×G and 30° C. for 10 minutes. The supernatant was removed and 4 mL of 1.3 mM trisodium citrate was added to each tube to redisperse the resulting AuPd (alloy) nanoparticles. The AuPd nanoparticle dispersion was transferred to a screw tube and the spectrum was measured (see Figure 4).
 [銀シェル金ナノ粒子の調製及びパルスレーザー照射による合金化]
 50mLバイアル瓶に1.3mMクエン酸三ナトリウムを30mL、10mM AgNOを100μL、上記で調製した金ナノ粒子分散液を330μL添加した。なお、金ナノ粒子分散液の量はスペクトル波長355nmの吸光度から算出した。続いて、恒温槽で30分間撹拌した。さらにバイアル瓶に100mM L-アスコルビン酸10mLを500μLずつ加え、スペクトルを測定しながら反応の進行を確認した(図5参照)。
[Preparation of silver-shelled gold nanoparticles and alloying by pulsed laser irradiation]
30 mL of 1.3 mM trisodium citrate, 100 μL of 10 mM AgNO 3 and 330 μL of the gold nanoparticle dispersion prepared above were added to a 50 mL vial. The amount of the gold nanoparticle dispersion liquid was calculated from the absorbance at a spectral wavelength of 355 nm. Subsequently, the mixture was stirred for 30 minutes in a constant temperature bath. Further, 500 μL of 10 mL of 100 mM L-ascorbic acid was added to each vial, and the progress of the reaction was confirmed while measuring the spectrum (see FIG. 5).
 スペクトルの経時変化を評価しながら、反応液にNd-YAGレーザー(NEWWAVE Research社製)でレーザー光を照射した(532nm、10ns、20Hz、200mW)。15mLチューブに反応液を8mLずつ移し、5000×G、30℃で10分間遠心した。上清を除き、1.3mMクエン酸三ナトリウムを4mLずつチューブに添加し、得られたAuAg(合金)ナノ粒子を再分散させた。AuAgナノ粒子分散液をスクリュー管に移し、スペクトルを測定した(図6参照)。 While evaluating the spectral change over time, the reaction solution was irradiated with laser light from an Nd-YAG laser (manufactured by NEWWAVE Research) (532 nm, 10 ns, 20 Hz, 200 mW). Each 8 mL of the reaction solution was transferred to a 15 mL tube and centrifuged at 5000×G and 30° C. for 10 minutes. The supernatant was removed and 4 mL of 1.3 mM trisodium citrate was added to each tube to redisperse the resulting AuAg (alloy) nanoparticles. The AuAg nanoparticle dispersion was transferred to a screw tube and the spectrum was measured (see Figure 6).
 [合金ナノ粒子の抗体修飾]
 低吸着ナノチューブを用いてAuPdナノ粒子及びAuAgナノ粒子を10mMリン酸緩衝液で希釈し、それぞれOD355=0.3cm-1に調製した(全量450μL)。10mMリン酸緩衝液をAuPdナノ粒子及びAuAgナノ粒子それぞれに50μL添加した。抗ヤギIgG(30μg/mL)をAuPdナノ粒子分散液に50μL添加し、25℃で30分間静置させた。
[Antibody Modification of Alloy Nanoparticles]
Using low adsorption nanotubes, AuPd nanoparticles and AuAg nanoparticles were diluted with 10 mM phosphate buffer and each prepared to OD 355 =0.3 cm −1 (total volume 450 μL). 50 μL of 10 mM phosphate buffer was added to each of AuPd nanoparticles and AuAg nanoparticles. 50 μL of anti-goat IgG (30 μg/mL) was added to the AuPd nanoparticle dispersion and allowed to stand at 25° C. for 30 minutes.
 同様にヤギ正常IgG(30μg/mL)をAuAgナノ粒子分散液に50μL添加し、25℃で30分間静置させた。1重量%ウシ血清アルブミン(BSA)50μLをAuPdナノ粒子分散液及びAuAgナノ粒子分散液それぞれに加え、25℃で30分間静置させた。 Similarly, 50 μL of normal goat IgG (30 μg/mL) was added to the AuAg nanoparticle dispersion and allowed to stand at 25° C. for 30 minutes. 50 μL of 1 wt % bovine serum albumin (BSA) was added to each of the AuPd nanoparticle dispersion and the AuAg nanoparticle dispersion, and allowed to stand at 25° C. for 30 minutes.
 1重量%ポリエチレングリコール(PEG)50μLをAuPdナノ粒子分散液及びAuAgナノ粒子分散液それぞれに加え、1000×G、15℃で10分間遠心した。上清を別のチューブに移し、6000×G、15℃で10分間遠心した。沈殿にTris-Buffered-Solution(pH8.2)を加え、それぞれ全量200μLで1本にまとめた。得られたヤギ正常IgG-AuAgナノ粒子分散液及び抗ヤギIgG-AuPdナノ粒子分散液のスペクトルを測定した(図7及び図8参照)。 50 μL of 1% by weight polyethylene glycol (PEG) was added to each of the AuPd nanoparticle dispersion and the AuAg nanoparticle dispersion, and centrifuged at 1000×G and 15° C. for 10 minutes. The supernatant was transferred to another tube and centrifuged at 6000×G, 15° C. for 10 minutes. Tris-Buffered-Solution (pH 8.2) was added to the precipitate, and the total volume of each was 200 μL. The spectra of the obtained goat normal IgG-AuAg nanoparticle dispersion and the anti-goat IgG-AuPd nanoparticle dispersion were measured (see FIGS. 7 and 8).
 [抗体修飾合金ナノ粒子の質量分析]
 抗ヤギIgG-AuPdナノ粒子を、そのOD355の値がヤギ正常IgG-AuAgナノ粒子のOD355の値になるように、全量100μLで調製した。調製した抗ヤギIgG-AuPdナノ粒子分散液100μLとヤギ正常IgG-AuAgナノ粒子100μLとを混和させ、1時間静置させた。調製した分散液からさらにリン酸緩衝食塩水(1×PBS)で10倍、100倍及び1000倍に希釈した分散液を調製した。得られた分散液を透明導電膜(ITO)基板にキャストした。
[Mass spectrometry of antibody-modified alloy nanoparticles]
Anti-goat IgG-AuPd nanoparticles were prepared in a total volume of 100 μL such that their OD 355 values were those of normal goat IgG- AuAg nanoparticles. 100 μL of the prepared anti-goat IgG-AuPd nanoparticle dispersion and 100 μL of normal goat IgG-AuAg nanoparticles were mixed and allowed to stand for 1 hour. Dispersions were prepared by further diluting the prepared dispersion with phosphate buffered saline (1×PBS) 10-fold, 100-fold and 1000-fold. The resulting dispersion was cast onto a transparent conductive film (ITO) substrate.
 質量分析は、Autoflex Speed(Bruker社製)を用いて行った(レーザーShot数:500、Laser Power:90%、Reflector電圧:9.9、Random Walk:OFF) Mass spectrometry was performed using Autoflex Speed (manufactured by Bruker) (number of laser shots: 500, laser power: 90%, reflector voltage: 9.9, random walk: OFF)
 (結果)
 図9に示すように、AgPdイオン(m/z 217,219)のシグナル強度を識別することができた。なお、抗体修飾していないAuPdナノ粒子及びAuAgナノ粒子を基板にキャストしても、AgPdイオンは検出されなかった。ナノ粒子を基板にキャストして乾燥させると、水が蒸発する際にナノ粒子が狭い領域に寄せ集められることがある。図10に示すように、吸光度0.3という比較的ナノ粒子濃度が濃い条件であっても、3元合金(AuAgPd)を与えるような凝集体は生成しないことを確認した。
(result)
As shown in Figure 9, the signal intensity of AgPd + ions (m/z 217, 219) could be discerned. No AgPd + ions were detected even when the AuPd nanoparticles and AuAg nanoparticles not modified with antibodies were cast on the substrate. When the nanoparticles are cast onto a substrate and dried, they can clump together in small areas as the water evaporates. As shown in FIG. 10, it was confirmed that aggregates that give a ternary alloy (AuAgPd) were not generated even under conditions of a relatively high concentration of nanoparticles with an absorbance of 0.3.
 (実施例2:Au-Pt)
 [白金ナノ粒子の調製]
 100mL三ツ口フラスコに50mLの純水とHPtCl(96.5mM)を144μL加え、還流下で加熱した。沸騰後、クエン酸緩衝液(1wt%クエン酸三ナトリウム及び0.05wt%クエン酸)を1.1mL加え、30秒後に0.8wt%NaBH緩衝液(クエン酸緩衝液1mLあたり0.8wt% NaBH 0.044g)を10倍に希釈した0.08w/v%NaBH緩衝液550μLを添加した。10分間加熱を続け、室温まで冷ました。得られた生成物のスペクトルを測定した(図11参照)。
(Example 2: Au-Pt)
[Preparation of platinum nanoparticles]
50 mL of pure water and 144 μL of H 2 PtCl 6 (96.5 mM) were added to a 100 mL three-necked flask and heated under reflux. After boiling, add 1.1 mL of citrate buffer (1 wt% trisodium citrate and 0.05 wt% citric acid), 30 seconds later add 0.8 wt% NaBH4 buffer ( 0.8 wt% per mL of citrate buffer). 550 μL of 0.08 w/v % NaBH 4 buffer obtained by 10-fold dilution of NaBH 4 (0.044 g) was added. Continue heating for 10 minutes and cool to room temperature. The spectrum of the resulting product was measured (see Figure 11).
 [白金ナノ粒子の成長]
 100mL三ツ口フラスコに29mLの純水と上記で調製した生成物を5mL、HPtCl(96.5mM)を144μL、1wt%クエン酸三ナトリウム-1.25wt%L-アスコルビン酸を500μL加え、還流下で加熱した。沸騰後、そのまま30分間加熱を続け、室温まで冷まし、生成物のスペクトルを測定した(図12参照)。
[Growth of platinum nanoparticles]
29 mL of pure water, 5 mL of the product prepared above, 144 μL of H 2 PtCl 6 (96.5 mM), and 500 μL of 1 wt % trisodium citrate-1.25 wt % L-ascorbic acid were added to a 100 mL three-necked flask and refluxed. heated below. After boiling, heating was continued for 30 minutes, cooled to room temperature, and the spectrum of the product was measured (see FIG. 12).
 生成物を5000×G、30℃で10分間遠心した。上清を捨て、1.3mMクエン酸三ナトリウムを用いて白金ナノ粒子分散液全量10mLとした。 The product was centrifuged at 5000 x G and 30°C for 10 minutes. The supernatant was discarded, and 1.3 mM trisodium citrate was used to adjust the total amount of the platinum nanoparticle dispersion to 10 mL.
 [金ナノ粒子及び白金ナノ粒子の抗体修飾]
 低吸着ナノチューブを用いて、実施例1で調製した金ナノ粒子分散液及び白金ナノ粒子懸濁液を10mMリン酸緩衝液で希釈し、それぞれOD355=0.3cm-1に調製した(全量450μL)。10mMリン酸緩衝液を金ナノ粒子分散液及び白金ナノ粒子分散液それぞれに50μL添加した。抗ヤギIgG(30μg/mL)を白金ナノ粒子分散液に50μL添加し、25℃で30分間静置させた。
[Antibody modification of gold nanoparticles and platinum nanoparticles]
Using low-adsorption nanotubes, the gold nanoparticle dispersion and platinum nanoparticle suspension prepared in Example 1 were diluted with 10 mM phosphate buffer to prepare OD 355 =0.3 cm −1 (total volume: 450 μL ). 50 μL of 10 mM phosphate buffer was added to each of the gold nanoparticle dispersion and the platinum nanoparticle dispersion. 50 μL of anti-goat IgG (30 μg/mL) was added to the platinum nanoparticle dispersion and allowed to stand at 25° C. for 30 minutes.
 同様にヤギ正常IgG(30μg/mL)を金ナノ粒子分散液に50μL添加し、25℃で30分間静置させた。1重量%BSA 50μLを金ナノ粒子分散液及び白金ナノ粒子分散液それぞれに加え、25℃で30分間静置させた。 Similarly, 50 μL of normal goat IgG (30 μg/mL) was added to the gold nanoparticle dispersion and allowed to stand at 25° C. for 30 minutes. 50 μL of 1% by weight BSA was added to each of the gold nanoparticle dispersion and the platinum nanoparticle dispersion, and allowed to stand at 25° C. for 30 minutes.
 1重量%PEG 50μLを金ナノ粒子分散液及び白金ナノ粒子分散液それぞれに加え、1000×G、15℃で10分間遠心した。上清を別のチューブに移し、6000×G、15℃で10分間遠心した。沈殿にTris-Buffered-Solution(pH8.2)を加え、それぞれ全量2mLにまとめた。得られた抗ヤギIgG-白金ナノ粒子分散液及びヤギ正常IgG-金ナノ粒子分散液のスペクトルを測定した(図13及び図14参照)。 50 μL of 1% by weight PEG was added to each of the gold nanoparticle dispersion and the platinum nanoparticle dispersion, and centrifuged at 1000×G and 15° C. for 10 minutes. The supernatant was transferred to another tube and centrifuged at 6000×G, 15° C. for 10 minutes. Tris-Buffered-Solution (pH 8.2) was added to the precipitate, and the total volume of each was adjusted to 2 mL. The spectra of the obtained anti-goat IgG-platinum nanoparticle dispersion and normal goat IgG-gold nanoparticle dispersion were measured (see FIGS. 13 and 14).
 [ドットブロッティング]
 ヤギ正常IgGの濃度を変えて疎水性メンブレンにキャストし、乾燥後、抗ヤギIgG-白金ナノ粒子分散液に浸漬した。メンブレンを洗浄し、非特異吸着の抗ヤギIgG-白金ナノ粒子を除き、実施例1と同じ条件で質量分析を行った。
[Dot blotting]
Various concentrations of normal goat IgG were cast on hydrophobic membranes, dried, and then immersed in an anti-goat IgG-platinum nanoparticle dispersion. The membrane was washed, and mass spectrometry was performed under the same conditions as in Example 1 except for non-specifically adsorbed anti-goat IgG-platinum nanoparticles.
 [抗体修飾金ナノ粒子及び抗体修飾白金ナノ粒子の質量分析]
 抗ヤギIgG-白金ナノ粒子を、そのOD355の値が実施例1で調製したヤギ正常IgG-金ナノ粒子のOD355の値になるように、全量100μLで調製した。調製した抗ヤギIgG-白金ナノ粒子分散液100μLとヤギ正常IgG-金ナノ粒子分散液100μLとを混和させ、1時間静置させて得られた分散液をITO基板にキャストした。実施例1と同じ条件で質量分析を行った。
[Mass spectrometry of antibody-modified gold nanoparticles and antibody-modified platinum nanoparticles]
Anti-goat IgG-platinum nanoparticles were prepared in a total volume of 100 μL such that their OD 355 values were the OD 355 values of normal goat IgG-gold nanoparticles prepared in Example 1. 100 μL of the prepared anti-goat IgG-platinum nanoparticle dispersion and 100 μL of normal goat IgG-gold nanoparticle dispersion were mixed and allowed to stand for 1 hour, and the resulting dispersion was cast on an ITO substrate. Mass spectrometry was performed under the same conditions as in Example 1.
 (結果)
 ドットブロッティングにおけるマススペクトルにおいて、白金イオン(Pd)に由来するシグナル(m/z 194、195、196及び198)を確認できた。ドットの位置に対するm/z 194、195及び196のシグナルを合計した値を図15に示す。抗原となるヤギ正常IgGをキャストした部分で白金イオンのシグナルが観察され、抗体を白金に固定できたことが確認できた。
(result)
Signals (m/ z 194, 195, 196 and 198) derived from platinum ions (Pd + ) were confirmed in the mass spectrum obtained by dot blotting. Summation of m/ z 194, 195 and 196 signals versus dot position is shown in FIG. A platinum ion signal was observed in the portion cast with normal goat IgG serving as an antigen, confirming that the antibody could be immobilized on platinum.
 ITO基板を測定したマススペクトルを図16に示す。m/z 392及び395に抗原抗体反応に固有のAuPtのシグナルが観察された。 FIG. 16 shows a mass spectrum obtained by measuring the ITO substrate. AuPt + signals specific to the antigen-antibody reaction were observed at m/z 392 and 395.
 (実施例3:PSAのサンドイッチアッセイ)
 2種類の抗体修飾合金ナノ粒子(AuAgナノ粒子及びAuPdナノ粒子)を用いて対象物質としての前立腺特異抗原(prostate-specific antigen;PSA)をサンドイッチし、2種類の合金ナノ粒子が近接することによって生じるクラスターイオン(AgPdイオン)をレポーターイオンとする免疫検出を行った。
(Example 3: PSA sandwich assay)
Two types of antibody-modified alloy nanoparticles (AuAg nanoparticles and AuPd nanoparticles) are used to sandwich the prostate-specific antigen (PSA) as the target substance, and the two types of alloy nanoparticles are close to each other. Immunodetection was performed using the resulting cluster ions (AgPd + ions) as reporter ions.
 [パラジウムシェル金ナノ粒子の調製及びパルスレーザー照射による合金化]
 1.3mMクエン酸三ナトリウム溶液 30mLに10mM塩化パラジウム酸溶液 100μL及び実施例1で調製した0.5mM金ナノ粒子分散液 2mLを加えた。室温で0.1Mアスコルビン酸溶液 500μLを加えて30分間反応させた。反応液にNd-YAGレーザー(NEWWAVE Research社製)でレーザー光を15分間照射した(532nm、10ns、20Hz、250mW)。5000×Gで10分間遠心し、沈殿を1.3mMクエン酸三ナトリウム溶液 16mLに分散させた。得られたAuPdナノ粒子分散液をスクリュー管に移し、スペクトルを測定したところ(図17参照)、520nm付近の金の表面プラズモンバンドがほとんど見られなかった。よって、パラジウム比率の高いAuPd(合金)ナノ粒子が得られた。
[Preparation of Palladium Shell Gold Nanoparticles and Alloying by Pulsed Laser Irradiation]
To 30 mL of 1.3 mM trisodium citrate solution, 100 μL of 10 mM palladium chloride solution and 2 mL of 0.5 mM gold nanoparticle dispersion prepared in Example 1 were added. 500 μL of 0.1 M ascorbic acid solution was added at room temperature and reacted for 30 minutes. The reaction solution was irradiated with a laser beam (532 nm, 10 ns, 20 Hz, 250 mW) for 15 minutes using an Nd-YAG laser (manufactured by NEWWAVE Research). After centrifugation at 5000×G for 10 minutes, the precipitate was dispersed in 16 mL of 1.3 mM trisodium citrate solution. When the resulting AuPd nanoparticle dispersion was transferred to a screw tube and the spectrum was measured (see FIG. 17), almost no gold surface plasmon band around 520 nm was observed. Thus, AuPd (alloy) nanoparticles with a high palladium ratio were obtained.
 [合金ナノ粒子への抗体修飾]
 本実施例で調製したAuPdナノ粒子分散液及び実施例1で調製したAuAgナノ粒子分散液を10mMリン酸緩衝液で希釈し、355nmでの吸光度がそれぞれ0.6cm-1になるように調整した。抗体としてPSA検出ELISAキット(Human PSA ELISA Kit、Abcam社製、ab264615)の抗体を使用した。
[Antibody Modification of Alloy Nanoparticles]
The AuPd nanoparticle dispersion prepared in this example and the AuAg nanoparticle dispersion prepared in Example 1 were diluted with 10 mM phosphate buffer, and the absorbance at 355 nm was adjusted to 0.6 cm −1 . . As an antibody, the antibody of the PSA detection ELISA kit (Human PSA ELISA Kit, manufactured by Abcam, ab264615) was used.
 AuPdナノ粒子分散液 450μLに10mMリン酸緩衝液を50μL加え、anti-PSA抗体溶液(capture)に50μL加え、25℃で30分間静置した。AuAgナノ粒子分散液 450μLにも10mMリン酸緩衝液を50μL加え、anti-PSA抗体溶液(detective)に50μL加え、25℃で30分間静置した。 To 450 μL of the AuPd nanoparticle dispersion, 50 μL of 10 mM phosphate buffer was added, 50 μL was added to the anti-PSA antibody solution (capture), and left standing at 25° C. for 30 minutes. 50 μL of 10 mM phosphate buffer was added to 450 μL of the AuAg nanoparticle dispersion, 50 μL was added to the anti-PSA antibody solution (detective), and the mixture was allowed to stand at 25° C. for 30 minutes.
 1wt%ウシ血清アルブミン(BSA) 50μLをそれぞれの合金ナノ粒子分散液に加え、30分間静置した。さらに1wt%ポリ(エチレングリコール)(分子量5000)を加え、5分静置後、1000×Gで10分間遠心後、上清をさらに5000×Gで2回遠心し、3回分の沈殿をまとめて200μLの10mMリン酸緩衝液に分散した。 50 μL of 1 wt % bovine serum albumin (BSA) was added to each alloy nanoparticle dispersion and allowed to stand for 30 minutes. Add 1 wt% poly(ethylene glycol) (molecular weight 5000), allow to stand for 5 minutes, centrifuge at 1000 x G for 10 minutes, centrifuge the supernatant twice at 5000 x G, and combine the three precipitates. Dispersed in 200 μL of 10 mM phosphate buffer.
 [免疫検出]
 2種類の合金ナノ粒子分散液20μLずつを混合し、異なる濃度PSAを含む溶液10μLを加え、さらに必要に応じてコイの血液10μLを加えて、1時間静置した。試料溶液を水で10倍(500μL)になるように希釈し、ITO基板にキャストして質量分析を行った。
[Immune detection]
20 μL each of the two types of alloy nanoparticle dispersions were mixed, 10 μL of solutions containing PSA with different concentrations were added, and 10 μL of carp blood was added as necessary, and allowed to stand for 1 hour. The sample solution was diluted 10-fold (500 μL) with water, cast on an ITO substrate, and subjected to mass spectrometry.
 質量分析は、Autoflex Speed(Bruker社製)を用いて行った(レーザーShot数:100、Laser Power:90%、Reflector電圧:9.9) Mass spectrometry was performed using Autoflex Speed (manufactured by Bruker) (number of laser shots: 100, laser power: 90%, reflector voltage: 9.9)
 (結果)
 図18はPSAを含まない試料のマススペクトルを示す。PSAを含まない試料からはAg2+(m/z 214、216、218)に由来する3つの強いシグナルが観察され、その他のm/zでは弱いノイズのみが観察された。図19は4ng/mL PSA溶液を10μL加えた試料のマススペクトルを示す。PSAを試料溶液に加えるとm/z 212、213、215、217、219のピーク強度が増加し、AgPdイオンのシグナルが観察できた。
(result)
FIG. 18 shows the mass spectrum of the sample without PSA. Three strong signals from Ag 2+ (m/ z 214, 216, 218) were observed from samples without PSA, and only weak noise was observed at the other m/z. FIG. 19 shows the mass spectrum of a sample to which 10 μL of 4 ng/mL PSA solution was added. When PSA was added to the sample solution, the peak intensities of m/ z 212, 213, 215, 217 and 219 increased, and signals of AgPd + ions could be observed.
 図20は、添加したPSA溶液の濃度に対するAgPdイオン(m/z 215)のシグナル強度を示す。PSAの添加量に依存してm/z 215のシグナル強度が増加した。AgPdイオンが抗原抗体反応のレポーターイオンとして機能することが明らかになった。図21に示すように、コイの全血10μLを添加した試料ではシグナル強度は小さくなったがPSA濃度に依存してシグナル強度が増える傾向は変わらず、全血を含む試料溶液でもAgPdイオンをレポーターイオンとする免疫検出が可能であることがわかった。 FIG. 20 shows the signal intensity of AgPd + ions (m/z 215) versus the concentration of added PSA solution. The signal intensity at m/z 215 increased depending on the amount of PSA added. AgPd + ions were found to function as reporter ions for antigen-antibody reactions. As shown in FIG. 21, the sample to which 10 μL of carp whole blood was added decreased the signal intensity, but the tendency of the signal intensity to increase depending on the PSA concentration did not change. It was found that immunodetection using reporter ions is possible.
 (実施例4:分析の迅速化の検討)
 試料溶液は基板上で濃縮され乾固する。溶液中で抗原抗体反応が進行する時間を待たなくても濃縮乾固中に反応が進み、迅速分析が可能となる。
(Example 4: Examination of acceleration of analysis)
The sample solution is concentrated on the substrate and dried. Without waiting for the antigen-antibody reaction to proceed in the solution, the reaction proceeds during concentration and drying, enabling rapid analysis.
 実施例1と同様に、AuPdナノ粒子及びAuAgナノ粒子をそれぞれヤギIgG及びヤギ正常IgGで修飾した。修飾したナノ粒子分散液を混合後の試料について、所定時間ごとに実施例1と同じ条件で質量分析を行った。 As in Example 1, AuPd nanoparticles and AuAg nanoparticles were modified with goat IgG and normal goat IgG, respectively. The sample mixed with the modified nanoparticle dispersion was subjected to mass spectrometry at predetermined time intervals under the same conditions as in Example 1.
 (結果)
 図22は、混合後の経過時間ごとのマススペクトルを示す。図23は、混合後の経過時間に対するシグナル強度(m/z 217)を示す。混合後すぐにキャストして測定した場合でも、60分待った場合の約半分の強度でAgPdイオン(m/z 217)を検出できた。なお、ナノ粒子の濃度は4.4×10-12Mである。シグナル強度が十分にあれば、試料混合後の待ち時間はほとんど必要ない。極限的な検出感度を得るためには溶液中で抗原抗体反応が十分に起こるまで待ったほうがよいが、溶媒乾固のプロセスでいずれにしても抗原抗体複合体は形成されるので、待ち時間がなくてもシグナルを検出できる。
(result)
FIG. 22 shows mass spectra for each elapsed time after mixing. FIG. 23 shows signal intensity (m/z 217) versus time elapsed after mixing. Even when casting and measuring immediately after mixing, AgPd + ions (m/z 217) could be detected with about half the intensity when waiting for 60 minutes. The concentration of nanoparticles is 4.4×10 −12 M. Given sufficient signal intensity, little waiting time is required after sample mixing. In order to obtain the ultimate detection sensitivity, it is better to wait until the antigen-antibody reaction occurs sufficiently in the solution. signal can be detected even
 (実施例5:プラチナナノ粒子の調製とイオン化挙動)
 50mLの水に96.5mM塩化白金酸144μLを加え、沸騰させた。0.1Mクエン酸緩衝液1.1mLを加え、0.08wt% NaBH 550μLを加え10分間沸騰させ、白金ナノ粒子を調製した。調製した分散液をリン酸緩衝食塩水(1×PBS)で10倍に希釈して分散液を調製した。分散液をITO基板にキャストし、実施例1と同じ条件で質量分析を行った。
(Example 5: Preparation of platinum nanoparticles and ionization behavior)
144 μL of 96.5 mM chloroplatinic acid was added to 50 mL of water and brought to a boil. 1.1 mL of 0.1 M citrate buffer was added, 550 μL of 0.08 wt % NaBH 4 was added, and the mixture was boiled for 10 minutes to prepare platinum nanoparticles. The prepared dispersion was diluted 10-fold with phosphate buffered saline (1×PBS) to prepare a dispersion. The dispersion liquid was cast on an ITO substrate and subjected to mass spectrometry under the same conditions as in Example 1.
 (結果)
 TEMで撮像した白金ナノ粒子を図24に示す。TEM像から得られた白金ナノ粒子の粒径は4.9±1nmであった。ITO基板を測定したマススペクトルを図25に示す。m/z 194、195及び196に白金のシグナルが観察された。白金は融点が高くイオン化しにくいというのが一般的な理解であるが、レーザー光照射強度が十分であれば、銀又はパラジウムとのクラスターイオンを検出できるレベルのイオンが脱離することが示された。
(result)
FIG. 24 shows platinum nanoparticles imaged by TEM. The particle size of the platinum nanoparticles obtained from the TEM image was 4.9±1 nm. FIG. 25 shows a mass spectrum obtained by measuring the ITO substrate. Platinum signals were observed at m/ z 194, 195 and 196. It is generally understood that platinum has a high melting point and is difficult to ionize, but it has been shown that if the laser light irradiation intensity is sufficient, ions are desorbed at a level at which cluster ions with silver or palladium can be detected. rice field.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等な発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 Various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Moreover, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of equivalent inventions are considered to be within the scope of the present invention.
 本出願は、2021年1月19日に出願された、日本国特許出願2021-6270号に基づく。本明細書中に日本国特許出願2021-6270号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2021-6270 filed on January 19, 2021. The entire specification, claims, and drawings of Japanese Patent Application No. 2021-6270 are incorporated herein by reference.
 本発明は、微量成分の検出に好適である。 The present invention is suitable for detecting trace components.
 1,2 担体、10,20 プローブ、11,21 金属 1, 2 carrier, 10, 20 probe, 11, 21 metal

Claims (5)

  1.  検出対象に結合する第1のプローブを担持し、第1の金属を含有する第1の担体と、
     前記検出対象に結合する第2のプローブを担持し、前記第1の金属と異なる第2の金属を含有する第2の担体と、
     を備え、
     前記第1のプローブ及び前記第2のプローブを介して前記検出対象に結合することで近接した前記第1の担体と前記第2の担体にエネルギーが供給されると固有のイオンが脱離する、
     検出キット。
    a first carrier carrying a first probe that binds to a detection target and containing a first metal;
    a second carrier carrying a second probe that binds to the detection target and containing a second metal different from the first metal;
    with
    When energy is supplied to the first carrier and the second carrier that are close to each other by binding to the detection target through the first probe and the second probe, unique ions are desorbed.
    detection kit.
  2.  前記第1の担体は、金銀合金ナノ粒子であって、
     前記第2の担体は、金パラジウム合金ナノ粒子である、
     請求項1に記載の検出キット。
    The first carrier is a gold-silver alloy nanoparticle,
    wherein the second carrier is a gold-palladium alloy nanoparticle;
    The detection kit according to claim 1.
  3.  前記第1の担体は、金ナノ粒子であって、
     前記第2の担体は、白金ナノ粒子である、
     請求項1に記載の検出キット。
    The first carrier is a gold nanoparticle,
    The second carrier is platinum nanoparticles,
    The detection kit according to claim 1.
  4.  前記第1のプローブ及び前記第2のプローブは、
     前記検出対象に特異的に結合する抗体である、
     請求項1から3のいずれか一項に記載の検出キット。
    The first probe and the second probe are
    An antibody that specifically binds to the detection target,
    A detection kit according to any one of claims 1 to 3.
  5.  検出対象に結合する第1のプローブを担持し、第1の金属を含有する第1の担体、及び前記検出対象に結合する第2のプローブを担持し、前記第1の金属と異なる第2の金属を含有する第2の担体を、それぞれ前記第1のプローブ及び前記第2のプローブを介して前記検出対象に結合させる結合ステップと、
     前記検出対象に結合した前記第1の担体及び前記第2の担体にエネルギーを供給する供給ステップと、
     前記第1のプローブ及び前記第2のプローブを介して前記検出対象に結合することで近接した前記第1の担体及び前記第2の担体への前記エネルギーの供給により脱離した固有のイオンを検出する検出ステップと、
     を含む、検出方法。
    carrying a first probe that binds to the target of detection, carrying a first carrier containing a first metal, and carrying a second probe that binds to the target of detection, a second metal different from the first metal a binding step of binding a second carrier containing a metal to the detection target via the first probe and the second probe, respectively;
    a supply step of supplying energy to the first carrier and the second carrier bound to the detection target;
    Detection of unique ions that are desorbed by supplying the energy to the first carrier and the second carrier that are adjacent to each other by binding to the detection target through the first probe and the second probe. a detection step for
    A method of detection, including
PCT/JP2022/001528 2021-01-19 2022-01-18 Detection kit and detection method WO2022158437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576681A JPWO2022158437A1 (en) 2021-01-19 2022-01-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006270 2021-01-19
JP2021-006270 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158437A1 true WO2022158437A1 (en) 2022-07-28

Family

ID=82549440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001528 WO2022158437A1 (en) 2021-01-19 2022-01-18 Detection kit and detection method

Country Status (2)

Country Link
JP (1) JPWO2022158437A1 (en)
WO (1) WO2022158437A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001453A (en) * 2013-06-15 2015-01-05 新留 康郎 Nanoparticle desorption ion probe mass analysis
CN106353394A (en) * 2016-08-11 2017-01-25 厦门大学 Valence distribution adjustment method of electrospray ion source metal-cluster ions
WO2019013464A1 (en) * 2017-07-10 2019-01-17 재단법인대구경북과학기술원 Method for treating biological tissue, laser treatment device and atmospheric pressure mass spectrometry imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001453A (en) * 2013-06-15 2015-01-05 新留 康郎 Nanoparticle desorption ion probe mass analysis
CN106353394A (en) * 2016-08-11 2017-01-25 厦门大学 Valence distribution adjustment method of electrospray ion source metal-cluster ions
WO2019013464A1 (en) * 2017-07-10 2019-01-17 재단법인대구경북과학기술원 Method for treating biological tissue, laser treatment device and atmospheric pressure mass spectrometry imaging system

Also Published As

Publication number Publication date
JPWO2022158437A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
Tu et al. Molecularly imprinted polymer-based plasmonic immunosandwich assay for fast and ultrasensitive determination of trace glycoproteins in complex samples
Sun et al. A nitrile-mediated aptasensor for optical anti-interference detection of acetamiprid in apple juice by surface-enhanced Raman scattering
US9658163B2 (en) Assaying substrate with surface-enhanced raman scattering activity
JP3457228B2 (en) Method and apparatus for analyte desorption and ionization
JP6258707B2 (en) Determination of insulin by mass spectrometry
Song et al. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate
EP3306310B1 (en) Method for quantifying monoclonal antibody
JP6800275B2 (en) Resin-platinum composite and its use
Stobiecka et al. Effect of buried potential barrier in label-less electrochemical immunodetection of glutathione and glutathione-capped gold nanoparticles
Liu et al. Upconversion nanoparticle as elemental tag for the determination of alpha-fetoprotein in human serum by inductively coupled plasma mass spectrometry
Agoston et al. Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy
Sánchez-González et al. Magnetic molecularly imprinted polymer based–micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography–tandem mass spectrometry
JP6515995B2 (en) Sample preparation kit for detection of monoclonal antibodies
KR20120128440A (en) Kit and method for detecting target material
Song et al. Gold-modified silver nanorod arrays for SERS-based immunoassays with improved sensitivity
KR101699578B1 (en) Kit for ananlyzing biomolecules and method for analyzing biomolecules using the same
Selbes et al. Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine
KR20090083685A (en) Method and apparatus for detecting a specific molecule using surface-enhanced raman spectroscopy
Chen et al. Polydopamine nanoparticle-mediated, click chemistry triggered, microparticle-counting immunosensor for the sensitive detection of ochratoxin A
Xia et al. The simultaneous detection of the squamous cell carcinoma antigen and cancer antigen 125 in the cervical cancer serum using nano-Ag polydopamine nanospheres in an SERS-based lateral flow immunoassay
Xue et al. A photopatterned SERS substrate with a sandwich structure for multiplex detection
WO2022158437A1 (en) Detection kit and detection method
Patil et al. Carboxylated/Oxidized Diamond Nanoparticles for Quantifying Immunoglobulin G Antibodies Using Mass Spectrometry
WO2016174525A1 (en) Enhanced sensitivity in ligand binding assays performed with secondary ion mass spectrometry
Zou et al. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742559

Country of ref document: EP

Kind code of ref document: A1