WO2022158042A1 - Prediction system and prediction method - Google Patents

Prediction system and prediction method Download PDF

Info

Publication number
WO2022158042A1
WO2022158042A1 PCT/JP2021/034357 JP2021034357W WO2022158042A1 WO 2022158042 A1 WO2022158042 A1 WO 2022158042A1 JP 2021034357 W JP2021034357 W JP 2021034357W WO 2022158042 A1 WO2022158042 A1 WO 2022158042A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
prediction model
state
model
result
Prior art date
Application number
PCT/JP2021/034357
Other languages
French (fr)
Japanese (ja)
Inventor
純一 大崎
好彦 赤城
太 富澤
隆 岡田
雄希 奥田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022158042A1 publication Critical patent/WO2022158042A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a prediction system and a prediction method.
  • vehicle behavior predictive control is control that estimates the positional relationship between the vehicle traveling ahead and the own vehicle. Based on the predicted future state, the driver will be able to accelerate or not after a few seconds. There is a judgment such as whether control to stop immediately should be performed.
  • Patent Document 1 in order to estimate the state of a secondary battery for electric vehicles, a plurality of models are made to make predictions using different prediction methods, and at the same time, the model with the smallest deviation between the actual state and the predicted state is evaluated. proposed a technique for evaluating the accuracy of each prediction model and outputting the result of the prediction model with the highest accuracy.
  • prior patent document 1 When prior patent document 1 is applied to vehicle behavior prediction, a plurality of prediction models with different calculation methods are prepared, the accuracy of these prediction models is evaluated, and the results of which prediction model to adopt are selected to determine the overall accuracy. expected to improve.
  • prior patent document 1 assumes a secondary battery for electric vehicles as a target, and it takes time to compare the state estimated by each prediction model and the actual state and find out which prediction model has the highest accuracy. time consuming. For example, when predicting a state with a short prediction period of several milliseconds or seconds, there is a concern that the wrong prediction model will be selected immediately after the start of prediction, reducing the overall prediction accuracy.
  • the parameters used by the prediction models are optimized in order to improve the accuracy of each prediction model, but the prediction parameters are averaged between the parts that were successfully predicted by the prediction model and the parts that were not. may occur, resulting in a loss of prediction accuracy.
  • the present invention has been made in view of such problems, and its purpose is to predict the future situation based on a certain current situation based on the prediction results of a plurality of prediction models.
  • An object of the present invention is to provide a prediction device (system) that enables highly accurate future situation prediction for the results of each prediction model.
  • one example of the present invention is a prediction device comprising a processor and a first memory, wherein the processor uses a plurality of prediction models at a first timing to obtain states observed at that time. storing in the first memory a prediction result indicating a state at a second timing predicted from the state observed at the second timing, generating a correct state indicating a correct state for the prediction result from the state observed at the time of the second timing; Comparing the correct state and the prediction result for each prediction model, calculating the correct answer rate for each prediction model, and calculating the prediction empirical value for each prediction model, which indicates the number of predictions performed for each prediction model. Then, using the correct answer rate for each prediction model and the prediction experience value for each prediction model, one prediction result is selected from a plurality of prediction results and output.
  • FIG. 2 is an explanatory diagram of an application example of a driver acceleration/deceleration prediction application of the control device illustrated in FIG. 1 ; It is a block diagram in a first embodiment.
  • FIG. 4 is an explanatory diagram of processing of a measurement result correct answer determination unit and an arbitration parameter storage unit; It is explanatory drawing of the example which calculates a prediction empirical value from the total of the number of correct answers and the number of incorrect answers. It is a figure explaining 2nd embodiment at the time of adding a prediction model with respect to 1st embodiment. It is a figure explaining the correct answer rate of each prediction model, and the change of prediction empirical value.
  • FIG. 11 is an explanatory diagram of an example of performing arbitration using a predicted percentage of correct answers using state-based arbitration parameters; It is the flowchart figure which showed the flow of the predictive control of the control apparatus in 3rd embodiment.
  • the present embodiment relates to a system for predicting a future state from a plurality of prediction models, and more particularly to technology for arbitrating the prediction results of the plurality of prediction models and determining the predicted state output by the system.
  • drawings specifically show an application example to a vehicle, they are drawings for explaining the basic principle of the present invention, and the scope of the present invention is not limited to the scope described in the drawings.
  • FIG. 1 shows an example in which the prediction system according to the first embodiment is applied to a control device (prediction device) mounted on a vehicle.
  • prediction of acceleration/deceleration of a driver driving a vehicle will be described as an example.
  • the vehicle and the control device are mentioned in the present embodiment, the scope of application of the present embodiment is not limited to the prediction target exemplified above and the vehicle and the control device exemplified as the application destination of the present embodiment.
  • the control device 100 includes a microcomputer 101 (CPU), RAM 102 (Random Access Memory), ROM 103 (Read Only Memory), and nonvolatile ROM 104 (EEPROM). Information obtained from the vehicle is input to the control device 100 .
  • CPU central processing unit
  • RAM 102 Random Access Memory
  • ROM 103 Read Only Memory
  • EEPROM nonvolatile ROM 104
  • the distance to the preceding vehicle obtained based on the information from the camera sensor 105 attached to the vehicle, the vehicle speed obtained from the vehicle speed sensor 106, and the vehicle speed obtained from the acceleration sensor 107 are stored.
  • the acceleration of the own vehicle and the accelerator opening obtained from the accelerator opening sensor 108 are input.
  • control device 100 determines whether or not the driver will accelerate in X seconds ahead, and outputs a prediction of acceleration in X seconds ahead.
  • control device 100 After the control device 100 outputs the acceleration prediction, a description of how another control device or device that receives the acceleration prediction changes the vehicle control will be omitted, but for example, it can be determined that the vehicle will not accelerate until X seconds ahead. In this case, it is possible to connect to the ECM (Engine Control Module) 109 in FIG.
  • ECM Engine Control Module
  • FIG. 2 illustrates a model for predicting driver acceleration/deceleration by applying the present invention to the control device 100 shown in FIG.
  • the driver's acceleration/deceleration prediction it is defined as acceleration when the driver operates the accelerator three seconds after the current time and the value becomes equal to or greater than the accelerator opening just before.
  • 3 seconds after the current time it is defined as not accelerating if the driver maintains the accelerator position and maintains the same degree of accelerator opening as immediately before.
  • the first prediction model 1 is a model that inputs the vehicle speed and inter-vehicle distance, compares them with the target, and calculates the driver's required acceleration several seconds ahead.
  • the calculation formula for this model is given by the following formula.
  • the control device 100 determines that the vehicle should be accelerated if the vehicle-to-vehicle distance is greater than the target vehicle-to-vehicle distance, and that the vehicle should not be accelerated if it is shorter than the target vehicle-to-vehicle distance.
  • Vf/Vdes which is related to vehicle speed sensitivity
  • the control device 100 predicts whether the driver will accelerate after 3 seconds depending on whether the acceleration is positive or negative.
  • the second prediction model 2 is a model that runs so that the vehicle speed of the preceding vehicle is within a predetermined value relative to the vehicle speed of the own vehicle.
  • the calculation formula for this model is given by the following formula.
  • Vf own vehicle speed
  • Vp preceding vehicle speed
  • thsc speed maintenance determination threshold
  • thv acceleration/deceleration determination threshold
  • equations (2) and (3) it is confirmed that the difference between the vehicle speed Vp of the preceding vehicle and the vehicle speed Vf of the own vehicle is equal to or less than the speed maintenance determination threshold, and the vehicle is driven within a certain relative speed range with respect to the preceding vehicle.
  • the control device 100 determines whether the The logic is to predict that the driver will not accelerate if the vehicle is driving within a certain range of relative speed to the preceding vehicle.
  • control device 100 predicts that the vehicle will accelerate when the vehicle speed of the own vehicle is lower than the vehicle speed Vp of the preceding vehicle and the vehicle speed of the preceding vehicle is greater than or equal to the acceleration/deceleration determination threshold thv.
  • the vehicle speed of the own vehicle is higher than the vehicle speed Vp of the preceding vehicle and the vehicle speed of the preceding vehicle is lower than the acceleration/deceleration determination threshold thv, the vehicle is decelerated, that is, the vehicle must be accelerated.
  • the controller 100 predicts.
  • control device 100 predicts whether or not the vehicle will accelerate after 3 seconds.
  • Fig. 3 shows a block diagram of the first embodiment of the present invention.
  • Fig. 2 The two prediction models in Fig. 2 are incorporated as prediction model 1 (block 301) and prediction model 2 (block 302) in the block diagram (Fig. 3), respectively.
  • prediction model 1 and prediction model 2 each determine whether the driver will accelerate after 3 seconds, and output the prediction result.
  • the correct state generation unit 303 in the block diagram receives the accelerator opening degree at the present time, compares it with the accelerator opening degree immediately before, determines whether the accelerator is stepped on, that is, accelerates, and converts the correct state into the correct state.
  • the generating unit 303 generates.
  • the output of each prediction model is the prediction result after 3 seconds, so the judgment result of the correct state generation unit 303 is different.
  • the prediction result of the prediction model is stored in the prediction result storage unit 304 so that the prediction result of 3 seconds before is output.
  • the prediction result correct answer determination unit 305 compares the prediction result output from the prediction result storage unit 304 three seconds ago with the correct state calculated by the correct state generation unit 303, and determines whether the prediction result of each prediction model is correct. determine whether
  • the prediction result correct answer determination unit 305 outputs this correct/incorrect answer information to the arbitration parameter storage unit 306 .
  • the arbitration parameter storage unit 306 stores the number of correct and incorrect answers determined by the prediction result correct answer determination unit 305 for each prediction model.
  • Each prediction model correct answer rate calculation unit 307 calculates the correct answer rate from the number of correct answers and the number of incorrect answers of each prediction model.
  • Each prediction model prediction experience value calculation unit 308 counts how many times each prediction model has made predictions and calculates a prediction experience value.
  • the prediction result arbitration unit 309 predicts the prediction results (301 to 302) of each prediction model, each prediction model correct answer rate calculated by each prediction model correct answer rate calculation unit 307, and each prediction model prediction empirical value calculation unit 308 calculated Using the prediction model prediction empirical value, the evaluation value of the prediction accuracy of each prediction model is calculated, and the prediction result of the prediction model with high prediction accuracy is calculated as the final prediction result.
  • the confusion matrix represents the state of correct and incorrect answers.
  • the definitions of correct and incorrect answers when the vehicle accelerates after 3.1 seconds will not be part of the description of the embodiment of the present invention.
  • part of the output of the prediction result storage unit 304 is processed for comparison. It is possible to solve the problem of extremely low TP by implementing this.
  • the prediction result correct answer determination unit 305 determines the states of TP, FN, and FP, and outputs the determined states to the arbitration parameter storage unit 306 .
  • the arbitration parameter storage unit 306 stores the number of times of TP, FN, and FP determined by the prediction result correct answer determination unit 305 for each prediction model.
  • Each prediction model correct answer rate calculation unit 307 calculates the correct answer rate of each prediction model.
  • Various calculation methods are conceivable for the percentage of correct answers, but here, the F value that can be calculated using the values of TP, FN, and FP described above is applied to the percentage of correct answers.
  • the first feature of the embodiment of the present invention is that, in addition to the correct answer rate of each prediction model, the prediction empirical value is used for arbitration.
  • the prediction empirical value stores the number of predictions in each prediction model, and expresses the reliability of the correct answer rate of the prediction result of the prediction model according to the number of predictions.
  • the reliability of the correct answer rate is different.
  • the prediction result of the prediction model can be trusted, for example, by using the definition that It is possible to prevent the accuracy rate of the prediction result of the acceleration/deceleration prediction control from decreasing before and after the control.
  • the microcomputer 101 uses a plurality of prediction models at a first timing (current time) to predict a second timing (future model) from the state observed at that time. time) is stored in the RAM 102 (first memory), and a correct state indicating the correct state for the prediction result is generated from the state observed at the second timing (at the current time). do.
  • the microcomputer 101 compares the correct state and the prediction result for each prediction model, calculates the correct answer rate for each prediction model, and calculates the prediction empirical value for each prediction model, which indicates the number of predictions made for each prediction model. do.
  • the microcomputer 101 selects and outputs one prediction result from a plurality of prediction results using the correct answer rate for each prediction model and the prediction empirical value for each prediction model. As a result, highly reliable prediction results are output.
  • the second feature of this embodiment is to calculate the number of predictions as the sum of the number of correct answers and the number of incorrect answers of each prediction model output by the prediction result correct answer determination unit 305. That is. That is, the prediction empirical value for each prediction model is the sum of the number of correct answers and the number of incorrect answers for each prediction model. This eliminates the need for a counter for counting the number of predictions.
  • FIG. (a), (b), and (c) of FIG. 5 are the values of TP, FN, and FP of prediction model 1 and prediction model 2, respectively, stored in the arbitration parameter storage unit. Calculating the sum of these values results in (g) in FIG. Also, the tables shown in (I), (II), and (III) of FIG. 5 show how each prediction model repeats prediction and TP, FN, and FP are added.
  • the sum of the arbitration parameters (TP, FN, FP) shown in (g) is calculated as a prediction empirical value, and when the prediction empirical value of each prediction model is a predetermined value or more, the prediction result of each prediction model is If configured to be reflected in the final prediction result, it is possible to prevent the prediction system from outputting an erroneous prediction. Further, in the case of the example of FIG. 5, it is possible to additionally acquire prediction empirical values without newly storing new calculation blocks or additional information.
  • the microcomputer 101 selects one prediction result by including the prediction result of the prediction model in the options when the prediction experience value of each prediction model exceeds the threshold, and each prediction If the prediction empirical value of the model is less than the threshold, one prediction result is selected without including the prediction results of the prediction model in the options.
  • the microcomputer 101 selects, for example, the prediction result of the prediction model with the highest percentage of correct answers.
  • the third feature of this embodiment is to store the number of times each prediction model made predictions, that is, the number of predictions made by each prediction model as a prediction empirical value.
  • the prediction empirical value for each prediction model is the number of predictions made and counted for each prediction model.
  • each prediction model outputs prediction results only when the conditions for permitting prediction for each model are met. is used as the prediction empirical value. It is possible to confirm how much prediction is performed while each prediction model is allowed to make predictions, and whether the correct answer rate of the prediction model is reliable.
  • the prediction empirical value of each model obtained in this way is referred to by the prediction result arbitration unit 309 in the block diagram (FIG. 3), and the prediction result arbitration unit 309 calculates the prediction result, the prediction correct answer rate, and the prediction experience value of each prediction model. Based on this, it is decided which model's prediction result is to be used. In this way, in addition to considering the correct answer rate, by adding the predicted empirical value as a numerical value indicating the reliability of the correct answer rate, the value of the prediction model is not adopted even if the correct answer rate is high.
  • the target speed and target inter-vehicle distance in FIG. 2 differ depending on the driver, general values are set as initial values.
  • the target speed and the target inter-vehicle distance are fitted to the characteristics of the driver (learning) through the process of validating the prediction result (Fig. 3, 304-307).
  • CO 2 can be reduced by stopping the engine (coast stop).
  • the acceleration responsiveness is improved and the drivability is improved by not stopping the engine.
  • FIG. 6 shows a block diagram of a state in which a prediction model 3 (block 310) is added in addition to the prediction models 1 and 2 shown in the first embodiment.
  • the acceleration of the vehicle is obtained from the acceleration sensor 107 mounted on the vehicle in FIG. 1, and signs of the acceleration turning from negative to positive are detected to predict "accelerate”.
  • the arbitration parameter of the prediction model 1 and the prediction model 2 has already been run several times and the past prediction situation and the information of the correct answer rate is accumulated.
  • the arbitration parameter that is, the predicted correct answer rate, may be compromised.
  • a fourth feature of this embodiment is that the arbitration parameters are written to the non-volatile memory. That is, the microcomputer 101 (processor) stores the number of correct answers, the number of incorrect answers, and the prediction empirical value for each prediction model in the nonvolatile memory 104 (second memory). By storing the arbitration parameters of the prediction model 1 and the prediction model 2 in the non-volatile memory 104 of FIG. 1, the arbitration parameters of the prediction model 1 and the prediction model 2 are held even when the prediction model 3 is added.
  • prediction empirical value which is one of the arbitration parameters
  • the prediction empirical value which is one of the arbitration parameters
  • Fig. 7 shows how the correct answer rate and prediction empirical value of each prediction model change depending on the number of predictions when prediction model 3 is added.
  • (I) of FIG. 7 shows the state before the system starts prediction with prediction model 3 added.
  • Arbitration parameters (a) to (c) of prediction model 1 and prediction model 2 are stored in a non-volatile memory and read out. In this state, the prediction of prediction model 3 has not yet been performed, and the prediction empirical value (g) of prediction model 3 is also zero.
  • (II) in FIG. 7 is the state after executing prediction 200 times from the state of (I).
  • the prediction model 3 has the highest rate of correct answers (F value). For example, if the prediction experience of the prediction model is not 300 times or more, it is not reflected in the final prediction result. .
  • (III) in FIG. 7 is the state after performing 200 predictions from the state of (II). At this time, the correct answer rate of prediction model 3 is 0.79, which is lower than prediction models 1 and 2. Then, although the percentage of correct answers was high at the time of (II), when the prediction was repeated many times, it turned out that the prediction accuracy of the prediction model 3 was low overall.
  • FIG. 8 is a flow chart diagram showing the flow of predictive control by the control device 100 in the first and second embodiments of the present invention. Hereinafter, each step will be described with reference to the block diagram of FIG. 6 and the flowchart of FIG.
  • Prediction model 1 (301), prediction model 2 (302), and prediction model 3 (310) of the prediction system each output a prediction result.
  • Each prediction model stores the prediction result in the prediction result storage unit 304 .
  • the correct state generation unit 303 generates a correct state.
  • the prediction result correct answer determination unit 305 refers to the prediction result of each past prediction model stored in the prediction result storage unit 304 in step 803 and compares it with the correct state generated in step 804 .
  • step S806 When the prediction result of the prediction model and the correct answer are compared in step 805 , if the prediction model is correct, the correct counter value of the prediction model [i] in the arbitration parameter storage unit 306 is incremented and stored in the arbitration parameter storage unit 306 . .
  • step 805 When the prediction result of the prediction model and the correct answer are compared in step 805, if the prediction model is incorrect, the incorrect counter value of the prediction model [i] in the arbitration parameter storage unit 306 is incremented and stored in the arbitration parameter storage unit. Store.
  • Each prediction model correct answer rate calculation unit 307 calculates the predicted correct answer rate of the prediction model [i] using the number of correct answers and the number of incorrect answers of each prediction model updated in step S806 or step S807.
  • Step S810 It is determined whether or not the prediction empirical value of each prediction model calculated in step S810 exceeds a predetermined threshold.
  • step S811 If the prediction empirical value is equal to or greater than a predetermined threshold in step S811, the prediction result of the prediction model [i] can be selected during arbitration.
  • step S812 If the prediction empirical value is less than the predetermined threshold in step S812, the prediction result of the prediction model [i] cannot be selected during arbitration.
  • step S813 if calculation of the prediction correct answer rate and prediction experience value of all prediction models has not been completed, i is incremented and the prediction correct answer rate and prediction experience value of the next prediction model are calculated.
  • step S815 When the evaluation of the prediction correct answer rate and the prediction empirical value of all the prediction models is completed in step S813, the process proceeds to step S815.
  • step S811 the product of the prediction result of the prediction model determined to be selectable at the time of arbitration based on the prediction empirical value of the prediction model and the prediction correct answer rate is calculated, and the prediction result of the highest prediction model is selected as the final prediction result of the prediction system.
  • step S801 to step S815 are included in the control program stored in the ROM 103 of the control device 100 and are repeatedly executed.
  • FIG. 9 is a block diagram for explaining the third embodiment to which the present invention is applied.
  • the fifth feature of the present embodiment is that the system of the first embodiment is further developed, a state determination unit 901 is added, and the prediction result of each prediction model and the correct answer are calculated by comparing the correct answer of each prediction model, The number of incorrect answers is stored in the state-based arbitration parameter storage unit 902 as the arbitration parameter of the prediction apparatus for each state determined by the state determination unit 901 .
  • Prediction model 1 (block 301), prediction model 2 (block 302), prediction model (block 303), correct state generation unit 303, prediction result storage unit 304, prediction result correct answer determination unit 305 are the first embodiment and the second embodiment. It has the same function as the content explained in the form.
  • the state determination unit 901 determines the current state (situation).
  • the current situation here may be an input used for the prediction model, an input for determining the correct state, or another input.
  • the state determination unit 901 determines the current state from three inputs, and sends the state ID for each state to the arbitration parameter storage unit 902 for each state as a result of the state determination based on the determination.
  • the state determination unit generates a state ID based on information on vehicle speed, inter-vehicle distance, and relative speed.
  • FIG. 10 shows how the vehicle speed, inter-vehicle distance, and relative speed are each discriminated into eight states and state IDs are generated.
  • the vehicle speed state is indicated as state 4
  • the inter-vehicle distance state is indicated as state 3
  • the relative speed state is indicated as state 5. and these states are referred to as a bundling state ID 435 .
  • the state-by-state arbitration parameter storage unit 902 compares the prediction result of each prediction model with the correct answer to determine whether each prediction model is correct or incorrect, and then stores the arbitration parameter by state ID. For state ID 435, the arbitration parameter corresponding to 435 is updated.
  • each prediction model correct answer rate is performed by each prediction model correct answer rate calculation unit 903 using the arbitration parameters stored in the state-specific arbitration parameter storage unit 902 in FIG.
  • Each prediction model prediction experience value calculation unit 904 calculates the prediction experience value of each prediction model.
  • the prediction result arbitration unit 905 arbitrates the prediction results using the prediction result of each prediction model, the prediction correct answer rate for each situation, and the prediction empirical value for each situation.
  • the microcomputer 101 stores a state ID which is composed of a set of IDs corresponding to the range to which each of the measured values from a plurality of sensors belongs and which indicates the state at the first timing (current time). calculate.
  • the microcomputer 101 calculates the percentage of correct answers for each prediction model and each state ID, and calculates the prediction empirical value for each prediction model and each state ID.
  • the microcomputer 101 outputs one prediction result from the plurality of prediction results using the correct answer rate for each prediction model and for each state ID and the prediction empirical value for each prediction model and each state ID.
  • the prediction is good and the correct answer rate is higher than the other prediction model, but in another state the prediction is wrong, and the other prediction model
  • the percentage of correct answers is lower than , it is possible to prevent the percentage of correct answers from being averaged by the number of correct answers and incorrect answers in all states.
  • the prediction results will be reflected in the final output of the system in the area where that prediction model is good. It becomes possible to
  • a sixth feature of the present embodiment is to calculate a prediction empirical value using the number of correct and incorrect answers in predictions made so far by each prediction model stored in the state-specific arbitration parameter storage unit 902. .
  • the sixth feature of the present embodiment it is possible to calculate the prediction empirical value without additionally storing information on the number of predictions, and the reliability of the correct answer rate of each prediction model calculated for each state can be confirmed, and the final output of the system can be determined by the prediction result of each prediction model, the correct answer rate of each prediction model by state, and the prediction empirical value of each prediction model by state.
  • (IV) in FIG. 11 shows the overall prediction accuracy rate of prediction models 1 to 3, where prediction model 2 is inferior to prediction models 1 and 3.
  • the prediction model 2 is replaced by another prediction model. The correct answer rate is high.
  • the accuracy rate of the prediction result of prediction model 2 is high, and the prediction accuracy of the entire system can be expected to be improved by using the prediction result of prediction model 2 rather than using other prediction models.
  • the sixth feature of the present embodiment it is possible to check the number of predictions made by each prediction model in the state determined by the state determination unit. In this case, the prediction result of prediction model 1 can be output to the final output. In addition, even if the correct answer rate of prediction model 1 is high, if the prediction experience value is low, that is, if the prediction performance in that state is poor, it is possible not to reflect the result of prediction model 1 in the final result. be.
  • the seventh feature of this embodiment is to store the number of predictions made by the prediction model in that state as the prediction empirical value instead of the arbitration parameter of each prediction model, that is, the number of correct answers and the number of incorrect answers. .
  • each prediction model outputs prediction results only when the conditions for permitting prediction for each model are met. is used as the prediction empirical value.
  • some prediction models may be allowed to perform predictions, and some prediction models may not be allowed to perform predictions. At that time, the arbitration parameters of the disapproved prediction model are not updated.
  • the arbitration parameter can prevent the prediction result from being incorrect and the correct answer rate from decreasing when the prediction range assumed in advance by each prediction model is exceeded.
  • the prediction accuracy of the entire system can be expected to be improved by segregating the prediction regions intended by the prediction model.
  • FIG. 12 is a flow chart diagram showing the flow of predictive control by the control device 100 according to the third embodiment of the present invention. Hereinafter, each step will be described with reference to the block diagram of FIG. 9 and the flow chart of FIG.
  • Prediction model 1 (301), prediction model 2 (302), and prediction model 3 (310) of the prediction system each output a prediction result.
  • Each prediction model stores the prediction result in the prediction result storage unit 304 .
  • the correct state generation unit 303 generates a correct state.
  • a state determination unit 901 determines the current state and selects a state ID.
  • the prediction result correct answer determination unit 305 refers to the prediction result of each past prediction model stored in the prediction result storage unit 304 in step 1203 and compares it with the correct state generated in step 1204 .
  • step S1207 When the prediction result of the prediction model and the correct answer are compared in step 1206, if the prediction model is correct, the correct counter value of the prediction model [i] for the state ID selected in step S1205 is stored in the state-by-state arbitration parameter storage unit 902. is incremented and stored in the state-specific arbitration parameter storage unit 902 .
  • step S1208 When the prediction result of the prediction model and the correct answer are compared in step 1206, if the prediction model is incorrect, the incorrect answer counter of the prediction model [i] in the state ID selected in step S1205 of the state-by-state arbitration parameter storage unit 902 The value is incremented and stored in the arbitration parameter storage unit.
  • Each prediction model correct answer rate calculation unit 903 calculates the predicted correct answer rate of the prediction model [i] using the number of correct answers and the number of incorrect answers of each prediction model for each state updated in step S1207 or step S1208.
  • Each prediction model prediction empirical value calculation unit 904 calculates the prediction empirical value by obtaining the sum of the arbitration parameters of each prediction model for each state calculated in steps S1206 and S1207.
  • Step S1211 It is determined whether or not the prediction empirical value of each prediction model calculated in step S1210 exceeds a predetermined threshold.
  • step S1212 If the prediction empirical value is equal to or greater than the predetermined threshold in step S1211, the prediction result of the prediction model [i] can be selected during arbitration. That is, when the prediction empirical value of each prediction model exceeds the threshold, the microcomputer 101 (processor) selects one prediction result including the prediction result of that prediction model in the options. This ensures that prediction results with low reliability are not selected.
  • step S1213 If the prediction empirical value is less than the predetermined threshold in step S1212, the prediction result of the prediction model [i] cannot be selected during arbitration. That is, when the prediction empirical value of each prediction model is less than the threshold, the microcomputer 101 (processor) selects one prediction result without including the prediction result of that prediction model in the options. Thereby, a highly reliable prediction result is selected.
  • Step S1214 In order to calculate the prediction accuracy rate and the prediction experience value of all prediction models, it is determined whether the evaluation of the prediction accuracy rate and the prediction experience value using the state-specific arbitration parameters of all prediction models has been completed.
  • step S1214 if calculation of the prediction correct answer rate and prediction experience value of all prediction models has not been completed, i is incremented and the prediction correct answer rate and prediction experience value of the next prediction model are calculated.
  • step S1216 When the evaluation of the prediction accuracy rate and the prediction empirical value of all the prediction models is completed in step S1213, the process moves to step S1215.
  • step S1212 the product of the prediction result of the prediction model determined to be selectable at the time of arbitration based on the prediction empirical value of the prediction model and the prediction correct answer rate is calculated, and the prediction result of the highest prediction model is selected as the final prediction result of the prediction system.
  • the calculations related to the prediction system from step S1201 to step S1216 are included in the control program stored in the ROM 103 of the control device 100 and are repeatedly executed.
  • the prediction correct answer rate is calculated for the prediction result calculated by each prediction model for the purpose of improving the prediction accuracy of the entire system.
  • the calculation of the prediction empirical value for confirming whether the prediction correct answer rate is a reliable value was explained.
  • the threshold for evaluating the prediction empirical value in S810 of FIG. 8 or S1211 of FIG. good too. That is, the threshold may be a common value for all prediction models, or the threshold may be set for each prediction model.
  • the prediction model 1 and the prediction model 2 are evaluated in advance, configured to be provided as the minimum prediction function of the system, and it is desired to start prediction from the time of system startup.
  • any prediction result can be adopted as a candidate when the final prediction result is selected by setting the initial value of the prediction empirical value in advance to be equal to or greater than the number of selections that can be made at the time of arbitration.
  • the number of correct answers, the number of incorrect answers, or the initial value of the prediction empirical value for each prediction model is any number other than zero.
  • a threshold is used to check whether or not prediction has been executed a predetermined number of times, and if the threshold is not exceeded, selection is disabled during arbitration. If the prediction result of each prediction model is to be included as an option for the final prediction result regardless of the magnitude of the prediction empirical value, the value used for the threshold should be set to 0 or less. Specifically, for example, the initial value of the number of correct answers, the number of incorrect answers, or the prediction empirical value for each prediction model is zero.
  • this threshold value as a parameter for calculating the prediction empirical value and having a different value for each prediction model, for example, in the example of the second embodiment, the predictions of the prediction model 1 and the prediction model 2 are predicted in the prediction result arbitration unit from the first time Used to select the result, if the parameter for calculating the prediction empirical value of the prediction model 3 is set to an arbitrary number of times, only the prediction model 3 will be included in the prediction result options after the prediction results are accumulated. It is possible.
  • a threshold is used to check whether or not prediction has been executed a predetermined number of times, and if the threshold is not exceeded, the prediction result cannot be selected during arbitration. Until the determination of the threshold value is performed in S809 of FIG. 8 or S1210 of FIG. Similar arbitration can be performed by modifying the flow chart so as to calculate the product of the prediction result, the prediction correct answer rate, and the prediction empirical value in step S815 or S1216 of prediction result arbitration.
  • the microcomputer 101 selects the prediction result of the prediction model with the highest product of the prediction result value and the correct answer rate, or (ii) compares the prediction result value, the correct answer rate, and the prediction
  • the prediction result of the prediction model with the highest product with the empirical value may be selected. Thereby, a highly reliable prediction result is selected.
  • a method of performing calculation by setting the number of prediction executions in the numerator and setting the parameter for calculating the prediction experience value in the denominator, and calculating the prediction experience value in decimals is also conceivable. . Even in this case, it is possible to change the degree of contribution of the prediction result of each prediction model to the selection of the final result by setting the prediction empirical value calculation parameter for each prediction model in advance.
  • the prediction result of prediction model 1 when predicting acceleration after 3 seconds, the prediction result of prediction model 1 is "accelerate” correct answer rate 0.8, prediction experience value 1, prediction
  • the correct answer rate is 0.6
  • the prediction experience value is 1
  • the prediction result of prediction model 3 is "accelerate”
  • the correct answer rate is 0.9
  • the prediction experience value is 0.5
  • the product of the correct answer rate and the predicted experience value of the prediction model 1 is 0.8
  • the product of the correct answer rate and the prediction experience value of the prediction model 2 is 0.6
  • the product of the correct answer rate and the prediction experience value of the prediction model 3 is 0.8. 45, and although the correct answer rate of the prediction model 3 is high, the prediction result of the prediction model 1 is supported because the prediction experience is small.
  • the correct answer rate of prediction model 3 is 0.9 and the prediction experience value is 0.9
  • the product of the correct answer rate and the prediction experience value is 0.81
  • the situation of prediction model 1 and prediction model 2 described above is the highest, and the result of prediction model 3 is supported.
  • the microcomputer 101 selects the prediction result of the prediction model with the highest product of the correct answer rate and the prediction empirical value. Thereby, a highly reliable prediction result is selected.
  • control that predicts whether the vehicle will accelerate after 3 seconds can be applied to predict the future state from the current state. It can also be applied to /G (Wastegate) control and the like.
  • the plurality of models may be composed of neural network models and models based on other statistical theories in addition to the prediction models described in the embodiment. good.
  • the camera sensor 105 measures the inter-vehicle distance, but other sensors such as millimeter wave radar may be used to measure the inter-vehicle distance.
  • the state indicated by the state ID in the third embodiment is three-dimensional (vehicle speed, inter-vehicle distance, relative speed), but may be one-dimensional, two-dimensional, or four or more dimensions.
  • vehicle speed, inter-vehicle distance, and relative speed the vehicle speed of the preceding vehicle, acceleration of the vehicle, accelerator opening, altitude, and the like may be used.
  • a plurality of prediction models that predict the future state from the current state and output prediction results
  • a prediction result storage unit for storing each prediction result predicted by the plurality of prediction models in the past
  • a correct state from the current state
  • a prediction result correct determination unit that compares the correct state and past prediction results of a plurality of prediction models stored in the prediction result storage unit and determines whether or not the prediction of each prediction model is correct.
  • a prediction model arbitration parameter storage unit for storing the number of correct answers and the number of incorrect answers of each prediction model determined by the correct prediction result judgment unit;
  • a prediction model correct answer rate calculation unit that calculates the correct answer rate of each prediction model using the number of correct answers, and a prediction result arbitration unit that outputs one prediction result using the prediction result of each prediction model and the correct answer rate of each prediction model
  • the system further comprises a prediction empirical value calculation unit that counts how many times each prediction model has made predictions and calculates the prediction experience value of each prediction model, and the prediction result arbitration unit is , a system characterized by outputting one prediction result using the prediction result of each prediction model, the correct answer rate of each prediction model, and the prediction empirical value of each prediction model.
  • the prediction experience value calculation unit calculates the prediction experience value based on the sum of the number of correct answers and the number of incorrect answers of each prediction model stored in the prediction model mediation parameter storage unit. system.
  • the prediction empirical value calculation unit calculates the prediction empirical value by counting the number of times each prediction model executes the process.
  • the prediction model arbitration parameter storage unit writes the arbitration parameter of each prediction model in a non-volatile memory.
  • the system further includes a state determination unit that determines the current state and calculates a state ID corresponding to the current state, and the prediction model determined by the prediction result correct determination unit
  • the prediction model mediation parameter storage unit for each state is provided for storing the number of correct answers and the number of incorrect answers for each state selected by the state ID, and the prediction result mediation unit mediates the prediction results calculated by each prediction model.
  • the prediction correct answer rate by state calculated using the arbitration parameter of each prediction model stored in the prediction model arbitration parameter storage unit by state, and the prediction model arbitration parameter storage unit by state Calculate the prediction empirical value by state calculated using the arbitration parameter, and use the prediction result of each prediction model, the prediction correct answer rate by state of each prediction model, and the prediction empirical value by state of each prediction model, A system characterized by outputting one prediction result.
  • the prediction experience value calculation function is characterized in that the prediction experience value is calculated based on the sum of the number of correct answers and the number of incorrect answers for each prediction model, which are stored in the prediction model mediation parameter storage function. system.
  • the prediction empirical value calculation function counts the number of times each prediction model executes the process and calculates the prediction empirical value.
  • the prediction model arbitration parameter storage function writes the arbitration parameter of each prediction model into a non-volatile memory.
  • the initial value of the arbitration parameter of each prediction model stored in the non-volatile memory is set in advance to any number other than 0.
  • the initial value of the arbitration parameter of each prediction model stored in the nonvolatile memory is set to 0 in advance.
  • the initial value of the state-specific arbitration parameter stored in the nonvolatile memory is set in advance to any number other than 0.
  • the initial value of the state-specific arbitration parameter stored in the non-volatile memory is set to 0 in advance.
  • the prediction experience value by state of each prediction model calculated by the prediction experience value calculation function is compared with an arbitrary threshold, and the prediction experience value by state of each prediction model is an arbitrary A system, wherein the prediction result of each prediction model arbitrated by the prediction result arbitration unit is included in the arbitration options when the threshold value is exceeded.
  • a plurality of prediction models estimate the future state and output the prediction results, and the correct answer rate of the prediction results of each prediction model and take into account predictive experience to determine whether the percentage of correct answers is reliable. Therefore, when an existing system is expanded and a prediction model based on a new concept is added, it is possible to prevent a decrease in prediction accuracy due to the side effect of adding the prediction model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

In the present invention, a microcomputer (101) (processor): stores, in a RAM (102) (first memory), a prediction result indicating a state at a second timing which is predicted from a state observed at a first timing using a plurality of prediction models; and generates, from a state observed at the second timing, a correct answer state indicating a correct answer with respect to the prediction result. The microcomputer (101) compares the correct answer state with the prediction result for each prediction model, calculates a correct answer rate for each prediction model, and calculates a prediction experience value for each prediction model indicating the number of predictions that were carried out for each prediction model. The microcomputer (101) selects and outputs one prediction result from the plurality of prediction results using the correction answer rate for each prediction model and the prediction experience value for each prediction model.

Description

予測システム及び予測方法Forecasting system and forecasting method
 本発明は、予測システム及び予測方法に関する。 The present invention relates to a prediction system and a prediction method.
 近年の自動車の開発においては、燃費向上技術のほかに、予防安全技術や自動運転技術といった安全性・利便性を求める開発が積極的になされており、これらの実現手段の一部として車両挙動の予測制御がある。 In the development of automobiles in recent years, in addition to fuel efficiency improvement technology, development that seeks safety and convenience such as preventive safety technology and automatic driving technology is being actively pursued. There is predictive control.
 車両挙動予測制御の一例としては、前方を走行する車両と自車の位置関係を推定する制御があり、予測した将来の状態から、数秒後にドライバーが加速するかしないか、または、衝突防止のために停止する制御をすべきかなどの判断を行うものがある。 One example of vehicle behavior predictive control is control that estimates the positional relationship between the vehicle traveling ahead and the own vehicle. Based on the predicted future state, the driver will be able to accelerate or not after a few seconds. There is a judgment such as whether control to stop immediately should be performed.
 これら車両挙動予測制御に対しては、常に安全性が求められ、高い予測精度が必要となり、予測精度を高める方法として、予測の基礎となる計算方法の変更や定数の変更などがある。別の方法としては、ある対象の将来の状態を、複数の予測モデルを用いて予測し、最も確からしい予測モデルの予測結果を出力するシステムが発明されている。  For these vehicle behavior prediction controls, safety is always required and high prediction accuracy is required, and methods to improve prediction accuracy include changing the calculation method that is the basis of prediction and changing constants. As another method, a system has been invented that predicts the future state of an object using a plurality of prediction models and outputs the prediction result of the most probable prediction model.
 特許文献1では、電気自動車向けの二次電池状態を推定するために複数のモデルに異なる予測方法にて予測をさせると同時に、実際の状態と予測した状態の乖離が最も小さいモデルを評価することで、各々の予測モデルの精度を評価し、最も精度の高い予測モデルの結果を出力する技術の提案がなされている。 In Patent Document 1, in order to estimate the state of a secondary battery for electric vehicles, a plurality of models are made to make predictions using different prediction methods, and at the same time, the model with the smallest deviation between the actual state and the predicted state is evaluated. proposed a technique for evaluating the accuracy of each prediction model and outputting the result of the prediction model with the highest accuracy.
 先行特許文献1を車両挙動予測に適用した場合、複数の計算方式が異なる予測モデルを用意し、それら予測モデルの精度を評価して、どの予測モデルの結果を採用するか選択し全体的な精度向上が見込める。 When prior patent document 1 is applied to vehicle behavior prediction, a plurality of prediction models with different calculation methods are prepared, the accuracy of these prediction models is evaluated, and the results of which prediction model to adopt are selected to determine the overall accuracy. expected to improve.
特開2013-190274号公報JP 2013-190274 A
 しかしながら、先行特許文献1では対象として電気自動車向けの二次電池を想定しており、各予測モデルが推定した状態と実際の状態を比較し、どの予測モデルの精度が高いかが判明するまでには時間がかかる。例えば、予測周期が数ミリ秒や数秒などと短い場合の状態の予測に対しては、予測開始直後に誤った予測モデルを選択して全体の予測精度を低下させてしまう懸念がある。 However, prior patent document 1 assumes a secondary battery for electric vehicles as a target, and it takes time to compare the state estimated by each prediction model and the actual state and find out which prediction model has the highest accuracy. time consuming. For example, when predicting a state with a short prediction period of several milliseconds or seconds, there is a concern that the wrong prediction model will be selected immediately after the start of prediction, reducing the overall prediction accuracy.
 また、新しい考え方に基づく予測モデルを開発した際、従来の予測モデルで予測精度が低い部分が改善する一方、従来の予測モデルで高い予測精度を維持していた領域での予測結果には影響を及ぼさないようにできることが望ましい。 In addition, when developing a forecast model based on a new way of thinking, while improvements were made in areas where forecast accuracy was low in the conventional forecast model, there was no impact on the forecast results in areas where the conventional forecast model maintained high forecast accuracy. It is desirable to be able to prevent
 先行特許文献1では各々の予測モデルの精度向上のために、予測モデルが用いるパラメータの最適化がなされているが、予測モデルでうまく予測できていた部分とそうでない部分で予測パラメータの平均化が発生し、結果として予測精度を落としてしまう可能性がある。 In prior patent document 1, the parameters used by the prediction models are optimized in order to improve the accuracy of each prediction model, but the prediction parameters are averaged between the parts that were successfully predicted by the prediction model and the parts that were not. may occur, resulting in a loss of prediction accuracy.
 本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、ある現在の状況をもとに将来の状況を複数の予測モデルの予測結果をもとに予測する予測装置(システム)において、各々の予測モデルの結果に対し、高精度な将来の状況予測を可能とする予測装置等を提供することにある。 The present invention has been made in view of such problems, and its purpose is to predict the future situation based on a certain current situation based on the prediction results of a plurality of prediction models. An object of the present invention is to provide a prediction device (system) that enables highly accurate future situation prediction for the results of each prediction model.
 上記目的を達成するために、本発明の一例は、プロセッサと第1メモリを備える予測装置であって、前記プロセッサは、第1タイミングで複数の予測モデルをそれぞれ用いてその時点で観測される状態から予測される第2タイミングの状態を示す予測結果を前記第1メモリに記憶し、前記第2タイミングの時点で観測される状態から前記予測結果に対する正解の状態を示す正解状態を生成し、前記正解状態と前記予測モデル毎の前記予測結果とを比較し、前記予測モデル毎の正答率を算出し、前記予測モデル毎に実施された予測の回数を示す前記予測モデル毎の予測経験値を算出し、前記予測モデル毎の前記正答率と、前記予測モデル毎の前記予測経験値とを用いて、複数の前記予測結果から1つの前記予測結果を選択して出力する。 In order to achieve the above object, one example of the present invention is a prediction device comprising a processor and a first memory, wherein the processor uses a plurality of prediction models at a first timing to obtain states observed at that time. storing in the first memory a prediction result indicating a state at a second timing predicted from the state observed at the second timing, generating a correct state indicating a correct state for the prediction result from the state observed at the time of the second timing; Comparing the correct state and the prediction result for each prediction model, calculating the correct answer rate for each prediction model, and calculating the prediction empirical value for each prediction model, which indicates the number of predictions performed for each prediction model. Then, using the correct answer rate for each prediction model and the prediction experience value for each prediction model, one prediction result is selected from a plurality of prediction results and output.
 本発明によれば、高精度な将来の状況予測を可能とする。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, highly accurate future situation prediction is possible. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本実施形態に係るシステムを車両に搭載する制御装置へ適用した例の構成図である。It is a block diagram of the example which applied the system which concerns on this embodiment to the control apparatus mounted in a vehicle. 図1に挙げた制御装置のドライバーの加減速予測適用例の説明図である。FIG. 2 is an explanatory diagram of an application example of a driver acceleration/deceleration prediction application of the control device illustrated in FIG. 1 ; 第一実施形態におけるブロック図である。It is a block diagram in a first embodiment. 測結果正答判定部および調停パラメータ記憶部の処理の説明図である。FIG. 4 is an explanatory diagram of processing of a measurement result correct answer determination unit and an arbitration parameter storage unit; 正解数と不正解数の総和から、予測経験値を算出する例の説明図である。It is explanatory drawing of the example which calculates a prediction empirical value from the total of the number of correct answers and the number of incorrect answers. 第一実施形態に対し予測モデルを追加した場合の第二実施形態を説明した図である。It is a figure explaining 2nd embodiment at the time of adding a prediction model with respect to 1st embodiment. 各々の予測モデルの正答率と予測経験値の変化を説明する図である。It is a figure explaining the correct answer rate of each prediction model, and the change of prediction empirical value. 第一実施形態および第二実施形態における制御装置フローチャート図である。It is a control-apparatus flowchart figure in 1st embodiment and 2nd embodiment. 本発明を適用した第三実施形態を説明するためのブロック図である。It is a block diagram for explaining a third embodiment to which the present invention is applied. 状態判別部によって判別する状態に対応する状態IDの表。A table of state IDs corresponding to states discriminated by the state discriminator. 状態別調停パラメータを用いた予測正答率を用い調停を実施する例の説明図である。FIG. 11 is an explanatory diagram of an example of performing arbitration using a predicted percentage of correct answers using state-based arbitration parameters; 第三実施形態における制御装置の予測制御の流れを示したフローチャート図である。It is the flowchart figure which showed the flow of the predictive control of the control apparatus in 3rd embodiment.
 以下、図面を用いて、本発明の第一~第三実施形態によるシステムの構成及び動作について説明する。本実施形態は、将来の状態を複数の予測モデルより予測するシステムに関し、特に、複数の予測モデルの予測結果を調停し、システムが出力する予測状態を決定する技術に関する。なお、図面では具体的に車両への適用例を示しているが、本発明の基本原理を説明するための図面であり、本発明の範囲は図面に記載した範囲に限定されるものではない。 The configuration and operation of the system according to the first to third embodiments of the present invention will be described below with reference to the drawings. The present embodiment relates to a system for predicting a future state from a plurality of prediction models, and more particularly to technology for arbitrating the prediction results of the plurality of prediction models and determining the predicted state output by the system. Although the drawings specifically show an application example to a vehicle, they are drawings for explaining the basic principle of the present invention, and the scope of the present invention is not limited to the scope described in the drawings.
 [第一実施形態]
 図1は、第一実施形態にかかわる予測システムを車両に搭載される制御装置(予測装置)に適用した場合の例である。本実施形態においては、車両を運転するドライバーの加減速を予測することを例に挙げ説明する。本実施形態では車両及び制御装置に言及しているが、むろん本実施形態の適用範囲は上記例に挙げた予測対象や、本実施形態の適用先として挙げた車両及び制御装置に限定されない。
[First embodiment]
FIG. 1 shows an example in which the prediction system according to the first embodiment is applied to a control device (prediction device) mounted on a vehicle. In the present embodiment, prediction of acceleration/deceleration of a driver driving a vehicle will be described as an example. Although the vehicle and the control device are mentioned in the present embodiment, the scope of application of the present embodiment is not limited to the prediction target exemplified above and the vehicle and the control device exemplified as the application destination of the present embodiment.
 制御装置100はマイクロコンピュータ101(CPU)とRAM102(Random Access Memory)とROM103(Read Only Memory)と不揮発性ROM104(EEPROM)とを備える。この制御装置100に対して車両から得られる情報を入力する。 The control device 100 includes a microcomputer 101 (CPU), RAM 102 (Random Access Memory), ROM 103 (Read Only Memory), and nonvolatile ROM 104 (EEPROM). Information obtained from the vehicle is input to the control device 100 .
 制御装置100には、車両に取り付けられたカメラセンサ105からの情報をもとにして得られる先行車との車間距離、車速センサ106より取得される自車の車速、加速度センサ107より取得される自車の加速度、アクセル開度センサ108より取得されるアクセル開度を入力する。 In the control device 100, the distance to the preceding vehicle obtained based on the information from the camera sensor 105 attached to the vehicle, the vehicle speed obtained from the vehicle speed sensor 106, and the vehicle speed obtained from the acceleration sensor 107 are stored. The acceleration of the own vehicle and the accelerator opening obtained from the accelerator opening sensor 108 are input.
 これらの入力を制御装置100に入力し、制御装置100は、ドライバーがX秒先で加速するか否かを判断し、X秒先の加速予測を出力する。 These inputs are input to the control device 100, and the control device 100 determines whether or not the driver will accelerate in X seconds ahead, and outputs a prediction of acceleration in X seconds ahead.
 制御装置100が加速予測を出力後、加速予測を受け取った他の制御装置またはデバイスがどのように車両制御を変更することまでの説明は省略するが、例えば、X秒先まで加速しないと判断できる場合に、エンジンを搭載した車両であれば燃費が重視されるように、図1のECM(Engine Control Module)109と接続し、エンジン110の運転モードを切り替えるなどの使い方が可能である。 After the control device 100 outputs the acceleration prediction, a description of how another control device or device that receives the acceleration prediction changes the vehicle control will be omitted, but for example, it can be determined that the vehicle will not accelerate until X seconds ahead. In this case, it is possible to connect to the ECM (Engine Control Module) 109 in FIG.
 図2は、図1に挙げた制御装置100に本発明を適用しドライバーの加減速予測する際のモデルを説明したものである。ここでは、ドライバーの加減速予測の定義として、現時刻から3秒後にドライバーがアクセルを操作し直前のアクセル開度以上の値となることを加速すると定義した。また、現時刻から3秒後、ドライバーがアクセルの状態を維持して直前とアクセル開度と同じ開度を保つことを加速しないと定義した。 FIG. 2 illustrates a model for predicting driver acceleration/deceleration by applying the present invention to the control device 100 shown in FIG. Here, as a definition of the driver's acceleration/deceleration prediction, it is defined as acceleration when the driver operates the accelerator three seconds after the current time and the value becomes equal to or greater than the accelerator opening just before. In addition, 3 seconds after the current time, it is defined as not accelerating if the driver maintains the accelerator position and maintains the same degree of accelerator opening as immediately before.
 3秒後にドライバーが加速するか否かを予測する方法として、例えば2つのモデルの例を示す。 For example, two model examples are shown as methods of predicting whether the driver will accelerate after 3 seconds.
 1つ目の予測モデル1は、自車車速と、車間距離を入力し、それらを目標と比較して数秒先のドライバーの要求加速度を計算するモデルである。このモデルの計算式は次式で与えられる。 The first prediction model 1 is a model that inputs the vehicle speed and inter-vehicle distance, compares them with the target, and calculates the driver's required acceleration several seconds ahead. The calculation formula for this model is given by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
α : 最大加速度
Vf : 自車速度
Vdes : 目標速度
ΔX : 車間距離
Xsigma : 目標車間距離
α: maximum acceleration Vf: own vehicle speed Vdes: target speed ΔX: inter-vehicle distance Xsigma: target inter-vehicle distance
 式(1)で、目標車間距離よりも車間距離が離れている場合には加速し、短い場合には加速しないと制御装置100は判断する。 In formula (1), the control device 100 determines that the vehicle should be accelerated if the vehicle-to-vehicle distance is greater than the target vehicle-to-vehicle distance, and that the vehicle should not be accelerated if it is shorter than the target vehicle-to-vehicle distance.
 例えば、自車の車速が目標車速と同じとき、すなわち、Vf/Vdes=1であるとき、車間距離が目標と離れている場合は、車間の感度に関する項、Xsigma/ΔX、がプラスにはたらき、加速度が正となる。 For example, when the vehicle speed of the own vehicle is the same as the target vehicle speed, that is, when Vf/Vdes = 1, and the vehicle-to-vehicle distance is far from the target, the term related to the vehicle-to-vehicle sensitivity, Xsigma/ΔX, works positively, Acceleration is positive.
 また車間距離が目標と一致しているとき、すなわち、Xsigma/ΔX=1であるとき、自車の車速が目標車速よりも超えている場合は、車速の感度に関する項、Vf/Vdesがマイナスに働き加速度が負となる。 When the inter-vehicle distance matches the target, that is, when Xsigma/ΔX=1, and the vehicle speed exceeds the target vehicle speed, the term Vf/Vdes, which is related to vehicle speed sensitivity, becomes negative. Working acceleration becomes negative.
 この加速度が正となるか負となるかによって、3秒後にドライバーが加速するか否かを制御装置100は予測する。 The control device 100 predicts whether the driver will accelerate after 3 seconds depending on whether the acceleration is positive or negative.
 2つ目の予測モデル2は、先行車の車速が自車の車速に対して所定値以内の相対速度となるように走行するモデルである。このモデルの計算式は次式で与えられる。 The second prediction model 2 is a model that runs so that the vehicle speed of the preceding vehicle is within a predetermined value relative to the vehicle speed of the own vehicle. The calculation formula for this model is given by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Vf : 自車速度
Vp : 先行車速度
thsc: 速度維持判定閾値
thv: 加減速判定閾値
Vf: own vehicle speed Vp: preceding vehicle speed thsc: speed maintenance determination threshold thv: acceleration/deceleration determination threshold
 まず式(2)、式(3)において、先行車車速Vpと自車車速Vfの差が速度維持判定閾値以下であることを確認し、先行車に対してある相対速度の範囲内で運転しているか制御装置100は判定する。このとき先行車に対してある相対速度の範囲内で運転している場合は、ドライバーは加速しないと予測するという論理である。 First, in equations (2) and (3), it is confirmed that the difference between the vehicle speed Vp of the preceding vehicle and the vehicle speed Vf of the own vehicle is equal to or less than the speed maintenance determination threshold, and the vehicle is driven within a certain relative speed range with respect to the preceding vehicle. The control device 100 determines whether the The logic is to predict that the driver will not accelerate if the vehicle is driving within a certain range of relative speed to the preceding vehicle.
 式(2)においては、先行車車速Vpに対して自車の車速が低い状態にあり、加減速判定閾値thv以上に先行車の車速が速い場合には加速すると制御装置100は予測する。 In formula (2), the control device 100 predicts that the vehicle will accelerate when the vehicle speed of the own vehicle is lower than the vehicle speed Vp of the preceding vehicle and the vehicle speed of the preceding vehicle is greater than or equal to the acceleration/deceleration determination threshold thv.
 また、式(3)においては、先行車車速Vpに対して自車の車速が高い状態にあり、加減速判定閾値thvよりも先行車の車速が低い場合には減速する、すなわち、加速しないと制御装置100は予測する。 Further, in the expression (3), when the vehicle speed of the own vehicle is higher than the vehicle speed Vp of the preceding vehicle and the vehicle speed of the preceding vehicle is lower than the acceleration/deceleration determination threshold thv, the vehicle is decelerated, that is, the vehicle must be accelerated. The controller 100 predicts.
 これら2つの予測モデルに対して、図1に示した各センサの入力を与え、3秒後に加速するか否かを制御装置100に予測させる。 Inputs from the sensors shown in FIG. 1 are given to these two prediction models, and control device 100 predicts whether or not the vehicle will accelerate after 3 seconds.
 図3に本発明の第一実施形態におけるブロック図を示す。 Fig. 3 shows a block diagram of the first embodiment of the present invention.
 図2の2つの予測モデルをそれぞれブロック図(図3)における予測モデル1(ブロック301)、予測モデル2(ブロック302)として組み込んでいる。 The two prediction models in Fig. 2 are incorporated as prediction model 1 (block 301) and prediction model 2 (block 302) in the block diagram (Fig. 3), respectively.
 予測モデル1と予測モデル2の入力には前述のとおり、車間距離や自車車速が入力される。この入力をもとに予測モデル1と予測モデル2はそれぞれ3秒後にドライバーが加速するか否かを判定し、予測結果を出力する。 As described above, the inter-vehicle distance and the vehicle speed are input to prediction model 1 and prediction model 2. Based on this input, prediction model 1 and prediction model 2 each determine whether the driver will accelerate after 3 seconds, and output the prediction result.
 一方、ブロック図における正解状態生成部303には、現時刻におけるアクセル開度が入力され、直前のアクセル開度と比較してアクセルが踏まれたか、つまり加速したかを判定し正解状態を正解状態生成部303は生成する。この正解状態生成部303の出力と各々の予測モデルより出力した予測結果を比較する際、各々の予測モデルの出力は3秒後の予測結果であるため、正解状態生成部303の判定結果との時刻を合わせるために、予測モデルの予測結果を予測結果記憶部304に記憶しておき、3秒前の予測結果が出力されるようにする。 On the other hand, the correct state generation unit 303 in the block diagram receives the accelerator opening degree at the present time, compares it with the accelerator opening degree immediately before, determines whether the accelerator is stepped on, that is, accelerates, and converts the correct state into the correct state. The generating unit 303 generates. When comparing the output of the correct state generation unit 303 and the prediction result output from each prediction model, the output of each prediction model is the prediction result after 3 seconds, so the judgment result of the correct state generation unit 303 is different. In order to synchronize the time, the prediction result of the prediction model is stored in the prediction result storage unit 304 so that the prediction result of 3 seconds before is output.
 予測結果正答判定部305は、予測結果記憶部304より出力される3秒前の予測結果と正解状態生成部303で算出した正解状態を比較し、各々の予測モデルの予測結果が正解したか否かを判定する。 The prediction result correct answer determination unit 305 compares the prediction result output from the prediction result storage unit 304 three seconds ago with the correct state calculated by the correct state generation unit 303, and determines whether the prediction result of each prediction model is correct. determine whether
 予測結果正答判定部305は、この正解、不正解の情報を調停パラメータ記憶部306に出力する。 The prediction result correct answer determination unit 305 outputs this correct/incorrect answer information to the arbitration parameter storage unit 306 .
 調停パラメータ記憶部306には予測結果正答判定部305によって判定した正解、不正解の数が各々の予測モデル別に記憶される。 The arbitration parameter storage unit 306 stores the number of correct and incorrect answers determined by the prediction result correct answer determination unit 305 for each prediction model.
 各予測モデル正答率算出部307は各予測モデルの正解の回数と不正解の回数から正答率を算出する。 Each prediction model correct answer rate calculation unit 307 calculates the correct answer rate from the number of correct answers and the number of incorrect answers of each prediction model.
 各予測モデル予測経験値算出部308は各予測モデルが何回予測を実施したかを数え、予測経験値を算出する。 Each prediction model prediction experience value calculation unit 308 counts how many times each prediction model has made predictions and calculates a prediction experience value.
 予測結果調停部309は各予測モデルの予測結果(301~302)と、各予測モデル正答率算出部307で算出した各予測モデル正答率と、各予測モデル予測経験値算出部308で算出した各予測モデル予測経験値を用いて、各予測モデルの予測精度の評価値を算出し、予測精度の高い予測モデルの予測結果を最終予測結果として算出する。 The prediction result arbitration unit 309 predicts the prediction results (301 to 302) of each prediction model, each prediction model correct answer rate calculated by each prediction model correct answer rate calculation unit 307, and each prediction model prediction empirical value calculation unit 308 calculated Using the prediction model prediction empirical value, the evaluation value of the prediction accuracy of each prediction model is calculated, and the prediction result of the prediction model with high prediction accuracy is calculated as the final prediction result.
 図4を用いて、図3の予測結果正答判定部305および調停パラメータ記憶部306の処理についての具体例を挙げて説明する。 A specific example of the processing of the prediction result correct answer determination unit 305 and the arbitration parameter storage unit 306 in FIG. 3 will be described using FIG.
 図4では、正解、不正解の状態を混同行列で表している。 In Figure 4, the confusion matrix represents the state of correct and incorrect answers.
 例えば、図4の(a)のように、現在の状態が「加速する」であるとき、3秒前の各々の予測モデルの予測結果が、「加速する」と予測していれば、正解と判定する。 For example, as shown in (a) of FIG. 4, when the current state is "accelerate", if the prediction result of each prediction model three seconds ago predicted "accelerate", it is correct. judge.
 一方、図4の(b)のように、現在の状態が「加速しない」であるとき、3秒前の各々の予測モデルの予測結果が「加速する」と予測していれば、不正解と判定する。 On the other hand, as shown in FIG. 4B, when the current state is "do not accelerate", if the prediction result of each prediction model three seconds ago predicted "accelerate", it is an incorrect answer. judge.
 また、図4の(c)のように、現在の状態が「加速する」であるとき、3秒前の各々の予測モデルの予測結果が「加速しない」と予想していれば、不正解と判定する。 Also, as shown in (c) of FIG. 4, when the current state is "accelerate", if the prediction result of each prediction model three seconds ago is "not accelerated", it is an incorrect answer. judge.
 正答率の算出方法としては様々な表現方法が採用可能である。「加速する」ことの正答率算出のために、ここでは、図4-(a)に示した、予測「加速する」と実際「加速する」をTP(True Positive)として、図4-(b)に示す、予測「加速する」と実際「加速しない」を1つめの不正解FP(False Positive)、図4-(c)に示す、予測「加速しない」と実際「加速した」を2つめの不正解FN(False Nevative)とし後述の正答率算出に用いる調停パラメータとする。 Various methods of expression can be adopted as the method for calculating the percentage of correct answers. In order to calculate the correct answer rate of "accelerate", here, the predicted "accelerate" and the actual "accelerate" shown in Fig. 4-(a) are set as TP (True Positive), ), the predicted "accelerate" and the actual "not accelerated" are the first incorrect FP (False Positive), and the predicted "not accelerated" and the actual "accelerated" shown in Fig. 4-(c) are the second is set as an arbitration parameter used for calculating the percentage of correct answers, which will be described later.
 TNの正解状態に対しては、定義の仕方が種々あり、本発明の実施形態の説明にも不要であることからここでは省略する。 There are various ways to define the correct state of TN, and since it is not necessary to explain the embodiment of the present invention, it is omitted here.
 また、3秒後に加速すると予測したことに対して、3.1秒後に加速した場合の正解、不正解の定義についても本発明の実施形態を説明する趣旨から反れるため一部省略するが、例えば予測結果記憶部304より3秒前の予測を取得し、予測結果正答判定部305で予測結果と正解状態を比較する際に、予測結果記憶部304の出力の一部を加工して比較を実施することでTPが極端に低くなる問題を解消することは可能である。 Also, regarding the prediction that the vehicle will accelerate after 3 seconds, the definitions of correct and incorrect answers when the vehicle accelerates after 3.1 seconds will not be part of the description of the embodiment of the present invention. For example, when the prediction of three seconds before is obtained from the prediction result storage unit 304 and the prediction result and the correct state are compared by the prediction result correct answer determination unit 305, part of the output of the prediction result storage unit 304 is processed for comparison. It is possible to solve the problem of extremely low TP by implementing this.
 予測結果正答判定部305は、TP、FN、FPの状態を判定し、判定した状態を調停パラメータ記憶部306に出力する。調停パラメータ記憶部306には、予測結果正答判定部305によって判定したTP、FN、FPの回数が予測モデル毎に記憶される。 The prediction result correct answer determination unit 305 determines the states of TP, FN, and FP, and outputs the determined states to the arbitration parameter storage unit 306 . The arbitration parameter storage unit 306 stores the number of times of TP, FN, and FP determined by the prediction result correct answer determination unit 305 for each prediction model.
 各予測モデル正答率算出部307は、各予測モデルの正答率を算出する。正答率に関しては、様々な計算方法が考えられるが、ここでは、前述のTP、FN、FPの値を用いて算出可能なF値を正答率に適用する。F値の計算方法については以下の式で与えられる。
 再現率(Recall)=TP/(TP+FN)
 適合率(Precision)=TP/(TP+FP)
 F値=(2×Precision×Recall)/(Precision+Recall)
Each prediction model correct answer rate calculation unit 307 calculates the correct answer rate of each prediction model. Various calculation methods are conceivable for the percentage of correct answers, but here, the F value that can be calculated using the values of TP, FN, and FP described above is applied to the percentage of correct answers. The calculation method of the F value is given by the following formula.
Recall rate (Recall) = TP/(TP + FN)
Precision = TP/(TP + FP)
F value = (2 x Precision x Recall) / (Precision + Recall)
 ここでは、3秒先の「加速する」の予測に対して、F値を算出し正答率として適用する例を挙げているが、「加速しない」と予測して間違った場合にその予測を用いる下流の制御影響を考慮し、どの計算式を正答率とするのかは種々考えられ、また例に挙げた計算方法以外の指標を正答率として用いてもよい。 Here is an example of calculating the F value and applying it as the correct answer rate for the prediction of "accelerate" 3 seconds ahead. Considering the influence of downstream control, various calculation formulas can be considered as the percentage of correct answers, and an index other than the calculation method given as an example may be used as the percentage of correct answers.
 本発明の実施形態の第1の特徴は、各予測モデルの正答率のほかに、予測経験値を調停に用いることである。予測経験値とは、それぞれの予測モデルにおける予測回数を記憶しておき、予測モデルの予測結果の正答率の信頼性を予測回数に応じて表現するものである。 The first feature of the embodiment of the present invention is that, in addition to the correct answer rate of each prediction model, the prediction empirical value is used for arbitration. The prediction empirical value stores the number of predictions in each prediction model, and expresses the reliability of the correct answer rate of the prediction result of the prediction model according to the number of predictions.
 例えば、上記、正答率が100%の場合に予測回数1回で1回の正解と、予測回数100回で100回の正解では正答率の信頼性という点では意味が異なる。 For example, when the correct answer rate is 100%, the correct answer is 1 out of 1 prediction, and the correct answer is 100 out of 100 predictions, the reliability of the correct answer rate is different.
 ここで、予測経験値の使い方に関しては、例えば、300回以上の予測実施を行った場合に、予測モデルの予測結果を信頼してもよいといった定義を用いることで、例えば車両制御開始直後の発進する前後で加減速予測制御の予測結果の正答率が下がってしまうことを防ぐ。 Here, with regard to how to use the prediction empirical value, for example, when the prediction is performed 300 times or more, the prediction result of the prediction model can be trusted, for example, by using the definition that It is possible to prevent the accuracy rate of the prediction result of the acceleration/deceleration prediction control from decreasing before and after the control.
 詳細は後述するが、本実施形態のマイクロコンピュータ101(プロセッサ)は、第1タイミング(現在時刻)で複数の予測モデルをそれぞれ用いてその時点で観測される状態から予測される第2タイミング(将来時刻)の状態を示す予測結果をRAM102(第1メモリ)に記憶し、第2タイミング(現在時刻になった時)の時点で観測される状態から予測結果に対する正解の状態を示す正解状態を生成する。マイクロコンピュータ101は、正解状態と予測モデル毎の予測結果とを比較し、予測モデル毎の正答率を算出し、予測モデル毎に実施された予測の回数を示す予測モデル毎の予測経験値を算出する。マイクロコンピュータ101は、予測モデル毎の正答率と、予測モデル毎の予測経験値とを用いて、複数の予測結果から1つの予測結果を選択して出力する。これにより、信頼性の高い予測結果が出力される。 Although details will be described later, the microcomputer 101 (processor) of the present embodiment uses a plurality of prediction models at a first timing (current time) to predict a second timing (future model) from the state observed at that time. time) is stored in the RAM 102 (first memory), and a correct state indicating the correct state for the prediction result is generated from the state observed at the second timing (at the current time). do. The microcomputer 101 compares the correct state and the prediction result for each prediction model, calculates the correct answer rate for each prediction model, and calculates the prediction empirical value for each prediction model, which indicates the number of predictions made for each prediction model. do. The microcomputer 101 selects and outputs one prediction result from a plurality of prediction results using the correct answer rate for each prediction model and the prediction empirical value for each prediction model. As a result, highly reliable prediction results are output.
 上記の予測回数を表現するために、本実施形態の第2の特徴は、予測回数をそれぞれ予測結果正答判定部305で出力されるそれぞれの予測モデルの正解数と不正解数の和として算出することである。すなわち、予測モデル毎の予測経験値は、予測モデル毎の正解回数と不正解回数の和である。これにより、予測回数を数えるカウンタが不要となる。 In order to express the number of predictions, the second feature of this embodiment is to calculate the number of predictions as the sum of the number of correct answers and the number of incorrect answers of each prediction model output by the prediction result correct answer determination unit 305. That is. That is, the prediction empirical value for each prediction model is the sum of the number of correct answers and the number of incorrect answers for each prediction model. This eliminates the need for a counter for counting the number of predictions.
 図5を用いて正解数と不正解数の総和から、予測経験値を算出する例を説明する。図5の(a)、(b)、(c)は調停パラメータ記憶部に記憶した予測モデル1と予測モデル2それぞれのTP、FN、FPの値である。これらの値の総和を計算すると図5の(g)になる。また、図5の(I)、(II)、(III)に示す表は、それぞれ各予測モデルが予測を繰り返し実行し、TP、FN、FPが加算されていく様子を示している。 An example of calculating the predicted empirical value from the sum of the number of correct answers and the number of incorrect answers will be explained using FIG. (a), (b), and (c) of FIG. 5 are the values of TP, FN, and FP of prediction model 1 and prediction model 2, respectively, stored in the arbitration parameter storage unit. Calculating the sum of these values results in (g) in FIG. Also, the tables shown in (I), (II), and (III) of FIG. 5 show how each prediction model repeats prediction and TP, FN, and FP are added.
 図5の(I)において、予測モデル1と予測モデル2のTP、FN、FPの総和は40である。図5の(I)の(f)において、予測モデル1のF値は0.75、予測モデル2のF値は0.77となっている。一方で、図5の(II)で、予測モデル1のF値は0.89、予測モデル2のF値は0.82となっている。また、図5の(III)で、予測モデル1のF値は0.89、予測モデル2のF値は0.82となっており、各予測モデルの正答率は回数を重ねて収束する。 In (I) of FIG. 5, the sum of TP, FN, and FP of prediction model 1 and prediction model 2 is 40. In (f) of (I) of FIG. 5, the F value of prediction model 1 is 0.75, and the F value of prediction model 2 is 0.77. On the other hand, in (II) of FIG. 5, the F value of the prediction model 1 is 0.89, and the F value of the prediction model 2 is 0.82. In addition, in (III) of FIG. 5, the F value of the prediction model 1 is 0.89, and the F value of the prediction model 2 is 0.82, and the correct answer rate of each prediction model converges by repeating the number of times.
 図5の例に示すように、予測経験が少ない状態(I)での正答率(f)を予測結果の調停に用いた場合に、予測モデル1と予測モデル2の真の正答率が不明な状態で、誤った予測モデルの結果を採用してしまう可能性がある。 As shown in the example of FIG. 5, when the correct answer rate (f) in the state (I) with little prediction experience is used to mediate the prediction results, the true correct answer rate of the prediction model 1 and the prediction model 2 is unknown. In some situations, it is possible to adopt the results of the erroneous predictive model.
 そこで、(g)に示す調停パラメータ(TP、FN、FP)の総和を予測経験値として算出し、各予測モデルの予測経験値が所定の値以上であるときに、各予測モデルの予測結果が最終予測結果に反映されるように構成すれば、予測システムが誤った予測を出力することを防ぐことが可能である。また、図5の例の場合は、新たに新しい算出ブロックや追加の情報を記憶することをせずとも予測経験値を追加取得することが可能である。 Therefore, the sum of the arbitration parameters (TP, FN, FP) shown in (g) is calculated as a prediction empirical value, and when the prediction empirical value of each prediction model is a predetermined value or more, the prediction result of each prediction model is If configured to be reflected in the final prediction result, it is possible to prevent the prediction system from outputting an erroneous prediction. Further, in the case of the example of FIG. 5, it is possible to additionally acquire prediction empirical values without newly storing new calculation blocks or additional information.
 詳細は後述するが、マイクロコンピュータ101(プロセッサ)は、それぞれの予測モデルの予測経験値が閾値を超える場合、その予測モデルの予測結果を選択肢に含めて1つの予測結果を選択し、それぞれの予測モデルの予測経験値が閾値未満である場合、その予測モデルの予測結果を選択肢に含めずに1つの予測結果を選択する。ここで、マイクロコンピュータ101(プロセッサ)は、例えば、正答率が最も高い予測モデルの予測結果を選択する。 Details will be described later, but the microcomputer 101 (processor) selects one prediction result by including the prediction result of the prediction model in the options when the prediction experience value of each prediction model exceeds the threshold, and each prediction If the prediction empirical value of the model is less than the threshold, one prediction result is selected without including the prediction results of the prediction model in the options. Here, the microcomputer 101 (processor) selects, for example, the prediction result of the prediction model with the highest percentage of correct answers.
 また、本実施形態の第3の特徴は、それぞれの予測モデルが何回予測を実施したか、すなわち、予測モデルの予測実施回数を予測経験値として保存することである。換言すれば、予測モデル毎の予測経験値は、予測モデル毎に実施され、かつカウントされた予測の回数である。これにより、例えば、予測経験値の時間変化を容易に確認することができる。 In addition, the third feature of this embodiment is to store the number of times each prediction model made predictions, that is, the number of predictions made by each prediction model as a prediction empirical value. In other words, the prediction empirical value for each prediction model is the number of predictions made and counted for each prediction model. Thereby, for example, it is possible to easily confirm the temporal change of the prediction empirical value.
 例えば、各予測モデルにおいて予測精度を高めるために、あらかじめ予測を許可する条件を考慮している場合は、各モデルにおける予測許可条件を満たした場合に限り、各予測モデルが予測結果を出力する処理を実行した回数を予測経験値として用いる。それぞれ予測モデルの予測が許可される中でどの程度予測を実施し、その予測モデルの正答率は信頼のおけるものかを確認することが可能である。 For example, if the conditions for permitting prediction are considered in advance in order to increase the prediction accuracy of each prediction model, each prediction model outputs prediction results only when the conditions for permitting prediction for each model are met. is used as the prediction empirical value. It is possible to confirm how much prediction is performed while each prediction model is allowed to make predictions, and whether the correct answer rate of the prediction model is reliable.
 このようにして得られる各モデルの予測経験値はブロック図(図3)の予測結果調停部309で参照され、予測結果調停部309は各予測モデルの予測結果と予測正答率と予測経験値をもとに、どのモデルの予測結果を用いるかを決定する。このように、正答率を考慮することに加え、正答率の信頼性を示す数値として予測経験値を加えることで、正答率が高くても予測モデルの値を採用しないようにする。 The prediction empirical value of each model obtained in this way is referred to by the prediction result arbitration unit 309 in the block diagram (FIG. 3), and the prediction result arbitration unit 309 calculates the prediction result, the prediction correct answer rate, and the prediction experience value of each prediction model. Based on this, it is decided which model's prediction result is to be used. In this way, in addition to considering the correct answer rate, by adding the predicted empirical value as a numerical value indicating the reliability of the correct answer rate, the value of the prediction model is not adopted even if the correct answer rate is high.
 上記施策により、初期化状態からのシステム立ち上げ時に、各々の予測モデルの不完全な正答率の算出結果により、予測結果の調停が誤り全体の予測結果の正答率を下げてしまうことを防ぐことが可能である。 With the above measures, when starting up the system from the initial state, it is possible to prevent the correction of prediction results from lowering the correct answer rate of the entire prediction result due to the imperfect calculation result of the correct answer rate of each prediction model. is possible.
 以上説明したように、本実施形態によれば、高精度な将来の状況予測を可能とする。また、複数の予測モデルを学習させ、ドライバーの特性に合ったものを選択することができる。例えば、図2の目標速度、目標車間距離はドライバーによって異なるが、初期値として一般的な値を設定する。ここで、予測結果の正当判定の過程(図3,304-307)を経て目標速度、目標車間距離をドライバーの特性にフィッティングさせる(学習)。 As described above, according to this embodiment, highly accurate future situation prediction is possible. In addition, it is possible to train multiple prediction models and select the one that matches the characteristics of the driver. For example, although the target speed and target inter-vehicle distance in FIG. 2 differ depending on the driver, general values are set as initial values. Here, the target speed and the target inter-vehicle distance are fitted to the characteristics of the driver (learning) through the process of validating the prediction result (Fig. 3, 304-307).
 また、CO削減とドライバビリティの両立をすることができる。具体的には、例えば、加速しないと予測した場合、エンジンを停止(コーストストップ)することでCOを削減することができる。一方、加速すると予測した場合、エンジンを停止しないことで、加速応答性が良好となり、ドライバビリティが良好となる。 Also, it is possible to achieve both CO2 reduction and drivability. Specifically, for example, when it is predicted that the vehicle will not accelerate, CO 2 can be reduced by stopping the engine (coast stop). On the other hand, when it is predicted that the vehicle will accelerate, the acceleration responsiveness is improved and the drivability is improved by not stopping the engine.
 さらに、新たに開発されたモデルを車両に追加する上での適合プラットフォームを提供することができる。具体的には、例えば、実験フェーズ又はオンラインアップデート時にアドオン的に新たな予測モデルが追加された場合、ある程度の予測経験値がたまるまでは新たな予測モデルの結果を選択肢から除外し、従来の予測モデルの結果から正答率の高いものを選択する。 In addition, we can provide a suitable platform for adding newly developed models to the vehicle. Specifically, for example, when a new prediction model is added as an add-on during the experiment phase or online update, the results of the new prediction model are excluded from the options until a certain amount of prediction experience is accumulated, and the conventional prediction Select the one with the highest percentage of correct answers from the model results.
 [第二実施形態]
 第二実施形態として、第一実施形態に対して第3の異なる予測モデル3を追加した場合の例を示す。図6は、第一実施形態で示した予測モデル1と予測モデル2に加え、予測モデル3(ブロック310)を追加した状態のブロック図を示す。
[Second embodiment]
As a second embodiment, an example in which a third different prediction model 3 is added to the first embodiment is shown. FIG. 6 shows a block diagram of a state in which a prediction model 3 (block 310) is added in addition to the prediction models 1 and 2 shown in the first embodiment.
 予測モデル3の例では図1の車両に備え付けられた加速度センサ107より車両の加速度を取得し、加速度がマイナスからプラスに転じる兆候を検知し「加速する」を予測する。 In the example of prediction model 3, the acceleration of the vehicle is obtained from the acceleration sensor 107 mounted on the vehicle in FIG. 1, and signs of the acceleration turning from negative to positive are detected to predict "accelerate".
 第一実施形態で説明した予測モデル1と予測モデル2が予測システムに接続している状態で、予測モデル1と予測モデル2の調停パラメータはすでに何回かの走行を実施して過去の予測状況と正答率の情報を蓄積していたとする。 With the prediction model 1 and the prediction model 2 described in the first embodiment connected to the prediction system, the arbitration parameter of the prediction model 1 and the prediction model 2 has already been run several times and the past prediction situation and the information of the correct answer rate is accumulated.
 一方、予測モデル3の予測を追加する場合には、少なからず制御装置100のプログラム(ROM103)を書き換える必要があり、その際にメモリの内容が失われ予測モデル1と予測モデル2のこれまでの調停パラメータ、つまりは予測正答率が損なわれてしまう可能性がある。 On the other hand, when the prediction of the prediction model 3 is added, it is necessary to rewrite the program (ROM 103) of the control device 100 at least a little. The arbitration parameter, that is, the predicted correct answer rate, may be compromised.
 本実施形態の第4の特徴は、調停パラメータを不揮発性メモリに書き込むことである。すなわち、マイクロコンピュータ101(プロセッサ)は、予測モデル毎の正解回数、不正解回数、及び予測経験値を不揮発性の不揮発性メモリ104(第2メモリ)に記憶する。予測モデル1と予測モデル2の調停パラメータを図1の不揮発性メモリ104に記憶することによって、予測モデル3を追加した場合においても、予測モデル1と予測モデル2の調停パラメータは保持される。 A fourth feature of this embodiment is that the arbitration parameters are written to the non-volatile memory. That is, the microcomputer 101 (processor) stores the number of correct answers, the number of incorrect answers, and the prediction empirical value for each prediction model in the nonvolatile memory 104 (second memory). By storing the arbitration parameters of the prediction model 1 and the prediction model 2 in the non-volatile memory 104 of FIG. 1, the arbitration parameters of the prediction model 1 and the prediction model 2 are held even when the prediction model 3 is added.
 また、調停パラメータの一つである予測経験値を同時に不揮発性メモリに保持することにより予測モデル1と予測モデル2のこれまでの予測実績の初期化を防ぐことができ、従来の予測における予測精度を維持したまま、予測モデル3の評価をバックグラウンドで進め、予測モデル3の予測経験値が所定値を超えた場合に、予測モデル1、予測モデル2と同様に最終予測結果の出力に反映させるように構成する。 In addition, by simultaneously holding the prediction empirical value, which is one of the arbitration parameters, in the nonvolatile memory, it is possible to prevent the initialization of the prediction results of the prediction model 1 and the prediction model 2, and the prediction accuracy in the conventional prediction can be improved. is maintained, the evaluation of prediction model 3 proceeds in the background, and when the prediction empirical value of prediction model 3 exceeds a predetermined value, it is reflected in the output of the final prediction result in the same way as prediction models 1 and 2. configured as follows.
 図7は予測モデル3を追加した場合に、各々の予測モデルの正答率と予測経験値が予測回数によって変化する様子を示したものである。 Fig. 7 shows how the correct answer rate and prediction empirical value of each prediction model change depending on the number of predictions when prediction model 3 is added.
 図7の(I)は、予測モデル3を追加した状態でのシステムの予測開始前の状態を示している。予測モデル1と予測モデル2の調停パラメータ(a)~(c)は不揮発性メモリに記憶してあり、それを読み出す。この状態において、予測モデル3の予測はまだ実施が無く、予測モデル3の予測経験値(g)も0である。 (I) of FIG. 7 shows the state before the system starts prediction with prediction model 3 added. Arbitration parameters (a) to (c) of prediction model 1 and prediction model 2 are stored in a non-volatile memory and read out. In this state, the prediction of prediction model 3 has not yet been performed, and the prediction empirical value (g) of prediction model 3 is also zero.
 図7の(II)は、(I)の状態から、それぞれ200回の予測の実行を行った状態である。このとき、最も正答率(F値)の高い予測モデルは予測モデル3である。例えば予測モデルの予測経験が300回以上でない場合に最終予測結果に反映しないような構成であれば、この時点での正答率が最も高い予測モデル3の予測結果は予測結果の調停に用いられない。 (II) in FIG. 7 is the state after executing prediction 200 times from the state of (I). At this time, the prediction model 3 has the highest rate of correct answers (F value). For example, if the prediction experience of the prediction model is not 300 times or more, it is not reflected in the final prediction result. .
 図7の(III)は、(II)の状態から、さらにそれぞれ200回の予測の実行を行った状態である。この時、予測モデル3の正答率は0.79であり、予測モデル1、予測モデル2と比較して低い。すると、(II)の時点では正答率が高かったが、予測を何回も繰り返した場合に、予測モデル3の予測精度が全体的に低いことが判明したことになる。 (III) in FIG. 7 is the state after performing 200 predictions from the state of (II). At this time, the correct answer rate of prediction model 3 is 0.79, which is lower than prediction models 1 and 2. Then, although the percentage of correct answers was high at the time of (II), when the prediction was repeated many times, it turned out that the prediction accuracy of the prediction model 3 was low overall.
 このように予測正答率のほかに予測経験値を保持しておくことにより、予測モデル3の正答率が高いが予測の信頼性が低い状態で、予測モデル3が誤った予測結果を出力したとしてもシステムの全体の予測精度低下を防ぐことが可能である。 By holding the prediction empirical value in addition to the prediction correct answer rate in this way, even if the prediction model 3 outputs an incorrect prediction result in a state where the prediction model 3 has a high correct answer rate but the prediction reliability is low It is also possible to prevent the deterioration of the prediction accuracy of the whole system.
 図8は本発明の第一実施形態および第二実施形態における制御装置100による予測制御の流れを示したフローチャート図である。以後、図6のブロック図、および図8のフローチャートを用いて各ステップを説明する。 FIG. 8 is a flow chart diagram showing the flow of predictive control by the control device 100 in the first and second embodiments of the present invention. Hereinafter, each step will be described with reference to the block diagram of FIG. 6 and the flowchart of FIG.
 (図8:ステップS801)
 制御装置100は予測制御を開始する。
(Fig. 8: Step S801)
The control device 100 starts predictive control.
 (図8:ステップS802)
 予測システムの予測モデル1(301)、予測モデル2(302)、予測モデル3(310)がそれぞれ予測結果を出力する。
(Fig. 8: Step S802)
Prediction model 1 (301), prediction model 2 (302), and prediction model 3 (310) of the prediction system each output a prediction result.
 (図8:ステップS803)
 各予測モデルは予測結果を予測結果記憶部304に格納する。
(Fig. 8: Step S803)
Each prediction model stores the prediction result in the prediction result storage unit 304 .
 (図8:ステップS804)
 正解状態生成部303は正解状態を生成する。
(Fig. 8: Step S804)
The correct state generation unit 303 generates a correct state.
 (図8:ステップS805)
 予測結果正答判定部305は、ステップ803で予測結果記憶部304に格納された過去の各予測モデルの予測結果を参照し、ステップ804によって生成された正解状態と比較する。
(Fig. 8: Step S805)
The prediction result correct answer determination unit 305 refers to the prediction result of each past prediction model stored in the prediction result storage unit 304 in step 803 and compares it with the correct state generated in step 804 .
 (図8:ステップS806)
 ステップ805にて予測モデルの予測結果と正解を比較した際、予測モデルが正解であれば調停パラメータ記憶部306の予測モデル[i]の正解のカウンタ値をインクリメントし調停パラメータ記憶部306へ格納する。
(Fig. 8: Step S806)
When the prediction result of the prediction model and the correct answer are compared in step 805 , if the prediction model is correct, the correct counter value of the prediction model [i] in the arbitration parameter storage unit 306 is incremented and stored in the arbitration parameter storage unit 306 . .
 (図8:ステップS807)
 ステップ805にて予測モデルの予測結果と正解を比較した際、予測モデルが不正解であれば、調停パラメータ記憶部306の予測モデル[i]の不正解のカウンタ値をインクリメントし調停パラメータ記憶部へ格納する。
(Fig. 8: Step S807)
When the prediction result of the prediction model and the correct answer are compared in step 805, if the prediction model is incorrect, the incorrect counter value of the prediction model [i] in the arbitration parameter storage unit 306 is incremented and stored in the arbitration parameter storage unit. Store.
 (図8:ステップS808)
 ステップS806またはステップS807によって更新された各予測モデルの正解回数と不正解回数を用いて予測モデル[i]の予測正答率を各予測モデル正答率算出部307は算出する。
(Fig. 8: Step S808)
Each prediction model correct answer rate calculation unit 307 calculates the predicted correct answer rate of the prediction model [i] using the number of correct answers and the number of incorrect answers of each prediction model updated in step S806 or step S807.
 (図8:ステップS809)
 ステップS806とステップS807によって算出した各々の予測モデルの調停パラメータの総和を求め予測経験値を算出する。
(Fig. 8: Step S809)
The prediction empirical value is calculated by obtaining the sum of the arbitration parameters of each prediction model calculated in steps S806 and S807.
 (図8:ステップS810)
 ステップS810によって算出した各予測モデルの予測経験値が、所定の閾値を上回っているか否かを判定する。
(Fig. 8: Step S810)
It is determined whether or not the prediction empirical value of each prediction model calculated in step S810 exceeds a predetermined threshold.
 (図8:ステップS811)
 ステップS811にて予測経験値が、所定の閾値以上の場合、予測モデル[i]の予測結果を調停時に選択可能とする。
(Fig. 8: Step S811)
If the prediction empirical value is equal to or greater than a predetermined threshold in step S811, the prediction result of the prediction model [i] can be selected during arbitration.
 (図8:ステップS812)
 ステップS812にて予測経験値が、所定の閾値未満の場合、予測モデル[i]の予測結果を調停時に選択不可能とする。
(Fig. 8: Step S812)
If the prediction empirical value is less than the predetermined threshold in step S812, the prediction result of the prediction model [i] cannot be selected during arbitration.
 (図8:ステップS813)
 全ての予測モデルの予測正答率と予測経験値を算出するために、全予測モデルの調停パラメータを用いた予測正答率と予測経験値の評価が完了したかを判定する。
(Fig. 8: Step S813)
In order to calculate the prediction correct answer rate and the prediction experience value of all the prediction models, it is determined whether the evaluation of the prediction correct answer rate and the prediction experience value using the arbitration parameter of all the prediction models has been completed.
 (図8:ステップS814)
 ステップS813にて全ての予測モデルの予測正答率と予測経験値の算出が完了していない場合は、iをインクリメントし次の予測モデルの予測正答率と予測経験値の算出を実施する。
(Fig. 8: Step S814)
In step S813, if calculation of the prediction correct answer rate and prediction experience value of all prediction models has not been completed, i is incremented and the prediction correct answer rate and prediction experience value of the next prediction model are calculated.
 (図8:ステップS815)
 ステップS813にて全ての予測モデルの予測正答率と予測経験値の評価が完了した場合に、ステップS815に移行する。
(Fig. 8: Step S815)
When the evaluation of the prediction correct answer rate and the prediction empirical value of all the prediction models is completed in step S813, the process proceeds to step S815.
 ステップS811で予測モデルの予測経験値により調停時に選択可能と判断した予測モデルの予測結果と予測正答率の積を算出し最も高い予測モデルの予測結果を予測システムの最終の予測結果として選択する。 In step S811, the product of the prediction result of the prediction model determined to be selectable at the time of arbitration based on the prediction empirical value of the prediction model and the prediction correct answer rate is calculated, and the prediction result of the highest prediction model is selected as the final prediction result of the prediction system.
 ステップS801からステップS815までの予測システムに係る演算は、制御装置100のROM103に格納する制御プログラムに含まれ、繰り返し実行される。 The calculations related to the prediction system from step S801 to step S815 are included in the control program stored in the ROM 103 of the control device 100 and are repeatedly executed.
 [第三実施形態]
 図9は、本発明を適用した第三実施形態を説明するためのブロック図である。
[Third Embodiment]
FIG. 9 is a block diagram for explaining the third embodiment to which the present invention is applied.
 本実施形態の第5の特徴は、第一実施形態のシステムをさらに発展させ、状態判定部901を追加し、各予測モデルの予測結果と正解を比較して算出した、各予測モデルの正解、不正解の回数を、状態判定部901において判定される状況別に予測装置の調停パラメータを状態別調停パラメータ記憶部902に記憶することである。 The fifth feature of the present embodiment is that the system of the first embodiment is further developed, a state determination unit 901 is added, and the prediction result of each prediction model and the correct answer are calculated by comparing the correct answer of each prediction model, The number of incorrect answers is stored in the state-based arbitration parameter storage unit 902 as the arbitration parameter of the prediction apparatus for each state determined by the state determination unit 901 .
 第一実施形態、第二実施形態を説明するために用いた3秒後に加速するか否かを予測するシステムの例を用いて説明する。 A description will be given using an example of a system that predicts whether or not the vehicle will accelerate after 3 seconds, which was used to describe the first and second embodiments.
 予測モデル1(ブロック301)、予測モデル2(ブロック302)、予測モデル(ブロック303)、正解状態生成部303、予測結果記憶部304、予測結果正答判定部305は第一実施形態、第二実施形態で説明した内容と同じ機能である。 Prediction model 1 (block 301), prediction model 2 (block 302), prediction model (block 303), correct state generation unit 303, prediction result storage unit 304, prediction result correct answer determination unit 305 are the first embodiment and the second embodiment. It has the same function as the content explained in the form.
 状態判定部901は、現在の状態(状況)を判別する。ここでの現在の状況は、予測モデルに用いる入力や正解状態を判定するための入力を用いてもよいし、また別の入力を用いてもよい。 The state determination unit 901 determines the current state (situation). The current situation here may be an input used for the prediction model, an input for determining the correct state, or another input.
 図9の例では、状態判定部901は、現在の状況を3つの入力より判定し、その判定によって状態判定を行った結果状態別の状態IDを状態別調停パラメータ記憶部902に送る。 In the example of FIG. 9, the state determination unit 901 determines the current state from three inputs, and sends the state ID for each state to the arbitration parameter storage unit 902 for each state as a result of the state determination based on the determination.
 この例では、状態判定部では、車速、車間距離、相対速度の情報をもとに、状態IDを生成している。図10は、車速、車間距離、相対速度をそれぞれ8個の状態に判別し、状態IDを生成する様子を示している。 In this example, the state determination unit generates a state ID based on information on vehicle speed, inter-vehicle distance, and relative speed. FIG. 10 shows how the vehicle speed, inter-vehicle distance, and relative speed are each discriminated into eight states and state IDs are generated.
 例えば、現在の車速が50km/h、車間距離が40m、相対速度が+0.5km/hの場合、車速の状態は状態4、車間距離の状態は状態3、相対速度の状態は状態5として示され、これらの状態を束ね状態ID435とする。 For example, if the current vehicle speed is 50 km/h, the inter-vehicle distance is 40 m, and the relative speed is +0.5 km/h, the vehicle speed state is indicated as state 4, the inter-vehicle distance state is indicated as state 3, and the relative speed state is indicated as state 5. and these states are referred to as a bundling state ID 435 .
 状態別調停パラメータ記憶部902は、各予測モデルの予測結果と正解を比較して各予測モデルの正解または不正解を判定後、状態ID別に調停パラメータを記憶する。状態ID435の場合、435に対応する調停パラメータを更新する。 The state-by-state arbitration parameter storage unit 902 compares the prediction result of each prediction model with the correct answer to determine whether each prediction model is correct or incorrect, and then stores the arbitration parameter by state ID. For state ID 435, the arbitration parameter corresponding to 435 is updated.
 本実施形態の第5の特徴を備えたシステムでは、図9において状態別調停パラメータ記憶部902に記憶した調停パラメータを用いて、各予測モデル正答率の算出が各予測モデル正答率算出部903にて行われ、各予測モデルの予測経験値の算出が各予測モデル予測経験値算出部904にて実施される。 In the system having the fifth feature of the present embodiment, calculation of each prediction model correct answer rate is performed by each prediction model correct answer rate calculation unit 903 using the arbitration parameters stored in the state-specific arbitration parameter storage unit 902 in FIG. Each prediction model prediction experience value calculation unit 904 calculates the prediction experience value of each prediction model.
 このとき、予測結果調停部905は各予測モデルの予測結果と、状況別予測正答率と、状況別予測経験値を用いて予測結果の調停を実施する。 At this time, the prediction result arbitration unit 905 arbitrates the prediction results using the prediction result of each prediction model, the prediction correct answer rate for each situation, and the prediction empirical value for each situation.
 換言すれば、マイクロコンピュータ101(プロセッサ)は、複数のセンサによる測定値のそれぞれが属する範囲に対応するIDの組から構成され、かつ第1タイミング(現在時刻)の時点の状態を示す状態IDを算出する。マイクロコンピュータ101は、予測モデル毎かつ前記状態ID毎の正答率を算出し、予測モデル毎かつ状態ID毎の予測経験値を算出する。マイクロコンピュータ101は、予測モデル毎かつ状態ID毎の正答率と、予測モデル毎かつ状態ID毎の予測経験値とを用いて、複数の前記予測結果から1つの予測結果を出力する。 In other words, the microcomputer 101 (processor) stores a state ID which is composed of a set of IDs corresponding to the range to which each of the measured values from a plurality of sensors belongs and which indicates the state at the first timing (current time). calculate. The microcomputer 101 calculates the percentage of correct answers for each prediction model and each state ID, and calculates the prediction empirical value for each prediction model and each state ID. The microcomputer 101 outputs one prediction result from the plurality of prediction results using the correct answer rate for each prediction model and for each state ID and the prediction empirical value for each prediction model and each state ID.
 本実施形態の第5の特徴によれば、例えば、ある状態においては予測が良く当たり他の予測モデルよりも正答率が高い状態となるが、他の状態においては予測が外れ、他の予測モデルよりも正答率が低い状態であるとき、全状態における正解と不正解の数で正答率が平均化されることを防ぐことができる。この結果、ある状態においては他の予測モデルよりも優れている予測モデルがある場合、他の状態において正答率が低くても、その予測モデルが得意な領域で予測結果をシステムの最終出力に反映することが可能となる。 According to the fifth feature of the present embodiment, for example, in a certain state, the prediction is good and the correct answer rate is higher than the other prediction model, but in another state the prediction is wrong, and the other prediction model When the percentage of correct answers is lower than , it is possible to prevent the percentage of correct answers from being averaged by the number of correct answers and incorrect answers in all states. As a result, if there is a prediction model that is superior to other prediction models in a certain state, even if the correct answer rate is low in other states, the prediction results will be reflected in the final output of the system in the area where that prediction model is good. It becomes possible to
 また本実施形態の第6の特徴は、状態別調停パラメータ記憶部902に記憶した各予測モデルのこれまでの予測における正解と不正解数の数を用いて、予測経験値を算出することである。 A sixth feature of the present embodiment is to calculate a prediction empirical value using the number of correct and incorrect answers in predictions made so far by each prediction model stored in the state-specific arbitration parameter storage unit 902. .
 本実施形態の第6の特徴によれば、追加で予測回数の情報を記憶することなしに予測経験値を算出することが可能であり、状態別に算出した各々の予測モデルの正答率の信頼度を確認することができ、各々の予測モデルの予測結果と、状態別の各予測モデルの正答率と、状態別の各予測モデルの予測経験値によってシステムの最終出力を決定することができる。 According to the sixth feature of the present embodiment, it is possible to calculate the prediction empirical value without additionally storing information on the number of predictions, and the reliability of the correct answer rate of each prediction model calculated for each state can be confirmed, and the final output of the system can be determined by the prediction result of each prediction model, the correct answer rate of each prediction model by state, and the prediction empirical value of each prediction model by state.
 具体的な例を、図11を用いて説明する。上記実施形態で説明している加減速予測制御において、例えば車速が低い領域では、運転者は無意識で先行車を意識した運転を行ったとする。 A specific example will be explained using FIG. In the acceleration/deceleration predictive control described in the above embodiment, for example, in a region where the vehicle speed is low, it is assumed that the driver unconsciously drives with the preceding vehicle in mind.
 図11の(IV)は予測モデル1~予測モデル3の全体的な予測正答率を示しており、ここで予測モデル2は予測モデル1や予測モデル3に対して劣っている。一方で、例えば車速の状態2、車間距離の状態4、相対速度の状態3、の状態時に選択される状態ID243の領域において(図11の(V))、予測モデル2は他の予測モデルに対して正答率が高い。 (IV) in FIG. 11 shows the overall prediction accuracy rate of prediction models 1 to 3, where prediction model 2 is inferior to prediction models 1 and 3. On the other hand, in the region of the state ID 243 selected in the states of vehicle speed state 2, inter-vehicle distance state 4, and relative speed state 3 ((V) in FIG. 11), the prediction model 2 is replaced by another prediction model. The correct answer rate is high.
 この状態においては、予測モデル2の予測結果の正答率が高く、他の予測モデルを用いるよりも予測モデル2の予測結果を用いた方がシステム全体の予測精度向上が見込める。 In this state, the accuracy rate of the prediction result of prediction model 2 is high, and the prediction accuracy of the entire system can be expected to be improved by using the prediction result of prediction model 2 rather than using other prediction models.
 また、車速が高い領域において、運転者は先行車の意識よりも目標の速度になるような意識で運転を行ったとする。図11の(VI)の状態642においては、予測モデル1の結果が最も高い正答率であり、この予測モデル1の予測結果を最終予測結果に選択する。 Also, in areas where the vehicle speed is high, it is assumed that the driver drives with the intention of achieving the target speed rather than the awareness of the preceding vehicle. In state 642 of (VI) in FIG. 11, the result of prediction model 1 has the highest percentage of correct answers, and the prediction result of prediction model 1 is selected as the final prediction result.
 状態別の正答率を用いて最終的な予測結果を出力したいが、その正答率は信頼できる値か否かを確認したい。本実施形態の第6の特徴によれば、状態判定部によって判定した状態における各予測モデルの予測の実施回数を確認することができ、予測モデル1の正答率が高く、予測経験値も同時に高い場合は予測モデル1の予測結果を最終出力へ出力できる。そのほか、予測モデル1の正答率が高くても、予測経験値が低い場合、すなわち、その状態における予測実績が乏しい場合には予測モデル1の結果を最終結果に反映しないようにすることも可能である。  I want to output the final prediction result using the correct answer rate by state, but I want to check whether the correct answer rate is a reliable value. According to the sixth feature of the present embodiment, it is possible to check the number of predictions made by each prediction model in the state determined by the state determination unit. In this case, the prediction result of prediction model 1 can be output to the final output. In addition, even if the correct answer rate of prediction model 1 is high, if the prediction experience value is low, that is, if the prediction performance in that state is poor, it is possible not to reflect the result of prediction model 1 in the final result. be.
 また、本実施形態の第7の特徴は、各予測モデルの調停パラメータ、すなわち正解数と不正解数ではなく、予測モデルがその状態において予測を実施した回数を予測経験値として記憶することである。 The seventh feature of this embodiment is to store the number of predictions made by the prediction model in that state as the prediction empirical value instead of the arbitration parameter of each prediction model, that is, the number of correct answers and the number of incorrect answers. .
 例えば、各予測モデルにおいて予測精度を高めるために、あらかじめ予測を許可する条件を考慮している場合は、各モデルにおける予測許可条件を満たした場合に限り、各予測モデルが予測結果を出力する処理を実行した回数を予測経験値として用いる。状態によっては、ある予測モデルの予測実施は許可され、ある予測モデルの予測実施は不許可となる状態がありえる。その際に、不許可となった予測モデルの調停パラメータを更新しない。 For example, if the conditions for permitting prediction are considered in advance in order to increase the prediction accuracy of each prediction model, each prediction model outputs prediction results only when the conditions for permitting prediction for each model are met. is used as the prediction empirical value. Depending on the state, some prediction models may be allowed to perform predictions, and some prediction models may not be allowed to perform predictions. At that time, the arbitration parameters of the disapproved prediction model are not updated.
 このような構成においては、調停パラメータは各予測モデルがあらかじめ想定した予測の範囲を超えた場合に、予測結果が不正解となって正答率が下がることを防止することが可能であり、各々の予測モデルが意図した予測領域の棲み分けによってシステム全体の予測精度の向上を見込むことができる。 In such a configuration, the arbitration parameter can prevent the prediction result from being incorrect and the correct answer rate from decreasing when the prediction range assumed in advance by each prediction model is exceeded. The prediction accuracy of the entire system can be expected to be improved by segregating the prediction regions intended by the prediction model.
 図12は本発明の第三実施形態における制御装置100による予測制御の流れを示したフローチャート図である。以後、図9のブロック図および図12のフローチャートを用いて各ステップを説明する。 FIG. 12 is a flow chart diagram showing the flow of predictive control by the control device 100 according to the third embodiment of the present invention. Hereinafter, each step will be described with reference to the block diagram of FIG. 9 and the flow chart of FIG.
 (図12:ステップS1201)
 制御装置100は予測制御を開始する。
(Fig. 12: Step S1201)
The control device 100 starts predictive control.
 (図12:ステップS1202)
 予測システムの予測モデル1(301)、予測モデル2(302)、予測モデル3(310)がそれぞれ予測結果を出力する。
(Fig. 12: Step S1202)
Prediction model 1 (301), prediction model 2 (302), and prediction model 3 (310) of the prediction system each output a prediction result.
 (図12:ステップS1203)
 各予測モデルは予測結果を予測結果記憶部304に格納する。
(Fig. 12: Step S1203)
Each prediction model stores the prediction result in the prediction result storage unit 304 .
 (図12:ステップS1204)
 正解状態生成部303は正解状態を生成する。
(Fig. 12: Step S1204)
The correct state generation unit 303 generates a correct state.
 (図12:ステップS1205)
 状態判定部901は現在の状態を判定し状態IDを選択する。
(Fig. 12: Step S1205)
A state determination unit 901 determines the current state and selects a state ID.
 (図12:ステップS1206)
 予測結果正答判定部305は、ステップ1203で予測結果記憶部304に格納された過去の各予測モデルの予測結果を参照し、ステップ1204によって生成された正解状態と比較する。
(Fig. 12: Step S1206)
The prediction result correct answer determination unit 305 refers to the prediction result of each past prediction model stored in the prediction result storage unit 304 in step 1203 and compares it with the correct state generated in step 1204 .
 (図12:ステップS1207)
 ステップ1206にて予測モデルの予測結果と正解を比較した際、予測モデルが正解であれば状態別調停パラメータ記憶部902の、ステップS1205で選択した状態IDにおける予測モデル[i]の正解のカウンタ値をインクリメントし状態別調停パラメータ記憶部902へ格納する。
(Fig. 12: Step S1207)
When the prediction result of the prediction model and the correct answer are compared in step 1206, if the prediction model is correct, the correct counter value of the prediction model [i] for the state ID selected in step S1205 is stored in the state-by-state arbitration parameter storage unit 902. is incremented and stored in the state-specific arbitration parameter storage unit 902 .
 (図12:ステップS1208)
 ステップ1206にて予測モデルの予測結果と正解を比較した際、予測モデルが不正解であれば、状態別調停パラメータ記憶部902のステップS1205で選択した状態IDにおける予測モデル[i]の不正解カウンタ値をインクリメントし調停パラメータ記憶部へ格納する。
(Fig. 12: Step S1208)
When the prediction result of the prediction model and the correct answer are compared in step 1206, if the prediction model is incorrect, the incorrect answer counter of the prediction model [i] in the state ID selected in step S1205 of the state-by-state arbitration parameter storage unit 902 The value is incremented and stored in the arbitration parameter storage unit.
 (図12:ステップS1209)
 ステップS1207またはステップS1208によって更新された状態別の各予測モデルの正解回数と不正解回数を用いて予測モデル[i]の予測正答率を各予測モデル正答率算出部903は算出する。
(Fig. 12: Step S1209)
Each prediction model correct answer rate calculation unit 903 calculates the predicted correct answer rate of the prediction model [i] using the number of correct answers and the number of incorrect answers of each prediction model for each state updated in step S1207 or step S1208.
 (図12:ステップS1210)
 ステップS1206とステップS1207によって算出した各々の状態別の各予測モデルの調停パラメータの総和を求め予測経験値を各予測モデル予測経験値算出部904は算出する。
(Fig. 12: Step S1210)
Each prediction model prediction empirical value calculation unit 904 calculates the prediction empirical value by obtaining the sum of the arbitration parameters of each prediction model for each state calculated in steps S1206 and S1207.
 (図12:ステップS1211)
 ステップS1210によって算出した各予測モデルの予測経験値が、所定の閾値を上回っているか否かを判定する。
(Fig. 12: Step S1211)
It is determined whether or not the prediction empirical value of each prediction model calculated in step S1210 exceeds a predetermined threshold.
 (図12:ステップS1212)
 ステップS1211にて予測経験値が、所定の閾値以上の場合、予測モデル[i]の予測結果を調停時に選択可能とする。すなわち、マイクロコンピュータ101(プロセッサ)は、それぞれの予測モデルの予測経験値が閾値を超える場合、その予測モデルの予測結果を選択肢に含めて1つの予測結果を選択する。これにより、信頼性の低い予測結果は選択されない。
(Fig. 12: Step S1212)
If the prediction empirical value is equal to or greater than the predetermined threshold in step S1211, the prediction result of the prediction model [i] can be selected during arbitration. That is, when the prediction empirical value of each prediction model exceeds the threshold, the microcomputer 101 (processor) selects one prediction result including the prediction result of that prediction model in the options. This ensures that prediction results with low reliability are not selected.
 (図12:ステップS1213)
 ステップS1212にて予測経験値が、所定の閾値未満の場合、予測モデル[i]の予測結果を調停時に選択不可能とする。すなわち、マイクロコンピュータ101(プロセッサ)は、それぞれの予測モデルの予測経験値が閾値未満である場合、その予測モデルの予測結果を選択肢に含めずに1つの予測結果を選択する。これにより、信頼性の高い予測結果が選択される。
(Fig. 12: Step S1213)
If the prediction empirical value is less than the predetermined threshold in step S1212, the prediction result of the prediction model [i] cannot be selected during arbitration. That is, when the prediction empirical value of each prediction model is less than the threshold, the microcomputer 101 (processor) selects one prediction result without including the prediction result of that prediction model in the options. Thereby, a highly reliable prediction result is selected.
 (図12:ステップS1214)
 全ての予測モデルの予測正答率と予測経験値を算出するために、全予測モデルの状態別調停パラメータを用いた予測正答率と予測経験値の評価が完了したかを判定する。
(Fig. 12: Step S1214)
In order to calculate the prediction accuracy rate and the prediction experience value of all prediction models, it is determined whether the evaluation of the prediction accuracy rate and the prediction experience value using the state-specific arbitration parameters of all prediction models has been completed.
 (図12:ステップS1215)
 ステップS1214にて全ての予測モデルの予測正答率と予測経験値の算出が完了していない場合は、iをインクリメントし次の予測モデルの予測正答率と予測経験値の算出を実施する。
(Fig. 12: Step S1215)
In step S1214, if calculation of the prediction correct answer rate and prediction experience value of all prediction models has not been completed, i is incremented and the prediction correct answer rate and prediction experience value of the next prediction model are calculated.
 (図12:ステップS1216)
 ステップS1213にて全ての予測モデルの予測正答率と予測経験値の評価が完了した場合に、ステップS1215に移行する。
(Fig. 12: Step S1216)
When the evaluation of the prediction accuracy rate and the prediction empirical value of all the prediction models is completed in step S1213, the process moves to step S1215.
 ステップS1212で予測モデルの予測経験値により調停時に選択可能と判断した予測モデルの予測結果と予測正答率の積を算出し最も高い予測モデルの予測結果を予測システムの最終の予測結果として選択する。 In step S1212, the product of the prediction result of the prediction model determined to be selectable at the time of arbitration based on the prediction empirical value of the prediction model and the prediction correct answer rate is calculated, and the prediction result of the highest prediction model is selected as the final prediction result of the prediction system.
 ステップS1201からステップS1216までの予測システムに係る演算は、制御装置100のROM103に格納する制御プログラムに含まれ、繰り返し実行される。 The calculations related to the prediction system from step S1201 to step S1216 are included in the control program stored in the ROM 103 of the control device 100 and are repeatedly executed.
 上記の実施形態では、複数の予測モデルによってある事象の予測を実施するシステムにおいて、システム全体の予測精度向上を目的に、各々の予測モデルが算出する予測結果に対して予測正答率を算出し、さらに予測正答率が信頼できる値かどうかを確認するための予測経験値の算出を実施するものを説明した。 In the above embodiment, in a system that predicts an event using a plurality of prediction models, the prediction correct answer rate is calculated for the prediction result calculated by each prediction model for the purpose of improving the prediction accuracy of the entire system, In addition, the calculation of the prediction empirical value for confirming whether the prediction correct answer rate is a reliable value was explained.
 ここで、上記説明した図8のS810または図12のS1211で予測経験値を評価するための閾値は、予測モデルに限らず共通にすることもできるし、予測モデル毎に別々の値を用いてもよい。すなわち、閾値は、すべての予測モデルに対して共通の値としてもよいし、閾値は、予測モデル毎に設定してもよい。 Here, the threshold for evaluating the prediction empirical value in S810 of FIG. 8 or S1211 of FIG. good too. That is, the threshold may be a common value for all prediction models, or the threshold may be set for each prediction model.
 例えば、上記第二または第三実施形態において、予測モデル1と予測モデル2は事前に評価されており、最低限のシステムの予測機能として備えるように構成し、システム起動時から予測を開始したいことも考えられる。このような場合には、予測経験値の初期値をあらかじめ調停時に選択可能な回数以上としておくことにより、いずれの予測結果も最終予測結果の選択時に候補として採用することが可能である。換言すれば、予測モデル毎の正解回数、不正解回数、又は予測経験値の初期値は0以外の任意の数である。 For example, in the second or third embodiment, the prediction model 1 and the prediction model 2 are evaluated in advance, configured to be provided as the minimum prediction function of the system, and it is desired to start prediction from the time of system startup. is also conceivable. In such a case, any prediction result can be adopted as a candidate when the final prediction result is selected by setting the initial value of the prediction empirical value in advance to be equal to or greater than the number of selections that can be made at the time of arbitration. In other words, the number of correct answers, the number of incorrect answers, or the initial value of the prediction empirical value for each prediction model is any number other than zero.
 上記実施形態の予測経験値では、所定回数の予測実行を行ったか否かを閾値で確認し、閾値を超えない場合は調停時に選択不可能としている。予測経験値の大小にかかわらず各予測モデルの予測結果を最終予測結果の選択肢として含めたい場合には、閾値に用いる値を0以下に設定すればよい。具体的には、例えば、予測モデル毎の正解回数、不正解回数、又は予測経験値の初期値は0である。 With the prediction empirical value of the above embodiment, a threshold is used to check whether or not prediction has been executed a predetermined number of times, and if the threshold is not exceeded, selection is disabled during arbitration. If the prediction result of each prediction model is to be included as an option for the final prediction result regardless of the magnitude of the prediction empirical value, the value used for the threshold should be set to 0 or less. Specifically, for example, the initial value of the number of correct answers, the number of incorrect answers, or the prediction empirical value for each prediction model is zero.
 この閾値を予測経験値算出用パラメータとし、予測モデル毎に別々の値を持つことで、例えば第二実施形態の例では、予測モデル1と予測モデル2の予測は初回から予測結果調停部において予測結果の選択に用いられ、予測モデル3の予測経験値算出用パラメータを任意の回数に設定しておけば、予測モデル3のみを予測実績が積まれた後に、予測結果の選択肢に入るようにすることが可能である。 By using this threshold value as a parameter for calculating the prediction empirical value and having a different value for each prediction model, for example, in the example of the second embodiment, the predictions of the prediction model 1 and the prediction model 2 are predicted in the prediction result arbitration unit from the first time Used to select the result, if the parameter for calculating the prediction empirical value of the prediction model 3 is set to an arbitrary number of times, only the prediction model 3 will be included in the prediction result options after the prediction results are accumulated. It is possible.
 また、上記実施形態の予測経験値では、所定回数の予測実行を行ったか否かを閾値で確認し、閾値を超えない場合は予測結果を調停時に選択不可能としている。閾値の判定までを図8のS809または図12のS1210で実施し、判定の結果、閾値を超えていれば予測経験値を1、閾値を超えていなければ予測経験値を0として算出し、その後の予測結果調停のステップS815またはS1216において予測結果と予測正答率と予測経験値の積を算出するようにフローチャートを変更すれば、同様の調停を実施することが可能である。 In addition, in the prediction empirical value of the above embodiment, a threshold is used to check whether or not prediction has been executed a predetermined number of times, and if the threshold is not exceeded, the prediction result cannot be selected during arbitration. Until the determination of the threshold value is performed in S809 of FIG. 8 or S1210 of FIG. Similar arbitration can be performed by modifying the flow chart so as to calculate the product of the prediction result, the prediction correct answer rate, and the prediction empirical value in step S815 or S1216 of prediction result arbitration.
 換言すれば、マイクロコンピュータ101(プロセッサ)は、(i)予測結果の値と正答率との積が最も高い予測モデルの予測結果を選択する、又は(ii)予測結果の値と正答率と予測経験値との積が最も高い予測モデルの予測結果を選択するようにしてもよい。これにより、信頼性の高い予測結果が選択される。 In other words, the microcomputer 101 (processor) (i) selects the prediction result of the prediction model with the highest product of the prediction result value and the correct answer rate, or (ii) compares the prediction result value, the correct answer rate, and the prediction The prediction result of the prediction model with the highest product with the empirical value may be selected. Thereby, a highly reliable prediction result is selected.
 また、他の予測結果調停方法としては、予測の実行回数を分子に置き、分母に予測経験値算出用パラメータを設定することで計算を実行し、予測経験値を小数で算出する方法も考えられる。この場合においても、予測経験値算出用パラメータを予測モデル毎にあらかじめ設定することで、各々の予測モデルの予測結果の最終結果の選択に対する寄与度を変更することが可能である。 In addition, as another prediction result arbitration method, a method of performing calculation by setting the number of prediction executions in the numerator and setting the parameter for calculating the prediction experience value in the denominator, and calculating the prediction experience value in decimals is also conceivable. . Even in this case, it is possible to change the degree of contribution of the prediction result of each prediction model to the selection of the final result by setting the prediction empirical value calculation parameter for each prediction model in advance.
 例えば上記の実施形態で説明した加減速予測制御で、3秒後に加速することを予測するという場合に、予測モデル1の予測結果が「加速する」正答率0.8、予測経験値1、予測モデル2の予測結果が「加速しない」、正答率0.6、予測経験値1、予測モデル3の予測結果が「加速する」、正答率0.9、予測経験値0.5であった場合、予測モデル1の正答率と予測経験値の積は0.8、予測モデル2の正答率と予測経験値の積は0.6、予測モデル3の正答率と予測経験値の積は0.45となり、予測モデル3の正答率は高いものの予測経験が浅いことから、予測モデル1の予測結果が支持される。 For example, in the acceleration/deceleration predictive control described in the above embodiment, when predicting acceleration after 3 seconds, the prediction result of prediction model 1 is "accelerate" correct answer rate 0.8, prediction experience value 1, prediction When the prediction result of model 2 is "not accelerated", the correct answer rate is 0.6, the prediction experience value is 1, and the prediction result of prediction model 3 is "accelerate", the correct answer rate is 0.9, and the prediction experience value is 0.5 , the product of the correct answer rate and the predicted experience value of the prediction model 1 is 0.8, the product of the correct answer rate and the prediction experience value of the prediction model 2 is 0.6, and the product of the correct answer rate and the prediction experience value of the prediction model 3 is 0.8. 45, and although the correct answer rate of the prediction model 3 is high, the prediction result of the prediction model 1 is supported because the prediction experience is small.
 予測モデル3の正答率が0.9で、予測経験値が0.9となった場合、正答率と予測経験値の積は0.81となり、前述の予測モデル1と予測モデル2の状況と比較した場合は、最も高い評価値となって、予測モデル3の結果が支持される。 If the correct answer rate of prediction model 3 is 0.9 and the prediction experience value is 0.9, the product of the correct answer rate and the prediction experience value is 0.81, and the situation of prediction model 1 and prediction model 2 described above When compared, the evaluation value is the highest, and the result of prediction model 3 is supported.
 換言すれば、マイクロコンピュータ101(プロセッサ)は、正答率と予測経験値との積が最も高い予測モデルの予測結果を選択する。これにより、信頼性の高い予測結果が選択される。 In other words, the microcomputer 101 (processor) selects the prediction result of the prediction model with the highest product of the correct answer rate and the prediction empirical value. Thereby, a highly reliable prediction result is selected.
 このように、予測経験値を小数で表現した場合においては、予測実績が低くても、高い正答率の場合においては、予測結果が最終出力に反映されるように構成することも可能となる。 In this way, when the prediction empirical value is expressed in decimals, even if the prediction performance is low, it is possible to configure the prediction result to be reflected in the final output when the correct answer rate is high.
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the invention described in the claims. Changes can be made. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 例えば、実施形態に挙げた3秒後に加速するかを予測する制御について、現在の状態から将来の状態を予測するものに応用が可能であり、例えば、内燃機関のノック予測制御、ターボ車のW/G(Wastegate)制御等にも応用が可能である。また、実施形態に挙げた3秒後に加速するかを予測する制御について、複数のモデルは、実施形態に挙げた予測モデル以外にもニューラルネットワークモデルや他の統計理論に基づくモデルで構成してもよい。 For example, the control that predicts whether the vehicle will accelerate after 3 seconds, which is mentioned in the embodiment, can be applied to predict the future state from the current state. It can also be applied to /G (Wastegate) control and the like. In addition, regarding the control for predicting whether to accelerate after 3 seconds as described in the embodiment, the plurality of models may be composed of neural network models and models based on other statistical theories in addition to the prediction models described in the embodiment. good.
 上記実施形態では、カメラセンサ105で車間距離を計測しているが、ミリ波レーダー等の他のセンサを用いて車間距離を計測しても良い。 In the above embodiment, the camera sensor 105 measures the inter-vehicle distance, but other sensors such as millimeter wave radar may be used to measure the inter-vehicle distance.
 第三実施形態の状態IDが示す状態は3次元(自車車速、車間距離、相対速度)であるが、1次元、2次元、又は4以上の次元であってもよい。自車車速、車間距離、相対速度のほかに、先行車の車速、自車の加速度、アクセル開度、標高などでもよい。 The state indicated by the state ID in the third embodiment is three-dimensional (vehicle speed, inter-vehicle distance, relative speed), but may be one-dimensional, two-dimensional, or four or more dimensions. In addition to the vehicle speed, inter-vehicle distance, and relative speed, the vehicle speed of the preceding vehicle, acceleration of the vehicle, accelerator opening, altitude, and the like may be used.
 また、本発明を説明するためにブロック図やフローチャートを用いているが、これら説明に用いた図面の各機能および各ステップはソフトウェアで実現してもよいし、ハードウェアで実現してもよく、一部をいずれかで実現してもよい。 In addition, although block diagrams and flowcharts are used to explain the present invention, each function and each step of the drawings used for explanation may be realized by software or hardware. Some may be implemented in either.
 また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 なお、本発明の実施形態は、以下の態様であってもよい。 It should be noted that the embodiment of the present invention may have the following aspects.
 (1).現在の状態から将来の状態を予測し予測結果を出力する複数の予測モデルと、過去に複数の予測モデルが予測した各予測結果を格納するための予測結果記憶部と、現在の状態から正解状態を生成する正解算出部と、正解状態と予測結果記憶部に格納された複数の予測モデルの過去の予測結果を比較して各予測モデルの予測が正解か否かを判定する予測結果正解判定部と、予測結果正解判定部によって判定した各予測モデルの正解回数と不正解回数を格納するための予測モデル調停パラメータ記憶部と、予測モデル調停パラメータ記憶部に記憶した各予測モデルの正解回数と不正解回数を用いて各予測モデルの正答率を算出する予測モデル正答率算出部と、各予測モデルの予測結果と、各予測モデルの正答率を用いて1つの予測結果を出力する予測結果調停部を備えるシステムにおいて、前記システムは、さらに各予測モデルがそれぞれ何回予測を実施したかをカウントし各予測モデルの予測経験値を算出する予測経験値算出部を備え、前記、予測結果調停部は、各予測モデルの予測結果と、各予測モデルの正答率と、各予測モデルの予測経験値を用いて1つの予測結果を出力することを特徴とするシステム。 (1). A plurality of prediction models that predict the future state from the current state and output prediction results, a prediction result storage unit for storing each prediction result predicted by the plurality of prediction models in the past, and a correct state from the current state and a prediction result correct determination unit that compares the correct state and past prediction results of a plurality of prediction models stored in the prediction result storage unit and determines whether or not the prediction of each prediction model is correct. a prediction model arbitration parameter storage unit for storing the number of correct answers and the number of incorrect answers of each prediction model determined by the correct prediction result judgment unit; A prediction model correct answer rate calculation unit that calculates the correct answer rate of each prediction model using the number of correct answers, and a prediction result arbitration unit that outputs one prediction result using the prediction result of each prediction model and the correct answer rate of each prediction model The system further comprises a prediction empirical value calculation unit that counts how many times each prediction model has made predictions and calculates the prediction experience value of each prediction model, and the prediction result arbitration unit is , a system characterized by outputting one prediction result using the prediction result of each prediction model, the correct answer rate of each prediction model, and the prediction empirical value of each prediction model.
 (2).(1)のシステムにおいて、予測経験値算出部は、前記予測モデル調停パラメータ記憶部にて格納する、各予測モデルの正解回数と不正解回数の和によって予測経験値を算出することを特徴とするシステム。 (2). In the system of (1), the prediction experience value calculation unit calculates the prediction experience value based on the sum of the number of correct answers and the number of incorrect answers of each prediction model stored in the prediction model mediation parameter storage unit. system.
 (3).(1)のシステムにおいて、予測経験値算出部は、各予測モデルが処理を実施した回数をカウントし予測経験値を算出することを特徴とするシステム。 (3). In the system of (1), the prediction empirical value calculation unit calculates the prediction empirical value by counting the number of times each prediction model executes the process.
 (4).(1)のシステムにおいて、前記予測モデル調停パラメータ記憶部は、各予測モデルの調停パラメータを不揮発性メモリに書き込むことを特徴するシステム。 (4). In the system of (1), the prediction model arbitration parameter storage unit writes the arbitration parameter of each prediction model in a non-volatile memory.
 (5).(1)のシステムにおいて、前記システムは、さらに現在の状態を判定し、現在の状態に対応する状態IDを算出する状態判定部を備え、前記、予測結果正解判定部によって判定した各予測モデルの正解回数と不正解回数を状態IDで選択した状態別に記憶するための状態別予測モデル調停パラメータ記憶部を有し、前記、予測結果調停部が、各予測モデルが算出した予測結果を調停する場合に、前記、状態別予測モデル調停パラメータ記憶部に格納した各予測モデルの調停パラメータを用いて算出する状態別予測正答率と、前記、状態別予測モデル調停パラメータ記憶部に格納した各予測モデルの調停パラメータを用いて算出する状態別予測経験値を算出し、前記、各予測モデルの予測結果と、各予測モデルの状態別予測正答率と、各予測モデルの状態別予測経験値を用いて、1つの予測結果を出力することを特徴とするシステム。 (5). In the system of (1), the system further includes a state determination unit that determines the current state and calculates a state ID corresponding to the current state, and the prediction model determined by the prediction result correct determination unit When the prediction model mediation parameter storage unit for each state is provided for storing the number of correct answers and the number of incorrect answers for each state selected by the state ID, and the prediction result mediation unit mediates the prediction results calculated by each prediction model. , the prediction correct answer rate by state calculated using the arbitration parameter of each prediction model stored in the prediction model arbitration parameter storage unit by state, and the prediction model arbitration parameter storage unit by state Calculate the prediction empirical value by state calculated using the arbitration parameter, and use the prediction result of each prediction model, the prediction correct answer rate by state of each prediction model, and the prediction empirical value by state of each prediction model, A system characterized by outputting one prediction result.
 (6).(5)のシステムにおいて、予測経験値算出機能は、前記予測モデル調停パラメータ記憶機能にて格納する、各予測モデルの正解回数と不正解回数の和によって予測経験値を算出することを特徴とするシステム。 (6). In the system of (5), the prediction experience value calculation function is characterized in that the prediction experience value is calculated based on the sum of the number of correct answers and the number of incorrect answers for each prediction model, which are stored in the prediction model mediation parameter storage function. system.
 (7).(5)のシステムにおいて、予測経験値算出機能は、各予測モデルが処理を実施した回数をカウントし予測経験値を算出することを特徴とするシステム。 (7). In the system of (5), the prediction empirical value calculation function counts the number of times each prediction model executes the process and calculates the prediction empirical value.
 (8).(5)のシステムにおいて、前記予測モデル調停パラメータ記憶機能は、各予測モデルの調停パラメータを不揮発性メモリに書き込むことを特徴するシステム。 (8). In the system of (5), the prediction model arbitration parameter storage function writes the arbitration parameter of each prediction model into a non-volatile memory.
 (9).(4)のシステムにおいて、不揮発性メモリに格納する各々の予測モデルの調停パラメータの初期値をあらかじめ0以外の任意の数に設定しておくことを特徴とするシステム。 (9). In the system of (4), the initial value of the arbitration parameter of each prediction model stored in the non-volatile memory is set in advance to any number other than 0.
 (10).(4)のシステムにおいて、不揮発性メモリに格納する各々の予測モデルの調停パラメータの初期値をあらかじめ0に設定しておくことを特徴とするシステム。 (10). In the system of (4), the initial value of the arbitration parameter of each prediction model stored in the nonvolatile memory is set to 0 in advance.
 (11).(8)のシステムにおいて、不揮発性メモリに格納する状態別調停パラメータの初期値をあらかじめ0以外の任意の数に設定しておくことを特徴とするシステム。 (11). In the system of (8), the initial value of the state-specific arbitration parameter stored in the nonvolatile memory is set in advance to any number other than 0.
 (12).(8)のシステムにおいて、不揮発性メモリに格納する状態別調停パラメータの初期値をあらかじめ0に設定しておくことを特徴とするシステム。 (12). In the system of (8), the initial value of the state-specific arbitration parameter stored in the non-volatile memory is set to 0 in advance.
 (13).(2)または(3)のシステムにおいて、予測経験値算出機能にて算出した予測モデル別の予測経験値を任意の閾値と比較して、各予測モデルの予測経験値が任意の閾値を上回る場合に、前記、予測結果調停部が調停する各々の予測モデルの予測結果を調停の選択肢に含めることを特徴とするシステム。 (13). In the system of (2) or (3), when the prediction experience value for each prediction model calculated by the prediction experience value calculation function is compared with an arbitrary threshold, and the prediction experience value of each prediction model exceeds an arbitrary threshold (2) A system characterized in that the prediction result of each prediction model arbitrated by the prediction result arbitration unit is included in the arbitration options.
 (14).(13)のシステムにおいて、各予測モデルの予測経験値と比較する任意の閾値は、各予測モデルに対し共通の値を用いることを特徴とするシステム。 (14). In the system of (13), a system characterized by using a common value for each prediction model as an arbitrary threshold to be compared with the prediction empirical value of each prediction model.
 (15).(13)のシステムにおいて、各予測モデルの予測経験値と比較する任意の閾値は、各予測モデルに対し別々の値を用いることを特徴とするシステム。 (15). In the system of (13), a system characterized by using different values for each prediction model as arbitrary thresholds to be compared with prediction empirical values of each prediction model.
 (16).(6)または(7)のシステムにおいて、予測経験値算出機能にて算出した各予測モデルの状態別予測経験値を任意の閾値と比較して、各予測モデルの状態別予測経験値が任意の閾値を上回る場合に、前記、予測結果調停部が調停する各々の予測モデルの予測結果を調停の選択肢に含めることを特徴とするシステム。 (16). In the system of (6) or (7), the prediction experience value by state of each prediction model calculated by the prediction experience value calculation function is compared with an arbitrary threshold, and the prediction experience value by state of each prediction model is an arbitrary A system, wherein the prediction result of each prediction model arbitrated by the prediction result arbitration unit is included in the arbitration options when the threshold value is exceeded.
 (17).(16)のシステムにおいて、各予測モデルの状態別予測経験値と比較する任意の閾値は、各予測モデルに対し共通の値を用いることを特徴とするシステム。 (17). In the system of (16), a system characterized by using a common value for each prediction model as an arbitrary threshold to be compared with the state-specific prediction empirical value of each prediction model.
 (18).(16)のシステムにおいて、各予測モデルの状態別予測経験値と比較する任意の閾値は、各予測モデルに対し別々の値を用いることを特徴とするシステム。 (18). In the system of (16), a system characterized by using a different value for each prediction model as an arbitrary threshold to be compared with the state-specific prediction empirical value of each prediction model.
 (1)~(18)のごとく構成された上記実施形態のシステムは、複数の予測モデルが将来の状態を推定し予測結果を出力している状態で、各々の予測モデルの予測結果の正答率を測定しており、また、その正答率が信頼できる正答率か否かを判断するための予測経験を考慮する。そのため、既存のシステムを拡張し、新しい考え方による予測モデルを追加した際、予測モデル追加の副作用による予測精度低下を防止することが可能となる。 In the system of the above embodiment configured as in (1) to (18), a plurality of prediction models estimate the future state and output the prediction results, and the correct answer rate of the prediction results of each prediction model and take into account predictive experience to determine whether the percentage of correct answers is reliable. Therefore, when an existing system is expanded and a prediction model based on a new concept is added, it is possible to prevent a decrease in prediction accuracy due to the side effect of adding the prediction model.
 また、各予測モデルの調停パラメータを、状況別に細分化して記憶することで、状況別に適宜予測モデルを切り替えることによって、システム全体の予測精度を向上することができる。 In addition, by subdividing and storing the arbitration parameters of each prediction model for each situation, it is possible to improve the prediction accuracy of the entire system by appropriately switching the prediction model for each situation.
100…制御装置
101…マイクロコンピュータ
104…不揮発性メモリ
105…カメラセンサ
106…車速センサ
107…加速度センサ
108…アクセル開度センサ
109…ECM
110…エンジン
301、302…予測モデル
303…正解状態生成部
304…予測結果記憶部
305…予測結果正答判定部
306…調停パラメータ記憶部
307…予測モデル正答率算出部
308…予測モデル予測経験値算出部
309…予測結果調停部
310…予測モデル
901…状態判定部
902…状態別調停パラメータ記憶部
903…予測モデル正答率算出部
904…予測モデル予測経験値算出部
905…予測結果調停部
DESCRIPTION OF SYMBOLS 100... Control apparatus 101... Microcomputer 104... Non-volatile memory 105... Camera sensor 106... Vehicle speed sensor 107... Acceleration sensor 108... Accelerator opening sensor 109... ECM
110... Engine 301, 302...Prediction model 303...Correct state generation unit 304...Prediction result storage unit 305...Prediction result correct answer determination unit 306...Arbitration parameter storage unit 307...Prediction model correct answer rate calculation unit 308...Prediction model prediction empirical value calculation Unit 309 Prediction result arbitration unit 310 Prediction model 901 State determination unit 902 State arbitration parameter storage unit 903 Prediction model correct answer rate calculation unit 904 Prediction model prediction empirical value calculation unit 905 Prediction result arbitration unit

Claims (13)

  1.  プロセッサと第1メモリを備える予測装置であって、
     前記プロセッサは、
     第1タイミングで複数の予測モデルをそれぞれ用いてその時点で観測される状態から予測される第2タイミングの状態を示す予測結果を前記第1メモリに記憶し、
     前記第2タイミングの時点で観測される状態から前記予測結果に対する正解の状態を示す正解状態を生成し、
     前記正解状態と前記予測モデル毎の前記予測結果とを比較し、前記予測モデル毎の正答率を算出し、
     前記予測モデル毎に実施された予測の回数を示す前記予測モデル毎の予測経験値を算出し、
     前記予測モデル毎の前記正答率と、前記予測モデル毎の前記予測経験値とを用いて、複数の前記予測結果から1つの前記予測結果を選択して出力する
     ことを特徴とする予測装置。
    A prediction device comprising a processor and a first memory,
    The processor
    storing in the first memory a prediction result indicating a state at a second timing predicted from a state observed at that time using each of the plurality of prediction models at the first timing;
    generating a correct state indicating a correct state for the prediction result from the state observed at the second timing;
    Comparing the correct state and the prediction result for each prediction model, calculating a correct answer rate for each prediction model,
    calculating a prediction empirical value for each prediction model that indicates the number of predictions performed for each prediction model;
    A prediction device that selects and outputs one prediction result from a plurality of prediction results using the correct answer rate for each prediction model and the prediction empirical value for each prediction model.
  2.  請求項1に記載の予測装置であって、
     前記予測モデル毎の予測経験値は、
     前記予測モデル毎の正解回数と不正解回数の和である
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    The prediction empirical value for each prediction model is
    A prediction device characterized by being the sum of the number of correct answers and the number of incorrect answers for each of the prediction models.
  3.  請求項1に記載の予測装置であって、
     前記予測モデル毎の予測経験値は、
     前記予測モデル毎に実施され、かつカウントされた予測の回数である
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    The prediction empirical value for each prediction model is
    It is the number of predictions performed and counted for each of the prediction models.
  4.  請求項1に記載の予測装置であって、
     不揮発性の第2メモリを備え、
     前記プロセッサは、
     前記予測モデル毎の正解回数、不正解回数、及び前記予測経験値を不揮発性の前記第2メモリに記憶する
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    comprising a non-volatile second memory;
    The processor
    A prediction device, wherein the number of correct answers, the number of incorrect answers, and the prediction empirical value for each of the prediction models are stored in the nonvolatile second memory.
  5.  請求項1に記載の予測装置であって、
     前記プロセッサは、
     複数のセンサによる測定値のそれぞれが属する範囲に対応するIDの組から構成され、かつ前記第1タイミングの時点の状態を示す状態IDを算出し、
     前記予測モデル毎かつ前記状態ID毎の正答率を算出し、
     前記予測モデル毎かつ前記状態ID毎の予測経験値を算出し、
     前記予測モデル毎かつ前記状態ID毎の正答率と、前記予測モデル毎かつ前記状態ID毎の予測経験値とを用いて、複数の前記予測結果から1つの予測結果を出力する
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    The processor
    calculating a state ID composed of a set of IDs corresponding to the range to which each of the measured values from a plurality of sensors belongs and indicating the state at the first timing;
    calculating the percentage of correct answers for each of the prediction models and each of the state IDs;
    calculating a prediction empirical value for each of the prediction models and each of the state IDs;
    One prediction result is output from the plurality of prediction results using the correct answer rate for each prediction model and each state ID and the prediction empirical value for each prediction model and each state ID. prediction device.
  6.  請求項1に記載の予測装置であって、
     前記予測モデル毎の正解回数、不正解回数、又は前記予測経験値の初期値は0以外の任意の数である
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    The prediction device, wherein the number of correct answers, the number of incorrect answers, or the initial value of the prediction empirical value for each of the prediction models is an arbitrary number other than zero.
  7.  請求項1に記載の予測装置であって、
     前記予測モデル毎の正解回数、不正解回数、又は前記予測経験値の初期値は0である
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    The prediction device, wherein an initial value of the number of correct answers, the number of incorrect answers, or the prediction empirical value for each of the prediction models is zero.
  8.  請求項1に記載の予測装置であって、
     前記プロセッサは、
     それぞれの前記予測モデルの前記予測経験値が閾値以上である場合、前記予測モデルの予測結果を選択肢に含めて1つの予測結果を選択し、
     それぞれの前記予測モデルの予測経験値が前記閾値未満である場合、前記予測モデルの予測結果を選択肢に含めずに1つの予測結果を選択する、
     ことを特徴とする予測装置。
    A prediction device according to claim 1,
    The processor
    When the prediction empirical value of each of the prediction models is equal to or greater than a threshold, including the prediction results of the prediction model in the options and selecting one prediction result,
    If the prediction empirical value of each of the prediction models is less than the threshold, selecting one prediction result without including the prediction results of the prediction model in the options;
    A prediction device characterized by:
  9.  請求項8に記載の予測装置であって、
     前記閾値は、
     すべての前記予測モデルに対して共通の値である
     ことを特徴とする予測装置。
    A prediction device according to claim 8,
    The threshold is
    A prediction device characterized by being a common value for all the prediction models.
  10.  請求項8に記載の予測装置であって、
     前記閾値は、
     前記予測モデル毎に設定される
     ことを特徴とする予測装置。
    A prediction device according to claim 8,
    The threshold is
    A prediction device characterized by being set for each of the prediction models.
  11.  請求項8に記載の予測装置であって、
     前記プロセッサは、
    (i)正答率が最も高い前記予測モデルの前記予測結果を選択する、又は
    (ii)正答率と予測経験値との積が最も高い前記予測モデルの前記予測結果を選択する
     ことを特徴とする予測装置。
    A prediction device according to claim 8,
    The processor
    (i) Selecting the prediction result of the prediction model with the highest correct answer rate, or (ii) Selecting the prediction result of the prediction model with the highest product of the correct answer rate and the prediction empirical value. prediction device.
  12.  請求項8に記載の予測装置であって、
     前記プロセッサは、
    (i)予測結果の値と正答率との積が最も高い前記予測モデルを選択する、又は
    (ii)予測結果の値と正答率と予測経験値との積が最も高い前記予測モデルを選択する
     ことを特徴とする予測装置。
    A prediction device according to claim 8,
    The processor
    (i) Selecting the prediction model with the highest product of the prediction result value and the correct answer rate, or (ii) Selecting the prediction model with the highest product of the prediction result value, the correct answer rate, and the prediction experience value. A prediction device characterized by:
  13.  請求項1に記載の予測装置に実行させる予測方法であって、
     第1タイミングで複数の予測モデルをそれぞれ用いてその時点で観測される状態から予測される第2タイミングの状態を示す予測結果を記憶する工程と、
     前記第2タイミングの時点で観測される状態から前記予測結果に対する正解の状態を示す正解状態を生成する工程と、
     前記正解状態と前記予測モデル毎の前記予測結果とを比較し、前記予測モデル毎の正答率を算出する工程と、
     前記予測モデル毎に実施された予測の回数を示す前記予測モデル毎の予測経験値を算出する工程と、
     前記予測モデル毎の前記正答率と、前記予測モデル毎の前記予測経験値とを用いて、複数の前記予測結果から1つの前記予測結果を選択して出力する工程と、
     を含む予測方法。
    A prediction method executed by the prediction device according to claim 1,
    a step of storing a prediction result indicating a state at a second timing predicted from a state observed at that time using each of the plurality of prediction models at the first timing;
    generating a correct state indicating a correct state for the prediction result from the state observed at the second timing;
    Comparing the correct state with the prediction result for each prediction model, and calculating a correct answer rate for each prediction model;
    calculating a prediction empirical value for each prediction model that indicates the number of predictions made for each prediction model;
    selecting and outputting one prediction result from a plurality of prediction results using the correct answer rate for each prediction model and the prediction empirical value for each prediction model;
    Forecasting methods, including
PCT/JP2021/034357 2021-01-22 2021-09-17 Prediction system and prediction method WO2022158042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009069 2021-01-22
JP2021009069A JP2024038530A (en) 2021-01-22 2021-01-22 Prediction system and prediction method

Publications (1)

Publication Number Publication Date
WO2022158042A1 true WO2022158042A1 (en) 2022-07-28

Family

ID=82549699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034357 WO2022158042A1 (en) 2021-01-22 2021-09-17 Prediction system and prediction method

Country Status (2)

Country Link
JP (1) JP2024038530A (en)
WO (1) WO2022158042A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042260A1 (en) * 2011-09-22 2013-03-28 トヨタ自動車株式会社 Driving assistance device
JP2016115289A (en) * 2014-12-17 2016-06-23 富士通株式会社 Sensor controller, sensor control program and sensor control method
JP2019016209A (en) * 2017-07-07 2019-01-31 株式会社東芝 Diagnosis device, diagnosis method, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042260A1 (en) * 2011-09-22 2013-03-28 トヨタ自動車株式会社 Driving assistance device
JP2016115289A (en) * 2014-12-17 2016-06-23 富士通株式会社 Sensor controller, sensor control program and sensor control method
JP2019016209A (en) * 2017-07-07 2019-01-31 株式会社東芝 Diagnosis device, diagnosis method, and computer program

Also Published As

Publication number Publication date
JP2024038530A (en) 2024-03-21

Similar Documents

Publication Publication Date Title
KR101901801B1 (en) Hybrid vehicle and method of predicting driving pattern
EP3579211B1 (en) Method and vehicle for assisting an operator of an ego-vehicle in controlling the ego-vehicle by determining a future behavior and an associated trajectory for the ego-vehicle
CN112781887B (en) Method, device and system for testing vehicle performance
Damerow et al. Risk-aversive behavior planning under multiple situations with uncertainty
US11161497B2 (en) Hybrid vehicle and method of controlling mode transition
US8781720B2 (en) Vehicle travel track estimator
JP6822752B2 (en) Driving assistance technology for active vehicle control
JP6375221B2 (en) Method and system for predicting the movement behavior of a target traffic object
EP3091509A1 (en) Method for improving performance of a method for computationally predicting a future state of a target object, driver assistance system, vehicle including such driver assistance system and respective program storage medium and program
Nilsson et al. Safe transitions from automated to manual driving using driver controllability estimation
US9132775B2 (en) Mobile object target state determination device and program
KR102007247B1 (en) Smart cruise control system and control method therefor
JP2020119517A (en) Method for assisting driver, driver assistance system, and vehicle having such driver assistance system
CN102874258B (en) A kind of vehicle
JP2015082324A (en) Composite confidence estimation for predictive driver assistant system
US10654467B2 (en) Hybrid vehicle and method of performing temperature control therefor
JP2020008889A (en) Prediction control device
Marzbanrad et al. Space control law design in adaptive cruise control vehicles using model predictive control
CN114932901A (en) Self-adaptive speed planning method and device and domain controller
JP7263997B2 (en) DRIVING ACTION EVALUATION DEVICE, METHOD AND PROGRAM
WO2022158042A1 (en) Prediction system and prediction method
US12024168B2 (en) Vehicle for tracking speed profile and control method thereof
Grobelna et al. Dynamic risk management for safely automating connected driving maneuvers
Kong et al. Simulation based methodology for assessing forced merging strategies for autonomous vehicles
Atallah et al. Automotive safety verification under temporal failure of adaptive cruise control system using statistical model checking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP