WO2022158001A1 - Optical waveguide and method for producing same - Google Patents

Optical waveguide and method for producing same Download PDF

Info

Publication number
WO2022158001A1
WO2022158001A1 PCT/JP2021/024832 JP2021024832W WO2022158001A1 WO 2022158001 A1 WO2022158001 A1 WO 2022158001A1 JP 2021024832 W JP2021024832 W JP 2021024832W WO 2022158001 A1 WO2022158001 A1 WO 2022158001A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
plasma
deuterium
amorphous
silicon
Prior art date
Application number
PCT/JP2021/024832
Other languages
French (fr)
Japanese (ja)
Inventor
泰 土澤
達郎 開
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022576949A priority Critical patent/JPWO2022158001A1/ja
Publication of WO2022158001A1 publication Critical patent/WO2022158001A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Definitions

  • the present invention relates to an optical waveguide using amorphous silicon and a manufacturing method thereof.
  • Recent advances in silicon photonics technology have led to the development of waveguide fabrication technology that uses high-refractive-index silicon waveguides to allow light to propagate with low loss even in extremely fine and sharp bends, and is compatible with electronic devices and materials.
  • waveguide fabrication technology that uses high-refractive-index silicon waveguides to allow light to propagate with low loss even in extremely fine and sharp bends, and is compatible with electronic devices and materials.
  • This optoelectronics convergence technology is gaining importance as a key technology for achieving high speed, miniaturization, low power consumption, and low cost of devices in the field of communication.
  • silicon waveguides are also suitable for optical coupling with light-emitting devices and light-receiving devices made of compound semiconductors with similar refractive indices.
  • Technology development for integration is also progressing.
  • the present invention was made to solve this problem, and aims to realize an optical waveguide using amorphous silicon with low optical loss, high heat resistance, and high stability, and a manufacturing method thereof.
  • the steps of generating a plasma of an inert gas and a deuterium gas, irradiating a silicon target with the plasma to cause sputtering, and removing silicon particles generated by the sputtering are performed. depositing and forming an amorphous silicon film containing deuterium; processing the amorphous silicon film into an optical waveguide core; and forming an upper clad layer so as to cover the optical waveguide core.
  • the method for manufacturing an optical waveguide includes a first step of irradiating a silicon target with plasma of an inert gas to cause sputtering, depositing silicon particles generated by the sputtering, and forming an amorphous silicon thin film. a third step of irradiating the amorphous silicon thin film with deuterium gas plasma; a step of repeating steps 1 to 3; a step of processing the amorphous silicon thin film having the predetermined thickness into an optical waveguide core; and a step of forming an upper clad layer so as to cover the optical waveguide core.
  • an optical waveguide according to the present invention includes, in order, a lower clad layer, an optical waveguide core having amorphous silicon containing deuterium, and an upper clad layer covering the optical waveguide core.
  • an optical waveguide using amorphous silicon with low optical loss and high stability and a manufacturing method thereof can be provided.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an optical waveguide according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of a film forming apparatus in the optical waveguide manufacturing method according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart of a film forming method in the optical waveguide manufacturing method according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the method of manufacturing the optical waveguide according to the first embodiment of the present invention.
  • FIG. 5 is a flow chart of a film forming method in the optical waveguide manufacturing method according to the second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing the structure of an optical waveguide according to a third embodiment of the invention.
  • FIG. 7 is a flow chart of a film forming method in the optical waveguide manufacturing method according to the third embodiment of the present invention.
  • FIG. 1 An optical waveguide according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 An optical waveguide according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 An optical waveguide according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 An optical waveguide according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the optical waveguide 10 sequentially covers a silicon (Si) substrate 11, a lower clad (SiO 2 ) layer 12, an optical waveguide core 13, and an optical waveguide core 13. and a cladding layer 14 .
  • the optical waveguide core 13 is made of amorphous Si containing deuterium, and has a width of about 300 to 500 nm and a thickness of about 200 to 300 nm, for example.
  • the clad layer 14 is made of SiO 2 and has a thickness of about 2 to 3 ⁇ m, for example.
  • FIG. 2 shows a cross-sectional view of an example of an ECR sputtering apparatus used as a film forming apparatus in this embodiment.
  • An amorphous Si thin film which will be the core material of the optical waveguide, is deposited by the ECR sputtering apparatus 100 .
  • the ECR sputtering apparatus 100 includes, in order, a chamber 101, a plasma generation chamber 102, a vacuum waveguide 106, and a waveguide 108, which are in communication with each other.
  • the chamber 101 communicates with an evacuation device (not shown), and the inside thereof is evacuated together with the plasma generation chamber 102 by the evacuation device.
  • the chamber 101 is provided with a sample table 104 on which a substrate 103 on which a film is to be formed is fixed.
  • the sample stage 104 tilts and rotates at a desired angle.
  • the sample table 104 is rotatable by a rotating mechanism (not shown).
  • a ring-shaped silicon target 105 is provided so as to surround the opening region in the chamber 101 where the plasma from the plasma generation chamber 102 is introduced.
  • the silicon target 105 is placed in a container 105 a made of an insulator, and the inner surface is exposed inside the chamber 101 .
  • the plasma generation chamber 102 communicates with a vacuum waveguide 106 , and the vacuum waveguide 106 is connected to a waveguide 108 via a quartz window 107 .
  • Waveguide 108 communicates with a microwave generator (not shown). The microwave generator, the waveguide 108, the quartz window 107, and the vacuum waveguide 106 constitute microwave supply means.
  • a magnetic coil 110 is also provided around and above the plasma generation chamber 102 . Note that there is also a configuration in which a mode converter is provided in the middle of the waveguide 108 .
  • a silicon substrate 103 having a thermal oxide film of 3 ⁇ m formed thereon is placed on a sample table 104 in a chamber 101 .
  • the silicon substrate 103 corresponds to the silicon substrate 11 in the optical waveguide 10 and the thermal oxide film corresponds to the lower clad layer (SiO 2 ) 12 .
  • argon gas which is an inert gas, is introduced into the plasma generation chamber 102 from the inert gas introduction unit 111 .
  • deuterium is introduced into the chamber 101 through a gas introduction section 112 installed separately from the inert gas introduction section, and the pressure inside the plasma generation chamber 102 is set to about 10-3 Pa, for example.
  • the ECR plasma forms a plasma flow in the direction of the sample stage 104 due to the divergent magnetic field from the magnetic coil 110 .
  • the microwave power supplied from the microwave generation unit is branched at the waveguide 108, and the plasma generation is performed in the vacuum waveguide 106 above the plasma generation chamber 102. It is coupled from chamber 102 through quartz window 107 .
  • This configuration can prevent scattering particles from the silicon target 105 from adhering to the quartz window 107, and can greatly improve the running time.
  • a high-frequency voltage is applied to the ring-shaped silicon target 105 provided between the plasma generation chamber 102 and the sample table 104, thereby attracting the plasma to the surface of the silicon target 105 and irradiating it. to cause sputtering.
  • particles of the target material fly out from the surface of the silicon target 105 and reach the substrate 103 together with the plasma emitted from the plasma generation chamber 102 .
  • the deuterium gas activated by the plasma also reaches the substrate 103 together with the particles.
  • amorphous Si containing deuterium is deposited on the substrate 103, and an amorphous Si film is formed on the thermal oxide film of the substrate 103 (step 2_12).
  • the film thickness to be deposited can be controlled by checking the deposition rate in advance and controlling the sputtering time. For example, the sputtering is stopped when the film thickness of the amorphous Si to be deposited reaches 200 nm (step 2_13). As a result, an amorphous Si film with a thickness of 200 nm is formed on the thermal oxide film with a thickness of 3 ⁇ m. After that, the introduction of the gas is stopped, and the substrate is taken out from the chamber after a predetermined time has passed.
  • an oxide film (SiO 2 ) 12 is formed on a silicon substrate 11 (step 1).
  • an amorphous Si thin film 13_1 is formed on the oxide film (SiO 2 ) 12 by the film forming method described above (step 2).
  • a mask pattern 15 of SiO 2 is formed on the amorphous Si thin film 13_1 by a normal lithographic technique (step 3).
  • a silicon oxide film is formed on an amorphous Si thin film by plasma CVD.
  • a resist mask pattern is formed on the silicon oxide film by lithography.
  • the silicon oxide film is selectively etched by dry etching using a mixed gas of SF6 gas and a gas containing carbon and fluorine such as C2F6 . Subsequently, the remaining resist pattern is removed by, for example, ashing with ozone. As a result, a mask pattern 15 made of a silicon oxide film having a rectangular cross section is formed.
  • a mask pattern 15 made of a silicon oxide film is used to hide the amorphous Si thin film 13_1, thereby forming an optical waveguide made of amorphous silicon having a rectangular cross section.
  • a core 13 is formed (step 4).
  • an upper clad layer 14 made of silicon oxide is formed by plasma CVD to cover the optical waveguide core 13 (step 5).
  • the SiO 2 mask pattern 15 may or may not be removed before forming the upper clad layer 14 . If not removed, the remaining SiO 2 mask pattern 15 forms the upper cladding layer together with the overlying upper cladding layer 14 .
  • a deuterated (deuterium-containing) gas as a material gas for film formation.
  • the upper cladding layer 14 has silicon oxide containing deuterium.
  • the upper cladding layer 14 may be entirely made of silicon oxide (SiO 2 ) containing deuterium, or may partially contain silicon oxide (SiO 2 ) containing hydrogen.
  • a high-quality film can be formed at a low temperature of 200° C. or less, so the film can be formed without damaging the optical waveguide core made of amorphous Si during film formation.
  • amorphous Si containing deuterium for the core is explained below. Since amorphous Si has a large optical loss due to light absorption by dangling bonds, it is difficult to practically use amorphous Si for waveguide cores.
  • deuterium in amorphous Si and terminating dangling bonds with deuterium by including deuterium in amorphous Si and terminating dangling bonds with deuterium, light absorption can be suppressed and light loss can be reduced.
  • deuterium since deuterium has a stronger bond with the dangling bonds of amorphous Si than hydrogen, the deuterium-terminated dangling bonds are maintained even when external energy is input. As a result, optical loss does not increase.
  • an optical waveguide that does not lose light due to temperature rise in the optical integrated device manufacturing process can be realized by using amorphous Si containing deuterium for the core.
  • an optical waveguide with high heat resistance, stability, and low loss is realized by using amorphous Si containing deuterium as the optical waveguide core.
  • this optical waveguide can be applied to an optical integrated device, and high performance of the optical integrated device can be realized.
  • the optical waveguide core is made of amorphous Si containing deuterium, but the optical waveguide core may partially contain amorphous Si or Si (crystal) that does not contain deuterium.
  • the optical waveguide core may have amorphous Si containing deuterium.
  • the configuration of the optical waveguide according to this embodiment is substantially the same as that of the first embodiment, but the manufacturing method is different.
  • a silicon substrate 103 having a thermal oxide film of 3 ⁇ m formed thereon is placed on a sample table 104 in a chamber 101 .
  • the silicon substrate 103 corresponds to the silicon substrate 11 in the optical waveguide
  • the thermal oxide film corresponds to the lower clad layer (SiO 2 ) 12 .
  • a shutter is installed directly above the sample table 104 and the shutter is closed (a state in which the plasma is blocked).
  • argon gas which is an inert gas
  • argon gas is introduced from the inert gas introduction part 111 .
  • argon gas is introduced at a flow rate of 20 sccm, and the pressure inside the plasma generation chamber 102 is set to about 10 ⁇ 3 Pa.
  • the shutter is opened to irradiate the substrate 103 with plasma to start forming an amorphous Si film on the substrate 103 (step 2_32).
  • this state is maintained for 25 seconds to form an amorphous Si thin film with a thickness of about 2 nm.
  • the film thickness of the amorphous Si thin film is desirably 1 nm or more and 3 nm or less.
  • deuterium is introduced from the gas introduction part 112, the inside of the plasma generation chamber 102 is set to a predetermined pressure, and plasma is generated (step 2_33).
  • deuterium is introduced at a flow rate of 20 sccm, and plasma is generated at a pressure of about 10 -3 Pa.
  • the shutter is opened to irradiate the amorphous Si thin film on the substrate surface with deuterium plasma for a predetermined time, for example, about 1 minute (step 2_34).
  • a predetermined time for example, about 1 minute
  • the deuterium plasma irradiation time is preferably about 1 minute or more and about 10 minutes or less.
  • deuterium may be contained in the entire amorphous Si thin film or may be contained in part of the amorphous Si thin film by irradiation with deuterium plasma. It may be contained to such an extent that the effect of deuterium such as improvement of heat resistance is exhibited.
  • step 2_35 it is determined whether the amorphous Si film containing deuterium formed on the substrate has a predetermined thickness, for example, 200 nm thickness (step 2_35). Repeat 2_34.
  • the microwave and magnetic field are stopped, plasma generation is stopped, and film formation is stopped (steps 2_35 and 2_36).
  • the introduction of the gas is stopped, the gas in the gas generation chamber is exhausted, and the substrate is taken out from the chamber after a predetermined time has passed.
  • the optical waveguide according to the present embodiment is manufactured in the same steps as in the first embodiment using the amorphous Si film formed in the steps from step 2_31 to step 2_36 described above.
  • the deuterium plasma is irradiated so that the amorphous Si thin film contains the deuterium plasma.
  • Amorphous Si containing can be formed.
  • the stability of the optical waveguide core is made of amorphous Si containing deuterium, which has excellent adhesion to the lower clad layer and the substrate, and has low loss. It is possible to realize an optical waveguide with a high Furthermore, this optical waveguide can be applied to an optical integrated device, and high performance of the optical integrated device can be realized.
  • FIG. 6 and 7 An optical waveguide according to a third embodiment of the present invention will be described with reference to FIGS. 6 and 7.
  • FIG. The optical waveguide 20 and its manufacturing method according to the present embodiment are substantially the same as those of the first embodiment, but differ in the configuration of the optical waveguide core.
  • the optical waveguide 20 includes, in order, a Si (silicon) substrate 21, a SiO2 layer (lower clad layer) 22, an optical waveguide core 23, and an optical waveguide core 23. and an overlying upper cladding layer 24 .
  • the optical waveguide core 23 is made of amorphous Si, and has a width of approximately 300 to 500 nm and a thickness of approximately 200 to 300 nm, for example.
  • the cladding layer 24 is made of SiO 2 and has a thickness of, for example, about 2 to 3 ⁇ m.
  • the optical waveguide core 23 sequentially comprises a lower core 231 in contact with the SiO 2 layer 22 and an upper core 232 .
  • the lower core 231 does not contain deuterium D
  • the upper core 232 contains deuterium D.
  • Amorphous Si containing high deuterium can be formed on the lower cladding layer 22 .
  • the upper core 232 is made thicker than the lower core 231 so that light is guided through the upper core 232 mainly containing deuterium.
  • the thicknesses of the lower core 231 and the upper core 232 can be controlled by adjusting the time to start introducing deuterium and the sputtering time in the manufacturing method described later.
  • a silicon substrate 103 having a thermal oxide film of 3 ⁇ m formed thereon is placed on a sample table 104 in a chamber 101.
  • the silicon substrate 103 corresponds to the silicon substrate 21 in the optical waveguide 20 and the thermal oxide film corresponds to the lower clad layer (SiO 2 ) 22 .
  • a shutter is installed directly above the sample table 104 and the shutter is closed (a state in which the plasma is blocked).
  • argon gas which is an inert gas
  • the inert gas introduction unit 111 is introduced from the inert gas introduction unit 111 at a flow rate of 20 sccm, and the pressure in the plasma generation chamber 102 is set to about 10 to 3 Pa. do.
  • ECR electron cyclotron resonance
  • the shutter is opened to irradiate the substrate 103 with plasma, the film formation of amorphous Si on the substrate 103 is started, and the film formation of amorphous Si on the substrate 103 is started for a predetermined time, for example, about two minutes equivalent) is maintained (step 2_221).
  • a predetermined time for example, about two minutes equivalent
  • deuterium is introduced from the gas introduction part 112 at a flow rate of 5 sccm and maintained for a predetermined time, for example, about 15 minutes (step 2_222). Then close the shutter. As a result, amorphous Si containing deuterium is continuously formed on the 10 nm-thick amorphous Si to a total thickness of 200 nm.
  • step 2_23 the microwave and magnetic field are stopped to stop plasma generation.
  • the introduction of the gas is stopped, and the substrate is taken out from the chamber after a predetermined time has passed.
  • the optical waveguide according to the present embodiment is manufactured in the same steps as in the first embodiment using the amorphous Si film formed in the steps 2_21 to 2_23 described above.
  • the stability of the optical waveguide core is made of amorphous Si containing deuterium, which has excellent adhesion to the lower clad layer and the substrate, and has low loss. It is possible to realize an optical waveguide with a high Furthermore, this optical waveguide can be applied to an optical integrated device, and high performance of the optical integrated device can be realized.
  • the upper core of the optical waveguide core is made of amorphous Si containing deuterium
  • the upper core may partially contain amorphous Si or Si (crystal) that does not contain deuterium.
  • the upper core may have amorphous Si containing deuterium.
  • the lower core of the optical waveguide core is made of amorphous Si that does not contain deuterium
  • the lower core may also contain amorphous Si or Si (crystal) that partially contains deuterium.
  • the lower core may have amorphous Si that does not contain deuterium, and the region in contact with the lower clad is desirably amorphous Si that does not contain deuterium.
  • deuterium gas is introduced into the state of sputtering by plasma of argon gas, and an example of continuously forming an amorphous Si film containing deuterium from an amorphous Si film containing no deuterium is shown.
  • the amorphous Si film containing deuterium may be deposited with plasma of argon gas and deuterium gas.
  • the upper core is formed by the method of forming the amorphous Si film in the first embodiment, but the present invention is not limited to this.
  • the upper core may be formed by the method of forming an amorphous Si film in the second embodiment.
  • SiN x silicon nitride
  • SiN x O y silicon nitride
  • Any dielectric material may be used as long as it has a dielectric constant lower than that of amorphous Si, which is the optical waveguide core, and can confine guided light in the optical waveguide core.
  • argon gas is used as an inert gas in the embodiment of the present invention
  • a rare gas such as xenon or krypton may be used.
  • the present invention is not limited to this.
  • Other materials may be used for the substrate.
  • a glass substrate such as quartz may be used.
  • the substrate becomes the lower clad layer, it is not necessary to form the lower clad layer made of SiO2 or the like on the substrate.
  • a Si substrate having an oxide film on its surface as a lower clad layer is installed in a film forming apparatus
  • a substrate for example, a Si substrate
  • a lower clad layer may be formed on the substrate by a film forming apparatus.
  • the shutter is used in the film forming apparatus in the second and third embodiments, but of course the shutter may be used in the film forming apparatus in the first embodiment.
  • the present invention can be applied to silicon photonics devices and can be applied to devices for optical communication systems.

Abstract

This method for producing an optical waveguide comprises: a step in which a plasma of an inert gas and deuterium gas is generated; a step in which a silicon target is irradiated with the plasma and sputtering is made to occur; a step in which silicon particles generated by the sputtering are accumulated and an amorphous silicon film containing deuterium is formed; a step in which the amorphous silicon film is machined into an optical waveguide core (13); and a step in which an upper cladding layer (14) is formed so as to cover the optical waveguide core (13). As a result, this method for producing an optical waveguide makes it possible to provide an optical waveguide using amorphous silicon which exhibits low optical loss and has high stability.

Description

光導波路およびその製造方法Optical waveguide and its manufacturing method
 本発明は、アモルファスシリコンを用いる光導波路およびその製造方法に関する。 The present invention relates to an optical waveguide using amorphous silicon and a manufacturing method thereof.
 近年のシリコン・フォトニクス技術の進展により、高屈折率のシリコン導波路を利用して極めて微細で急な曲がりにおいても低損失で光伝搬できる導波路作製技術が開発され、電子デバイスと材料調和性がよいシリコン導波路を利用した光デバイスをシリコン基板上で電子デバイスと集積することで小型光電融合デバイスの実現が可能になってきた。この光電融合技術は、通信の分野においてもデバイスの高速かつ小型化、低消費電力化、低コスト化を実現する鍵となる技術として重要性が高まっている。さらに、シリコン導波路は屈折率が同程度の化合物半導体の発光デバイスや受光デバイスとの光結合にも適しており、シリコン基板と化合物半導体基板を接合することで、シリコンチップ上に光送受信ユニットを集積化する技術開発も進んでいる。 Recent advances in silicon photonics technology have led to the development of waveguide fabrication technology that uses high-refractive-index silicon waveguides to allow light to propagate with low loss even in extremely fine and sharp bends, and is compatible with electronic devices and materials. By integrating optical devices using good silicon waveguides with electronic devices on a silicon substrate, it has become possible to realize compact optoelectronic devices. This optoelectronics convergence technology is gaining importance as a key technology for achieving high speed, miniaturization, low power consumption, and low cost of devices in the field of communication. Furthermore, silicon waveguides are also suitable for optical coupling with light-emitting devices and light-receiving devices made of compound semiconductors with similar refractive indices. Technology development for integration is also progressing.
 一方、これまでシリコン導波路はSOI基板上の結晶シリコンを用いて開発されてきたが、結晶シリコンは光損失が小さい利点があるが、SOI基板の利用はデバイス集積作製プロセスの自由度が小さくなり、また基板の価格を高価で、集積の効率性やコスト面で課題があった。一般的に光損失が大きいアモルファスシリコンにおいても水素を含有させることで低損失な光導波路が実現できることが示され、これにより高価なSOI基板上の結晶シリコンを使わずに、低コストでシリコン導波路を利用した光電融合デバイスが作製できる可能性が見えてきた(特許文献1参照)。 On the other hand, until now, silicon waveguides have been developed using crystalline silicon on SOI substrates. Although crystalline silicon has the advantage of low optical loss, the use of SOI substrates reduces the degree of freedom in device integration fabrication processes. In addition, the cost of the substrate was high, and there were problems in terms of integration efficiency and cost. It has been shown that a low-loss optical waveguide can be realized by adding hydrogen even to amorphous silicon, which generally has a large optical loss. The possibility of producing an optoelectronic device utilizing the has emerged (see Patent Document 1).
特開2014-35498号公報JP 2014-35498 A
 しかしながら、また水素含有のアモルファスシリコンは、400℃以上の高温プロセスにおいて、Si-Hのボンドが切れて導波損失が増大することが明らかになり、発光デバイスや受光デバイスと集積するための作製プロセス中に導波路特性が劣化し、高性能光集積デバイスへの適用が難しいという問題が残っていた。 However, in hydrogen-containing amorphous silicon, it has become clear that in a high temperature process of 400° C. or higher, Si—H bonds are broken and waveguide loss increases. However, there remains the problem of deterioration in waveguide characteristics and difficulty in application to high-performance optical integrated devices.
 本発明は、この問題を解消するためになされたものであり、光損失が小さく、熱耐性が高く、安定性が高いアモルファスシリコンを用いる光導波路とその製造方法を実現することを目的とする。 The present invention was made to solve this problem, and aims to realize an optical waveguide using amorphous silicon with low optical loss, high heat resistance, and high stability, and a manufacturing method thereof.
 上述したような課題を解決するために、不活性ガスと重水素ガスのプラズマを発生させる工程と、前記プラズマをシリコンターゲットに照射して、スパッタリングを起こす工程と、前記スパッタリングにより生じたシリコン粒子を堆積させ、重水素含むアモルファスシリコン膜を成膜する工程と、前記アモルファスシリコン膜を光導波路コアに加工する工程と、前記光導波路コアを覆うように上部クラッド層を形成する工程とを備える。 In order to solve the above-described problems, the steps of generating a plasma of an inert gas and a deuterium gas, irradiating a silicon target with the plasma to cause sputtering, and removing silicon particles generated by the sputtering are performed. depositing and forming an amorphous silicon film containing deuterium; processing the amorphous silicon film into an optical waveguide core; and forming an upper clad layer so as to cover the optical waveguide core.
 また、本発明に係る光導波路の製造方法は、不活性ガスのプラズマを、シリコンターゲットに照射して、スパッタリングを起こす第1の工程と、前記スパッタリングにより生じたシリコン粒子を堆積させ、アモルファスシリコン薄膜を成膜する第2の工程と、重水素ガスのプラズマを、前記アモルファスシリコン薄膜に照射する第3の工程と、前記アモルファスシリコン薄膜の合計の膜厚が所定の膜厚になるまで、前記第1の工程から前記第3の工程までを繰り返す工程と、前記所定の膜厚の前記アモルファスシリコン薄膜を光導波路コアに加工する工程と、前記光導波路コアを覆うように上部クラッド層を形成する工程とを備える。 Further, the method for manufacturing an optical waveguide according to the present invention includes a first step of irradiating a silicon target with plasma of an inert gas to cause sputtering, depositing silicon particles generated by the sputtering, and forming an amorphous silicon thin film. a third step of irradiating the amorphous silicon thin film with deuterium gas plasma; a step of repeating steps 1 to 3; a step of processing the amorphous silicon thin film having the predetermined thickness into an optical waveguide core; and a step of forming an upper clad layer so as to cover the optical waveguide core. and
 また、本発明に係る光導波路は、順に、下部クラッド層と、重水素を含むアモルファスシリコンを有する光導波路コアと、前記光導波路コアを覆う上部クラッド層とを備える。 Further, an optical waveguide according to the present invention includes, in order, a lower clad layer, an optical waveguide core having amorphous silicon containing deuterium, and an upper clad layer covering the optical waveguide core.
 本発明によれば、光損失が小さく安定性が高いアモルファスシリコンを用いる光導波路およびその製造方法を提供できる。 According to the present invention, an optical waveguide using amorphous silicon with low optical loss and high stability and a manufacturing method thereof can be provided.
図1は、本発明の第1の実施の形態に係る光導波路の構成を示す断面概要図である。FIG. 1 is a schematic cross-sectional view showing the configuration of an optical waveguide according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係る光導波路の製造方法における成膜装置の構成を示す断面概要図である。FIG. 2 is a schematic cross-sectional view showing the configuration of a film forming apparatus in the optical waveguide manufacturing method according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態に係る光導波路の製造方法における成膜方法のフローチャート図である。FIG. 3 is a flowchart of a film forming method in the optical waveguide manufacturing method according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態に係る光導波路の製造方法を説明するための図である。FIG. 4 is a diagram for explaining the method of manufacturing the optical waveguide according to the first embodiment of the present invention. 図5は、本発明の第2の実施の形態に係る光導波路の製造方法における成膜方法のフローチャート図である。FIG. 5 is a flow chart of a film forming method in the optical waveguide manufacturing method according to the second embodiment of the present invention. 図6は、本発明の第3の実施の形態に係る光導波路の構成を示す断面概要図である。FIG. 6 is a schematic cross-sectional view showing the structure of an optical waveguide according to a third embodiment of the invention. 図7は、本発明の第3の実施の形態に係る光導波路の製造方法における成膜方法のフローチャート図である。FIG. 7 is a flow chart of a film forming method in the optical waveguide manufacturing method according to the third embodiment of the present invention.
<第1の実施の形態>
 本発明の第1の実施の形態に係る光導波路について図1~図4を参照して説明する。
<First embodiment>
An optical waveguide according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG.
<光導波路の構成>
 本実施の形態に係る光導波路10は、図1に示すように、順に、シリコン(Si)基板11と、下部クラッド(SiO)層12と、光導波路コア13と、光導波路コア13を覆うクラッド層14とを備える。
<Structure of Optical Waveguide>
As shown in FIG. 1, the optical waveguide 10 according to the present embodiment sequentially covers a silicon (Si) substrate 11, a lower clad (SiO 2 ) layer 12, an optical waveguide core 13, and an optical waveguide core 13. and a cladding layer 14 .
 光導波路コア13は、重水素を含むアモルファスSiからなり、例えば、幅は300~500nm程度、厚さは200~300nm程度である。 The optical waveguide core 13 is made of amorphous Si containing deuterium, and has a width of about 300 to 500 nm and a thickness of about 200 to 300 nm, for example.
 クラッド層14はSiOからなり、例えば、厚さは2~3μm程度である。 The clad layer 14 is made of SiO 2 and has a thickness of about 2 to 3 μm, for example.
<光導波路の製造方法>
 本実施の形態に係る光導波路10の材料の成膜に用いる装置を説明する。
<Method for manufacturing an optical waveguide>
An apparatus used for film formation of the material of the optical waveguide 10 according to this embodiment will be described.
 図2に、本実施の形態で成膜装置として用いるECRスパッタ装置の一例の断面図を示す。ECRスパッタ装置100により、光導波路のコア材料となるアモルファスSi薄膜を成膜する。 FIG. 2 shows a cross-sectional view of an example of an ECR sputtering apparatus used as a film forming apparatus in this embodiment. An amorphous Si thin film, which will be the core material of the optical waveguide, is deposited by the ECR sputtering apparatus 100 .
 ECRスパッタ装置100は、順に、チャンバー101と、プラズマ生成室102と、真空導波管106と、導波管108と備え、それぞれは連通されている。 The ECR sputtering apparatus 100 includes, in order, a chamber 101, a plasma generation chamber 102, a vacuum waveguide 106, and a waveguide 108, which are in communication with each other.
 チャンバー101は、真空排気装置(図示せず)に連通し、真空排気装置によりプラズマ生成室102とともに内部が真空排気される。 The chamber 101 communicates with an evacuation device (not shown), and the inside thereof is evacuated together with the plasma generation chamber 102 by the evacuation device.
 チャンバー101には、膜形成対象の基板103が固定される試料台104が設けられている。試料台104は、所望の角度に傾斜し、かつ回転する。試料台104は、回転機構(図示せず)により回転可能とされている。 The chamber 101 is provided with a sample table 104 on which a substrate 103 on which a film is to be formed is fixed. The sample stage 104 tilts and rotates at a desired angle. The sample table 104 is rotatable by a rotating mechanism (not shown).
 また、チャンバー101内の、プラズマ生成室102からのプラズマが導入される開口領域において、開口領域を取り巻くようにリング状のシリコンターゲット105が備えられている。シリコンターゲット105は、絶縁体からなる容器105a内に載置され、内側の面がチャンバー101内に露出している。 In addition, a ring-shaped silicon target 105 is provided so as to surround the opening region in the chamber 101 where the plasma from the plasma generation chamber 102 is introduced. The silicon target 105 is placed in a container 105 a made of an insulator, and the inner surface is exposed inside the chamber 101 .
 また、プラズマ生成室102は、真空導波管106に連通し、真空導波管106は、石英窓107を介して導波管108に接続されている。導波管108は、マイクロ波発生部(図示せず)に連通している。これらの、マイクロ波発生部と、導波管108と、石英窓107と、真空導波管106により、マイクロ波供給手段が構成されている。 Also, the plasma generation chamber 102 communicates with a vacuum waveguide 106 , and the vacuum waveguide 106 is connected to a waveguide 108 via a quartz window 107 . Waveguide 108 communicates with a microwave generator (not shown). The microwave generator, the waveguide 108, the quartz window 107, and the vacuum waveguide 106 constitute microwave supply means.
 また、プラズマ生成室102の周囲及びプラズマ生成室102の上部に、磁気コイル110が備えられている。なお、導波管108の途中に、モード変換器を設けるようにする構成もある。 A magnetic coil 110 is also provided around and above the plasma generation chamber 102 . Note that there is also a configuration in which a mode converter is provided in the middle of the waveguide 108 .
 次に、上述のECRスパッタ装置100を用いた、本実施の形態におけるアモルファスSi膜の成膜方法について、図3を参照して説明する。 Next, a method for forming an amorphous Si film according to the present embodiment using the ECR sputtering apparatus 100 described above will be described with reference to FIG.
 まず、チャンバー101内の試料台104に熱酸化膜3μmが形成されているシリコン基板103を設置する。ここで、シリコン基板103は光導波路10におけるシリコン基板11に相当し、熱酸化膜は下部クラッド層(SiO)12に相当する。 First, a silicon substrate 103 having a thermal oxide film of 3 μm formed thereon is placed on a sample table 104 in a chamber 101 . Here, the silicon substrate 103 corresponds to the silicon substrate 11 in the optical waveguide 10 and the thermal oxide film corresponds to the lower clad layer (SiO 2 ) 12 .
 次に、チャンバー101及びプラズマ生成室102内を真空排気した後、不活性ガス導入部111よりプラズマ生成室102に、不活性ガスであるアルゴンガスを導入する。 Next, after the chamber 101 and the plasma generation chamber 102 are evacuated, argon gas, which is an inert gas, is introduced into the plasma generation chamber 102 from the inert gas introduction unit 111 .
 また、不活性ガス導入部とは別に設置されたガス導入部112より、チャンバー101に重水素を導入し、プラズマ生成室102内を例えば10-3Pa程度の圧力にする。 Further, deuterium is introduced into the chamber 101 through a gas introduction section 112 installed separately from the inert gas introduction section, and the pressure inside the plasma generation chamber 102 is set to about 10-3 Pa, for example.
 この状態で、磁気コイル110よりプラズマ生成室102内に875Gの磁場を発生させた後、導波管108、石英窓107を介してプラズマ生成室102内に2.45GHzのマイクロ波を導入し、電子サイクロトロン共鳴(ECR)プラズマを発生させる(ステップ2_11)。 In this state, after a magnetic field of 875 G was generated in the plasma generation chamber 102 by the magnetic coil 110, microwaves of 2.45 GHz were introduced into the plasma generation chamber 102 through the waveguide 108 and the quartz window 107, An electron cyclotron resonance (ECR) plasma is generated (step 2_11).
 ECRプラズマは、磁気コイル110からの発散磁場により、試料台104の方向にプラズマ流を形成する。 The ECR plasma forms a plasma flow in the direction of the sample stage 104 due to the divergent magnetic field from the magnetic coil 110 .
 ここで、本実施の形態におけるECRスパッタ装置100では、マイクロ波発生部より供給されたマイクロ波電力を、導波管108において分岐し、プラズマ生成室102上部の真空導波管106に、プラズマ生成室102から石英窓107を介して結合させている。この構成により、石英窓107に対するシリコンターゲット105からの飛散粒子の付着を防ぐことができ、ランニングタイムを大幅に改善できる。 Here, in the ECR sputtering apparatus 100 according to the present embodiment, the microwave power supplied from the microwave generation unit is branched at the waveguide 108, and the plasma generation is performed in the vacuum waveguide 106 above the plasma generation chamber 102. It is coupled from chamber 102 through quartz window 107 . This configuration can prevent scattering particles from the silicon target 105 from adhering to the quartz window 107, and can greatly improve the running time.
 このようにプラズマが生成された状態で、プラズマ生成室102と試料台104との間に設けたリング状のシリコンターゲット105に高周波電圧を印加することにより、シリコンターゲット105表面にプラズマを引き寄せて照射して、スパッタリングを起こす。 In the state in which the plasma is generated in this manner, a high-frequency voltage is applied to the ring-shaped silicon target 105 provided between the plasma generation chamber 102 and the sample table 104, thereby attracting the plasma to the surface of the silicon target 105 and irradiating it. to cause sputtering.
 このスパッタリングにより、シリコンターゲット105表面よりターゲット材料(シリコン)の粒子が飛び出し、プラズマ生成室102より放出されたプラズマとともに基板103上に到達する。 By this sputtering, particles of the target material (silicon) fly out from the surface of the silicon target 105 and reach the substrate 103 together with the plasma emitted from the plasma generation chamber 102 .
 また、上記粒子とともに、プラズマにより活性化された重水素ガスも基板103上に到達する。この結果、基板103上に重水素を含むアモルファスSiが堆積し、基板103の熱酸化膜上にアモルファスSi膜が成膜される(ステップ2_12)。 The deuterium gas activated by the plasma also reaches the substrate 103 together with the particles. As a result, amorphous Si containing deuterium is deposited on the substrate 103, and an amorphous Si film is formed on the thermal oxide film of the substrate 103 (step 2_12).
 ここで、成膜レートを事前に確認し、スパッタ時間を制御することで成膜する膜厚を制御できる。例えば、成膜されるアモルファスSiの膜厚が200nmになったところでスパッタリングを停止する(ステップ2_13)。その結果、3μmの熱酸化膜上に200nm厚さのアモルファスSiが成膜される。その後、ガスの導入を停止し、所定の時間が経過した後、基板をチャンバーから取り出す。 Here, the film thickness to be deposited can be controlled by checking the deposition rate in advance and controlling the sputtering time. For example, the sputtering is stopped when the film thickness of the amorphous Si to be deposited reaches 200 nm (step 2_13). As a result, an amorphous Si film with a thickness of 200 nm is formed on the thermal oxide film with a thickness of 3 μm. After that, the introduction of the gas is stopped, and the substrate is taken out from the chamber after a predetermined time has passed.
 次に、上述のアモルファスSi膜を用いた光導波路の製造方法について、図4を参照して説明する。 Next, a method for manufacturing an optical waveguide using the amorphous Si film described above will be described with reference to FIG.
 初めに、シリコン基板11上に酸化膜(SiO)12を形成する(ステップ1)。 First, an oxide film (SiO 2 ) 12 is formed on a silicon substrate 11 (step 1).
 次に、上述の成膜方法により、酸化膜(SiO)12に、アモルファスSi薄膜13_1を形成する(ステップ2)。 Next, an amorphous Si thin film 13_1 is formed on the oxide film (SiO 2 ) 12 by the film forming method described above (step 2).
 次に、通常のリソグラフィ技術により、アモルファスSi薄膜13_1上に、SiOのマスクパターン15を形成する(ステップ3)。 Next, a mask pattern 15 of SiO 2 is formed on the amorphous Si thin film 13_1 by a normal lithographic technique (step 3).
 例えば、まず、アモルファスSi薄膜の上に、プラズマCVD法によりにシリコン酸化膜を形成する。引き続き、リソグラフィ技術によりシリコン酸化膜上にレジストによるマスクパターンを形成する。 For example, first, a silicon oxide film is formed on an amorphous Si thin film by plasma CVD. Subsequently, a resist mask pattern is formed on the silicon oxide film by lithography.
 次に、Cなどカーボンとフッ素を含むガスとSFガスの混合ガスを用いたドライエッチングによりシリコン酸化膜を選択的にエッチングする。引き続き、残存するレジストパターンを、例えばオゾンよるアッシングで除去する。その結果、断面を矩形とするシリコン酸化膜からなるマスクパターン15が形成される。 Next, the silicon oxide film is selectively etched by dry etching using a mixed gas of SF6 gas and a gas containing carbon and fluorine such as C2F6 . Subsequently, the remaining resist pattern is removed by, for example, ashing with ozone. As a result, a mask pattern 15 made of a silicon oxide film having a rectangular cross section is formed.
 次に、CFガスなどカーボンとフッ素含むガスを用いたドライエッチングにより、シリコン酸化膜からなるマスクパターン15を用いて、アモルファスSi薄膜13_1を隠して、断面を矩形とするアモルファスシリコンからなる光導波路コア13を形成する(ステップ4)。 Next, by dry etching using a gas containing carbon and fluorine such as CF 4 gas, a mask pattern 15 made of a silicon oxide film is used to hide the amorphous Si thin film 13_1, thereby forming an optical waveguide made of amorphous silicon having a rectangular cross section. A core 13 is formed (step 4).
 最後に、プラズマCVD法によって光導波路コア13を覆うように酸化シリコンからなる上部クラッド層14を形成する(ステップ5)。このとき、上部クラッド層14の形成前に、SiOマスクパターン15を除去してよいし、除去しなくてもよい。除去しない場合には、残存するSiOマスクパターン15は、積層される上部クラッド層14とともに、上部クラッド層を形成する。 Finally, an upper clad layer 14 made of silicon oxide is formed by plasma CVD to cover the optical waveguide core 13 (step 5). At this time, the SiO 2 mask pattern 15 may or may not be removed before forming the upper clad layer 14 . If not removed, the remaining SiO 2 mask pattern 15 forms the upper cladding layer together with the overlying upper cladding layer 14 .
 ここで、上部クラッド層14に水素が含まれると、膜中にOH基ができて光吸収による光損失が発生する。そこで、上部クラッド層14の形成に用いるプラズマCVD法において、成膜の材料ガスに重水素化した(重水素を含む)ガスを用いることが望ましい。 Here, if hydrogen is contained in the upper clad layer 14, OH groups are formed in the film, causing light loss due to light absorption. Therefore, in the plasma CVD method used to form the upper clad layer 14, it is desirable to use a deuterated (deuterium-containing) gas as a material gas for film formation.
 その結果、上部クラッド層14は重水素を含む酸化シリコンを有する。ここで、上部クラッド層14全てが重水素を含む酸化シリコン(SiO)であってもよく、一部に水素を含む酸化シリコン(SiO)を含んでもよい。 As a result, the upper cladding layer 14 has silicon oxide containing deuterium. Here, the upper cladding layer 14 may be entirely made of silicon oxide (SiO 2 ) containing deuterium, or may partially contain silicon oxide (SiO 2 ) containing hydrogen.
 また、プラズマCVD法としてECRプラズマCVD法を用いれば、200℃以下の低温で良質な膜が形成できるので、成膜中にアモルファスSiからなる光導波路コアに損傷を与えることなく成膜できる。 Also, if the ECR plasma CVD method is used as the plasma CVD method, a high-quality film can be formed at a low temperature of 200° C. or less, so the film can be formed without damaging the optical waveguide core made of amorphous Si during film formation.
 重水素を含むアモルファスSiをコアに用いる理由を、以下に説明する。アモルファスSiではダングリングボンドの光吸収により光損失が大きいため、アモルファスSiを実用的に導波路コアに用いることは困難である。 The reason for using amorphous Si containing deuterium for the core is explained below. Since amorphous Si has a large optical loss due to light absorption by dangling bonds, it is difficult to practically use amorphous Si for waveguide cores.
 ここで、アモルファスSiに水素を含有させ、ダングリングボンドを水素で終端化することにより、光吸収を抑制して光損失を低減することができる。しかしながら、水素で終端化されたアモルファスSiが加熱されたり強い光の照射を受けたりすると、外部エネルギーにより終端化された水素がはずれて光吸収が増加する。 Here, by including hydrogen in amorphous Si and terminating dangling bonds with hydrogen, light absorption can be suppressed and light loss can be reduced. However, when hydrogen-terminated amorphous Si is heated or irradiated with strong light, the hydrogen-terminated hydrogen atoms are removed by external energy, increasing light absorption.
 一方、アモルファスSiに重水素を含有させ、ダングリングボンドを重水素で終端化することにより、光吸収を抑制して光損失を低減することができる。この場合、重水素の方が水素よりもアモルファスSiのダングリングボンドとの結合が強いため、外部エネルギーが入力されても、重水素で終端化されたダングリングボンドが維持される。その結果、光損失は増加しない。 On the other hand, by including deuterium in amorphous Si and terminating dangling bonds with deuterium, light absorption can be suppressed and light loss can be reduced. In this case, since deuterium has a stronger bond with the dangling bonds of amorphous Si than hydrogen, the deuterium-terminated dangling bonds are maintained even when external energy is input. As a result, optical loss does not increase.
 このように、光集積デバイス作製プロセスにおける温度上昇により光損失しない光導波路を、重水素を含むアモルファスSiをコアに用いることにより実現できる。 Thus, an optical waveguide that does not lose light due to temperature rise in the optical integrated device manufacturing process can be realized by using amorphous Si containing deuterium for the core.
 以上のように、本実施の形態に係る光導波路およびその製造方法によれば、重水素を含むアモルファスSiを光導波路コアとすることにより、熱耐性が高く、安定で低損失な光導波路を実現できる。さらに、この光導波路を光集積デバイスに適用でき、光集積デバイスの高性能化が実現できる。 As described above, according to the optical waveguide and the manufacturing method thereof according to the present embodiment, an optical waveguide with high heat resistance, stability, and low loss is realized by using amorphous Si containing deuterium as the optical waveguide core. can. Furthermore, this optical waveguide can be applied to an optical integrated device, and high performance of the optical integrated device can be realized.
 本実施の形態では、光導波路コアが重水素を含むアモルファスSiからなる例を示したが、光導波路コアは一部に重水素を含まないアモルファスSiやSi(結晶)を含んでもよい。光導波路コアは重水素を含むアモルファスSiを有すればよい。 In this embodiment, an example in which the optical waveguide core is made of amorphous Si containing deuterium is shown, but the optical waveguide core may partially contain amorphous Si or Si (crystal) that does not contain deuterium. The optical waveguide core may have amorphous Si containing deuterium.
<第2の実施の形態>
 本実施の形態に係る光導波路の構成は、第1の実施の形態と略同様であるが、その製造方法が異なる。
<Second Embodiment>
The configuration of the optical waveguide according to this embodiment is substantially the same as that of the first embodiment, but the manufacturing method is different.
<光導波路の製造方法>
 本実施の形態に係る光導波路の製造方法におけるアモルファスSi膜の別の成膜方法について、図5を参照して説明する。
<Method for manufacturing an optical waveguide>
Another method for forming an amorphous Si film in the method for manufacturing an optical waveguide according to this embodiment will be described with reference to FIG.
 初めに、ECRスパッタ装置100において、チャンバー101内の試料台104に、熱酸化膜3μmが形成されているシリコン基板103を設置する。ここで、シリコン基板103は、光導波路におけるシリコン基板11に相当し、熱酸化膜は下部クラッド層(SiO)12に相当する。 First, in the ECR sputtering apparatus 100 , a silicon substrate 103 having a thermal oxide film of 3 μm formed thereon is placed on a sample table 104 in a chamber 101 . Here, the silicon substrate 103 corresponds to the silicon substrate 11 in the optical waveguide, and the thermal oxide film corresponds to the lower clad layer (SiO 2 ) 12 .
 このとき、プラズマが基板103に照射されるのを防ぐために、試料台104直上にシャッターを設置して、シャッターを閉じた状態(プラズマをさえぎる状態)とする。 At this time, in order to prevent the substrate 103 from being irradiated with plasma, a shutter is installed directly above the sample table 104 and the shutter is closed (a state in which the plasma is blocked).
 次に、チャンバー101及びプラズマ生成室102内を真空排気した後、不活性ガス導入部111より不活性ガスであるアルゴンガスを導入する。例えば、アルゴンガスを流量20sccmで導入し、プラズマ生成室102内を10-3Pa程度の圧力にする。 Next, after the chamber 101 and the plasma generation chamber 102 are evacuated, argon gas, which is an inert gas, is introduced from the inert gas introduction part 111 . For example, argon gas is introduced at a flow rate of 20 sccm, and the pressure inside the plasma generation chamber 102 is set to about 10 −3 Pa.
 次に、磁場の発生とマイクロ波の導入により、電子サイクロトロン共鳴(ECR)プラズマを発生させる(ステップ2_31)。 Next, generate electron cyclotron resonance (ECR) plasma by generating a magnetic field and introducing microwaves (step 2_31).
 次に、プラズマ生成室102と試料台104との間に設けたリング状のシリコンターゲット105に高周波電圧を印加することにより、シリコンターゲット105表面にプラズマを引き寄せてスパッタリングを起こす。プラズマが安定するまで所定の時間、この状態を維持する。 Next, by applying a high-frequency voltage to a ring-shaped silicon target 105 provided between the plasma generation chamber 102 and the sample table 104, plasma is attracted to the surface of the silicon target 105 to cause sputtering. This state is maintained for a predetermined time until the plasma stabilizes.
 次に、シャッターを開き基板103にプラズマを照射させ、基板103上でのアモルファスSiの成膜を開始する(ステップ2_32)。例えば、この状態を25秒維持し、2nm厚さ程度のアモルファスSi薄膜を形成する。ここで、アモルファスSi薄膜の膜厚は、1nm以上3nm以下が望ましい。 Next, the shutter is opened to irradiate the substrate 103 with plasma to start forming an amorphous Si film on the substrate 103 (step 2_32). For example, this state is maintained for 25 seconds to form an amorphous Si thin film with a thickness of about 2 nm. Here, the film thickness of the amorphous Si thin film is desirably 1 nm or more and 3 nm or less.
 次に、マイクロ波の導入を停止して、プラズマの発生を停止し、シャッターを閉じる。 Next, stop the introduction of microwaves, stop plasma generation, and close the shutter.
 次に、アルゴンガスを排気した後、ガス導入部112より重水素を導入して、プラズマ生成室102内を所定の圧力にして、プラズマを発生させる(ステップ2_33)。例えば、重水素を流量20sccm導入して、圧力を10-3Pa程度の圧力で、プラズマを発生させる。 Next, after evacuating the argon gas, deuterium is introduced from the gas introduction part 112, the inside of the plasma generation chamber 102 is set to a predetermined pressure, and plasma is generated (step 2_33). For example, deuterium is introduced at a flow rate of 20 sccm, and plasma is generated at a pressure of about 10 -3 Pa.
 次に、プラズマの状態が安定した後、シャッターを開けて、重水素プラズマを、基板表面のアモルファスSi薄膜に、所定の時間、例えば1分間程度照射する(ステップ2_34)。その結果、アモルファスSi薄膜を重水素が含まれる膜になる。ここで、重水素プラズマの照射時間は、1分間程度以上10分間程度以下が望ましい。 Next, after the plasma state is stabilized, the shutter is opened to irradiate the amorphous Si thin film on the substrate surface with deuterium plasma for a predetermined time, for example, about 1 minute (step 2_34). As a result, the amorphous Si thin film becomes a film containing deuterium. Here, the deuterium plasma irradiation time is preferably about 1 minute or more and about 10 minutes or less.
 ここで、重水素プラズマの照射により、重水素がアモルファスSi薄膜全体に含まれてもよく、アモルファスSi薄膜の一部に含まれてもよい。熱耐性の向上など重水素の効果を奏する程度に含まれればよい。 Here, deuterium may be contained in the entire amorphous Si thin film or may be contained in part of the amorphous Si thin film by irradiation with deuterium plasma. It may be contained to such an extent that the effect of deuterium such as improvement of heat resistance is exhibited.
 次に、シャッターを閉じて、プラズマの発生を停止した後、重水素ガスを排気する。 Next, after closing the shutter and stopping plasma generation, deuterium gas is exhausted.
 次に、基板上に成膜される重水素を含むアモルファスSi膜が所定の膜厚、例えば200nm厚になるかを判定し(ステップ2_35)、以降、所定の膜厚になるまでステップ2_31からステップ2_34を繰り返す。 Next, it is determined whether the amorphous Si film containing deuterium formed on the substrate has a predetermined thickness, for example, 200 nm thickness (step 2_35). Repeat 2_34.
 最後に、アモルファスSiの膜厚が所定の厚さになったら、マイクロ波と磁場を停止し、プラズマの発生を停止し、成膜を停止する(ステップ2_35、2_36)。その後、ガスの導入を停止し、ガスの生成室のガスを排気して、所定の時間が経過した後、基板をチャンバーから取り出す。 Finally, when the film thickness of the amorphous Si reaches a predetermined thickness, the microwave and magnetic field are stopped, plasma generation is stopped, and film formation is stopped (steps 2_35 and 2_36). After that, the introduction of the gas is stopped, the gas in the gas generation chamber is exhausted, and the substrate is taken out from the chamber after a predetermined time has passed.
 本実施の形態に係る光導波路は、上述のステップ2_31からステップ2_36までの工程で成膜されるアモルファスSiを用いて、第1の実施の形態と同様の工程で製造される。 The optical waveguide according to the present embodiment is manufactured in the same steps as in the first embodiment using the amorphous Si film formed in the steps from step 2_31 to step 2_36 described above.
 このように、下部クラッド層上にアモルファスSi薄膜を成膜した後に重水素プラズマを照射して、重水素プラズマをアモルファスSi薄膜に含有させることにより、下部クラッド層との密着性の高い重水素を含むアモルファスSiを形成できる。 In this way, after the amorphous Si thin film is formed on the lower clad layer, the deuterium plasma is irradiated so that the amorphous Si thin film contains the deuterium plasma. Amorphous Si containing can be formed.
 以上のように、本実施の形態に係る光導波路およびその製造方法によれば、下部クラッド層および基板との密着性に優れ、低損失な重水素を含むアモルファスSiを光導波路コアとする安定性が高い光導波路を実現できる。さらに、この光導波路を光集積デバイスに適用でき、光集積デバイスの高性能化が実現できる。 As described above, according to the optical waveguide and the method for manufacturing the same according to the present embodiment, the stability of the optical waveguide core is made of amorphous Si containing deuterium, which has excellent adhesion to the lower clad layer and the substrate, and has low loss. It is possible to realize an optical waveguide with a high Furthermore, this optical waveguide can be applied to an optical integrated device, and high performance of the optical integrated device can be realized.
<第3の実施の形態>
 本発明の第3の実施の形態に係る光導波路について図6~図7を参照して説明する。本実施の形態に係る光導波路20およびその製造方法は、第1の実施の形態と略同様であるが、光導波路コアの構成が異なる。
<Third Embodiment>
An optical waveguide according to a third embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. The optical waveguide 20 and its manufacturing method according to the present embodiment are substantially the same as those of the first embodiment, but differ in the configuration of the optical waveguide core.
<光導波路の構成>
 本実施の形態に係る光導波路20は、図6に示すように、順に、Si(シリコン)基板21と、SiO層(下部クラッド層)22と、光導波路コア23と、光導波路コア23を覆う上部クラッド層24とを備える。光導波路コア23はアモルファスSiからなり、例えば、幅は300~500nm程度、厚さは200~300nm程度である。また、クラッド層24はSiOからなり、例えば、厚さは2~3μm程度である。
<Structure of Optical Waveguide>
As shown in FIG. 6, the optical waveguide 20 according to the present embodiment includes, in order, a Si (silicon) substrate 21, a SiO2 layer (lower clad layer) 22, an optical waveguide core 23, and an optical waveguide core 23. and an overlying upper cladding layer 24 . The optical waveguide core 23 is made of amorphous Si, and has a width of approximately 300 to 500 nm and a thickness of approximately 200 to 300 nm, for example. The cladding layer 24 is made of SiO 2 and has a thickness of, for example, about 2 to 3 μm.
 光導波路コア23は、順に、SiO層22と接する下部コア231と、上部コア232とを備える。下部コア231は重水素Dを含まず、上部コア232は重水素Dを含む。このように、下部クラッド層22と上部コア232との間に、重水素Dを含まない下部コア231を有することにより、光導波路コア23の下部クラッド層22への密着性が向上し、密着性の高い重水素を含むアモルファスSiを下部クラッド層22上に形成できる。 The optical waveguide core 23 sequentially comprises a lower core 231 in contact with the SiO 2 layer 22 and an upper core 232 . The lower core 231 does not contain deuterium D, and the upper core 232 contains deuterium D. Thus, by having the lower core 231 that does not contain deuterium D between the lower clad layer 22 and the upper core 232, the adhesion of the optical waveguide core 23 to the lower clad layer 22 is improved. Amorphous Si containing high deuterium can be formed on the lower cladding layer 22 .
 ここで、光が主に重水素を含む上部コア232を導波するように、上部コア232を下部コア231より厚くする。下部コア231と上部コア232の厚さは、後述する製造方法において重水素の導入を開始する時間とスパッタの時間とを調整することで制御できる。 Here, the upper core 232 is made thicker than the lower core 231 so that light is guided through the upper core 232 mainly containing deuterium. The thicknesses of the lower core 231 and the upper core 232 can be controlled by adjusting the time to start introducing deuterium and the sputtering time in the manufacturing method described later.
<光導波路の製造方法>
 本実施の形態におけるアモルファスSi膜の成膜方法について、図7を参照して説明する。
<Method for manufacturing an optical waveguide>
A method of forming an amorphous Si film according to this embodiment will be described with reference to FIG.
 ECRスパッタ装置100において、チャンバー101内の試料台104に熱酸化膜3μmが形成されているシリコン基板103を設置する。ここで、シリコン基板103は、光導波路20におけるシリコン基板21に相当し、熱酸化膜は下部クラッド層(SiO)22に相当する。 In the ECR sputtering apparatus 100, a silicon substrate 103 having a thermal oxide film of 3 μm formed thereon is placed on a sample table 104 in a chamber 101. As shown in FIG. Here, the silicon substrate 103 corresponds to the silicon substrate 21 in the optical waveguide 20 and the thermal oxide film corresponds to the lower clad layer (SiO 2 ) 22 .
 このとき、プラズマが基板103に照射されるのを防ぐために、試料台104直上にシャッターを設置して、シャッターを閉じた状態(プラズマをさえぎる状態)とする。 At this time, in order to prevent the substrate 103 from being irradiated with plasma, a shutter is installed directly above the sample table 104 and the shutter is closed (a state in which the plasma is blocked).
 次に、チャンバー101及びプラズマ生成室102内を真空排気した後、不活性ガス導入部111より不活性ガスであるアルゴンガスを流量20sccm導入し、プラズマ生成室102内を10~3Pa程度の圧力にする。 Next, after evacuating the chamber 101 and the plasma generation chamber 102, argon gas, which is an inert gas, is introduced from the inert gas introduction unit 111 at a flow rate of 20 sccm, and the pressure in the plasma generation chamber 102 is set to about 10 to 3 Pa. do.
 次に、磁場の発生とマイクロ波の導入により、電子サイクロトロン共鳴(ECR)プラズマを発生させる(ステップ2_21)。 Next, generate electron cyclotron resonance (ECR) plasma by generating a magnetic field and introducing microwaves (step 2_21).
 次に、プラズマ生成室102と試料台104との間に設けたリング状のシリコンターゲット105に高周波電圧を印加することにより、シリコンターゲット105表面にプラズマを引き寄せてスパッタリングを起こす。プラズマが安定するまで、所定の時間、例えば2分間、この状態を維持する。 Next, by applying a high-frequency voltage to a ring-shaped silicon target 105 provided between the plasma generation chamber 102 and the sample table 104, plasma is attracted to the surface of the silicon target 105 to cause sputtering. This state is maintained for a predetermined time, eg, 2 minutes, until the plasma stabilizes.
 次に、シャッターを開き基板103にプラズマを照射させ、基板103上でのアモルファスSiの成膜を開始して、所定の時間、例えば約2分間(例えば、10nm厚のアモルファスSiの成膜時間に相当)維持する(ステップ2_221)。その結果、重水素を含まないアモルファスSi膜(他のアモルファスSi膜)が形成される。 Next, the shutter is opened to irradiate the substrate 103 with plasma, the film formation of amorphous Si on the substrate 103 is started, and the film formation of amorphous Si on the substrate 103 is started for a predetermined time, for example, about two minutes equivalent) is maintained (step 2_221). As a result, an amorphous Si film containing no deuterium (another amorphous Si film) is formed.
 次に、ガス導入部112より重水素を流量5sccm導入し、所定の時間、例えば15分間程度維持する(ステップ2_222)。その後、シャッターを閉じる。その結果、10nm厚のアモルファスSi上に連続的に重水素を含むアモルファスSiが、合計200nmの厚さで成膜される。 Next, deuterium is introduced from the gas introduction part 112 at a flow rate of 5 sccm and maintained for a predetermined time, for example, about 15 minutes (step 2_222). Then close the shutter. As a result, amorphous Si containing deuterium is continuously formed on the 10 nm-thick amorphous Si to a total thickness of 200 nm.
 最後に、マイクロ波と磁場を停止してプラズマ発生を停止する(ステップ2_23)。その後、ガスの導入を停止し、所定の時間が経過した後、基板をチャンバーから取り出す。 Finally, the microwave and magnetic field are stopped to stop plasma generation (step 2_23). After that, the introduction of the gas is stopped, and the substrate is taken out from the chamber after a predetermined time has passed.
 本実施の形態では、アルゴンガスの導入の後に重水素を導入する例を示したが、アルゴンと重水素を同時に導入すれば、下部コア231の厚さはゼロとなる。 In this embodiment, an example of introducing deuterium after introducing argon gas was shown, but if argon and deuterium are introduced at the same time, the thickness of the lower core 231 becomes zero.
 本実施の形態に係る光導波路は、上述のステップ2_21からステップ2_23までの工程で成膜されるアモルファスSiを用いて、第1の実施の形態と同様の工程で製造される。 The optical waveguide according to the present embodiment is manufactured in the same steps as in the first embodiment using the amorphous Si film formed in the steps 2_21 to 2_23 described above.
 以上のように、本実施の形態に係る光導波路およびその製造方法によれば、下部クラッド層および基板との密着性に優れ、低損失な重水素を含むアモルファスSiを光導波路コアとする安定性が高い光導波路を実現できる。さらに、この光導波路を光集積デバイスに適用でき、光集積デバイスの高性能化が実現できる。 As described above, according to the optical waveguide and the method for manufacturing the same according to the present embodiment, the stability of the optical waveguide core is made of amorphous Si containing deuterium, which has excellent adhesion to the lower clad layer and the substrate, and has low loss. It is possible to realize an optical waveguide with a high Furthermore, this optical waveguide can be applied to an optical integrated device, and high performance of the optical integrated device can be realized.
 本実施の形態では、光導波路コアの上部コアが重水素を含むアモルファスSiからなる例を示したが、上部コアは一部に重水素を含まないアモルファスSiやSi(結晶)を含んでもよい。上部コアは重水素を含むアモルファスSiを有すればよい。 In this embodiment, an example in which the upper core of the optical waveguide core is made of amorphous Si containing deuterium is shown, but the upper core may partially contain amorphous Si or Si (crystal) that does not contain deuterium. The upper core may have amorphous Si containing deuterium.
 本実施の形態では、光導波路コアの下部コアが重水素を含まないアモルファスSiからなる例を示したが、下部コアは一部に重水素を含むアモルファスSiやSi(結晶)を含んでもよい。下部コアは重水素を含まないアモルファスSiを有すればよく、下部クラッドと接する領域が重水素を含まないアモルファスSiであることが望ましい。 In this embodiment, an example in which the lower core of the optical waveguide core is made of amorphous Si that does not contain deuterium is shown, but the lower core may also contain amorphous Si or Si (crystal) that partially contains deuterium. The lower core may have amorphous Si that does not contain deuterium, and the region in contact with the lower clad is desirably amorphous Si that does not contain deuterium.
 本実施の形態では、アルゴンガスのプラズマによるスパッタリングの状態に重水素ガスを導入して、重水素を含まないアモルファスSi膜から重水素を含むアモルファスSi膜を連続して成膜する例を示したが、これに限らない。アルゴンプラズマによるスパッタリング後にいったん重水素を含まないアモルファスSi膜の成膜を停止した後に、アルゴンガスと重水素ガスとのプラズマにより重水素を含むアモルファスSi膜を成膜してもよい。 In this embodiment, deuterium gas is introduced into the state of sputtering by plasma of argon gas, and an example of continuously forming an amorphous Si film containing deuterium from an amorphous Si film containing no deuterium is shown. However, it is not limited to this. After stopping the deposition of the amorphous Si film containing no deuterium after sputtering with argon plasma, the amorphous Si film containing deuterium may be deposited with plasma of argon gas and deuterium gas.
 本実施の形態では、第1の実施の形態におけるアモルファスSi膜の成膜方法により上部コアを成膜する例を示したが、これに限らない。第2の実施の形態におけるアモルファスSi膜の成膜方法により上部コアを成膜してもよい。 In this embodiment, an example in which the upper core is formed by the method of forming the amorphous Si film in the first embodiment is shown, but the present invention is not limited to this. The upper core may be formed by the method of forming an amorphous Si film in the second embodiment.
 本発明の実施の形態では、上部クラッド層および下部クラッド層に酸化シリコン(SiO)を用いる例を示したが、SiN(窒化シリコン)やSiNを用いてもよい。光導波路コアであるアモルファスSiの誘電率より低い誘電率を有し、導波する光を光導波路コアに閉じ込めることができる誘電体であればよい。 Although silicon oxide (SiO 2 ) is used for the upper clad layer and the lower clad layer in the embodiment of the present invention, SiN x (silicon nitride) or SiN x O y may be used. Any dielectric material may be used as long as it has a dielectric constant lower than that of amorphous Si, which is the optical waveguide core, and can confine guided light in the optical waveguide core.
 本発明の実施の形態では、不活性ガスとしてアルゴンガスを用いたが、キセノン、クリプトン等の希ガスを用いてもよい。 Although argon gas is used as an inert gas in the embodiment of the present invention, a rare gas such as xenon or krypton may be used.
 本発明の実施の形態では、シリコン基板を用いる例を示したが、これに限らない。他の材料を基板に用いてもよい。石英などのガラス基板を用いてもよい。この場合は、基板が下部クラッド層になるので、基板上にSiO2等からなる下部クラッド層を形成しなくてもよい。 Although an example using a silicon substrate has been shown in the embodiment of the present invention, the present invention is not limited to this. Other materials may be used for the substrate. A glass substrate such as quartz may be used. In this case, since the substrate becomes the lower clad layer, it is not necessary to form the lower clad layer made of SiO2 or the like on the substrate.
 本発明の実施の形態では、下部クラッド層として表面に酸化膜を有するSi基板を成膜装置に設置する例を示したが、これに限らず、基板(例えばSi基板)を成膜装置に設置して、成膜装置によって基板上に下部クラッド層を形成してもよい。 In the embodiment of the present invention, an example in which a Si substrate having an oxide film on its surface as a lower clad layer is installed in a film forming apparatus has been shown, but the present invention is not limited to this, and a substrate (for example, a Si substrate) is installed in a film forming apparatus. Then, a lower clad layer may be formed on the substrate by a film forming apparatus.
 本発明の実施の形態では、第2および第3の実施の形態において成膜装置でシャッターを用いたが、当然第1の実施の形態において成膜装置でシャッターを用いてもよい。 In the embodiment of the present invention, the shutter is used in the film forming apparatus in the second and third embodiments, but of course the shutter may be used in the film forming apparatus in the first embodiment.
 本発明の実施の形態では、光導波路の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光導波路の機能を発揮し効果を奏するものであればよい。 In the embodiment of the present invention, an example of the structure, dimensions, materials, etc. of each component is shown in the structure of the optical waveguide, the manufacturing method, etc., but the present invention is not limited to this. Any material may be used as long as it exhibits the function of the optical waveguide and produces an effect.
 本発明は、シリコン・フォトニクスデバイスに適用でき、光通信システム用デバイスに適用することができる。 The present invention can be applied to silicon photonics devices and can be applied to devices for optical communication systems.
10 光導波路
11 シリコン基板
12 下部クラッド層
13 光導波路コア
14 上部クラッド層
10 Optical waveguide 11 Silicon substrate 12 Lower clad layer 13 Optical waveguide core 14 Upper clad layer

Claims (8)

  1.  不活性ガスと重水素ガスのプラズマを発生させる工程と、
     前記プラズマをシリコンターゲットに照射して、スパッタリングを起こす工程と、
     前記スパッタリングにより生じたシリコン粒子を堆積させ、重水素含むアモルファスシリコン膜を成膜する工程と、
     前記アモルファスシリコン膜を光導波路コアに加工する工程と、
     前記光導波路コアを覆うように上部クラッド層を形成する工程と
     を備える光導波路の製造方法。
    generating a plasma of inert gas and deuterium gas;
    irradiating a silicon target with the plasma to cause sputtering;
    depositing the silicon particles generated by the sputtering to form an amorphous silicon film containing deuterium;
    processing the amorphous silicon film into an optical waveguide core;
    and forming an upper clad layer so as to cover the optical waveguide core.
  2.  不活性ガスのプラズマを、シリコンターゲットに照射して、スパッタリングを起こす第1の工程と、
     前記スパッタリングにより生じたシリコン粒子を堆積させ、アモルファスシリコン薄膜を成膜する第2の工程と、
     重水素ガスのプラズマを、前記アモルファスシリコン薄膜に照射する第3の工程と、
     前記アモルファスシリコン薄膜の合計の膜厚が所定の膜厚になるまで、前記第1の工程から前記第3の工程までを繰り返す工程と、
     前記所定の膜厚の前記アモルファスシリコン薄膜を光導波路コアに加工する工程と、
     前記光導波路コアを覆うように上部クラッド層を形成する工程と
     を備える光導波路の製造方法。
    A first step of irradiating a silicon target with plasma of an inert gas to cause sputtering;
    a second step of depositing the silicon particles generated by the sputtering to form an amorphous silicon thin film;
    a third step of irradiating the amorphous silicon thin film with deuterium gas plasma;
    repeating the first step to the third step until the total thickness of the amorphous silicon thin film reaches a predetermined thickness;
    a step of processing the amorphous silicon thin film having the predetermined thickness into an optical waveguide core;
    and forming an upper clad layer so as to cover the optical waveguide core.
  3.   請求項1又は請求項2に記載の光導波路の製造方法の前に、
     不活性ガスのプラズマを、シリコンターゲットに照射して、スパッタリングを起こす工程と、
     前記スパッタリングにより生じたシリコン粒子を、下部クラッド層上に堆積させ、他のアモルファスシリコン膜を成膜する工程と
     を備える光導波路の製造方法。
    Before the optical waveguide manufacturing method according to claim 1 or claim 2,
    A step of irradiating a silicon target with plasma of an inert gas to cause sputtering;
    and depositing the silicon particles generated by the sputtering on the lower clad layer to form another amorphous silicon film.
  4.  前記上部クラッド層を、ECRプラズマを利用するCVD法により形成することを特徴とする請求項1から請求項3のいずれか一項に記載の光導波路の製造方法。 The method for manufacturing an optical waveguide according to any one of claims 1 to 3, wherein the upper clad layer is formed by a CVD method using ECR plasma.
  5.  前記上部クラッド層が、重水素を含むガスを用いて形成される酸化シリコンであることを特徴とする請求項1から請求項4のいずれか一項に記載の光導波路の製造方法。 The method for manufacturing an optical waveguide according to any one of claims 1 to 4, wherein the upper clad layer is silicon oxide formed using a gas containing deuterium.
  6.  順に、下部クラッド層と、
     重水素を含むアモルファスシリコンを有する光導波路コアと、
     前記光導波路コアを覆う上部クラッド層と
     を備える光導波路。
    in turn a lower cladding layer;
    an optical waveguide core having amorphous silicon containing deuterium;
    and an upper clad layer covering the optical waveguide core.
  7.  前記光導波路コアが、重水素を含むアモルファスシリコンを有する上部層と、
     重水素を含まないアモルファスシリコンを有する下部層からなり、
     前記下部層を介して前記下部クラッド層と接することを特徴とする請求項6に記載の光導波路。
    a top layer in which the optical waveguide core comprises amorphous silicon containing deuterium;
    consisting of a lower layer having amorphous silicon that does not contain deuterium;
    7. The optical waveguide according to claim 6, wherein the optical waveguide is in contact with the lower clad layer through the lower layer.
  8.  前記上部クラッド層が、重水素を含む酸化シリコンを有することを特徴とする請求項6又は請求項7に記載の光導波路。 The optical waveguide according to claim 6 or 7, wherein the upper clad layer comprises silicon oxide containing deuterium.
PCT/JP2021/024832 2021-01-25 2021-06-30 Optical waveguide and method for producing same WO2022158001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576949A JPWO2022158001A1 (en) 2021-01-25 2021-06-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/002385 2021-01-25
PCT/JP2021/002385 WO2022157958A1 (en) 2021-01-25 2021-01-25 Optical waveguide and method for producing same

Publications (1)

Publication Number Publication Date
WO2022158001A1 true WO2022158001A1 (en) 2022-07-28

Family

ID=82548628

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/002385 WO2022157958A1 (en) 2021-01-25 2021-01-25 Optical waveguide and method for producing same
PCT/JP2021/024832 WO2022158001A1 (en) 2021-01-25 2021-06-30 Optical waveguide and method for producing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002385 WO2022157958A1 (en) 2021-01-25 2021-01-25 Optical waveguide and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022158001A1 (en)
WO (2) WO2022157958A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136062A (en) * 1991-11-14 1993-06-01 Kanegafuchi Chem Ind Co Ltd Polycrystalline silicon thin film and its low temperature formation method
JPH06326030A (en) * 1993-05-13 1994-11-25 Canon Inc Method and apparatus for manufacture semiconductor
US20040240821A1 (en) * 2003-05-30 2004-12-02 The Regents Of The University Of California Direct-patterned optical waveguides on amorphous silicon films
US20070147762A1 (en) * 2005-10-07 2007-06-28 Kwakernaak Martin H Interface for a-Si waveguides and III/V waveguides
US20080253728A1 (en) * 2006-09-07 2008-10-16 Massachusetts Institute Of Technology Microphotonic waveguide including core/cladding interface layer
JP2010263153A (en) * 2009-05-11 2010-11-18 Sumitomo Electric Ind Ltd Semiconductor integrated optical device, and method of making the same
WO2019225329A1 (en) * 2018-05-21 2019-11-28 日本電信電話株式会社 Optical integrated device and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136062A (en) * 1991-11-14 1993-06-01 Kanegafuchi Chem Ind Co Ltd Polycrystalline silicon thin film and its low temperature formation method
JPH06326030A (en) * 1993-05-13 1994-11-25 Canon Inc Method and apparatus for manufacture semiconductor
US20040240821A1 (en) * 2003-05-30 2004-12-02 The Regents Of The University Of California Direct-patterned optical waveguides on amorphous silicon films
US20070147762A1 (en) * 2005-10-07 2007-06-28 Kwakernaak Martin H Interface for a-Si waveguides and III/V waveguides
US20080253728A1 (en) * 2006-09-07 2008-10-16 Massachusetts Institute Of Technology Microphotonic waveguide including core/cladding interface layer
JP2010263153A (en) * 2009-05-11 2010-11-18 Sumitomo Electric Ind Ltd Semiconductor integrated optical device, and method of making the same
WO2019225329A1 (en) * 2018-05-21 2019-11-28 日本電信電話株式会社 Optical integrated device and production method therefor

Also Published As

Publication number Publication date
WO2022157958A1 (en) 2022-07-28
JPWO2022158001A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US5632910A (en) Multilayer resist pattern forming method
US20050199013A1 (en) Use of amorphous carbon film as a hardmask in the fabrication of optical waveguides
US6533907B2 (en) Method of producing amorphous silicon for hard mask and waveguide applications
EP0477890B1 (en) Processing method and apparatus
KR19990023571A (en) Semiconductor Device Having Anti-Reflection Layer and Manufacturing Method Thereof
CN109188607B (en) SiO with protective layer2Channel type chalcogenide waveguide and method for manufacturing same
JPH0987851A (en) Microwave plasma treating device and method thereof
TW202146676A (en) Photonic integrated circuit with sputtered semiconductor material
WO2022158001A1 (en) Optical waveguide and method for producing same
JP2006047462A (en) Optical element and method of manufacturing the same
JP2009179866A (en) Method for producing reflection preventing film for ultraviolet wavelength region
JP6946936B2 (en) Optical waveguide and its manufacturing method
JP6805088B2 (en) Optical waveguide and its manufacturing method
JPH0527132A (en) Production of waveguide type optical parts
KR100509510B1 (en) Fabrication for uniform planar waveguide
JP2002164330A (en) Plasma treatment apparatus having transmission window covered with light shielding film
JP3723101B2 (en) Method for forming optical waveguide
JP4681644B2 (en) Optical waveguide fabrication method
JP4001416B2 (en) Method for manufacturing buried planar lightwave circuit element
WO2022003765A1 (en) Optical waveguide and method for manufacturing same
JP2003262750A (en) METHOD FOR MANUFACTURING SiON THIN FILM
JP2667930B2 (en) Fine processing method and device
JP2709188B2 (en) Semiconductor device fine processing method and apparatus
JP2010153457A (en) Method of manufacturing substrate with texture
JP6352847B2 (en) Manufacturing method of optical waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921108

Country of ref document: EP

Kind code of ref document: A1