WO2022158111A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2022158111A1
WO2022158111A1 PCT/JP2021/043065 JP2021043065W WO2022158111A1 WO 2022158111 A1 WO2022158111 A1 WO 2022158111A1 JP 2021043065 W JP2021043065 W JP 2021043065W WO 2022158111 A1 WO2022158111 A1 WO 2022158111A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
compressor
cylinder
connecting rod
cylinder body
Prior art date
Application number
PCT/JP2021/043065
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 成澤
修平 永田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN202180051831.XA priority Critical patent/CN116113764A/en
Priority to KR1020237005062A priority patent/KR20230035413A/en
Publication of WO2022158111A1 publication Critical patent/WO2022158111A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts

Definitions

  • the present invention relates to compressors.
  • a reciprocating compressor in which a gas layer is provided between a disk portion of a piston and a retainer to suppress the heat transfer of compression heat generated in a compression chamber to a bearing of a connecting rod (Patent Document 1). .
  • a gap is provided over the entire surface between the retainer and the disk portion of the piston.
  • This gap serves as a gas passage, and communicates with the inside of the crankcase through a plurality of passage holes.
  • a gas layer is formed between the retainer and the disk portion of the piston. This gas layer suppresses the heat of compression generated in the compression chamber from being transferred to the connecting rod.
  • the expanded gas is sucked into the cylinder.
  • the lower the temperature of the sucked gas is, the higher the gas compression efficiency is, so further efficiency improvement is required.
  • An object of the present invention is to provide a compressor with high compression efficiency.
  • the present invention includes a number of means for solving the above problems.
  • One example is a cylinder having at least a cylindrical cylinder body and a cylinder plate closing the end of the cylinder body; a piston that reciprocates inside the cylinder; a connecting rod that supports the piston; and a crankshaft that applies a rotational force to the end of the connecting rod.
  • At least a surface of the piston that contacts the inner peripheral side of the cylinder body is made of wear-resistant resin, and an outer peripheral surface of the piston is a spherical surface.
  • a compression chamber is formed by the piston, the cylinder main body and the cylinder plate, a hollow portion is formed between the piston and the connecting rod, and an intake port for introducing gas into the compression chamber is formed in the cylinder.
  • a compressor located on the side of the end of the plate or said cylinder body.
  • the compression efficiency can be increased by sucking gas from the intake port provided on the side surface of the end of the cylinder plate or cylinder body.
  • FIG. 1 is a schematic diagram of a compressor of Example 1 of the present invention
  • FIG. 2 is a partial cross-sectional view of the compressor main body of Example 1.
  • FIG. 4 is a front view of a configuration example of a piston and a connecting rod in Example 1.
  • FIG. 4 is a rear view of a configuration example of a piston and a connecting rod in Example 1.
  • FIG. 3B is a partial cross-sectional view taken along line AA of FIG. 3A in Example 1.
  • FIG. 3B is a partial cross-sectional view taken along line BB of FIG. 3C in Example 1.
  • FIG. FIG. 10 is a front view of a configuration example of a piston and a connecting rod in Example 2;
  • FIG. 10 is a front view of a configuration example of a piston and a connecting rod in Example 2;
  • FIG. 11 is a rear view of a configuration example of a piston and a connecting rod in Example 2; 4B is a partial cross-sectional view taken along line AA of FIG. 4A in Example 2.
  • FIG. FIG. 4C is a partial cross-sectional view taken along the line BB of FIG. 4C in Example 2;
  • FIG. 11 is a partial cross-sectional view of a configuration example of a piston and a connecting rod in Example 3;
  • FIG. 11 is a perspective view of a piston provided with cooling members (cooling fins) in Example 3 as viewed from the back side;
  • FIG. 11 is a perspective view of a piston provided with a cooling member (cooling pin) in Example 3, as viewed from the back side; 4 is a partial cross-sectional view showing the flow of intake gas in the vicinity of the cylinder head of Example 1.
  • FIG. 4 is a plan view of an example of a cylinder plate in Embodiment 1.
  • FIG. 4 is a rear view of an example of a cylinder plate in Embodiment 1.
  • FIG. FIG. 11 is a partial cross-sectional view showing flows of intake gas and discharge gas in the vicinity of the cylinder head in a modified example;
  • Example 1 A first embodiment of the compressor of the present invention will be described with reference to FIGS. 1 to 3D.
  • FIG. 1 is a schematic diagram of a compressor 1 in Example 1.
  • FIG. 2 is a partial cross-sectional view of the compressor main body 10 in this embodiment.
  • the compressor 1 shown in FIG. 1 includes a compressor main body 10, an electric motor 2 for driving the compressor main body 10, and a tank 3 for storing the gas discharged by the compressor main body 10.
  • the compressor body 10 compresses gas such as air by means of a piston 33 that reciprocates within a cylinder.
  • the compressor main body 10 includes a crankshaft 24, a crankcase 21 that supports the crankshaft 24 so as to be rotatable around a rotation center axis 24a, and one crankcase 21 that vertically protrudes from the crankcase 21. It includes a cylinder 22 , a connecting rod 32 whose base end is rotatably connected to the crankpin of the crankshaft 24 , and a piston 33 fixed to the tip end of the connecting rod 32 .
  • the cylinder 22 includes a cylindrical cylinder body 25 , a cylinder plate 26 closing an end (upper end) of the cylinder body 25 , and a cylinder head 23 .
  • the cylinder plate 26 is held between the cylinder head 23 and the cylinder body 25 .
  • a compression chamber 22 ⁇ /b>X is formed by the piston 33 , the cylinder inner wall surface 22 a that is the inner peripheral surface of the cylinder main body 25 , and the cylinder plate 26 .
  • the cylinder plate 26 has an intake port 26AG (see FIGS. 6 and 7A) for introducing gas into the compression chamber 22X, and a discharge port 26BG (see FIG. 7B) for discharging the gas compressed in the compression chamber 22X. is provided.
  • An intake valve 26a (see FIGS. 6 and 7B) is attached to the intake port 26AG, and a discharge valve 26b (see FIG. 7A) is attached to the discharge port 26BG.
  • the cylinder plate 26 is arranged on the opposite side of the crankshaft 24 with the piston 33 interposed therebetween.
  • the piston 33 reciprocates while swinging in the cylinder 22 as the crankshaft 24 rotates.
  • 30X is generally slanted.
  • the electric motor 2 rotates the crankshaft 24 to give a rotational force to one end of the connecting rod 32 , and the piston 33 installed inside the cylinder 22 reciprocates inside the cylinder 22 .
  • the intake stroke in which the piston 33 moves from the top dead center to the bottom dead center, the compression chamber 22X is expanded, and the intake valve 26a (see FIGS. 6 and 7B) provided in the cylinder plate 26 is opened to open the intake air in the cylinder head 23. Gas is sucked into the compression chamber 22X from the chamber through the intake port 26AG.
  • FIG. 6 is a partial cross-sectional view showing the flow of intake gas near the cylinder plate 26 in this embodiment.
  • FIG. 7A is a plan view of one example of the cylinder plate 26 in this embodiment.
  • FIG. 7B is a rear view of one example of the cylinder plate 26 in this embodiment.
  • an intake valve 26a arranged on the cylinder plate 26 for opening and closing the intake port 26AG and a discharge valve 26b for opening and closing the discharge port 26BG are arranged in accordance with the reciprocating motion of the piston 33. to operate.
  • the shape of the compressor is a one-cylinder, one-stage compressor having only one pair of piston and cylinder.
  • the compressor 1 may be configured to have a plurality of sets of pistons and cylinders in series or radially with respect to the crankshaft.
  • the compressor main body 10 is arranged and fixed on the tank 3 with the crankshaft 24 arranged parallel to the rotating shaft of the electric motor 2 . As shown in FIG. 1, the compressor pulley 4 is fixed to the crankshaft 24 . An electric motor pulley 5 is fixed to the rotating shaft of the electric motor 2 .
  • the compressor pulley 4 attached to the compressor main body 10 has blades, and generates wind toward the compressor main body 10 as it rotates, thereby promoting heat dissipation from the compressor main body 10 .
  • a transmission belt 6 for transmitting power between the compressor pulley 4 and the electric motor pulley 5 is wound around the compressor pulley 4 and the electric motor pulley 5 .
  • the crankshaft 24 of the compressor main body 10 is rotationally driven via the electric motor pulley 5, the transmission belt 6 and the compressor pulley 4, and the compressor main body 10 compresses the gas.
  • the compressor main body 10 is connected to the electric motor 2 via the transmission belt 6, but the connection method is not limited to this.
  • the crankshaft 24 of the compressor main body 10 and the rotation shaft of the electric motor 2 may be directly connected using connecting means such as a coupling.
  • the compressor main body 10 shown in FIG. 2 employs an oscillating piston system in which the piston 33 is integrated with the connecting rod 32 .
  • the piston 33 reciprocates while rocking in the cylinder 22 as the crankshaft 24 rotates.
  • FIG. 3A is a front view of a configuration example of a piston and a connecting rod in this embodiment
  • FIG. 3B is a rear view
  • FIG. 3C is a partial cross-sectional view taken along line AA in FIG. 3A
  • FIG. 3D is a partial cross-sectional view taken along line BB of FIG. 3C.
  • the piston 33 shown in FIGS. 3A and 3B is a component separate from the connecting rod 32 that supports the piston 33 .
  • the outer peripheral surface 33a that contacts the inner peripheral side of the cylinder body 25 and the piston upper surface 33c on the cylinder plate 26 side are made of resin having wear resistance.
  • the piston 33 except for a piston insert 41 (see FIG. 3D), which will be described later, is made of resin with excellent wear resistance.
  • a resin material excellent in wear resistance that can constitute the piston 33 is, for example, polytetrafluoroethylene (PTFE). Furthermore, when the coefficient of thermal expansion is considered, the resin material of the piston 33 may be polyphenylene sulfide (PPS) or the like.
  • PTFE polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • the outer peripheral surface 33a of the piston 33 is a spherical surface having a diameter slightly smaller than the diameter of the inner peripheral side of the cylinder main body 25.
  • the center of the outer peripheral surface 33a having the spherical shape is the outer peripheral center 33d (see FIGS. 3A and 3C).
  • a piston convex portion 33e is formed on an outer peripheral portion facing the connecting rod 32 of the surface of the piston 33 on the connecting rod 32 side, and is fitted with the connecting rod convex portion 32d of the connecting rod 32.
  • a ring groove 33b is provided on the outer circumference of the piston 33 in contact with the cylinder inner wall surface 22a, and a piston ring 34 is fitted therein.
  • the piston ring 34 is a seal ring that seals a gap between the cylinder inner wall surface 22 a and the outer peripheral surface 33 a of the piston 33 .
  • the piston 33 is molded with a piston insert 41 made of metal such as an aluminum alloy embedded therein.
  • the piston insert 41 prevents the piston 33 from coming off the connecting rod 32 even if the piston 33 is lifted toward the cylinder head 23 by reciprocating inertial force or frictional force and receives a load.
  • the edge 41a of the piston insert 41 has a shape that bites into the piston 33 in the circumferential direction so that the piston 33 does not slip out.
  • the piston insert 41 is formed with one or more, two in this embodiment, female screw holes 41c opening toward the crankcase 21 so that the connecting rod 32 can be fixed with screws.
  • the piston 33 is fastened (fixed) to the connecting rod 32 from the crankcase 21 side with two screws 35 located in a direction orthogonal to the crankshaft 24 .
  • the connecting rod 32 shown in FIG. have.
  • the piston insert 41 of this embodiment has a dish shape with the cylinder head 23 side as the bottom.
  • the seating surface of the connecting rod 32 is formed with a connecting rod recess 32b recessed toward the crankshaft 24 (downward in the drawing) at a position corresponding to the center recess of the piston insert 41.
  • a hollow portion 41 b is formed between the lower surface of the piston insert 41 and the upper surface of the connecting rod 32 .
  • the hollow portion 41 b is covered with a piston insert 41 on the upper surface of the piston 33 .
  • the internal space of the hollow portion 41b is a closed space.
  • the resin itself constituting the piston 33 receives a gas load when the piston 33 reciprocates. It is preferable to take some countermeasures.
  • the female screw hole 41c of the piston insert 41 is provided parallel to the direction of the central axis 30X of the piston and connecting rod.
  • the arrangement of these parts is not limited to "the arrangement parallel to the central axis 30X of the piston and connecting rod".
  • the female threaded hole can be arranged obliquely with respect to the central axis 30X of the piston and connecting rod.
  • the hollow portion 41b is formed between the piston 33 and the connecting rod 32, so that the mass of the reciprocating portion including the piston 33 and the connecting rod 32 can be reduced. Therefore, the vibration of the compressor body 10 caused by the reciprocating motion inertia force is suppressed.
  • the upper surface of the piston 33 of the hollow portion 41b is covered with the piston insert 41. Therefore, since the piston 33 is held from the inside by the piston insert 41, even when the hollow portion 41b is formed, the amount of deformation caused by the shrinkage of the piston 33 during molding and expansion due to compression heat during operation is reduced. will be reduced.
  • crankcase 21 is provided with a breathing hole (not shown) that is open to the outside air.
  • a breathing hole (not shown) that is open to the outside air.
  • a breathing filter 27 (see FIG. 2) is attached to the breathing hole to filter the outside air flowing into the space of the crankcase 21 in order to prevent dust from being sucked in.
  • the connecting portion between the connecting rod 32 and the piston 33 has a large cross-sectional shape by providing the hollow portion 41b.
  • the cross-sectional shape of the connecting rod 32 in this embodiment is substantially Y-shaped, and the angle of the root portion on the crankshaft side is in the range of about 90° to about 110° across the central axis 30X of the piston and the connecting rod. I wish I had.
  • the connecting rod concave portion 32b in this embodiment has a mortar shape or a truncated cone shape.
  • the gap between the inner wall surfaces facing in the radial direction where the screw 35 is installed that is, It has a slightly narrow inner dimension.
  • the compressor 1 of this embodiment includes a cylinder 22 having at least a cylindrical cylinder body 25 and a cylinder plate 26 closing the end of the cylinder body 25, and a piston 33 reciprocating within the cylinder 22. , a connecting rod 32 that supports a piston 33 and a crankshaft 24 that imparts rotational force to the end of the connecting rod 32 .
  • the piston 33 is an oscillating piston that reciprocates while oscillating within the cylinder 22 as the crankshaft 24 rotates.
  • At least the surface of the piston 33 that contacts the inner circumference of the cylinder body 25 is made of wear-resistant resin.
  • An outer peripheral surface 33a of the piston 33 is spherical.
  • a compression chamber 22X is formed by the piston 33, the cylinder body 25, and the cylinder plate 26. As shown in FIG.
  • a hollow portion 41b is formed between the piston 33 and the connecting rod 32, and an intake port 26AG for introducing gas into the compression chamber 22X is arranged in the cylinder plate .
  • the piston 33 of Embodiment 1 of the present invention described above is an oscillating piston that reciprocates while oscillating within the cylinder 22 as the crankshaft 24 rotates.
  • the outer peripheral surface 33a of the piston 33 which contacts the inner peripheral side of the cylinder main body 25, is made of a wear-resistant resin.
  • the outer peripheral surface 33 a of the piston 33 is a resin spherical surface having a diameter smaller than that of the cylinder main body 25 .
  • a portion of the spherical surface having a diameter larger than the diameter of the cylinder body 25 may be the outer peripheral surface 33 a of the piston 33 . Compression heat received by the upper surface 33c of the piston is shielded by the resin outer peripheral surface 33a of the piston 33. As shown in FIG.
  • the gap between the outer peripheral surface 33a of the piston 33 and the inner wall surface 22a (see FIG. 2) of the piston 33 can be kept very small in an oscillating piston type compressor. , the effect that the piston 33 can slide smoothly is obtained. In addition, it is possible to prevent deformation and damage of the piston ring 34 and deterioration of sealing performance due to an increase in the swing angle.
  • the mass of the reciprocating portion including the piston 33 and the connecting rod 32 can be reduced. Therefore, the vibration of the compressor body 10 caused by the reciprocating motion inertia force is suppressed.
  • volumetric efficiency can be improved by sucking non-expanded gas, such as normal temperature air, from the intake port 26AG provided in the cylinder plate 26 .
  • compression efficiency can be improved.
  • the connecting rod 32 of this embodiment is formed in a substantially Y shape, it has higher mechanical rigidity than the substantially T-shaped connecting rod in the prior art, and the connecting rod 32 due to the locking phenomenon of the reciprocating portion is more stable. 32 has a structure in which breakage or the like is less likely to occur. Therefore, the reliability of the joint between the connecting rod 32 and the piston 33 in the compressor 1 can be enhanced.
  • the compressor 1 of the present embodiment can operate more stably than the compressor of the prior art, in which the connection between the connecting rod and the piston is solid.
  • Example 2 will be described with reference to FIGS. 4A to 4D.
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and the description thereof is omitted. The same applies to the following examples.
  • FIG. 4A is a front view of a configuration example of a piston and a connecting rod in this embodiment
  • FIG. 4B is a rear view
  • FIG. 4C is a partial cross-sectional view taken along line AA in FIG. 4A
  • FIG. 4D is a partial cross-sectional view taken along line BB of FIG. 4C.
  • the internal space of the hollow portion 41b is a closed space.
  • the space of the crankcase 21 is provided on the upper end surface side of the connecting rod 32 in contact with the hollow portion 41b in contrast to the first embodiment. and the hollow portion 41b are provided with two communication holes 32e and 32f.
  • the shape of the opening of the communication hole 32e in this embodiment is substantially fan-shaped, and the center point thereof is located near the substantially Y-shaped root 32Y of the connecting rod 32. As shown in FIG. 4B, the shape of the opening of the communication hole 32e in this embodiment is substantially fan-shaped, and the center point thereof is located near the substantially Y-shaped root 32Y of the connecting rod 32. As shown in FIG. 4B, the shape of the opening of the communication hole 32e in this embodiment is substantially fan-shaped, and the center point thereof is located near the substantially Y-shaped root 32Y of the connecting rod 32.
  • a substantially fan-shaped arc portion of the communication hole 32 e faces the piston 33 .
  • the shape of the opening of the communication hole 32f is substantially semicircular or part of a circular shape.
  • the hollow portion 41b The volume can be set large. Accordingly, the weight of the connecting rod 32 is reduced.
  • the upper surface side of the connecting rod 32 vent holes 32e, 32f of the required size are arranged.
  • the cross-sectional shape of the communication hole 32e may be circular or elliptical.
  • the communication hole 32e is arranged so as to face the communication hole 32f across the central axis 30X of the piston and the connecting rod in the cross section of the piston 33 in the radial direction.
  • the cross-sectional shape of the communication hole 32f which serves as a gas ejection port when the piston 33 descends, may be an elongated hole or an elliptical shape. Further, a plurality of communication holes 32f may be arranged in an angular range of about 10° to 30° in the radial direction of the piston 33.
  • the opening surfaces of the communication holes 32e and 32f are provided in different directions. is particularly preferred.
  • a plurality of communication holes it is preferable that at least one of them opens toward the crankshaft 24 like the communication hole 32e. Moreover, it is preferable that at least one is open in the radial direction of the cylinder main body 25 like the communication hole 32f. Further, when a plurality of communication holes are provided, it is particularly preferable that at least one of them opens toward the crankshaft 24 and at least one opens in the radial direction of the cylinder body 25 .
  • crankcase 21 is provided with a breathing hole (not shown) that is open to the outside air, and a breathing filter 27 is attached to the breathing hole to prevent dust from being sucked in. ing.
  • the communication hole 32e serves as an intake for taking the gas inside the crankcase 21 into the hollow portion 41b when the piston 33 descends.
  • the communication hole 32f serves as an ejection port for ejecting the gas inside the hollow portion 41b to the outside when the piston 33 descends.
  • the communication holes 32e and 32f are different in the opening direction from the inner hollow portion 41b to the outside.
  • the opening of the communication hole 32e which serves as a gas intake port
  • the opening of the communication hole 32f which serves as a gas outlet, faces radially outward of the cylinder body 25.
  • the outer peripheral surface 33a of the piston 33 which contacts the inner peripheral side of the cylinder body 25, is made of a wear-resistant resin, and has a diameter smaller than that of the cylinder body 25. It is a spherical surface made of resin. As a result, the compression heat received by the piston upper surface 33 c is shielded by the piston 33 .
  • the space of the hollow portion 41b and the space of the crankcase 21 are communicated with each other through the communication holes 32f and 32e.
  • the hollow portion 41b is cooled by the gaseous cooling air 42 (see FIG. 4C).
  • the compressor 1 of the present embodiment can prevent the deformation of the piston ring 34 more than the conventional compressor in which the connection portion between the connecting rod and the piston is solid.
  • the good slidability of the spherical outer peripheral surface 33a improves the sealing performance.
  • the volumetric efficiency is improved, and more stable operation can be performed.
  • compression efficiency can be improved.
  • heat transfer to the connecting rod 32 is less likely to occur, so the life of the bearing of the connecting rod 32 is lengthened.
  • Example 3 will be described with reference to FIGS. 5A to 5C.
  • a cooling member for promoting heat dissipation is further provided on the back surface 41d of the piston insert, unlike the second embodiment, so as to enhance the cooling effect in the hollow portion 41b and further promote the heat dissipation of the piston 33. It is
  • FIG. 5A is a partial cross-sectional view of a configuration example of the piston and connecting rod in this embodiment when viewed from the AA section line in the front view shown in FIG. 4A.
  • a cooling member (cooling pin 41f) is provided on the back surface 41d of the piston insert of the piston 33 .
  • FIG. 5B is a perspective view of the piston 33 including a piston insert rear surface 41d provided with cooling fins 41e used as a cooling member, viewed from the rear surface side.
  • the plurality of cooling fins 41e be arranged so that the direction of arrangement thereof follows the flow of the cooling air 42 in the inner space of the hollow portion 41b.
  • FIG. 5C is a perspective view of the piston 33 including a piston insert rear surface 41d provided with a cooling pin 41f used as a cooling member, viewed from the rear surface side.
  • the piston insert 41 is provided with a large number of cooling pins 41f projecting from the piston insert back surface 41d as cooling members. In this form, a large number of cooling pins 41f are arranged in a zigzag pattern. When this cooling pin 41f is used, a large amount of gas contacts around one cooling pin 41f. Therefore, the dependence of the cooling efficiency on the gas flow direction in the internal space of the hollow portion 41b is reduced.
  • a breathing hole (not shown) installed in the crankcase 21 and a breathing filter 27 for filtration are attached in the same manner as in the second embodiment.
  • the outer peripheral surface 33a of the piston 33 is made of resin, the compression heat generated inside the cylinder 22 is shielded by the piston 33. Further, since the hollow portion 41b is formed between the piston 33 and the connecting rod 32, the mass of the reciprocating portion including the piston 33 and the connecting rod 32 is reduced. Therefore, the vibration of the compressor main body 10 caused by the reciprocating motion inertia force can be improved.
  • cooling fins 41e or cooling pins 41f are provided on the back surface 41d of the piston insert as cooling members for promoting heat dissipation from the piston 33. These cooling members increase the amount of heat released from the piston insert back surface 41d.
  • the compressor 1 of this embodiment includes a metal piston insert 41 having a female screw hole 41c inside the piston 33, and the piston insert 41 is fixed to the connecting rod 32 from the crankcase 21 side with a screw 35. , a hollow portion 41 b is formed between the piston insert 41 and the connecting rod 32 . Therefore, the mass of the reciprocating portion including the piston 33 and connecting rod 32 is reduced.
  • An intake port 26AG connected to the compression chamber 22X is installed in the cylinder plate 26, and the space of the hollow portion 41b and the space of the crankcase 21 are communicated through communication holes 32f and 32e. Therefore, heat dissipation from the piston 33 is promoted.
  • the surface of the piston insert 41 on the side of the crankcase 21, that is, the back surface 41d of the piston insert, has cooling fins 41e and cooling pins 41f, which are cooling members that promote heat dissipation. Therefore, heat dissipation from the piston 33 is further facilitated as compared with the case where the piston insert 41 is not provided with a cooling member.
  • the life of the bearing of the connecting rod 32 is relatively longer than that of the second embodiment described above.
  • the cylinder plate 26 is provided with a discharge port 26BG and a discharge valve 26b for opening and closing the discharge port 26BG.
  • the compressed gas discharged from the discharge port 26BG is delivered to the tank 3 through the external piping 7 from the discharge port 26BO.
  • Gas is supplied to the inside of the cylinder body 25 from an intake port 26AG provided on the side surface of the end of the cylinder body 25 .
  • the intake valve 26a operates to open and close the plurality of intake ports 26AG.
  • the intake port 26AG is arranged below the top dead center of the piston 33 in the axial direction of the cylinder body 25 . That is, since the intake port 26AG is arranged below the top of the piston 33 at the top dead center, the intake port 26AG is exposed to the compression chamber 22X when the piston 33 is located at the top dead center. never
  • the discharge port 26BG attached to the cylinder plate 26 and the intake port 26AG provided on the side surface of the end of the cylinder body 25 are located on the opposite side of the crankshaft 24 with the piston 33 interposed therebetween. are placed in
  • the intake port 26AG is arranged below the top dead center of the piston 33 in the axial direction of the cylinder body 25 . Therefore, the volumetric efficiency is further improved when the external gas is sucked and compressed.
  • the intake and discharge mechanism of this modified example can be used in combination with the configuration of the piston and connecting rod in the first to third embodiments described above. In that case, even if the compression rate of the gas is set higher, if the hollow portion 41b is provided in the piston and the connecting rod to promote heat dissipation from the hollow portion 41b on the back side of the piston 33, the compressor 1 of this modification can be obtained. can maintain high volumetric efficiency. As a result, compression efficiency is increased.
  • the compressor 1 of this modified example has improved sealing performance and maintains volumetric efficiency even when the compression rate is set high compared to the compressor of the prior art in which the connection portion between the connecting rod and the piston is solid. and more stable operation. Also, since the piston 33 can be efficiently cooled, the service life of the bearing of the connecting rod 32 is extended.
  • the compressor of the present invention can be applied to various compressors that can employ the oscillating piston system among compressors that compress various gases such as air and refrigerants, and the types, models, and applications thereof are particularly limited. not.
  • the present invention is not limited to the above examples, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • Discharge port 27 Breathing filter 30X Central axis of piston and connecting rod 32 Connecting rod 32b Connecting rod concave portion 32c Screw through hole 32d Connecting rod convex portion 32e Communicating hole 32f Communicating hole 33 Piston 33a Outer peripheral surface 33b Ring groove 33c Upper surface of piston 33d Center of outer peripheral portion 33e Piston convex portion 34 Piston ring 35 Screw 41 Piston insert 41a Edge 41b ...Hollow portion 41c...Female screw hole 41d...Back side of piston insert 42...Cooling air

Abstract

This compressor (1) comprises a cylinder having a cylinder body and a cylinder plate that closes an end part of the cylinder body, a piston (33) that reciprocates in the cylinder, a connecting rod (32) that supports the piston (33), a crankshaft that imparts rotational force to an end part of the connecting rod (32), and a crank case that rotatably supports the crankshaft. The piston (33) is a swing piston that reciprocates while swinging in the cylinder as the crankshaft rotates, the piston (33) is constituted of at least a resin of which the surface that comes into contact with the inner peripheral side of the cylinder body is wear-resistant, and the outer peripheral surface of the piston (33) is a spherical surface having a diameter smaller than the diameter of the cylinder body. A compression chamber is formed by the piston (33), the cylinder body, and the cylinder plate, a hollow part (41b) is formed between the piston (33) and the connecting rod, and an intake port for introducing gas into the compression chamber is disposed on the cylinder plate.

Description

圧縮機compressor
 本発明は、圧縮機に関する。 The present invention relates to compressors.
 ピストンの円盤部とリテーナとの間に気体層を設けることによって、圧縮室で発生した圧縮熱がコンロッドのベアリングへ伝熱されることを抑制した往復動圧縮機が知られている(特許文献1)。 A reciprocating compressor is known in which a gas layer is provided between a disk portion of a piston and a retainer to suppress the heat transfer of compression heat generated in a compression chamber to a bearing of a connecting rod (Patent Document 1). .
特開2008-248812号公報JP 2008-248812 A
 特許文献1の往復動圧縮機では、リテーナとピストンの円盤部との間に全面的に隙間が設けられている。この隙間が気体の通路となっており、さらに複数の通路穴を介してクランクケースの内側と連通している。このようにして、リテーナとピストンの円盤部との間に気体層が形成されている。この気体層によって、圧縮室で発生した圧縮熱がコンロッドへ伝わることが抑制されている。 In the reciprocating compressor of Patent Document 1, a gap is provided over the entire surface between the retainer and the disk portion of the piston. This gap serves as a gas passage, and communicates with the inside of the crankcase through a plurality of passage holes. In this way, a gas layer is formed between the retainer and the disk portion of the piston. This gas layer suppresses the heat of compression generated in the compression chamber from being transferred to the connecting rod.
 この往復動圧縮機では、リテーナ上面に取り付けられた吸込弁が開くことによって、クランクケースの空間から気体層を通過した新しい気体が吸込穴を通ってシリンダ内に吸い込まれている。 In this reciprocating compressor, new gas that has passed through the gas layer from the crankcase space is sucked into the cylinder through the suction hole by opening the suction valve attached to the upper surface of the retainer.
 この構成によって、ピストンの作動時にクランクケース側から気体が流れるため、気体層の温度上昇が抑制されている。 With this configuration, gas flows from the crankcase side when the piston operates, so the temperature rise of the gas layer is suppressed.
 しかし、特許文献1の吸気構造では、圧縮室からの放熱が気体層に伝熱されるので、シリンダ内に吸い込まれる気体の温度が上がる。 However, in the intake structure of Patent Document 1, the heat released from the compression chamber is transferred to the gas layer, so the temperature of the gas sucked into the cylinder rises.
 そのため、膨張した気体をシリンダ内に吸い込むことになる。一般に、吸い込む気体の温度が低い方が、気体の圧縮効率が向上するため、さらなる効率改善が求められる。 Therefore, the expanded gas is sucked into the cylinder. In general, the lower the temperature of the sucked gas is, the higher the gas compression efficiency is, so further efficiency improvement is required.
 本発明は、圧縮効率の高い圧縮機を提供することを目的とする。 An object of the present invention is to provide a compressor with high compression efficiency.
 本発明は、上記課題を解決する手段を多数含んでいるが、その一例を挙げるならば、円筒状のシリンダ本体、及び前記シリンダ本体の端部を閉鎖するシリンダプレートを少なくとも有するシリンダと、前記シリンダ内を往復動するピストンと、前記ピストンを支持するコンロッドと、前記コンロッドの端部に回転力を与えるクランクシャフトと、を備え、前記ピストンは、前記クランクシャフトの回転に伴い前記シリンダ内を揺動しながら往復動する揺動ピストンであって、前記ピストンは、少なくとも、前記シリンダ本体の内周側に接触する面が耐摩耗性を有する樹脂によって構成され、前記ピストンの外周面は、球面となっており、前記ピストンと前記シリンダ本体と前記シリンダプレートによって圧縮室が形成され、前記ピストンと前記コンロッドの間に中空部が形成され、前記圧縮室に気体を導入するための吸気口が、前記シリンダプレートまたは前記シリンダ本体の端部の側面に配置されている圧縮機である。 The present invention includes a number of means for solving the above problems. One example is a cylinder having at least a cylindrical cylinder body and a cylinder plate closing the end of the cylinder body; a piston that reciprocates inside the cylinder; a connecting rod that supports the piston; and a crankshaft that applies a rotational force to the end of the connecting rod. At least a surface of the piston that contacts the inner peripheral side of the cylinder body is made of wear-resistant resin, and an outer peripheral surface of the piston is a spherical surface. A compression chamber is formed by the piston, the cylinder main body and the cylinder plate, a hollow portion is formed between the piston and the connecting rod, and an intake port for introducing gas into the compression chamber is formed in the cylinder. A compressor located on the side of the end of the plate or said cylinder body.
 本発明によれば、シリンダプレートまたはシリンダ本体の端部の側面に設けられる吸気口から気体を吸い込むことによって、圧縮効率を高めることができる。 According to the present invention, the compression efficiency can be increased by sucking gas from the intake port provided on the side surface of the end of the cylinder plate or cylinder body.
 上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施例1の圧縮機の概略図である。1 is a schematic diagram of a compressor of Example 1 of the present invention; FIG. 実施例1の圧縮機本体の部分断面図である。2 is a partial cross-sectional view of the compressor main body of Example 1. FIG. 実施例1におけるピストン及びコンロッドの構成例の正面図である。4 is a front view of a configuration example of a piston and a connecting rod in Example 1. FIG. 実施例1におけるピストン及びコンロッドの構成例の背面図である。4 is a rear view of a configuration example of a piston and a connecting rod in Example 1. FIG. 実施例1における図3AのA-A切断線における部分断面図である。3B is a partial cross-sectional view taken along line AA of FIG. 3A in Example 1. FIG. 実施例1における図3CのB-B切断線における部分断面図である。3B is a partial cross-sectional view taken along line BB of FIG. 3C in Example 1. FIG. 実施例2におけるピストン及びコンロッドの構成例の正面図である。FIG. 10 is a front view of a configuration example of a piston and a connecting rod in Example 2; 実施例2におけるピストン及びコンロッドの構成例の背面図である。FIG. 11 is a rear view of a configuration example of a piston and a connecting rod in Example 2; 実施例2における図4AのA-A切断線における部分断面図である。4B is a partial cross-sectional view taken along line AA of FIG. 4A in Example 2. FIG. 実施例2における図4CのB-B切断線における部分断面図である。FIG. 4C is a partial cross-sectional view taken along the line BB of FIG. 4C in Example 2; 実施例3におけるピストン及びコンロッドの構成例の部分断面図である。FIG. 11 is a partial cross-sectional view of a configuration example of a piston and a connecting rod in Example 3; 実施例3における冷却部材(冷却フィン)を備えたピストンを裏面側から見た斜視図である。FIG. 11 is a perspective view of a piston provided with cooling members (cooling fins) in Example 3 as viewed from the back side; 実施例3における冷却部材(冷却ピン)を備えたピストンを裏面側から見た斜視図である。FIG. 11 is a perspective view of a piston provided with a cooling member (cooling pin) in Example 3, as viewed from the back side; 実施例1のシリンダヘッド付近における吸込みガスの流れを示す部分断面図である。4 is a partial cross-sectional view showing the flow of intake gas in the vicinity of the cylinder head of Example 1. FIG. 実施例1におけるシリンダプレートの一例の平面図である。4 is a plan view of an example of a cylinder plate in Embodiment 1. FIG. 実施例1におけるシリンダプレートの一例の背面図である。4 is a rear view of an example of a cylinder plate in Embodiment 1. FIG. 変形例におけるシリンダヘッド付近における吸込みガスと吐出ガスの流れを示す部分断面図である。FIG. 11 is a partial cross-sectional view showing flows of intake gas and discharge gas in the vicinity of the cylinder head in a modified example;
 [実施例1]
 本発明の圧縮機の実施例1について図1から図3Dを参照し説明する。
[Example 1]
A first embodiment of the compressor of the present invention will be described with reference to FIGS. 1 to 3D.
 最初に、本実施例の圧縮機1の全体構成について図1及び図2を参照し説明する。図1は、実施例1における圧縮機1の概略図である。また、図2は、本実施例における圧縮機本体10の部分断面図である。 First, the overall configuration of the compressor 1 of this embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a schematic diagram of a compressor 1 in Example 1. FIG. Moreover, FIG. 2 is a partial cross-sectional view of the compressor main body 10 in this embodiment.
 図1に示す圧縮機1は、圧縮機本体10と、それを駆動する電動機2と、圧縮機本体10が吐出する気体を貯留するためのタンク3と、を備えている。 The compressor 1 shown in FIG. 1 includes a compressor main body 10, an electric motor 2 for driving the compressor main body 10, and a tank 3 for storing the gas discharged by the compressor main body 10.
 圧縮機本体10は、シリンダ内を往復動するピストン33によって空気等の気体を圧縮する。圧縮機本体10は、図2に示すように、クランクシャフト24と、クランクシャフト24を回転中心軸24aの回りに回転可能に支持するクランクケース21と、クランクケース21から鉛直方向に突出する一つのシリンダ22と、基端部がクランクシャフト24のクランクピンに回転可能に接続されるコンロッド32と、コンロッド32の先端部に固定されるピストン33と、を備える。シリンダ22は、円筒状のシリンダ本体25と、このシリンダ本体25の端部(上部の端部)を閉鎖するシリンダプレート26と、シリンダヘッド23と、を備える。 The compressor body 10 compresses gas such as air by means of a piston 33 that reciprocates within a cylinder. As shown in FIG. 2, the compressor main body 10 includes a crankshaft 24, a crankcase 21 that supports the crankshaft 24 so as to be rotatable around a rotation center axis 24a, and one crankcase 21 that vertically protrudes from the crankcase 21. It includes a cylinder 22 , a connecting rod 32 whose base end is rotatably connected to the crankpin of the crankshaft 24 , and a piston 33 fixed to the tip end of the connecting rod 32 . The cylinder 22 includes a cylindrical cylinder body 25 , a cylinder plate 26 closing an end (upper end) of the cylinder body 25 , and a cylinder head 23 .
 シリンダプレート26は、シリンダヘッド23とシリンダ本体25とによって挟持される。ピストン33とシリンダ本体25の内周面であるシリンダ内壁面22aとシリンダプレート26とによって、圧縮室22Xが形成される。シリンダプレート26には、圧縮室22Xに気体を導入するための吸気口26AG(図6、図7A参照)、及び圧縮室22Xで圧縮された気体を吐出するための吐出口26BG(図7B参照)が設けられている。吸気口26AGには、吸気弁26a(図6、図7B参照)が取り付けられ、吐出口26BGには、吐出弁26b(図7A参照)が取り付けられている。 The cylinder plate 26 is held between the cylinder head 23 and the cylinder body 25 . A compression chamber 22</b>X is formed by the piston 33 , the cylinder inner wall surface 22 a that is the inner peripheral surface of the cylinder main body 25 , and the cylinder plate 26 . The cylinder plate 26 has an intake port 26AG (see FIGS. 6 and 7A) for introducing gas into the compression chamber 22X, and a discharge port 26BG (see FIG. 7B) for discharging the gas compressed in the compression chamber 22X. is provided. An intake valve 26a (see FIGS. 6 and 7B) is attached to the intake port 26AG, and a discharge valve 26b (see FIG. 7A) is attached to the discharge port 26BG.
 本実施例では、シリンダプレート26は、ピストン33を挟んでクランクシャフト24と反対側に配置されている。 In this embodiment, the cylinder plate 26 is arranged on the opposite side of the crankshaft 24 with the piston 33 interposed therebetween.
 図2に示すように、ピストン33は、クランクシャフト24の回転に伴いシリンダ22内を揺動しながら往復動するので、シリンダの中心軸22bに対して、往復動作中のピストン及びコンロッドの中心軸30Xは概ね傾斜している。 As shown in FIG. 2, the piston 33 reciprocates while swinging in the cylinder 22 as the crankshaft 24 rotates. 30X is generally slanted.
 圧縮機本体10では、電動機2によってクランクシャフト24が回転することで、コンロッド32の一端部に回転力を与え、シリンダ22内に設置されたピストン33がシリンダ22内を往復運動する。ピストン33が上死点から下死点へ向かう吸入工程では、圧縮室22Xが拡大され、シリンダプレート26に設けられる吸気弁26a(図6、及び図7B参照)が開いてシリンダヘッド23内の吸気室から吸気口26AGを通じて圧縮室22X内に気体が吸い込まれる。 In the compressor main body 10 , the electric motor 2 rotates the crankshaft 24 to give a rotational force to one end of the connecting rod 32 , and the piston 33 installed inside the cylinder 22 reciprocates inside the cylinder 22 . In the intake stroke in which the piston 33 moves from the top dead center to the bottom dead center, the compression chamber 22X is expanded, and the intake valve 26a (see FIGS. 6 and 7B) provided in the cylinder plate 26 is opened to open the intake air in the cylinder head 23. Gas is sucked into the compression chamber 22X from the chamber through the intake port 26AG.
 図6は、本実施例におけるシリンダプレート26付近における吸込みガスの流れを示す部分断面図である。図7Aは、本実施例におけるシリンダプレート26の一例の平面図である。図7Bは、本実施例におけるシリンダプレート26の一例の背面図である。 FIG. 6 is a partial cross-sectional view showing the flow of intake gas near the cylinder plate 26 in this embodiment. FIG. 7A is a plan view of one example of the cylinder plate 26 in this embodiment. FIG. 7B is a rear view of one example of the cylinder plate 26 in this embodiment.
 図6、図7A、及び図7Bに示すように、シリンダプレート26に配置され、吸気口26AGを開閉する吸気弁26a、及び吐出口26BGを開閉する吐出弁26bが、ピストン33の往復動に応じて作動する。 As shown in FIGS. 6, 7A, and 7B, an intake valve 26a arranged on the cylinder plate 26 for opening and closing the intake port 26AG and a discharge valve 26b for opening and closing the discharge port 26BG are arranged in accordance with the reciprocating motion of the piston 33. to operate.
 ピストン33が下死点から上死点へ向かう圧縮工程では、圧縮室22Xの容積が収縮され、圧縮室22X内の気体が圧縮され、シリンダプレート26に設けられた吐出弁26b(図7A参照)が開いて、吐出口26BG(図7B参照)からシリンダヘッド23内の排気室へ圧縮気体が吐出され、この排気室に接続される配管7(図1参照)を通じて圧縮気体がタンク3へ送出される。 In the compression stroke in which the piston 33 moves from the bottom dead center to the top dead center, the volume of the compression chamber 22X is contracted, the gas in the compression chamber 22X is compressed, and the discharge valve 26b provided in the cylinder plate 26 (see FIG. 7A). is opened, the compressed gas is discharged from the discharge port 26BG (see FIG. 7B) to the exhaust chamber in the cylinder head 23, and the compressed gas is delivered to the tank 3 through the pipe 7 (see FIG. 1) connected to this exhaust chamber. be.
 なお、図1及び図2では説明を簡略にするために、圧縮機形状はピストン及びシリンダを1対しか持たない1気筒1段圧縮機としている。しかし、圧縮機1は、クランクシャフトに対して直列あるいは放射状に複数組のピストン及びシリンダを有する構成であってもよい。 In addition, in FIGS. 1 and 2, in order to simplify the explanation, the shape of the compressor is a one-cylinder, one-stage compressor having only one pair of piston and cylinder. However, the compressor 1 may be configured to have a plurality of sets of pistons and cylinders in series or radially with respect to the crankshaft.
 圧縮機本体10は、クランクシャフト24が電動機2の回転軸と平行に配置された状態でタンク3上に配置して固定されている。図1に示すように、クランクシャフト24には圧縮機プーリ4が固定されている。電動機2の回転軸に電動機プーリ5が固定されている。圧縮機本体10に付設された圧縮機プーリ4は、羽根を有しており、その回転に伴い圧縮機本体10に向けて風を発生させることで、圧縮機本体10の放熱を促している。 The compressor main body 10 is arranged and fixed on the tank 3 with the crankshaft 24 arranged parallel to the rotating shaft of the electric motor 2 . As shown in FIG. 1, the compressor pulley 4 is fixed to the crankshaft 24 . An electric motor pulley 5 is fixed to the rotating shaft of the electric motor 2 . The compressor pulley 4 attached to the compressor main body 10 has blades, and generates wind toward the compressor main body 10 as it rotates, thereby promoting heat dissipation from the compressor main body 10 .
 圧縮機プーリ4及び電動機プーリ5には、圧縮機プーリ4及び電動機プーリ5の間で動力を伝達するための伝動ベルト6が巻回されている。これにより、電動機2の回転に従って、電動機プーリ5、伝動ベルト6及び圧縮機プーリ4を介して圧縮機本体10のクランクシャフト24が回転駆動され、圧縮機本体10が気体を圧縮する。 A transmission belt 6 for transmitting power between the compressor pulley 4 and the electric motor pulley 5 is wound around the compressor pulley 4 and the electric motor pulley 5 . As a result, according to the rotation of the electric motor 2, the crankshaft 24 of the compressor main body 10 is rotationally driven via the electric motor pulley 5, the transmission belt 6 and the compressor pulley 4, and the compressor main body 10 compresses the gas.
 なお、図1では説明を簡略にするために、圧縮機本体10は電動機2と伝動ベルト6を介して接続された構成としているが、接続方法はこれに限られない。圧縮機本体10のクランクシャフト24と電動機2の回転軸は、カップリングなどの接続手段を用いて直接に接続してもよい。 In FIG. 1, in order to simplify the explanation, the compressor main body 10 is connected to the electric motor 2 via the transmission belt 6, but the connection method is not limited to this. The crankshaft 24 of the compressor main body 10 and the rotation shaft of the electric motor 2 may be directly connected using connecting means such as a coupling.
 次に、ピストンの周辺構造について図2を参照し説明する。図2に示す圧縮機本体10には、ピストン33がコンロッド32と一体で構成された揺動ピストン方式が用いられている。この揺動ピストン方式では、クランクシャフト24の回転に伴い、ピストン33がシリンダ22内を揺動しながら往復動する。 Next, the peripheral structure of the piston will be explained with reference to FIG. The compressor main body 10 shown in FIG. 2 employs an oscillating piston system in which the piston 33 is integrated with the connecting rod 32 . In this rocking piston system, the piston 33 reciprocates while rocking in the cylinder 22 as the crankshaft 24 rotates.
 次いで、ピストン33とコンロッド32について、図3Aから図3Dを参照し説明する。図3Aは本実施例におけるピストン及びコンロッドの構成例の正面図、図3Bは背面図、図3Cは、図3AのA-A切断線における部分断面図である。図3Dは、図3CのB-B切断線における部分断面図である。 Next, the piston 33 and connecting rod 32 will be described with reference to FIGS. 3A to 3D. 3A is a front view of a configuration example of a piston and a connecting rod in this embodiment, FIG. 3B is a rear view, and FIG. 3C is a partial cross-sectional view taken along line AA in FIG. 3A. FIG. 3D is a partial cross-sectional view taken along line BB of FIG. 3C.
 図3A及び図3Bに示すピストン33は、ピストン33を支持するコンロッド32と別部品である。少なくとも、シリンダ本体25の内周側に接触する外周面33a、及びシリンダプレート26側のピストン上面33cが耐摩耗性を有する樹脂によって構成されている。 The piston 33 shown in FIGS. 3A and 3B is a component separate from the connecting rod 32 that supports the piston 33 . At least, the outer peripheral surface 33a that contacts the inner peripheral side of the cylinder body 25 and the piston upper surface 33c on the cylinder plate 26 side are made of resin having wear resistance.
 本実施例では、ピストン33は、後述するピストンインサート41(図3D参照)を除いて、耐摩耗性に優れる樹脂により構成されている。 In this embodiment, the piston 33, except for a piston insert 41 (see FIG. 3D), which will be described later, is made of resin with excellent wear resistance.
 ピストン33を構成することができる、耐摩耗性に優れる樹脂材として、たとえば、ポリテトラフルオロエチレン(Poly Tetra Fluoro Ethylene、PTFE)が挙げられる。さらに、熱膨張率を考慮した場合は、ピストン33の樹脂材として、ポリフェニレンサルファイド(Poly Phenylene Sulfide、PPS)等が挙げられる。 A resin material excellent in wear resistance that can constitute the piston 33 is, for example, polytetrafluoroethylene (PTFE). Furthermore, when the coefficient of thermal expansion is considered, the resin material of the piston 33 may be polyphenylene sulfide (PPS) or the like.
 また、ピストン33の外周面33aは、シリンダ本体25の内周側の直径よりわずかに小さいサイズの直径を持つ球面となっている。その球面の形状を有する外周面33aの中心が外周部中心33dである(図3A、図3C参照)。また、図3Cに示すように、ピストン33のコンロッド32側の面のうち、コンロッド32に向き合う外周部分にピストン凸部33eが形成されており、コンロッド32のコンロッド凸部32dと嵌め合い構造となっている。また、ピストン33のシリンダ内壁面22aに接する外周にリング溝33bが設けられ、そこにピストンリング34が嵌合されている。ピストンリング34は、シリンダ内壁面22aとピストン33の外周面33aとの間の隙間をシールするシールリングである。 Further, the outer peripheral surface 33a of the piston 33 is a spherical surface having a diameter slightly smaller than the diameter of the inner peripheral side of the cylinder main body 25. The center of the outer peripheral surface 33a having the spherical shape is the outer peripheral center 33d (see FIGS. 3A and 3C). Further, as shown in FIG. 3C, a piston convex portion 33e is formed on an outer peripheral portion facing the connecting rod 32 of the surface of the piston 33 on the connecting rod 32 side, and is fitted with the connecting rod convex portion 32d of the connecting rod 32. ing. A ring groove 33b is provided on the outer circumference of the piston 33 in contact with the cylinder inner wall surface 22a, and a piston ring 34 is fitted therein. The piston ring 34 is a seal ring that seals a gap between the cylinder inner wall surface 22 a and the outer peripheral surface 33 a of the piston 33 .
 さらに、ピストン33はその内部に、アルミニウム合金などの金属からなるピストンインサート41が埋め込まれた状態で成型されている。このピストンインサート41は、ピストン33が往復動慣性力や摩擦力によってシリンダヘッド23側に引き上げられ荷重を受けた場合でも、ピストン33がコンロッド32から外れないようにするためのものである。図3Dに示すように、ピストン33が抜け出すことがないよう、ピストンインサート41の縁部41aがピストン33の周方向に食い込んだ形状となっている。さらに、ピストンインサート41には、コンロッド32とネジで固定できるように、クランクケース21側に開口したメネジ穴41cが1つ以上、本実施例では2つ形成されている。図2に示すように、ピストン33は、コンロッド32に対してクランクケース21側からクランクシャフト24と直交する方向に位置する2カ所のネジ35で締結(固定)されている。 Further, the piston 33 is molded with a piston insert 41 made of metal such as an aluminum alloy embedded therein. The piston insert 41 prevents the piston 33 from coming off the connecting rod 32 even if the piston 33 is lifted toward the cylinder head 23 by reciprocating inertial force or frictional force and receives a load. As shown in FIG. 3D, the edge 41a of the piston insert 41 has a shape that bites into the piston 33 in the circumferential direction so that the piston 33 does not slip out. Further, the piston insert 41 is formed with one or more, two in this embodiment, female screw holes 41c opening toward the crankcase 21 so that the connecting rod 32 can be fixed with screws. As shown in FIG. 2, the piston 33 is fastened (fixed) to the connecting rod 32 from the crankcase 21 side with two screws 35 located in a direction orthogonal to the crankshaft 24 .
 これに対応するように、本実施例では、図3Dに示しているコンロッド32は、ピストン33を支持する座面のうち、メネジ穴41cと一致する箇所にネジ35用のネジ用貫通孔32cを有している。 In order to correspond to this, in this embodiment, the connecting rod 32 shown in FIG. have.
 本実施例のピストンインサート41は、図3Dに示すように、シリンダヘッド23側を底にした皿型をしている。コンロッド32の座面には、ピストンインサート41の皿型の中央の凹部に対応する位置にクランクシャフト24側(図示下側)に窪むコンロッド凹部32bが形成されている。この構造により、ピストンインサート41の下面とコンロッド32の上面との間に、中空部41bが形成されている。この中空部41bは、ピストン33の上側の面がピストンインサート41で覆われている。本実施例では、中空部41bの内部空間は、密閉された空間である。 As shown in FIG. 3D, the piston insert 41 of this embodiment has a dish shape with the cylinder head 23 side as the bottom. The seating surface of the connecting rod 32 is formed with a connecting rod recess 32b recessed toward the crankshaft 24 (downward in the drawing) at a position corresponding to the center recess of the piston insert 41. As shown in FIG. With this structure, a hollow portion 41 b is formed between the lower surface of the piston insert 41 and the upper surface of the connecting rod 32 . The hollow portion 41 b is covered with a piston insert 41 on the upper surface of the piston 33 . In this embodiment, the internal space of the hollow portion 41b is a closed space.
 なお、図3Dに示すような中空部41bを形成した場合には、ピストン33を構成する樹脂自体が、ピストン33の往復動の際に気体荷重を受けることになってしまうため、強度確保の面で何かしらの対策をとることが好ましい。 In addition, when the hollow portion 41b as shown in FIG. 3D is formed, the resin itself constituting the piston 33 receives a gas load when the piston 33 reciprocates. It is preferable to take some countermeasures.
 また、上述した図3Aから図3Dに示した形態では、ピストンインサート41のメネジ穴41cはピストン及びコンロッドの中心軸30Xの方向と平行に設けられている。しかし、これらの部品の配置が「ピストン及びコンロッドの中心軸30Xと平行な配置」に限定されるものではない。たとえば、メネジ穴をピストン及びコンロッドの中心軸30Xに対して傾斜して配置させることもできる。 Further, in the embodiment shown in FIGS. 3A to 3D described above, the female screw hole 41c of the piston insert 41 is provided parallel to the direction of the central axis 30X of the piston and connecting rod. However, the arrangement of these parts is not limited to "the arrangement parallel to the central axis 30X of the piston and connecting rod". For example, the female threaded hole can be arranged obliquely with respect to the central axis 30X of the piston and connecting rod.
 本実施例において、ピストン33とコンロッド32の間に、中空部41bが形成されていることにより、ピストン33及びコンロッド32を含む往復動部分の質量を低減できる。そのため、往復動慣性力に起因する、圧縮機本体10の振動が抑制される。 In this embodiment, the hollow portion 41b is formed between the piston 33 and the connecting rod 32, so that the mass of the reciprocating portion including the piston 33 and the connecting rod 32 can be reduced. Therefore, the vibration of the compressor body 10 caused by the reciprocating motion inertia force is suppressed.
 さらに、中空部41bのピストン33の上側の面は、ピストンインサート41によって覆われている。そのため、ピストンインサート41によって、ピストン33が内側から保持されるので、中空部41bが形成されている場合においても、ピストン33の成型時の収縮や、運転時の圧縮熱による膨張に基づく変形量が低減されることになる。 Furthermore, the upper surface of the piston 33 of the hollow portion 41b is covered with the piston insert 41. Therefore, since the piston 33 is held from the inside by the piston insert 41, even when the hollow portion 41b is formed, the amount of deformation caused by the shrinkage of the piston 33 during molding and expansion due to compression heat during operation is reduced. will be reduced.
 また、クランクケース21に、外気に開放された不図示の呼吸穴が設けられている。ピストン33の往復動に伴ってクランクケース21の内部容積が増減し、この呼吸穴を通して外部から吸気され、外部へ排気される。このようにして、呼吸穴を通した通気が行われることによって、クランクケース21内部の冷却が達成される。 In addition, the crankcase 21 is provided with a breathing hole (not shown) that is open to the outside air. As the piston 33 reciprocates, the internal volume of the crankcase 21 increases and decreases, and air is taken in from the outside through this breathing hole and exhausted to the outside. Cooling of the inside of the crankcase 21 is achieved by ventilation through the breathing holes in this way.
 なお、粉塵の吸込みを防ぐため、呼吸穴には呼吸フィルタ27(図2参照)が取り付けられており、クランクケース21の空間に流入する外気をろ過している。 A breathing filter 27 (see FIG. 2) is attached to the breathing hole to filter the outside air flowing into the space of the crankcase 21 in order to prevent dust from being sucked in.
 また、コンロッド32とピストン33の結合部は、中空部41bを設けることで大きな断面外形を有している。本実施例におけるコンロッド32の断面視の形状は略Y字状であり、そのクランクシャフト側の根元部分の角度は、ピストン及びコンロッドの中心軸30Xを挟んで約90°から約110°の範囲にあればよい。 In addition, the connecting portion between the connecting rod 32 and the piston 33 has a large cross-sectional shape by providing the hollow portion 41b. The cross-sectional shape of the connecting rod 32 in this embodiment is substantially Y-shaped, and the angle of the root portion on the crankshaft side is in the range of about 90° to about 110° across the central axis 30X of the piston and the connecting rod. I wish I had.
 本実施例におけるコンロッド凹部32bは、すり鉢状または円錐台状の形状を有している。しかし、ネジ35でピストン33とコンロッド32とを固定するために、中空部41bの内部空間を径方向の断面で見た場合に、ネジ35を設置する径方向において対向する内壁面の間隙、つまり内寸がやや狭い構造となっている。 The connecting rod concave portion 32b in this embodiment has a mortar shape or a truncated cone shape. However, in order to fix the piston 33 and the connecting rod 32 with the screw 35, when the internal space of the hollow portion 41b is viewed in a radial cross section, the gap between the inner wall surfaces facing in the radial direction where the screw 35 is installed, that is, It has a slightly narrow inner dimension.
 このように、本実施例の圧縮機1は、円筒状のシリンダ本体25、及びシリンダ本体25の端部を閉鎖するシリンダプレート26を少なくとも有するシリンダ22と、シリンダ22内を往復動するピストン33と、ピストン33を支持するコンロッド32と、コンロッド32の端部に回転力を与えるクランクシャフト24と、を備える。ピストン33は、クランクシャフト24の回転に伴いシリンダ22内を揺動しながら往復動する揺動ピストンである。ピストン33は、少なくとも、シリンダ本体25の内周側に接触する面が耐摩耗性を有する樹脂によって構成される。ピストン33の外周面33aは、球面となっている。ピストン33とシリンダ本体25とシリンダプレート26によって圧縮室22Xが形成される。ピストン33とコンロッド32の間に中空部41bが形成され、圧縮室22Xに気体を導入するための吸気口26AGが、シリンダプレート26に配置されている。 Thus, the compressor 1 of this embodiment includes a cylinder 22 having at least a cylindrical cylinder body 25 and a cylinder plate 26 closing the end of the cylinder body 25, and a piston 33 reciprocating within the cylinder 22. , a connecting rod 32 that supports a piston 33 and a crankshaft 24 that imparts rotational force to the end of the connecting rod 32 . The piston 33 is an oscillating piston that reciprocates while oscillating within the cylinder 22 as the crankshaft 24 rotates. At least the surface of the piston 33 that contacts the inner circumference of the cylinder body 25 is made of wear-resistant resin. An outer peripheral surface 33a of the piston 33 is spherical. A compression chamber 22X is formed by the piston 33, the cylinder body 25, and the cylinder plate 26. As shown in FIG. A hollow portion 41b is formed between the piston 33 and the connecting rod 32, and an intake port 26AG for introducing gas into the compression chamber 22X is arranged in the cylinder plate .
 次に、本実施例の効果について説明する。 Next, the effects of this embodiment will be described.
 上述した本発明の実施例1のピストン33は、クランクシャフト24の回転に伴いシリンダ22内を揺動しながら往復動する揺動式ピストンである。少なくとも、シリンダ本体25の内周側に接触するピストン33の外周面33aが耐摩耗性を有する樹脂によって構成されている。また、ピストン33の外周面33aは、シリンダ本体25の直径より小さい直径の樹脂製の球面となっている。または、シリンダ本体25の直径よりも大きい直径を有する球面の一部が、ピストン33の外周面33aであってもよい。そして、ピストン33に備えられた樹脂製の外周面33aによって、ピストン上面33cが受けた圧縮熱は、遮熱される。 The piston 33 of Embodiment 1 of the present invention described above is an oscillating piston that reciprocates while oscillating within the cylinder 22 as the crankshaft 24 rotates. At least, the outer peripheral surface 33a of the piston 33, which contacts the inner peripheral side of the cylinder main body 25, is made of a wear-resistant resin. Further, the outer peripheral surface 33 a of the piston 33 is a resin spherical surface having a diameter smaller than that of the cylinder main body 25 . Alternatively, a portion of the spherical surface having a diameter larger than the diameter of the cylinder body 25 may be the outer peripheral surface 33 a of the piston 33 . Compression heat received by the upper surface 33c of the piston is shielded by the resin outer peripheral surface 33a of the piston 33. As shown in FIG.
 また、ピストン33の構成部材として樹脂を用いることによって、揺動ピストン方式の圧縮機において、ピストン33の外周面33aとシリンダ内壁面22a(図2参照)との隙間が微小に維持されることで、ピストン33が滑らかに摺動可能であるという効果が得られる。また、揺動角の増加に伴うピストンリング34の変形や破損、シール性悪化を防止することが可能となる。 In addition, by using resin as a constituent member of the piston 33, the gap between the outer peripheral surface 33a of the piston 33 and the inner wall surface 22a (see FIG. 2) of the piston 33 can be kept very small in an oscillating piston type compressor. , the effect that the piston 33 can slide smoothly is obtained. In addition, it is possible to prevent deformation and damage of the piston ring 34 and deterioration of sealing performance due to an increase in the swing angle.
 また、本実施例の圧縮機1は、ピストン33とコンロッド32の間に中空部41bを設けることによって、ピストン33及びコンロッド32を含む往復動部分の質量を軽減することができる。そのため、往復動慣性力に起因する、圧縮機本体10の振動が抑制される。 Also, in the compressor 1 of this embodiment, by providing the hollow portion 41b between the piston 33 and the connecting rod 32, the mass of the reciprocating portion including the piston 33 and the connecting rod 32 can be reduced. Therefore, the vibration of the compressor body 10 caused by the reciprocating motion inertia force is suppressed.
 また、シリンダプレート26に設けられる吸気口26AGから膨張していない気体、例えば、常温の空気等の気体を吸い込むことによって、体積効率を向上することができる。その結果、圧縮効率を高めることができる。 In addition, the volumetric efficiency can be improved by sucking non-expanded gas, such as normal temperature air, from the intake port 26AG provided in the cylinder plate 26 . As a result, compression efficiency can be improved.
 また、本実施例のコンロッド32は、略Y字状に形成されているので、従来技術における略T字状のコンロッドに比べると、機械的な剛性が高く、往復動部のロック現象に伴うコンロッド32の折損などがより生じ難い構造となっている。従って、圧縮機1における、コンロッド32とピストン33の結合部の信頼性を高めることができる。 In addition, since the connecting rod 32 of this embodiment is formed in a substantially Y shape, it has higher mechanical rigidity than the substantially T-shaped connecting rod in the prior art, and the connecting rod 32 due to the locking phenomenon of the reciprocating portion is more stable. 32 has a structure in which breakage or the like is less likely to occur. Therefore, the reliability of the joint between the connecting rod 32 and the piston 33 in the compressor 1 can be enhanced.
 そのため、本実施例の圧縮機1は、コンロッドとピストンの結合部が中実型である従来技術の圧縮機よりも、安定した運転を行うことができる。 Therefore, the compressor 1 of the present embodiment can operate more stably than the compressor of the prior art, in which the connection between the connecting rod and the piston is solid.
 [実施例2]
 実施例2について図4Aから図4Dを参照し説明する。実施例1と同じ構成には同一の符号を付し、説明は省略する。以下の実施例においても同様とする。
[Example 2]
Example 2 will be described with reference to FIGS. 4A to 4D. The same reference numerals are assigned to the same configurations as in the first embodiment, and the description thereof is omitted. The same applies to the following examples.
 図4Aは本実施例におけるピストン及びコンロッドの構成例の正面図、図4Bは背面図、図4Cは、図4AのA-A切断線における部分断面図である。図4Dは、図4CのB-B切断線における部分断面図である。実施例1では、中空部41bの内部空間が密閉空間とされていた。 4A is a front view of a configuration example of a piston and a connecting rod in this embodiment, FIG. 4B is a rear view, and FIG. 4C is a partial cross-sectional view taken along line AA in FIG. 4A. FIG. 4D is a partial cross-sectional view taken along line BB of FIG. 4C. In Example 1, the internal space of the hollow portion 41b is a closed space.
 これに対して、本実施例2では、図4A、図4B、及び図4Cに示すように、実施例1に対して、中空部41bに接するコンロッド32の上部端面側に、クランクケース21の空間と中空部41bとを連通する二つの連通孔32e、32fが設けられている。 On the other hand, in the second embodiment, as shown in FIGS. 4A, 4B, and 4C, the space of the crankcase 21 is provided on the upper end surface side of the connecting rod 32 in contact with the hollow portion 41b in contrast to the first embodiment. and the hollow portion 41b are provided with two communication holes 32e and 32f.
 次に、連通孔32eと連通孔32fの開口の位置と形状等について説明する。図4Bに示すように、本実施例における連通孔32eの開口の形状は略扇形であり、その中心点はコンロッド32の略Y字状の根元32Yの付近に配置されている。 Next, the positions and shapes of the openings of the communication holes 32e and 32f will be described. As shown in FIG. 4B, the shape of the opening of the communication hole 32e in this embodiment is substantially fan-shaped, and the center point thereof is located near the substantially Y-shaped root 32Y of the connecting rod 32. As shown in FIG.
 連通孔32eの略扇形の円弧の部分はピストン33の方に向いている。図4Aに示すように、ピストン33を正面から見た場合、連通孔32fの開口の形状は略半円形または円形の一部である。 A substantially fan-shaped arc portion of the communication hole 32 e faces the piston 33 . As shown in FIG. 4A, when the piston 33 is viewed from the front, the shape of the opening of the communication hole 32f is substantially semicircular or part of a circular shape.
 なお、ピストン33との接合部の断面形状が略Y字状となるコンロッド32の機械的強度が保持され、且つ、少なくとも二つのネジ用貫通孔32cを設けることができる限りにおいて、中空部41bの容積は大きく設定することができる。それに応じて、コンロッド32の軽量化が実現される。また、中空部41bに対する通気による放熱を促進するために、コンロッド32の形状と大きさに合わせて、連通孔の位置、及び連通孔の開口形状を適宜調整した上で、コンロッド32の上面側に、必要となる大きさの通気孔32e、32fが配置される。 As long as the mechanical strength of the connecting rod 32, which has a substantially Y-shaped cross-sectional shape at the joint with the piston 33, can be maintained and at least two screw through holes 32c can be provided, the hollow portion 41b The volume can be set large. Accordingly, the weight of the connecting rod 32 is reduced. In addition, in order to promote heat dissipation through ventilation to the hollow portion 41b, after appropriately adjusting the position of the communication hole and the opening shape of the communication hole according to the shape and size of the connecting rod 32, the upper surface side of the connecting rod 32 , vent holes 32e, 32f of the required size are arranged.
 そのため、上述した以外に、連通孔の個数、開口形状や開口の方向を変更した他の構成例が幾つか考えられる。 Therefore, in addition to the above, several other configuration examples are conceivable in which the number of communicating holes, the shape of the opening, and the direction of the opening are changed.
 たとえば、連通孔32eの断面形状は円状または楕円状であってもよい。また、連通孔32eは、ピストン33の径方向断面で、ピストン及びコンロッドの中心軸30Xを挟んで連通孔32fと向き合うように配置することが好ましい。 For example, the cross-sectional shape of the communication hole 32e may be circular or elliptical. In addition, it is preferable that the communication hole 32e is arranged so as to face the communication hole 32f across the central axis 30X of the piston and the connecting rod in the cross section of the piston 33 in the radial direction.
 また、ピストン33の下降時に、気体の押出し口となる連通孔32fの断面形状は長穴または楕円状であってもよい。また、ピストン33の径方向における10°から30°程度の角度範囲に、複数の連通孔32fが配置されてもよい。 Also, the cross-sectional shape of the communication hole 32f, which serves as a gas ejection port when the piston 33 descends, may be an elongated hole or an elliptical shape. Further, a plurality of communication holes 32f may be arranged in an angular range of about 10° to 30° in the radial direction of the piston 33.
 基本的に、中空部41bの内部空間に対して、クランクケース21から積極的に気体を取入れることを考慮した場合、連通孔32eと連通孔32fの開口面を、互いに異なる方向に向けて設けることが特に好ましい。 Basically, in consideration of positively taking in gas from the crankcase 21 into the internal space of the hollow portion 41b, the opening surfaces of the communication holes 32e and 32f are provided in different directions. is particularly preferred.
 連通孔を複数設けた場合、連通孔32eのように、そのうち少なくとも1つがクランクシャフト24の側に開口していることが好ましい。また、連通孔32fのように、少なくとも1つがシリンダ本体25の径方向に開口していることが好ましい。また、連通孔を複数設けた場合、少なくとも1つがクランクシャフト24の側に開口し、且つ、少なくとも1つがシリンダ本体25の径方向に開口していることが特に好ましい。 When a plurality of communication holes are provided, it is preferable that at least one of them opens toward the crankshaft 24 like the communication hole 32e. Moreover, it is preferable that at least one is open in the radial direction of the cylinder main body 25 like the communication hole 32f. Further, when a plurality of communication holes are provided, it is particularly preferable that at least one of them opens toward the crankshaft 24 and at least one opens in the radial direction of the cylinder body 25 .
 また、実施例1と同様に、本実施例においても、クランクケース21に、外気に開放された不図示の呼吸穴が設けられ、粉塵の吸込みを防ぐための呼吸フィルタ27が呼吸穴に取り付けられている。 Also in this embodiment, as in the first embodiment, the crankcase 21 is provided with a breathing hole (not shown) that is open to the outside air, and a breathing filter 27 is attached to the breathing hole to prevent dust from being sucked in. ing.
 図4Cに示すように、連通孔32eは、ピストン33が下降する時に、クランクケース21内の気体を中空部41bに取り込む取入れ口となる。これに対して、連通孔32fは、ピストン33が下降する時に中空部41bの内部の気体を外側に押し出す押出し口となる。 As shown in FIG. 4C, the communication hole 32e serves as an intake for taking the gas inside the crankcase 21 into the hollow portion 41b when the piston 33 descends. On the other hand, the communication hole 32f serves as an ejection port for ejecting the gas inside the hollow portion 41b to the outside when the piston 33 descends.
 このため、連通孔32eと連通孔32fは、内側の中空部41bから外側に向かって開口する方向が異なっている。ピストン33の下降時に、気体の取入れ口となる連通孔32eの開口は、中空部41bからクランクシャフト24側を向いている。これに対して、気体の押出し口となる連通孔32fの開口は、シリンダ本体25の径方向の外側を向いている。 For this reason, the communication holes 32e and 32f are different in the opening direction from the inner hollow portion 41b to the outside. When the piston 33 descends, the opening of the communication hole 32e, which serves as a gas intake port, faces the crankshaft 24 side from the hollow portion 41b. On the other hand, the opening of the communication hole 32f, which serves as a gas outlet, faces radially outward of the cylinder body 25. As shown in FIG.
 また、ピストン33が上昇する場合にも、中空部41bとコンロッド32の外側の空間との間において、一定の気体の流れが発生し得る。 Also, when the piston 33 rises, a constant gas flow can occur between the hollow portion 41b and the space outside the connecting rod 32.
 次に、本実施例の効果について説明する。 Next, the effects of this embodiment will be described.
 本実施例のピストン33は、実施例1と同様に、シリンダ本体25の内周側に接触するピストン33の外周面33aは耐摩耗性を有する樹脂によって構成され、シリンダ本体25の直径より小さい直径の樹脂製の球面となっている。これによって、ピストン上面33cが受けた圧縮熱は、ピストン33によって遮熱される。 In the piston 33 of this embodiment, as in the first embodiment, the outer peripheral surface 33a of the piston 33, which contacts the inner peripheral side of the cylinder body 25, is made of a wear-resistant resin, and has a diameter smaller than that of the cylinder body 25. It is a spherical surface made of resin. As a result, the compression heat received by the piston upper surface 33 c is shielded by the piston 33 .
 さらに、本実施例の圧縮機1では、中空部41bの空間とクランクケース21の空間とが連通孔32fと連通孔32eによって連通されている。 Furthermore, in the compressor 1 of this embodiment, the space of the hollow portion 41b and the space of the crankcase 21 are communicated with each other through the communication holes 32f and 32e.
 このため、中空部41bが気体の冷却風42によって冷却される(図4C参照)。 Therefore, the hollow portion 41b is cooled by the gaseous cooling air 42 (see FIG. 4C).
 これらの構成による冷却効果の増強から、本実施例の圧縮機1は、コンロッドとピストンの結合部が中実型である従来技術の圧縮機よりも、ピストンリング34の変形を防止でき、樹脂製で球形の外周面33aによる良好な摺動性によって、シール性が向上する。また、吸気する気体の温度上昇を防止できるので、体積効率が向上し、より安定した運転を行うことができる。そして、圧縮効率を高めることができる。また、ピストン33を冷却することにより、コンロッド32への伝熱が発生し難いので、コンロッド32のベアリングの寿命が長くなる。 Due to the enhancement of the cooling effect due to these configurations, the compressor 1 of the present embodiment can prevent the deformation of the piston ring 34 more than the conventional compressor in which the connection portion between the connecting rod and the piston is solid. The good slidability of the spherical outer peripheral surface 33a improves the sealing performance. In addition, since it is possible to prevent the temperature of the gas to be taken in from rising, the volumetric efficiency is improved, and more stable operation can be performed. And compression efficiency can be improved. Also, by cooling the piston 33, heat transfer to the connecting rod 32 is less likely to occur, so the life of the bearing of the connecting rod 32 is lengthened.
 [実施例3]
 実施例3について図5Aから図5Cを参照し説明する。本実施例には、中空部41bにおける冷却効果を増強し、ピストン33の放熱をより促進できるように、実施例2に対して、ピストンインサート裏面41dに放熱を促進するための冷却部材がさらに備えられている。
[Example 3]
Example 3 will be described with reference to FIGS. 5A to 5C. In this embodiment, a cooling member for promoting heat dissipation is further provided on the back surface 41d of the piston insert, unlike the second embodiment, so as to enhance the cooling effect in the hollow portion 41b and further promote the heat dissipation of the piston 33. It is
 図5Aは、図4Aに示す正面図におけるA-A切断線から見た場合の、本実施例におけるピストン及びコンロッドの構成例の部分断面図である。ピストン33のピストンインサート裏面41dに冷却部材(冷却ピン41f)が備えられている。 FIG. 5A is a partial cross-sectional view of a configuration example of the piston and connecting rod in this embodiment when viewed from the AA section line in the front view shown in FIG. 4A. A cooling member (cooling pin 41f) is provided on the back surface 41d of the piston insert of the piston 33 .
 図5Bは、冷却部材として使用する冷却フィン41eが備えられたピストンインサート裏面41dを含むピストン33を裏面側から見た斜視図である。この形態において、複数の冷却フィン41eは、その配列方向が、中空部41bの内部空間における冷却風42の流れに沿うように設置されることが好ましい。 FIG. 5B is a perspective view of the piston 33 including a piston insert rear surface 41d provided with cooling fins 41e used as a cooling member, viewed from the rear surface side. In this form, it is preferable that the plurality of cooling fins 41e be arranged so that the direction of arrangement thereof follows the flow of the cooling air 42 in the inner space of the hollow portion 41b.
 図5Cは、冷却部材として使用する冷却ピン41fが備えられたピストンインサート裏面41dを含むピストン33を裏面側から見た斜視図である。ピストンインサート41には、冷却部材として、ピストンインサート裏面41dから突起した多数の冷却ピン41fが備えられている。この形態では、多数の冷却ピン41fが千鳥状に配列されている。この冷却ピン41fを用いる場合には、一つの冷却ピン41fの回りに気体が多く接することになる。そのため、中空部41bの内部空間での気体の流れ方向に対する冷却効率の依存性は低くなる。 FIG. 5C is a perspective view of the piston 33 including a piston insert rear surface 41d provided with a cooling pin 41f used as a cooling member, viewed from the rear surface side. The piston insert 41 is provided with a large number of cooling pins 41f projecting from the piston insert back surface 41d as cooling members. In this form, a large number of cooling pins 41f are arranged in a zigzag pattern. When this cooling pin 41f is used, a large amount of gas contacts around one cooling pin 41f. Therefore, the dependence of the cooling efficiency on the gas flow direction in the internal space of the hollow portion 41b is reduced.
 また、本実施例において、クランクケース21に設置される呼吸穴(不図示)や、ろ過用の呼吸フィルタ27が、実施例2と同様に取り付けられている。 Also, in this embodiment, a breathing hole (not shown) installed in the crankcase 21 and a breathing filter 27 for filtration are attached in the same manner as in the second embodiment.
 次に、本実施例の効果について説明する。 Next, the effects of this embodiment will be described.
 本実施例においても、ピストン33の外周面33aが樹脂で構成されているので、シリンダ22の内部で発生する圧縮熱がピストン33によって遮熱される。また、ピストン33とコンロッド32の間に、中空部41bが形成されているので、ピストン33及びコンロッド32を含む往復動部分の質量が低減されている。そのため、往復動慣性力に起因する圧縮機本体10の振動を改善することができる。 Also in this embodiment, since the outer peripheral surface 33a of the piston 33 is made of resin, the compression heat generated inside the cylinder 22 is shielded by the piston 33. Further, since the hollow portion 41b is formed between the piston 33 and the connecting rod 32, the mass of the reciprocating portion including the piston 33 and the connecting rod 32 is reduced. Therefore, the vibration of the compressor main body 10 caused by the reciprocating motion inertia force can be improved.
 さらに、本実施例では、ピストンインサート裏面41dに、ピストン33からの放熱を促進するための冷却部材として、冷却フィン41eまたは冷却ピン41fが設けられている。これらの冷却部材により、ピストンインサート裏面41dからの放熱量が増加する。 Furthermore, in this embodiment, cooling fins 41e or cooling pins 41f are provided on the back surface 41d of the piston insert as cooling members for promoting heat dissipation from the piston 33. These cooling members increase the amount of heat released from the piston insert back surface 41d.
 本実施例の圧縮機1は、ピストン33の内部に、メネジ穴41cを有する金属製のピストンインサート41が備えられ、ピストンインサート41がコンロッド32に対して、クランクケース21側からネジ35で固定され、中空部41bは、ピストンインサート41とコンロッド32の間に形成される。そのため、ピストン33及びコンロッド32を含む往復動部分の質量が低減される。 The compressor 1 of this embodiment includes a metal piston insert 41 having a female screw hole 41c inside the piston 33, and the piston insert 41 is fixed to the connecting rod 32 from the crankcase 21 side with a screw 35. , a hollow portion 41 b is formed between the piston insert 41 and the connecting rod 32 . Therefore, the mass of the reciprocating portion including the piston 33 and connecting rod 32 is reduced.
 圧縮室22Xに繋がる吸気口26AGがシリンダプレート26に設置され、中空部41bの空間とクランクケース21の空間とが連通孔32f、32eによって連通されている。そのため、ピストン33からの放熱が促進される。 An intake port 26AG connected to the compression chamber 22X is installed in the cylinder plate 26, and the space of the hollow portion 41b and the space of the crankcase 21 are communicated through communication holes 32f and 32e. Therefore, heat dissipation from the piston 33 is promoted.
 さらに、ピストンインサート41のクランクケース21側の面、即ち、ピストンインサート裏面41dに、放熱を促す冷却部材である冷却フィン41eや冷却ピン41fを有する。そのため、ピストンインサート41に冷却部材を設けない場合よりも、ピストン33からの放熱がさらに促進される。 Furthermore, the surface of the piston insert 41 on the side of the crankcase 21, that is, the back surface 41d of the piston insert, has cooling fins 41e and cooling pins 41f, which are cooling members that promote heat dissipation. Therefore, heat dissipation from the piston 33 is further facilitated as compared with the case where the piston insert 41 is not provided with a cooling member.
 従って、本実施例の圧縮機1は、上述した実施例2よりも、コンロッド32のベアリングの寿命が相対的に長くなる。 Therefore, in the compressor 1 of this embodiment, the life of the bearing of the connecting rod 32 is relatively longer than that of the second embodiment described above.
 [変形例]
 変形例について図8を参照し説明する。本変形例は、シリンダ本体25の内部へ気体を供給する吸気弁26aと吸気口26AGの構造が、シリンダプレート26に吸気口26AGを備えた実施例1、実施例2、及び実施例3と異なっている。
[Modification]
A modification will be described with reference to FIG. In this modification, the structures of the intake valve 26a and the intake port 26AG for supplying gas to the inside of the cylinder body 25 are different from those of the first, second, and third embodiments in which the cylinder plate 26 is provided with the intake port 26AG. ing.
 図8に示すように、シリンダプレート26に、吐出口26BGと、この吐出口26BGを開閉する吐出弁26bと、が備えられている。吐出口26BGから吐出された圧縮気体は排出口26BOから外部の配管7を通ってタンク3に送出される。 As shown in FIG. 8, the cylinder plate 26 is provided with a discharge port 26BG and a discharge valve 26b for opening and closing the discharge port 26BG. The compressed gas discharged from the discharge port 26BG is delivered to the tank 3 through the external piping 7 from the discharge port 26BO.
 シリンダ本体25の内部への気体の供給は、シリンダ本体25の端部の側面に設けられた吸気口26AGから行われる。ピストン33の往復動作に連動して、吸気弁26aが作動し、複数の吸気口26AGが開閉される。 Gas is supplied to the inside of the cylinder body 25 from an intake port 26AG provided on the side surface of the end of the cylinder body 25 . In conjunction with the reciprocating motion of the piston 33, the intake valve 26a operates to open and close the plurality of intake ports 26AG.
 本変形例において、吸気口26AGは、ピストン33の上死点よりも、シリンダ本体25の軸方向の下方に配置されている。つまり、吸気口26AGが上死点におけるピストン33の最上部よりも下側に配置されているので、ピストン33が上死点に位置しているときには、吸気口26AGは圧縮室22Xに露出されることがない。 In this modified example, the intake port 26AG is arranged below the top dead center of the piston 33 in the axial direction of the cylinder body 25 . That is, since the intake port 26AG is arranged below the top of the piston 33 at the top dead center, the intake port 26AG is exposed to the compression chamber 22X when the piston 33 is located at the top dead center. never
 次に、吸気のために、ピストン33が上死点の位置から下降し始めると、吸気口26AGがシリンダ内壁面22aに露出される。この段階で、シリンダ内壁面22aで相対する複数の吸気口26AGから圧縮室22Xの内側に気体が供給され、気体の衝突圧縮が起きる。この場合、膨張した気体を吸気することがなく、最終的に圧縮された気体における体積効率がさらに改善される。 Next, when the piston 33 begins to descend from the top dead center position for intake, the intake port 26AG is exposed on the cylinder inner wall surface 22a. At this stage, gas is supplied to the inside of the compression chamber 22X from the plurality of intake ports 26AG facing each other on the cylinder inner wall surface 22a, and collision compression of the gas occurs. In this case, there is no intake of expanded gas, and the volumetric efficiency in the finally compressed gas is further improved.
 このように、本変形例においても、シリンダプレート26に取り付けられた吐出口26BG、及びシリンダ本体25の端部の側面に設けられた吸気口26AGは、ピストン33を挟んでクランクシャフト24と反対側に配置されている。 Thus, also in this modification, the discharge port 26BG attached to the cylinder plate 26 and the intake port 26AG provided on the side surface of the end of the cylinder body 25 are located on the opposite side of the crankshaft 24 with the piston 33 interposed therebetween. are placed in
 次に、本変形例の効果について説明する。 Next, the effect of this modified example will be explained.
 本変形例では、吸気口26AGがピストン33の上死点よりもシリンダ本体25の軸方向の下部に配置されている。そのため、外部の気体を吸気し圧縮する際の体積効率がさらに向上する。 In this modified example, the intake port 26AG is arranged below the top dead center of the piston 33 in the axial direction of the cylinder body 25 . Therefore, the volumetric efficiency is further improved when the external gas is sucked and compressed.
 本変形例の吸気及び吐出機構は、上述した実施例1から実施例3におけるピストン及びコンロッドの形態と組み合わせて用いることができる。その場合、気体の圧縮率をより高く設定しても、ピストン及びコンロッドに中空部41bを設けて、ピストン33の裏面側の中空部41bからの放熱を促進すれば、本変形例の圧縮機1は、高い体積効率を維持することができる。その結果、圧縮効率が高くなる。 The intake and discharge mechanism of this modified example can be used in combination with the configuration of the piston and connecting rod in the first to third embodiments described above. In that case, even if the compression rate of the gas is set higher, if the hollow portion 41b is provided in the piston and the connecting rod to promote heat dissipation from the hollow portion 41b on the back side of the piston 33, the compressor 1 of this modification can be obtained. can maintain high volumetric efficiency. As a result, compression efficiency is increased.
 従って、本変形例の圧縮機1は、コンロッドとピストンの結合部が中実型である従来技術の圧縮機よりも、シール性が向上し、圧縮率を高く設定しても体積効率を維持することができ、より安定した運転を行うことができる。また、ピストン33を効率よく冷却することができるので、コンロッド32のベアリングの寿命が長くなる。 Therefore, the compressor 1 of this modified example has improved sealing performance and maintains volumetric efficiency even when the compression rate is set high compared to the compressor of the prior art in which the connection portion between the connecting rod and the piston is solid. and more stable operation. Also, since the piston 33 can be efficiently cooled, the service life of the bearing of the connecting rod 32 is extended.
 [その他]
 なお、本発明の圧縮機は空気や冷媒などの各種気体を圧縮する圧縮機のうち、揺動ピストン方式を採用しうる様々な圧縮機に適用可能であり、その種類や型式、用途は特に限定されない。本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
[others]
It should be noted that the compressor of the present invention can be applied to various compressors that can employ the oscillating piston system among compressors that compress various gases such as air and refrigerants, and the types, models, and applications thereof are particularly limited. not. The present invention is not limited to the above examples, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加及び削除及び置換をすることも可能である。 It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, or to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1…圧縮機、2…電動機、3…タンク、4…圧縮機プーリ、5…電動機プーリ、6…伝動ベルト、10…圧縮機本体、21…クランクケース、22…シリンダ、22a…シリンダ内壁面、22b…シリンダの中心軸、23…シリンダヘッド、24…クランクシャフト、24a…回転中心軸、25…シリンダ本体、26…シリンダプレート、26a…吸気弁、26AG…吸気口、26b…吐出弁、26BG…吐出口、27…呼吸フィルタ、30X…ピストン及びコンロッドの中心軸、32…コンロッド、32b…コンロッド凹部、32c…ネジ用貫通孔、32d…コンロッド凸部、32e…連通孔、32f…連通孔、33…ピストン、33a…外周面、33b…リング溝、33c…ピストン上面、33d…外周部中心、33e…ピストン凸部、34…ピストンリング、35…ネジ、41…ピストンインサート、41a…縁部、41b…中空部、41c…メネジ穴、41d…ピストンインサート裏面、42…冷却風 DESCRIPTION OF SYMBOLS 1... Compressor, 2... Electric motor, 3... Tank, 4... Compressor pulley, 5... Electric motor pulley, 6... Transmission belt, 10... Compressor body, 21... Crankcase, 22... Cylinder, 22a... Cylinder inner wall surface, 22b... Central axis of cylinder 23... Cylinder head 24... Crankshaft 24a... Rotational central axis 25... Cylinder body 26... Cylinder plate 26a... Intake valve 26AG... Intake port 26b... Discharge valve 26BG... Discharge port 27 Breathing filter 30X Central axis of piston and connecting rod 32 Connecting rod 32b Connecting rod concave portion 32c Screw through hole 32d Connecting rod convex portion 32e Communicating hole 32f Communicating hole 33 Piston 33a Outer peripheral surface 33b Ring groove 33c Upper surface of piston 33d Center of outer peripheral portion 33e Piston convex portion 34 Piston ring 35 Screw 41 Piston insert 41a Edge 41b ...Hollow portion 41c...Female screw hole 41d...Back side of piston insert 42...Cooling air

Claims (11)

  1.  円筒状のシリンダ本体、及び前記シリンダ本体の端部を閉鎖するシリンダプレートを少なくとも有するシリンダと、
     前記シリンダ内を往復動するピストンと、
     前記ピストンを支持するコンロッドと、
     前記コンロッドの端部に回転力を与えるクランクシャフトと、
    を備え、
     前記ピストンは、前記クランクシャフトの回転に伴い前記シリンダ内を揺動しながら往復動する揺動ピストンであって、
     前記ピストンは、少なくとも、前記シリンダ本体の内周側に接触する面が耐摩耗性を有する樹脂によって構成され、
     前記ピストンの外周面は球面となっており、
     前記ピストンと前記シリンダ本体と前記シリンダプレートによって圧縮室が形成され、
     前記ピストンと前記コンロッドの間に中空部が形成され、
     前記圧縮室に気体を導入するための吸気口が、前記シリンダプレートまたは前記シリンダ本体の端部の側面に配置されている圧縮機。
    a cylinder having at least a cylindrical cylinder body and a cylinder plate closing an end of the cylinder body;
    a piston that reciprocates within the cylinder;
    a connecting rod supporting the piston;
    a crankshaft that imparts a rotational force to the end of the connecting rod;
    with
    The piston is an oscillating piston that reciprocates while oscillating within the cylinder as the crankshaft rotates,
    At least the surface of the piston that contacts the inner peripheral side of the cylinder body is made of a wear-resistant resin,
    The outer peripheral surface of the piston is spherical,
    A compression chamber is formed by the piston, the cylinder body and the cylinder plate,
    A hollow portion is formed between the piston and the connecting rod,
    A compressor, wherein an intake port for introducing gas into the compression chamber is arranged on a side surface of an end of the cylinder plate or the cylinder body.
  2.  請求項1に記載の圧縮機において、
     前記クランクシャフトを回転可能に支持するクランクケースが備えられ、
     前記中空部の空間と前記クランクケースの空間とが連通孔によって連通されている圧縮機。
    A compressor according to claim 1,
    A crankcase that rotatably supports the crankshaft is provided,
    A compressor in which the space of the hollow portion and the space of the crankcase are communicated with each other through a communication hole.
  3.  請求項2に記載の圧縮機において、
     前記ピストンの内部に、メネジ穴を有する金属製のピストンインサートが備えられ、
     前記ピストンインサートが前記コンロッドに対して前記クランクケースの側からネジで固定され、
     前記中空部は、前記ピストンインサートと前記コンロッドの間に形成されている圧縮機。
    A compressor according to claim 2, wherein
    A metal piston insert having a female threaded hole is provided inside the piston,
    The piston insert is fixed to the connecting rod by a screw from the crankcase side,
    The compressor, wherein the hollow portion is formed between the piston insert and the connecting rod.
  4.  請求項3に記載の圧縮機において、
     前記ピストンインサートの前記クランクケースの側の面に、放熱を促す冷却部材を有する圧縮機。
    A compressor according to claim 3,
    A compressor having a cooling member for facilitating heat dissipation on the crankcase side surface of the piston insert.
  5.  請求項4に記載の圧縮機において、
     前記冷却部材が、冷却フィンまたは冷却ピンである圧縮機。
    A compressor according to claim 4,
    The compressor, wherein the cooling members are cooling fins or cooling pins.
  6.  請求項2に記載の圧縮機において、
     前記連通孔は、2つ以上設けられている圧縮機。
    A compressor according to claim 2, wherein
    The compressor is provided with two or more communication holes.
  7.  請求項6に記載の圧縮機において、
     前記連通孔は、そのうち少なくとも1つが前記クランクシャフトの側に開口している圧縮機。
    A compressor according to claim 6,
    A compressor in which at least one of the communication holes opens toward the crankshaft.
  8.  請求項6に記載の圧縮機において、
     前記連通孔は、そのうち少なくとも1つが前記シリンダ本体の径方向に開口している圧縮機。
    A compressor according to claim 6,
    A compressor in which at least one of the communication holes is open in a radial direction of the cylinder body.
  9.  請求項6に記載の圧縮機において、
     前記連通孔のうち少なくとも一つが前記クランクシャフトの側に開口し、そのうち少なくとも1つが前記シリンダ本体の径方向に開口している圧縮機。
    A compressor according to claim 6,
    A compressor in which at least one of the communication holes opens toward the crankshaft, and at least one of the communication holes opens in the radial direction of the cylinder body.
  10.  請求項1に記載の圧縮機において、
     前記吸気口が前記シリンダプレートに配置されている圧縮機。
    A compressor according to claim 1,
    A compressor, wherein the air intake is arranged in the cylinder plate.
  11.  請求項1に記載の圧縮機において、
     前記吸気口が前記シリンダ本体の端部の側面に配置されている圧縮機。
    A compressor according to claim 1,
    A compressor in which the intake port is arranged on the side surface of the end of the cylinder body.
PCT/JP2021/043065 2021-01-20 2021-11-24 Compressor WO2022158111A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180051831.XA CN116113764A (en) 2021-01-20 2021-11-24 Compressor
KR1020237005062A KR20230035413A (en) 2021-01-20 2021-11-24 compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-007056 2021-01-20
JP2021007056A JP2022111556A (en) 2021-01-20 2021-01-20 compressor

Publications (1)

Publication Number Publication Date
WO2022158111A1 true WO2022158111A1 (en) 2022-07-28

Family

ID=82548742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043065 WO2022158111A1 (en) 2021-01-20 2021-11-24 Compressor

Country Status (4)

Country Link
JP (1) JP2022111556A (en)
KR (1) KR20230035413A (en)
CN (1) CN116113764A (en)
WO (1) WO2022158111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047989A1 (en) * 2022-09-02 2024-03-07 株式会社日立産機システム Compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312597A1 (en) * 1987-04-21 1989-04-26 Proizvodstvennoe Obiedinenie 'zavod Imeni M.I.Kalinina' Piston of volume displacement machine
US5231917A (en) * 1992-09-14 1993-08-03 Devilbiss Air Power Company Wobble piston
JPH06159246A (en) * 1992-11-20 1994-06-07 Tokico Ltd Reciprocating compressor
US20070151445A1 (en) * 2005-12-30 2007-07-05 Chi-Ming Chen Piston structure for an air pump
JP2014029155A (en) * 2013-09-20 2014-02-13 Hitachi Industrial Equipment Systems Co Ltd Reciprocating compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248812A (en) 2007-03-30 2008-10-16 Hitachi Ltd Reciprocating compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312597A1 (en) * 1987-04-21 1989-04-26 Proizvodstvennoe Obiedinenie 'zavod Imeni M.I.Kalinina' Piston of volume displacement machine
US5231917A (en) * 1992-09-14 1993-08-03 Devilbiss Air Power Company Wobble piston
JPH06159246A (en) * 1992-11-20 1994-06-07 Tokico Ltd Reciprocating compressor
US20070151445A1 (en) * 2005-12-30 2007-07-05 Chi-Ming Chen Piston structure for an air pump
JP2014029155A (en) * 2013-09-20 2014-02-13 Hitachi Industrial Equipment Systems Co Ltd Reciprocating compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047989A1 (en) * 2022-09-02 2024-03-07 株式会社日立産機システム Compressor

Also Published As

Publication number Publication date
CN116113764A (en) 2023-05-12
KR20230035413A (en) 2023-03-13
JP2022111556A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
US8430650B2 (en) Reciprocative compressor
WO2022158111A1 (en) Compressor
JP5413851B2 (en) Refrigerant compressor
JP2008297924A (en) Reciprocating gas compressor
WO2008013162A1 (en) Compressor
KR100687639B1 (en) Compressor
US20180195503A1 (en) Fluid compressor
US20050002805A1 (en) Wobble piston pump with carbon graphite cylinder
US5937736A (en) Wobble piston with cooling fins extending through slots formed in the piston head
WO2021065037A1 (en) Compressor
CN100343510C (en) Compressor having release valve mechanism including valve seat ring with specially-designbed curved face
JP2003161255A (en) Swash plate type compressor
JP7132721B2 (en) reciprocating compressor
JP2004036583A (en) Compressor
WO2024047989A1 (en) Compressor
JP2005188407A (en) Heat insulation structure in piston type compressor
JP3883758B2 (en) Refrigerant compressor
WO2022180974A1 (en) Reciprocating compressor
WO2022018949A1 (en) Compressor
JP2004183534A (en) Compressor
WO2023176040A1 (en) Compressor
KR101592692B1 (en) Valve structure for a compressor
JP2006207391A (en) Fluid machine
JP2007127081A (en) Compressor
JP2005042624A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237005062

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921214

Country of ref document: EP

Kind code of ref document: A1