WO2022157839A1 - Rotary electrical device and cooling system for rotary electrical device - Google Patents

Rotary electrical device and cooling system for rotary electrical device Download PDF

Info

Publication number
WO2022157839A1
WO2022157839A1 PCT/JP2021/001745 JP2021001745W WO2022157839A1 WO 2022157839 A1 WO2022157839 A1 WO 2022157839A1 JP 2021001745 W JP2021001745 W JP 2021001745W WO 2022157839 A1 WO2022157839 A1 WO 2022157839A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial flow
circumferential
flow path
end side
stator
Prior art date
Application number
PCT/JP2021/001745
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 木本
直司 村上
宇宙 満田
広紀 小林
壮平 鮫島
盛幸 枦山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022517717A priority Critical patent/JP7150219B1/en
Priority to PCT/JP2021/001745 priority patent/WO2022157839A1/en
Publication of WO2022157839A1 publication Critical patent/WO2022157839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present disclosure relates to a rotating electrical machine with a cooling mechanism.
  • Patent Literature 1 a rotating electric machine is known that uses the inside of slots of a stator as coolant passages. That is, in the cooling mechanism in the rotating electrical machine disclosed in Patent Document 1, oil chambers are formed at both ends of the stator in the axial direction, and cooling oil is supplied to one of the oil chambers through an oil supply port. The coolant flows through a coolant passage formed in the stator, is led to the other oil chamber, and is discharged to the outside through an oil discharge port.
  • the present disclosure has been made in view of the above problems, and an object thereof is to obtain a rotating electrical machine with improved cooling performance for a stator core and coils that constitute a stator.
  • each slot of a stator in which a coil is accommodated in each slot is provided between one end and the other end of the stator through which a coolant flows from a first axial flow path to a third axial flow path.
  • a stator is arranged on one end side, connects one end of the first axial flow channel and one end of the second axial flow channel, and connects one end of the first axial flow channel to one end of the first axial flow channel.
  • the coolant flows through the axial flow paths formed inside the respective slots of the stator without being distributed with other axial flow paths, thereby improving the cooling performance for the stator core and coils that constitute the stator. do.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a rotating electric machine according to Embodiment 1;
  • FIG. 1 is a perspective view showing a stator, an inner rotor, and an outer rotor of a rotary electric machine according to Embodiment 1, and schematically showing a supply hole and a discharge hole;
  • FIG. 3 is a perspective view schematically showing a circumferential flow path, supply holes, and discharge holes in FIG. 2 excluding resin molded in the stator;
  • FIG. 3 is a sectional view along IV-IV in FIG. 2;
  • FIG. 5 is a partially enlarged view of FIG. 4;
  • FIG. 5 is a side sectional view in FIG.
  • FIG. 4; 3 is a cross-sectional view showing one tooth of the stator core in the rotating electric machine according to Embodiment 1;
  • FIG. FIG. 2 is a perspective view showing an insulating member in the rotary electric machine according to Embodiment 1; 3 is a perspective view showing inner wedges and outer wedges in the rotating electric machine according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view of a circumferential connector on one end side of the rotary electric machine according to Embodiment 1, viewed from one end face side of the stator core;
  • FIG. 3 is a cross-sectional view showing a circumferential connector on one end side of the rotary electric machine according to Embodiment 1;
  • FIG. 4 is a diagram schematically showing coolant channels of a cooling mechanism in the rotary electric machine according to Embodiment 1;
  • FIG. 10 is a diagram schematically showing coolant channels of a cooling mechanism in a rotating electric machine according to Embodiment 2;
  • FIG. 10 is a diagram schematically showing coolant flow paths of a cooling mechanism in a rotating electric machine according to Embodiment 3;
  • FIG. 11 is a perspective view of a circumferential connector on one end side of a rotating electric machine according to Embodiment 4, viewed from one end face side of a stator core;
  • FIG. 11 is a cross-sectional view showing a circumferential connector on one end side of a rotary electric machine according to Embodiment 4;
  • FIG. 12 is a cross-sectional view showing a circumferential connector on one end side of the rotary electric machine according to Embodiment 5;
  • FIG. 11 is a perspective view showing an insulating member in a rotating electric machine according to Embodiment 6;
  • FIG. 11 is a cross-sectional view showing a stator, an inner rotor, and an outer rotor in a rotating electric machine according to Embodiment 6;
  • FIG. 20 is a partially enlarged view in FIG. 19;
  • FIG. 11 is a refrigerant cycle diagram showing a cooling system for a rotating electric machine according to Embodiment 7;
  • FIG. 11 is a refrigerating cycle diagram showing a cooling system for a rotating electrical machine according to an eighth embodiment;
  • Embodiment 1 A rotating electrical machine 1 according to Embodiment 1 will be described with reference to FIGS. 1 to 12.
  • FIG. 1 the rotary electric machine 1 has a double rotor structure including a stator 10, an inner rotor 20, a shaft 30, an outer rotor 40, a stator holding frame 50, a rotor holding frame 60, and a cooling mechanism. It is a magnet type rotary electric machine.
  • the stator 10 has an annular shape and is fixed to a stator holding frame 50 at one end.
  • the inner rotor 20 has an annular shape and is arranged inside the stator 10 with its outer peripheral surface facing the inner peripheral surface of the stator 10 .
  • the shaft 30 is a rotating shaft and is fitted to the inner rotor 20 with its outer peripheral surface in contact with the inner peripheral surface of the inner rotor 20 at the central portion in the axial direction. It is rotatably held through the
  • the inner rotor 20 and the shaft 30 have the same central axis, and the shaft 30 passes through the inner rotor 20 along the central axis and is fixed to the shaft 30.
  • the other end of the shaft 30 is a cup-shaped rotor holding frame. It is connected to the center of the bottom surface of 60 . As the inner rotor 20 rotates, the shaft 30 and the rotor holding frame 60 rotate.
  • the inner rotor 20 has an inner rotor core 21 and inner permanent magnets 22, as shown in FIGS.
  • the inner rotor core 21 is formed by stacking a large number of annular thin steel plates in the axial direction (the Z direction in FIG. 2), and is formed into a hollow cylindrical shape as a whole.
  • the steel plate forming the inner rotor core 21 has excellent magnetic properties, namely high magnetic permeability and small iron loss.
  • the inner rotor core 21 has a plurality of magnet insertion holes, into which the inner permanent magnets 22 are inserted, formed at equal intervals in the circumferential direction.
  • the inner rotor core 21 has a plurality of stress relaxation holes (not shown) for suppressing breakage due to the action of centrifugal force and a plurality of cooling holes (not shown) for cooling the inner permanent magnets 22 . ing.
  • a plurality of inner permanent magnets 22 are respectively embedded in a plurality of magnet insertion holes in inner rotor core 21 .
  • Each of the inner side permanent magnets 22 is a rectangular parallelepiped permanent magnet made of alnico, ferrite, neodymium, or the like.
  • the outer rotor 40 has an annular shape and is arranged outside the stator 10 with its inner peripheral surface facing the outer peripheral surface of the stator 10 . As shown in FIG. 1 , the outer rotor 40 is fixed to the rotor holding frame 60 with its outer peripheral surface facing the inner surface of the rotor holding frame 60 . As the rotor holding frame 60 rotates, the outer rotor 40 rotates.
  • the outer rotor 40 has an outer rotor core 41 and outer permanent magnets 42, as shown in FIGS.
  • the outer rotor core 41 is formed by stacking a large number of annular thin steel plates in the axial direction (Z direction), and is formed in a hollow cylindrical shape as a whole.
  • the steel plate forming the outer rotor core 41 has excellent magnetic properties, namely high magnetic permeability and small iron loss.
  • the outer rotor core 41 has a plurality of magnet insertion holes, into which the outer permanent magnets 42 are inserted, formed at regular intervals in the circumferential direction.
  • the outer rotor core 41 has therein a plurality of stress relief holes (not shown) for suppressing breakage due to the action of centrifugal force and a plurality of cooling holes (not shown) for cooling the outer permanent magnets 42 . ing.
  • a plurality of outer permanent magnets 42 are respectively embedded in a plurality of magnet insertion holes in outer rotor core 41 .
  • Each of the outer permanent magnets 42 is a rectangular parallelepiped permanent magnet made of alnico, ferrite, neodymium, or the like.
  • the stator 10 includes a stator core 11, coils 12, an insulating member 13, wedges 14 and 15, and circumferential connectors 16 and 17, and is molded with a resin 18 so as to cover the entire circumference. be.
  • the stator core 11 is formed by laminating a large number of thin steel plates in the axial direction (Z direction).
  • the steel plate forming the stator core 11 has excellent magnetic properties, namely high magnetic permeability and small iron loss.
  • the stator core 11 has a plurality of teeth 11a arranged annularly, and slots 11b are provided between adjacent teeth 11a.
  • Stator core 11 is an assembly of a plurality of teeth 11a.
  • the number of teeth 11a is a value determined by the rotating electric machine, but is set to n for convenience.
  • each tooth 11a has a T-shape extending from the outer periphery toward the center, and key-shaped notches 11c into which the side ends of the outer side wedges 14 are inserted on the outer peripheral side of both side surfaces. are formed, and key-shaped cutouts 11d into which the side ends of the inner side wedge 15 are inserted are formed on the inner peripheral sides of both side surfaces.
  • the notch 11c and the notch 11d are notches communicating from one end of the stator core 11 to the other end.
  • the coil 12 is wound around each of the plurality of teeth 11a via the insulating member 13 and accommodated in the slot 11b.
  • the conductive wire that constitutes the coil 12 is made of copper having a high electrical conductivity, the surface layer of which is coated with, for example, an enamel coating, and has a circular or rectangular cross-sectional shape.
  • the insulating member 13 is made of resin, and as shown in FIG. 8, has a cylindrical shape with both ends opened, and has a winding portion 13a and flanges 13b on both outer and inner circumferential sides of the winding portion 13a.
  • the winding portion 13a of the insulating member 13 is in close contact with both side surfaces and both end surfaces of each tooth 11a to cover both side surfaces and both end surfaces of each tooth 11a.
  • the flange 13b on the circumferential side is in close contact with the notch 11d of each tooth 11a.
  • the insulating member 13 is interposed between each tooth 11 a and the coil 12 wound around the tooth 11 a to insulate the tooth 11 a and the coil 12 .
  • a material with a high thermal conductivity for example, an insulating material with a thermal conductivity that is 1/10 that of the stator core 11 is selected as the insulating member 13
  • heat conduction from the stator core 11 to the coils 12 will be good, and the cooling performance of the stator core 11 will be improved.
  • the heat transfer from the stator core 11 to the inner rotor 20 and the outer rotor 40 can be suppressed, and the temperature rise of the inner rotor 20 and the outer rotor 40 can be suppressed.
  • a material with a low thermal conductivity for example, an insulating material with a thermal conductivity 1/100 that of the stator core 11 is selected as the insulating member 13, heat conduction from the stator core 11 to the coils 12 can be suppressed.
  • LCP resin Liquid Crystal Polymer
  • the outer side wedge 14 has a flat portion 14a, one side end portion 14b processed into a key shape at one side end of the flat portion 14a, and a key shape at the other side end of the flat portion 14a. and a machined other side end 14c.
  • the outer side wedge 14 is arranged on the outer peripheral side of adjacent and facing teeth 11a, one side end 14b is inserted into the notch 11c of one tooth 11a of the adjacent teeth 11a, and the other side end 14c is adjacent. It is inserted into the notch 11c of the other tooth 11a in the tooth 11a.
  • the outer wedge 14 closes the opening on the outer peripheral side of the slot 11b between adjacent coils 12 accommodated in the slot 11b.
  • the front and back of the flat portion 14a of the outer wedge 14 are covered with the outer resin portion 18a.
  • the inner side wedge 15 has a flat portion 15a, one side end portion 15b processed into a key shape at one side end of the flat portion 15a, and a key shape at the other side end of the flat portion 15a. and a machined other side end 15c.
  • the inner side wedge 15 is arranged on the inner peripheral side of adjacent and facing teeth 11a, one side end 15b is inserted into the notch 11d of one of the adjacent teeth 11a, and the other side end 15c It is inserted into the notch 11d of the other adjacent tooth 11a.
  • the inner wedge 15 closes the opening on the inner peripheral side of the slot 11b between adjacent coils 12 accommodated in the slot 11b.
  • the front and back surfaces of the flat portion 15a of the inner wedge 15 are covered with the inner resin portion 18b.
  • Epoxy glass (glass epoxy) is used as the outer side wedge 14 and the inner side wedge 15 .
  • the outer-side resin portion 18a and the inner-side resin portion 18b are part of the resin formed by injection of epoxy resin from one end of the stator core 11 and molding.
  • each of the slots 11b of the stator 10 which accommodates the coils 12 in each slot 11b, is defined as an axial flow path 19 through which cooling coolant flows between one end and the other end of the stator 10.
  • the coolant is an insulating coolant.
  • the axial flow paths 19 are formed corresponding to the slots 11b, and if the number of teeth 11a is n, the number of slots 11b and the number of axial flow paths 19 are also n.
  • the axial flow path 19 is defined such that the axial flow path to which the coolant is supplied is the 0th axial flow path 19(0), the first axial flow path 19(1), and the second axial flow path 19(1) in the circumferential direction.
  • Each axial flow path 19 is basically a space surrounded by the coil 12, the outer side wedge 14, and the inner side wedge 15, and the outer side resin portion 18a and the inner side resin portion 18b are provided for each axial flow path. It plays an auxiliary role in forming the path 19 .
  • reference numerals in parentheses will be omitted unless the axial flow path 19 needs to be explained separately.
  • a plurality of axial flow channels 19 from the first axial flow channel 19(1) to the n-2th axial flow channel 19(n-2) connect two adjacent axial flow channels into one axial flow channel. It is assumed to be a directional unit flow path. That is, the first axial flow path 19(1) and the second axial flow path 19(2) constitute one axial unit flow path, and the third axial flow path 19(3) and the Four axial flow paths 19(4) constitute one axial unit flow path, and likewise, a set of two axial flow paths are formed in order along the circumferential direction.
  • the circumferential connector 16 on the one end side is arranged on the one end side of the stator 10 .
  • Each of the plurality of one-end-side circumferential connecting portions 16a constituting the one-end-side circumferential connecting body 16 connects one ends of the two axial flow paths 19 in the respective axial unit flow paths to each other, thereby A circumferential channel is formed between one end of the two axial channels 19 in the channel and through which the coolant flows.
  • first one end side circumferential connecting portion 16a(1) connects one end of the first axial flow path 19(1) and one end of the second axial flow path 19(2), communicate.
  • the second one-end circumferential connecting portion 16a(2) connects one end of the third axial flow path 19(3) and one end of the fourth axial flow path 19(4) to communicate with each other.
  • two axial flow paths 19 are connected to the circumferential connecting portion 16a at one end side for each axial unit flow path to communicate with each other.
  • the one end side circumferential connector 16 is an assembly of a plurality of one end side circumferential connection portions 16a.
  • the one-end-side circumferential connector 16 has a structure in which the one-end-side circumferential connector 16a is arranged every other teeth 11a. As shown in FIGS. 10 and 11, the circumferential connector 16 on the one end side surrounds the portion of the coil 12 wound around each tooth 11a that protrudes from the one end side of the tooth 11a.
  • Circumferential direction connection part 16a on one end side is made of resin with spaces communicating with slots 11b located on both sides of 11a.
  • One end of the circumferential connector 16 on the one end side communicates with one end of the 0th axial flow path 19(0), and the other end connects to the supply hole 51 of the stator holding frame 50 as shown in FIG.
  • One end communicates with one end of the n-1th axial flow path 19 (n-1), and the other end communicates with the discharge hole 52 of the stator holding frame 50 as shown in FIG.
  • a discharge hole 16c communicating with is formed. be done.
  • the supply holes 51 and the discharge holes 52 are arranged in parallel.
  • FIG. 10 is a view of the circumferential connector 16 on the one end side as seen from the one end face side of the stator core 11.
  • the back face in the figure is a flat face, and as shown in FIG. Can be attached in contact with the mounting surface.
  • the recessed portion indicates a circumferential connecting portion 16a formed of a space, and the projecting portion is in close contact with the portion of the coil 12 protruding from one end of the tooth 11a, thereby preventing the refrigerant from flowing in the circumferential direction. is preventing
  • the peripheral walls on both sides are in close contact with the projecting portion of the coil 12 and are continuous with the outer side resin portion 18a and the inner side resin portion 18b.
  • Circumferential connection portions 16a on the one end side are formed by a space forming the circumferential connection portion 16a on the one end side where the refrigerant is formed on the outer peripheral surface of the portion of the coil 12 wound around the teeth 11a that protrudes from the one end side of the teeth 11a. Because of the direct contact structure, the coolant flowing through the circumferential connecting portion 16a on the one end side efficiently absorbs heat from the outer peripheral surface of the projecting portion of the coil 12. As shown in FIG.
  • the circumferential connector 17 on the other end side is arranged on the other end side of the stator 10 .
  • Each of the plurality of other-end-side circumferential connecting portions 17a constituting the other-end-side circumferential connecting body 17 is connected to the axial flow path of one of the adjacent two axial unit flow paths.
  • the other end of the channel 19 is connected to the other end of the axial unit channel 19 of the other axial unit channel adjacent to the axial channel 19, and the other end of the two adjacent axial channels 19 to form a circumferential flow path through which the coolant flows.
  • first other-end-side circumferential connecting portion 17a(1) is connected to the other end of the second axial flow path 19(2) and the other end of the third axial flow path 19(3). and communicate with each other.
  • the second other end side circumferential connecting portion 17a(2) is connected to the other end of the fourth axial flow path 19(4) and the other end of the fifth axial flow path 19(5), communicate with each other.
  • each adjacent axial flow path 19 of the sequentially adjacent axial unit flow paths is connected to the circumferential connecting portion 17a at the other end thereof for communication.
  • the circumferential connecting body 17 on the other end side is an assembly of a plurality of circumferential connecting portions 17a on the other end side.
  • Circumferential connecting bodies 17 on the other end side have circumferential connecting portions 17a on the other end side for every other teeth 11a in addition to the teeth 11a on which the circumferential connecting portions 16a on the one end side are disposed.
  • Arranged configuration That is, the one-end-side circumferential connection portion 16a constituting the one-end-side circumferential connection body 16 and the other-end-side circumferential connection portion 17a constituting the other-end-side circumferential connection body 17 are composed of a plurality of teeth. 11a are staggered.
  • the structure of the circumferential connector 17 on the other end side is the same as the structure of the circumferential connector 16 on the one end side shown in FIGS.
  • Circumferential direction connection part 17a on the other end side is constituted by a space that surrounds the part of the coil 12 protruding from the other end side of the teeth 11a and communicates with the slots 11b located on both sides of the teeth 11a.
  • Circumferential connection portions 17a on the other end side are formed by refrigerant on the outer peripheral surfaces of portions of the coils 12 wound around the teeth 11a that protrude from the other end sides of the teeth 11a. Since the coil 12 is in direct contact with the space, the refrigerant flowing to the circumferential connecting portion 17a on the other end side efficiently absorbs heat from the outer peripheral surface of the protruding portion of the coil 12. As shown in FIG.
  • the 0th other end side circumferential connecting portion 17a(0) is connected to the other end of the 0th axial flow path 19(0) and the other end of the first axial flow path 19(1), communicate with each other.
  • the other end side of the n/2-th circumferential connecting portion 17a (n/2) is connected to the other end of the n-2th axial flow path 19 (n-2) and the n-1th axial flow path 19. (n-2) to communicate with each other.
  • the 0th axial flow path 19(0)--the other end side of the 0th circumferential connecting portion 17a(0)--the first axial flow path 19 (1)—First one end side circumferential connecting portion 16a(1)—Second axial flow path 19(2)—First other end side circumferential connecting portion 17a(1)—Third Axial flow path 19(3)-Second one end circumferential connecting portion 16a(2)-...- n-3th axial flow path 19(n-3)-n/2th end side circumferential connection portion 16a (n/2)-n-2th axial flow path 19 (n-2)-n/2th other end side circumferential connection portion 17a (n/2)-th
  • a cooling mechanism is configured as a series of flow passages leading to the discharge hole 16c via the n-1 axial flow passages 19(n-1).
  • the circumferential connector 16 on one end and the circumferential connector 17 on the other end correspond to all of the axial flow paths 19, and the circumferential connector 16 on the one end corresponds to one axial direction of the adjacent slots 11b. It has a supply hole 16b that communicates with the flow path 19 and a discharge hole 16c that communicates with the other axial flow path 19.
  • a circumferential connector 16 on one end side and a circumferential connector 17 on the other end side connect one A series of cooling mechanisms is formed that communicates all the axial passages 19 from the supply hole 16b with which the axial passage 19 communicates to the discharge hole 16c with which the other axial passage 19 communicates.
  • the circumferential connector 16 on one end and the circumferential connector 17 on the other end are molded with epoxy resin together with the outer resin portion 18a and the inner resin portion 18b.
  • the resin portion located on the other end side of the stator core 11 becomes the circumferential connector 17 on the other end side.
  • the circumferential connector 16 on one end side, the circumferential connector 17 on the other end side, the outer resin portion 18a, and the inner resin portion 18b are integrally formed by resin molding. There is no possibility that the refrigerant will leak from the cooling mechanism that serves as a flow path for the cooling medium. That is, the molded resin, the outer side wedge 14 and the inner side wedge 15 function as sealing members for the coolant.
  • the cooling mechanism for cooling the stator 10 is configured such that the coolant flows from the supply hole 16b to all of the axial flow paths 19, the circumferential connection portion 16a on one end side, and the circumferential connection portion 16a on the other end side. It flows serially through the portion 17a and reaches the discharge hole 16c.
  • the coil 12 In the stator 10 of the rotary electric machine 1, the coil 12 generates heat due to Joule heat generation due to current application and eddy current loss caused by the flow of eddy current, and the stator core 11 generates hysteresis loss and eddy current loss caused by the change in the direction of the magnetic field. Heat is generated by current loss. In addition, there is a risk that the enamel coating for insulation in the coil 12 will melt beyond the allowable heat resistance temperature, causing a short circuit due to partial discharge.
  • the rotary electric machine 1 according to Embodiment 1 has improved cooling performance against heat generated by the coil 12 and heat generated by the stator core 11, and the enamel coating of the coil 12 does not exceed the allowable heat resistance temperature, thereby protecting the enamel coating from overheating. can.
  • the inside of the slots 11b of the stator 10 in which the coils 12 are accommodated in the slots 11b is used as the axial flow path 19, and the stator 10 is arranged on one end side of the stator 10, and the plurality of shafts are provided.
  • a plurality of circumferential connecting portions 16 a on one end side forming circumferential flow passages in which the coolant flows between one ends of the two axial flow passages 19 of the directional flow passages 19 are provided and arranged on the other end side of the stator 10 .
  • a plurality of circumferential connecting portions 17a on the other end side forming circumferential flow passages in which the coolant flows between the other ends of two of the plurality of axial flow passages 19 and the other ends of the plurality of axial flow passages 19;
  • a coolant flow path is formed by the directional flow path 19, the plurality of circumferential connection portions 16a on one end side, and the plurality of circumferential connection portions 17a on the other end side. Improves cooling performance.
  • the axial flow paths 19 for all the slots 11b of the stator 10 are formed by the plurality of circumferential connection portions 16a on the one end side and the plurality of circumferential connection portions 17a on the other end side. Since it is configured as a series of coolant flow paths, the amount of coolant flowing through all the axial flow paths 19 is the same, and the temperature does not locally rise in all the axial flow paths 19; , a high flow velocity can be obtained without decreasing the flow velocity of the coolant flowing through the series of coolant passages, the heat transfer coefficient between the coolant and the stator core 11 and the coil 12 is improved, and the stator core 11 and the coil 12 are highly cooled. Efficiency is obtained.
  • the one-end-side circumferential connector 16 is made of resin as an assembly of a plurality of one-end-side circumferential connectors 16a, and each of the one-end-side circumferential connectors 16a communicates with one end of two adjacent axial flow passages 19, and is constituted by a space surrounding a portion of the coil positioned between the two axial flow passages 19 protruding from one end side of the stator core 11;
  • the other-end-side circumferential connection body 17 is made of resin as an aggregate of the end-side circumferential-direction connection portions 17a.
  • the space surrounds the portion of the coil 12 that communicates with the end and is positioned between the two axial flow paths 19 and protrudes from the other end side of the stator core 11 , the refrigerant and the coil 12 in the axial flow path 19
  • the surface area of contact between the coil 12 and the refrigerant at the circumferential connection portion 16a on the one end side and the surface area of contact between the coil 12 and the refrigerant on the circumferential connection portion 17a on the other end side are increased.
  • the surface area for directly cooling the coil 12 is increased, and the coil 12 can be cooled with high efficiency.
  • Embodiment 2 A rotating electric machine according to Embodiment 2 will be described with reference to FIG. 13 .
  • the supply hole 16b is formed on one side and the discharge hole 16c is formed on the other side of the adjacent axial flow path 19 in the circumferential connector 16 on the one end side.
  • the rotary electric machine according to the second embodiment is different only in that the supply hole 16b and the discharge hole 16c are formed at symmetrical positions of 180 degrees. Same as 1.
  • the circumferential connector 16 on one end has two adjacent axial flow paths 19, that is, the 0th axial flow path 19(0) and the n-1th axial flow path 19(n-1 ) and formed by a space surrounding a portion of the coil located between the two axial flow paths 19(0) and 19(n ⁇ 1) protruding from one end side of the stator core 11.
  • a portion 16a(0) is provided, and a supply hole 16b communicating with the supply hole 51 of the stator holding frame 50 is formed in the circumferential connection portion 16a(0).
  • the discharge hole 52 of the stator holding frame 50 communicates with the circumferential connection portion 16a(n/4) located 180 degrees apart from the circumferential connection portion 16a(0) in which the supply hole 16b is formed.
  • a discharge hole 16c is formed.
  • the cooling mechanism for cooling the stator 10 is divided from the supply hole 16b at the circumferential connection portion 16a(0) and is distributed from the 0th axial flow path 19(0) in the circumferential direction.
  • a cooling mechanism that serves as a coolant flow path to the discharge hole 16c at the connection portion 16a (n/4), and a It has two cooling mechanisms, one cooling mechanism serving as a coolant flow path to the discharge hole 16c.
  • the coolant supplied from the supply hole 16b is split into two at the circumferential connection portion 16a(0), one being the coolant channel from the 0th axial channel 19(0) and the other being the 2nd channel.
  • the coolant flows through the coolant channel from the n ⁇ 1 axial channel 19(n ⁇ 1), joins at the circumferential connecting portion 16a(n/4), and is discharged from the discharge hole 16c.
  • the one-end-side circumferential connector 16 and the other-end-side circumferential connector 17 correspond to all of the axial flow paths 19, and the one-end-side circumferential connector 16 corresponds to one one-end-side circumferential connector.
  • Circumferential connection on one end provided at positions symmetrical by 180 degrees from the supply hole 16b through which the circumferential connection 16a on one end communicates with the circumferential connection 16 and the circumferential connection 17 on the other end.
  • Two series of cooling mechanisms are formed with two coolant channels for all axial channels 19 up to the discharge hole 16c communicating with the portion 16a.
  • the rotary electric machine according to Embodiment 2 is configured to have two refrigerant flow paths as a cooling mechanism, so the pressure loss generated in the refrigerant flow paths is reduced, so the load for supplying the refrigerant is reduced. .
  • Embodiment 3 A rotating electrical machine according to Embodiment 3 will be described with reference to FIG. 14 . While the rotary electric machine 1 according to the first embodiment uses a series of cooling mechanisms for all the axial flow paths 19, the rotary electric machine according to the third embodiment divides the axial flow paths 19 into two groups. The only difference is that a series of cooling mechanisms are configured for each of the two groups, and other points are the same as the rotary electric machine 1 according to the first embodiment.
  • the circumferential connector 16 on one end has two adjacent axial flow paths 19, that is, the 0th axial flow path 19(0) and the n-1th axial flow path 19(n-1 ) are formed, and the two adjacent axial flow paths 19 in which the supply holes 16b are formed are 180 degrees symmetrical to each other. Discharge holes 16c (1 ) and a discharge hole 16c(2) are formed.
  • the cooling mechanism for cooling the stator 10 includes the 0th axial flow path 19(0) from the supply hole 16b(1) to the n/2-1th axial flow path.
  • the coolant supplied from the supply hole 16b(1) flows through the coolant channel to the discharge hole 16c(1) and is discharged from the discharge hole 16c(1), and the coolant supplied from the supply hole 16b(2) The coolant flows through the coolant channel to the discharge hole 16c(2) and is discharged from the discharge hole 16c(2).
  • the rotary electric machine according to Embodiment 3 is configured to have two refrigerant flow paths as a cooling mechanism, the pressure loss generated in the refrigerant flow paths is reduced, so the load for supplying the refrigerant is reduced. . Furthermore, by reversing the supply hole 16b(2) and the discharge hole 16c(2), the direction of flow of the coolant flowing in the coolant flow path can be reversed, and the direction of flow of the coolant can be reversed as the temperature rises. can be selected, and the non-uniformity of the temperature distribution can be further suppressed.
  • the axial flow passages 19 are divided into two groups, but divided into three groups or four groups, and each group is divided into one end side circumferential direction.
  • the connection body 16 may have a supply hole 16b and a discharge hole 16c. At this time, a partition is formed between adjacent supply hole 16b and discharge hole 16c, supply hole 16b and supply hole 16b, or discharge hole 16c and discharge hole 16c to block the flow of the refrigerant.
  • the cooling mechanism in the rotating electric machine according to Embodiment 3 has the axial flow paths 19 for all the slots 11b of the stator 10, divides all the axial flow paths 19 into a plurality of grooves, and divides them into a plurality of grooves. and the circumferential connector 17 on the other end correspond to all of the axial flow paths 19, and the circumferential connector 16 on the one end communicates with one axial flow path 19 for each groove. It has a supply hole 16b and a discharge hole 16c communicating with one axial flow path 19, and discharges from the supply hole 16b for each groove by a circumferential connector 16 on one end and a circumferential connector 17 on the other end.
  • a plurality of independent series of cooling mechanisms are formed by using the axial flow passages 19 in the group as coolant flow passages that communicate with each other up to the holes 16c.
  • Embodiment 4 A rotating electrical machine according to Embodiment 4 will be described with reference to FIGS. 15 and 16.
  • FIG. 1 the radial length of the axial flow path 19 is the same as that of the axial flow path 19 between the two adjacent axial flow paths 19 at the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side.
  • the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side has two adjacent circumferential flow paths.
  • the width between the two axial flow passages 19 is longer than the radial length of the axial flow passages 19, and the main path A connecting the two axial flow passages 19 protrudes toward the inner peripheral side and the outer peripheral side.
  • a circumferential flow path having a cross-sectional cross section having a portion B and a projecting portion C is formed.
  • the circumferential connecting portion 16 a of the circumferential connecting body 16 on one end side directly contacting the axial end face of the coil 12 , but the refrigerant is not only in direct contact with the axial end face of the stator core 11 . It has protrusions B and C that are in direct contact.
  • the coolant flowing through the circumferential connection portion 16a on the one end side efficiently absorbs heat from the outer peripheral surface of the protruding portion of the coil 12 and efficiently absorbs heat from the axial end surface of the stator core 11, resulting in higher cooling. effect is obtained.
  • the rotating electric machine 1 according to the first embodiment has the same cross section of the circumferential path.
  • the circumferential flow path in the circumferential connecting portion 17a of the circumferential connecting body 17 on the other end side is the main connecting portion between the two adjacent axial flow paths 19.
  • the cross section of the path A has protrusions B and C projecting to the inner peripheral side and the outer peripheral side with the width between the two axial flow paths 19 being longer than the radial length of the axial flow paths 19.
  • a cross-shaped circumferential flow path is formed.
  • the refrigerant flowing to the circumferential connecting portion 17a on the other end side efficiently absorbs heat from the outer peripheral surface of the protruding portion of the coil 12 and efficiently absorbs heat from the axial end surface of the stator core 11, resulting in a higher temperature. Provides a cooling effect.
  • the shape of the circumferential path of the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side and the shape of the circumferential connecting portion 17a of the circumferential connecting body 17 on the other end side are: It is the same as the rotary electric machine 1 according to the first embodiment except that it is different from the rotary electric machine 1 according to the first embodiment.
  • the circumferential connecting body 16 on the one end side has two adjacent axial flow paths 19 as main circumferential paths in the circumferential connecting portion 16a on the one end side.
  • Protrusions B and C are formed between two adjacent axial flow paths 19 which are communicated by a path A and protrude inwardly and outwardly. , constitutes a continuous space serving as a circumferential path.
  • the circumferential connecting body 17 on the other end side is not shown, but the circumferential path in the circumferential connecting portion 17a on the other end side is such that the two adjacent axial flow paths 19 communicate with each other through the main path A, A protrusion B and a protrusion C projecting to the inner peripheral side and the outer peripheral side are formed between the two axial flow paths 19, and the main path A, the protrusion B, and the protrusion C form a continuous circumferential path. It constitutes a space with
  • the rotating electric machine according to the fourth embodiment has the same effect as the rotating electric machine 1 according to the first embodiment, and also has a circumferential path in the circumferential connecting portion 16a on the one end side of the circumferential connecting body 16 on the one end side.
  • a protrusion B and a protrusion C are formed in each of the circumferential paths in the circumferential connecting portion 17a on the other end side of the circumferential connecting body 17 on the end side, and heat is efficiently absorbed from the outer peripheral surface of the protruding portion of the coil 12. At the same time, heat is efficiently absorbed from the axial end face of the stator core 11, resulting in a higher cooling effect.
  • the supply hole 16b and the discharge hole 16c are arranged in the adjacent axial flow paths 19 as a refrigerating mechanism. , and a discharge hole 16c at one end of the (n-1)th axial flow path 19(n-1). They may be arranged at symmetrical positions of 180 degrees, and as shown in Embodiment 3, the axial flow passages 19 are divided into two groups, and a series of cooling mechanisms are configured for each of the two groups. Anything is fine.
  • Embodiment 5 A rotating electrical machine according to Embodiment 5 will be described with reference to FIG. 17 .
  • the cross section of the circumferential path is the same between the two axial flow paths 19 where the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side is adjacent to each other.
  • the cross section of the circumferential path in the circumferential connecting portion 16a on the one end side has a radial length of a portion communicating with the axial flow path 19, that is, a width.
  • the radial length of the circumferential connecting portion 16a on the one end side in the rotary electric machine 1 according to Embodiment 1, which is the same as the so-called width, is the radial length of the portion between the two adjacent axial flow paths 19. , the so-called width is short.
  • the rotating electric machine 1 according to the first embodiment has the same cross section of the circumferential path.
  • the cross section of the circumferential path in the circumferential connecting portion 17a on the other end side is the radial length of the portion communicating with the axial flow path 19, the so-called The width is the same as the radial length of the circumferential connecting portion 17a on the other end side in the rotary electric machine 1 according to Embodiment 1, the so-called width, and the radial direction of the portion between the two adjacent axial flow paths 19 is the same as the width. length, the so-called width, is short.
  • the shape of the circumferential path of the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side and the shape of the circumferential connecting portion 17a of the circumferential connecting body 17 on the other end side are: It is the same as the rotary electric machine 1 according to the first embodiment except that it is different from the rotary electric machine 1 according to the first embodiment.
  • the cross section shown in FIG. It has a narrow communicating portion A with a short length in the direction. Both ends B and C communicate with the axial flow path 19 respectively, the communicating portion A communicates between the end B and the end C, and the communicating portion A and the ends B and C form a circumferential path. It forms a continuous space.
  • the circumferential path in the circumferential connecting portion 17a on the other end side is the length of both ends B and C and the length in the radial direction from both ends B and C. has a narrow communicating portion A with a short length. Both ends B and C communicate with the axial flow path 19 respectively, the communicating portion A communicates between the end B and the end C, and the communicating portion A and the ends B and C form a circumferential path. It forms a continuous space.
  • the rotating electric machine according to the fifth embodiment has the same effect as the rotating electric machine 1 according to the first embodiment, and also has a circumferential path in the circumferential connecting portion 16a on the one end side of the circumferential connecting body 16 on the one end side. Since each circumferential path in the circumferential connecting portion 17a on the other end side of the circumferential connecting body 17 on the end side has a narrow communication portion A, a high flow velocity can be easily obtained, and the heat transfer coefficient on the surface of the coil 12 is high. improves.
  • the supply hole 16b and the discharge hole 16c are arranged in the adjacent axial flow paths 19 as a refrigerating mechanism. , and a discharge hole 16c at one end of the (n-1)th axial flow path 19(n-1). They may be arranged at symmetrical positions of 180 degrees, and as shown in Embodiment 3, the axial flow passages 19 are divided into two groups, and a series of cooling mechanisms are configured for each of the two groups. Anything is fine.
  • Embodiment 6 A rotating electric machine 1 according to Embodiment 6 will be described with reference to FIGS. 18 to 20.
  • FIG. The insulating member 13 in the rotating electrical machine 1 according to the first embodiment has a tubular shape with both ends open, whereas the insulating member 13 in the rotating electrical machine 1 according to the sixth embodiment has a tubular shape with both ends open, It is the same as the rotary electric machine 1 according to the first embodiment except that both side surfaces 13a3 and 13a4 have open spaces.
  • the insulating member 13 has a winding portion 13a and flanges 13b on both outer and inner circumferential sides of both side surfaces of the winding portion 13a.
  • the winding portion 13a has both end face portions 13a1 and 13a2 and both end face portions 13a3 and 13a4 having an open space over substantially the entire area.
  • Both end surface portions 13a1 and 13a2 of the wound portion 13a of the insulating member 13 are in close contact with both end surfaces of each tooth 11a to cover both end surfaces of each tooth 11a.
  • both side surface portions 13a3 and 13a4 of the winding portion 13a of the insulating member 13 are in close contact with the side surface of each tooth 11a at the outer peripheral end portion and the inner peripheral end portion thereof, and the free spaces allow the teeth 11a to be separated.
  • a coolant path communicating with the axial flow path 19 is formed between the side surface and the coil 12 .
  • the flange 13b on the outer peripheral side of the insulating member 13 is in close contact with the notch 11c of each tooth 11a, and the flange 13b on the inner peripheral side is in close contact with the notch 11d of each tooth 11a.
  • the insulating member 13 is interposed between each tooth 11a and the coil 12 wound around the tooth 11a.
  • the side surfaces of the teeth 11a and the coil 12 are insulated by the insulating coolant filled in the coolant path formed by the space.
  • the material of insulating member 13 is the same as the material of insulating member 13 in rotating electric machine 1 according to the first embodiment.
  • the rotary electric machine 1 according to the sixth embodiment has the same effect as the rotary electric machine 1 according to the first embodiment.
  • the flowing coolant can directly cool the side surfaces of the teeth 11 a of the stator 10 , thereby suppressing the temperature rise of the stator core 11 .
  • the refrigerating mechanism may be one in which the supply hole 16b and the discharge hole 16c are arranged at 180-degree symmetrical positions as in the second embodiment.
  • the channels 19 may be divided into two groups and a series of cooling mechanisms may be arranged for each of the two groups.
  • Embodiment 7 is cooling system 100 for rotating electric machine 1 according to Embodiments 1 to 5, and will be described with reference to FIG. In FIG. 21, the rotating electrical machine according to the first embodiment is shown as the rotating electrical machine 1, but the rotating electrical machine according to any one of the rotating electrical machines according to the second to fifth embodiments may be used.
  • the cooling system 100 includes a pump 101 , a heat exchanger 102 , a heat radiation fan 103 , a tank 104 , and a control device 105 . It is configured by a refrigerant circuit which is a refrigerant cycle in which the supply hole 51 of the rotary electric machine 1 is connected by a refrigerant pipe 106 .
  • the control device 105 controls the pump 101 and the heat radiation fan 103 according to the state of the heat load of the stator 10, and adjusts the flow rate, pressure and temperature of the coolant supplied to a series of cooling mechanisms of the stator 10.
  • the pump 101 raises the pressure of the refrigerant cooled by the heat exchanger 102 to a high pressure, discharges the high pressure refrigerant to the supply hole 51 of the rotary electric machine 1 through the refrigerant pipe 106, and supplies the high pressure cooled refrigerant. It is sent out to a series of cooling mechanisms of the stator 10 in the rotary electric machine 1 .
  • the coolant used is an insulating coolant.
  • the pump 101 has a control circuit composed of an inverter or the like, and the control circuit is controlled by a control device 105. Depending on the state of the heat load of the stator 10, the flow rate of the coolant supplied to the series of cooling mechanisms of the stator 10 is controlled. and pressure are controlled.
  • the heat exchanger 102 receives the refrigerant whose temperature has risen due to the heat generated by the stator 10 in the rotating electric machine 1 from the discharge hole 52 of the rotating electric machine 1 through the refrigerant pipe 53, and exchanges heat with the outside air to cool the received refrigerant whose temperature has risen. do.
  • the refrigerant cooled by heat exchanger 102 is sent to pump 101 through refrigerant pipe 106 .
  • the heat exchanger 102 is air-cooled by a heat radiation fan 103 , and the coolant whose temperature has increased due to the heat generated by the stator 10 in the rotary electric machine 1 exchanges heat with the outside air blown from the heat radiation fan 103 .
  • the heat radiation fan 103 is controlled by the control device 105 according to the state of the heat load of the stator 10 and adjusts the temperature of the refrigerant cooled by the heat exchanger 102 .
  • the heat exchanger 102 also functions as a reservoir that stores refrigerant when the refrigerant circulating in the refrigerant circuit leaks.
  • the heat exchanger 102 is not limited to air-cooling by the heat radiation fan 103, and may be a heat exchanger that cools the refrigerant whose temperature has risen due to the heat generated by the stator 10 in the rotating electric machine 1 by exchanging heat with the cooling refrigerant.
  • a heat exchanger having both of The tank 104 is a reservoir that stores refrigerant when the refrigerant circulating in the refrigerant circuit leaks.
  • a high-pressure cooled refrigerant set to a predetermined temperature and flow rate by the pump 101 is discharged to the supply hole 51 of the rotary electric machine 1 through the refrigerant pipe 53 and delivered to a series of cooling mechanisms of the stator 10 .
  • the refrigerant sent out to a series of cooling mechanisms of the stator 10 cools the stator core 11 and the coil 12 that generate heat in the stator 10, and the refrigerant whose temperature rises is heat-exchanged from the discharge hole 52 of the rotary electric machine 1 through the refrigerant pipe 53. It is guided to vessel 102 .
  • the temperature of the refrigerant whose temperature has increased and is guided to the heat exchanger 102 is lowered by the heat being radiated by the heat exchanger 102 .
  • the coolant whose temperature has decreased is led to the pump 101, and this operation is continuously repeated.
  • a cooling system 100 for a rotating electrical machine circulates a high-pressure cooled coolant through a series of cooling mechanisms for a stator 10 in a rotating electrical machine 1, thereby cooling the stator 10 in the rotating electrical machine 1 and causing overheating. Stopping of operation of the rotary electric machine 1 can be suppressed.
  • Embodiment 8 is a cooling system 100 for the rotating electric machine 1 according to the first to fifth embodiments, and will be described with reference to FIG. 22 .
  • the rotating electric machine according to the first embodiment is shown as the rotating electric machine 1, but it may be any one of the rotating electric machines according to the second to fifth embodiments.
  • the cooling system 100 includes an expansion valve 111, a compressor 112, a heat exchanger 113, a heat radiation fan 114, an accumulator 115, a flow switching device 116, and a control device 117.
  • 51 and the expansion valve 111 are connected by a liquid refrigerant pipe 118
  • the flow path switching device 116 and the discharge hole 52 of the rotary electric machine 1 are connected by a gas refrigerant pipe 119.
  • a gas refrigerant pipe 119 and a liquid refrigerant pipe 118 are used as pipes. It is configured by a refrigerant circuit, which is a refrigerating cycle, up to the supply hole 51 of .
  • the control device 117 controls the expansion valve 111, the compressor 112, the heat radiation fan 114, the accumulator 115, and the flow path switching device 116 according to the state of the heat load of the stator 10, and supplies the heat to a series of cooling mechanisms of the stator 10. Adjust the flow rate, pressure and temperature of the refrigerant.
  • the expansion valve 111 expands the high-pressure, medium-temperature liquid refrigerant condensed from the heat exchanger 113 to further lower the temperature of the liquid refrigerant, and sends the low-pressure, low-temperature liquid refrigerant to the rotary electric machine 1 through the liquid refrigerant pipe 118. , and the high-pressure cooled refrigerant is delivered to a series of cooling mechanisms for the stator 10 in the rotary electric machine 1 .
  • the coolant used is an insulating coolant.
  • the expansion valve 111 is, for example, an expansion valve whose opening degree is variably controlled by a control device 117 electronically.
  • the flow path switching device 116 evaporates due to the heat generated by the stator 10 in the rotating electrical machine 1, and the low-pressure, high-temperature gaseous refrigerant whose temperature rises is discharged from the discharge hole 52 of the rotating electrical machine 1 through the gas refrigerant pipe 119 and through the accumulator 115. lead to compressor 112;
  • the accumulator 115 stores the surplus gaseous refrigerant led from the channel switching device 116 as liquid refrigerant.
  • the compressor 112 sucks the low-pressure, high-temperature gaseous refrigerant from the discharge hole 52 of the rotary electric machine 1 via the accumulator 115 and the flow path switching device 116 , raises the temperature, and sends the high-pressure, high-temperature gaseous refrigerant to the heat exchanger 113 .
  • Dispense to Compressor 112 has a control circuit configured by an inverter or the like, and the control circuit is controlled by control device 117 . Flow and pressure are controlled.
  • the heat exchanger 113 heats and pressurizes the high-pressure, high-temperature gaseous refrigerant with the outside air to condense the high-pressure, high-temperature gaseous refrigerant into a high-pressure, medium-temperature liquid refrigerant.
  • the heat exchanger 113 is air-cooled by the heat radiation fan 114 , and the heat exchanger 113 exchanges heat between the high-pressure, high-temperature gaseous refrigerant and the outside air blown from the heat radiation fan 114 .
  • the high-pressure medium-temperature liquid refrigerant heat-exchanged by the heat exchanger 113 is sent to the expansion valve 111 through the liquid refrigerant pipe 118 .
  • Radiation fan 114 is controlled by control device 117 according to the state of the heat load of stator 10 to adjust the temperature of the refrigerant cooled by heat exchanger 113 .
  • the heat exchanger 113 also functions as a reservoir that stores refrigerant when the refrigerant circulating in the refrigerant circuit leaks.
  • the heat exchanger 113 is not limited to air-cooling by the heat radiation fan 114, but may be a heat exchanger that cools the high-pressure gas refrigerant from the compressor 112 by exchanging heat with the refrigerant for cooling. You can also use a heat exchanger you have.
  • a low-pressure, low-temperature liquid refrigerant set to a predetermined temperature and flow rate is discharged from the expansion valve 111 to the supply hole 51 of the rotary electric machine 1 through the liquid refrigerant pipe 118 and delivered to a series of cooling mechanisms of the stator 10 . .
  • the low-pressure, low-temperature liquid refrigerant sent to a series of cooling mechanisms of the stator 10 cools the heat-generating stator core 11 and coil 12 in the stator 10, and is discharged as a low-pressure, high-temperature gaseous refrigerant from the discharge hole 32 while evaporating. , the gas refrigerant pipe 119 and the channel switching device 116 are collected in the accumulator 57 .
  • the heat-generating coil 12 in the stator 10 is cooled by contact with the low-pressure, low-temperature liquid coolant, and the latent heat of vaporization due to the evaporation of the liquid coolant further promotes cooling.
  • the low-pressure, high-temperature gaseous refrigerant recovered by the accumulator 57 is sucked by the compressor 112 , raised in temperature, and discharged to the heat exchanger 113 as a high-pressure, high-temperature gaseous refrigerant.
  • the high-pressure, high-temperature gaseous refrigerant sent to the heat exchanger 113 is condensed by radiating heat from the heat exchanger 102, and is led to the expansion valve 111 as a high-pressure, medium-temperature liquid refrigerant whose temperature has been lowered. The action is repeated continuously.
  • a cooling system 100 for a rotating electrical machine circulates a low-pressure, low-temperature liquid coolant through a series of cooling mechanisms for a stator 10 in a rotating electrical machine 1, thereby cooling a coil 12 of a stator 10 in a rotating electrical machine 1 at a low pressure and a low temperature. It is cooled by coming into contact with the low-temperature liquid coolant, and the latent heat of vaporization when the liquid coolant evaporates further promotes the cooling. As a result, the stator 10 in the rotating electrical machine 1 is cooled, and the stopping of operation of the rotating electrical machine 1 due to overheating can be suppressed.
  • a rotating electric machine according to the present disclosure is suitable for an aircraft drive motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

In a rotary electrical device 1, the insides of slots 11b of a stator 10, which is obtained by accommodating a coil 12 in each of the slots 11b, are a first axial direction flow path 19(1) through a third axial direction flow path 19(3) through which coolant flows between one end and the other end of the stator 10. The stator 10 comprises: a circumferential direction connection part 16a, on the one end side, that connects one end of the first axial direction flow path 19(1) to one end of the second axial direction flow path 19(2), that does not connect said one end of the first axial direction flow path 19(1) to one end of the third axial direction flow path 19(3), and that forms a circumferential direction flow path through which the coolant flows between said one end of the first axial direction flow path 19(1) and said one end of the second axial direction flow path 19(2); and a circumferential direction connection part 17a, on the other end side, that connects the other end of the second axial direction flow path 19(2) with the other end of the third axial direction flow path 19(3), that does not connect the other end of the first axial direction flow path 19(1) with said other end of the third axial direction flow path 19(3), and that forms a circumferential direction flow path through which the coolant flows between said other end of the second axial direction flow path 19(2) and said other end of the third axial direction flow path 19(3). The first axial direction flow path 19(1), the circumferential direction connection part 16a on the one end side, the second axial direction flow path 19(2), the circumferential direction connection part 17a on the other end side, and the third axial direction flow path 19(3) are connected in series.

Description

回転電機及び回転電機の冷却システムRotating electric machine and cooling system for rotating electric machine
 本開示は、冷却機構を備えた回転電機に関する。 The present disclosure relates to a rotating electrical machine with a cooling mechanism.
 例えば、特許文献1に示すように、ステータのスロット内部を冷媒通路として利用する回転電機が知られている。
 すなわち、特許文献1に示された回転電機における冷却機構は、ステータの軸方向両端にオイル室が形成され、一方のオイル室にオイル供給口を介して冷却用オイルが供給され、冷却用オイルがステータ内に形成された冷媒通路を流通して他方のオイル室へ導かれ、オイル排出口から外部へ排出される。
For example, as shown in Patent Literature 1, a rotating electric machine is known that uses the inside of slots of a stator as coolant passages.
That is, in the cooling mechanism in the rotating electrical machine disclosed in Patent Document 1, oil chambers are formed at both ends of the stator in the axial direction, and cooling oil is supplied to one of the oil chambers through an oil supply port. The coolant flows through a coolant passage formed in the stator, is led to the other oil chamber, and is discharged to the outside through an oil discharge port.
特開2002-186205号公報Japanese Patent Application Laid-Open No. 2002-186205
 特許文献1に示された回転電機にあっては、一方のオイル室から他方のオイル室へステータ内に形成されたすべての冷媒通路に同時に冷媒が流れる構成であるため、ステータを構成するステータコア及びコイルに対する冷却が充分でないという課題があった。 In the rotary electric machine disclosed in Patent Document 1, the coolant flows from one oil chamber to the other oil chamber at the same time through all the coolant passages formed in the stator. There was a problem that the cooling for the coil was not sufficient.
 本開示は上記課題に鑑みてなされたものであり、ステータを構成するステータコア及びコイルに対する冷却性能が向上された回転電機を得ることを目的とする。 The present disclosure has been made in view of the above problems, and an object thereof is to obtain a rotating electrical machine with improved cooling performance for a stator core and coils that constitute a stator.
 本開示に係る回転電機は、それぞれが、スロットにコイルを収容してなるステータのスロットそれぞれの内部を、ステータの一端と他端との間を冷媒が流れる第1の軸方向流路から第3の軸方向流路とされ、ステータが、一端側に配置され、第1の軸方向流路の一端と第2の軸方向流路の一端とを接続し、第1の軸方向流路の一端と第2の軸方向流路の一端との間を冷媒が流れる周方向流路を形成する一端側の周方向接続部と、他端側に配置され、第2の軸方向流路の他端と第3の軸方向流路の他端とを接続し、第2の軸方向流路の他端と第3の軸方向流路の他端との間を冷媒が流れる周方向流路を形成する他端側の周方向接続部とを備える。 In the rotating electric machine according to the present disclosure, the inside of each slot of a stator in which a coil is accommodated in each slot is provided between one end and the other end of the stator through which a coolant flows from a first axial flow path to a third axial flow path. A stator is arranged on one end side, connects one end of the first axial flow channel and one end of the second axial flow channel, and connects one end of the first axial flow channel to one end of the first axial flow channel. and one end of the second axial flow path, a circumferential connecting portion on the one end side forming a circumferential flow path through which the coolant flows; and the other end of the third axial flow channel to form a circumferential flow channel through which the coolant flows between the other end of the second axial flow channel and the other end of the third axial flow channel. and a circumferential connection portion on the other end side.
 本開示によれば、ステータのスロットそれぞれの内部に形成される軸方向流路に、冷媒が他の軸方向流路と分配されることなく流れ、ステータを構成するステータコア及びコイルに対する冷却性能が向上する。 According to the present disclosure, the coolant flows through the axial flow paths formed inside the respective slots of the stator without being distributed with other axial flow paths, thereby improving the cooling performance for the stator core and coils that constitute the stator. do.
実施の形態1に係る回転電機の基本構成を示す断面模式図である。1 is a schematic cross-sectional view showing a basic configuration of a rotating electric machine according to Embodiment 1; FIG. 実施の形態1に係る回転電機のステータとインナーロータとアウターロータを示し、供給孔と排出孔を模式的に示した斜視図である。1 is a perspective view showing a stator, an inner rotor, and an outer rotor of a rotary electric machine according to Embodiment 1, and schematically showing a supply hole and a discharge hole; FIG. 図2において、ステータにおけるモールドされた樹脂を除き、周方向流路と供給孔と排出孔を模式的に示した斜視図である。FIG. 3 is a perspective view schematically showing a circumferential flow path, supply holes, and discharge holes in FIG. 2 excluding resin molded in the stator; 図2におけるIV-IV断面図である。FIG. 3 is a sectional view along IV-IV in FIG. 2; 図4における部分拡大図である。FIG. 5 is a partially enlarged view of FIG. 4; 図4における側面断面図である。FIG. 5 is a side sectional view in FIG. 4; 実施の形態1に係る回転電機におけるステータコアの1つのティースを示す断面図である。3 is a cross-sectional view showing one tooth of the stator core in the rotating electric machine according to Embodiment 1; FIG. 実施の形態1に係る回転電機における絶縁部材を示す斜視図である。FIG. 2 is a perspective view showing an insulating member in the rotary electric machine according to Embodiment 1; 実施の形態1に係る回転電機におけるインナーウェッジ及びアウターウェッジを示す斜視図である。3 is a perspective view showing inner wedges and outer wedges in the rotating electric machine according to Embodiment 1. FIG. 実施の形態1に係る回転電機における一端側の周方向接続体をステータコアの一端面側から見た斜視図である。FIG. 2 is a perspective view of a circumferential connector on one end side of the rotary electric machine according to Embodiment 1, viewed from one end face side of the stator core; 実施の形態1に係る回転電機における一端側の周方向接続体を示す断面図である。FIG. 3 is a cross-sectional view showing a circumferential connector on one end side of the rotary electric machine according to Embodiment 1; 実施の形態1に係る回転電機における冷却機構の冷媒流路を模式的に示す図である。FIG. 4 is a diagram schematically showing coolant channels of a cooling mechanism in the rotary electric machine according to Embodiment 1; 実施の形態2に係る回転電機における冷却機構の冷媒流路を模式的に示す図である。FIG. 10 is a diagram schematically showing coolant channels of a cooling mechanism in a rotating electric machine according to Embodiment 2; 実施の形態3に係る回転電機における冷却機構の冷媒流路を模式的に示す図である。FIG. 10 is a diagram schematically showing coolant flow paths of a cooling mechanism in a rotating electric machine according to Embodiment 3; 実施の形態4に係る回転電機における一端側の周方向接続体をステータコアの一端面側から見た斜視図である。FIG. 11 is a perspective view of a circumferential connector on one end side of a rotating electric machine according to Embodiment 4, viewed from one end face side of a stator core; 実施の形態4に係る回転電機における一端側の周方向接続体を示す断面図である。FIG. 11 is a cross-sectional view showing a circumferential connector on one end side of a rotary electric machine according to Embodiment 4; 実施の形態5に係る回転電機における一端側の周方向接続体を示す断面図である。FIG. 12 is a cross-sectional view showing a circumferential connector on one end side of the rotary electric machine according to Embodiment 5; 実施の形態6に係る回転電機における絶縁部材を示す斜視図である。FIG. 11 is a perspective view showing an insulating member in a rotating electric machine according to Embodiment 6; 実施の形態6に係る回転電機におけるステータとインナーロータとアウターロータを示す横断面図である。FIG. 11 is a cross-sectional view showing a stator, an inner rotor, and an outer rotor in a rotating electric machine according to Embodiment 6; 図19における部分拡大図である。FIG. 20 is a partially enlarged view in FIG. 19; 実施の形態7に係る回転電機の冷却システムを示す冷媒サイクル図である。FIG. 11 is a refrigerant cycle diagram showing a cooling system for a rotating electric machine according to Embodiment 7; 実施の形態8に係る回転電機の冷却システムを示す冷凍サイクル図である。FIG. 11 is a refrigerating cycle diagram showing a cooling system for a rotating electrical machine according to an eighth embodiment;
実施の形態1.
 実施の形態1に係る回転電機1を図1から図12を用いて説明する。
 回転電機1は、図1に示すように、ステータ10とインナーロータ20とシャフト30とアウターロータ40と固定子用保持フレーム50と回転子用保持フレーム60と冷却機構を備えたダブルロータ構造の永久磁石式回転電機である。
Embodiment 1.
A rotating electrical machine 1 according to Embodiment 1 will be described with reference to FIGS. 1 to 12. FIG.
As shown in FIG. 1, the rotary electric machine 1 has a double rotor structure including a stator 10, an inner rotor 20, a shaft 30, an outer rotor 40, a stator holding frame 50, a rotor holding frame 60, and a cooling mechanism. It is a magnet type rotary electric machine.
 ステータ10は円環状をなし、一端側において固定子用保持フレーム50に固定される。
 インナーロータ20は円環状をなし、ステータ10の内側に、外周面がステータ10の内周面と対向して配置される。
 シャフト30は回転軸であり、軸方向の中央部において外周面がインナーロータ20の内周面と接してインナーロータ20に嵌合され、一端が固定子用保持フレーム50に設けられたベアリング54を介して回転自在に保持される。
The stator 10 has an annular shape and is fixed to a stator holding frame 50 at one end.
The inner rotor 20 has an annular shape and is arranged inside the stator 10 with its outer peripheral surface facing the inner peripheral surface of the stator 10 .
The shaft 30 is a rotating shaft and is fitted to the inner rotor 20 with its outer peripheral surface in contact with the inner peripheral surface of the inner rotor 20 at the central portion in the axial direction. It is rotatably held through the
 インナーロータ20とシャフト30は中心軸が同じであり、インナーロータ20は中心軸に沿ってシャフト30が貫通し、シャフト30に固定される
 シャフト30の他端は、カップ状の回転子用保持フレーム60の底面中央に接続される。
 インナーロータ20の回転に伴い、シャフト30及び回転子用保持フレーム60が回転する。
The inner rotor 20 and the shaft 30 have the same central axis, and the shaft 30 passes through the inner rotor 20 along the central axis and is fixed to the shaft 30. The other end of the shaft 30 is a cup-shaped rotor holding frame. It is connected to the center of the bottom surface of 60 .
As the inner rotor 20 rotates, the shaft 30 and the rotor holding frame 60 rotate.
 インナーロータ20は、図2から図6に示すように、インナーロータコア21とインナー側永久磁石22を有する。
 インナーロータコア21は、円環状の薄い鋼板が軸方向(図2図示Z方向)に多数積層され、全体として中空円筒形に形成される。インナーロータコア21を構成する鋼板は優れた磁気特性、すなわち、高い透磁率および小さな鉄損を有する。
The inner rotor 20 has an inner rotor core 21 and inner permanent magnets 22, as shown in FIGS.
The inner rotor core 21 is formed by stacking a large number of annular thin steel plates in the axial direction (the Z direction in FIG. 2), and is formed into a hollow cylindrical shape as a whole. The steel plate forming the inner rotor core 21 has excellent magnetic properties, namely high magnetic permeability and small iron loss.
 インナーロータコア21は、その内部にインナー側永久磁石22が挿入される磁石挿入孔が周方向に等間隔に複数形成されている。
 インナーロータコア21は、その内部に、遠心力の作用により破損を抑制するための応力緩和穴(図示せず)及びインナー側永久磁石22を冷却するための冷却穴(図示せず)が複数形成されている。
The inner rotor core 21 has a plurality of magnet insertion holes, into which the inner permanent magnets 22 are inserted, formed at equal intervals in the circumferential direction.
The inner rotor core 21 has a plurality of stress relaxation holes (not shown) for suppressing breakage due to the action of centrifugal force and a plurality of cooling holes (not shown) for cooling the inner permanent magnets 22 . ing.
 複数のインナー側永久磁石22それぞれはインナーロータコア21における複数の磁石挿入孔のそれぞれに埋め込まれる。
 インナー側永久磁石22それぞれは直方体であり、アルニコ、フェライト、又はネオジム等によって形成された永久磁石である。
A plurality of inner permanent magnets 22 are respectively embedded in a plurality of magnet insertion holes in inner rotor core 21 .
Each of the inner side permanent magnets 22 is a rectangular parallelepiped permanent magnet made of alnico, ferrite, neodymium, or the like.
 アウターロータ40は円環状をなし、ステータ10の外側に、内周面がステータ10の外周面と対向して配置される。
 アウターロータ40は、図1に示すように、その外周面が回転子用保持フレーム60の内側面に対向して、回転子用保持フレーム60に固定される。
 回転子用保持フレーム60の回転に伴い、アウターロータ40は回転する。
The outer rotor 40 has an annular shape and is arranged outside the stator 10 with its inner peripheral surface facing the outer peripheral surface of the stator 10 .
As shown in FIG. 1 , the outer rotor 40 is fixed to the rotor holding frame 60 with its outer peripheral surface facing the inner surface of the rotor holding frame 60 .
As the rotor holding frame 60 rotates, the outer rotor 40 rotates.
 アウターロータ40は、図2から図6に示すように、アウターロータコア41とアウター側永久磁石42を有する。
 アウターロータコア41は、円環状の薄い鋼板が軸方向(Z方向)に多数積層され、全体として中空円筒形に形成される。アウターロータコア41を構成する鋼板は優れた磁気特性、すなわち、高い透磁率および小さな鉄損を有する。
The outer rotor 40 has an outer rotor core 41 and outer permanent magnets 42, as shown in FIGS.
The outer rotor core 41 is formed by stacking a large number of annular thin steel plates in the axial direction (Z direction), and is formed in a hollow cylindrical shape as a whole. The steel plate forming the outer rotor core 41 has excellent magnetic properties, namely high magnetic permeability and small iron loss.
 アウターロータコア41は、その内部にアウター側永久磁石42が挿入される磁石挿入孔が周方向に等間隔に複数形成されている。
 アウターロータコア41は、その内部に、遠心力の作用により破損を抑制するための応力緩和穴(図示せず)及びアウター側永久磁石42を冷却するための冷却穴(図示せず)が複数形成されている。
The outer rotor core 41 has a plurality of magnet insertion holes, into which the outer permanent magnets 42 are inserted, formed at regular intervals in the circumferential direction.
The outer rotor core 41 has therein a plurality of stress relief holes (not shown) for suppressing breakage due to the action of centrifugal force and a plurality of cooling holes (not shown) for cooling the outer permanent magnets 42 . ing.
 複数のアウター側永久磁石42それぞれはアウターロータコア41における複数の磁石挿入孔のそれぞれに埋め込まれる。
 アウター側永久磁石42それぞれは直方体であり、アルニコ、フェライト、又はネオジム等によって形成された永久磁石である。
A plurality of outer permanent magnets 42 are respectively embedded in a plurality of magnet insertion holes in outer rotor core 41 .
Each of the outer permanent magnets 42 is a rectangular parallelepiped permanent magnet made of alnico, ferrite, neodymium, or the like.
 ステータ10は、図2から図6に示すように、ステータコア11とコイル12と絶縁部材13とウェッジ14、15と周方向接続体16、17を備え、全周を覆うように樹脂18によりモールドされる。
 ステータコア11は、薄い鋼板が軸方向(Z方向)に多数積層されて形成される。ステータコア11を構成する鋼板は優れた磁気特性、すなわち、高い透磁率および小さな鉄損を有する。
As shown in FIGS. 2 to 6, the stator 10 includes a stator core 11, coils 12, an insulating member 13, wedges 14 and 15, and circumferential connectors 16 and 17, and is molded with a resin 18 so as to cover the entire circumference. be.
The stator core 11 is formed by laminating a large number of thin steel plates in the axial direction (Z direction). The steel plate forming the stator core 11 has excellent magnetic properties, namely high magnetic permeability and small iron loss.
 ステータコア11は、環状に配置された複数のティース11aを有し、隣接するティース11a間がスロット11bである。ステータコア11は、複数のティース11aの集合体である。
 ティース11aの数は回転電機によって決まる値であるが、便宜上nとする。各ティース11aは、図7に示すように、外周から中心に向けて延びたT字形状をし、両側面の外周側にアウター側ウェッジ14の側端部が挿入される鍵状の切り欠き11cが形成され、両側面の内周側にインナー側ウェッジ15の側端部が挿入される鍵状の切り欠き11dが形成される。
 切り欠き11c及び切り欠き11dはステータコア11の一端から他端まで連通した切り欠きである。
The stator core 11 has a plurality of teeth 11a arranged annularly, and slots 11b are provided between adjacent teeth 11a. Stator core 11 is an assembly of a plurality of teeth 11a.
The number of teeth 11a is a value determined by the rotating electric machine, but is set to n for convenience. As shown in FIG. 7, each tooth 11a has a T-shape extending from the outer periphery toward the center, and key-shaped notches 11c into which the side ends of the outer side wedges 14 are inserted on the outer peripheral side of both side surfaces. are formed, and key-shaped cutouts 11d into which the side ends of the inner side wedge 15 are inserted are formed on the inner peripheral sides of both side surfaces.
The notch 11c and the notch 11d are notches communicating from one end of the stator core 11 to the other end.
 コイル12は絶縁部材13を介して複数のティース11aそれぞれに巻回され、スロット11bに収容される。コイル12を構成する導線は、例えばエナメル被膜などで表層がコーティングされた高い電気伝導率を有する銅製であり、その断面形状は円形又は平角形状である。 The coil 12 is wound around each of the plurality of teeth 11a via the insulating member 13 and accommodated in the slot 11b. The conductive wire that constitutes the coil 12 is made of copper having a high electrical conductivity, the surface layer of which is coated with, for example, an enamel coating, and has a circular or rectangular cross-sectional shape.
 絶縁部材13は樹脂製であり、図8に示すように、両端開口の筒形状をなし、巻回部13aと、巻回部13aの両側面の外周側及び内周側にフランジ13bを有する。
 絶縁部材13の巻回部13aは各ティース11aの両側面及び両端面に密着し、各ティース11aの両側面及び両端面を覆い、外周側のフランジ13bは各ティース11aの切り欠き11cに、内周側のフランジ13bは各ティース11aの切り欠き11dに密着する。
 絶縁部材13は各ティース11aとティース11aに巻回されたコイル12との間に介在し、ティース11aとコイル12とを絶縁する。
The insulating member 13 is made of resin, and as shown in FIG. 8, has a cylindrical shape with both ends opened, and has a winding portion 13a and flanges 13b on both outer and inner circumferential sides of the winding portion 13a.
The winding portion 13a of the insulating member 13 is in close contact with both side surfaces and both end surfaces of each tooth 11a to cover both side surfaces and both end surfaces of each tooth 11a. The flange 13b on the circumferential side is in close contact with the notch 11d of each tooth 11a.
The insulating member 13 is interposed between each tooth 11 a and the coil 12 wound around the tooth 11 a to insulate the tooth 11 a and the coil 12 .
 絶縁部材13として熱伝導率の高い材料、例えば、ステータコア11の1/10の熱伝導率の絶縁材料を選択すると、ステータコア11からコイル12への熱伝導が良く、ステータコア11の冷却性能を上げることができる。これにより、インナーロータ20及びアウターロータ40へのステータコア11からの熱伝導を抑制でき、インナーロータ20及びアウターロータ40の温度上昇を抑制できる。
 逆に、絶縁部材13として熱伝導率の低い材料、例えば、ステータコア11の1/100の熱伝導率の絶縁材料を選択すると、ステータコア11からコイル12への熱伝導を抑制できる。
 絶縁部材13としてLCP樹脂(Liquid Crystal Polymer、液晶ポリマー)を用いている。
If a material with a high thermal conductivity, for example, an insulating material with a thermal conductivity that is 1/10 that of the stator core 11 is selected as the insulating member 13, heat conduction from the stator core 11 to the coils 12 will be good, and the cooling performance of the stator core 11 will be improved. can be done. As a result, the heat transfer from the stator core 11 to the inner rotor 20 and the outer rotor 40 can be suppressed, and the temperature rise of the inner rotor 20 and the outer rotor 40 can be suppressed.
Conversely, if a material with a low thermal conductivity, for example, an insulating material with a thermal conductivity 1/100 that of the stator core 11 is selected as the insulating member 13, heat conduction from the stator core 11 to the coils 12 can be suppressed.
LCP resin (Liquid Crystal Polymer) is used as the insulating member 13 .
 アウター側ウェッジ14は、図9に示すように、平坦部14aと、平坦部14aの一側端に鍵状に加工された一側端部14bと、平坦部14aの他側端に鍵状に加工された他側端部14cとを有する。
 アウター側ウェッジ14は、隣接して対向するティース11aの外周側に配置され、一側端部14bが隣接するティース11aにおける一方のティース11aの切り欠き11cに挿入され、他側端部14cが隣接するティース11aにおける他方のティース11aの切り欠き11cに挿入される。
As shown in FIG. 9, the outer side wedge 14 has a flat portion 14a, one side end portion 14b processed into a key shape at one side end of the flat portion 14a, and a key shape at the other side end of the flat portion 14a. and a machined other side end 14c.
The outer side wedge 14 is arranged on the outer peripheral side of adjacent and facing teeth 11a, one side end 14b is inserted into the notch 11c of one tooth 11a of the adjacent teeth 11a, and the other side end 14c is adjacent. It is inserted into the notch 11c of the other tooth 11a in the tooth 11a.
 アウター側ウェッジ14は、スロット11bに収容された隣接するコイル12間におけるスロット11bの外周側の開口を閉鎖する。
 アウター側ウェッジ14はステータコア11との固定を強固にするため、アウター側ウェッジ14の平坦部14aの表裏をアウター側樹脂部18aにより覆われる。
The outer wedge 14 closes the opening on the outer peripheral side of the slot 11b between adjacent coils 12 accommodated in the slot 11b.
In order to firmly fix the outer wedge 14 to the stator core 11, the front and back of the flat portion 14a of the outer wedge 14 are covered with the outer resin portion 18a.
 インナー側ウェッジ15は、図9に示すように、平坦部15aと、平坦部15aの一側端に鍵状に加工された一側端部15bと、平坦部15aの他側端に鍵状に加工された他側端部15cとを有する。
 インナー側ウェッジ15は、隣接して対向するティース11aの内周側に配置され、一側端部15bが隣接するティース11aにおける一方のティース11aの切り欠き11dに挿入され、他側端部15cが隣接するティース11aにおける他方のティース11aの切り欠き11dに挿入される。
As shown in FIG. 9, the inner side wedge 15 has a flat portion 15a, one side end portion 15b processed into a key shape at one side end of the flat portion 15a, and a key shape at the other side end of the flat portion 15a. and a machined other side end 15c.
The inner side wedge 15 is arranged on the inner peripheral side of adjacent and facing teeth 11a, one side end 15b is inserted into the notch 11d of one of the adjacent teeth 11a, and the other side end 15c It is inserted into the notch 11d of the other adjacent tooth 11a.
 インナー側ウェッジ15は、スロット11bに収容された隣接するコイル12間におけるスロット11bの内周側の開口を閉鎖する。
 インナー側ウェッジ15はステータコア11との固定を強固にするため、インナー側ウェッジ15の平坦部15aの表裏をインナー側樹脂部18bにより覆われる。
The inner wedge 15 closes the opening on the inner peripheral side of the slot 11b between adjacent coils 12 accommodated in the slot 11b.
In order to strengthen the fixation of the inner wedge 15 to the stator core 11, the front and back surfaces of the flat portion 15a of the inner wedge 15 are covered with the inner resin portion 18b.
 アウター側ウェッジ14及びインナー側ウェッジ15としてエポキシガラス(ガラエポ)を用いている。
 アウター側樹脂部18a及びインナー側樹脂部18bはステータコア11の一端からエポキシ樹脂が注入され、モールド成形により形成された樹脂の一部である。
Epoxy glass (glass epoxy) is used as the outer side wedge 14 and the inner side wedge 15 .
The outer-side resin portion 18a and the inner-side resin portion 18b are part of the resin formed by injection of epoxy resin from one end of the stator core 11 and molding.
 各スロット11bにコイル12を収容してなるステータ10のスロット11bそれぞれの内部を、ステータ10の一端と他端との間を冷却用の冷媒が流れる軸方向流路19とする。冷媒は絶縁性の冷媒である。
 軸方向流路19はスロット11bに対応して形成され、ティース11aの数がnであると、スロット11bの数及び軸方向流路19の数もnである。
The inside of each of the slots 11b of the stator 10, which accommodates the coils 12 in each slot 11b, is defined as an axial flow path 19 through which cooling coolant flows between one end and the other end of the stator 10. As shown in FIG. The coolant is an insulating coolant.
The axial flow paths 19 are formed corresponding to the slots 11b, and if the number of teeth 11a is n, the number of slots 11b and the number of axial flow paths 19 are also n.
 軸方向流路19を、冷媒が供給される軸方向流路を第0の軸方向流路19(0)とし、円周方向に順に第1の軸方向流路19(1)、第2の軸方向流路19(2)、第3の軸方向流路19(3)、・・・、冷媒が排出される軸方向流路を第n-1の軸方向流路19(n-1)とする。
 各軸方向流路19は、図4から図6に示すように、スロット11bのそれぞれに収容された隣接するコイル12と、アウター側ウェッジ14及びアウター側樹脂部18aと、インナー側ウェッジ15及びインナー側樹脂部18bに囲まれた空間である。
The axial flow path 19 is defined such that the axial flow path to which the coolant is supplied is the 0th axial flow path 19(0), the first axial flow path 19(1), and the second axial flow path 19(1) in the circumferential direction. The axial flow path 19(2), the third axial flow path 19(3), . and
As shown in FIGS. 4 to 6, each axial flow path 19 includes adjacent coils 12 accommodated in respective slots 11b, outer wedges 14 and outer resin portions 18a, inner wedges 15 and inner This is a space surrounded by the side resin portion 18b.
 各軸方向流路19は、基本的には、コイル12とアウター側ウェッジ14とインナー側ウェッジ15に囲まれた空間であり、アウター側樹脂部18a及びインナー側樹脂部18bは、各軸方向流路19を形成するにあたり、補助的な役割である。
 なお、軸方向流路19について、個別に説明する必要がある場合を除いて、説明の煩雑さをなくすため、()書きの符号は省略して説明する。
Each axial flow path 19 is basically a space surrounded by the coil 12, the outer side wedge 14, and the inner side wedge 15, and the outer side resin portion 18a and the inner side resin portion 18b are provided for each axial flow path. It plays an auxiliary role in forming the path 19 .
In order to simplify the explanation, reference numerals in parentheses will be omitted unless the axial flow path 19 needs to be explained separately.
 第1の軸方向流路19(1)から第n-2の軸方向流路19(n-2)までの複数の軸方向流路19は、隣接する2つの軸方向流路を一つの軸方向単位流路とする。
 すなわち、第1の軸方向流路19(1)と第2の軸方向流路19(2)が一つの軸方向単位流路を構成し、第3の軸方向流路19(3)と第4の軸方向流路19(4)が一つの軸方向単位流路を構成し、同様に周方向に沿って順に2つ一組とした軸方向単位流路が構成される。
A plurality of axial flow channels 19 from the first axial flow channel 19(1) to the n-2th axial flow channel 19(n-2) connect two adjacent axial flow channels into one axial flow channel. It is assumed to be a directional unit flow path.
That is, the first axial flow path 19(1) and the second axial flow path 19(2) constitute one axial unit flow path, and the third axial flow path 19(3) and the Four axial flow paths 19(4) constitute one axial unit flow path, and likewise, a set of two axial flow paths are formed in order along the circumferential direction.
 一端側の周方向接続体16はステータ10の一端側に配置される。一端側の周方向接続体16を構成する複数の一端側の周方向接続部16aそれぞれは、それぞれの軸方向単位流路における2つの軸方向流路19の一端同士を接続し、軸方向単位流路における2つの軸方向流路19の一端との間を冷媒が流れる周方向流路を形成する。 The circumferential connector 16 on the one end side is arranged on the one end side of the stator 10 . Each of the plurality of one-end-side circumferential connecting portions 16a constituting the one-end-side circumferential connecting body 16 connects one ends of the two axial flow paths 19 in the respective axial unit flow paths to each other, thereby A circumferential channel is formed between one end of the two axial channels 19 in the channel and through which the coolant flows.
 すなわち、第1の一端側の周方向接続部16a(1)は、第1の軸方向流路19(1)の一端と第2の軸方向流路19(2)の一端と接続し、互いに連通させる。
 第2の一端側の周方向接続部16a(2)は、第3の軸方向流路19(3)の一端と第4の軸方向流路19(4)の一端と接続し、互いに連通させる。
 同様に順次軸方向単位流路ごとに一端側で周方向接続部16aに2つの軸方向流路19が接続され、連通される。
That is, the first one end side circumferential connecting portion 16a(1) connects one end of the first axial flow path 19(1) and one end of the second axial flow path 19(2), communicate.
The second one-end circumferential connecting portion 16a(2) connects one end of the third axial flow path 19(3) and one end of the fourth axial flow path 19(4) to communicate with each other. .
Similarly, two axial flow paths 19 are connected to the circumferential connecting portion 16a at one end side for each axial unit flow path to communicate with each other.
 一端側の周方向接続体16は複数の一端側の周方向接続部16aの集合体である。
 一端側の周方向接続体16は、複数のティース11aに対して1つおきに一端側の周方向接続部16aが配置された構成である。
 一端側の周方向接続体16は、図10及び図11に示すように、各ティース11aに対して、ティース11aに巻回されたコイル12におけるティース11aの一端側から突出した部分を囲い、ティース11aの両側に位置するスロット11bと連通する空間により一端側の周方向接続部16aが構成された樹脂である。
The one end side circumferential connector 16 is an assembly of a plurality of one end side circumferential connection portions 16a.
The one-end-side circumferential connector 16 has a structure in which the one-end-side circumferential connector 16a is arranged every other teeth 11a.
As shown in FIGS. 10 and 11, the circumferential connector 16 on the one end side surrounds the portion of the coil 12 wound around each tooth 11a that protrudes from the one end side of the tooth 11a. Circumferential direction connection part 16a on one end side is made of resin with spaces communicating with slots 11b located on both sides of 11a.
 一端側の周方向接続体16は、一端が第0の軸方向流路19(0)の一端と連通し、他端が図1に示すように、固定子用保持フレーム50の供給孔51に連通する供給孔16bと、一端が第n-1の軸方向流路19(n-1)の一端と連通し、他端が図1に示すように、固定子用保持フレーム50の排出孔52に連通する排出孔16cが形成される。
される。
 供給孔51と排出孔52は並列に配置される。
One end of the circumferential connector 16 on the one end side communicates with one end of the 0th axial flow path 19(0), and the other end connects to the supply hole 51 of the stator holding frame 50 as shown in FIG. One end communicates with one end of the n-1th axial flow path 19 (n-1), and the other end communicates with the discharge hole 52 of the stator holding frame 50 as shown in FIG. A discharge hole 16c communicating with is formed.
be done.
The supply holes 51 and the discharge holes 52 are arranged in parallel.
 図10は、一端側の周方向接続体16をステータコア11の一端面側から見た図であり、図示裏面は平坦面であり、図1に示すように、裏面が固定子用保持フレーム50の取付面に接して取り付けられる。
 また、図10において、へこんでいる部分が空間からなる周方向接続部16aを示し、飛び出ている部分がコイル12におけるティース11aの一端側から突出した部分に密着し、冷媒の周方向へ流れるのを阻止している。両側の周壁はコイル12の飛び出ている部分に密着しているとともに、アウター側樹脂部18a及びインナー側樹脂部18bと連続している。
FIG. 10 is a view of the circumferential connector 16 on the one end side as seen from the one end face side of the stator core 11. The back face in the figure is a flat face, and as shown in FIG. Can be attached in contact with the mounting surface.
Also, in FIG. 10, the recessed portion indicates a circumferential connecting portion 16a formed of a space, and the projecting portion is in close contact with the portion of the coil 12 protruding from one end of the tooth 11a, thereby preventing the refrigerant from flowing in the circumferential direction. is preventing The peripheral walls on both sides are in close contact with the projecting portion of the coil 12 and are continuous with the outer side resin portion 18a and the inner side resin portion 18b.
 また、図2においては、供給孔51と排出孔52を仮想的に示し、図3において、周方向接続部16aと、供給孔16b及び供給孔51と排出孔16c及び排出孔52を仮想的に示している。 In FIG. 2, the supply hole 51 and the discharge hole 52 are virtually shown, and in FIG. showing.
 一端側の周方向接続部16aはそれぞれ、ティース11aに巻回されたコイル12におけるティース11aの一端側から突出した部分の外周面に、冷媒が一端側の周方向接続部16aを構成する空間により直接接する構成をとっているので、一端側の周方向接続部16aに流れる冷媒がコイル12の突出した部分の外周面から熱を効率よく吸熱する。 Circumferential connection portions 16a on the one end side are formed by a space forming the circumferential connection portion 16a on the one end side where the refrigerant is formed on the outer peripheral surface of the portion of the coil 12 wound around the teeth 11a that protrudes from the one end side of the teeth 11a. Because of the direct contact structure, the coolant flowing through the circumferential connecting portion 16a on the one end side efficiently absorbs heat from the outer peripheral surface of the projecting portion of the coil 12. As shown in FIG.
 他端側の周方向接続体17はステータ10の他端側に配置される。他端側の周方向接続体17を構成する複数の他端側の周方向接続部17aそれぞれは、それぞれの隣接された2つの軸方向単位流路における一方の軸方向単位流路の軸方向流路19の他端と、当該軸方向流路19と隣り合う他方の軸方向単位流路の軸方向流路19の他端とを接続し、当該隣り合う2つの軸方向流路19の他端との間を冷媒が流れる周方向流路を形成する。 The circumferential connector 17 on the other end side is arranged on the other end side of the stator 10 . Each of the plurality of other-end-side circumferential connecting portions 17a constituting the other-end-side circumferential connecting body 17 is connected to the axial flow path of one of the adjacent two axial unit flow paths. The other end of the channel 19 is connected to the other end of the axial unit channel 19 of the other axial unit channel adjacent to the axial channel 19, and the other end of the two adjacent axial channels 19 to form a circumferential flow path through which the coolant flows.
 すなわち、第1の他端側の周方向接続部17a(1)は、第2の軸方向流路19(2)の他端と第3の軸方向流路19(3)の他端と接続し、互いに連通させる。
 第2の他端側の周方向接続部17a(2)は、第4の軸方向流路19(4)の他端と第5の軸方向流路19(5)の他端と接続し、互いに連通させる。
 同様に順次隣接された軸方向単位流路の隣り合う軸方向流路19ごとに他端側で周方向接続部17aに接続され、連通させる。
That is, the first other-end-side circumferential connecting portion 17a(1) is connected to the other end of the second axial flow path 19(2) and the other end of the third axial flow path 19(3). and communicate with each other.
The second other end side circumferential connecting portion 17a(2) is connected to the other end of the fourth axial flow path 19(4) and the other end of the fifth axial flow path 19(5), communicate with each other.
Similarly, each adjacent axial flow path 19 of the sequentially adjacent axial unit flow paths is connected to the circumferential connecting portion 17a at the other end thereof for communication.
 他端側の周方向接続体17は複数の他端側の周方向接続部17aの集合体である。
 他端側の周方向接続体17は、複数のティース11aに対して、一端側の周方向接続部16aが配置されたティース11a以外に、1つおきに他端側の周方向接続部17aが配置された構成である。
 すなわち、一端側の周方向接続体16を構成する一端側の周方向接続部16aと、他端側の周方向接続体17を構成する他端側の周方向接続部17aとは、複数のティース11aに対して互い違いに配置される。
The circumferential connecting body 17 on the other end side is an assembly of a plurality of circumferential connecting portions 17a on the other end side.
Circumferential connecting bodies 17 on the other end side have circumferential connecting portions 17a on the other end side for every other teeth 11a in addition to the teeth 11a on which the circumferential connecting portions 16a on the one end side are disposed. Arranged configuration.
That is, the one-end-side circumferential connection portion 16a constituting the one-end-side circumferential connection body 16 and the other-end-side circumferential connection portion 17a constituting the other-end-side circumferential connection body 17 are composed of a plurality of teeth. 11a are staggered.
 また、他端側の周方向接続体17の構造は、図10及び図11に示した一端側の周方向接続体16の構造と同様であり、各ティース11aに対して、ティース11aに巻回されたコイル12におけるティース11aの他端側から突出した部分を囲い、ティース11aの両側に位置するスロット11bと連通する空間により他端側の周方向接続部17aが構成された樹脂である。 The structure of the circumferential connector 17 on the other end side is the same as the structure of the circumferential connector 16 on the one end side shown in FIGS. Circumferential direction connection part 17a on the other end side is constituted by a space that surrounds the part of the coil 12 protruding from the other end side of the teeth 11a and communicates with the slots 11b located on both sides of the teeth 11a.
 他端側の周方向接続部17aはそれぞれ、ティース11aに巻回されたコイル12におけるティース11aの他端側から突出した部分の外周面に、冷媒が他端側の周方向接続部17aを構成する空間により直接接する構成をとっているので、他端側の周方向接続部17aに流れる冷媒がコイル12の突出した部分の外周面から熱を効率よく吸熱する。 Circumferential connection portions 17a on the other end side are formed by refrigerant on the outer peripheral surfaces of portions of the coils 12 wound around the teeth 11a that protrude from the other end sides of the teeth 11a. Since the coil 12 is in direct contact with the space, the refrigerant flowing to the circumferential connecting portion 17a on the other end side efficiently absorbs heat from the outer peripheral surface of the protruding portion of the coil 12. As shown in FIG.
 第0の他端側の周方向接続部17a(0)は、第0の軸方向流路19(0)の他端と第1の軸方向流路19(1)の他端と接続し、互いに連通させる。
 第n/2の他端側の周方向接続部17a(n/2)は、第n-2の軸方向流路19(n-2)の他端と第n-1の軸方向流路19(n-2)の他端と接続し、互いに連通させる。
The 0th other end side circumferential connecting portion 17a(0) is connected to the other end of the 0th axial flow path 19(0) and the other end of the first axial flow path 19(1), communicate with each other.
The other end side of the n/2-th circumferential connecting portion 17a (n/2) is connected to the other end of the n-2th axial flow path 19 (n-2) and the n-1th axial flow path 19. (n-2) to communicate with each other.
 その結果、図12に示すように、供給孔16bから第0の軸方向流路19(0)-第0の他端側の周方向接続部17a(0)-第1の軸方向流路19(1)-第1の一端側の周方向接続部16a(1)-第2の軸方向流路19(2)-第1の他端側の周方向接続部17a(1)-第3の軸方向流路19(3)-第2の一端側の周方向接続部16a(2)-・・・-第n-3の軸方向流路19(n-3)-第n/2の一端側の周方向接続部16a(n/2)-第n-2の軸方向流路19(n-2)-第n/2の他端側の周方向接続部17a(n/2)-第n-1の軸方向流路19(n-1)を介して排出孔16cに至る一連の流路となる冷却機構が構成される。 As a result, as shown in FIG. 12, from the supply hole 16b, the 0th axial flow path 19(0)--the other end side of the 0th circumferential connecting portion 17a(0)--the first axial flow path 19 (1)—First one end side circumferential connecting portion 16a(1)—Second axial flow path 19(2)—First other end side circumferential connecting portion 17a(1)—Third Axial flow path 19(3)-Second one end circumferential connecting portion 16a(2)-...- n-3th axial flow path 19(n-3)-n/2th end side circumferential connection portion 16a (n/2)-n-2th axial flow path 19 (n-2)-n/2th other end side circumferential connection portion 17a (n/2)-th A cooling mechanism is configured as a series of flow passages leading to the discharge hole 16c via the n-1 axial flow passages 19(n-1).
 要するに、一端側の周方向接続体16及び他端側の周方向接続体17は軸方向流路19全てに対応し、一端側の周方向接続体16は、隣接するスロット11bにおける一方の軸方向流路19に連通する供給孔16bと、他方の軸方向流路19に連通する排出孔16cを有し、一端側の周方向接続体16及び他端側の周方向接続体17により、一方の軸方向流路19が連通する供給孔16bから他方の軸方向流路19が連通する排出孔16cまで全ての軸方向流路19を連通させる一連の冷却機構が形成される。 In short, the circumferential connector 16 on one end and the circumferential connector 17 on the other end correspond to all of the axial flow paths 19, and the circumferential connector 16 on the one end corresponds to one axial direction of the adjacent slots 11b. It has a supply hole 16b that communicates with the flow path 19 and a discharge hole 16c that communicates with the other axial flow path 19. A circumferential connector 16 on one end side and a circumferential connector 17 on the other end side connect one A series of cooling mechanisms is formed that communicates all the axial passages 19 from the supply hole 16b with which the axial passage 19 communicates to the discharge hole 16c with which the other axial passage 19 communicates.
 一端側の周方向接続体16及び他端側の周方向接続体17は、アウター側樹脂部18a及びインナー側樹脂部18bとともにエポキシ樹脂によりモールド成形され、ステータコア11の一端側に位置する一端側樹脂部が一端側の周方向接続体16に、ステータコア11の他端側に位置する他端側樹脂部が他端側の周方向接続体17になる。 The circumferential connector 16 on one end and the circumferential connector 17 on the other end are molded with epoxy resin together with the outer resin portion 18a and the inner resin portion 18b. The resin portion located on the other end side of the stator core 11 becomes the circumferential connector 17 on the other end side.
 このように、一端側の周方向接続体16と他端側の周方向接続体17とアウター側樹脂部18aとインナー側樹脂部18bは、樹脂のモールド成形により一体的に形成されるので、一連の流路となる冷却機構から冷媒が漏れる恐れがない。
 すなわち、モールド成形による樹脂とアウター側ウェッジ14及びインナー側ウェッジ15が冷媒のシール部材として機能する。
In this way, the circumferential connector 16 on one end side, the circumferential connector 17 on the other end side, the outer resin portion 18a, and the inner resin portion 18b are integrally formed by resin molding. There is no possibility that the refrigerant will leak from the cooling mechanism that serves as a flow path for the cooling medium.
That is, the molded resin, the outer side wedge 14 and the inner side wedge 15 function as sealing members for the coolant.
 このように構成された回転電機1において、ステータ10を冷却する冷却機構は、冷媒が供給孔16bから全ての軸方向流路19と一端側の周方向接続部16a及び他端側の周方向接続部17aを直列的に流れて排出孔16cに至る。 In the rotating electric machine 1 configured as described above, the cooling mechanism for cooling the stator 10 is configured such that the coolant flows from the supply hole 16b to all of the axial flow paths 19, the circumferential connection portion 16a on one end side, and the circumferential connection portion 16a on the other end side. It flows serially through the portion 17a and reaches the discharge hole 16c.
 回転電機1におけるステータ10においては、コイル12は、電流印加によるジュール発熱と渦電流が流れることで生じる渦電流損によって発熱し、ステータコア11は、磁界の向きが変化することで生じるヒステリシス損と渦電流損によって発熱する。また、コイル12における絶縁のためのエナメル被膜が、耐熱許容温度を超えて溶解し、部分放電により短絡する危険性がある。
 実施の形態1に係る回転電機1は、コイル12による発熱及びステータコア11による発熱に対する冷却性能が向上しており、コイル12のエナメル被膜が耐熱許容温度を超えることがなく、エナメル被膜を過熱から保護できる。
In the stator 10 of the rotary electric machine 1, the coil 12 generates heat due to Joule heat generation due to current application and eddy current loss caused by the flow of eddy current, and the stator core 11 generates hysteresis loss and eddy current loss caused by the change in the direction of the magnetic field. Heat is generated by current loss. In addition, there is a risk that the enamel coating for insulation in the coil 12 will melt beyond the allowable heat resistance temperature, causing a short circuit due to partial discharge.
The rotary electric machine 1 according to Embodiment 1 has improved cooling performance against heat generated by the coil 12 and heat generated by the stator core 11, and the enamel coating of the coil 12 does not exceed the allowable heat resistance temperature, thereby protecting the enamel coating from overheating. can.
 すなわち、実施の形態1に係る回転電機1は、スロット11bにコイル12を収容してなるステータ10のスロット11bの内部を軸方向流路19とし、ステータ10の一端側に配置され、複数の軸方向流路19の内2つの軸方向流路19の一端との間を冷媒が流れる周方向流路を形成する一端側の周方向接続部16aを複数設け、ステータ10の他端側に配置され、複数の軸方向流路19の内2つの軸方向流路19の他端との間を冷媒が流れる周方向流路を形成する他端側の周方向接続部17aを複数設け、複数の軸方向流路19と複数の一端側の周方向接続部16a及び複数の他端側の周方向接続部17aとにより、冷媒流路が形成されるので、ステータ10を構成するステータコア11及びコイル12に対する冷却性能が向上する。 That is, in the rotating electrical machine 1 according to Embodiment 1, the inside of the slots 11b of the stator 10 in which the coils 12 are accommodated in the slots 11b is used as the axial flow path 19, and the stator 10 is arranged on one end side of the stator 10, and the plurality of shafts are provided. A plurality of circumferential connecting portions 16 a on one end side forming circumferential flow passages in which the coolant flows between one ends of the two axial flow passages 19 of the directional flow passages 19 are provided and arranged on the other end side of the stator 10 . , a plurality of circumferential connecting portions 17a on the other end side forming circumferential flow passages in which the coolant flows between the other ends of two of the plurality of axial flow passages 19 and the other ends of the plurality of axial flow passages 19; A coolant flow path is formed by the directional flow path 19, the plurality of circumferential connection portions 16a on one end side, and the plurality of circumferential connection portions 17a on the other end side. Improves cooling performance.
 また、実施の形態1に係る回転電機1は、ステータ10のスロット11b全てに対する軸方向流路19が複数の一端側の周方向接続部16a及び複数の他端側の周方向接続部17aにより、一連の冷媒流路に構成されるため、全ての軸方向流路19に流れる冷媒の量が同じであり、全ての軸方向流路19に対して局所的に温度上昇を引き起こすことがなく、かつ、一連の冷媒流路内に流れる冷媒の流速が低下することがなく高い流速が得られ、冷媒とステータコア11及びコイル12との熱伝達率が向上し、ステータコア11及びコイル12に対して高い冷却効率が得られる。 Further, in the rotary electric machine 1 according to Embodiment 1, the axial flow paths 19 for all the slots 11b of the stator 10 are formed by the plurality of circumferential connection portions 16a on the one end side and the plurality of circumferential connection portions 17a on the other end side. Since it is configured as a series of coolant flow paths, the amount of coolant flowing through all the axial flow paths 19 is the same, and the temperature does not locally rise in all the axial flow paths 19; , a high flow velocity can be obtained without decreasing the flow velocity of the coolant flowing through the series of coolant passages, the heat transfer coefficient between the coolant and the stator core 11 and the coil 12 is improved, and the stator core 11 and the coil 12 are highly cooled. Efficiency is obtained.
 さらに、実施の形態1に係る回転電機1は、複数の一端側の周方向接続部16aの集合体として樹脂による一端側の周方向接続体16を構成し、一端側の周方向接続部16aそれぞれが、隣接する2つの軸方向流路19の一端と連通し、2つの軸方向流路19間に位置するコイルにおけるステータコア11の一端側から突出した部分を囲う空間にて構成し、複数の他端側の周方向接続部17aの集合体として樹脂による他端側の周方向接続体17を構成し、他端側の周方向接続部17aそれぞれが、隣接する2つの軸方向流路19の他端と連通し、2つの軸方向流路19間に位置するコイル12におけるステータコア11の他端側から突出した部分を囲う空間にて構成したので、軸方向流路19におけるコイル12と冷媒との接触する表面積に加え、一端側の周方向接続部16aにおけるコイル12と冷媒との接触する表面積及び他端側の周方向接続部17aにおけるコイル12と冷媒との接触する表面積が増加し、コイル12に対して直接冷却する表面積が増加し、コイル12に対して高効率に冷却できる。 Further, in the rotary electric machine 1 according to Embodiment 1, the one-end-side circumferential connector 16 is made of resin as an assembly of a plurality of one-end-side circumferential connectors 16a, and each of the one-end-side circumferential connectors 16a communicates with one end of two adjacent axial flow passages 19, and is constituted by a space surrounding a portion of the coil positioned between the two axial flow passages 19 protruding from one end side of the stator core 11; The other-end-side circumferential connection body 17 is made of resin as an aggregate of the end-side circumferential-direction connection portions 17a. Since the space surrounds the portion of the coil 12 that communicates with the end and is positioned between the two axial flow paths 19 and protrudes from the other end side of the stator core 11 , the refrigerant and the coil 12 in the axial flow path 19 In addition to the surface area of contact, the surface area of contact between the coil 12 and the refrigerant at the circumferential connection portion 16a on the one end side and the surface area of contact between the coil 12 and the refrigerant on the circumferential connection portion 17a on the other end side are increased. The surface area for directly cooling the coil 12 is increased, and the coil 12 can be cooled with high efficiency.
実施の形態2.
 実施の形態2に係る回転電機を、図13を用いて説明する。
 実施の形態1に係る回転電機1が、一端側の周方向接続体16において、隣接する軸方向流路19に対して、一方に供給孔16bが、他方に排出孔16cが形成されたものとしたが、実施の形態2に係る回転電機は、供給孔16bと排出孔16cが180度対象の位置に形成された点が異なるだけであり、その他の点については実施の形態1に係る回転電機1と同じである。
Embodiment 2.
A rotating electric machine according to Embodiment 2 will be described with reference to FIG. 13 .
In the rotary electric machine 1 according to Embodiment 1, the supply hole 16b is formed on one side and the discharge hole 16c is formed on the other side of the adjacent axial flow path 19 in the circumferential connector 16 on the one end side. However, the rotary electric machine according to the second embodiment is different only in that the supply hole 16b and the discharge hole 16c are formed at symmetrical positions of 180 degrees. Same as 1.
 すなわち、一端側の周方向接続体16は、隣接する2つの軸方向流路19、つまり、第0の軸方向流路19(0)と第n-1の軸方向流路19(n-1)の一端と連通し、2つの軸方向流路19(0)と19(n-1)間に位置するコイルにおけるステータコア11の一端側から突出した部分を囲う空間にて構成された周方向接続部16a(0)が設けられ、この周方向接続部16a(0)に固定子用保持フレーム50の供給孔51に連通する供給孔16bが形成される。 That is, the circumferential connector 16 on one end has two adjacent axial flow paths 19, that is, the 0th axial flow path 19(0) and the n-1th axial flow path 19(n-1 ) and formed by a space surrounding a portion of the coil located between the two axial flow paths 19(0) and 19(n−1) protruding from one end side of the stator core 11. A portion 16a(0) is provided, and a supply hole 16b communicating with the supply hole 51 of the stator holding frame 50 is formed in the circumferential connection portion 16a(0).
 一方、供給孔16bが形成された周方向接続部16a(0)と180度対象の位置にある周方向接続部16a(n/4)に、固定子用保持フレーム50の排出孔52に連通する排出孔16cが形成される。 On the other hand, the discharge hole 52 of the stator holding frame 50 communicates with the circumferential connection portion 16a(n/4) located 180 degrees apart from the circumferential connection portion 16a(0) in which the supply hole 16b is formed. A discharge hole 16c is formed.
 このように構成された回転電機において、ステータ10を冷却する冷却機構は、供給孔16bから周方向接続部16a(0)にて分流されて第0の軸方向流路19(0)から周方向接続部16a(n/4)における排出孔16cへの冷媒流路となる冷却機構と、第n-1の軸方向流路19(n-1)から周方向接続部16a(n/4)における排出孔16cへの冷媒流路となる冷却機構との2つの冷却機構を有する。 In the rotating electric machine configured as described above, the cooling mechanism for cooling the stator 10 is divided from the supply hole 16b at the circumferential connection portion 16a(0) and is distributed from the 0th axial flow path 19(0) in the circumferential direction. A cooling mechanism that serves as a coolant flow path to the discharge hole 16c at the connection portion 16a (n/4), and a It has two cooling mechanisms, one cooling mechanism serving as a coolant flow path to the discharge hole 16c.
 すなわち、供給孔16bから供給された冷媒は周方向接続部16a(0)にて2つに分流され、一方は第0の軸方向流路19(0)からの冷媒流路を、他方は第n-1の軸方向流路19(n-1)からの冷媒流路を流れ、周方向接続部16a(n/4)にて合流されて排出孔16cから排出される。 That is, the coolant supplied from the supply hole 16b is split into two at the circumferential connection portion 16a(0), one being the coolant channel from the 0th axial channel 19(0) and the other being the 2nd channel. The coolant flows through the coolant channel from the n−1 axial channel 19(n−1), joins at the circumferential connecting portion 16a(n/4), and is discharged from the discharge hole 16c.
 要するに、一端側の周方向接続体16及び他端側の周方向接続体17は軸方向流路19全てに対応し、一端側の周方向接続体16は、一つの一端側の周方向接続部16aに連通する供給孔16bと、一つの一端側の周方向接続部16aと180度対象の位置に設けられた一端側の周方向接続部16aに連通する排出孔16cを有し、一端側の周方向接続体16及び他端側の周方向接続体17により、一つの一端側の周方向接続部16aが連通する供給孔16bから、180度対象の位置に設けられた一端側の周方向接続部16aに連通する排出孔16cまで全ての軸方向流路19に対して2つの冷媒流路とする2つの一連の冷却機構が形成される。 In short, the one-end-side circumferential connector 16 and the other-end-side circumferential connector 17 correspond to all of the axial flow paths 19, and the one-end-side circumferential connector 16 corresponds to one one-end-side circumferential connector. 16a, and a discharge hole 16c that communicates with the circumferential connection portion 16a on the one end side provided at a position 180 degrees symmetrical with the circumferential connection portion 16a on the one end side. Circumferential connection on one end provided at positions symmetrical by 180 degrees from the supply hole 16b through which the circumferential connection 16a on one end communicates with the circumferential connection 16 and the circumferential connection 17 on the other end. Two series of cooling mechanisms are formed with two coolant channels for all axial channels 19 up to the discharge hole 16c communicating with the portion 16a.
 実施の形態2に係る回転電機においても、全ての軸方向流路19に対して局所的に温度上昇を引き起こすことがなく、2つの冷却機構における冷媒流路それぞれにおける温度分布の不均一性を抑制され、実施の形態1に係る回転電機1と同様にステータ10を構成するステータコア11及びコイル12に対する冷却性能が向上する。 Also in the rotating electric machine according to the second embodiment, no local temperature rise is caused in all of the axial flow paths 19, and non-uniformity in temperature distribution in each of the coolant flow paths in the two cooling mechanisms is suppressed. Thus, the cooling performance for the stator core 11 and the coils 12 constituting the stator 10 is improved as in the rotating electric machine 1 according to the first embodiment.
 また、実施の形態2に係る回転電機は、冷却機構として2つの冷媒流路を有する構成としているため、冷媒流路内で発生する圧力損失が低下するので、冷媒供給のための負荷が低減する。 In addition, since the rotary electric machine according to Embodiment 2 is configured to have two refrigerant flow paths as a cooling mechanism, the pressure loss generated in the refrigerant flow paths is reduced, so the load for supplying the refrigerant is reduced. .
実施の形態3.
 実施の形態3に係る回転電機を、図14を用いて説明する。
 実施の形態1に係る回転電機1が、全ての軸方向流路19に対して一連の冷却機構としたのに対して、実施の形態3に係る回転電機は軸方向流路19を2つのグループに分け、2つのグループそれぞれに対して一連の冷却機構を構成した点が異なるだけであり、その他の点については実施の形態1に係る回転電機1と同じである。
Embodiment 3.
A rotating electrical machine according to Embodiment 3 will be described with reference to FIG. 14 .
While the rotary electric machine 1 according to the first embodiment uses a series of cooling mechanisms for all the axial flow paths 19, the rotary electric machine according to the third embodiment divides the axial flow paths 19 into two groups. The only difference is that a series of cooling mechanisms are configured for each of the two groups, and other points are the same as the rotary electric machine 1 according to the first embodiment.
 すなわち、一端側の周方向接続体16は、隣接する2つの軸方向流路19、つまり、第0の軸方向流路19(0)と第n-1の軸方向流路19(n-1)とそれぞれ連通する供給孔16b(1)と供給孔16b(2)が形成され、供給孔16bが形成される2つの軸方向流路19と180度対象の位置にある隣接する2つの軸方向流路19、つまり、第n/2-1の軸方向流路19(n/2-1)と第n/2の軸方向流路19(n/2)とそれぞれ連通する排出孔16c(1)と排出孔16c(2)が形成される。 That is, the circumferential connector 16 on one end has two adjacent axial flow paths 19, that is, the 0th axial flow path 19(0) and the n-1th axial flow path 19(n-1 ) are formed, and the two adjacent axial flow paths 19 in which the supply holes 16b are formed are 180 degrees symmetrical to each other. Discharge holes 16c (1 ) and a discharge hole 16c(2) are formed.
 供給孔16b(1)と供給孔16b(2)との間に冷媒の流れを阻止する隔壁が形成され、排出孔16c(1)と排出孔16c(2)との間に冷媒の流れを阻止する隔壁が形成される。
 このように構成された回転電機において、ステータ10を冷却する冷却機構は、供給孔16b(1)から第0の軸方向流路19(0)・・・第n/2-1の軸方向流路19(n/2-1)を経て排出孔16c(1)への冷媒流路となる冷却機構と、供給孔16b(2)から第n-1の軸方向流路19(n-1)・・・第n/2の軸方向流路19(n/2)を経て排出孔16c(2)への冷媒流路となる冷却機構との2つの独立した冷却機構を有する。
A partition is formed between the supply holes 16b(1) and 16b(2) to block the flow of the coolant, and between the discharge holes 16c(1) and 16c(2) the flow of the coolant is blocked. A partition wall is formed.
In the rotating electrical machine configured as described above, the cooling mechanism for cooling the stator 10 includes the 0th axial flow path 19(0) from the supply hole 16b(1) to the n/2-1th axial flow path. A cooling mechanism serving as a coolant flow path to the discharge hole 16c(1) through the passage 19(n/2-1), and an n-1th axial flow path 19(n-1) from the supply hole 16b(2). . . , a cooling mechanism serving as a coolant flow path to the discharge hole 16c(2) via the n/2th axial flow path 19(n/2).
 すなわち、供給孔16b(1)から供給された冷媒は排出孔16c(1)への冷媒流路を流れて排出孔16c(1)から排出され、供給孔16b(2)から供給された冷媒は排出孔16c(2)への冷媒流路を流れて排出孔16c(2)から排出される。 That is, the coolant supplied from the supply hole 16b(1) flows through the coolant channel to the discharge hole 16c(1) and is discharged from the discharge hole 16c(1), and the coolant supplied from the supply hole 16b(2) The coolant flows through the coolant channel to the discharge hole 16c(2) and is discharged from the discharge hole 16c(2).
 実施の形態3に係る回転電機においても、全ての軸方向流路19に対して局所的に温度上昇を引き起こすことがなく、2つの冷却機構における冷媒流路それぞれにおける温度分布の不均一性を抑制され、実施の形態1に係る回転電機と同様にステータ10を構成するステータコア11及びコイル12に対する冷却性能が向上する。 Also in the rotating electric machine according to the third embodiment, no local temperature rise is caused in all of the axial flow paths 19, and non-uniformity in temperature distribution in each of the coolant flow paths in the two cooling mechanisms is suppressed. Thus, the cooling performance for the stator core 11 and the coils 12 constituting the stator 10 is improved as in the rotating electric machine according to the first embodiment.
 また、実施の形態3に係る回転電機は、冷却機構として2つの冷媒流路を有する構成としているため、冷媒流路内で発生する圧力損失が低下するので、冷媒供給のための負荷が低減する。
 さらに、供給孔16b(2)と排出孔16c(2)を逆にすることにより、冷媒流路内を流れる冷媒の流れる方向を逆にすることができ、温度上昇に合わせて冷媒の流れる方向を選択でき、より一層温度分布の不均一性を抑制できる。
In addition, since the rotary electric machine according to Embodiment 3 is configured to have two refrigerant flow paths as a cooling mechanism, the pressure loss generated in the refrigerant flow paths is reduced, so the load for supplying the refrigerant is reduced. .
Furthermore, by reversing the supply hole 16b(2) and the discharge hole 16c(2), the direction of flow of the coolant flowing in the coolant flow path can be reversed, and the direction of flow of the coolant can be reversed as the temperature rises. can be selected, and the non-uniformity of the temperature distribution can be further suppressed.
 なお、実施の形態3に係る回転電機は、軸方向流路19を2つのグループに分けたものとしたが、3つのグループもしくは4つのグループに分け、それぞれのグループに対して一端側の周方向接続体16に供給孔16bと排出孔16cが形成されたものでもよい。
 この時、隣接する供給孔16bと排出孔16c、供給孔16bと供給孔16b、又は排出孔16cと排出孔16c冷媒の流れを阻止する隔壁が形成される。
In the rotating electric machine according to Embodiment 3, the axial flow passages 19 are divided into two groups, but divided into three groups or four groups, and each group is divided into one end side circumferential direction. The connection body 16 may have a supply hole 16b and a discharge hole 16c.
At this time, a partition is formed between adjacent supply hole 16b and discharge hole 16c, supply hole 16b and supply hole 16b, or discharge hole 16c and discharge hole 16c to block the flow of the refrigerant.
 要するに、実施の形態3に係る回転電機における冷却機構は、ステータ10のスロット11bの全てに対して軸方向流路19を有し、全ての軸方向流路19を複数のグルーブに分け、一端側の周方向接続体16及び他端側の周方向接続体17は軸方向流路19全てに対応し、一端側の周方向接続体16は、グルーブ毎に一つの軸方向流路19に連通する供給孔16bと、一つの軸方向流路19に連通する排出孔16cを有し、一端側の周方向接続体16及び他端側の周方向接続体17により、グルーブ毎に供給孔16bから排出孔16cまでグループ内の軸方向流路19を連通する冷媒流路とし、複数の独立した一連の冷却機構が形成される。 In short, the cooling mechanism in the rotating electric machine according to Embodiment 3 has the axial flow paths 19 for all the slots 11b of the stator 10, divides all the axial flow paths 19 into a plurality of grooves, and divides them into a plurality of grooves. and the circumferential connector 17 on the other end correspond to all of the axial flow paths 19, and the circumferential connector 16 on the one end communicates with one axial flow path 19 for each groove. It has a supply hole 16b and a discharge hole 16c communicating with one axial flow path 19, and discharges from the supply hole 16b for each groove by a circumferential connector 16 on one end and a circumferential connector 17 on the other end. A plurality of independent series of cooling mechanisms are formed by using the axial flow passages 19 in the group as coolant flow passages that communicate with each other up to the holes 16c.
実施の形態4.
 実施の形態4に係る回転電機を、図15及び図16を用いて説明する。
 実施の形態1に係る回転電機1は、一端側の周方向接続体16における周方向接続部16aが隣接する2つの軸方向流路19間において、軸方向流路19の径方向の長さと同一幅の周方向流路を形成しているのに対して、実施の形態4に係る回転電機は、一端側の周方向接続体16における周方向接続部16aにおける周方向流路が、隣接する2つの軸方向流路19間を結ぶ主経路Aに、2つの軸方向流路19間の幅が軸方向流路19の径方向の長さより長くして、内周側及び外周側に突出した突出部B及び突出部Cを有する横断面十字状の周方向流路を形成している。
Embodiment 4.
A rotating electrical machine according to Embodiment 4 will be described with reference to FIGS. 15 and 16. FIG.
In the rotary electric machine 1 according to Embodiment 1, the radial length of the axial flow path 19 is the same as that of the axial flow path 19 between the two adjacent axial flow paths 19 at the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side. In the rotary electric machine according to the fourth embodiment, the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side has two adjacent circumferential flow paths. The width between the two axial flow passages 19 is longer than the radial length of the axial flow passages 19, and the main path A connecting the two axial flow passages 19 protrudes toward the inner peripheral side and the outer peripheral side. A circumferential flow path having a cross-sectional cross section having a portion B and a projecting portion C is formed.
 すなわち、一端側の周方向接続体16における周方向接続部16aが、冷媒がコイル12の軸方向端面に直接接する構成をとっているだけではなく、冷媒がステータコア11の軸方向端面の一部に直接接する構成となる突出部B及び突出部Cを有する。
 その結果、一端側の周方向接続部16aに流れる冷媒がコイル12の突出した部分の外周面から熱を効率よく吸熱するとともに、ステータコア11の軸方向端面から熱を効率よく吸熱し、より高い冷却効果が得られる。
That is, not only is the circumferential connecting portion 16 a of the circumferential connecting body 16 on one end side directly contacting the axial end face of the coil 12 , but the refrigerant is not only in direct contact with the axial end face of the stator core 11 . It has protrusions B and C that are in direct contact.
As a result, the coolant flowing through the circumferential connection portion 16a on the one end side efficiently absorbs heat from the outer peripheral surface of the protruding portion of the coil 12 and efficiently absorbs heat from the axial end surface of the stator core 11, resulting in higher cooling. effect is obtained.
 また、他端側の周方向接続体17における周方向接続部17aが隣接する2つの軸方向流路19間において、実施の形態1に係る回転電機1は周方向経路の横断面が同じであるのに対して、実施の形態4に係る回転電機は、他端側の周方向接続体17における周方向接続部17aにおける周方向流路が、隣接する2つの軸方向流路19間を結ぶ主経路Aに、2つの軸方向流路19間の幅が軸方向流路19の径方向の長さより長くして、内周側及び外周側に突出した突出部B及び突出部Cを有する横断面十字状の周方向流路を形成している。 Further, between the two axial flow paths 19 where the circumferential connecting portions 17a of the circumferential connecting body 17 on the other end side are adjacent to each other, the rotating electric machine 1 according to the first embodiment has the same cross section of the circumferential path. On the other hand, in the rotary electric machine according to Embodiment 4, the circumferential flow path in the circumferential connecting portion 17a of the circumferential connecting body 17 on the other end side is the main connecting portion between the two adjacent axial flow paths 19. The cross section of the path A has protrusions B and C projecting to the inner peripheral side and the outer peripheral side with the width between the two axial flow paths 19 being longer than the radial length of the axial flow paths 19. A cross-shaped circumferential flow path is formed.
 すなわち、他端側の周方向接続体17における周方向接続部17aが、冷媒がコイル12の軸方向端面に直接接する構成をとっているだけではなく、冷媒がステータコア11の軸方向端面の一部に直接接する構成となる突出部B及び突出部Cを有する。
 その結果、他端側の周方向接続部17aに流れる冷媒がコイル12の突出した部分の外周面から熱を効率よく吸熱するとともに、ステータコア11の軸方向端面から熱を効率よく吸熱し、より高い冷却効果が得られる。
That is, not only is the circumferential connecting portion 17 a of the circumferential connecting body 17 on the other end side directly contacting the axial end face of the coil 12 , but the refrigerant is not only in direct contact with the axial end face of the stator core 11 . It has a protrusion B and a protrusion C that are configured to be in direct contact with the .
As a result, the refrigerant flowing to the circumferential connecting portion 17a on the other end side efficiently absorbs heat from the outer peripheral surface of the protruding portion of the coil 12 and efficiently absorbs heat from the axial end surface of the stator core 11, resulting in a higher temperature. Provides a cooling effect.
 実施の形態4に係る回転電機は、一端側の周方向接続体16における周方向接続部16aの周方向経路の形状及び他端側の周方向接続体17における周方向接続部17aの形状が、実施の形態1に係る回転電機1と異なるだけであり、その他の点については実施の形態1に係る回転電機1と同じである。 In the rotary electric machine according to Embodiment 4, the shape of the circumferential path of the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side and the shape of the circumferential connecting portion 17a of the circumferential connecting body 17 on the other end side are: It is the same as the rotary electric machine 1 according to the first embodiment except that it is different from the rotary electric machine 1 according to the first embodiment.
 一端側の周方向接続体16は、図15及び図16に示す横断面から明らかなように、一端側の周方向接続部16aにおける周方向経路は、隣接する2つの軸方向流路19が主経路Aにより連通し、隣接する2つの軸方向流路19の間に内周側及び外周側に突出した突出部B及び突出部Cが形成され、主経路Aと突出部B及び突出部Cは、周方向経路となる連続した空間を構成している。 As can be seen from the cross section shown in FIGS. 15 and 16, the circumferential connecting body 16 on the one end side has two adjacent axial flow paths 19 as main circumferential paths in the circumferential connecting portion 16a on the one end side. Protrusions B and C are formed between two adjacent axial flow paths 19 which are communicated by a path A and protrude inwardly and outwardly. , constitutes a continuous space serving as a circumferential path.
 他端側の周方向接続体17は、図示していないが、他端側の周方向接続部17aにおける周方向経路は、隣接する2つの軸方向流路19が主経路Aにより連通し、隣接する2つの軸方向流路19の間に内周側及び外周側に突出した突出部B及び突出部Cが形成され、主経路Aと突出部B及び突出部Cは、周方向経路となる連続した空間を構成している。 The circumferential connecting body 17 on the other end side is not shown, but the circumferential path in the circumferential connecting portion 17a on the other end side is such that the two adjacent axial flow paths 19 communicate with each other through the main path A, A protrusion B and a protrusion C projecting to the inner peripheral side and the outer peripheral side are formed between the two axial flow paths 19, and the main path A, the protrusion B, and the protrusion C form a continuous circumferential path. It constitutes a space with
 実施の形態4に係る回転電機は、実施の形態1に係る回転電機1と同様の効果を奏する他、一端側の周方向接続体16の一端側の周方向接続部16aにおける周方向経路と他端側の周方向接続体17の他端側の周方向接続部17aにおける周方向経路それぞれに突出部B及び突出部Cが形成され、コイル12の突出した部分の外周面から熱を効率よく吸熱するとともに、ステータコア11の軸方向端面から熱を効率よく吸熱し、より高い冷却効果が得られる。 The rotating electric machine according to the fourth embodiment has the same effect as the rotating electric machine 1 according to the first embodiment, and also has a circumferential path in the circumferential connecting portion 16a on the one end side of the circumferential connecting body 16 on the one end side. A protrusion B and a protrusion C are formed in each of the circumferential paths in the circumferential connecting portion 17a on the other end side of the circumferential connecting body 17 on the end side, and heat is efficiently absorbed from the outer peripheral surface of the protruding portion of the coil 12. At the same time, heat is efficiently absorbed from the axial end face of the stator core 11, resulting in a higher cooling effect.
 なお、実施の形態4に係る回転電機は、冷凍機構として隣接する軸方向流路19に供給孔16bと排出孔16cを配置、具体的には第0の軸方向流路19(0)の一端に供給孔16bを、第n-1の軸方向流路19(n-1)の一端に排出孔16cを配置しているが、実施の形態2と同様に、供給孔16bと排出孔16cが180度対象の位置に配置されたものでもよく、また、実施の形態3に示すように、軸方向流路19を2つのグループに分け、2つのグループそれぞれに対して一連の冷却機構を構成したものでもよい。 In the rotating electric machine according to Embodiment 4, the supply hole 16b and the discharge hole 16c are arranged in the adjacent axial flow paths 19 as a refrigerating mechanism. , and a discharge hole 16c at one end of the (n-1)th axial flow path 19(n-1). They may be arranged at symmetrical positions of 180 degrees, and as shown in Embodiment 3, the axial flow passages 19 are divided into two groups, and a series of cooling mechanisms are configured for each of the two groups. Anything is fine.
実施の形態5.
 実施の形態5に係る回転電機を、図17を用いて説明する。
 実施の形態1に係る回転電機1は、一端側の周方向接続体16における周方向接続部16aが隣接する2つの軸方向流路19間において、周方向経路の横断面が同じであるのに対して、実施の形態5に係る回転電機は、一端側の周方向接続部16aにおける周方向経路の横断面が、軸方向流路19と連通する部分の径方向の長さ、いわゆる幅が実施の形態1に係る回転電機1における一端側の周方向接続部16aの径方向の長さ、いわゆる幅と同じであるが、隣接する2つの軸方向流路19間の部分の径方向の長さ、いわゆる幅が短い。
Embodiment 5.
A rotating electrical machine according to Embodiment 5 will be described with reference to FIG. 17 .
In the rotary electric machine 1 according to Embodiment 1, the cross section of the circumferential path is the same between the two axial flow paths 19 where the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side is adjacent to each other. In contrast, in the rotary electric machine according to Embodiment 5, the cross section of the circumferential path in the circumferential connecting portion 16a on the one end side has a radial length of a portion communicating with the axial flow path 19, that is, a width. The radial length of the circumferential connecting portion 16a on the one end side in the rotary electric machine 1 according to Embodiment 1, which is the same as the so-called width, is the radial length of the portion between the two adjacent axial flow paths 19. , the so-called width is short.
 また、他端側の周方向接続体17における周方向接続部17aが隣接する2つの軸方向流路19間において、実施の形態1に係る回転電機1は周方向経路の横断面が同じであるのに対して、実施の形態5に係る回転電機は、他端側の周方向接続部17aにおける周方向経路の横断面が、軸方向流路19と連通する部分の径方向の長さ、いわゆる幅が実施の形態1に係る回転電機1における他端側の周方向接続部17aの径方向の長さ、いわゆる幅と同じであり、隣接する2つの軸方向流路19間の部分の径方向の長さ、いわゆる幅が短い。 Further, between the two axial flow paths 19 where the circumferential connecting portions 17a of the circumferential connecting body 17 on the other end side are adjacent to each other, the rotating electric machine 1 according to the first embodiment has the same cross section of the circumferential path. On the other hand, in the rotary electric machine according to Embodiment 5, the cross section of the circumferential path in the circumferential connecting portion 17a on the other end side is the radial length of the portion communicating with the axial flow path 19, the so-called The width is the same as the radial length of the circumferential connecting portion 17a on the other end side in the rotary electric machine 1 according to Embodiment 1, the so-called width, and the radial direction of the portion between the two adjacent axial flow paths 19 is the same as the width. length, the so-called width, is short.
 実施の形態5に係る回転電機は、一端側の周方向接続体16における周方向接続部16aの周方向経路の形状及び他端側の周方向接続体17における周方向接続部17aの形状が、実施の形態1に係る回転電機1と異なるだけであり、その他の点については実施の形態1に係る回転電機1と同じである。 In the rotating electric machine according to Embodiment 5, the shape of the circumferential path of the circumferential connecting portion 16a of the circumferential connecting body 16 on the one end side and the shape of the circumferential connecting portion 17a of the circumferential connecting body 17 on the other end side are: It is the same as the rotary electric machine 1 according to the first embodiment except that it is different from the rotary electric machine 1 according to the first embodiment.
 一端側の周方向接続体16は、図17に示す横断面から明らかなように、一端側の周方向接続部16aにおける周方向経路は、両端部B、Cと、両端部B、Cより径方向の長さが短い狭小な連通部Aを有する。
 両端部B、Cはそれぞれ軸方向流路19と連通し、連通部Aは端部Bと端部Cとを連通し、連通部Aと端部B及び端部Cは、周方向経路となる連続した空間を構成している。
As can be seen from the cross section shown in FIG. It has a narrow communicating portion A with a short length in the direction.
Both ends B and C communicate with the axial flow path 19 respectively, the communicating portion A communicates between the end B and the end C, and the communicating portion A and the ends B and C form a circumferential path. It forms a continuous space.
 他端側の周方向接続体17は、図示していないが、他端側の周方向接続部17aにおける周方向経路は、両端部B、Cと、両端部B、Cより径方向の長さが短い狭小な連通部Aを有する。
 両端部B、Cはそれぞれ軸方向流路19と連通し、連通部Aは端部Bと端部Cとを連通し、連通部Aと端部B及び端部Cは、周方向経路となる連続した空間を構成している。
Although the circumferential connecting body 17 on the other end side is not shown, the circumferential path in the circumferential connecting portion 17a on the other end side is the length of both ends B and C and the length in the radial direction from both ends B and C. has a narrow communicating portion A with a short length.
Both ends B and C communicate with the axial flow path 19 respectively, the communicating portion A communicates between the end B and the end C, and the communicating portion A and the ends B and C form a circumferential path. It forms a continuous space.
 実施の形態5に係る回転電機は、実施の形態1に係る回転電機1と同様の効果を奏する他、一端側の周方向接続体16の一端側の周方向接続部16aにおける周方向経路と他端側の周方向接続体17の他端側の周方向接続部17aにおける周方向経路それぞれに狭小な連通部Aを有するので、早い流速が得られやすく、コイル12の表面での熱伝達率が向上する。 The rotating electric machine according to the fifth embodiment has the same effect as the rotating electric machine 1 according to the first embodiment, and also has a circumferential path in the circumferential connecting portion 16a on the one end side of the circumferential connecting body 16 on the one end side. Since each circumferential path in the circumferential connecting portion 17a on the other end side of the circumferential connecting body 17 on the end side has a narrow communication portion A, a high flow velocity can be easily obtained, and the heat transfer coefficient on the surface of the coil 12 is high. improves.
 なお、実施の形態5に係る回転電機は、冷凍機構として隣接する軸方向流路19に供給孔16bと排出孔16cを配置、具体的には第0の軸方向流路19(0)の一端に供給孔16bを、第n-1の軸方向流路19(n-1)の一端に排出孔16cを配置しているが、実施の形態2と同様に、供給孔16bと排出孔16cが180度対象の位置に配置されたものでもよく、また、実施の形態3に示すように、軸方向流路19を2つのグループに分け、2つのグループそれぞれに対して一連の冷却機構を構成したものでもよい。 In the rotating electric machine according to Embodiment 5, the supply hole 16b and the discharge hole 16c are arranged in the adjacent axial flow paths 19 as a refrigerating mechanism. , and a discharge hole 16c at one end of the (n-1)th axial flow path 19(n-1). They may be arranged at symmetrical positions of 180 degrees, and as shown in Embodiment 3, the axial flow passages 19 are divided into two groups, and a series of cooling mechanisms are configured for each of the two groups. Anything is fine.
実施の形態6.
 実施の形態6に係る回転電機1を、図18から図20を用いて説明する。
 実施の形態1に係る回転電機1における絶縁部材13が両端開口の筒形状をなしているのに対して、実施の形態6に係る回転電機1における絶縁部材13が両端開口の筒形状をなし、両側面部13a3、13a4に解放空間を有する点が異なり、その他の点については実施の形態1に係る回転電機1と同じである。
Embodiment 6.
A rotating electric machine 1 according to Embodiment 6 will be described with reference to FIGS. 18 to 20. FIG.
The insulating member 13 in the rotating electrical machine 1 according to the first embodiment has a tubular shape with both ends open, whereas the insulating member 13 in the rotating electrical machine 1 according to the sixth embodiment has a tubular shape with both ends open, It is the same as the rotary electric machine 1 according to the first embodiment except that both side surfaces 13a3 and 13a4 have open spaces.
 すなわち、絶縁部材13は、図18に示すように、巻回部13aと、巻回部13aの両側面の外周側及び内周側にフランジ13bを有する。
 巻回部13aは両端面部13a1、13a2と、略全域に解放空間を有する両側面部13a3、13a4を有する。
That is, as shown in FIG. 18, the insulating member 13 has a winding portion 13a and flanges 13b on both outer and inner circumferential sides of both side surfaces of the winding portion 13a.
The winding portion 13a has both end face portions 13a1 and 13a2 and both end face portions 13a3 and 13a4 having an open space over substantially the entire area.
 絶縁部材13における巻回部13aの両端面部13a1、13a2は各ティース11aの両端面に密着し、各ティース11aの両端面を覆う。
 絶縁部材13における巻回部13aの両側面部13a3、13a4は、図16及び図17に示すように、外周端部と内周端部が各ティース11aの側面に密着し、解放空間によりティース11aの側面とコイル12との間に軸方向流路19と連通する冷媒路を形成する。
 コイル12のスロット11b内の外周側面とアウター側ウェッジ14の内面との間、及びコイル12のスロット11b内の内周側面とインナー側ウェッジ15の内面との間に、軸方向流路19と冷媒路とを連通する空間が形成される。
Both end surface portions 13a1 and 13a2 of the wound portion 13a of the insulating member 13 are in close contact with both end surfaces of each tooth 11a to cover both end surfaces of each tooth 11a.
As shown in FIGS. 16 and 17, both side surface portions 13a3 and 13a4 of the winding portion 13a of the insulating member 13 are in close contact with the side surface of each tooth 11a at the outer peripheral end portion and the inner peripheral end portion thereof, and the free spaces allow the teeth 11a to be separated. A coolant path communicating with the axial flow path 19 is formed between the side surface and the coil 12 .
Between the outer peripheral side surface in the slot 11b of the coil 12 and the inner surface of the outer wedge 14, and between the inner peripheral side surface in the slot 11b of the coil 12 and the inner surface of the inner wedge 15, the axial flow path 19 and the coolant are provided. A space communicating with the road is formed.
 絶縁部材13における外周側のフランジ13bは各ティース11aの切り欠き11cに、内周側のフランジ13bは各ティース11aの切り欠き11dに密着する。
 絶縁部材13は各ティース11aとティース11aに巻回されたコイル12との間に介在し、両端面部13a1、13a2がティース11aの両端面とコイル12とを絶縁し、両側面部13a3、13a4における解放空間により形成された冷媒路に充填された絶縁性の冷媒により、ティース11aの側面とコイル12とが絶縁される。
 絶縁部材13の材料は、実施の形態1に係る回転電機1における絶縁部材13の材料と同じである。
The flange 13b on the outer peripheral side of the insulating member 13 is in close contact with the notch 11c of each tooth 11a, and the flange 13b on the inner peripheral side is in close contact with the notch 11d of each tooth 11a.
The insulating member 13 is interposed between each tooth 11a and the coil 12 wound around the tooth 11a. The side surfaces of the teeth 11a and the coil 12 are insulated by the insulating coolant filled in the coolant path formed by the space.
The material of insulating member 13 is the same as the material of insulating member 13 in rotating electric machine 1 according to the first embodiment.
 実施の形態6に係る回転電機1は、実施の形態1に係る回転電機1と同様の効果を奏する他、ティース11aの側面とコイル12との間に軸方向流路19と連通する冷媒路に冷媒が流れることにより、ステータ10のティース11aの側面を直接冷却でき、ステータコア11の温度上昇を抑えられる。 The rotary electric machine 1 according to the sixth embodiment has the same effect as the rotary electric machine 1 according to the first embodiment. The flowing coolant can directly cool the side surfaces of the teeth 11 a of the stator 10 , thereby suppressing the temperature rise of the stator core 11 .
 なお、冷凍機構としては、実施の形態2と同様に、供給孔16bと排出孔16cが180度対象の位置に配置されたものでもよく、また、実施の形態3に示すように、軸方向流路19を2つのグループに分け、2つのグループそれぞれに対して一連の冷却機構を構成したものでもよい。 The refrigerating mechanism may be one in which the supply hole 16b and the discharge hole 16c are arranged at 180-degree symmetrical positions as in the second embodiment. The channels 19 may be divided into two groups and a series of cooling mechanisms may be arranged for each of the two groups.
実施の形態7.
 実施の形態7は、実施の形態1から実施の形態5に係る回転電機1の冷却システム100であり、図21を用いて説明する。
 図21において、回転電機1として実施の形態1に係る回転電機を示しているが、実施の形態2から実施の形態5に係る回転電機のいずれかの回転電機であってもよい。
Embodiment 7.
Embodiment 7 is cooling system 100 for rotating electric machine 1 according to Embodiments 1 to 5, and will be described with reference to FIG.
In FIG. 21, the rotating electrical machine according to the first embodiment is shown as the rotating electrical machine 1, but the rotating electrical machine according to any one of the rotating electrical machines according to the second to fifth embodiments may be used.
 冷却システム100は、ポンプ101と、熱交換器102と、放熱用ファン103と、タンク104と、制御装置105を備え、回転電機1の排出孔52から、熱交換器102及びポンプ101を介して回転電機1の供給孔51までを冷媒配管106により接続された冷媒サイクルである冷媒回路によって構成される。 The cooling system 100 includes a pump 101 , a heat exchanger 102 , a heat radiation fan 103 , a tank 104 , and a control device 105 . It is configured by a refrigerant circuit which is a refrigerant cycle in which the supply hole 51 of the rotary electric machine 1 is connected by a refrigerant pipe 106 .
 制御装置105は、ポンプ101及び放熱用ファン103をステータ10の熱負荷の状態に応じて制御し、ステータ10の一連の冷却機構へ供給する冷媒の流量及び圧力と温度を調節する。 The control device 105 controls the pump 101 and the heat radiation fan 103 according to the state of the heat load of the stator 10, and adjusts the flow rate, pressure and temperature of the coolant supplied to a series of cooling mechanisms of the stator 10.
 ポンプ101は、熱交換器102により冷却された冷媒を昇圧して高圧にし、高圧にされた冷媒を冷媒配管106を介して回転電機1の供給孔51へ吐出し、高圧の冷却された冷媒を回転電機1におけるステータ10の一連の冷却機構へ送り出す。使用される冷媒は絶縁性の冷媒である。
 ポンプ101は、インバータ等で構成される制御回路を有し、制御装置105により制御回路が制御され、ステータ10の熱負荷の状態に応じて、ステータ10の一連の冷却機構へ供給する冷媒の流量及び圧力が制御される。
The pump 101 raises the pressure of the refrigerant cooled by the heat exchanger 102 to a high pressure, discharges the high pressure refrigerant to the supply hole 51 of the rotary electric machine 1 through the refrigerant pipe 106, and supplies the high pressure cooled refrigerant. It is sent out to a series of cooling mechanisms of the stator 10 in the rotary electric machine 1 . The coolant used is an insulating coolant.
The pump 101 has a control circuit composed of an inverter or the like, and the control circuit is controlled by a control device 105. Depending on the state of the heat load of the stator 10, the flow rate of the coolant supplied to the series of cooling mechanisms of the stator 10 is controlled. and pressure are controlled.
 熱交換器102は、回転電機1におけるステータ10の発熱により温度上昇した冷媒を回転電機1の排出孔52から冷媒配管53を介して受け、受けた温度上昇した冷媒を外気と熱交換して冷却する。熱交換器102により冷却された冷媒が冷媒配管106を介してポンプ101へ送られる。 The heat exchanger 102 receives the refrigerant whose temperature has risen due to the heat generated by the stator 10 in the rotating electric machine 1 from the discharge hole 52 of the rotating electric machine 1 through the refrigerant pipe 53, and exchanges heat with the outside air to cool the received refrigerant whose temperature has risen. do. The refrigerant cooled by heat exchanger 102 is sent to pump 101 through refrigerant pipe 106 .
 熱交換器102は放熱用ファン103により空冷され、回転電機1におけるステータ10の発熱により温度上昇した冷媒が放熱用ファン103から送風された外気と熱交換される。
 放熱用ファン103はステータ10の熱負荷の状態に応じて制御装置105により制御され、熱交換器102により冷却される冷媒の温度を調節する。
 熱交換器102は、冷媒回路内を循環する冷媒の漏洩時に、冷媒を蓄える貯留部としても機能する。
The heat exchanger 102 is air-cooled by a heat radiation fan 103 , and the coolant whose temperature has increased due to the heat generated by the stator 10 in the rotary electric machine 1 exchanges heat with the outside air blown from the heat radiation fan 103 .
The heat radiation fan 103 is controlled by the control device 105 according to the state of the heat load of the stator 10 and adjusts the temperature of the refrigerant cooled by the heat exchanger 102 .
The heat exchanger 102 also functions as a reservoir that stores refrigerant when the refrigerant circulating in the refrigerant circuit leaks.
 熱交換器102は放熱用ファン103による空冷に限られるものではなく、回転電機1におけるステータ10の発熱により温度上昇した冷媒を冷却用の冷媒と熱交換して冷却する熱交換器でもよく、両者を合わせ持った熱交換器でもよい。
 タンク104は、冷媒回路内を循環する冷媒の漏洩時に、冷媒を蓄える貯留部である。
The heat exchanger 102 is not limited to air-cooling by the heat radiation fan 103, and may be a heat exchanger that cools the refrigerant whose temperature has risen due to the heat generated by the stator 10 in the rotating electric machine 1 by exchanging heat with the cooling refrigerant. A heat exchanger having both of
The tank 104 is a reservoir that stores refrigerant when the refrigerant circulating in the refrigerant circuit leaks.
 次に、実施の形態7に係る回転電機の冷却システム100の動作について説明する。
 ポンプ101にて所定の温度及び流量に設定された高圧の冷却された冷媒が、冷媒配管53を介して回転電機1の供給孔51へ吐出され、ステータ10の一連の冷却機構へ送り出される。
 ステータ10の一連の冷却機構へ送り出された冷媒は、ステータ10内の発熱するステータコア11及びコイル12を冷却し、温度上昇した冷媒が回転電機1の排出孔52から冷媒配管53を介して熱交換器102へ導かれる。
Next, the operation of the rotating electric machine cooling system 100 according to the seventh embodiment will be described.
A high-pressure cooled refrigerant set to a predetermined temperature and flow rate by the pump 101 is discharged to the supply hole 51 of the rotary electric machine 1 through the refrigerant pipe 53 and delivered to a series of cooling mechanisms of the stator 10 .
The refrigerant sent out to a series of cooling mechanisms of the stator 10 cools the stator core 11 and the coil 12 that generate heat in the stator 10, and the refrigerant whose temperature rises is heat-exchanged from the discharge hole 52 of the rotary electric machine 1 through the refrigerant pipe 53. It is guided to vessel 102 .
 熱交換器102へ導かれた温度上昇した冷媒は、熱交換器102により放熱されることで、温度が低下させられる。
 温度が低下した冷媒はポンプ101に導かれ、この動作を連続的に繰り返される。
The temperature of the refrigerant whose temperature has increased and is guided to the heat exchanger 102 is lowered by the heat being radiated by the heat exchanger 102 .
The coolant whose temperature has decreased is led to the pump 101, and this operation is continuously repeated.
 実施の形態7に係る回転電機の冷却システム100は、高圧の冷却された冷媒を回転電機1におけるステータ10の一連の冷却機構に循環させることにより、回転電機1におけるステータ10が冷却され、過熱による回転電機1の動作停止を抑制できる。 A cooling system 100 for a rotating electrical machine according to Embodiment 7 circulates a high-pressure cooled coolant through a series of cooling mechanisms for a stator 10 in a rotating electrical machine 1, thereby cooling the stator 10 in the rotating electrical machine 1 and causing overheating. Stopping of operation of the rotary electric machine 1 can be suppressed.
 実施の形態8.
 実施の形態8は、実施の形態1から実施の形態5に係る回転電機1の冷却システム100であり、図22を用いて説明する。
 図22において、回転電機1として実施の形態1に係る回転電機を示しているが、実施の形態2から実施の形態5に係る回転電機のいずれかの回転電機であってもよい。
Embodiment 8.
An eighth embodiment is a cooling system 100 for the rotating electric machine 1 according to the first to fifth embodiments, and will be described with reference to FIG. 22 .
In FIG. 22, the rotating electric machine according to the first embodiment is shown as the rotating electric machine 1, but it may be any one of the rotating electric machines according to the second to fifth embodiments.
 冷却システム100は、膨張弁111と、圧縮機112と、熱交換器113と、放熱用ファン114と、アキュムレータ115と、流路切替装置116と、制御装置117を備え、回転電機1の供給孔51と膨張弁111とは液冷媒配管118により接続され、流路切替装置116と回転電機1の排出孔52とはガス冷媒配管119により接続され、流路切替装置116から膨張弁111までの内部配管としてガス冷媒配管119及び液冷媒配管118が用いられ、回転電機1の排出孔52から、液冷媒配管118-アキュムレータ115及び圧縮機112-熱交換器113-膨張弁111を介して回転電機1の供給孔51まで冷凍サイクルである冷媒回路によって構成される。 The cooling system 100 includes an expansion valve 111, a compressor 112, a heat exchanger 113, a heat radiation fan 114, an accumulator 115, a flow switching device 116, and a control device 117. 51 and the expansion valve 111 are connected by a liquid refrigerant pipe 118, and the flow path switching device 116 and the discharge hole 52 of the rotary electric machine 1 are connected by a gas refrigerant pipe 119. A gas refrigerant pipe 119 and a liquid refrigerant pipe 118 are used as pipes. It is configured by a refrigerant circuit, which is a refrigerating cycle, up to the supply hole 51 of .
 制御装置117は、膨張弁111、圧縮機112、放熱用ファン114、アキュムレータ115、流路切替装置116をステータ10の熱負荷の状態に応じて制御し、ステータ10の一連の冷却機構へ供給する冷媒の流量及び圧力と温度を調節する。 The control device 117 controls the expansion valve 111, the compressor 112, the heat radiation fan 114, the accumulator 115, and the flow path switching device 116 according to the state of the heat load of the stator 10, and supplies the heat to a series of cooling mechanisms of the stator 10. Adjust the flow rate, pressure and temperature of the refrigerant.
 膨張弁111は、熱交換器113からの凝縮された高圧・中温の液体冷媒を膨張させて液体冷媒の温度をさらに低下させ、低圧・低温の液体冷媒を液冷媒配管118を介して回転電機1の供給孔51へ吐出し、高圧の冷却された冷媒を回転電機1におけるステータ10の一連の冷却機構へ送り出す。使用される冷媒は絶縁性の冷媒である。
 膨張弁111は、例えば、電子式にて弁の開度が制御装置117により可変に制御される膨張弁が用いられる。
The expansion valve 111 expands the high-pressure, medium-temperature liquid refrigerant condensed from the heat exchanger 113 to further lower the temperature of the liquid refrigerant, and sends the low-pressure, low-temperature liquid refrigerant to the rotary electric machine 1 through the liquid refrigerant pipe 118. , and the high-pressure cooled refrigerant is delivered to a series of cooling mechanisms for the stator 10 in the rotary electric machine 1 . The coolant used is an insulating coolant.
The expansion valve 111 is, for example, an expansion valve whose opening degree is variably controlled by a control device 117 electronically.
 流路切替装置116は、回転電機1におけるステータ10の発熱により蒸発し、温度上昇した低圧・高温の気体冷媒を、回転電機1の排出孔52からガス冷媒配管119を介し、アキュムレータ115を介して圧縮機112へ導く。
 アキュムレータ115は、流路切替装置116から導かれた余剰の気体冷媒を液体冷媒として蓄える。
The flow path switching device 116 evaporates due to the heat generated by the stator 10 in the rotating electrical machine 1, and the low-pressure, high-temperature gaseous refrigerant whose temperature rises is discharged from the discharge hole 52 of the rotating electrical machine 1 through the gas refrigerant pipe 119 and through the accumulator 115. lead to compressor 112;
The accumulator 115 stores the surplus gaseous refrigerant led from the channel switching device 116 as liquid refrigerant.
 圧縮機112は、アキュムレータ115及び流路切替装置116を介して回転電機1の排出孔52から低圧・高温の気体冷媒を吸引し、昇温昇圧させて高圧・高温の気体冷媒を熱交換器113へ吐出する。
 圧縮機112は、インバータ等で構成される制御回路を有し、制御装置117により制御回路が制御され、ステータ10の熱負荷の状態に応じて、ステータ10の一連の冷却機構へ供給する冷媒の流量及び圧力が制御される。
The compressor 112 sucks the low-pressure, high-temperature gaseous refrigerant from the discharge hole 52 of the rotary electric machine 1 via the accumulator 115 and the flow path switching device 116 , raises the temperature, and sends the high-pressure, high-temperature gaseous refrigerant to the heat exchanger 113 . Dispense to
Compressor 112 has a control circuit configured by an inverter or the like, and the control circuit is controlled by control device 117 . Flow and pressure are controlled.
 熱交換器113は、圧縮機112により昇温昇圧させて高圧・高温の気体冷媒を外気と熱交換して高圧・高温の気体冷媒を凝縮させ、高圧・中温の液体冷媒とする。
 熱交換器113は放熱用ファン114により空冷され、熱交換器113により、高圧・高温の気体冷媒が放熱用ファン114から送風された外気と熱交換される。
The heat exchanger 113 heats and pressurizes the high-pressure, high-temperature gaseous refrigerant with the outside air to condense the high-pressure, high-temperature gaseous refrigerant into a high-pressure, medium-temperature liquid refrigerant.
The heat exchanger 113 is air-cooled by the heat radiation fan 114 , and the heat exchanger 113 exchanges heat between the high-pressure, high-temperature gaseous refrigerant and the outside air blown from the heat radiation fan 114 .
 熱交換器113により熱交換された高圧・中温の液体冷媒は、液冷媒配管118を介して膨張弁111へ送られる。
 放熱用ファン114はステータ10の熱負荷の状態に応じて制御装置117により制御され、熱交換器113により冷却される冷媒の温度を調節する。
 熱交換器113は、冷媒回路内を循環する冷媒の漏洩時に、冷媒を蓄える貯留部としても機能する。
The high-pressure medium-temperature liquid refrigerant heat-exchanged by the heat exchanger 113 is sent to the expansion valve 111 through the liquid refrigerant pipe 118 .
Radiation fan 114 is controlled by control device 117 according to the state of the heat load of stator 10 to adjust the temperature of the refrigerant cooled by heat exchanger 113 .
The heat exchanger 113 also functions as a reservoir that stores refrigerant when the refrigerant circulating in the refrigerant circuit leaks.
 熱交換器113は放熱用ファン114による空冷に限られるものではなく、圧縮機112からの高圧・高圧の気体冷媒を冷却用の冷媒と熱交換して冷却する熱交換器でもよく、両者を合わせ持った熱交換器でもよい。 The heat exchanger 113 is not limited to air-cooling by the heat radiation fan 114, but may be a heat exchanger that cools the high-pressure gas refrigerant from the compressor 112 by exchanging heat with the refrigerant for cooling. You can also use a heat exchanger you have.
 次に、実施の形態6に係る回転電機の冷却システム100の動作について説明する。
 膨張弁111から、所定の温度及び流量に設定された低圧・低温の液体冷媒が、液冷媒配管118を介して回転電機1の供給孔51へ吐出され、ステータ10の一連の冷却機構へ送り出される。
Next, the operation of the rotating electric machine cooling system 100 according to the sixth embodiment will be described.
A low-pressure, low-temperature liquid refrigerant set to a predetermined temperature and flow rate is discharged from the expansion valve 111 to the supply hole 51 of the rotary electric machine 1 through the liquid refrigerant pipe 118 and delivered to a series of cooling mechanisms of the stator 10 . .
 ステータ10の一連の冷却機構へ送り出された低圧・低温の液体冷媒は、ステータ10内の発熱するステータコア11及びコイル12を冷却し、蒸発しながら排出孔32から低圧・高温の気体冷媒として排出され、ガス冷媒配管119及び流路切替装置116を介してアキュムレータ57に回収される。
 ステータ10内の発熱するコイル12は低圧・低温の液体冷媒と接触することにより冷却されるとともに、液体冷媒が蒸発することによる気化潜熱により、さらに冷却が促進される。
The low-pressure, low-temperature liquid refrigerant sent to a series of cooling mechanisms of the stator 10 cools the heat-generating stator core 11 and coil 12 in the stator 10, and is discharged as a low-pressure, high-temperature gaseous refrigerant from the discharge hole 32 while evaporating. , the gas refrigerant pipe 119 and the channel switching device 116 are collected in the accumulator 57 .
The heat-generating coil 12 in the stator 10 is cooled by contact with the low-pressure, low-temperature liquid coolant, and the latent heat of vaporization due to the evaporation of the liquid coolant further promotes cooling.
 アキュムレータ57に回収された低圧・高温の気体冷媒は、圧縮機112により吸引され、昇温昇圧させて高圧・高温の気体冷媒として熱交換器113へ吐出される。
 熱交換器113へ送られた高圧・高温の気体冷媒は、熱交換器102により放熱されることで凝縮され、温度が低下させられた高圧・中温の液体冷媒として膨張弁111へ導かれ、この動作を連続的に繰り返される。
The low-pressure, high-temperature gaseous refrigerant recovered by the accumulator 57 is sucked by the compressor 112 , raised in temperature, and discharged to the heat exchanger 113 as a high-pressure, high-temperature gaseous refrigerant.
The high-pressure, high-temperature gaseous refrigerant sent to the heat exchanger 113 is condensed by radiating heat from the heat exchanger 102, and is led to the expansion valve 111 as a high-pressure, medium-temperature liquid refrigerant whose temperature has been lowered. The action is repeated continuously.
 実施の形態8に係る回転電機の冷却システム100は、低圧・低温の液体冷媒を回転電機1におけるステータ10の一連の冷却機構に循環させることにより、回転電機1におけるステータ10のコイル12が低圧・低温の液体冷媒に接することにより冷却され、液体冷媒が蒸発する際の気化潜熱により、さらに冷却が促進される。
 これにより、回転電機1におけるステータ10が冷却され、過熱による回転電機1の動作停止を抑制できる。
A cooling system 100 for a rotating electrical machine according to Embodiment 8 circulates a low-pressure, low-temperature liquid coolant through a series of cooling mechanisms for a stator 10 in a rotating electrical machine 1, thereby cooling a coil 12 of a stator 10 in a rotating electrical machine 1 at a low pressure and a low temperature. It is cooled by coming into contact with the low-temperature liquid coolant, and the latent heat of vaporization when the liquid coolant evaporates further promotes the cooling.
As a result, the stator 10 in the rotating electrical machine 1 is cooled, and the stopping of operation of the rotating electrical machine 1 due to overheating can be suppressed.
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
 本開示に係る回転電機は航空機用駆動モータに好適である。 A rotating electric machine according to the present disclosure is suitable for an aircraft drive motor.
 1 回転電機、10 ステータ、11 ステータコア、11a ティース、11b スロット、12 コイル、13 絶縁部材、14、15 ウェッジ、16 一端側の周方向接続体、16a 一端側の周方向接続部、16b 供給孔、16c 排出孔、17 他端側の周方向接続体、17a 他端側の周方向接続部、18 樹脂、19、19(1)~19(n) 軸方向流路、20 インナーロータ、21 インナーロータコア、22 インナー側永久磁石、30 シャフト、40 アウターロータ、41 アウターロータコア、42 アウター側永久磁石、50 固定子用保持フレーム、60 回転子用保持フレーム、100 冷却システム、101 ポンプ、102、113 熱交換器、103、114 放熱用ファン、111 膨張弁、112 圧縮機、115 アキュムレータ。 1 rotating electric machine, 10 stator, 11 stator core, 11a tooth, 11b slot, 12 coil, 13 insulating member, 14, 15 wedge, 16 circumferential connector on one end side, 16a circumferential connector on one end side, 16b supply hole, 16c discharge hole, 17 peripheral connector on the other end side, 17a peripheral connector on the other end side, 18 resin, 19, 19 (1) to 19 (n) axial flow path, 20 inner rotor, 21 inner rotor core , 22 inner permanent magnet, 30 shaft, 40 outer rotor, 41 outer rotor core, 42 outer permanent magnet, 50 stator holding frame, 60 rotor holding frame, 100 cooling system, 101 pump, 102, 113 heat exchange vessel, 103, 114 heat dissipation fan, 111 expansion valve, 112 compressor, 115 accumulator.

Claims (15)

  1.  それぞれが、スロットにコイルを収容してなるステータのスロットそれぞれの内部を、前記ステータの一端と他端との間を冷媒が流れる第1の軸方向流路から第3の軸方向流路とされ、
     前記ステータが、
     一端側に配置され、前記第1の軸方向流路の一端と第2の軸方向流路の一端とを接続し、かつ、前記第1の軸方向流路の一端と前記第3の軸方向流路の一端とを接続せず、前記第1の軸方向流路の一端と前記第2の軸方向流路の一端との間を冷媒が流れる周方向流路を形成する一端側の周方向接続部と、
     他端側に配置され、前記第2の軸方向流路の他端と前記第3の軸方向流路の他端とを接続し、かつ、前記第1の軸方向流路の他端と前記第3の軸方向流路の他端とを接続せず、前記第2の軸方向流路の他端と前記第3の軸方向流路の他端との間を冷媒が流れる周方向流路を形成する他端側の周方向接続部とを備え、
     前記第1の軸方向流路と前記一端側の周方向接続部と前記第2の軸方向流路と前記他端側の周方向接続部と前記第3の軸方向流路とが直列に接続された回転電機。
    Each of the slots of the stator, each of which contains a coil, has a first axial flow path to a third axial flow path through which the coolant flows between one end and the other end of the stator. ,
    The stator
    arranged on one end side, connecting one end of the first axial flow channel and one end of the second axial flow channel, and connecting one end of the first axial flow channel and the third axial flow channel; Circumferential direction of the one end side forming a circumferential flow channel in which the coolant flows between one end of the first axial flow channel and one end of the second axial flow channel without being connected to one end of the flow channel a connection;
    arranged on the other end side, connecting the other end of the second axial flow path and the other end of the third axial flow path, and the other end of the first axial flow path and the Circumferential flow path that is not connected to the other end of the third axial flow path and allows coolant to flow between the other end of the second axial flow path and the other end of the third axial flow path and a circumferential connection portion on the other end side that forms a
    The first axial flow path, the circumferential connection portion on the one end side, the second axial flow path, the circumferential connection portion on the other end side, and the third axial flow path are connected in series. Rotating electric machine.
  2.  前記第1の軸方向流路から前記第3の軸方向流路は、周方向に沿って順に隣接して配置された請求項1に記載の回転電機。 The rotating electric machine according to claim 1, wherein the first axial flow path to the third axial flow path are arranged adjacent to each other in order along the circumferential direction.
  3.  前記ステータは、外周から中心に向けて延びた複数のティースが環状に配置されたステータコアと、前記複数のティースそれぞれに巻回され、前記スロットに収容されたコイルと、前記複数のティースそれぞれとコイルの間に介在された絶縁部材と、前記スロットに収容された隣接するコイル間における前記スロットの開口を閉鎖するウェッジとを有し、
     前記第1の軸方向流路から前記第3の軸方向流路はそれぞれ、前記スロットのそれぞれに収容された隣接するコイルと前記ウェッジで囲まれた空間である請求項1又は請求項2に記載の回転電機。
    The stator includes a stator core in which a plurality of teeth extending from the outer circumference toward the center are arranged in a ring, coils wound around the plurality of teeth and accommodated in the slots, and the plurality of teeth and the coils. an insulating member interposed between and a wedge closing the opening of the slot between adjacent coils received in the slot;
    3. A space surrounded by adjacent coils and wedges housed in respective slots, respectively, from the first axial flow path to the third axial flow path. rotating electric machine.
  4.  前記一端側の周方向接続部は、前記コイルにおける前記ティースの一端側から突出した部分を囲い、前記第1の軸方向流路の一端と前記第2の軸方向流路の一端と連通する空間を含む樹脂で構成され、
     他端側の周方向接続部は、前記コイルにおける前記ティースの他端側から突出した部分を囲い、前記第2の軸方向流路の他端と前記第3の軸方向流路の他端と連通する空間を含む樹脂で構成された請求項3に記載の回転電機。
    The circumferential connecting portion on the one end side surrounds a portion of the coil that protrudes from the one end side of the teeth, and is a space that communicates with one end of the first axial flow path and one end of the second axial flow path. Consists of a resin containing
    A circumferential connecting portion on the other end side surrounds a portion of the coil that protrudes from the other end side of the tooth, and connects the other end of the second axial flow path and the other end of the third axial flow path. 4. The rotating electric machine according to claim 3, which is made of resin including spaces that communicate with each other.
  5.  前記絶縁部材が、両端開口の筒形状をなし、前記ティースの両端面に密着し、前記ティースの両端面を覆う両端面部と、前記ティースの側面と前記コイルとの間に前記軸方向流路と連通する冷媒路を形成する解放空間を有する両側面部を具備する請求項3又は請求項4に記載の回転電機。 The insulating member has a cylindrical shape with both ends opened, is in close contact with both end surfaces of the teeth, covers both end surfaces of the teeth, and has the axial flow path between the side surfaces of the teeth and the coil. 5. The rotary electric machine according to claim 3, comprising both side portions having open spaces forming communicating coolant paths.
  6.  それぞれが、スロットにコイルを収容してなるステータのスロットそれぞれの内部を、前記ステータの一端と他端との間を冷媒が流れる軸方向流路を複数有し、前記複数の軸方向流路を隣接する2つの軸方向流路を一つの軸方向単位流路とされ、
     前記ステータが、
     前記一端側に配置され、それぞれがそれぞれの前記軸方向単位流路における2つの軸方向流路の一端同士を接続し、前記軸方向単位流路における2つの軸方向流路の一端との間を冷媒が流れる周方向流路を形成する複数の一端側の周方向接続部を有する一端側の周方向接続体と、
     前記他端側に配置され、それぞれがそれぞれの隣接された2つの前記軸方向単位流路における一方の軸方向単位流路の軸方向流路の他端と、当該軸方向流路と隣り合う他方の前記軸方向単位流路の軸方向流路の他端とを接続し、当該隣り合う2つの軸方向流路の他端との間を冷媒が流れる周方向流路を形成する複数の他端側の周方向接続部を有する他端側の周方向接続体とを備えた回転電機。
    each having a plurality of axial flow paths through which a coolant flows between one end and the other end of the stator inside each slot of the stator containing a coil in the slots, and the plurality of axial flow paths Two adjacent axial flow paths are defined as one axial unit flow path,
    The stator
    arranged on the one end side, each connecting one end of two axial flow paths in each of the axial unit flow paths, and one end of the two axial flow paths in the axial unit flow path; a one-end-side circumferential connector having a plurality of one-end-side circumferential connection portions that form a circumferential flow path through which a coolant flows;
    The other end of one of the axial unit channels of the two adjacent axial unit channels arranged on the other end side and the other adjacent to the axial channel a plurality of other ends connecting the other ends of the axial flow passages of the axial unit flow passages and forming circumferential flow passages in which the refrigerant flows between the other ends of the two adjacent axial flow passages and a circumferential connector on the other end that has a circumferential connector on the side.
  7.  前記ステータのスロットの全てに対して前記軸方向流路を有し、
     前記一端側の周方向接続体及び他端側の周方向接続体は前記軸方向流路全てに対応し、
     前記一端側の周方向接続体は、隣接するスロットにおける一方の前記軸方向流路に連通する供給孔と、他方の前記軸方向流路に連通する排出孔を有し、
     前記一端側の周方向接続体及び前記他端側の周方向接続体により、前記一方の軸方向流路が連通する前記供給孔から前記他方の軸方向流路が連通する前記排出孔まで全ての前記軸方向流路を連通させる一連の冷却機構となす請求項6に記載の回転電機。
    having said axial flow passage for all of said stator slots;
    The circumferential connector on the one end side and the circumferential connector on the other end side correspond to all of the axial flow paths,
    the circumferential connector on the one end side has a supply hole communicating with one of the axial flow passages in the adjacent slot and a discharge hole communicating with the other axial flow passage;
    By means of the circumferential connector on the one end side and the circumferential connector on the other end side, all the parts from the supply hole with which the one axial flow path communicates to the discharge hole with which the other axial flow path communicates are provided. 7. The electric rotating machine according to claim 6, comprising a series of cooling mechanisms communicating with the axial flow path.
  8.  前記ステータのスロットの全てに対して前記軸方向流路を有し、
     前記一端側の周方向接続体及び他端側の周方向接続体は前記軸方向流路全てに対応し、
     前記一端側の周方向接続体は、一つの前記一端側の周方向接続部に連通する供給孔と、前記一つの一端側の周方向接続部と180度対象の位置に設けられた前記一端側の周方向接続部に連通する排出孔を有し、
     前記一端側の周方向接続体及び前記他端側の周方向接続体により、前記一つの一端側の周方向接続部が連通する前記供給孔から、180度対象の位置に設けられた前記一端側の周方向接続部に連通する前記排出孔まで全ての前記軸方向流路に対して2つの冷媒流路とする2つの一連の冷却機構となす請求項6に記載の回転電機。
    having said axial flow passage for all of said stator slots;
    The circumferential connector on the one end side and the circumferential connector on the other end side correspond to all of the axial flow paths,
    The one end side circumferential connector includes a supply hole that communicates with one of the one end side circumferential connection portions, and the one end side provided at a position 180 degrees symmetrical with the one one end side circumferential direction connection portion. has a discharge hole communicating with the circumferential connection part of
    The one end side provided at a position symmetrical by 180 degrees from the supply hole with which the one end side circumferential connection portion communicates with the one end side circumferential connection body and the other end side circumferential direction connection body. 7. The electric rotating machine according to claim 6, wherein two series of cooling mechanisms are provided in which two coolant flow paths are provided for all of said axial flow paths up to said discharge hole communicating with said circumferential connecting portion.
  9.  前記ステータのスロットの全てに対して前記軸方向流路を有し、前記全ての軸方向流路を複数のグルーブに分け、
     前記一端側の周方向接続体及び他端側の周方向接続体は前記軸方向流路全てに対応し、
     前記一端側の周方向接続体は、グルーブ毎に一つの軸方向流路に連通する供給孔と、一つの軸方向流路に連通する排出孔を有し、
     前記一端側の周方向接続体及び前記他端側の周方向接続体により、グルーブ毎に前記供給孔から前記排出孔までグループ内の前記軸方向流路を連通する冷媒流路とし、複数の独立した一連の冷却機構となす請求項6に記載の回転電機。
    having said axial flow passages for all of said slots of said stator, and dividing said all axial flow passages into a plurality of grooves;
    The circumferential connector on the one end side and the circumferential connector on the other end side correspond to all of the axial flow paths,
    The circumferential connector on the one end side has a supply hole communicating with one axial flow path and a discharge hole communicating with one axial flow path for each groove,
    The circumferential connecting member on the one end side and the circumferential connecting member on the other end side form a coolant flow channel that communicates the axial flow channels in each groove from the supply hole to the discharge hole in each groove, thereby forming a plurality of independent coolant flow paths. 7. The rotary electric machine according to claim 6, comprising a series of cooling mechanisms.
  10.  前記ステータは、外周から中心に向けて延びた複数のティースが環状に配置されたステータコアと、前記複数のティースそれぞれに巻回され、前記スロットに収容されたコイルと、前記複数のティースそれぞれとコイルの間に介在された絶縁部材と、前記スロットに収容された隣接するコイル間における前記スロットの開口を閉鎖するウェッジとを有し、
     前記軸方向流路はそれぞれ、前記スロットのそれぞれに収容された隣接するコイルと前記ウェッジで囲まれた空間である請求項5から請求項9のいずれか1項に記載の回転電機。
    The stator includes a stator core in which a plurality of teeth extending from the outer circumference toward the center are arranged in a ring, coils wound around the plurality of teeth and accommodated in the slots, and the plurality of teeth and the coils. an insulating member interposed between and a wedge closing the opening of the slot between adjacent coils received in the slot;
    The rotating electric machine according to any one of claims 5 to 9, wherein each of said axial flow paths is a space surrounded by adjacent coils and said wedges accommodated in each of said slots.
  11.  前記一端側の周方向接続体における複数の一端側の周方向接続部はそれぞれ、前記コイルにおける前記ティースの一端側から突出した部分を囲い、前記ティースの両側に位置する前記スロットと連通する空間を含む樹脂で構成され、
     前記他端側の周方向接続体における複数の他端側の周方向接続部はそれぞれ、前記コイルにおける前記ティースの他端側から突出した部分を囲い、前記ティースの両側に位置する前記スロットと連通する空間を含む樹脂で構成された請求項10に記載の回転電機。
    Each of the plurality of one-end-side circumferential connecting portions of the one-end-side circumferential connecting body defines a space that surrounds a portion of the coil that protrudes from one end side of the teeth and that communicates with the slots located on both sides of the teeth. Composed of a resin containing
    Each of the plurality of other-end-side circumferential connection portions of the other-end-side circumferential connection body surrounds a portion of the coil protruding from the other-end side of the teeth and communicates with the slots located on both sides of the teeth. 11. The electric rotating machine according to claim 10, which is made of a resin that includes a space that
  12.  前記絶縁部材が、両端開口の筒形状をなし、前記ティースの両側面に密着し、前記ティースの両端面を覆う両端面部と、前記ティースの側面と前記コイルとの間に前記軸方向流路と連通する冷媒路を形成する解放空間を有する両側面部を具備する請求項10又は請求項11に記載の回転電機。 The insulating member has a cylindrical shape with both ends opened, and is in close contact with both side surfaces of the teeth, covering both side surfaces of the teeth, and the axial flow path between the side surfaces of the teeth and the coil. 12. The electric rotating machine according to claim 10, comprising both side portions having open spaces forming communicating coolant paths.
  13.  前記ステータの内側に、外周面が前記ステータの内周面と対向して配置されるインナーロータと、
     前記ステータの外側に、内周面が前記ステータの外周面と対向して配置されるアウターロータとを備え請求項1から請求項12のいずれか1項に記載の回転電機。
    an inner rotor having an outer peripheral surface facing the inner peripheral surface of the stator inside the stator;
    13. The electric rotating machine according to any one of claims 1 to 12, further comprising an outer rotor outside the stator, the inner peripheral surface of which faces the outer peripheral surface of the stator.
  14.   請求項1から請求項13のいずれか1項に記載の回転電機における複数の軸方向流路と複数の周方向接続部が接続された一連の冷却機構に対して、前記一連の冷却機構における冷媒が供給される軸方向流路に冷媒を供給し、前記一連の冷却機構における冷媒が排出される軸方向流路から冷媒を排出させ、前記一連の冷却機構に冷媒を循環させる回転電機の冷却システムにおいて、
     冷却された冷媒を昇圧し、昇圧した冷媒を前記一連の冷却機構へ送り出すポンプと、前記一連の冷却機構から排出される冷媒を熱交換して冷却し、冷却された冷媒が前記ポンプに循環される熱交換器と、
     を備えた回転電機の冷却システム。
    14. For a series of cooling mechanisms in which a plurality of axial flow paths and a plurality of circumferential connecting portions are connected in the rotating electric machine according to any one of claims 1 to 13, a refrigerant in the series of cooling mechanisms A cooling system for a rotary electric machine that supplies a coolant to an axial flow path to which is supplied, discharges the coolant from an axial flow path to which the coolant is discharged in the series of cooling mechanisms, and circulates the coolant through the series of cooling mechanisms. in
    A pump that pressurizes the cooled refrigerant and sends the pressurized refrigerant to the series of cooling mechanisms, heat-exchanges the refrigerant discharged from the series of cooling mechanisms, cools the refrigerant, and circulates the cooled refrigerant to the pump. a heat exchanger that
    A cooling system for a rotating electric machine.
  15.  請求項1から請求項13のいずれか1項に記載の回転電機における複数の軸方向流路と複数の周方向接続部が接続された一連の冷却機構に対して、前記一連の冷却機構における冷媒が供給される軸方向流路に冷媒を供給し、前記一連の冷却機構における冷媒が排出される軸方向流路から冷媒を排出させ、前記一連の冷却機構に冷媒を循環させる回転電機の冷却システムにおいて、
     高圧・中温の液体冷媒を膨張させて低圧・低温の液体冷媒として前記一連の冷却機構へ送る膨張弁と、前記一連の冷却機構から排出される低圧・高温の気体冷媒を貯留するアキュムレータと、前記アキュムレータを介して前記一連の冷却機構から排出される低圧・高温の気体冷媒を吸引し、当該吸引した低圧・高温の気体冷媒を圧縮して高圧・高温の気体冷媒を吐出する圧縮機と、前記圧縮機から吐出された高圧・高温の気体冷媒を熱交換して前記高圧・中温の液体冷媒として前記膨張弁へ循環される熱交換器と、
     を備えた回転電機の冷却システム。
    14. For a series of cooling mechanisms in which a plurality of axial flow paths and a plurality of circumferential connecting portions are connected in the rotating electric machine according to any one of claims 1 to 13, a refrigerant in the series of cooling mechanisms A cooling system for a rotary electric machine that supplies a coolant to an axial flow path to which is supplied, discharges the coolant from an axial flow path to which the coolant is discharged in the series of cooling mechanisms, and circulates the coolant through the series of cooling mechanisms. in
    an expansion valve that expands a high-pressure, medium-temperature liquid refrigerant and sends it to the series of cooling mechanisms as a low-pressure, low-temperature liquid refrigerant; an accumulator that stores the low-pressure, high-temperature gaseous refrigerant discharged from the series of cooling mechanisms; a compressor that sucks the low-pressure, high-temperature gaseous refrigerant discharged from the series of cooling mechanisms via an accumulator, compresses the sucked low-pressure, high-temperature gaseous refrigerant, and discharges the high-pressure, high-temperature gaseous refrigerant; a heat exchanger that exchanges heat with the high-pressure, high-temperature gaseous refrigerant discharged from the compressor and circulates the high-pressure, medium-temperature liquid refrigerant to the expansion valve;
    A cooling system for a rotating electric machine.
PCT/JP2021/001745 2021-01-20 2021-01-20 Rotary electrical device and cooling system for rotary electrical device WO2022157839A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022517717A JP7150219B1 (en) 2021-01-20 2021-01-20 Rotating electric machine and cooling system for rotating electric machine
PCT/JP2021/001745 WO2022157839A1 (en) 2021-01-20 2021-01-20 Rotary electrical device and cooling system for rotary electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001745 WO2022157839A1 (en) 2021-01-20 2021-01-20 Rotary electrical device and cooling system for rotary electrical device

Publications (1)

Publication Number Publication Date
WO2022157839A1 true WO2022157839A1 (en) 2022-07-28

Family

ID=82549626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001745 WO2022157839A1 (en) 2021-01-20 2021-01-20 Rotary electrical device and cooling system for rotary electrical device

Country Status (2)

Country Link
JP (1) JP7150219B1 (en)
WO (1) WO2022157839A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093204U (en) * 1973-12-27 1975-08-06
JP2001077571A (en) * 1999-09-01 2001-03-23 Yaskawa Electric Corp Cooling apparatus
JP2004129396A (en) * 2002-10-03 2004-04-22 Nissan Motor Co Ltd Stator structure of double-spindle multilayer motor
JP2008011641A (en) * 2006-06-29 2008-01-17 Toshiba Corp Rotating electric machine
JP2010166717A (en) * 2009-01-16 2010-07-29 Nissan Motor Co Ltd Cooling structure for multilayered motor
JP2011241750A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Hermetic compressor
US20160118857A1 (en) * 2014-10-28 2016-04-28 Hyundai Motor Company Cooling unit of drive motor
JP2018133983A (en) * 2017-02-13 2018-08-23 株式会社三井ハイテック Manufacturing method of stator laminated iron core, and stator laminated iron core
JP2020162338A (en) * 2019-03-27 2020-10-01 アイシン・エィ・ダブリュ株式会社 Rotary electric machine
JP2020167764A (en) * 2019-03-28 2020-10-08 日立金属株式会社 Movable coil type voice coil motor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268901A (en) * 1975-12-05 1977-06-08 Toshiba Corp Rotor of rotary electric machine
JPS55162841A (en) * 1979-06-05 1980-12-18 Toshiba Corp Rotary electric machine
JP3603784B2 (en) * 2000-12-14 2004-12-22 日産自動車株式会社 Rotating electric machine
JP3741031B2 (en) * 2001-11-28 2006-02-01 日産自動車株式会社 Electric motor stator structure
US8395287B2 (en) * 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
JP5552688B2 (en) * 2011-01-28 2014-07-16 トヨタ自動車株式会社 Motor cooling device
US8405262B1 (en) * 2011-11-30 2013-03-26 Kollmorgen Corporation Cooling of electric motor with coolant pipe and conduction plates or cups
US9831746B2 (en) * 2014-10-28 2017-11-28 Ingersoll-Rand Company Cooling system for electric rotor machine with symmetrical stator passages
CN106026449B (en) * 2016-05-18 2018-05-08 中车株洲电机有限公司 External rotor electric machine cooling device
JP7251273B2 (en) * 2019-04-01 2023-04-04 マツダ株式会社 Rotating electric machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093204U (en) * 1973-12-27 1975-08-06
JP2001077571A (en) * 1999-09-01 2001-03-23 Yaskawa Electric Corp Cooling apparatus
JP2004129396A (en) * 2002-10-03 2004-04-22 Nissan Motor Co Ltd Stator structure of double-spindle multilayer motor
JP2008011641A (en) * 2006-06-29 2008-01-17 Toshiba Corp Rotating electric machine
JP2010166717A (en) * 2009-01-16 2010-07-29 Nissan Motor Co Ltd Cooling structure for multilayered motor
JP2011241750A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Hermetic compressor
US20160118857A1 (en) * 2014-10-28 2016-04-28 Hyundai Motor Company Cooling unit of drive motor
JP2018133983A (en) * 2017-02-13 2018-08-23 株式会社三井ハイテック Manufacturing method of stator laminated iron core, and stator laminated iron core
JP2020162338A (en) * 2019-03-27 2020-10-01 アイシン・エィ・ダブリュ株式会社 Rotary electric machine
JP2020167764A (en) * 2019-03-28 2020-10-08 日立金属株式会社 Movable coil type voice coil motor

Also Published As

Publication number Publication date
JP7150219B1 (en) 2022-10-07
JPWO2022157839A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
CN106104989B (en) Machine cooling system
US20180337572A1 (en) Rotary electric machine
US20130113311A1 (en) Internal cooling of magnetic core for electric machine
US9696064B2 (en) Thermo-magnetism cycle apparatus
JP4066982B2 (en) Stator cooling structure for disk-type rotating electrical machine
CN115066542A (en) Device for treating a fluid in an at least partially electrically driven vehicle
JP6270213B2 (en) Electric motor
JP2016506235A (en) Axial motor shoe cooling gap
US20180013326A1 (en) Integral fluid cooling of electrical machine
JP2013042588A (en) Electric motor
US10714989B2 (en) Claw pole type motor and home appliance including same
US10903706B2 (en) Rotor of rotary electric machine
JP6402739B2 (en) Rotating electric machine
WO2022157839A1 (en) Rotary electrical device and cooling system for rotary electrical device
JP7276358B2 (en) Rotating electric machine and cooling structure for rotating electric machine
KR20200102253A (en) Motor
WO2020229399A1 (en) Stator for axial flux machine
JP2023086910A (en) Rotary electric machine and cooling structure of rotary electric machine
CN111247724A (en) Electric machine with cooling device comprising partially subdivided channels
WO2019198138A1 (en) Electric motor, compressor, and air conditioning device
CN115662722A (en) Dewar isolation wall excitation structure and method and magnetic conduction intermediate piece
CN115315882A (en) Stator and rotating electrical machine
CN115833453B (en) Heat dissipation formula generator device
JP6116365B2 (en) Liquid cooling motor
KR20230102312A (en) Rotor for heat improvement and motor including same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517717

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920953

Country of ref document: EP

Kind code of ref document: A1