WO2022157881A1 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
WO2022157881A1
WO2022157881A1 PCT/JP2021/002024 JP2021002024W WO2022157881A1 WO 2022157881 A1 WO2022157881 A1 WO 2022157881A1 JP 2021002024 W JP2021002024 W JP 2021002024W WO 2022157881 A1 WO2022157881 A1 WO 2022157881A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
polarization state
display device
image display
display element
Prior art date
Application number
PCT/JP2021/002024
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 井場
Original Assignee
コピン コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コピン コーポレーション filed Critical コピン コーポレーション
Priority to PCT/JP2021/002024 priority Critical patent/WO2022157881A1/en
Publication of WO2022157881A1 publication Critical patent/WO2022157881A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to a peek-type video display device.
  • a peek-type video display device such as an HMD (Head Mounted Display) is known. From the viewpoint of user-friendliness improvement and image quality improvement, such image display devices must have a short overall length, high optical performance, and a lens (especially a lens surface that can be exposed to the outside) that is resistant to scratches. etc. is desired.
  • HMD Head Mounted Display
  • Patent Literatures 1 and 2 disclose methods of coating one side of a lens by spin coating or dip coating.
  • One aspect of the present invention is a looking-in type image display device including an eyepiece optical system and a display device, wherein the eyepiece optical system extends from the user's eye side toward the display device side at least a first
  • the first lens comprises a lens and a second lens, and the first lens is made of a thermoplastic resin, and has a first surface on the user's eye side and a second surface on the display element side.
  • the second lens has a third surface on the side of the user's eye and a fourth surface on the side of the display element;
  • the surface is an aspheric surface, the fourth surface has a convex shape from the user's eye side toward the display element side, and the fourth surface is coated with a semitransparent mirror.
  • a first polarizing element having a function of converting a polarization state of light emitted from the display element into a first polarization state is provided between the semi-transmissive mirror and the display element;
  • the surface 2 reflects light in a second polarization state from the display element side toward the user's eye side, and has a third polarization state toward the user's eye side from the display element side.
  • a reflective polarizing element having a function of transmitting light of is laminated, and between the reflective polarizing element and the fourth surface, the first polarizing element directed from the display element side to the user's eye side
  • the light having the second polarization state which has an effect of converting the polarization state of the light into the second polarization state when the light having the polarization state passes through, and which travels from the user's eye side to the display element side.
  • a viewing-type video display device that has a short overall length, high optical performance, and a lens that is resistant to damage.
  • FIG. 1 is a diagram illustrating the configuration of a peek-type video display device according to an embodiment
  • FIG. FIG. 10 is a diagram (part 1) exemplifying a state in which a lens introduced as a first lens in a coating process is held
  • FIG. 10B is a second diagram illustrating a state in which the lens that has been put into the coating process as the first lens is held
  • FIG. 11 is a diagram (part 3) exemplifying a state in which the lens introduced as the first lens in the coating process is held
  • FIG. 3 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG.
  • FIG. 2 is gripped as a first lens by a lens gripping section
  • 5 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 4 is gripped as a first lens by a lens gripping section
  • FIG. FIG. 10 is a diagram illustrating a state in which the first lens is gripped by the lens gripping section
  • FIG. 1 is a diagram illustrating the configuration of a peek-type video display device according to an embodiment.
  • a video display device 1 illustrated in FIG. 1 is a video display device used by a user looking into it from the left side of FIG.
  • the image display device 1 may be prepared for each of the user's right eye and left eye, or may be prepared for only one eye.
  • the image display device 1 can be applied to, for example, an HMD.
  • the image display device 1 includes an eyepiece optical system OC and a display element D.
  • the eyepiece optical system OC includes at least a first lens L1 and a second lens L2 from the user's eye side toward the display element D side.
  • the first lens L1 is made of thermoplastic resin and has a first surface S1 that faces the user's eyes and a second surface S2 that faces the display element D.
  • the first surface S1 is an aspheric surface
  • the second surface S2 is a plane or an approximate plane.
  • a hard coat (anti-scratch coat) HC is coated (film-formed) on the first surface S1 avoiding the second surface S2 by a spin coating method.
  • the hard coat HC is, for example, a known hard coat such as an organic hard coat, an inorganic hard coat, or an organic-inorganic hybrid hard coat.
  • the second lens L2 is made of a thermoreversible resin and has a third surface S3 that faces the user's eyes and a fourth surface S4 that faces the display element D.
  • the third surface S3 is an aspherical surface, and has a convex shape or an approximate plane around the optical axis A of the eyepiece optical system OC from the display element D side toward the user's eye side.
  • the fourth surface S4 has a convex shape from the user's eye side toward the display element D side.
  • the fourth surface S4 is coated with a half mirror (semi-transmissive mirror) HM.
  • a first polarizing element that has the function of converting the polarization state of the light emitted by the display element D into the first polarization state.
  • a circularly polarizing plate CP which is an example of the first polarizing element, is laminated on the display element D.
  • the first polarization state is, for example, a clockwise or counterclockwise circular polarization state.
  • the circularly polarizing plate CP is, for example, a linearly polarizing plate superimposed on a quarter-wave plate.
  • the second surface S2 reflects light in the second polarization state toward the user's eye side from the display element D side, and reflects light in the third polarization state toward the user's eye side from the display element D side.
  • a reflective polarizing element having a function of transmitting light is laminated.
  • a reflective polarizing film RP that efficiently reflects light in the second polarization state and efficiently transmits light in the third polarization state is used. Laminated.
  • the second polarization state is, for example, a linear polarization state
  • the third polarization state is, for example, a linear polarization state in a polarization direction orthogonal to the polarization direction of the second polarization state.
  • the reflective polarizing film RP is, for example, a wire grid polarizing film or a cholesteric polarizing film.
  • a second active polarizing element is provided.
  • a quarter-wave film QWP which is an example of the second polarizing element, is laminated to the reflective polarizing film RP. That is, the reflective polarizing film RP and the quarter-wave film QWP are laminated from the user's eye side to the display element D side on the second surface S2.
  • the display element D includes an image display surface S5 on which an image is displayed, a cover glass D1 that protects the image display surface S5, and a display element substrate D2 that displays an image on the image display surface S5.
  • the display element D is, for example, a display panel with a wide viewing angle such as an OLED (Organic Light Emitting Diode) panel or a micro LED (Light Emitting Diode) panel.
  • the image light emitted from the display element D is incident on the user's eye (pupil) along the following regular optical path (including the folded optical path).
  • the image light emitted from the image display surface S5 of the display element D through the cover glass D1 first passes through the circularly polarizing plate CP.
  • the polarization state of the image light becomes a clockwise or counterclockwise circular polarization state (an example of a first polarization state).
  • Part of the image light that has passed through the circularly polarizing plate CP is then transmitted through the half mirror HM, and the rest is reflected by the half mirror HM to become unnecessary light.
  • the image light transmitted through the half mirror HM then passes through the second lens L2 through the fourth surface S4 and the third surface S3 in that order.
  • the image light that has passed through the second lens L2 then passes through the quarter-wave film QWP.
  • the polarization state of the image light changes from the clockwise or counterclockwise circular polarization state to the linear polarization state (an example of the second polarization state).
  • the azimuth angle of the plane of polarization is assumed to be 0°.
  • the image light that has passed through the quarter-wave film QWP is then reflected by the reflective polarizing film RP.
  • the reflective polarizing film RP reflects linearly polarized light with an azimuth angle of 0° and transmits linearly polarized light with an azimuth angle of 90° (an example of a third polarization state).
  • the image light reflected by the reflective polarizing film RP then passes through the quarter-wave film QWP again.
  • the polarization state of the image light changes from a linearly polarized state with an azimuth angle of 0° to a counterclockwise or clockwise circularly polarized state.
  • the image light that has passed through the quarter-wave film QWP then passes through the second lens L2 again through the third surface S3 and the fourth surface S4 in that order. Part of the image light that has passed through the fourth surface S4 of the second lens L2 is then reflected by the half mirror HM, and the rest passes through the half mirror HM to become unnecessary light.
  • the half mirror HM coated on the fourth surface S4 since the fourth surface S4 is convex from the user's eye side toward the display element D side, the half mirror HM coated on the fourth surface S4 has an incident light from the user's eye side. It acts as a concave mirror for the light reflected by the mirror. That is, this reflected light receives the strong positive refractive power of the concave mirror and travels again from the display element D side toward the user's eye side.
  • the image light reflected by the half mirror HM then passes through the second lens L2 again through the fourth surface S4 and the third surface S3 in that order.
  • the image light that has passed through the second lens L2 then passes through the quarter-wave film QWP again.
  • the polarization state of the image light changes from a left-handed or right-handed circularly polarized state to a linearly polarized state with an azimuth angle of 90°.
  • the image light that has passed through the quarter-wave film QWP is then transmitted through the reflective polarizing film RP, passes through the first lens L1 through the second surface S2 and the first surface S1 in this order, and is hard-coated. Pass through HC. After passing through the hard coat HC, the image light passes through the pupil plane S0 and enters the user's eye (pupil). At this time, the image light mainly receives the strong positive refractive power of the concave mirror, forms a virtual image on the display element D, and allows the user to observe the image on the large screen.
  • the position of the pupil plane S0 is also the assumed position of the user's eye (pupil).
  • the reason for configuring the first lens L1 as described above in the eyepiece optical system OC is as follows.
  • making an appropriate surface of a lens system an aspherical surface is highly effective in correcting aberrations. This is because the effects of an aspherical surface on aberrations for transmitted light and reflected light differ greatly in quality and quantity, and it is difficult to set an aspherical surface shape that has an appropriate aberration correction effect.
  • the reflective polarizing film RP should not be placed on the exposed surface of the lens system which is prone to scratches. From the viewpoint of adhesion, the surface on which the reflective polarizing film RP is laminated is preferably a flat surface or an approximately flat surface (for example, a surface with a gentle curvature).
  • the first lens L1 is preferably a lens made of thermoplastic resin, the first surface S1 of which is aspheric, and the second surface S2 of which is a plane or approximately plane.
  • the first surface S1 is coated with a hard coat HC, so that there is a risk that the first surface S1 will be scratched and adversely affect the observation image even if the user does not pay attention to handling. has been reduced.
  • the hard coat HC is preferably coated only on the first surface S1 by spin coating. The reason is as follows. Reflective surfaces generally require higher surface accuracy than refractive surfaces, and the eyepiece optical system OC is no exception. Unless the reflective polarizing film RP is laminated on the second surface S2 with high surface precision, the sharpness of the image will be lowered.
  • the reflective polarizing film RP will be laminated on the hard coat HC, and the uneven coating thickness of the hard coat HC will affect the surface accuracy of the reflective polarizing film RP. There is a risk of causing deterioration. Coating by the spin coating method is performed by applying a coating liquid to the lens surface, so that the coating tends to have relatively large film thickness unevenness, and the deterioration of the surface accuracy of the reflective polarizing film RP cannot be overlooked. Therefore, in the first lens L1, only the first surface S1 is coated with the hard coat HC while avoiding the second surface S2.
  • the eyepiece optical system OC has a configuration in which the reflective polarizing film RP is laminated on the second surface S2 of the first lens L1
  • the optical path from the user's eye side to the display element D side can be longer than other eyepiece optical systems having a configuration in which a reflective polarizing film is laminated on the second and subsequent lenses from the eye toward the display element side.
  • the folding effect of the optical path is large, and thinning is possible.
  • by employing an aspherical lens excellent optical performance can be achieved, and such an aspherical lens can be manufactured at low cost using a thermoreversible resin.
  • the first surface S1 of the first lens L1 is coated with the hard coat HC, it is possible to prevent the lens surface of the eyepiece optical system OC from being damaged, which is easily touched by the user.
  • the lens introduced as the first lens L1 in the process of coating the hard coat HC by a spin coating method is the first lens L1.
  • One or more steps may be provided outside the area having an optical action (hereinafter referred to as the "effective surface") on the surface corresponding to the surface S1 of .
  • the coating liquid tends to accumulate on the edge of the lens, and as a result, the thickness of the coating tends to be uneven in the vicinity of the edge of the lens.
  • FIG. 2 is a diagram (No. 1) exemplifying a state in which a lens introduced as a first lens in a coating process is held.
  • the lens L1a put into the coating process as the first lens L1 is provided with one step St1 outside the effective surface Se1 on the surface S1a corresponding to the first surface S1.
  • the surface S1a of the lens L1a is coated with the hard coat HC by spin coating.
  • the liquid pool Lc1 of the coating liquid formed near the edge of the lens L1a during the coating does not flow back toward the effective surface Se1 due to the step St1. No unevenness occurs.
  • FIG. 3 is a diagram (part 2) exemplifying a state in which the lens that has been put into the coating step as the first lens is held.
  • the illustration in FIG. 3 is an example in which two steps St1 are provided outside the effective surface Se1 in the lens L1a, in contrast to the illustration in FIG. Even with such a configuration, the liquid pool Lc1 of the coating liquid formed near the edge of the lens L1a during coating by the spin coating method does not flow backward toward the effective surface Se1, so that the coating thickness unevenness occurs near the edge. never occurs.
  • Patent Document 1 discloses a method of preventing the occurrence of pooling of the coating liquid by providing a slit or hole in a part of the annular holding member.
  • Patent Document 1 discloses a method of preventing the occurrence of pooling of the coating liquid by providing a slit or hole in a part of the annular holding member.
  • the lens that is put into the coating process as the first lens L1 has one or more steps outside the effective surface on the surface corresponding to the second surface S2.
  • Providing such a step on the lens is also easy as described above.
  • the coating liquid tends to wrap around the rear surface of the lens (which is also the surface opposite to the coated surface). Therefore, by providing the above-described one or more steps on the lens that is put into the coating process as the first lens L1, the coating liquid that has flowed around the rear surface of the lens is prevented from entering toward the effective surface. can do.
  • FIG. 4 is a diagram (No. 3) exemplifying a state in which the lens that has been put into the coating step as the first lens is held.
  • the lens L1b put into the coating step as the first lens L1 is provided with one step St2 outside the effective surface Se2 on the surface S2b corresponding to the second surface S2.
  • such a lens L1b is rotated while being sucked and held by the vacuum suction holding unit 30, and the surface S1b of the lens L1b corresponding to the first surface S1 is coated with the hard coat HC by a spin coating method.
  • the coating liquid Lc2 that has flowed to the rear surface of the lens L1b during the coating does not subsequently enter toward the effective surface Se2 due to the step St2.
  • Patent Document 2 discloses that when coating one surface of a lens-shaped object, the other surface of the lens-shaped object is held by a holding jig that covers the other surface in a sealed state. ing.
  • a holding jig that covers the other surface in a sealed state.
  • the image display device 1 includes a lens gripping portion that grips the first lens L1, and the lens gripping portion presses the area between the effective surface and one or more steps.
  • the first lens L1 may be gripped by the first lens L1.
  • the lens gripping portion can press the first lens L1 while avoiding the portion where the thickness near the edge of the first lens L1 varies due to the coating liquid reservoir Lc1 and the coating liquid Lc2.
  • the image display device 1 it is possible to prevent the first lens L1 from being held in a tilted state, and the lens surface from being distorted due to local stress acting on the first lens L1. That is, the first lens L1 can be gripped with high accuracy without giving distortion.
  • FIGS. 5 and 6 Such an aspect is illustrated using FIGS. 5 and 6.
  • FIG. 5 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 2 is gripped as a first lens by the lens gripping section.
  • the lens gripping portion 11a illustrated in FIG. 5 presses the area between the effective surface Se1 and the step St1 on the first surface S1, and presses the area outside the effective surface on the second surface S2, thereby 1 lens L1 is held.
  • FIG. 6 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 4 is gripped as a first lens by the lens gripping section.
  • the lens gripping portion 11b illustrated in FIG. 6 presses the area between the effective surface Se2 and the step St2 on the second surface S2, and presses the area outside the effective surface on the first surface S1, thereby 1 lens L1 is held.
  • the first lens L1 is gripped while avoiding portions near the edge where the thickness varies due to the coating liquid pool Lc1 and the coating liquid Lc2. Therefore, the first lens L1 is not gripped in a tilted state, and the lens surface is not distorted due to local stress.
  • the image display device 1 in the manufacturing stage of the image display device 1, the portion outside the boundary set between the effective surface and one or more steps in the lens after the coating process is removed. good too. Further, in this case, the image display device 1 includes a lens gripping portion that grips the first lens L1, and the lens gripping portion presses the area outside the effective surface to grip the first lens L1. You may do so. By doing so, the following effects can be obtained. If the coating liquid penetrates into the edge of the lens and hardens, the dimension from the optical axis to the edge of the lens (that is, the outer diameter dimension) varies. When L1 is gripped, there is a possibility that the center accuracy of the first lens L1 may be degraded.
  • the aforementioned boundary is preferably set in consideration of the region pressed by the lens gripping portion. Such an aspect is illustrated using FIG.
  • FIG. 7 is a diagram illustrating a state in which the first lens is gripped by the lens gripping portion;
  • the first lens L1 illustrated in FIG. 7 is located between the effective surface Se1 or Se2 and one or more steps in the lens L1a or L1b after the coating process described with reference to FIG. 2, FIG. 3, or FIG. A portion outside the set boundary is removed.
  • the lens gripping portion 11c illustrated in FIG. 7 presses the area outside the effective surface to grip the first lens L1.
  • the image display device 1 there is no concern that the center accuracy of the first lens L1 will be lowered.
  • miniaturization of the first lens L1 enables miniaturization and weight reduction of the eyepiece optical system OC.
  • the relationship between the powers of the eyepiece optical system OC, the first lens L1, and the second lens L2 is disclosed in an earlier PCT application by the present applicant (International Application No.: PCT/JP2020/031665). It is also possible to satisfy the relationship between the powers of the eyepiece optical system, the first lens, and the second lens.
  • P0 be the power of the eyepiece optical system OC
  • P1 be the power of the first lens L1
  • P1 be the power of the second lens L2 with respect to the image light emitted from the display element D and following the regular optical path.
  • P2 the relationship between P0 and P2 may satisfy the following formula (1)
  • the first lens L1 is small and the second surface S2 is a flat surface or an approximate flat surface as described above, the power of the first surface S1 is also small and the first surface S1 is loose. Curvature.
  • the first surface S1 can be coated with the hard coat HC with less coating thickness unevenness by spin coating.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components of all components shown in the embodiments may be omitted. Furthermore, components across different embodiments may be combined as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

A near-eye image display device includes an eyepiece optical system OC and a display element D, the OC including at least a first lens L1 and a second lens L2 in the stated order from a user eye side. The L1 comprises a thermoplastic resin and has an eye-side surface S1 and a D-side surface S2. The L2 has an eye-side surface S3 and a D-side surface S4. The S1 is an aspherical surface. The S4 is convex toward the D side. The S4 is coated with a semi-transmissive mirror HM. A first polarizing element for converting light emitted by the D to a first polarization state is provided between the HM and the D. A reflective polarizing element for reflecting light in a second polarization state traveling toward the eye side and transmitting light in a third polarization state traveling toward the eye side is laminated on the S2. A second polarizing element for converting light in the first polarization state traveling toward the eye side to the second polarization state when the light passes, and converting light in the second polarization state traveling toward the D side to the third polarization state when the light passes so as to go and return is provided between the reflective polarizing element and the S4. The L1 is coated with a card coat on the S1, avoiding the S2, by a spin coating method.

Description

映像表示装置Video display device
 本発明は、覗き込み型の映像表示装置に関する。 The present invention relates to a peek-type video display device.
 従来、HMD(Head Mounted Display)等の覗き込み型の映像表示装置が知られている。このような映像表示装置には、使用者の使い勝手向上や映像品質向上等の観点から、全長が短いこと、光学性能が高いこと、レンズ(特に外部に露出され得るレンズ面)が傷付き難いこと等が望まれている。 Conventionally, a peek-type video display device such as an HMD (Head Mounted Display) is known. From the viewpoint of user-friendliness improvement and image quality improvement, such image display devices must have a short overall length, high optical performance, and a lens (especially a lens surface that can be exposed to the outside) that is resistant to scratches. etc. is desired.
 一般に、傷付き難いレンズ面を実現するために、レンズ面にコーティングを行うことが知られている。例えば、特許文献1及び2には、スピンコート法やディップコート法により、レンズの片面にコーティングを行う手法が開示されている。 In general, it is known to apply a coating to the lens surface in order to achieve a scratch-resistant lens surface. For example, Patent Literatures 1 and 2 disclose methods of coating one side of a lens by spin coating or dip coating.
特開2012-159526号公報JP 2012-159526 A 特開平9-192587号公報JP-A-9-192587
 本発明は、上記実状に鑑み、全長が短く、光学性能が高く、レンズが傷付き難い、覗き込み型の映像表示装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a peek-type image display device that has a short overall length, high optical performance, and a lens that is resistant to scratches.
 本発明の一態様は、接眼光学系と表示素子とを含む覗き込み型の映像表示装置であって、前記接眼光学系は、使用者の眼側から前記表示素子側に向かって少なくとも第1のレンズと第2のレンズとを含み、前記第1のレンズは、熱可塑性樹脂からなり、前記使用者の眼側の面である第1の面と、前記表示素子側の面である第2の面とを有し、前記第2のレンズは、前記使用者の眼側の面である第3の面と、前記表示素子側の面である第4の面とを有し、前記第1の面は、非球面であり、前記第4の面は、前記使用者の眼側から前記表示素子側に向かって凸形状であり、前記第4の面には、半透過鏡がコートされており、前記半透過鏡と前記表示素子との間には、前記表示素子が射出する光の偏光状態を第1の偏光状態に変換する作用を持つ第1の偏光素子が設けられており、前記第2の面には、前記表示素子側から前記使用者の眼側に向かう第2の偏光状態の光を反射し、且つ、前記表示素子側から前記使用者の眼側に向かう第3の偏光状態の光を透過する作用を持つ反射偏光素子がラミネートされており、前記反射偏光素子と前記第4の面との間には、前記表示素子側から前記使用者の眼側に向かう前記第1の偏光状態の光が通過すると、当該光の偏光状態を前記第2の偏光状態に変換する作用を持ち、且つ、前記使用者の眼側から前記表示素子側に向かう前記第2の偏光状態の光が往復するように通過すると、当該光の偏光状態を前記第3の偏光状態に変換する作用を持つ第2の偏光素子が設けられており、前記第1のレンズにおいては、スピンコート法により、前記第2の面を避けて前記第1の面にハードコートがコートされている。 One aspect of the present invention is a looking-in type image display device including an eyepiece optical system and a display device, wherein the eyepiece optical system extends from the user's eye side toward the display device side at least a first The first lens comprises a lens and a second lens, and the first lens is made of a thermoplastic resin, and has a first surface on the user's eye side and a second surface on the display element side. the second lens has a third surface on the side of the user's eye and a fourth surface on the side of the display element; The surface is an aspheric surface, the fourth surface has a convex shape from the user's eye side toward the display element side, and the fourth surface is coated with a semitransparent mirror. and a first polarizing element having a function of converting a polarization state of light emitted from the display element into a first polarization state is provided between the semi-transmissive mirror and the display element; The surface 2 reflects light in a second polarization state from the display element side toward the user's eye side, and has a third polarization state toward the user's eye side from the display element side. A reflective polarizing element having a function of transmitting light of is laminated, and between the reflective polarizing element and the fourth surface, the first polarizing element directed from the display element side to the user's eye side The light having the second polarization state, which has an effect of converting the polarization state of the light into the second polarization state when the light having the polarization state passes through, and which travels from the user's eye side to the display element side. is provided with a second polarizing element having a function of converting the polarization state of the light to the third polarization state when passing through so as to reciprocate, and in the first lens, by a spin coating method, A hard coat is applied to the first surface while avoiding the second surface.
 本発明によれば、全長が短く、光学性能が高く、レンズが傷つき難い、覗き込み型の映像表示装置を提供することができる。 According to the present invention, it is possible to provide a viewing-type video display device that has a short overall length, high optical performance, and a lens that is resistant to damage.
一実施の形態に係る覗き込み型の映像表示装置の構成を例示する図である。1 is a diagram illustrating the configuration of a peek-type video display device according to an embodiment; FIG. コート工程に第1のレンズとして投入されたレンズが保持された状態を例示する図(その1)である。FIG. 10 is a diagram (part 1) exemplifying a state in which a lens introduced as a first lens in a coating process is held; コート工程に第1のレンズとして投入されたレンズが保持された状態を例示する図(その2)である。FIG. 10B is a second diagram illustrating a state in which the lens that has been put into the coating process as the first lens is held; コート工程に第1のレンズとして投入されたレンズが保持された状態を例示する図(その3)である。FIG. 11 is a diagram (part 3) exemplifying a state in which the lens introduced as the first lens in the coating process is held; 図2を用いて説明したコート工程後のレンズが第1のレンズとしてレンズ把持部により把持された状態を例示する図である。FIG. 3 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 2 is gripped as a first lens by a lens gripping section; 図4を用いて説明したコート工程後のレンズが第1のレンズとしてレンズ把持部により把持された状態を例示する図である。5 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 4 is gripped as a first lens by a lens gripping section; FIG. 第1のレンズがレンズ把持部により把持された状態を例示する図である。FIG. 10 is a diagram illustrating a state in which the first lens is gripped by the lens gripping section;
 以下、図面を参照しながら、本発明の実施の形態について説明する。
 図1は、一実施の形態に係る覗き込み型の映像表示装置の構成を例示する図である。
 図1に例示した映像表示装置1は、図1の左側から使用者により覗き込まれて使用される映像表示装置である。映像表示装置1は、使用者の右眼用と左眼用のそれぞれに用意されるものであってもよいし、いずれか片方の眼用のみに用意されるものであってもよい。映像表示装置1は、例えばHMDに適用され得る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating the configuration of a peek-type video display device according to an embodiment.
A video display device 1 illustrated in FIG. 1 is a video display device used by a user looking into it from the left side of FIG. The image display device 1 may be prepared for each of the user's right eye and left eye, or may be prepared for only one eye. The image display device 1 can be applied to, for example, an HMD.
 映像表示装置1は、接眼光学系OCと表示素子Dとを含む。
 接眼光学系OCは、使用者の眼側から表示素子D側に向かって少なくとも第1のレンズL1と第2のレンズL2とを含む。
The image display device 1 includes an eyepiece optical system OC and a display element D. FIG.
The eyepiece optical system OC includes at least a first lens L1 and a second lens L2 from the user's eye side toward the display element D side.
 第1のレンズL1は、熱可塑性樹脂からなり、使用者の眼側の面である第1の面S1と、表示素子D側の面である第2の面S2とを有する。第1の面S1は、非球面であり、第2の面S2は、平面又は近似平面である。また、第1のレンズL1においては、スピンコート法により、第2の面S2を避けて第1の面S1にハードコート(傷防止コート)HCがコート(成膜)されている。ハードコートHCは、例えば、有機系ハードコート、無機系ハードコート、又は有機無機ハイブリッドハードコート等の公知のハードコートである。 The first lens L1 is made of thermoplastic resin and has a first surface S1 that faces the user's eyes and a second surface S2 that faces the display element D. The first surface S1 is an aspheric surface, and the second surface S2 is a plane or an approximate plane. Further, in the first lens L1, a hard coat (anti-scratch coat) HC is coated (film-formed) on the first surface S1 avoiding the second surface S2 by a spin coating method. The hard coat HC is, for example, a known hard coat such as an organic hard coat, an inorganic hard coat, or an organic-inorganic hybrid hard coat.
 第2のレンズL2は、熱可逆性樹脂からなり、使用者の眼側の面である第3の面S3と、表示素子D側の面である第4の面S4とを有する。第3の面S3は、非球面であり、且つ、接眼光学系OCの光軸A回りが表示素子D側から使用者の眼側に向かって凸形状又は近似平面である。第4の面S4は、使用者の眼側から表示素子D側に向かって凸形状である。第4の面S4には、ハーフミラー(半透過鏡)HMがコートされている。 The second lens L2 is made of a thermoreversible resin and has a third surface S3 that faces the user's eyes and a fourth surface S4 that faces the display element D. The third surface S3 is an aspherical surface, and has a convex shape or an approximate plane around the optical axis A of the eyepiece optical system OC from the display element D side toward the user's eye side. The fourth surface S4 has a convex shape from the user's eye side toward the display element D side. The fourth surface S4 is coated with a half mirror (semi-transmissive mirror) HM.
 ハーフミラーHMと表示素子Dとの間には、表示素子Dが射出する光の偏光状態を第1の偏光状態に変換する作用を持つ第1の偏光素子が設けられている。図1に例示した構成では、第1の偏光素子の一例である円偏光板CPが、表示素子Dにラミネートされている。なお、第1の偏光状態は、例えば、右回り又は左回りの円偏光状態である。円偏光板CPは、例えば、直線偏光板に1/4波長板を重ね合わせたものである。 Between the half mirror HM and the display element D, a first polarizing element is provided that has the function of converting the polarization state of the light emitted by the display element D into the first polarization state. In the configuration illustrated in FIG. 1, a circularly polarizing plate CP, which is an example of the first polarizing element, is laminated on the display element D. In the configuration shown in FIG. Note that the first polarization state is, for example, a clockwise or counterclockwise circular polarization state. The circularly polarizing plate CP is, for example, a linearly polarizing plate superimposed on a quarter-wave plate.
 第2の面S2には、表示素子D側から使用者の眼側に向かう第2の偏光状態の光を反射し、且つ、表示素子D側から使用者の眼側に向かう第3の偏光状態の光を透過する作用を持つ反射偏光素子がラミネートされている。図1に例示した構成では、反射偏光素子の一例として、第2の偏光状態の光を効率よく反射し、且つ、第3の偏光状態の光を効率よく透過する作用を持つ反射偏光フィルムRPがラミネートされている。なお、第2の偏光状態は、例えば、直線偏光状態であり、第3の偏光状態は、例えば、第2の偏光状態の偏光方向に直交する偏光方向の直線偏光状態である。反射偏光フィルムRPは、例えば、ワイヤグリッド偏光フィルム又はコレステリック偏光フィルムである。 The second surface S2 reflects light in the second polarization state toward the user's eye side from the display element D side, and reflects light in the third polarization state toward the user's eye side from the display element D side. A reflective polarizing element having a function of transmitting light is laminated. In the configuration illustrated in FIG. 1, as an example of the reflective polarizing element, a reflective polarizing film RP that efficiently reflects light in the second polarization state and efficiently transmits light in the third polarization state is used. Laminated. The second polarization state is, for example, a linear polarization state, and the third polarization state is, for example, a linear polarization state in a polarization direction orthogonal to the polarization direction of the second polarization state. The reflective polarizing film RP is, for example, a wire grid polarizing film or a cholesteric polarizing film.
 反射偏光フィルムRPと第4の面S4との間には、表示素子D側から使用者の眼側に向かう第1の偏光状態の光が通過すると、当該光の偏光状態を第2の偏光状態に変換する作用を持ち、且つ、使用者の眼側から表示素子D側に向かう第2の偏光状態の光が往復するように通過すると、当該光の偏光状態を第3の偏光状態に変換する作用を持つ第2の偏光素子が設けられている。図1に例示した構成では、第2の偏光素子の一例である1/4波長フィルムQWPが、反射偏光フィルムRPにラミネートされている。すなわち、第2の面S2には、使用者の眼側から表示素子D側に向かって反射偏光フィルムRP及び1/4波長フィルムQWPがラミネートされている。 Between the reflective polarizing film RP and the fourth surface S4, when the light in the first polarization state traveling from the display element D side toward the user's eyes passes through, the polarization state of the light is changed to the second polarization state. and converts the polarization state of the light into the third polarization state when the light in the second polarization state traveling from the user's eye side to the display element D side passes back and forth. A second active polarizing element is provided. In the configuration illustrated in FIG. 1, a quarter-wave film QWP, which is an example of the second polarizing element, is laminated to the reflective polarizing film RP. That is, the reflective polarizing film RP and the quarter-wave film QWP are laminated from the user's eye side to the display element D side on the second surface S2.
 表示素子Dは、映像が表示される映像表示面S5と、映像表示面S5を保護するカバーガラスD1と、映像表示面S5に映像を表示させる表示素子基板D2とを含む。表示素子Dは、例えば、OLED(Organic Light Emitting Diode)パネル、又は、マイクロLED(Light Emitting Diode)パネルといった視野角が大きな表示パネルである。 The display element D includes an image display surface S5 on which an image is displayed, a cover glass D1 that protects the image display surface S5, and a display element substrate D2 that displays an image on the image display surface S5. The display element D is, for example, a display panel with a wide viewing angle such as an OLED (Organic Light Emitting Diode) panel or a micro LED (Light Emitting Diode) panel.
 図1に例示した構成の映像表示装置1では、表示素子Dから出射した映像光が、次のような正規光路(折り返し光路を含む)を辿って、使用者の眼(瞳孔)に入射する。 In the image display device 1 having the configuration illustrated in FIG. 1, the image light emitted from the display element D is incident on the user's eye (pupil) along the following regular optical path (including the folded optical path).
 表示素子Dの映像表示面S5からカバーガラスD1を介して出射した映像光は、まず、円偏光板CPを通過する。これにより、映像光の偏光状態が、右回り又は左回りの円偏光状態(第1の偏光状態の一例)になる。 The image light emitted from the image display surface S5 of the display element D through the cover glass D1 first passes through the circularly polarizing plate CP. As a result, the polarization state of the image light becomes a clockwise or counterclockwise circular polarization state (an example of a first polarization state).
 円偏光板CPを通過した映像光は、その後、一部がハーフミラーHMを透過し、残りがハーフミラーHMで反射して不要光となる。
 ハーフミラーHMを透過した映像光は、その後、第2のレンズL2を、第4の面S4、第3の面S3の順に、通過する。
Part of the image light that has passed through the circularly polarizing plate CP is then transmitted through the half mirror HM, and the rest is reflected by the half mirror HM to become unnecessary light.
The image light transmitted through the half mirror HM then passes through the second lens L2 through the fourth surface S4 and the third surface S3 in that order.
 第2のレンズL2を通過した映像光は、その後、1/4波長フィルムQWPを通過する。これにより、映像光の偏光状態が、右回り又は左回りの円偏光状態から直線偏光状態(第2の偏光状態の一例)になる。ここでは、その偏光面の方位角を0°と置くことにする。 The image light that has passed through the second lens L2 then passes through the quarter-wave film QWP. As a result, the polarization state of the image light changes from the clockwise or counterclockwise circular polarization state to the linear polarization state (an example of the second polarization state). Here, the azimuth angle of the plane of polarization is assumed to be 0°.
 1/4波長フィルムQWPを通過した映像光は、その後、反射偏光フィルムRPで反射する。ここでは、反射偏光フィルムRPが、方位角0°の直線偏光状態の光を反射し、方位角90°の直線偏光状態(第3の偏光状態の一例)の光を透過するものとする。 The image light that has passed through the quarter-wave film QWP is then reflected by the reflective polarizing film RP. Here, it is assumed that the reflective polarizing film RP reflects linearly polarized light with an azimuth angle of 0° and transmits linearly polarized light with an azimuth angle of 90° (an example of a third polarization state).
 反射偏光フィルムRPで反射した映像光は、その後、1/4波長フィルムQWPを再び通過する。これにより、映像光の偏光状態が、方位角0°の直線偏光状態から左回り又は右回りの円偏光状態になる。 The image light reflected by the reflective polarizing film RP then passes through the quarter-wave film QWP again. As a result, the polarization state of the image light changes from a linearly polarized state with an azimuth angle of 0° to a counterclockwise or clockwise circularly polarized state.
 1/4波長フィルムQWPを通過した映像光は、その後、第2のレンズL2を、第3の面S3、第4の面S4の順に、再び通過する。
 第2のレンズL2の第4の面S4を通過した映像光は、その後、一部がハーフミラーHMで反射し、残りがハーフミラーHMを透過して不要光となる。なお、第4の面S4は、使用者の眼側から表示素子D側に向かって凸形状であるため、第4の面S4にコートされているハーフミラーHMは、使用者の眼側から入射して反射する光に対しては凹面鏡として作用する。すなわち、この反射光は、凹面鏡の持つ強い正の屈折力を受け、再び表示素子D側から使用者の眼側に向かって進む。
The image light that has passed through the quarter-wave film QWP then passes through the second lens L2 again through the third surface S3 and the fourth surface S4 in that order.
Part of the image light that has passed through the fourth surface S4 of the second lens L2 is then reflected by the half mirror HM, and the rest passes through the half mirror HM to become unnecessary light. In addition, since the fourth surface S4 is convex from the user's eye side toward the display element D side, the half mirror HM coated on the fourth surface S4 has an incident light from the user's eye side. It acts as a concave mirror for the light reflected by the mirror. That is, this reflected light receives the strong positive refractive power of the concave mirror and travels again from the display element D side toward the user's eye side.
 ハーフミラーHMで反射した映像光は、その後、第2のレンズL2を、第4の面S4、第3の面S3の順に、再び通過する。
 第2のレンズL2を通過した映像光は、その後、1/4波長フィルムQWPを再び通過する。これにより、映像光の偏光状態が、左回り又は右回りの円偏光状態から方位角90°の直線偏光状態になる。
The image light reflected by the half mirror HM then passes through the second lens L2 again through the fourth surface S4 and the third surface S3 in that order.
The image light that has passed through the second lens L2 then passes through the quarter-wave film QWP again. As a result, the polarization state of the image light changes from a left-handed or right-handed circularly polarized state to a linearly polarized state with an azimuth angle of 90°.
 1/4波長フィルムQWPを通過した映像光は、その後、反射偏光フィルムRPを透過し、第1のレンズL1を、第2の面S2、第1の面S1の順に、通過し、更にハードコートHCを通過する。そして、ハードコートHCを通過した映像光は、瞳面S0を通過し、使用者の眼(瞳孔)に入射する。このとき映像光は、主に上述の凹面鏡の持つ強い正の屈折力を受け、表示素子Dの虚像を形成しており、使用者は大画面の映像を観察することができる。なお、瞳面S0の位置は、想定される使用者の眼(瞳孔)の位置でもある。 The image light that has passed through the quarter-wave film QWP is then transmitted through the reflective polarizing film RP, passes through the first lens L1 through the second surface S2 and the first surface S1 in this order, and is hard-coated. Pass through HC. After passing through the hard coat HC, the image light passes through the pupil plane S0 and enters the user's eye (pupil). At this time, the image light mainly receives the strong positive refractive power of the concave mirror, forms a virtual image on the display element D, and allows the user to observe the image on the large screen. The position of the pupil plane S0 is also the assumed position of the user's eye (pupil).
 接眼光学系OCにおいて、第1のレンズL1を上述のように構成する理由は、次のとおりである。一般に、レンズ系の適切な面を非球面にすることは、収差補正の上で効果が大きいが、光の透過と反射の作用を併せ持つ面を非球面にしても、収差補正効果は小さい。これは、非球面の、透過光と反射光に対する収差に及ぼす効果が、質も量も大きく異なるために、適切な収差補正効果を有する非球面形状を設定することが難しいためである。反射偏光フィルムRPは、傷付き易くレンズ系の剥き出した面に配置すべきではない。また、反射偏光フィルムRPがラミネートされる面は、密着性の観点から、平面又は近似平面(例えば緩い曲率の面)であることが好ましい。これらを考慮すると、使用者の眼に虚像を投影する接眼光学系OCにおいて、第1のレンズL1の第1の面S1を非球面にし、第2の面S2を平面又は近似平面にすることが好ましい。但し、非球面レンズをガラスで製作することは、コストが高く、また質量も大きくなり、好ましくない。そこで、第1のレンズL1は、熱可塑性樹脂を用いて製作した、第1の面S1が非球面で且つ第2の面S2が平面又は近似平面のレンズであることが好ましい。 The reason for configuring the first lens L1 as described above in the eyepiece optical system OC is as follows. In general, making an appropriate surface of a lens system an aspherical surface is highly effective in correcting aberrations. This is because the effects of an aspherical surface on aberrations for transmitted light and reflected light differ greatly in quality and quantity, and it is difficult to set an aspherical surface shape that has an appropriate aberration correction effect. The reflective polarizing film RP should not be placed on the exposed surface of the lens system which is prone to scratches. From the viewpoint of adhesion, the surface on which the reflective polarizing film RP is laminated is preferably a flat surface or an approximately flat surface (for example, a surface with a gentle curvature). Considering these, in the eyepiece optical system OC that projects a virtual image to the user's eye, it is possible to make the first surface S1 of the first lens L1 aspherical and the second surface S2 flat or approximately flat. preferable. However, manufacturing the aspherical lens from glass is not preferable because the cost is high and the mass is also large. Therefore, the first lens L1 is preferably a lens made of thermoplastic resin, the first surface S1 of which is aspheric, and the second surface S2 of which is a plane or approximately plane.
 また、第1の面S1にはハードコートHCがコートされており、これにより、使用者が取扱いに注意を払わずとも、第1の面S1に傷が付いて観察映像に悪影響が生じるリスクが減じられている。さらに、ハードコートHCは、スピンコート法により、第1の面S1のみにコートされることが好ましい。その理由は、次のとおりである。一般に、反射面は屈折面に比べて高い面精度が要求され、接眼光学系OCにおいても例外ではない。反射偏光フィルムRPを高い面精度で第2の面S2にラミネートしなければ、映像の鮮鋭度が低下する。仮に、第2の面S2にもハードコートHCがコートされると、ハードコートHC上に反射偏光フィルムRPがラミネートされることとなり、ハードコートHCのコート厚ムラが、反射偏光フィルムRPの面精度劣化を引き起こす虞がある。スピンコート法によるコートは、コート液をレンズ面に塗布して行うため、コートに比較的大きな膜厚ムラが生じ易く、反射偏光フィルムRPの面精度劣化は看過できないレベルになる。そこで、第1のレンズL1では、第2の面S2を避けて第1の面S1のみにハードコートHCがコートされるようにしている。 In addition, the first surface S1 is coated with a hard coat HC, so that there is a risk that the first surface S1 will be scratched and adversely affect the observation image even if the user does not pay attention to handling. has been reduced. Furthermore, the hard coat HC is preferably coated only on the first surface S1 by spin coating. The reason is as follows. Reflective surfaces generally require higher surface accuracy than refractive surfaces, and the eyepiece optical system OC is no exception. Unless the reflective polarizing film RP is laminated on the second surface S2 with high surface precision, the sharpness of the image will be lowered. If the second surface S2 is also coated with the hard coat HC, the reflective polarizing film RP will be laminated on the hard coat HC, and the uneven coating thickness of the hard coat HC will affect the surface accuracy of the reflective polarizing film RP. There is a risk of causing deterioration. Coating by the spin coating method is performed by applying a coating liquid to the lens surface, so that the coating tends to have relatively large film thickness unevenness, and the deterioration of the surface accuracy of the reflective polarizing film RP cannot be overlooked. Therefore, in the first lens L1, only the first surface S1 is coated with the hard coat HC while avoiding the second surface S2.
 一実施の形態に係る映像表示装置1によれば、接眼光学系OCが、第1のレンズL1の第2の面S2に反射偏光フィルムRPがラミネートされる構成を有するので、使用者の眼側から表示素子側へ向かって2番目以降のレンズに反射偏光フィルムがラミネートされるような構成を有する他の接眼光学系よりも、使用者の眼側から表示素子D側に向かう光路が長くとれるため、光路の折り畳み効果が大きく、薄型化が可能になる。また、非球面レンズの採用により、優れた光学性能を実現することができ、そのような非球面レンズを、熱可逆性樹脂により安価に製造することができる。さらに、第1のレンズL1の第1の面S1にはハードコートHCがコートされているので、接眼光学系OCにおける使用者が触れやすいレンズ面の傷付きを防止することができる。 According to the image display device 1 according to one embodiment, since the eyepiece optical system OC has a configuration in which the reflective polarizing film RP is laminated on the second surface S2 of the first lens L1, Because the optical path from the user's eye side to the display element D side can be longer than other eyepiece optical systems having a configuration in which a reflective polarizing film is laminated on the second and subsequent lenses from the eye toward the display element side. , the folding effect of the optical path is large, and thinning is possible. Moreover, by employing an aspherical lens, excellent optical performance can be achieved, and such an aspherical lens can be manufactured at low cost using a thermoreversible resin. Furthermore, since the first surface S1 of the first lens L1 is coated with the hard coat HC, it is possible to prevent the lens surface of the eyepiece optical system OC from being damaged, which is easily touched by the user.
 一実施の形態では、映像表示装置1の製造段階において、スピンコート法によりハードコートHCをコートする工程(以下単に「コート工程」という)に第1のレンズL1として投入されるレンズは、第1の面S1に対応する面における光学的な作用を持つ領域(以下「有効面」という)の外側に1つ以上の段差を有するようにしてもよい。このような段差を当該レンズに設けることは、当該レンズが熱可逆性樹脂を用いて成形されることから、容易である。このようにすることで、次のような効果が得られる。スピンコート法によるコートでは、レンズのコバにコート液の液溜まりができ易く、結果として、レンズのコバ付近にコート厚ムラが生じ易い。そこで、コート工程に第1のレンズL1として投入されるレンズに上述の1つ以上の段差を設けておくことで、スピンコート法によるコート中にレンズのコバ付近にできたコート液の液溜まりが有効面に向かって逆流するのを防止することができ、これにより、レンズのコバ付近にコート厚ムラが生じるのを防止することができる。このような態様について、図2、図3を用いて例示する。 In one embodiment, in the manufacturing stage of the image display device 1, the lens introduced as the first lens L1 in the process of coating the hard coat HC by a spin coating method (hereinafter simply referred to as the "coating process") is the first lens L1. One or more steps may be provided outside the area having an optical action (hereinafter referred to as the "effective surface") on the surface corresponding to the surface S1 of . Providing such a step on the lens is easy because the lens is molded using a thermoreversible resin. By doing so, the following effects can be obtained. In the coating by the spin coating method, the coating liquid tends to accumulate on the edge of the lens, and as a result, the thickness of the coating tends to be uneven in the vicinity of the edge of the lens. Therefore, by providing the above-described one or more steps on the lens that is put into the coating process as the first lens L1, the liquid pool of the coating liquid formed near the edge of the lens during coating by the spin coating method can be prevented. It is possible to prevent the liquid from flowing back toward the effective surface, thereby preventing the occurrence of coating thickness unevenness in the vicinity of the edge of the lens. Such an aspect is illustrated using FIGS. 2 and 3. FIG.
 図2は、コート工程に第1のレンズとして投入されたレンズが保持された状態を例示する図(その1)である。
 図2に例示したように、コート工程に第1のレンズL1として投入されたレンズL1aには、第1の面S1に対応する面S1aにおける有効面Se1の外側に1つの段差St1が設けられている。ここでは、そのようなレンズL1aを保持部20により保持した状態で回転させ、スピンコート法により、レンズL1aの面S1aにハードコートHCがコートされる。このとき、当該コート中にレンズL1aのコバ付近にできたコート液の液溜まりLc1は、段差St1によって、その後、有効面Se1に向かって逆流することはないため、レンズL1aのコバ付近にコート厚ムラが生じることはない。
FIG. 2 is a diagram (No. 1) exemplifying a state in which a lens introduced as a first lens in a coating process is held.
As exemplified in FIG. 2, the lens L1a put into the coating process as the first lens L1 is provided with one step St1 outside the effective surface Se1 on the surface S1a corresponding to the first surface S1. there is Here, such a lens L1a is rotated while being held by the holding portion 20, and the surface S1a of the lens L1a is coated with the hard coat HC by spin coating. At this time, the liquid pool Lc1 of the coating liquid formed near the edge of the lens L1a during the coating does not flow back toward the effective surface Se1 due to the step St1. No unevenness occurs.
 図3は、コート工程に第1のレンズとして投入されたレンズが保持された状態を例示する図(その2)である。
 図3の例示は、図2の例示に対して、レンズL1aにおける有効面Se1の外側に設けられる段差St1が2つとされた例である。このような構成によっても、スピンコート法によるコート中にレンズL1aのコバ付近にできたコート液の液溜まりLc1が、有効面Se1に向かって逆流することはないため、コバ付近にコート厚ムラが生じることはない。
FIG. 3 is a diagram (part 2) exemplifying a state in which the lens that has been put into the coating step as the first lens is held.
The illustration in FIG. 3 is an example in which two steps St1 are provided outside the effective surface Se1 in the lens L1a, in contrast to the illustration in FIG. Even with such a configuration, the liquid pool Lc1 of the coating liquid formed near the edge of the lens L1a during coating by the spin coating method does not flow backward toward the effective surface Se1, so that the coating thickness unevenness occurs near the edge. never occurs.
 なお、特許文献1には、環状の保持部材の一部にスリットや孔を設けることで、塗布液の液溜まりの発生を防止する方法が開示されている。しかしながら、スリットや孔の開口径を適切に設定することが困難である等といった課題が残る。 Note that Patent Document 1 discloses a method of preventing the occurrence of pooling of the coating liquid by providing a slit or hole in a part of the annular holding member. However, there remains a problem that it is difficult to appropriately set the opening diameters of the slits and holes.
 一実施の形態では、映像表示装置1の製造段階において、コート工程に第1のレンズL1として投入されるレンズは、第2の面S2に対応する面における有効面の外側に1つ以上の段差を有するようにしてもよい。このような段差を当該レンズに設けることも、上述のとおり、容易である。このようにすることで、次のような効果が得られる。スピンコート法によるコートでは、レンズの裏面(コート面の反対の面でもある)にコート液が回り込み易い。そこで、コート工程に第1のレンズL1として投入されるレンズに上述の1つ以上の段差を設けておくことで、レンズの裏面に回り込んだコート液が有効面に向かって侵入するのを防止することができる。このような態様について、図4を用いて例示する。 In one embodiment, in the manufacturing stage of the image display device 1, the lens that is put into the coating process as the first lens L1 has one or more steps outside the effective surface on the surface corresponding to the second surface S2. may have Providing such a step on the lens is also easy as described above. By doing so, the following effects can be obtained. In the coating by the spin coating method, the coating liquid tends to wrap around the rear surface of the lens (which is also the surface opposite to the coated surface). Therefore, by providing the above-described one or more steps on the lens that is put into the coating process as the first lens L1, the coating liquid that has flowed around the rear surface of the lens is prevented from entering toward the effective surface. can do. Such an aspect is illustrated using FIG.
 図4は、コート工程に第1のレンズとして投入されたレンズが保持された状態を例示する図(その3)である。
 図4に例示したように、コート工程に第1のレンズL1として投入されたレンズL1bには、第2の面S2に対応する面S2bにおける有効面Se2の外側に1つの段差St2が設けられている。ここでは、そのようなレンズL1bを真空吸着保持部30により吸着保持した状態で回転させ、スピンコート法により、レンズL1bの、第1の面S1に対応する面S1bにハードコートHCがコートされる。このとき、当該コート中にレンズL1bの裏面に回り込んだコート液Lc2は、段差St2によって、その後、有効面Se2に向かって侵入することはない。
FIG. 4 is a diagram (No. 3) exemplifying a state in which the lens that has been put into the coating step as the first lens is held.
As exemplified in FIG. 4, the lens L1b put into the coating step as the first lens L1 is provided with one step St2 outside the effective surface Se2 on the surface S2b corresponding to the second surface S2. there is Here, such a lens L1b is rotated while being sucked and held by the vacuum suction holding unit 30, and the surface S1b of the lens L1b corresponding to the first surface S1 is coated with the hard coat HC by a spin coating method. . At this time, the coating liquid Lc2 that has flowed to the rear surface of the lens L1b during the coating does not subsequently enter toward the effective surface Se2 due to the step St2.
 なお、特許文献2には、レンズ状の対象物の一方の面にコートを行う際に、そのレンズ状の対象物の他方の面を密封状態に覆う保持治具により保持すること等が開示されている。しかしながら、密封状態に保持するための工程に時間を要したり、保持治具を毎回清純に保つための清掃が必要になったりと、生産性が良くないという課題が残る。 Incidentally, Patent Document 2 discloses that when coating one surface of a lens-shaped object, the other surface of the lens-shaped object is held by a holding jig that covers the other surface in a sealed state. ing. However, there remains the problem of poor productivity, such as the time required for the process for maintaining the sealed state and the need to clean the holding jig to keep it clean each time.
 一実施の形態では、映像表示装置1が、第1のレンズL1を把持するレンズ把持部を備え、当該レンズ把持部が、上述の有効面と1つ以上の段差との間の領域を押圧して第1のレンズL1を把持するようにしてもよい。これにより、レンズ把持部は、上述のコート液の液溜まりLc1やコート液Lc2により第1のレンズL1のコバ付近の厚みがばらつく部位を避けて第1のレンズL1を押圧することができるので、映像表示装置1において、第1のレンズL1が傾いた状態で把持されたり、第1のレンズL1に局所的な応力が働いてレンズ面が歪んだりすることを防止することができる。即ち、第1のレンズL1を精度良く歪みを与えずに把持することができる。このような態様について、図5及び図6を用いて例示する。 In one embodiment, the image display device 1 includes a lens gripping portion that grips the first lens L1, and the lens gripping portion presses the area between the effective surface and one or more steps. Alternatively, the first lens L1 may be gripped by the first lens L1. As a result, the lens gripping portion can press the first lens L1 while avoiding the portion where the thickness near the edge of the first lens L1 varies due to the coating liquid reservoir Lc1 and the coating liquid Lc2. In the image display device 1, it is possible to prevent the first lens L1 from being held in a tilted state, and the lens surface from being distorted due to local stress acting on the first lens L1. That is, the first lens L1 can be gripped with high accuracy without giving distortion. Such an aspect is illustrated using FIGS. 5 and 6. FIG.
 図5は、図2を用いて説明したコート工程後のレンズが第1のレンズとしてレンズ把持部により把持された状態を例示する図である。
 図5に例示したレンズ把持部11aは、第1の面S1における有効面Se1と段差St1との間の領域を押圧すると共に、第2の面S2における有効面の外側の領域を押圧して第1のレンズL1を把持している。
FIG. 5 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 2 is gripped as a first lens by the lens gripping section.
The lens gripping portion 11a illustrated in FIG. 5 presses the area between the effective surface Se1 and the step St1 on the first surface S1, and presses the area outside the effective surface on the second surface S2, thereby 1 lens L1 is held.
 図6は、図4を用いて説明したコート工程後のレンズが第1のレンズとしてレンズ把持部により把持された状態を例示する図である。
 図6に例示したレンズ把持部11bは、第2の面S2における有効面Se2と段差St2との間の領域を押圧すると共に、第1の面S1における有効面の外側の領域を押圧して第1のレンズL1を把持している。
FIG. 6 is a diagram illustrating a state in which the lens after the coating process described with reference to FIG. 4 is gripped as a first lens by the lens gripping section.
The lens gripping portion 11b illustrated in FIG. 6 presses the area between the effective surface Se2 and the step St2 on the second surface S2, and presses the area outside the effective surface on the first surface S1, thereby 1 lens L1 is held.
 このような図5及び図6に例示したレンズ把持部11a及び11bによる把持により、コート液の液溜まりLc1やコート液Lc2によりコバ付近の厚みがばらつく部位を避けて第1のレンズL1を把持することができるので、第1のレンズL1が傾いた状態で把持されたり、局所的な応力が働いてレンズ面が歪んだりすることはない。 By gripping by the lens gripping portions 11a and 11b illustrated in FIGS. 5 and 6, the first lens L1 is gripped while avoiding portions near the edge where the thickness varies due to the coating liquid pool Lc1 and the coating liquid Lc2. Therefore, the first lens L1 is not gripped in a tilted state, and the lens surface is not distorted due to local stress.
 一実施の形態では、映像表示装置1の製造段階において、コート工程後のレンズにおける、有効面と1つ以上の段差との間に設定された境界よりも外側の部分が除去されるようにしてもよい。また、この場合は、映像表示装置1が、第1のレンズL1を把持するレンズ把持部を備え、当該レンズ把持部が、有効面の外側の領域を押圧して第1のレンズL1を把持するようにしてもよい。このようにすることで、次のような効果が得られる。仮に、レンズのコバにコート液が侵入して固まってしまうと、レンズの光軸からコバまでの寸法(即ち外径寸法)にばらつきが生じ、結果として、映像表示装置1において、第1のレンズL1が把持されたときに、第1のレンズL1の芯精度が低下する虞がある。そこで、上述のように外側部分を除去してレンズ把持部が第1のレンズL1を把持することで、そのような芯精度の低下を防止することができる。また、これにより、第1のレンズL1を小型化できるので、接眼光学系OCの小型化及び軽量化にも貢献することができる。なお、上述の境界は、レンズ把持部が押圧する領域を考慮して設定されるのが好ましい。このような態様について、図7を用いて例示する。 In one embodiment, in the manufacturing stage of the image display device 1, the portion outside the boundary set between the effective surface and one or more steps in the lens after the coating process is removed. good too. Further, in this case, the image display device 1 includes a lens gripping portion that grips the first lens L1, and the lens gripping portion presses the area outside the effective surface to grip the first lens L1. You may do so. By doing so, the following effects can be obtained. If the coating liquid penetrates into the edge of the lens and hardens, the dimension from the optical axis to the edge of the lens (that is, the outer diameter dimension) varies. When L1 is gripped, there is a possibility that the center accuracy of the first lens L1 may be degraded. Therefore, by removing the outer portion and allowing the lens gripping portion to grip the first lens L1 as described above, it is possible to prevent such a decrease in core accuracy. In addition, since the size of the first lens L1 can be reduced, it is possible to contribute to the reduction in size and weight of the eyepiece optical system OC. It should be noted that the aforementioned boundary is preferably set in consideration of the region pressed by the lens gripping portion. Such an aspect is illustrated using FIG.
 図7は、第1のレンズがレンズ把持部により把持された状態を例示する図である。
 図7に例示した第1のレンズL1は、図2、図3、又は図4を用いて説明したコート工程後のレンズL1a又はL1bにおける有効面Se1又はSe2と1つ以上の段差との間に設定された境界よりも外側の部分が除去されたものである。そして、図7に例示したレンズ把持部11cは、有効面の外側の領域を押圧して第1のレンズL1を把持している。これにより、映像表示装置1において、第1のレンズL1の芯精度が低下する虞はない。また、第1のレンズL1の小型化により、接眼光学系OCの小型化及び軽量化も可能になる。
FIG. 7 is a diagram illustrating a state in which the first lens is gripped by the lens gripping portion;
The first lens L1 illustrated in FIG. 7 is located between the effective surface Se1 or Se2 and one or more steps in the lens L1a or L1b after the coating process described with reference to FIG. 2, FIG. 3, or FIG. A portion outside the set boundary is removed. The lens gripping portion 11c illustrated in FIG. 7 presses the area outside the effective surface to grip the first lens L1. As a result, in the image display device 1, there is no concern that the center accuracy of the first lens L1 will be lowered. In addition, miniaturization of the first lens L1 enables miniaturization and weight reduction of the eyepiece optical system OC.
 一実施の形態では、接眼光学系OC、第1のレンズL1、及び第2のレンズL2のパワーの関係が、本出願人による先のPCT出願(国際出願番号:PCT/JP2020/031665)に開示された接眼光学系、第1のレンズ、及び第2のレンズのパワーの関係を満たすようにしてもよい。 In one embodiment, the relationship between the powers of the eyepiece optical system OC, the first lens L1, and the second lens L2 is disclosed in an earlier PCT application by the present applicant (International Application No.: PCT/JP2020/031665). It is also possible to satisfy the relationship between the powers of the eyepiece optical system, the first lens, and the second lens.
 具体的には、接眼光学系OCのパワーをP0とし、第1のレンズL1のパワーをP1とし、表示素子Dを出射して上述の正規光路を辿る映像光に対する第2のレンズL2のパワーをP2とすると、P0とP2の関係は下記式(1)を満たし、P1とP2の関係は下記式(2)を満たすようにしてもよい。
 0.8×P0≦P2≦1.2×P0  式(1)
 |P1|<1/4×P2       式(2)
Specifically, let P0 be the power of the eyepiece optical system OC, P1 be the power of the first lens L1, and let P1 be the power of the second lens L2 with respect to the image light emitted from the display element D and following the regular optical path. Assuming P2, the relationship between P0 and P2 may satisfy the following formula (1), and the relationship between P1 and P2 may satisfy the following formula (2).
0.8×P0≦P2≦1.2×P0 Formula (1)
|P1|<1/4×P2 Formula (2)
 これにより、より大きな視野角とより高い解像性能を持ち、より全長の短い接眼光学系OCを実現することができる。また、第1のレンズL1のパワーが小さく、且つ、上述の通り第2の面S2が平面又は近似平面であることから、第1の面S1のパワーも小さくなり、第1の面S1は緩い曲率となる。その結果、第1の面S1には、スピンコート法により、よりコート厚ムラが少ないハードコートHCをコートすることができる。 As a result, it is possible to realize an eyepiece optical system OC that has a wider viewing angle, higher resolution performance, and a shorter overall length. Further, since the power of the first lens L1 is small and the second surface S2 is a flat surface or an approximate flat surface as described above, the power of the first surface S1 is also small and the first surface S1 is loose. Curvature. As a result, the first surface S1 can be coated with the hard coat HC with less coating thickness unevenness by spin coating.
 以上、本発明は、上記実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせに依り、様々の発明を形成できる。例えば、実施形態に示される全構成要素のいくつかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 As described above, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage. Moreover, various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components of all components shown in the embodiments may be omitted. Furthermore, components across different embodiments may be combined as appropriate.
1     映像表示装置
11a、11b、11c レンズ把持部
20    保持部
30    真空吸着保持部
A     光軸
CP    円偏光板
D     表示素子
D1    カバーガラス
D2    表示素子基板
HC    ハードコート
HM    ハーフミラー
L1    第1のレンズ
L2    第2のレンズ
L1a、L1b レンズ
Lc1   液溜まり
Lc2   コート液
OC    接眼光学系
QWP   1/4波長フィルム
RP    反射偏光フィルム
S0    瞳面
S1    第1の面
S2    第2の面
S3    第3の面
S4    第4の面
S5    映像表示面
S1a、S1b、S2b 面
Se1、Se2 有効面
St1、St2 段差
1 Image Display Devices 11a, 11b, 11c Lens Grip Part 20 Holding Part 30 Vacuum Suction Holding Part A Optical Axis CP Circularly Polarizing Plate D Display Element D1 Cover Glass D2 Display Element Substrate HC Hard Coat HM Half Mirror L1 First Lens L2 Second 2 lens L1a, L1b lens Lc1 liquid pool Lc2 coating liquid OC eyepiece optical system QWP quarter-wave film RP reflective polarizing film S0 pupil plane S1 first plane S2 second plane S3 third plane S4 fourth plane S5 image display surfaces S1a, S1b, S2b surfaces Se1, Se2 effective surfaces St1, St2 steps

Claims (9)

  1.  接眼光学系と表示素子とを含む覗き込み型の映像表示装置であって、
     前記接眼光学系は、使用者の眼側から前記表示素子側に向かって少なくとも第1のレンズと第2のレンズとを含み、
     前記第1のレンズは、熱可塑性樹脂からなり、前記使用者の眼側の面である第1の面と、前記表示素子側の面である第2の面とを有し、
     前記第2のレンズは、前記使用者の眼側の面である第3の面と、前記表示素子側の面である第4の面とを有し、
     前記第1の面は、非球面であり、
     前記第4の面は、前記使用者の眼側から前記表示素子側に向かって凸形状であり、
     前記第4の面には、半透過鏡がコートされており、
     前記半透過鏡と前記表示素子との間には、前記表示素子が射出する光の偏光状態を第1の偏光状態に変換する作用を持つ第1の偏光素子が設けられており、
     前記第2の面には、前記表示素子側から前記使用者の眼側に向かう第2の偏光状態の光を反射し、且つ、前記表示素子側から前記使用者の眼側に向かう第3の偏光状態の光を透過する作用を持つ反射偏光素子がラミネートされており、
     前記反射偏光素子と前記第4の面との間には、前記表示素子側から前記使用者の眼側に向かう前記第1の偏光状態の光が通過すると、当該光の偏光状態を前記第2の偏光状態に変換する作用を持ち、且つ、前記使用者の眼側から前記表示素子側に向かう前記第2の偏光状態の光が往復するように通過すると、当該光の偏光状態を前記第3の偏光状態に変換する作用を持つ第2の偏光素子が設けられており、
     前記第1のレンズにおいては、スピンコート法により、前記第2の面を避けて前記第1の面にハードコートがコートされている、
     ことを特徴とする映像表示装置。
    A looking-in type image display device including an eyepiece optical system and a display element,
    The eyepiece optical system includes at least a first lens and a second lens from the user's eye side toward the display element side,
    The first lens is made of a thermoplastic resin and has a first surface that faces the user's eye and a second surface that faces the display element,
    The second lens has a third surface that is a surface on the user's eye side and a fourth surface that is a surface on the display element side,
    The first surface is an aspherical surface,
    the fourth surface has a convex shape from the user's eye side toward the display element side;
    The fourth surface is coated with a semitransparent mirror,
    a first polarizing element having a function of converting the polarization state of light emitted from the display element into a first polarization state is provided between the semitransparent mirror and the display element;
    The second surface has a third surface that reflects light in a second polarized state that travels from the display element side toward the user's eye side, and that reflects light that travels from the display element side toward the user's eye side. A reflective polarizing element that has the effect of transmitting polarized light is laminated,
    Between the reflective polarizing element and the fourth surface, when the light in the first polarization state traveling from the display element side to the user's eye side passes through, the light is polarized in the second polarization state. and when the light in the second polarization state traveling from the user's eye side to the display element side passes back and forth, the polarization state of the light is changed to the third polarization state. is provided with a second polarizing element having a function of converting the polarization state of
    In the first lens, a hard coat is applied to the first surface avoiding the second surface by a spin coating method.
    An image display device characterized by:
  2.  前記第1の偏光状態は、右回り又は左回りの円偏光状態であり、
     前記第2の偏光状態は、直線偏光状態であり、
     前記第3の偏光状態は、前記第2の偏光状態の偏光方向に直交する偏光方向の直線偏光状態である、
     ことを特徴とする請求項1に記載の映像表示装置。
    wherein the first polarization state is a right-handed or left-handed circularly polarized state;
    the second polarization state is a linear polarization state;
    wherein the third polarization state is a linear polarization state with a polarization direction orthogonal to the polarization direction of the second polarization state;
    2. The image display device according to claim 1, wherein:
  3.  前記第1の偏光素子は、円偏光板であり、
     前記第2の偏光素子は、1/4波長フィルムであり、
     前記反射偏光素子は、反射偏光フィルムである、
     ことを特徴とする請求項1又は2に記載の映像表示装置。
    The first polarizing element is a circularly polarizing plate,
    The second polarizing element is a quarter-wave film,
    The reflective polarizing element is a reflective polarizing film,
    3. The image display device according to claim 1, wherein:
  4.  前記映像表示装置の製造段階において、前記スピンコート法により前記ハードコートをコートする工程に前記第1のレンズとして投入されるレンズは、前記第1の面に対応する面における光学的な作用を持つ領域の外側に1つ以上の段差を有する、
     ことを特徴とする請求項1乃至3の何れか1項に記載の映像表示装置。
    In the manufacturing stage of the image display device, the lens introduced as the first lens in the step of applying the hard coat by the spin coating method has an optical action on the surface corresponding to the first surface. having one or more steps outside the area,
    4. The image display device according to any one of claims 1 to 3, characterized in that:
  5.  前記映像表示装置の製造段階において、前記スピンコート法により前記ハードコートをコートする工程に前記第1のレンズとして投入されるレンズは、前記第2の面に対応する面における光学的な作用を持つ領域の外側に1つ以上の段差を有する、
     ことを特徴とする請求項1乃至4の何れか1項に記載の映像表示装置。
    In the manufacturing stage of the image display device, the lens introduced as the first lens in the step of applying the hard coat by the spin coating method has an optical action on the surface corresponding to the second surface. having one or more steps outside the area,
    5. The image display device according to any one of claims 1 to 4, characterized in that:
  6.  前記第1のレンズを把持するレンズ把持部を備え、
     前記レンズ把持部は、前記光学的な作用を持つ領域と前記1つ以上の段差との間の領域を押圧して前記第1のレンズを把持する、
     ことを特徴とする請求項4又は5に記載の映像表示装置。
    A lens gripping portion that grips the first lens,
    The lens gripping section grips the first lens by pressing a region between the region having the optical action and the one or more steps.
    6. The image display device according to claim 4 or 5, characterized in that:
  7.  前記映像表示装置の製造段階において、前記スピンコート法により前記ハードコートをコートする工程後の前記レンズにおける、前記光学的な作用を持つ領域と前記1つ以上の段差との間に設定された境界よりも外側の部分が除去される、
     ことを特徴とする請求項4又は5に記載の映像表示装置。
    In the manufacturing stage of the image display device, a boundary set between the region having the optical action and the one or more steps in the lens after the step of applying the hard coat by the spin coating method. the part outside the is removed,
    6. The image display device according to claim 4 or 5, characterized in that:
  8.  前記第1のレンズを把持するレンズ把持部を備え、
     前記レンズ把持部は、前記光学的な作用を持つ領域の外側の領域を押圧して前記第1のレンズを把持する、
     ことを特徴とする請求項7に記載の映像表示装置。
    A lens gripping portion that grips the first lens,
    The lens gripping portion presses an area outside the area having the optical action to grip the first lens.
    8. The image display device according to claim 7, characterized by:
  9.  前記第2の面は、平面又は近似平面であり、且つ、
    前記使用者の眼側から前記表示素子側に向かって前記第2の反射偏光素子及び前記第2の偏光素子が当該順にラミネートされており、
     前記第3の面は、非球面であり、且つ、前記接眼光学系の光軸回りが前記表示素子側から前記使用者の眼側に向かって凸形状又は近似平面であり、
     前記接眼光学系のパワーをP0とし、前記第1のレンズのパワーをP1とし、前記表示素子を出射して正規光路を辿る映像光に対する前記第2のレンズのパワーをP2とすると、
      0.8×P0≦P2≦1.2×P0、
      |P1|<1/4×P2、
     である、
     ことを特徴とする請求項1乃至8の何れか1項に記載の映像表示装置。
    The second surface is a plane or an approximate plane, and
    The second reflective polarizing element and the second polarizing element are laminated in that order from the user's eye side toward the display element side,
    the third surface is an aspherical surface, and the optical axis of the eyepiece optical system has a convex shape or an approximate plane from the display element side toward the user's eye side;
    Let P0 be the power of the eyepiece optical system, P1 be the power of the first lens, and P2 be the power of the second lens with respect to the image light emitted from the display element and following a regular optical path,
    0.8×P0≦P2≦1.2×P0,
    |P1|<1/4×P2,
    is
    9. The image display device according to any one of claims 1 to 8, characterized in that:
PCT/JP2021/002024 2021-01-21 2021-01-21 Image display device WO2022157881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002024 WO2022157881A1 (en) 2021-01-21 2021-01-21 Image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002024 WO2022157881A1 (en) 2021-01-21 2021-01-21 Image display device

Publications (1)

Publication Number Publication Date
WO2022157881A1 true WO2022157881A1 (en) 2022-07-28

Family

ID=82548556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002024 WO2022157881A1 (en) 2021-01-21 2021-01-21 Image display device

Country Status (1)

Country Link
WO (1) WO2022157881A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114004A1 (en) * 2009-03-31 2010-10-07 Hoya株式会社 Photochromic lens manufacturing system, photochromic lens manufacturing device, photochromic lens manufacturing program, recording medium having photochromic lens manufacturing program recorded thereupon, and photochromic lens manufacturing method
JP2012159527A (en) * 2011-01-28 2012-08-23 Hoya Corp Method for manufacturing spectacle lens
JP2013054096A (en) * 2011-09-01 2013-03-21 Hoya Corp Method of manufacturing spectacle lens
JP2018156081A (en) * 2017-03-17 2018-10-04 旭化成株式会社 Member for head-mounted displays
US20200053350A1 (en) * 2018-08-10 2020-02-13 Valve Corporation Head-mounted display (hmd) with spatially-varying retarder optics
JP2020519964A (en) * 2017-05-16 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー Optical system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114004A1 (en) * 2009-03-31 2010-10-07 Hoya株式会社 Photochromic lens manufacturing system, photochromic lens manufacturing device, photochromic lens manufacturing program, recording medium having photochromic lens manufacturing program recorded thereupon, and photochromic lens manufacturing method
JP2012159527A (en) * 2011-01-28 2012-08-23 Hoya Corp Method for manufacturing spectacle lens
JP2013054096A (en) * 2011-09-01 2013-03-21 Hoya Corp Method of manufacturing spectacle lens
JP2018156081A (en) * 2017-03-17 2018-10-04 旭化成株式会社 Member for head-mounted displays
JP2020519964A (en) * 2017-05-16 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー Optical system
US20200053350A1 (en) * 2018-08-10 2020-02-13 Valve Corporation Head-mounted display (hmd) with spatially-varying retarder optics

Similar Documents

Publication Publication Date Title
KR102561362B1 (en) augmented reality display
US20220011557A1 (en) Optical system
GB2553382B (en) Curved eyepiece with colour correction for head wearable display
US11275246B2 (en) Head-mounted display
US9366869B2 (en) Thin curved eyepiece for see-through head wearable display
US11314097B2 (en) Optical system
US10338390B2 (en) Method for fabricating a curved eyepiece
JP2020095205A (en) Image display device, and eyepiece optical system
WO2020024630A1 (en) Eyeglasses and display device
US20230023570A1 (en) Near-eye optical system implementing a waveguide with an output viewer element having a refractive beam-splitting convex lens
US20230359033A1 (en) Wide-field video display apparatus
US20190079299A1 (en) Virtual image display device
WO2022157881A1 (en) Image display device
CN113204119A (en) Cemented lens group and head-mounted display device
JP2020091449A (en) Image display device and head mount display
CN115616779A (en) Optical system and VR glasses
JP2020020859A (en) Virtual image display device
TWI798853B (en) Augmented reality display device
US11630309B2 (en) Image light generation module and image display device
US11885996B2 (en) Light-guide optical element
JP2017161563A (en) Light guide device and virtual image display device
JP2024085582A (en) Observation optical system and image display device
CN116466469A (en) Optical lens, projection module and electronic equipment
CN112305764A (en) Display optical system for correcting chromatic aberration and head-mounted display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920993

Country of ref document: EP

Kind code of ref document: A1