WO2022157837A1 - Power transmission device and power transfer system - Google Patents

Power transmission device and power transfer system Download PDF

Info

Publication number
WO2022157837A1
WO2022157837A1 PCT/JP2021/001730 JP2021001730W WO2022157837A1 WO 2022157837 A1 WO2022157837 A1 WO 2022157837A1 JP 2021001730 W JP2021001730 W JP 2021001730W WO 2022157837 A1 WO2022157837 A1 WO 2022157837A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
coil
power transmission
sensor coil
coils
Prior art date
Application number
PCT/JP2021/001730
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 近藤
明 後谷
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2021/001730 priority Critical patent/WO2022157837A1/en
Publication of WO2022157837A1 publication Critical patent/WO2022157837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Definitions

  • the present disclosure relates to a power transmission device and a power transmission system.
  • Wireless power transmission technology that transmits power wirelessly is attracting attention.
  • Wireless power transmission technology can wirelessly transmit power from a power transmission device to a power reception device, so it is expected to be applied to various products such as transportation equipment such as trains and electric vehicles, home appliances, wireless communication equipment, and toys.
  • Wireless power transmission technology uses a power transmitting coil and a power receiving coil that are coupled by magnetic flux to transmit power.
  • Patent Document 1 describes a detection device that determines the presence or absence of a foreign object that generates heat due to magnetic flux from changes in electrical parameters of a magnetic coupling element, which is a detection coil, or a circuit that includes this magnetic coupling element.
  • a detection device that determines the presence or absence of a foreign object that generates heat due to magnetic flux from changes in electrical parameters of a magnetic coupling element, which is a detection coil, or a circuit that includes this magnetic coupling element.
  • a large number of detection coils of the same size are arranged in regions of two or more layers so that a dead region, which is a region in which a foreign object cannot be detected, does not occur between adjacent detection coils.
  • a foreign object detection device is installed, for example, on a power transmission coil inside a power transmission device installed on a road surface.
  • the magnetic flux density distribution based on the magnetic flux generated from the power transmission coil is not uniform around the power transmission coil. That is, there are positions with high magnetic flux density and positions with low magnetic flux density around the power transmission coil. For this reason, using a large number of detector coils of the same size as in the detector described in Patent Document 1 may not be preferable.
  • the present disclosure has been made in view of the above problems, and aims to prevent sensor coil burnout, etc., while maintaining high detection performance in foreign object detection in wireless power transmission.
  • a power transmission device includes: a power transmission coil configured by winding a conductor wire and having an opening; a magnetic body facing the power transmission coil; a foreign object detection device,
  • the foreign matter detection device includes a plurality of sensor coils and a detection unit that detects a foreign matter present in a foreign matter detection area based on signals output from the plurality of sensor coils,
  • the plurality of sensor coils have a first sensor opening, and are arranged in the opening when viewed from a first direction in which the coil axis of the power transmission coil extends, and a plurality of first sensor coils facing the magnetic body.
  • the power transmission device with the above configuration, it is possible to prevent burnout of the sensor coil, etc., while maintaining high detection performance in foreign object detection in wireless power transmission.
  • FIG. 1 is a configuration diagram of a detection unit included in the foreign object detection device according to Embodiment 1.
  • FIG. FIG. 4 is a diagram showing an equivalent circuit of a resonance circuit included in the detection coil unit according to Embodiment 1;
  • 1 is a plan view of a power transmission coil unit according to Embodiment 1.
  • FIG. 4 is a diagram showing the correspondence relationship among the magnetic flux density, the opening area, and the number of turns according to the first embodiment
  • Plan view of detection coil unit according to Embodiment 2 Schematic diagram of cross section along line XX in FIG.
  • FIG. 10 is a diagram showing a correspondence relationship between magnetic flux density, opening area, and number of turns according to Embodiment 2
  • Schematic cross-sectional view of a detection coil unit according to Embodiment 3 Schematic cross-sectional view of a detection coil unit according to a fourth embodiment
  • the power transmission system according to the present embodiment can be used to charge secondary batteries of various devices such as EVs (Electric Vehicles), mobile devices such as smartphones, and industrial devices.
  • EVs Electric Vehicles
  • mobile devices such as smartphones
  • industrial devices A case where the power transmission system charges an EV storage battery will be exemplified below.
  • FIG. 1 is a diagram showing a schematic configuration of a power transmission system 1000 used for charging a storage battery 500 provided in an electric vehicle 700.
  • the electric vehicle 700 runs using a motor driven by electric power charged in a storage battery 500 such as a lithium ion battery or a lead storage battery as a power source.
  • a storage battery 500 such as a lithium ion battery or a lead storage battery as a power source.
  • the power transmission system 1000 is a system that wirelessly transmits power from the power transmission device 200 to the power reception device 300 by magnetic coupling.
  • the power transmission system 1000 includes a power transmission device 200 that wirelessly transmits power from an AC or DC commercial power supply 400 to an electric vehicle 700, and a power reception device 300 that receives the power transmitted by the power transmission device 200 and charges a storage battery 500.
  • commercial power supply 400 is an AC power supply.
  • the power transmission device 200 is a device that wirelessly transmits power to the power reception device 300 by magnetic coupling.
  • the power transmission device 200 includes a foreign object detection device 100 that detects foreign objects, a power transmission coil unit 210 that transmits AC power to the electric vehicle 700 , and a power supply device 220 that supplies AC power to the power transmission coil unit 210 .
  • foreign object detection device 100 is arranged on power transmission coil unit 210 .
  • the vertically upward axis is the Z-axis
  • the axis orthogonal to the Z-axis is the X-axis
  • the axis orthogonal to the Z-axis and the X-axis is the Y-axis.
  • a detailed description of the foreign object detection device 100 will be given later.
  • the power transmission coil unit 210 is supplied with AC power from a power supply device 220, and has a power transmission coil 211 that induces an alternating magnetic flux ⁇ . and a magnetic plate 212 for suppressing.
  • the power transmission coil 211 is configured by spirally winding a conductive wire on a magnetic plate 212 .
  • the power transmission coil 211 and the capacitors provided at both ends of the power transmission coil 211 constitute a resonance circuit, and an alternating magnetic flux ⁇ is induced by an alternating current flowing along with the application of an alternating voltage.
  • the magnetic plate 212 has a plate shape with a hole in the center and is made of a magnetic material.
  • the magnetic plate 212 is, for example, a plate-like member made of ferrite, which is a composite oxide of iron oxide and metal.
  • the magnetic plate 212 may be composed of an assembly of a plurality of individual pieces of magnetic material, and the plurality of individual pieces of magnetic material are arranged in a frame shape and formed to have an opening in the central portion.
  • the power supply device 220 includes a power factor correction circuit that improves the power factor of the commercial AC power supplied by the commercial power supply 400 and an inverter circuit that generates the AC power to be supplied to the power transmission coil 211 .
  • the power factor correction circuit rectifies and boosts AC power generated by commercial power supply 400, and converts it into DC power having a predetermined voltage value.
  • the inverter circuit converts DC power generated by power conversion by the power factor correction circuit into AC power having a predetermined frequency.
  • Power transmission device 200 is fixed, for example, to the floor of a parking lot.
  • the power receiving device 300 is a device that wirelessly receives power from the power transmitting device 200 by magnetic coupling.
  • the power receiving device 300 includes a power receiving coil unit 310 that receives the AC power transmitted by the power transmitting device 200, and a rectifier circuit 320 that converts the AC power supplied from the power receiving coil unit 310 into DC power and supplies the DC power to the storage battery 500. Prepare.
  • the power receiving coil unit 310 includes a power receiving coil 311 that induces an electromotive force in response to a change in the alternating magnetic flux ⁇ induced by the power transmitting coil 211, and a magnetic force generated by the power receiving coil 311 that passes through the magnetic force. and a magnetic plate 312 that suppresses loss.
  • Power receiving coil 311 and capacitors provided at both ends of power receiving coil 311 form a resonance circuit.
  • Power receiving coil 311 faces power transmitting coil 211 while electric vehicle 700 is stopped at a preset position.
  • the power transmission coil 211 receives power from the power supply device 220 and induces an alternating magnetic flux ⁇
  • the alternating magnetic flux ⁇ interlinks with the power receiving coil 311 , thereby inducing an induced electromotive force in the power receiving coil 311 .
  • the magnetic plate 312 is a plate-shaped member with a hole in the center and is made of a magnetic material.
  • the magnetic plate 312 is, for example, a plate-like member made of ferrite, which is a composite oxide of iron oxide and metal.
  • the magnetic plate 312 may be composed of an assembly of a plurality of individual pieces of magnetic material, and the plurality of individual pieces of magnetic material are arranged in a frame shape and formed to have an opening in the central portion.
  • the rectifier circuit 320 rectifies the electromotive force induced in the receiving coil 311 to generate DC power.
  • the DC power generated by the rectifier circuit 320 is supplied to the storage battery 500 .
  • Power receiving device 300 may include a charging circuit between rectifier circuit 320 and storage battery 500 that converts the DC power supplied from rectifier circuit 320 into DC power suitable for charging storage battery 500. good.
  • the power receiving device 300 is fixed to the chassis of the electric vehicle 700, for example.
  • the terminal device 600 is a device that receives notification of the presence of a foreign object from the foreign object detection device 100 .
  • Terminal device 600 is, for example, a smartphone owned by the owner of electric vehicle 700 .
  • the terminal device 600 receives notification of the presence of a foreign object from the foreign object detection apparatus 100, the terminal device 600 notifies the user of the presence of the foreign object through screen display, voice output, or the like.
  • the foreign object detection device 100 detects foreign objects existing in the detection target area.
  • the detection target area is a target area for foreign matter detection, and is an area in which foreign matter can be detected.
  • the detection target area is an area near power transmitting coil unit 210 and power receiving coil unit 310 and includes an area between power transmitting coil unit 210 and power receiving coil unit 310 .
  • a foreign object is an object or a living body that is not necessary for power transmission.
  • foreign object detection apparatus 100 detects a foreign object existing in the detection target area and notifies the user that the foreign object has been detected. The user can receive this notification and remove the foreign matter. Various things such as metal pieces, people, and animals are assumed as the foreign matter. As shown in FIG. 2 , foreign object detection apparatus 100 includes detection coil unit 110 , detection section 150 , pulse generation section 160 , and notification section 170 .
  • the detection coil unit 110 is a unit that detects foreign matter. As shown in FIG. 3 , the detection coil unit 110 is formed in a flat plate shape and arranged on the power transmission coil unit 210 so as to overlap the power transmission coil 211 in plan view. 3 is a plan view of detection coil unit 110 arranged on power transmission coil unit 210. FIG. In order to facilitate understanding, FIG. 3 shows not only the detection coil unit 110 but also the power transmission coil 211 and the magnetic plate 212 included in the power transmission coil unit 210 .
  • the detection coil unit 110 includes a detection coil substrate 140 made of a magnetically permeable material typified by resin.
  • a plurality of sensor coils 120A, a plurality of sensor coils 120B, a plurality of sensor coils 120C, and a plurality of sensor coils 120D are mounted on the detection coil substrate 140 .
  • Sensor coil 120 is a general term for sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D.
  • each sensor coil 120, the detection section 150, and the pulse generation section 160 are connected by wiring (not shown).
  • the detection unit 150 determines whether or not a foreign object exists in the detection target area based on the output value of the sensor coil 120 excited by the application of the pulsed voltage.
  • the pulse generating section 160 generates a pulse voltage for foreign object detection, selects the sensor coil 120 and applies it.
  • the notification unit 170 notifies the user that the foreign object has been detected. For example, the notification unit 170 transmits information indicating that a foreign object has been detected to the terminal device 600 carried by the user.
  • the detector 150 detects the foreign object 10 existing in the foreign object detection area based on the signals output from the plurality of sensor coils 120 . In other words, all of the plurality of sensor coils 120 are used to detect the foreign object 10 . Therefore, the detection unit 150 is connected to each of the plurality of sensor coils 120 via wiring.
  • the detection unit 150 is realized, for example, by a computer equipped with a CPU (Central Processing Unit), a memory, an A/D (Analog/Digital) converter, etc., and an operation program.
  • the detection unit 150 functionally includes a detection control unit 151, a selection unit 152, a drive unit 153, an output value acquisition unit 154, a storage unit 155, a result output unit 156, and a power transmission control unit 157. Prepare.
  • the detection unit 150 selects one of the 20 sensor coils 120 using these components, turns on the switches 132 and 133 of the selected sensor coil 120, and switches on the unselected sensor coils 120. With the switches 132 and 133 turned off, the presence or absence of the foreign object 10 near the selected sensor coil 120 is detected. The detection unit 150 sequentially detects the presence or absence of such a foreign object for all the sensor coils 120 and outputs the detection result.
  • the detection control unit 151 controls each component included in the detection unit 150, detects the foreign object 10, outputs the detection result, and the like.
  • the selection unit 152 selects one of all the sensor coils 120 under the control of the detection control unit 151 and controls the switch 132 and the switch 133 included in the selected sensor coil 120 to turn on.
  • the drive unit 153 drives the pulse generation unit 160 according to the control by the detection control unit 151 to cause the pulse generation unit 160 to generate a single pulse voltage. .
  • This pulse-like voltage is applied to the resonance circuit formed in the selected sensor coil 120 via wiring.
  • the voltage across the resonant circuit is led to the output value acquiring section 154 via wiring.
  • the resonance circuit included in the detection coil unit 110 includes a sensor coil 120, a capacitor 131, a switch 132, and a switch 133.
  • the sensor coil 120 has a conductor pattern wound one or more times about an axis parallel to the Z-axis.
  • One terminal of the sensor coil 120 is connected to one terminal of the switch 132, and is connected to one end of the pulse generator 160 via wiring.
  • the other terminal of sensor coil 120 is connected to one terminal of capacitor 131 and one terminal of switch 133 .
  • the other terminal of the switch 133 is connected to the other end of the pulse generator 160 via wiring.
  • the other terminal of capacitor 131 is connected to the other terminal of switch 132 .
  • the switches 132 and 133 are controlled to be on or off under the control of the detection unit 150 via a control line (not shown).
  • the ON state is a conducting state and the OFF state is a non-conducting state.
  • the switch 132 has a function of switching states between the sensor coil 120 and the capacitor 131 .
  • sensor coil 120 and capacitor 131 form resonant circuit 130 .
  • the switch 133 has a function of switching the state between this resonance circuit and the pulse generator 160 .
  • the sensor coil 120 and the capacitor 131 form a resonant circuit, and a pulse voltage is applied to the resonant circuit from the pulse generator 160 through the wiring. be done.
  • the voltage across the resonance circuit that is, the voltage across the sensor coil 120 is led to the detection unit 150 via wiring.
  • switch 132 is turned off, sensor coil 120 and capacitor 131 do not form a resonant circuit.
  • the resonance circuit is electrically disconnected from the detection section 150 and the pulse generation section 160 .
  • FIG. 5 shows that a foreign object 10 exists near the resonant circuit.
  • the switch 133 is closed and a pulse voltage is applied from the pulse generator 160 while the switch 132 is closed and the sensor coil 120 and the capacitor 131 form a resonant circuit.
  • the voltage signal representing the voltage across the resonant circuit is an oscillating signal whose crest value gradually attenuates over time after the pulse voltage falls, that is, after the current to the sensor coil 120 is cut off. .
  • the detection unit 150 determines the presence or absence of the foreign object 10 by detecting changes in the frequency of the vibration signal, changes in the degree of attenuation of the vibration signal, and the like.
  • the output value acquisition unit 154 acquires the output value of the selected sensor coil 120 from the vibration signal representing the voltage across the resonance circuit under the control of the detection control unit 151 .
  • the output value acquired by the output value acquisition unit 154 can be adjusted as appropriate.
  • the output value can be the frequency of the vibration signal, the convergence time of the vibration signal, the magnitude of the amplitude of the vibration signal, and the like.
  • the convergence time of the vibration signal is, for example, the time from when the pulse voltage is applied until the amplitude of the vibration signal falls below a predetermined amplitude.
  • the magnitude of the amplitude of the vibration signal is, for example, the magnitude of the amplitude of the vibration signal when a predetermined time has passed since the pulse voltage was applied.
  • the storage unit 155 stores various data related to foreign matter detection processing executed by the foreign matter detection device 100 .
  • the storage unit 155 stores an output value, a reference value, a difference value, and a threshold.
  • the output value is the output value acquired by the output value acquisition unit 154 .
  • the reference value is the reference value of the output value. That is, the reference value is the output value obtained when the foreign object 10 does not exist near the sensor coil 120 .
  • the reference value is obtained in advance through experiments, simulations, or the like, and stored in the storage unit 155 .
  • the difference value is the difference between the reference value, which is the output value obtained when the foreign object 10 is not present, and the currently obtained output value. That is, the difference value is the amount of change from the output value obtained when the foreign object 10 is not present.
  • a small difference value means that there is a high possibility that the foreign object 10 does not exist, and a large difference value means that there is a high possibility that the foreign object 10 exists.
  • the threshold is a threshold for determining the difference value. The threshold value is determined in advance in consideration of the expected magnitude of noise, the degree of change in the output value due to the presence or absence of the foreign object 10, and the like, and is stored in the storage unit 155, for example.
  • the detection control unit 151 determines the presence or absence of the foreign object 10 based on the comparison result between the comparison target value based on the output value of the sensor coil 120 and the threshold.
  • a comparison target value is a value to be compared with a threshold value, and specifically, a difference value between an output value and a reference value or a value based on this difference value.
  • the comparison target value is the difference value between the output value and the reference value.
  • the detection control unit 151 outputs a detection result indicating that the foreign object 10 is present when determining that the comparison target value exceeds the threshold for any one of the sensor coils 120 .
  • the result output unit 156 outputs the detection result by the detection control unit 151 according to the control by the detection control unit 151 .
  • the result output unit 156 instructs the notification unit 170 to notify that the foreign object 10 exists.
  • the notification unit 170 transmits information indicating that a foreign object has been detected to the terminal device 600 possessed by the user.
  • the terminal device 600 informs the user that a foreign object has been detected through screen display, voice output, or the like.
  • the power transmission control unit 157 controls power transmission from the power transmission coil unit 210 to the power reception coil unit 310 according to the control by the detection control unit 151 .
  • the power transmission control unit 157 instructs the power supply device 220 to stop power transmission.
  • detection coil unit 110 is arranged above power transmission coil unit 210 .
  • Magnetic flux for power transmission is generated from the power transmission coil 211 included in the power transmission coil unit 210 .
  • the magnetic flux density distribution based on this magnetic flux is not uniform around power transmission coil 211 . In other words, there are positions with a high magnetic flux density and positions with a low magnetic flux density around the power transmission coil 211 .
  • the magnetic flux density also changes with the passage of time.
  • the maximum value of magnetic flux density based on the magnetic flux generated by power transmission coil 211 is simply referred to as magnetic flux density as appropriate.
  • the magnetic flux passing through the loop of the sensor coil 120 changes greatly over time during power transmission. Therefore, a high induced voltage is generated across the sensor coil 120 during power transmission. If the induced voltage is too high, an excessively large induced current may flow through the sensor coil 120 and the sensor coil 120 may burn out. Also, if the induced voltage is too high, an overvoltage is applied to the switch 132 that selects the state of the resonant circuit or the switch 133 that selects the sensor coil 120 to be used, and the switch 132 or the switch 133 may be damaged. be.
  • the sensor coil 120 having a large product of the opening area which is the area of the opening of the sensor coil 120, and the number of turns of the sensor coil 120 basically has a high induced voltage generated at both ends of the sensor coil 120.
  • the detection performance of detecting foreign matter 10 is high.
  • the sensor coil 120 having a small product of the opening area and the number of turns basically has a low induced voltage across both ends of the sensor coil 120 and has a low detection performance for detecting a distant foreign object 10 .
  • the number of turns is the number of loops forming the sensor coil 120 and the number of turns of the conductor wire.
  • the sensor coil 120 is adopted according to the height of the magnetic flux density at the position where the sensor coil 120 is arranged. Specifically, in the present embodiment, the sensor coil 120 having a small product of the opening area and the number of turns is arranged at the position having a high magnetic flux density, and the sensor coil 120 having a small product of the opening area and the number of turns is arranged at the position having a low magnetic flux density. A sensor coil 120 having a large product of is arranged. According to such a configuration, it is possible to prevent burning of the sensor coil 120 while maintaining high detection performance.
  • FIG. 6 is a plan view of the power transmission coil unit 210.
  • the power transmission coil unit 210 has a magnetic plate 212 having an opening 212A and a power transmission coil 211 having an opening 211A smaller than the opening 212A.
  • the power transmission coil 211 is arranged above the magnetic plate 212 so that the outer edge of the power transmission coil 211 is arranged inside the outer edge of the magnetic plate 212 and the entire opening 212A overlaps the opening 211A in plan view.
  • the area above power transmission coil unit 210 is classified into area A, area B, area C, and area D.
  • a region A is a region that overlaps with the opening 211A and does not overlap with the opening 212A in plan view.
  • a region B is a region overlapping with the opening 211A and overlapping with the opening 212A in plan view.
  • a region C is a region that overlaps with the conductor 211B included in the power transmission coil 211 and overlaps with the magnetic plate 212 in plan view.
  • a region D is a region outside the conducting wire 211B overlapping the magnetic plate 212 in plan view. That is, the area A is an annular area in plan view.
  • Region B is a region surrounded by region A in plan view.
  • Region C is an annular region surrounding region A in plan view.
  • Region D is an annular region surrounding region C in plan view.
  • Area A is an area where the magnetic flux generated by the power transmission coil 211 is collected by the magnetic plate 212, and thus has a very high magnetic flux density.
  • the area B is an area that does not overlap with the magnetic plate 212 in plan view, and thus has a low magnetic flux density.
  • the region C is a region that overlaps with the conductor 211B included in the power transmission coil 211 in plan view, and thus has a high magnetic flux density.
  • the region D is a region that overlaps with the magnetic plate 212 in plan view, but is a region outside the power transmission coil 211 in plan view, and thus has a low magnetic flux density.
  • the sensor coil 120 that can detect a small foreign object 10 is arranged, although the detection performance for detecting a distant foreign object 10 is low. Further, in the area B and the area D, sensor coils 120 with high detection performance for detecting a distant foreign object 10 are arranged. Further, in the area C, a sensor coil 120 that has a higher detection performance for detecting a distant foreign object 10 than the area A and that can detect a small foreign object 10 compared to the areas B and D is arranged.
  • 16 sensor coils 120A are arranged in area A
  • two sensor coils 120B are arranged in area B
  • 14 sensor coils 120C are arranged in area C.
  • 18 sensor coils 120D are arranged in a region straddling the region C and the region D. As shown in FIG.
  • the detection performance of the sensor coils 120 arranged in each area is set according to the magnetic flux density of that area.
  • sensor coils 120 that have higher detection performance for detecting a distant foreign object 10 are arranged in areas where the magnetic flux density is low than in areas where the magnetic flux density is high.
  • sensor coils 120 with higher detection performance for detecting foreign objects 10 at a farther distance are arranged in regions where the magnetic flux density is lower.
  • sensor coils 120 having higher detection performance for detecting small foreign objects 10 are arranged in areas where the magnetic flux density is high than in areas where the magnetic flux density is low.
  • sensor coils 120 with higher detection performance for detecting small foreign objects 10 are arranged in regions where the magnetic flux density is higher.
  • FIG. 7 is a schematic diagram of a cross section taken along line VII-VII in FIG. In addition to the cross section of the detection coil unit 110, FIG. 7 also shows a schematic diagram that schematically shows the cross section of the power transmission coil unit 210. As shown in FIG.
  • the sensor coil 120A is a coil formed by winding a coil conductor 121A.
  • the sensor coil 120A has an opening 123A that is an opening formed inside the coil conductor 121A.
  • the sensor coil 120A is arranged in an opening 211A of the power transmission coil 211 and faces the magnetic plate 212 when viewed from the first direction in which the coil axis of the power transmission coil 211 extends. That is, the plurality of sensor coils 120A are annularly arranged at positions overlapping the opening 211A and the magnetic plate 212 when viewed from the first direction. Note that the first direction is the Z-axis direction.
  • each of the plurality of sensor coils 120A has a substantially square shape when viewed from the first direction.
  • a substantially rectangular shape is a concept that allows for slight differences from a perfect rectangular shape, and means that the shape as a whole is substantially rectangular.
  • a substantially rectangular shape is a concept that includes a shape in which the four corners of a perfect rectangular shape are rounded.
  • Sensor coil 120A is an example of a first sensor coil.
  • the opening 123A is an example of a first sensor opening.
  • the sensor coil 120B is a coil formed by winding a coil conductor 121B.
  • the sensor coil 120B has an opening 123B that is an opening formed inside the coil conductor 121B.
  • the sensor coil 120B is arranged closer to the center of the power transmission coil 211 than the plurality of sensor coils 120A when viewed from the first direction. That is, the sensor coil 120B is arranged inside the plurality of sensor coils 120A that are annularly arranged when viewed from the first direction. Moreover, the sensor coil 120B is arranged at a position overlapping the opening 211A and the opening 212A. Moreover, the sensor coil 120B has a substantially rectangular shape when viewed from the first direction.
  • Sensor coil 120B is an example of a second sensor coil.
  • the opening 123B is an example of a second sensor opening.
  • the sensor coil 120C is a coil formed by winding a coil conductor 121C.
  • the sensor coil 120C has an opening 123C that is an opening formed inside the coil conductor 121C.
  • the sensor coil 120C is arranged at a position overlapping with the conducting wire 211B of the power transmitting coil 211 when viewed from the first direction. That is, the plurality of sensor coils 120C are annularly arranged outside the plurality of annularly arranged sensor coils 120A when viewed from the first direction. Also, the sensor coil 120C has a substantially rectangular shape when viewed from the first direction.
  • Sensor coil 120C is an example of a third sensor coil.
  • the opening 123C is an example of a third sensor opening.
  • the sensor coil 120D is a coil formed by winding a coil conductor 121D.
  • the sensor coil 120D has an opening 123D that is an opening formed inside the coil conductor 121D.
  • the sensor coil 120D is arranged at a position farther from the center of the power transmission coil 211 than the plurality of sensor coils 120C when viewed from the first direction. That is, the plurality of sensor coils 120D are annularly arranged outside the plurality of annularly arranged sensor coils 120C when viewed from the first direction. Further, the sensor coil 120D is arranged at a position straddling a region overlapping with the conducting wire 211B and a region outside the conducting wire 211B when viewed from the first direction. Also, the sensor coil 120D has a substantially rectangular shape when viewed from the first direction.
  • Sensor coil 120D is an example of a fourth sensor coil.
  • the opening 123D is an example of a fourth sensor opening.
  • the area of the opening 123A is S1
  • the number of turns of each of the plurality of sensor coils 120A is N1
  • the area of the opening 123B is S2
  • the number of turns of the sensor coil 120B is N2
  • the area of the opening 123C is S3, the number of turns of each of the plurality of sensor coils 120C is N3, the area of the opening 123D is S4, and the number of turns of each of the plurality of sensor coils 120D is N4, the following equations (1) and (2) ) and equation (3) are satisfied.
  • the product of the opening area which is the area of the opening 123 of the sensor coil 120 , and the number of turns of the sensor coil 120 basically corresponds to the detection performance of the sensor coil 120 .
  • Expression (1) is the detection performance that the sensor coil 120A arranged at a position having a higher magnetic flux density than the position where the sensor coil 120B is arranged detects the foreign object 10 farther than the sensor coil 120B. is low, but the detection performance for detecting a small foreign object 10 is high. That is, when the expression (1) is satisfied, the sensor coil 120A arranged at a position having a high magnetic flux density is prevented from being burnt out, and has a high detection performance for detecting a small foreign object 10. The sensor coil 120B arranged at a location having a higher detection performance for detecting a distant foreign object 10 is improved.
  • Expression (2) is the detection performance that the sensor coil 120C arranged at a position having a higher magnetic flux density than the position where the sensor coil 120B is arranged detects the foreign object 10 farther than the sensor coil 120B. is low, but the detection performance for detecting a small foreign object 10 is high. In other words, when the expression (2) is satisfied, the sensor coil 120C arranged at a position having a high magnetic flux density is prevented from being burnt out, and the detection performance of detecting a small foreign object 10 is improved. The sensor coil 120B arranged at a location having a higher detection performance for detecting a distant foreign object 10 is improved.
  • Expression (3) is the detection performance that the sensor coil 120C arranged at a position having a higher magnetic flux density than the position where the sensor coil 120D is arranged detects the foreign object 10 farther than the sensor coil 120D. is low, but the detection performance for detecting a small foreign object 10 is high. In other words, when the expression (3) is satisfied, the sensor coil 120C arranged at a position having a high magnetic flux density is suppressed in burnout, etc., and has a high detection performance for detecting a small foreign object 10. As for the sensor coil 120D arranged at the location where the sensor coil 120D is located, the detection performance of detecting the distant foreign object 10 is enhanced.
  • the detection performance of the sensor coil 120 is adjusted by adjusting the opening area out of the opening area and the number of turns. Specifically, when viewed from the first direction, opening 123A is smaller than opening 123B. Also, when viewed from the first direction, the opening 123C is smaller than the opening 123B. In the present embodiment, the detection performance of sensor coil 120 is adjusted without limiting the number of turns of sensor coil 120A, the number of turns of sensor coil 120B, and the number of turns of sensor coil 120C. Therefore, according to the present embodiment, the sensor coil 120A, the sensor coil 120B, and the sensor coil 120C have a high degree of freedom in design.
  • each of the plurality of sensor coils 120A is arranged at a position farther from the power transmission coil 211 than the sensor coil 120B in the first direction. That is, the layer in which each of the plurality of sensor coils 120A is arranged in the detection coil substrate 140 is farther from the power transmitting coil 211 than the layer in which the sensor coil 120B is arranged in the detection coil substrate 140 .
  • the magnetic flux density of the magnetic flux generated by the power transmission coil 211 is basically lower the further away it is from the power transmission coil 211 . Therefore, in the above configuration, the increase in the magnetic flux density at the position where the sensor coil 120A is arranged is suppressed. That is, according to the present embodiment, an increase in the induced voltage induced in the sensor coil 120A is suppressed, and burnout of the sensor coil 120A is further suppressed.
  • the sensor coil 120A can detect the foreign object 10 placed near the sensor coil 120A, but it is difficult to detect the foreign object 10 placed far from the sensor coil 120A. According to the present embodiment, since the sensor coil 120A is arranged closer to the foreign object 10 than the sensor coil 120B, efficient foreign object detection can be expected.
  • the voltage induced in each of the plurality of sensor coils 120A and the magnetic flux are applied to the sensor coil 120B.
  • the voltage induced in coil 120D is the same.
  • the sameness is a concept that allows some degree of difference. For example, even if there is a difference of several percent to several tens of percent, it may be regarded as the same.
  • the induced voltage induced in sensor coil 120A, the induced voltage induced in sensor coil 120B, the induced voltage induced in sensor coil 120C, and the induced voltage induced in sensor coil 120D are the same.
  • the opening area and number of turns of each of sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D are adjusted so as to be about the same.
  • FIG. 8 shows, for each type of sensor coil 120, the correspondence between the magnetic flux density at the position where the sensor coil 120 is arranged, the opening area that is the area of the opening 123 of the sensor coil 120, and the number of turns of the sensor coil 120.
  • FIG. 4 is a diagram showing relationships
  • the induced voltage induced in the sensor coil 120 due to the magnetic flux generated by the power transmission coil 211 will become too large, and the sensor coil 120 will burn out.
  • the number of turns and the opening area of the sensor coil 120 are adjusted so that the induced voltage induced in the sensor coil 120 is constant regardless of the magnetic flux density at the position where the sensor coil 120 is arranged. That is, the product of the opening area and the number of turns is smaller for the sensor coil 120 arranged at a position where the magnetic flux density is higher.
  • the magnetic flux density at the position where the sensor coil 120A is arranged is B1, the opening area of the sensor coil 120A is S1, and the number of turns of the sensor coil 120A is N1.
  • the magnetic flux density at the position where the sensor coil 120B is arranged is B2, the opening area of the sensor coil 120B is S2, and the number of turns of the sensor coil 120B is N2.
  • the magnetic flux density at the position where the sensor coil 120C is arranged is B3, the opening area of the sensor coil 120C is S3, and the number of turns of the sensor coil 120C is N3.
  • the magnetic flux density at the position where the sensor coil 120D is arranged is B4, the opening area of the sensor coil 120D is S4, and the number of turns of the sensor coil 120D is N4.
  • S1 and N1 are determined so that the induced voltage induced in the sensor coil 120A becomes a predetermined reference voltage.
  • the reference voltage is, for example, the upper limit of the induced voltage at which burnout or the like is presumed not to occur.
  • S1 is determined so that the induced voltage becomes the reference voltage.
  • the detection performance of sensor coil 120 is adjusted according to the height of the magnetic flux density at the position where sensor coil 120 is arranged. Specifically, the higher the magnetic flux density at the position where the sensor coil 120 is arranged, the smaller the product of the opening area and the number of turns is set. More specifically, the opening area and the number of turns are set for each of the plurality of sensor coils 120 so that the induced voltages induced in each of the plurality of sensor coils 120 are the same. According to the present embodiment, both improvement in detection performance and suppression of burnout of sensor coil 120 are achieved. In other words, according to the present embodiment, it is possible to prevent burnout of the sensor coil 120 and the like while maintaining high detection performance in foreign matter detection in wireless power transmission.
  • FIG. 9 shows a plan view of a detection coil unit 110A according to this embodiment.
  • FIG. 10 shows a schematic diagram of a cross section taken along line XX in FIG.
  • FIG. 9 shows not only the detection coil unit 110 but also the power transmission coil 211 and the magnetic plate 212 included in the power transmission coil unit 210 .
  • the sensor coils 120 arranged inside the detection coil substrate 140 are indicated by solid lines instead of dashed lines for easy understanding.
  • FIG. 10 shows a schematic diagram schematically showing a cross section of the power transmission coil unit 210 in addition to the cross section of the detection coil unit 110A.
  • the detection coil unit 110A has 8 sensor coils 120A, 1 sensor coil 120B, 14 sensor coils 120C, and 20 sensor coils 120D.
  • the sensor coil 120A has low detection performance for detecting a distant foreign object 10, but very high detection performance for detecting a small foreign object 10, and is arranged in the area A having a very high magnetic flux density.
  • the sensor coil 120A is arranged in an opening 211A of the power transmission coil 211 and faces the magnetic plate 212 when viewed from the first direction. That is, the plurality of sensor coils 120A are annularly arranged at positions overlapping the opening 211A and the magnetic plate 212 when viewed from the first direction.
  • the sensor coil 120B has high detection performance for detecting a distant foreign object 10 and is arranged in a region B having a low magnetic flux density.
  • the sensor coil 120B is arranged closer to the center of the power transmission coil 211 than the plurality of sensor coils 120A when viewed from the first direction. That is, the sensor coil 120B is arranged inside the plurality of sensor coils 120A that are annularly arranged when viewed from the first direction. Moreover, the sensor coil 120B is arranged at a position overlapping the opening 211A and the opening 212A.
  • the sensor coil 120C has low detection performance for detecting a distant foreign object 10, but high detection performance for detecting a small foreign object 10, and is arranged in a region C having a high magnetic flux density.
  • the sensor coil 120C is arranged at a position overlapping with the conducting wire 211B of the power transmitting coil 211 when viewed from the first direction. That is, the plurality of sensor coils 120C are annularly arranged outside the plurality of annularly arranged sensor coils 120A when viewed from the first direction.
  • the sensor coil 120D has high detection performance for detecting a distant foreign object 10, and is generally arranged in a region straddling the region C having a high magnetic flux density and the region D having a low magnetic flux density.
  • the sensor coil 120D is arranged at a position farther from the center of the power transmission coil 211 than the plurality of sensor coils 120C when viewed from the first direction. That is, the plurality of sensor coils 120D are annularly arranged outside the plurality of annularly arranged sensor coils 120C when viewed from the first direction.
  • the sensor coil 120A, the sensor coil 120B, the sensor coil 120C, and the sensor coil 120D have a substantially rectangular shape when viewed from the first direction.
  • Sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D have openings 123 of the same size. In FIG. 10, the sizes of the openings 123 of the sensor coil 120 vary, but the actual sizes of the openings 123 of the sensor coil 120 are the same.
  • the number of turns of each of the plurality of sensor coils 120A and the number of turns of each of the plurality of sensor coils 120C are smaller than the number of turns of the sensor coil 120B.
  • FIG. 11 shows the correspondence between the magnetic flux density at the position where the sensor coil 120 is arranged, the opening area that is the area of the opening 123 of the sensor coil 120, and the number of turns of the sensor coil 120 for each type of the sensor coil 120.
  • FIG. 4 is a diagram showing relationships;
  • the product of the opening area and the number of turns is large. 120 may be damaged by burning or the like, and it is difficult to detect a foreign object 10 nearby. Therefore, in the present embodiment as well, the number of turns and the opening area are adjusted so that the induced voltage induced in sensor coil 120 is constant regardless of the magnetic flux density at the position where sensor coil 120 is arranged. . That is, the product of the opening area and the number of turns is smaller for the sensor coil 120 arranged at a position where the magnetic flux density is higher. In this embodiment, the induced voltage induced in the sensor coils 120 is adjusted by adjusting the number of turns, and all the sensor coils 120 have the same opening area.
  • the detection performance of sensor coil 120 is adjusted according to the height of the magnetic flux density at the position where sensor coil 120 is arranged. Therefore, according to the present embodiment, it is possible to prevent burning of the sensor coil 120, etc., while maintaining high detection performance in detecting a foreign object in wireless power transmission.
  • all sensor coils 120 have the same opening area, and the detection performance of each sensor coil 120 is adjusted by adjusting the number of turns of each sensor coil 120 . Therefore, according to the present embodiment, an improvement in the degree of freedom in arranging the sensor coil 120 can be expected. For example, assume a case where a sensor coil 120 with high detection performance for detecting a distant foreign object 10 is arranged in a narrow place with a low magnetic flux density. In this case, it is difficult to dispose the sensor coil 120 with a large opening area and a small number of turns. However, in this case, the sensor coil 120 with a small opening area and a large number of turns can be arranged.
  • Embodiment 1 describes an example in which the position of sensor coil 120B in the first direction is the same as the position of sensor coil 120C in the first direction. In this embodiment, an example in which the position of sensor coil 120B in the first direction is different from the position of sensor coil 120C in the first direction will be described. Note that the description of the same configuration and processing as in the first and second embodiments will be omitted or simplified.
  • FIG. 12 shows a schematic diagram of a cross section of detection coil unit 110B according to the present embodiment.
  • FIG. 12 shows a schematic diagram schematically showing a cross section of the power transmission coil unit 210 in addition to the cross section of the detection coil unit 110B.
  • each of the plurality of sensor coils 120A and each of the plurality of sensor coils 120C are arranged at positions farther from power transmitting coil 211 than sensor coil 120B in the first direction. It is In other words, the layer in which each of the plurality of sensor coils 120A and each of the plurality of sensor coils 120C are arranged in the detection coil substrate 140 is closer to the power transmission coil than the layer in which the sensor coil 120B is arranged in the detection coil substrate 140. Away from 211.
  • the magnetic flux density of the magnetic flux generated by the power transmission coil 211 is basically lower at positions farther away from the power transmission coil 211 . Therefore, in the above configuration, the magnetic flux density at the position where the sensor coil 120A is arranged and the magnetic flux density at the position where the sensor coil 120C is arranged are prevented from becoming extremely high. That is, according to the present embodiment, the induced voltage induced in the sensor coil 120A and the induced voltage induced in the sensor coil 120C are prevented from becoming extremely high, and burning of the sensor coil 120A and the sensor coil 120C, etc. is further suppressed.
  • the sensor coil 120A can detect the foreign object 10 placed near the sensor coil 120A, but it is extremely difficult to detect the foreign object 10 placed far from the sensor coil 120A.
  • the sensor coil 120C can detect a foreign object 10 placed near the sensor coil 120C, but it is difficult to detect a foreign object 10 placed far from the sensor coil 120C.
  • the sensor coil 120A and the sensor coil 120C are arranged closer to the foreign object 10 than the sensor coil 120B, so efficient foreign object detection can be expected.
  • Embodiment 4 has described an example in which the position of sensor coil 120A in the first direction is the same as the position of sensor coil 120C in the first direction. In this embodiment, an example will be described in which the position of sensor coil 120A in the first direction is different from the position of sensor coil 120C in the first direction. Note that the description of the same configuration and processing as in Embodiments 1-3 will be omitted or simplified.
  • FIG. 13 shows a schematic cross-sectional view of a detection coil unit 110C according to this embodiment. To facilitate understanding, FIG. 13 shows a schematic diagram schematically showing a cross section of the power transmission coil unit 210 in addition to the cross section of the detection coil unit 110C.
  • each of the multiple sensor coils 120C is closer to the power transmission coil 211 than each of the multiple sensor coils 120A in the first direction, and is closer to the power transmission coil 211 than the sensor coil 120B. is placed away from That is, the layer in which each of the plurality of sensor coils 120C is arranged in the detection coil substrate 140 is closer to the power transmission coil 211 than the layer in which each of the plurality of sensor coils 120A is arranged in the detection coil substrate 140, and the detection coil In the substrate 140, the sensor coil 120B is farther from the power transmission coil 211 than the layer in which it is arranged.
  • the magnetic flux density of the magnetic flux generated by the power transmission coil 211 is basically lower at positions farther away from the power transmission coil 211 . Therefore, in the above configuration, the magnetic flux density at the position where the sensor coil 120A is arranged is suppressed from becoming extremely high. Moreover, in the above configuration, the magnetic flux density at the position where the sensor coil 120C is arranged is suppressed to some extent from becoming extremely high. That is, according to the present embodiment, the induced voltage induced in sensor coil 120A is suppressed from becoming extremely high, and the induced voltage induced in sensor coil 120C is suppressed from becoming extremely high to some extent. and the sensor coil 120C are further suppressed.
  • the sensor coil 120A can detect the foreign object 10 placed near the sensor coil 120A, but it is extremely difficult to detect the foreign object 10 placed far from the sensor coil 120A.
  • the sensor coil 120C can detect a foreign object 10 placed near the sensor coil 120C, but it is difficult to detect a foreign object 10 placed far from the sensor coil 120C. According to the present embodiment, since the sensor coil 120C is arranged further from the foreign object 10 than the sensor coil 120A and closer to the foreign object 10 than the sensor coil 120B, efficient foreign object detection can be expected.
  • each sensor coil 120 in the first direction is not limited to the examples described in Embodiments 1, 3, and 4, and can be adjusted as appropriate.
  • the position of the sensor coil 120A, the position of the sensor coil 120B, the position of the sensor coil 120C, and the position of the sensor coil 120D may all be the same in the first direction.
  • the position of the sensor coil 120A, the position of the sensor coil 120B, the position of the sensor coil 120C, and the position of the sensor coil 120D may all be different. In this case, it is preferable that the sensor coil 120 having a larger product of the opening area and the number of turns be arranged closer to the power transmission coil 211 in the first direction.
  • the sensor coil 120 has two turns.
  • the number of turns of the sensor coil 120 may be one, or three or more. Further, in Embodiment 1, an example in which the opening area is adjusted and the number of turns is not adjusted is described, and in Embodiment 2, an example in which the opening area is not adjusted and the number of turns is adjusted is described. Both the opening area and the number of turns may be adjusted. In this case, the sensor coil 120 having a larger product of the opening area and the number of turns is preferably arranged at a position where the magnetic flux density is lower.
  • the opening area and the number of turns are adjusted so that the induced voltages induced in all the sensor coils 120 are the same.
  • the induced voltages induced in all sensor coils 120 need not be the same. However, it is preferable to adjust the opening area and the number of turns so that the induced voltages induced in all the sensor coils 120 have as little difference as possible.
  • foreign object detection device 100 includes four types of sensor coils 120, sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D, has been described.
  • Foreign object detection device 100 does not have to include these four types of sensor coils 120 .
  • Foreign object detection device 100 may include at least two types of sensor coils 120 out of these four types of sensor coils 120 .
  • the foreign object detection device 100 may include two types of sensor coils 120, a sensor coil 120A and a sensor coil 120B, or three types of sensor coils 120, a sensor coil 120A, a sensor coil 120B, and a sensor coil 120C. may be provided. Also, the number of sensor coils 120 of each type is not limited to the number described in the first and second embodiments.
  • the sensor coil 120 is driven by a self-exciting method in which the pulse-like voltage generated by the pulse generating section 160 under the control of the driving section 153 is used to drive the sensor coil 120 has been described.
  • a method for driving the sensor coil 120 a separate excitation method can be adopted.

Abstract

A plurality of sensor coils (120A) have an opening portion (123A), are disposed within the opening portion of a power transmission coil (211) when viewed from a first direction in which the coil axis of the power transmission coil (211) extends, and face a magnetic plate (212). A sensor coil (120B) has an opening portion (123B) and is disposed closer to the center of the power transmission coil (211) than the plurality of sensor coils (120A). When the area of the opening portion (123A) is denoted by S1, the number of turns of each of the plurality of sensor coils (120A) is denoted by N1, the area of the opening portion (123B) is denoted by S2, and the number of turns of the sensor coil (120B) is denoted by N2, the relationship of N1 × S1 < N2 × S2 is satisfied.

Description

送電装置、及び、電力伝送システムPower transmission device and power transmission system
 本開示は、送電装置、及び、電力伝送システムに関する。 The present disclosure relates to a power transmission device and a power transmission system.
 ワイヤレスで電力を伝送するワイヤレス電力伝送技術が注目されている。ワイヤレス電力伝送技術は、送電装置から受電装置にワイヤレスで送電できるので、電車、電気自動車等の輸送機器、家電機器、無線通信機器、玩具等の様々な製品への応用が期待されている。ワイヤレス電力伝送技術では、電力の伝送のために、磁束により結合された送電コイルと受電コイルとが用いられる。 Wireless power transmission technology that transmits power wirelessly is attracting attention. Wireless power transmission technology can wirelessly transmit power from a power transmission device to a power reception device, so it is expected to be applied to various products such as transportation equipment such as trains and electric vehicles, home appliances, wireless communication equipment, and toys. Wireless power transmission technology uses a power transmitting coil and a power receiving coil that are coupled by magnetic flux to transmit power.
 ところで、送電コイルと受電コイルとの付近に、金属片をはじめとする異物が存在すると種々の問題が生じる可能性がある。例えば、このような異物は、送電コイルから受電コイルへの送電に悪影響を与えたり、渦電流により発熱したりする可能性がある。従って、送電コイルと受電コイルとの付近に存在する異物を適切に検出する異物検出装置が望まれている。 By the way, if there are foreign objects such as metal pieces in the vicinity of the power transmitting coil and the power receiving coil, various problems may occur. For example, such a foreign object may adversely affect power transmission from the power transmitting coil to the power receiving coil, or generate heat due to eddy current. Therefore, there is a demand for a foreign object detection device that appropriately detects a foreign object existing near the power transmitting coil and the power receiving coil.
 特許文献1には、検知コイルである磁気結合素子、又は、この磁気結合素子を含む回路に関する電気的なパラメータの変化から、磁束によって発熱する異物の有無を判定する検知装置が記載されている。特許文献1に記載された検知装置では、隣接する検知コイル間に異物が検出できない領域である不感領域が生じないように、同一のサイズの多数の検知コイルが2層以上の領域に配置されている。このような異物検出装置は、例えば、路面に設置される送電装置の内部において送電コイルの上に設置される。 Patent Document 1 describes a detection device that determines the presence or absence of a foreign object that generates heat due to magnetic flux from changes in electrical parameters of a magnetic coupling element, which is a detection coil, or a circuit that includes this magnetic coupling element. In the detection device described in Patent Document 1, a large number of detection coils of the same size are arranged in regions of two or more layers so that a dead region, which is a region in which a foreign object cannot be detected, does not occur between adjacent detection coils. there is Such a foreign object detection device is installed, for example, on a power transmission coil inside a power transmission device installed on a road surface.
特開2013-192391号公報JP 2013-192391 A
 しかしながら、送電コイルから発生した磁束に基づく磁束密度の分布は送電コイルの周囲で一様ではない。つまり、送電コイルの周囲において、高い磁束密度を有する位置と低い磁束密度を有する位置とが存在する。このため、特許文献1に記載された検知装置のように、同一のサイズの多数の検知コイルを用いると、好ましくない場合がある。 However, the magnetic flux density distribution based on the magnetic flux generated from the power transmission coil is not uniform around the power transmission coil. That is, there are positions with high magnetic flux density and positions with low magnetic flux density around the power transmission coil. For this reason, using a large number of detector coils of the same size as in the detector described in Patent Document 1 may not be preferable.
 例えば、サイズが大きい多数の検知コイルのみを用いると、高い磁束密度を有する位置に配置された検知コイルに非常に高い誘起電圧が発生する。このとき、この検知コイルに大きい誘導電流が流れて検知コイルが焼損したり、使用する検知コイルを選択するスイッチに過電圧が印加されてスイッチが破損したりする可能性がある。一方、サイズが小さい多数の検知コイルのみを用いると、異物検出装置全体としての異物の検知性能を高くすることが困難である。このため、ワイヤレス電力伝送の異物検知において、高い検知性能を維持しつつ、センサコイルの焼損等を防止する技術が望まれている。 For example, if only a large number of sensing coils are used, a very high induced voltage is generated in the sensing coils placed at positions with high magnetic flux density. At this time, there is a possibility that a large induced current will flow through the sensing coil, causing the sensing coil to burn out, or that an overvoltage will be applied to the switch that selects the sensing coil to be used, causing the switch to break. On the other hand, if only a large number of small-sized detector coils are used, it is difficult to improve the foreign matter detection performance of the foreign matter detection apparatus as a whole. For this reason, there is a demand for a technique for preventing sensor coil burnout and the like while maintaining high detection performance in detecting foreign matter in wireless power transmission.
 本開示は、上記課題に鑑みてなされたものであり、ワイヤレス電力伝送の異物検知において、高い検知性能を維持しつつ、センサコイルの焼損等を防止することを目的とする。 The present disclosure has been made in view of the above problems, and aims to prevent sensor coil burnout, etc., while maintaining high detection performance in foreign object detection in wireless power transmission.
 上記課題を解決するため、本開示の一実施態様に係る送電装置は、
 導線が巻回されて構成され、開口部を有する送電コイルと、
 前記送電コイルと対向する磁性体と、
 異物検出装置と、を備え、
 前記異物検出装置は、複数のセンサコイルと、前記複数のセンサコイルから出力される信号に基づいて、異物検出領域に存在する異物を検出する検出部と、を有し、
 前記複数のセンサコイルは、第1センサ開口部を有し、前記送電コイルのコイル軸が延在する第1方向から見て、前記開口部内に配置され、前記磁性体と対向する複数の第1センサコイルと、第2センサ開口部を有し、前記第1方向から見て、前記複数の第1センサコイルよりも前記送電コイルの中心寄りに配置された第2センサコイルと、を有し、
 前記第1センサ開口部の面積をS1、前記複数の第1センサコイルのそれぞれのターン数をN1、前記第2センサ開口部の面積をS2、前記第2センサコイルのターン数をN2、としたとき、以下の式(1)を満たす。
 N1×S1<N2×S2・・・(1)
In order to solve the above problems, a power transmission device according to an embodiment of the present disclosure includes:
a power transmission coil configured by winding a conductor wire and having an opening;
a magnetic body facing the power transmission coil;
a foreign object detection device,
The foreign matter detection device includes a plurality of sensor coils and a detection unit that detects a foreign matter present in a foreign matter detection area based on signals output from the plurality of sensor coils,
The plurality of sensor coils have a first sensor opening, and are arranged in the opening when viewed from a first direction in which the coil axis of the power transmission coil extends, and a plurality of first sensor coils facing the magnetic body. a sensor coil, and a second sensor coil having a second sensor opening and arranged closer to the center of the power transmission coil than the plurality of first sensor coils when viewed from the first direction,
The area of the first sensor opening is S1, the number of turns of each of the plurality of first sensor coils is N1, the area of the second sensor opening is S2, and the number of turns of the second sensor coil is N2. Then, the following formula (1) is satisfied.
N1×S1<N2×S2 (1)
 上記構成の送電装置によれば、ワイヤレス電力伝送の異物検知において、高い検知性能を維持しつつ、センサコイルの焼損等を防止することができる。 According to the power transmission device with the above configuration, it is possible to prevent burnout of the sensor coil, etc., while maintaining high detection performance in foreign object detection in wireless power transmission.
実施の形態1に係る電力伝送システムの概略構成図Schematic configuration diagram of a power transmission system according to Embodiment 1 実施の形態1に係る異物検出装置の配置図Layout diagram of the foreign object detection device according to the first embodiment 実施の形態1に係る検出コイルユニットの平面図2 is a plan view of the detection coil unit according to Embodiment 1; FIG. 実施の形態1に係る異物検出装置が備える検出部の構成図FIG. 1 is a configuration diagram of a detection unit included in the foreign object detection device according to Embodiment 1. FIG. 実施の形態1に係る検出コイルユニットが備える共振回路の等価回路を示す図FIG. 4 is a diagram showing an equivalent circuit of a resonance circuit included in the detection coil unit according to Embodiment 1; 実施の形態1に係る送電コイルユニットの平面図1 is a plan view of a power transmission coil unit according to Embodiment 1. FIG. 図3におけるVII-VII線の断面の模式図Schematic diagram of cross section along line VII-VII in Fig. 3 実施の形態1に係る磁束密度と開口面積とターン数との対応関係を示す図FIG. 4 is a diagram showing the correspondence relationship among the magnetic flux density, the opening area, and the number of turns according to the first embodiment; 実施の形態2に係る検出コイルユニットの平面図Plan view of detection coil unit according to Embodiment 2 図9におけるX-X線の断面の模式図Schematic diagram of cross section along line XX in FIG. 実施の形態2に係る磁束密度と開口面積とターン数との対応関係を示す図FIG. 10 is a diagram showing a correspondence relationship between magnetic flux density, opening area, and number of turns according to Embodiment 2; 実施の形態3に係る検出コイルユニットの断面の模式図Schematic cross-sectional view of a detection coil unit according to Embodiment 3 実施の形態4に係る検出コイルユニットの断面の模式図Schematic cross-sectional view of a detection coil unit according to a fourth embodiment
 以下、本開示に係る技術の実施の形態に係る電力伝送システムを、図面を参照しつつ説明する。なお、以下の実施の形態において、同一の構成部分には同一の符号を付す。また、各図に示した構成要素の大きさの比率及び形状は、実施の際と必ずしも同じではない。 A power transmission system according to an embodiment of the technology according to the present disclosure will be described below with reference to the drawings. In addition, in the following embodiment, the same code|symbol is attached|subjected to the same component. Also, the size ratios and shapes of the constituent elements shown in each drawing are not necessarily the same as in the actual implementation.
(実施の形態1)
 本実施の形態に係る電力伝送システムは、EV(Electric Vehicle;電気自動車)、スマートフォン等のモバイル機器、産業機器等、様々な装置の2次電池の充電に利用できる。以下、電力伝送システムが、EVの蓄電池の充電を実行する場合を例示する。
(Embodiment 1)
The power transmission system according to the present embodiment can be used to charge secondary batteries of various devices such as EVs (Electric Vehicles), mobile devices such as smartphones, and industrial devices. A case where the power transmission system charges an EV storage battery will be exemplified below.
 図1は、電気自動車700に備えられた蓄電池500の充電に用いられる電力伝送システム1000の概略構成を示す図である。電気自動車700は、リチウムイオン電池又は鉛蓄電池等の蓄電池500に充電された電力により駆動されるモータを動力源として走行する。 FIG. 1 is a diagram showing a schematic configuration of a power transmission system 1000 used for charging a storage battery 500 provided in an electric vehicle 700. FIG. The electric vehicle 700 runs using a motor driven by electric power charged in a storage battery 500 such as a lithium ion battery or a lead storage battery as a power source.
 図1に示すように、電力伝送システム1000は、磁気結合によりワイヤレスで送電装置200から受電装置300に送電するシステムである。電力伝送システム1000は、交流又は直流の商用電源400の電力を電気自動車700にワイヤレスで送電する送電装置200と、送電装置200が送電した電力を受けて蓄電池500を充電する受電装置300とを備える。なお、以下の説明においては、商用電源400が交流電源である。 As shown in FIG. 1, the power transmission system 1000 is a system that wirelessly transmits power from the power transmission device 200 to the power reception device 300 by magnetic coupling. The power transmission system 1000 includes a power transmission device 200 that wirelessly transmits power from an AC or DC commercial power supply 400 to an electric vehicle 700, and a power reception device 300 that receives the power transmitted by the power transmission device 200 and charges a storage battery 500. . In the following description, commercial power supply 400 is an AC power supply.
 送電装置200は、磁気結合によりワイヤレスで受電装置300に送電する装置である。送電装置200は、異物を検出する異物検出装置100と、交流電力を電気自動車700に送電する送電コイルユニット210と、送電コイルユニット210に交流電力を供給する電力供給装置220と、を備える。図2に示すように、異物検出装置100は、送電コイルユニット210上に配置される。図2において、鉛直方向上向きの軸がZ軸、Z軸と直交する軸がX軸、Z軸とX軸とに直交する軸がY軸である。異物検出装置100の詳細な説明については後述する。 The power transmission device 200 is a device that wirelessly transmits power to the power reception device 300 by magnetic coupling. The power transmission device 200 includes a foreign object detection device 100 that detects foreign objects, a power transmission coil unit 210 that transmits AC power to the electric vehicle 700 , and a power supply device 220 that supplies AC power to the power transmission coil unit 210 . As shown in FIG. 2 , foreign object detection device 100 is arranged on power transmission coil unit 210 . In FIG. 2, the vertically upward axis is the Z-axis, the axis orthogonal to the Z-axis is the X-axis, and the axis orthogonal to the Z-axis and the X-axis is the Y-axis. A detailed description of the foreign object detection device 100 will be given later.
 図2に示すように、送電コイルユニット210は、電力供給装置220から交流電力が供給され、交番磁束Φを誘起する送電コイル211と、送電コイル211が発生する磁力を通過させて磁力の損失を抑制する磁性体板212とを備える。送電コイル211は、磁性体板212上に導線が渦巻状に巻回されて構成される。送電コイル211と送電コイル211の両端のそれぞれに設けられたキャパシタとは、共振回路を構成し、交流電圧の印加に伴って交流電流が流れることで交番磁束Φを誘起する。 As shown in FIG. 2 , the power transmission coil unit 210 is supplied with AC power from a power supply device 220, and has a power transmission coil 211 that induces an alternating magnetic flux Φ. and a magnetic plate 212 for suppressing. The power transmission coil 211 is configured by spirally winding a conductive wire on a magnetic plate 212 . The power transmission coil 211 and the capacitors provided at both ends of the power transmission coil 211 constitute a resonance circuit, and an alternating magnetic flux Φ is induced by an alternating current flowing along with the application of an alternating voltage.
 磁性体板212は、中央部分に孔が空いた板状であり、磁性体で構成される。磁性体板212は、例えば、酸化鉄と金属との複合酸化物であるフェライトで構成される板状の部材である。なお、磁性体板212は、複数の磁性体個片の集合体により構成されていてもよく、この複数の磁性体個片が枠状に配置されて中央部分に開口部を有するように形成されてもよい。 The magnetic plate 212 has a plate shape with a hole in the center and is made of a magnetic material. The magnetic plate 212 is, for example, a plate-like member made of ferrite, which is a composite oxide of iron oxide and metal. The magnetic plate 212 may be composed of an assembly of a plurality of individual pieces of magnetic material, and the plurality of individual pieces of magnetic material are arranged in a frame shape and formed to have an opening in the central portion. may
 電力供給装置220は、商用電源400が供給する商用交流電力の力率を改善する力率改善回路と、送電コイル211に供給する交流電力を発生するインバータ回路と、を備える。力率改善回路は、商用電源400が生成した交流電力を整流及び昇圧し、予め定められた電圧値を有する直流電力に変換する。インバータ回路は、力率改善回路が電力の変換により生成した直流電力を、予め定められた周波数の交流電力に変換する。送電装置200は、例えば、駐車場の床面に固定される。 The power supply device 220 includes a power factor correction circuit that improves the power factor of the commercial AC power supplied by the commercial power supply 400 and an inverter circuit that generates the AC power to be supplied to the power transmission coil 211 . The power factor correction circuit rectifies and boosts AC power generated by commercial power supply 400, and converts it into DC power having a predetermined voltage value. The inverter circuit converts DC power generated by power conversion by the power factor correction circuit into AC power having a predetermined frequency. Power transmission device 200 is fixed, for example, to the floor of a parking lot.
 受電装置300は、磁気結合によりワイヤレスで送電装置200から受電する装置である。受電装置300は、送電装置200が送電した交流電力を受電する受電コイルユニット310と、受電コイルユニット310から供給された交流電力を直流電力に変換して蓄電池500に供給する整流回路320と、を備える。 The power receiving device 300 is a device that wirelessly receives power from the power transmitting device 200 by magnetic coupling. The power receiving device 300 includes a power receiving coil unit 310 that receives the AC power transmitted by the power transmitting device 200, and a rectifier circuit 320 that converts the AC power supplied from the power receiving coil unit 310 into DC power and supplies the DC power to the storage battery 500. Prepare.
 図2に示すように、受電コイルユニット310は、送電コイル211が誘起した交番磁束Φの変化に応じて起電力を誘起する受電コイル311と、受電コイル311が発生する磁力を通過させて磁力の損失を抑制する磁性体板312とを備える。受電コイル311と受電コイル311の両端のそれぞれに設けられたキャパシタとは共振回路を構成する。受電コイル311は、電気自動車700が予め設定された位置に停止した状態で、送電コイル211と対向する。電力供給装置220からの電力を受けて送電コイル211が交番磁束Φを誘起すると、この交番磁束Φが受電コイル311に鎖交することにより、受電コイル311に誘導起電力が誘起される。 As shown in FIG. 2, the power receiving coil unit 310 includes a power receiving coil 311 that induces an electromotive force in response to a change in the alternating magnetic flux Φ induced by the power transmitting coil 211, and a magnetic force generated by the power receiving coil 311 that passes through the magnetic force. and a magnetic plate 312 that suppresses loss. Power receiving coil 311 and capacitors provided at both ends of power receiving coil 311 form a resonance circuit. Power receiving coil 311 faces power transmitting coil 211 while electric vehicle 700 is stopped at a preset position. When the power transmission coil 211 receives power from the power supply device 220 and induces an alternating magnetic flux Φ, the alternating magnetic flux Φ interlinks with the power receiving coil 311 , thereby inducing an induced electromotive force in the power receiving coil 311 .
 磁性体板312は、中央部分に孔が空いた板状の部材であり、磁性体で構成される。磁性体板312は、例えば、酸化鉄と金属との複合酸化物であるフェライトで構成される板状の部材である。なお、磁性体板312は、複数の磁性体個片の集合体により構成されていてもよく、この複数の磁性体個片が枠状に配置されて中央部分に開口部を有するように形成されてもよい。 The magnetic plate 312 is a plate-shaped member with a hole in the center and is made of a magnetic material. The magnetic plate 312 is, for example, a plate-like member made of ferrite, which is a composite oxide of iron oxide and metal. The magnetic plate 312 may be composed of an assembly of a plurality of individual pieces of magnetic material, and the plurality of individual pieces of magnetic material are arranged in a frame shape and formed to have an opening in the central portion. may
 整流回路320は、受電コイル311に誘起された起電力を整流し、直流電力を生成する。整流回路320が生成した直流電力は、蓄電池500に供給される。なお、受電装置300は、整流回路320と蓄電池500との間に、整流回路320から供給された直流電力を、蓄電池500を充電するための適切な直流電力に変換する充電回路を備えていてもよい。受電装置300は、例えば、電気自動車700のシャーシに固定される。 The rectifier circuit 320 rectifies the electromotive force induced in the receiving coil 311 to generate DC power. The DC power generated by the rectifier circuit 320 is supplied to the storage battery 500 . Power receiving device 300 may include a charging circuit between rectifier circuit 320 and storage battery 500 that converts the DC power supplied from rectifier circuit 320 into DC power suitable for charging storage battery 500. good. The power receiving device 300 is fixed to the chassis of the electric vehicle 700, for example.
 端末装置600は、異物検出装置100から異物があることの通知を受ける装置である。端末装置600は、例えば、電気自動車700の所有者が所持するスマートフォンである。端末装置600は、異物検出装置100から異物があることの通知を受けると、画面表示、音声出力等により、ユーザに異物があることを報知する。 The terminal device 600 is a device that receives notification of the presence of a foreign object from the foreign object detection device 100 . Terminal device 600 is, for example, a smartphone owned by the owner of electric vehicle 700 . When the terminal device 600 receives notification of the presence of a foreign object from the foreign object detection apparatus 100, the terminal device 600 notifies the user of the presence of the foreign object through screen display, voice output, or the like.
 異物検出装置100は、検出対象領域に存在する異物を検出する。検出対象領域は、異物の検出の対象の領域であり、異物の検出が可能な領域である。検出対象領域は、送電コイルユニット210と受電コイルユニット310との付近の領域であり、送電コイルユニット210と受電コイルユニット310との間の領域を含む領域である。異物は、送電に必要がない物体又は生体である。 The foreign object detection device 100 detects foreign objects existing in the detection target area. The detection target area is a target area for foreign matter detection, and is an area in which foreign matter can be detected. The detection target area is an area near power transmitting coil unit 210 and power receiving coil unit 310 and includes an area between power transmitting coil unit 210 and power receiving coil unit 310 . A foreign object is an object or a living body that is not necessary for power transmission.
 異物は、送電時に検出対象領域に配置されていると、送電に悪影響を及ぼしたり、発熱したりする可能性がある。そこで、異物検出装置100は、検出対象領域に存在する異物を検出し、異物が検出されたことをユーザに通知する。ユーザは、この通知を受けて、異物を除去することができる。異物としては、金属片、人、動物等、種々のものが想定される。図2に示すように、異物検出装置100は、検出コイルユニット110と、検出部150と、パルス発生部160と、通知部170とを備える。 If a foreign object is placed in the detection target area during power transmission, it may adversely affect power transmission or generate heat. Therefore, the foreign object detection apparatus 100 detects a foreign object existing in the detection target area and notifies the user that the foreign object has been detected. The user can receive this notification and remove the foreign matter. Various things such as metal pieces, people, and animals are assumed as the foreign matter. As shown in FIG. 2 , foreign object detection apparatus 100 includes detection coil unit 110 , detection section 150 , pulse generation section 160 , and notification section 170 .
 検出コイルユニット110は、異物を検出するユニットである。図3に示すように、検出コイルユニット110は、平板状に形成され、平面視で送電コイル211と重なるように、送電コイルユニット210の上に配置される。なお、図3は、送電コイルユニット210の上に配置された検出コイルユニット110の平面図である。図3には、理解を容易にするため、検出コイルユニット110だけではなく、送電コイルユニット210が備える送電コイル211及び磁性体板212も図示している。 The detection coil unit 110 is a unit that detects foreign matter. As shown in FIG. 3 , the detection coil unit 110 is formed in a flat plate shape and arranged on the power transmission coil unit 210 so as to overlap the power transmission coil 211 in plan view. 3 is a plan view of detection coil unit 110 arranged on power transmission coil unit 210. FIG. In order to facilitate understanding, FIG. 3 shows not only the detection coil unit 110 but also the power transmission coil 211 and the magnetic plate 212 included in the power transmission coil unit 210 .
 検出コイルユニット110は、樹脂に代表される透磁性の材料から構成される検出コイル基板140を備える。検出コイル基板140には、複数のセンサコイル120Aと、複数のセンサコイル120Bと、複数のセンサコイル120Cと、複数のセンサコイル120Dとが実装される。センサコイル120は、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとセンサコイル120Dとの総称である。 The detection coil unit 110 includes a detection coil substrate 140 made of a magnetically permeable material typified by resin. A plurality of sensor coils 120A, a plurality of sensor coils 120B, a plurality of sensor coils 120C, and a plurality of sensor coils 120D are mounted on the detection coil substrate 140 . Sensor coil 120 is a general term for sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D.
 なお、図3では、理解を容易にするため、検出コイル基板140の内部に配置された各センサコイル120を破線ではなく実線で示している。また、図3では、各センサコイル120の符号を、適宜、省略している。以下の図面においても、見やすさの観点から、適宜、符号を省略している。各センサコイル120と検出部150とパルス発生部160とは、図示しない配線により接続される。 It should be noted that in FIG. 3, the sensor coils 120 arranged inside the detection coil substrate 140 are indicated by solid lines instead of dashed lines for easy understanding. Further, in FIG. 3, the reference numerals of the sensor coils 120 are omitted as appropriate. Also in the following drawings, reference numerals are appropriately omitted from the viewpoint of visibility. Each sensor coil 120, the detection section 150, and the pulse generation section 160 are connected by wiring (not shown).
 検出部150は、パルス状の電圧の印加により励磁されたセンサコイル120の出力値に基づいて、検出対象領域に異物が存在するか否かを判別する。パルス発生部160は、異物検出のためのパルス状の電圧を発生し、センサコイル120を選択して印加する。通知部170は、検出部150により異物が検出された場合、異物が検出されたことをユーザに通知する。例えば、通知部170は、異物が検出されたことを示す情報を、ユーザが所持する端末装置600に送信する。 The detection unit 150 determines whether or not a foreign object exists in the detection target area based on the output value of the sensor coil 120 excited by the application of the pulsed voltage. The pulse generating section 160 generates a pulse voltage for foreign object detection, selects the sensor coil 120 and applies it. When a foreign object is detected by the detection unit 150, the notification unit 170 notifies the user that the foreign object has been detected. For example, the notification unit 170 transmits information indicating that a foreign object has been detected to the terminal device 600 carried by the user.
 次に、図4を参照して、検出部150の構成について説明する。検出部150は、複数のセンサコイル120から出力される信号に基づいて、異物検出領域に存在する異物10を検出する。つまり、複数のセンサコイル120の何れもが、異物10の検出に用いられる。従って、検出部150は、複数のセンサコイル120のそれぞれと配線を介して接続される。 Next, the configuration of the detection unit 150 will be described with reference to FIG. The detector 150 detects the foreign object 10 existing in the foreign object detection area based on the signals output from the plurality of sensor coils 120 . In other words, all of the plurality of sensor coils 120 are used to detect the foreign object 10 . Therefore, the detection unit 150 is connected to each of the plurality of sensor coils 120 via wiring.
 検出部150は、例えば、CPU(Central Processing Unit)、メモリ、A/D(Analog/Digital)変換装置等を備えたコンピュータと動作プログラムとにより実現される。検出部150は、機能的には、検出制御部151と、選択部152と、駆動部153と、出力値取得部154と、記憶部155と、結果出力部156と、送電制御部157とを備える。 The detection unit 150 is realized, for example, by a computer equipped with a CPU (Central Processing Unit), a memory, an A/D (Analog/Digital) converter, etc., and an operation program. The detection unit 150 functionally includes a detection control unit 151, a selection unit 152, a drive unit 153, an output value acquisition unit 154, a storage unit 155, a result output unit 156, and a power transmission control unit 157. Prepare.
 検出部150は、これらの構成要素により、20個のセンサコイル120の何れか1個を選択し、選択したセンサコイル120のスイッチ132及びスイッチ133をオン状態にし、選択しなかったセンサコイル120のスイッチ132及びスイッチ133をオフ状態にして、選択したセンサコイル120の近傍の異物10の有無を検出する。検出部150は、全てのセンサコイル120について、このような異物の有無の検出を順次実行し、検出の結果を出力する。 The detection unit 150 selects one of the 20 sensor coils 120 using these components, turns on the switches 132 and 133 of the selected sensor coil 120, and switches on the unselected sensor coils 120. With the switches 132 and 133 turned off, the presence or absence of the foreign object 10 near the selected sensor coil 120 is detected. The detection unit 150 sequentially detects the presence or absence of such a foreign object for all the sensor coils 120 and outputs the detection result.
 検出制御部151は、検出部150が備える各構成要素を制御し、異物10の検出、検出結果の出力等を実行する。選択部152は、検出制御部151による制御に従って、全てのセンサコイル120のうち何れかを選択し、選択したセンサコイル120が備えるスイッチ132及びスイッチ133をオン状態に制御する。駆動部153は、選択部152による選択及びオン制御が実行された後に、検出制御部151による制御に従って、パルス発生部160を駆動して、パルス発生部160に単発のパルス状の電圧を発生させる。このパルス状の電圧は、配線を介して、選択したセンサコイル120に形成された共振回路に印加される。また、共振回路の両端間の電圧は、配線を介して、出力値取得部154に導かれる。 The detection control unit 151 controls each component included in the detection unit 150, detects the foreign object 10, outputs the detection result, and the like. The selection unit 152 selects one of all the sensor coils 120 under the control of the detection control unit 151 and controls the switch 132 and the switch 133 included in the selected sensor coil 120 to turn on. After the selection and on-control by the selection unit 152 are executed, the drive unit 153 drives the pulse generation unit 160 according to the control by the detection control unit 151 to cause the pulse generation unit 160 to generate a single pulse voltage. . This pulse-like voltage is applied to the resonance circuit formed in the selected sensor coil 120 via wiring. In addition, the voltage across the resonant circuit is led to the output value acquiring section 154 via wiring.
 以下、図5を参照して、検出コイルユニット110が備える共振回路の等価回路について説明する。図5に示すように、検出コイルユニット110が備える共振回路は、センサコイル120と、キャパシタ131と、スイッチ132と、スイッチ133とを備える。センサコイル120は、Z軸と平行な軸を中心にして1回又は複数回巻回された導体パターンを有する。 The equivalent circuit of the resonance circuit included in the detection coil unit 110 will be described below with reference to FIG. As shown in FIG. 5, the resonance circuit included in the detection coil unit 110 includes a sensor coil 120, a capacitor 131, a switch 132, and a switch 133. The sensor coil 120 has a conductor pattern wound one or more times about an axis parallel to the Z-axis.
 センサコイル120の一方の端子は、スイッチ132の一方の端子に接続され、配線を介してパルス発生部160の一端に接続される。センサコイル120の他方の端子は、キャパシタ131の一方の端子とスイッチ133の一方の端子とに接続される。スイッチ133の他方の端子は、配線を介してパルス発生部160の他端に接続される。キャパシタ131の他方の端子は、スイッチ132の他方の端子に接続される。 One terminal of the sensor coil 120 is connected to one terminal of the switch 132, and is connected to one end of the pulse generator 160 via wiring. The other terminal of sensor coil 120 is connected to one terminal of capacitor 131 and one terminal of switch 133 . The other terminal of the switch 133 is connected to the other end of the pulse generator 160 via wiring. The other terminal of capacitor 131 is connected to the other terminal of switch 132 .
 スイッチ132とスイッチ133とは、図示せぬ制御線を介した検出部150からの制御に従って、オン状態又はオフ状態に制御される。オン状態は導通状態であり、オフ状態は非導通状態である。スイッチ132は、センサコイル120とキャパシタ131との間の状態を切り替える機能を有する。スイッチ132がオンになると、センサコイル120とキャパシタ131とは共振回路130を形成する。スイッチ133は、この共振回路とパルス発生部160との間の状態を切り替える機能を有する。 The switches 132 and 133 are controlled to be on or off under the control of the detection unit 150 via a control line (not shown). The ON state is a conducting state and the OFF state is a non-conducting state. The switch 132 has a function of switching states between the sensor coil 120 and the capacitor 131 . When switch 132 is turned on, sensor coil 120 and capacitor 131 form resonant circuit 130 . The switch 133 has a function of switching the state between this resonance circuit and the pulse generator 160 .
 つまり、スイッチ132とスイッチ133との両方がオン状態になると、センサコイル120とキャパシタ131とは共振回路を形成し、この共振回路に、配線を介して、パルス発生部160からパルス状電圧が印加される。共振回路の両端間の電圧、すなわち、センサコイル120の両端間の電圧は、配線を介して検出部150に導かれる。スイッチ132がオフ状態になると、センサコイル120とキャパシタ131とは共振回路を形成しない。また、スイッチ133がオフ状態になると、共振回路は、検出部150とパルス発生部160とから電気的に切断される。 That is, when both the switch 132 and the switch 133 are turned on, the sensor coil 120 and the capacitor 131 form a resonant circuit, and a pulse voltage is applied to the resonant circuit from the pulse generator 160 through the wiring. be done. The voltage across the resonance circuit, that is, the voltage across the sensor coil 120 is led to the detection unit 150 via wiring. When switch 132 is turned off, sensor coil 120 and capacitor 131 do not form a resonant circuit. Also, when the switch 133 is turned off, the resonance circuit is electrically disconnected from the detection section 150 and the pulse generation section 160 .
 図5は、共振回路の付近に異物10が存在していることを示している。スイッチ132が閉じてセンサコイル120とキャパシタ131とが共振回路を構成している状態で、スイッチ133が閉じてパルス発生部160からパルス状の電圧が印加されるとする。共振回路の両端間の電圧を表す電圧信号は、このパルス電圧が立ち下がった以降、すなわちセンサコイル120への電流が遮断された以降、時間の経過とともに波高値が徐々に減衰する振動信号である。 FIG. 5 shows that a foreign object 10 exists near the resonant circuit. Assume that the switch 133 is closed and a pulse voltage is applied from the pulse generator 160 while the switch 132 is closed and the sensor coil 120 and the capacitor 131 form a resonant circuit. The voltage signal representing the voltage across the resonant circuit is an oscillating signal whose crest value gradually attenuates over time after the pulse voltage falls, that is, after the current to the sensor coil 120 is cut off. .
 センサコイル120の付近に異物10が存在すると、センサコイル120のインダクタンスに変化が生じる。このため、異物10が存在する場合、異物10が存在しない場合と比較すると、振動信号の周波数が変化したり、振動信号の減衰の程度が変化したりする。検出部150は、振動信号の周波数の変化、振動信号の減衰の程度の変化等を検出することにより、異物10の有無を判別する。 When the foreign object 10 exists near the sensor coil 120, the inductance of the sensor coil 120 changes. Therefore, when the foreign object 10 exists, the frequency of the vibration signal changes or the degree of attenuation of the vibration signal changes compared to when the foreign object 10 does not exist. The detection unit 150 determines the presence or absence of the foreign object 10 by detecting changes in the frequency of the vibration signal, changes in the degree of attenuation of the vibration signal, and the like.
 出力値取得部154は、検出制御部151による制御に従って、共振回路の両端間の電圧を表す振動信号から、選択されたセンサコイル120の出力値を取得する。出力値取得部154が取得する出力値をどのような値にするのかは、適宜、調整することができる。例えば、出力値は、振動信号の周波数、振動信号の収束時間、振動信号の振幅の大きさ等にすることができる。振動信号の収束時間は、例えば、パルス状の電圧が印加されてから振動信号の振幅が予め定められた振幅以下に収まるまでの時間である。振動信号の振幅の大きさは、例えば、パルス状の電圧が印加されてから予め定められた時間が経過したときの振動信号の振幅の大きさである。 The output value acquisition unit 154 acquires the output value of the selected sensor coil 120 from the vibration signal representing the voltage across the resonance circuit under the control of the detection control unit 151 . The output value acquired by the output value acquisition unit 154 can be adjusted as appropriate. For example, the output value can be the frequency of the vibration signal, the convergence time of the vibration signal, the magnitude of the amplitude of the vibration signal, and the like. The convergence time of the vibration signal is, for example, the time from when the pulse voltage is applied until the amplitude of the vibration signal falls below a predetermined amplitude. The magnitude of the amplitude of the vibration signal is, for example, the magnitude of the amplitude of the vibration signal when a predetermined time has passed since the pulse voltage was applied.
 記憶部155は、異物検出装置100が実行する異物検出処理に関わる種々のデータを記憶する。例えば、記憶部155は、出力値と、基準値と、差分値と、閾値とを記憶する。出力値は、出力値取得部154により取得された出力値である。基準値は、出力値の基準値である。つまり、基準値は、センサコイル120の近傍に異物10が存在しないときに取得される出力値である。基準値は、実験、シミュレーション等により予め取得されて、記憶部155に記憶されている。 The storage unit 155 stores various data related to foreign matter detection processing executed by the foreign matter detection device 100 . For example, the storage unit 155 stores an output value, a reference value, a difference value, and a threshold. The output value is the output value acquired by the output value acquisition unit 154 . The reference value is the reference value of the output value. That is, the reference value is the output value obtained when the foreign object 10 does not exist near the sensor coil 120 . The reference value is obtained in advance through experiments, simulations, or the like, and stored in the storage unit 155 .
 差分値は、異物10がないときに取得される出力値である基準値と現在取得された出力値との差分の値である。つまり、差分値は、異物10がないときに取得される出力値からの変化量である。差分値が小さいことは異物10が存在しない可能性が高いことを意味し、差分値が大きいことは異物10が存在する可能性が高いことを意味する。閾値は、差分値を判別するための閾値である。閾値は、例えば、予測されるノイズの大きさ、異物10の有無による出力値の変化の程度等を考慮して予め定められて、記憶部155に記憶されている。 The difference value is the difference between the reference value, which is the output value obtained when the foreign object 10 is not present, and the currently obtained output value. That is, the difference value is the amount of change from the output value obtained when the foreign object 10 is not present. A small difference value means that there is a high possibility that the foreign object 10 does not exist, and a large difference value means that there is a high possibility that the foreign object 10 exists. The threshold is a threshold for determining the difference value. The threshold value is determined in advance in consideration of the expected magnitude of noise, the degree of change in the output value due to the presence or absence of the foreign object 10, and the like, and is stored in the storage unit 155, for example.
 なお、検出制御部151は、センサコイル120の出力値に基づく比較対象値と閾値との比較結果に基づいて、異物10の有無を判別する。比較対象値は、閾値と比較される対象の値であり、具体的には、出力値と基準値との差分値又はこの差分値に基づく値である。本実施の形態では、比較対象値は、出力値と基準値との差分値である。検出制御部151は、例えば、複数のセンサコイル120のうち何れか1個のセンサコイル120について、比較対象値が閾値を超えると判別した場合、異物10があるとの検出結果を出力する。 Note that the detection control unit 151 determines the presence or absence of the foreign object 10 based on the comparison result between the comparison target value based on the output value of the sensor coil 120 and the threshold. A comparison target value is a value to be compared with a threshold value, and specifically, a difference value between an output value and a reference value or a value based on this difference value. In this embodiment, the comparison target value is the difference value between the output value and the reference value. For example, the detection control unit 151 outputs a detection result indicating that the foreign object 10 is present when determining that the comparison target value exceeds the threshold for any one of the sensor coils 120 .
 結果出力部156は、検出制御部151による制御に従って、検出制御部151による検出結果を出力する。例えば、結果出力部156は、検出制御部151により異物10が存在すると判別された場合、通知部170に、異物10が存在することの通知を指示する。なお、通知部170は、検出制御部151から通知を受けると、異物が検出されたことを示す情報を、ユーザが所持する端末装置600に送信する。一方、端末装置600は、画面表示、音声出力等により、異物が検出されたことをユーザに知らせる。 The result output unit 156 outputs the detection result by the detection control unit 151 according to the control by the detection control unit 151 . For example, when the detection control unit 151 determines that the foreign object 10 exists, the result output unit 156 instructs the notification unit 170 to notify that the foreign object 10 exists. Note that, upon receiving the notification from the detection control unit 151, the notification unit 170 transmits information indicating that a foreign object has been detected to the terminal device 600 possessed by the user. On the other hand, the terminal device 600 informs the user that a foreign object has been detected through screen display, voice output, or the like.
 送電制御部157は、検出制御部151による制御に従って、送電コイルユニット210による受電コイルユニット310への送電を制御する。送電制御部157は、検出制御部151により異物10が存在すると判別された場合、電力供給装置220に送電を停止することを指示する。 The power transmission control unit 157 controls power transmission from the power transmission coil unit 210 to the power reception coil unit 310 according to the control by the detection control unit 151 . When the detection control unit 151 determines that the foreign object 10 exists, the power transmission control unit 157 instructs the power supply device 220 to stop power transmission.
 本実施の形態では、検出コイルユニット110は、送電コイルユニット210の上方に配置される。この送電コイルユニット210が備える送電コイル211からは、送電のための磁束が発生する。この磁束に基づく磁束密度の分布は、送電コイル211の周囲で一様ではない。つまり、送電コイル211の周囲において、高い磁束密度を有する位置と低い磁束密度を有する位置とが存在する。なお、送電のための磁束は時間の経過とともに変化するため、磁束密度も時間の経過とともに変化する。本実施の形態では、送電コイル211が発生する磁束に基づく磁束密度の最大値を、適宜、単に、磁束密度という。 In the present embodiment, detection coil unit 110 is arranged above power transmission coil unit 210 . Magnetic flux for power transmission is generated from the power transmission coil 211 included in the power transmission coil unit 210 . The magnetic flux density distribution based on this magnetic flux is not uniform around power transmission coil 211 . In other words, there are positions with a high magnetic flux density and positions with a low magnetic flux density around the power transmission coil 211 . In addition, since the magnetic flux for power transmission changes with the passage of time, the magnetic flux density also changes with the passage of time. In the present embodiment, the maximum value of magnetic flux density based on the magnetic flux generated by power transmission coil 211 is simply referred to as magnetic flux density as appropriate.
 ここで、高い磁束密度を有する位置にセンサコイル120が配置されると、送電時に、センサコイル120のループを貫く磁束が時間の経過とともに大きく変化する。このため、送電時に、このセンサコイル120の両端に高い誘起電圧が発生する。この誘起電圧が高すぎると、センサコイル120に大きすぎる誘導電流が流れてセンサコイル120が焼損する可能性がある。また、この誘起電圧が高すぎると、共振回路の状態を選択するスイッチ132、又は、使用するセンサコイル120を選択するスイッチ133に過電圧が印加されて、スイッチ132又はスイッチ133が破損する可能性がある。 Here, when the sensor coil 120 is placed at a position having a high magnetic flux density, the magnetic flux passing through the loop of the sensor coil 120 changes greatly over time during power transmission. Therefore, a high induced voltage is generated across the sensor coil 120 during power transmission. If the induced voltage is too high, an excessively large induced current may flow through the sensor coil 120 and the sensor coil 120 may burn out. Also, if the induced voltage is too high, an overvoltage is applied to the switch 132 that selects the state of the resonant circuit or the switch 133 that selects the sensor coil 120 to be used, and the switch 132 or the switch 133 may be damaged. be.
 ところで、センサコイル120が有する開口部の面積である開口面積とセンサコイル120のターン数との積が大きいセンサコイル120は、基本的に、センサコイル120の両端に発生する誘起電圧が高く、遠くの異物10を検知する検知性能が高い。一方、開口面積とターン数との積が小さいセンサコイル120は、基本的に、センサコイル120の両端に発生する誘起電圧が低く、遠くの異物10を検知する検知性能が低い。なお、ターン数は、センサコイル120を構成するループの数であり、導線の巻数である。 By the way, the sensor coil 120 having a large product of the opening area, which is the area of the opening of the sensor coil 120, and the number of turns of the sensor coil 120 basically has a high induced voltage generated at both ends of the sensor coil 120. The detection performance of detecting foreign matter 10 is high. On the other hand, the sensor coil 120 having a small product of the opening area and the number of turns basically has a low induced voltage across both ends of the sensor coil 120 and has a low detection performance for detecting a distant foreign object 10 . The number of turns is the number of loops forming the sensor coil 120 and the number of turns of the conductor wire.
 ここで、検出コイルユニット110が有する全てのセンサコイル120を開口面積とターン数との積が大きいセンサコイル120にすると、高い磁束密度を有する位置に配置されたセンサコイル120の両端に高すぎる誘起電圧が発生し、このセンサコイル120に焼損等が発生する可能性が高い。一方、検出コイルユニット110が有する全てのセンサコイル120を開口面積とターン数との積が小さいセンサコイル120にすると、異物検出装置100全体としての検知性能を高くすることが困難である。また、全てのセンサコイル120からの出力を同一の回路で処理する場合において、低い磁束密度を有する位置に配置されたセンサコイル120の出力を増幅する方法が考えられる。しかしながら、この方法では、異物検出装置100に増幅回路を設ける必要があり、コストが上昇する。 Here, if all the sensor coils 120 of the detection coil unit 110 are sensor coils 120 with a large product of the opening area and the number of turns, too high induction will occur at both ends of the sensor coil 120 arranged at a position having a high magnetic flux density. There is a high possibility that a voltage will be generated and the sensor coil 120 will be burnt out. On the other hand, if all the sensor coils 120 included in the detection coil unit 110 are sensor coils 120 with a small product of the opening area and the number of turns, it is difficult to improve the detection performance of the foreign object detection device 100 as a whole. Further, when the outputs from all the sensor coils 120 are processed by the same circuit, a method of amplifying the output of the sensor coils 120 arranged at positions having a low magnetic flux density can be considered. However, in this method, it is necessary to provide an amplifier circuit in the foreign object detection device 100, which increases the cost.
 そこで、本実施の形態では、センサコイル120が配置される位置の磁束密度の高さに応じたセンサコイル120が採用される。具体的には、本実施の形態では、高い磁束密度を有する位置には開口面積とターン数との積が小さいセンサコイル120が配置され、低い磁束密度を有する位置には開口面積とターン数との積が大きいセンサコイル120が配置される。かかる構成によれば、高い検知性能を維持しつつ、センサコイル120の焼損等を防止することができる。 Therefore, in the present embodiment, the sensor coil 120 is adopted according to the height of the magnetic flux density at the position where the sensor coil 120 is arranged. Specifically, in the present embodiment, the sensor coil 120 having a small product of the opening area and the number of turns is arranged at the position having a high magnetic flux density, and the sensor coil 120 having a small product of the opening area and the number of turns is arranged at the position having a low magnetic flux density. A sensor coil 120 having a large product of is arranged. According to such a configuration, it is possible to prevent burning of the sensor coil 120 while maintaining high detection performance.
 次に、図6を参照して、磁束密度の分布について説明する。図6は、送電コイルユニット210の平面図である。図6に示すように、送電コイルユニット210は、開口部212Aを有する磁性体板212と、開口部212Aよりも小さい開口部211Aを有する送電コイル211とを有する。送電コイル211は、平面視で、送電コイル211の外縁が磁性体板212の外縁の内部に配置され、開口部212Aの全体が開口部211Aと重なるように、磁性体板212の上方に配置される。ここで、送電コイルユニット210の上方の領域は、領域Aと領域Bと領域Cと領域Dとに分類される。 Next, the distribution of magnetic flux density will be described with reference to FIG. FIG. 6 is a plan view of the power transmission coil unit 210. FIG. As shown in FIG. 6, the power transmission coil unit 210 has a magnetic plate 212 having an opening 212A and a power transmission coil 211 having an opening 211A smaller than the opening 212A. The power transmission coil 211 is arranged above the magnetic plate 212 so that the outer edge of the power transmission coil 211 is arranged inside the outer edge of the magnetic plate 212 and the entire opening 212A overlaps the opening 211A in plan view. be. Here, the area above power transmission coil unit 210 is classified into area A, area B, area C, and area D. FIG.
 領域Aは、平面視で、開口部211Aと重なり、開口部212Aと重ならない領域である。領域Bは、平面視で、開口部211Aと重なり、開口部212Aと重なる領域である。領域Cは、平面視で、送電コイル211が備える導線211Bと重なり、磁性体板212と重なる領域である。領域Dは、平面視で、磁性体板212と重なる、導線211Bの外側の領域である。つまり、領域Aは、平面視で、環状の領域である。領域Bは、平面視で、領域Aに囲まれた領域である。領域Cは、平面視で、領域Aを囲む環状の領域である。領域Dは、平面視で、領域Cを囲む環状の領域である。 A region A is a region that overlaps with the opening 211A and does not overlap with the opening 212A in plan view. A region B is a region overlapping with the opening 211A and overlapping with the opening 212A in plan view. A region C is a region that overlaps with the conductor 211B included in the power transmission coil 211 and overlaps with the magnetic plate 212 in plan view. A region D is a region outside the conducting wire 211B overlapping the magnetic plate 212 in plan view. That is, the area A is an annular area in plan view. Region B is a region surrounded by region A in plan view. Region C is an annular region surrounding region A in plan view. Region D is an annular region surrounding region C in plan view.
 領域Aは、送電コイル211が発生した磁束が磁性体板212により集約される領域であるため、非常に高い磁束密度を有する領域である。領域Bは、平面視で磁性体板212と重ならない領域であるため、低い磁束密度を有する領域である。領域Cは、平面視で送電コイル211が備える導線211Bと重なる領域であるため、高い磁束密度を有する領域である。領域Dは、平面視で磁性体板212と重なる領域であるが、平面視で送電コイル211の外側の領域であるため、低い磁束密度を有する領域である。 Area A is an area where the magnetic flux generated by the power transmission coil 211 is collected by the magnetic plate 212, and thus has a very high magnetic flux density. The area B is an area that does not overlap with the magnetic plate 212 in plan view, and thus has a low magnetic flux density. The region C is a region that overlaps with the conductor 211B included in the power transmission coil 211 in plan view, and thus has a high magnetic flux density. The region D is a region that overlaps with the magnetic plate 212 in plan view, but is a region outside the power transmission coil 211 in plan view, and thus has a low magnetic flux density.
 そこで、領域Aには、遠くの異物10を検知する検知性能は低いが、小さな異物10を検知可能なセンサコイル120が配置される。また、領域Bと領域Dとには、遠くの異物10を検知する検知性能が高いセンサコイル120が配置される。また、領域Cには、領域Aに比べて、遠くの異物10を検知する検知性能が高く、領域Bと領域Dとに比べて、小さな異物10を検知可能なセンサコイル120が配置される。本実施の形態では、図3に示すように、領域Aに16個のセンサコイル120Aが配置され、領域Bに2個のセンサコイル120Bが配置され、領域Cに14個のセンサコイル120Cが配置され、領域Cと領域Dとを跨ぐ領域に18個のセンサコイル120Dが配置される。 Therefore, in area A, the sensor coil 120 that can detect a small foreign object 10 is arranged, although the detection performance for detecting a distant foreign object 10 is low. Further, in the area B and the area D, sensor coils 120 with high detection performance for detecting a distant foreign object 10 are arranged. Further, in the area C, a sensor coil 120 that has a higher detection performance for detecting a distant foreign object 10 than the area A and that can detect a small foreign object 10 compared to the areas B and D is arranged. In this embodiment, as shown in FIG. 3, 16 sensor coils 120A are arranged in area A, two sensor coils 120B are arranged in area B, and 14 sensor coils 120C are arranged in area C. 18 sensor coils 120D are arranged in a region straddling the region C and the region D. As shown in FIG.
 このように、各領域に配置されるセンサコイル120の検知性能は、その領域の磁束密度に応じて設定される。例えば、磁束密度が低い領域には、磁束密度が高い領域よりも、遠くの異物10を検知する検知性能が高いセンサコイル120が配置される。つまり、磁束密度が低い領域ほど、遠くの異物10を検知する検知性能の高いセンサコイル120が配置される。一方、磁束密度が高い領域には、磁束密度が低い領域よりも、小さな異物10を検知する検知性能が高いセンサコイル120が配置される。つまり、磁束密度が高い領域ほど、小さな異物10を検知する検知性能の高いセンサコイル120が配置される。 In this way, the detection performance of the sensor coils 120 arranged in each area is set according to the magnetic flux density of that area. For example, sensor coils 120 that have higher detection performance for detecting a distant foreign object 10 are arranged in areas where the magnetic flux density is low than in areas where the magnetic flux density is high. In other words, sensor coils 120 with higher detection performance for detecting foreign objects 10 at a farther distance are arranged in regions where the magnetic flux density is lower. On the other hand, sensor coils 120 having higher detection performance for detecting small foreign objects 10 are arranged in areas where the magnetic flux density is high than in areas where the magnetic flux density is low. In other words, sensor coils 120 with higher detection performance for detecting small foreign objects 10 are arranged in regions where the magnetic flux density is higher.
 図7は、図3におけるVII-VII線の断面の模式図である。なお、図7には、検出コイルユニット110の断面に加え、送電コイルユニット210の断面を模式的に示す模式図を示している。 FIG. 7 is a schematic diagram of a cross section taken along line VII-VII in FIG. In addition to the cross section of the detection coil unit 110, FIG. 7 also shows a schematic diagram that schematically shows the cross section of the power transmission coil unit 210. As shown in FIG.
 図7に示すように、センサコイル120Aは、コイル導体121Aが巻回されて構成されるコイルである。センサコイル120Aは、コイル導体121Aの内側に形成された開口部分である開口部123Aを有する。センサコイル120Aは、送電コイル211のコイル軸が延在する第1方向から見て、送電コイル211が有する開口部211A内に配置され、磁性体板212と対向する。つまり、複数のセンサコイル120Aは、第1方向から見て、開口部211Aと磁性体板212とに重なる位置に環状に配置される。なお、第1方向は、Z軸方向である。 As shown in FIG. 7, the sensor coil 120A is a coil formed by winding a coil conductor 121A. The sensor coil 120A has an opening 123A that is an opening formed inside the coil conductor 121A. The sensor coil 120A is arranged in an opening 211A of the power transmission coil 211 and faces the magnetic plate 212 when viewed from the first direction in which the coil axis of the power transmission coil 211 extends. That is, the plurality of sensor coils 120A are annularly arranged at positions overlapping the opening 211A and the magnetic plate 212 when viewed from the first direction. Note that the first direction is the Z-axis direction.
 また、複数のセンサコイル120Aのそれぞれは、第1方向から見て、略方形形状である。略方形形状とは、完全な方形形状に対して若干の差があることを許容する概念であり、全体として概ね方形形状であることを意味する概念である。例えば、略方形形状は、完全な方形形状における4つの角に丸みを持たせた形状を含む概念である。センサコイル120Aは、第1センサコイルの一例である。開口部123Aは、第1センサ開口部の一例である。 Also, each of the plurality of sensor coils 120A has a substantially square shape when viewed from the first direction. A substantially rectangular shape is a concept that allows for slight differences from a perfect rectangular shape, and means that the shape as a whole is substantially rectangular. For example, a substantially rectangular shape is a concept that includes a shape in which the four corners of a perfect rectangular shape are rounded. Sensor coil 120A is an example of a first sensor coil. The opening 123A is an example of a first sensor opening.
 センサコイル120Bは、コイル導体121Bが巻回されて構成されるコイルである。センサコイル120Bは、コイル導体121Bの内側に形成された開口部分である開口部123Bを有する。センサコイル120Bは、第1方向から見て、複数のセンサコイル120Aよりも送電コイル211の中心寄りに配置される。つまり、センサコイル120Bは、第1方向から見て、環状に配置された複数のセンサコイル120Aの内側に配置される。また、センサコイル120Bは、開口部211Aと開口部212Aとに重なる位置に配置される。また、センサコイル120Bは、第1方向から見て、略方形形状である。センサコイル120Bは、第2センサコイルの一例である。開口部123Bは、第2センサ開口部の一例である。 The sensor coil 120B is a coil formed by winding a coil conductor 121B. The sensor coil 120B has an opening 123B that is an opening formed inside the coil conductor 121B. The sensor coil 120B is arranged closer to the center of the power transmission coil 211 than the plurality of sensor coils 120A when viewed from the first direction. That is, the sensor coil 120B is arranged inside the plurality of sensor coils 120A that are annularly arranged when viewed from the first direction. Moreover, the sensor coil 120B is arranged at a position overlapping the opening 211A and the opening 212A. Moreover, the sensor coil 120B has a substantially rectangular shape when viewed from the first direction. Sensor coil 120B is an example of a second sensor coil. The opening 123B is an example of a second sensor opening.
 センサコイル120Cは、コイル導体121Cが巻回されて構成されるコイルである。センサコイル120Cは、コイル導体121Cの内側に形成された開口部分である開口部123Cを有する。センサコイル120Cは、第1方向から見て、送電コイル211が有する導線211Bと重なる位置に配置される。つまり、複数のセンサコイル120Cは、第1方向から見て、環状に配置された複数のセンサコイル120Aの外側に環状に配置される。また、センサコイル120Cは、第1方向から見て、略方形形状である。センサコイル120Cは、第3センサコイルの一例である。開口部123Cは、第3センサ開口部の一例である。 The sensor coil 120C is a coil formed by winding a coil conductor 121C. The sensor coil 120C has an opening 123C that is an opening formed inside the coil conductor 121C. The sensor coil 120C is arranged at a position overlapping with the conducting wire 211B of the power transmitting coil 211 when viewed from the first direction. That is, the plurality of sensor coils 120C are annularly arranged outside the plurality of annularly arranged sensor coils 120A when viewed from the first direction. Also, the sensor coil 120C has a substantially rectangular shape when viewed from the first direction. Sensor coil 120C is an example of a third sensor coil. The opening 123C is an example of a third sensor opening.
 センサコイル120Dは、コイル導体121Dが巻回されて構成されるコイルである。センサコイル120Dは、コイル導体121Dの内側に形成された開口部分である開口部123Dを有する。センサコイル120Dは、第1方向から見て、複数のセンサコイル120Cよりも送電コイル211の中心から離れた位置に配置される。つまり、複数のセンサコイル120Dは、第1方向から見て、環状に配置された複数のセンサコイル120Cの外側に環状に配置される。また、センサコイル120Dは、第1方向から見て、導線211Bと重なる領域と導線211Bの外側の領域とを跨ぐ位置に配置される。また、センサコイル120Dは、第1方向から見て、略方形形状である。センサコイル120Dは、第4センサコイルの一例である。開口部123Dは、第4センサ開口部の一例である。 The sensor coil 120D is a coil formed by winding a coil conductor 121D. The sensor coil 120D has an opening 123D that is an opening formed inside the coil conductor 121D. The sensor coil 120D is arranged at a position farther from the center of the power transmission coil 211 than the plurality of sensor coils 120C when viewed from the first direction. That is, the plurality of sensor coils 120D are annularly arranged outside the plurality of annularly arranged sensor coils 120C when viewed from the first direction. Further, the sensor coil 120D is arranged at a position straddling a region overlapping with the conducting wire 211B and a region outside the conducting wire 211B when viewed from the first direction. Also, the sensor coil 120D has a substantially rectangular shape when viewed from the first direction. Sensor coil 120D is an example of a fourth sensor coil. The opening 123D is an example of a fourth sensor opening.
 本実施の形態では、開口部123Aの面積をS1、複数のセンサコイル120Aのそれぞれのターン数をN1、開口部123Bの面積をS2、センサコイル120Bのターン数をN2、開口部123Cの面積をS3、複数のセンサコイル120Cのそれぞれのターン数をN3、開口部123Dの面積をS4、複数のセンサコイル120Dのそれぞれのターン数をN4、としたとき、以下の式(1)と式(2)と式(3)とが満たされる。
 N1×S1<N2×S2・・・(1)
 N3×S3<N2×S2・・・(2)
 N3×S3<N4×S4・・・(3)
In the present embodiment, the area of the opening 123A is S1, the number of turns of each of the plurality of sensor coils 120A is N1, the area of the opening 123B is S2, the number of turns of the sensor coil 120B is N2, and the area of the opening 123C is S3, the number of turns of each of the plurality of sensor coils 120C is N3, the area of the opening 123D is S4, and the number of turns of each of the plurality of sensor coils 120D is N4, the following equations (1) and (2) ) and equation (3) are satisfied.
N1×S1<N2×S2 (1)
N3×S3<N2×S2 (2)
N3×S3<N4×S4 (3)
 センサコイル120が有する開口部123の面積である開口面積とセンサコイル120のターン数との積は、基本的に、センサコイル120の検知性能に対応する。式(1)は、センサコイル120Bが配置された位置が有する磁束密度よりも高い磁束密度を有する位置に配置されたセンサコイル120Aが、センサコイル120Bよりも、遠くの異物10を検知する検知性能は低いが、小さな異物10を検知する検知性能が高いことを示している。つまり、式(1)が満たされると、高い磁束密度を有する位置に配置されたセンサコイル120Aについては、焼損等が抑制されつつ、小さな異物10を検知する検知性能が高くなり、低い磁束密度を有する場所に配置されたセンサコイル120Bについては、遠くの異物10を検知する検知性能が高くなる。 The product of the opening area, which is the area of the opening 123 of the sensor coil 120 , and the number of turns of the sensor coil 120 basically corresponds to the detection performance of the sensor coil 120 . Expression (1) is the detection performance that the sensor coil 120A arranged at a position having a higher magnetic flux density than the position where the sensor coil 120B is arranged detects the foreign object 10 farther than the sensor coil 120B. is low, but the detection performance for detecting a small foreign object 10 is high. That is, when the expression (1) is satisfied, the sensor coil 120A arranged at a position having a high magnetic flux density is prevented from being burnt out, and has a high detection performance for detecting a small foreign object 10. The sensor coil 120B arranged at a location having a higher detection performance for detecting a distant foreign object 10 is improved.
 式(2)は、センサコイル120Bが配置された位置が有する磁束密度よりも高い磁束密度を有する位置に配置されたセンサコイル120Cが、センサコイル120Bよりも、遠くの異物10を検知する検知性能は低いが、小さな異物10を検知する検知性能が高いことを示している。つまり、式(2)が満たされると、高い磁束密度を有する位置に配置されたセンサコイル120Cについては、焼損等が抑制されつつ、小さな異物10を検知する検知性能が高くなり、低い磁束密度を有する場所に配置されたセンサコイル120Bについては、遠くの異物10を検知する検知性能が高くなる。 Expression (2) is the detection performance that the sensor coil 120C arranged at a position having a higher magnetic flux density than the position where the sensor coil 120B is arranged detects the foreign object 10 farther than the sensor coil 120B. is low, but the detection performance for detecting a small foreign object 10 is high. In other words, when the expression (2) is satisfied, the sensor coil 120C arranged at a position having a high magnetic flux density is prevented from being burnt out, and the detection performance of detecting a small foreign object 10 is improved. The sensor coil 120B arranged at a location having a higher detection performance for detecting a distant foreign object 10 is improved.
 式(3)は、センサコイル120Dが配置された位置が有する磁束密度よりも高い磁束密度を有する位置に配置されたセンサコイル120Cが、センサコイル120Dよりも、遠くの異物10を検知する検知性能は低いが、小さな異物10を検知する検知性能が高いことを示している。つまり、式(3)が満たされると、高い磁束密度を有する位置に配置されたセンサコイル120Cについては、焼損等が抑制されつつ、小さな異物10を検知する検知性能が高くなり、低い磁束密度を有する場所に配置されたセンサコイル120Dについては、遠くの異物10を検知する検知性能が高くなる。 Expression (3) is the detection performance that the sensor coil 120C arranged at a position having a higher magnetic flux density than the position where the sensor coil 120D is arranged detects the foreign object 10 farther than the sensor coil 120D. is low, but the detection performance for detecting a small foreign object 10 is high. In other words, when the expression (3) is satisfied, the sensor coil 120C arranged at a position having a high magnetic flux density is suppressed in burnout, etc., and has a high detection performance for detecting a small foreign object 10. As for the sensor coil 120D arranged at the location where the sensor coil 120D is located, the detection performance of detecting the distant foreign object 10 is enhanced.
 このように、本実施の形態によれば、ワイヤレス電力伝送の異物検知において、高い検知性能を維持しつつ、センサコイル120の焼損等を防止することができる。 As described above, according to the present embodiment, it is possible to prevent burnout of the sensor coil 120 and the like while maintaining high detection performance in foreign object detection in wireless power transmission.
 また、本実施の形態では、開口面積とターン数とのうち開口面積が調整されて、センサコイル120の検知性能が調整される。具体的には、第1方向から見て、開口部123Aは、開口部123Bよりも小さい。また、第1方向から見て、開口部123Cは、開口部123Bよりも小さい。本実施の形態では、センサコイル120Aのターン数とセンサコイル120Bのターン数とセンサコイル120Cのターン数とが制限されずに、センサコイル120の検知性能が調整される。従って、本実施の形態によれば、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとの設計の自由度が高い。 Further, in the present embodiment, the detection performance of the sensor coil 120 is adjusted by adjusting the opening area out of the opening area and the number of turns. Specifically, when viewed from the first direction, opening 123A is smaller than opening 123B. Also, when viewed from the first direction, the opening 123C is smaller than the opening 123B. In the present embodiment, the detection performance of sensor coil 120 is adjusted without limiting the number of turns of sensor coil 120A, the number of turns of sensor coil 120B, and the number of turns of sensor coil 120C. Therefore, according to the present embodiment, the sensor coil 120A, the sensor coil 120B, and the sensor coil 120C have a high degree of freedom in design.
 また、本実施の形態では、複数のセンサコイル120Aのそれぞれは、第1方向において、センサコイル120Bよりも送電コイル211から離れた位置に配置されている。つまり、検出コイル基板140内において複数のセンサコイル120Aのそれぞれが配置される層は、検出コイル基板140内においてセンサコイル120Bは配置される層よりも、送電コイル211から離れている。 Also, in the present embodiment, each of the plurality of sensor coils 120A is arranged at a position farther from the power transmission coil 211 than the sensor coil 120B in the first direction. That is, the layer in which each of the plurality of sensor coils 120A is arranged in the detection coil substrate 140 is farther from the power transmitting coil 211 than the layer in which the sensor coil 120B is arranged in the detection coil substrate 140 .
 ここで、送電コイル211が発生する磁束の磁束密度は、基本的に、送電コイル211から離れた位置程低い。このため、上記構成では、センサコイル120Aが配置される位置における磁束密度が高くなることが抑制される。つまり、本実施の形態によれば、センサコイル120Aに誘起される誘起電圧が高くなることが抑制され、センサコイル120Aの焼損等が更に抑制される。 Here, the magnetic flux density of the magnetic flux generated by the power transmission coil 211 is basically lower the further away it is from the power transmission coil 211 . Therefore, in the above configuration, the increase in the magnetic flux density at the position where the sensor coil 120A is arranged is suppressed. That is, according to the present embodiment, an increase in the induced voltage induced in the sensor coil 120A is suppressed, and burnout of the sensor coil 120A is further suppressed.
 また、センサコイル120Aは、センサコイル120Aの近くに配置された異物10の検出は可能であるが、センサコイル120Aの遠くに配置された異物10の検出は困難である。本実施の形態によれば、センサコイル120Aは、センサコイル120Bよりも異物10寄りに配置されるため、効率の良い異物検知が期待できる。 Also, the sensor coil 120A can detect the foreign object 10 placed near the sensor coil 120A, but it is difficult to detect the foreign object 10 placed far from the sensor coil 120A. According to the present embodiment, since the sensor coil 120A is arranged closer to the foreign object 10 than the sensor coil 120B, efficient foreign object detection can be expected.
 また、本実施の形態では、送電コイル211が発生する磁束が複数のセンサコイル120Aのそれぞれに鎖交したときに複数のセンサコイル120Aのそれぞれに誘起される電圧と、上記磁束がセンサコイル120Bに鎖交したときにセンサコイル120Bに誘起される電圧と、上記磁束がセンサコイル120Cに鎖交したときにセンサコイル120Cに誘起される電圧と、上記磁束がセンサコイル120Dに鎖交したときにセンサコイル120Dに誘起される電圧とが、同一である。なお、同一は、ある程度の差があることを許容する概念である。例えば、数%から数十%の差がある場合においても、同一と見做される場合がある。 In addition, in the present embodiment, when the magnetic flux generated by the power transmission coil 211 interlinks with each of the plurality of sensor coils 120A, the voltage induced in each of the plurality of sensor coils 120A and the magnetic flux are applied to the sensor coil 120B. A voltage induced in the sensor coil 120B when the magnetic flux interlinks with the sensor coil 120C, a voltage induced in the sensor coil 120C when the magnetic flux interlinks with the sensor coil 120C, and a sensor coil 120D when the magnetic flux interlinks with the sensor coil 120D. The voltage induced in coil 120D is the same. The sameness is a concept that allows some degree of difference. For example, even if there is a difference of several percent to several tens of percent, it may be regarded as the same.
 つまり、本実施の形態では、センサコイル120Aに誘起される誘起電圧とセンサコイル120Bに誘起される誘起電圧とセンサコイル120Cに誘起される誘起電圧とセンサコイル120Dに誘起される誘起電圧とが同程度になるように、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとセンサコイル120Dとのそれぞれの開口面積とターン数とが調整される。 That is, in the present embodiment, the induced voltage induced in sensor coil 120A, the induced voltage induced in sensor coil 120B, the induced voltage induced in sensor coil 120C, and the induced voltage induced in sensor coil 120D are the same. The opening area and number of turns of each of sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D are adjusted so as to be about the same.
 以下、図8を参照して、具体的に説明する。図8は、センサコイル120の種類毎に、センサコイル120が配置される位置における磁束密度と、センサコイル120が有する開口部123の面積である開口面積と、センサコイル120のターン数との対応関係を示す図である。 A specific description will be given below with reference to FIG. FIG. 8 shows, for each type of sensor coil 120, the correspondence between the magnetic flux density at the position where the sensor coil 120 is arranged, the opening area that is the area of the opening 123 of the sensor coil 120, and the number of turns of the sensor coil 120. FIG. 4 is a diagram showing relationships;
 ここで、遠くの異物10を検知する検知性能を考慮すると、開口面積とターン数との積は大きい方がよい。しかしながら、開口面積とターン数との積が大き過ぎると、送電コイル211が発生する磁束に起因してセンサコイル120に誘起される誘起電圧が大きくなり過ぎて、センサコイル120に焼損等が発生する可能性があり、また、近くの異物10を検知しにくい。そこで、センサコイル120に誘起される誘起電圧が、センサコイル120が配置される位置における磁束密度に拘わらず一定になるように、センサコイル120のターン数と開口面積とが調整される。つまり、磁束密度が高い位置に配置されるセンサコイル120ほど、開口面積とターン数との積が小さい。 Here, considering the detection performance of detecting a distant foreign object 10, the larger the product of the opening area and the number of turns, the better. However, if the product of the opening area and the number of turns is too large, the induced voltage induced in the sensor coil 120 due to the magnetic flux generated by the power transmission coil 211 will become too large, and the sensor coil 120 will burn out. Also, it is difficult to detect the foreign object 10 nearby. Therefore, the number of turns and the opening area of the sensor coil 120 are adjusted so that the induced voltage induced in the sensor coil 120 is constant regardless of the magnetic flux density at the position where the sensor coil 120 is arranged. That is, the product of the opening area and the number of turns is smaller for the sensor coil 120 arranged at a position where the magnetic flux density is higher.
 例えば、センサコイル120Aが配置される位置における磁束密度をB1、センサコイル120Aの開口面積をS1、センサコイル120Aのターン数をN1とする。また、センサコイル120Bが配置される位置における磁束密度をB2、センサコイル120Bの開口面積をS2、センサコイル120Bのターン数をN2とする。また、センサコイル120Cが配置される位置における磁束密度をB3、センサコイル120Cの開口面積をS3、センサコイル120Cのターン数をN3とする。また、センサコイル120Dが配置される位置における磁束密度をB4、センサコイル120Dの開口面積をS4、センサコイル120Dのターン数をN4とする。 For example, the magnetic flux density at the position where the sensor coil 120A is arranged is B1, the opening area of the sensor coil 120A is S1, and the number of turns of the sensor coil 120A is N1. Further, the magnetic flux density at the position where the sensor coil 120B is arranged is B2, the opening area of the sensor coil 120B is S2, and the number of turns of the sensor coil 120B is N2. Further, the magnetic flux density at the position where the sensor coil 120C is arranged is B3, the opening area of the sensor coil 120C is S3, and the number of turns of the sensor coil 120C is N3. Further, the magnetic flux density at the position where the sensor coil 120D is arranged is B4, the opening area of the sensor coil 120D is S4, and the number of turns of the sensor coil 120D is N4.
 この場合、例えば、B1に基づいて、センサコイル120Aに誘起される誘起電圧が予め定められた基準電圧になるように、S1とN1とが決定される。基準電圧は、例えば、焼損等が発生しないと推定される誘起電圧の上限値である。例えば、N1が2に決定されると、誘起電圧が基準電圧になるようにS1が決定される。なお、本実施の形態では、全てのセンサコイル120のターン数は同じであり、N1=N2=N3=N4=2である。 In this case, for example, based on B1, S1 and N1 are determined so that the induced voltage induced in the sensor coil 120A becomes a predetermined reference voltage. The reference voltage is, for example, the upper limit of the induced voltage at which burnout or the like is presumed not to occur. For example, when N1 is determined to be 2, S1 is determined so that the induced voltage becomes the reference voltage. In this embodiment, all the sensor coils 120 have the same number of turns, and N1=N2=N3=N4=2.
 また、B2=B1/4である場合、S2=S1×4である。また、B3=B1/3である場合、S3=S1×3である。また、B4=B1/4である場合、S4=S1×4である。本実施の形態によれば、全てのセンサコイル120の何れにも焼損等を発生させずに、異物検出装置100全体としての検知性能を高くすることができる。 Also, when B2=B1/4, S2=S1×4. Also, when B3=B1/3, S3=S1×3. Also, when B4=B1/4, S4=S1×4. According to the present embodiment, it is possible to improve the detection performance of the foreign object detection apparatus 100 as a whole without causing burnout or the like in any of the sensor coils 120 .
 本実施の形態では、センサコイル120が配置される位置の磁束密度の高さに応じて、センサコイル120の検知性能が調整される。具体的には、センサコイル120が配置される位置の磁束密度が高い程、開口面積とターン数との積が小さく設定される。より詳細には、複数のセンサコイル120のそれぞれに誘起される誘起電圧が同一になるように、複数のセンサコイル120のそれぞれについて開口面積とターン数とが設定される。本実施の形態によれば、検知性能の向上とセンサコイル120の焼損等の抑制との両立が図られる。つまり、本実施の形態によれば、ワイヤレス電力伝送の異物検知において、高い検知性能を維持しつつ、センサコイル120の焼損等を防止することができる。 In the present embodiment, the detection performance of sensor coil 120 is adjusted according to the height of the magnetic flux density at the position where sensor coil 120 is arranged. Specifically, the higher the magnetic flux density at the position where the sensor coil 120 is arranged, the smaller the product of the opening area and the number of turns is set. More specifically, the opening area and the number of turns are set for each of the plurality of sensor coils 120 so that the induced voltages induced in each of the plurality of sensor coils 120 are the same. According to the present embodiment, both improvement in detection performance and suppression of burnout of sensor coil 120 are achieved. In other words, according to the present embodiment, it is possible to prevent burnout of the sensor coil 120 and the like while maintaining high detection performance in foreign matter detection in wireless power transmission.
(実施の形態2)
 実施の形態1では、センサコイル120の開口面積の調整により、センサコイル120に誘起される誘起電圧が調整される例について説明した。本実施の形態では、センサコイル120のターン数の調整により、センサコイル120に誘起される誘起電圧が調整される例について説明する。なお、実施の形態1と同様の構成及び処理については、説明を省略又は簡略化する。
(Embodiment 2)
In the first embodiment, an example has been described in which the induced voltage induced in sensor coil 120 is adjusted by adjusting the opening area of sensor coil 120 . In this embodiment, an example in which the induced voltage induced in sensor coil 120 is adjusted by adjusting the number of turns of sensor coil 120 will be described. Note that the description of the same configuration and processing as in the first embodiment is omitted or simplified.
 図9に、本実施の形態に係る検出コイルユニット110Aの平面図を示す。図10に、図9におけるX-X線の断面の模式図を示す。図9には、理解を容易にするため、検出コイルユニット110だけではなく、送電コイルユニット210が備える送電コイル211及び磁性体板212も図示している。また、図9では、理解を容易にするため、検出コイル基板140の内部に配置された各センサコイル120を破線ではなく実線で示している。また、理解を容易にするため、図10には、検出コイルユニット110Aの断面に加え、送電コイルユニット210の断面を模式的に示す模式図を示している。 FIG. 9 shows a plan view of a detection coil unit 110A according to this embodiment. FIG. 10 shows a schematic diagram of a cross section taken along line XX in FIG. In order to facilitate understanding, FIG. 9 shows not only the detection coil unit 110 but also the power transmission coil 211 and the magnetic plate 212 included in the power transmission coil unit 210 . Also, in FIG. 9, the sensor coils 120 arranged inside the detection coil substrate 140 are indicated by solid lines instead of dashed lines for easy understanding. In order to facilitate understanding, FIG. 10 shows a schematic diagram schematically showing a cross section of the power transmission coil unit 210 in addition to the cross section of the detection coil unit 110A.
 図9に示すように、検出コイルユニット110Aは、8個のセンサコイル120Aと、1個のセンサコイル120Bと、14個のセンサコイル120Cと、20個のセンサコイル120Dとを有する。 As shown in FIG. 9, the detection coil unit 110A has 8 sensor coils 120A, 1 sensor coil 120B, 14 sensor coils 120C, and 20 sensor coils 120D.
 センサコイル120Aは、遠くの異物10を検知する検知性能は低いが、小さな異物10を検知する検知性能が非常に高く、非常に高い磁束密度を有する領域Aに配置される。センサコイル120Aは、第1方向から見て、送電コイル211が有する開口部211A内に配置され、磁性体板212と対向する。つまり、複数のセンサコイル120Aは、第1方向から見て、開口部211Aと磁性体板212とに重なる位置に環状に配置される。 The sensor coil 120A has low detection performance for detecting a distant foreign object 10, but very high detection performance for detecting a small foreign object 10, and is arranged in the area A having a very high magnetic flux density. The sensor coil 120A is arranged in an opening 211A of the power transmission coil 211 and faces the magnetic plate 212 when viewed from the first direction. That is, the plurality of sensor coils 120A are annularly arranged at positions overlapping the opening 211A and the magnetic plate 212 when viewed from the first direction.
 センサコイル120Bは、遠くの異物10を検知する検知性能が高く、低い磁束密度を有する領域Bに配置される。センサコイル120Bは、第1方向から見て、複数のセンサコイル120Aよりも送電コイル211の中心寄りに配置される。つまり、センサコイル120Bは、第1方向から見て、環状に配置された複数のセンサコイル120Aの内側に配置される。また、センサコイル120Bは、開口部211Aと開口部212Aとに重なる位置に配置される。 The sensor coil 120B has high detection performance for detecting a distant foreign object 10 and is arranged in a region B having a low magnetic flux density. The sensor coil 120B is arranged closer to the center of the power transmission coil 211 than the plurality of sensor coils 120A when viewed from the first direction. That is, the sensor coil 120B is arranged inside the plurality of sensor coils 120A that are annularly arranged when viewed from the first direction. Moreover, the sensor coil 120B is arranged at a position overlapping the opening 211A and the opening 212A.
 センサコイル120Cは、遠くの異物10を検知する検知性能は低いが、小さな異物10を検知する検知性能が高く、高い磁束密度を有する領域Cに配置される。センサコイル120Cは、第1方向から見て、送電コイル211が有する導線211Bと重なる位置に配置される。つまり、複数のセンサコイル120Cは、第1方向から見て、環状に配置された複数のセンサコイル120Aの外側に環状に配置される。 The sensor coil 120C has low detection performance for detecting a distant foreign object 10, but high detection performance for detecting a small foreign object 10, and is arranged in a region C having a high magnetic flux density. The sensor coil 120C is arranged at a position overlapping with the conducting wire 211B of the power transmitting coil 211 when viewed from the first direction. That is, the plurality of sensor coils 120C are annularly arranged outside the plurality of annularly arranged sensor coils 120A when viewed from the first direction.
 センサコイル120Dは、遠くの異物10を検知する検知性能が高く、概ね、高い磁束密度を有する領域Cと低い磁束密度を有する領域Dとを跨ぐ領域に配置される。センサコイル120Dは、第1方向から見て、複数のセンサコイル120Cよりも送電コイル211の中心から離れた位置に配置される。つまり、複数のセンサコイル120Dは、第1方向から見て、環状に配置された複数のセンサコイル120Cの外側に環状に配置される。 The sensor coil 120D has high detection performance for detecting a distant foreign object 10, and is generally arranged in a region straddling the region C having a high magnetic flux density and the region D having a low magnetic flux density. The sensor coil 120D is arranged at a position farther from the center of the power transmission coil 211 than the plurality of sensor coils 120C when viewed from the first direction. That is, the plurality of sensor coils 120D are annularly arranged outside the plurality of annularly arranged sensor coils 120C when viewed from the first direction.
 なお、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとセンサコイル120Dとは、第1方向から見て、略方形形状である。また、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとセンサコイル120Dとは、同一の大きさの開口部123を有する。なお、図10では、センサコイル120が有する開口部123の大きさにばらつきがあるが、センサコイル120が有する開口部123の実際の大きさは同じである。 Note that the sensor coil 120A, the sensor coil 120B, the sensor coil 120C, and the sensor coil 120D have a substantially rectangular shape when viewed from the first direction. Sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D have openings 123 of the same size. In FIG. 10, the sizes of the openings 123 of the sensor coil 120 vary, but the actual sizes of the openings 123 of the sensor coil 120 are the same.
 本実施の形態では、複数のセンサコイル120Aのそれぞれのターン数と複数のセンサコイル120Cのそれぞれのターン数とは、センサコイル120Bのターン数よりも少ない。以下、図11を参照して、具体的に説明する。図11は、センサコイル120の種類毎に、センサコイル120が配置される位置における磁束密度と、センサコイル120が有する開口部123の面積である開口面積と、センサコイル120のターン数との対応関係を示す図である。 In the present embodiment, the number of turns of each of the plurality of sensor coils 120A and the number of turns of each of the plurality of sensor coils 120C are smaller than the number of turns of the sensor coil 120B. A specific description will be given below with reference to FIG. 11 . FIG. 11 shows the correspondence between the magnetic flux density at the position where the sensor coil 120 is arranged, the opening area that is the area of the opening 123 of the sensor coil 120, and the number of turns of the sensor coil 120 for each type of the sensor coil 120. FIG. 4 is a diagram showing relationships;
 遠くの異物10を検知する検知性能を考慮すると開口面積とターン数との積は大きい方がよいが、開口面積とターン数との積が大き過ぎると、送電コイル211が発生する磁束によりセンサコイル120に焼損等が発生する可能性があり、また、近くの異物10を検知しにくい。そこで、本実施の形態においても、センサコイル120に誘起される誘起電圧が、センサコイル120が配置される位置における磁束密度に拘わらず一定になるように、ターン数と開口面積とが調整される。つまり、磁束密度が高い位置に配置されたセンサコイル120ほど、開口面積とターン数との積が小さい。本実施の形態では、センサコイル120に誘起される誘起電圧はターン数の調整により調整され、全てのセンサコイル120の開口面積は同一である。 Considering the detection performance of detecting a distant foreign object 10, it is preferable that the product of the opening area and the number of turns is large. 120 may be damaged by burning or the like, and it is difficult to detect a foreign object 10 nearby. Therefore, in the present embodiment as well, the number of turns and the opening area are adjusted so that the induced voltage induced in sensor coil 120 is constant regardless of the magnetic flux density at the position where sensor coil 120 is arranged. . That is, the product of the opening area and the number of turns is smaller for the sensor coil 120 arranged at a position where the magnetic flux density is higher. In this embodiment, the induced voltage induced in the sensor coils 120 is adjusted by adjusting the number of turns, and all the sensor coils 120 have the same opening area.
 例えば、B1に基づいて、センサコイル120Aに誘起される誘起電圧が予め定められた基準電圧になるように、S1とN1とが決定される。例えば、N1が1に決定されると、誘起電圧が基準電圧になるようにS1が決定される。なお、本実施の形態では、全てのセンサコイル120の開口面積は同じであり、S1=S2=S3=S4である。 For example, based on B1, S1 and N1 are determined so that the induced voltage induced in the sensor coil 120A becomes a predetermined reference voltage. For example, when N1 is determined to be 1, S1 is determined so that the induced voltage becomes the reference voltage. In this embodiment, all the sensor coils 120 have the same opening area, and S1=S2=S3=S4.
 また、B2=B1/4である場合、N2=N1×4=4である。また、B3=B1/3である場合、N3=N1×3=3である。また、B4=B1/4である場合、N4=N1×4=4である。本実施の形態によれば、全てのセンサコイル120の何れにも焼損等を発生させずに、異物検出装置100全体としての検知性能を高くすることができる。 Also, when B2=B1/4, N2=N1×4=4. Also, when B3=B1/3, N3=N1×3=3. Also, when B4=B1/4, N4=N1×4=4. According to the present embodiment, it is possible to improve the detection performance of the foreign object detection apparatus 100 as a whole without causing burnout or the like in any of the sensor coils 120 .
 本実施の形態では、センサコイル120が配置される位置の磁束密度の高さに応じて、センサコイル120の検知性能が調整される。従って、本実施の形態によれば、ワイヤレス電力伝送の異物検知において、高い検知性能を維持しつつ、センサコイル120の焼損等を防止することができる。 In the present embodiment, the detection performance of sensor coil 120 is adjusted according to the height of the magnetic flux density at the position where sensor coil 120 is arranged. Therefore, according to the present embodiment, it is possible to prevent burning of the sensor coil 120, etc., while maintaining high detection performance in detecting a foreign object in wireless power transmission.
 なお、本実施の形態では、全てのセンサコイル120の開口面積が同一であり、各センサコイル120のターン数の調整により、各センサコイル120の検知性能が調整される。従って、本実施の形態によれば、センサコイル120の配置の自由度の向上が期待できる。例えば、低い磁束密度を有する狭い場所に、遠くの異物10を検知する検知性能が高いセンサコイル120を配置する場合を想定する。この場合、開口面積が大きく、ターン数が少ないセンサコイル120を配置することは困難である。しかしながら、この場合、開口面積が小さく、ターン数が多いセンサコイル120を配置することができる。 Note that in the present embodiment, all sensor coils 120 have the same opening area, and the detection performance of each sensor coil 120 is adjusted by adjusting the number of turns of each sensor coil 120 . Therefore, according to the present embodiment, an improvement in the degree of freedom in arranging the sensor coil 120 can be expected. For example, assume a case where a sensor coil 120 with high detection performance for detecting a distant foreign object 10 is arranged in a narrow place with a low magnetic flux density. In this case, it is difficult to dispose the sensor coil 120 with a large opening area and a small number of turns. However, in this case, the sensor coil 120 with a small opening area and a large number of turns can be arranged.
(実施の形態3)
 実施の形態1では、第1方向におけるセンサコイル120Bの位置と第1方向におけるセンサコイル120Cの位置とが同じである例について説明した。本実施の形態では、第1方向におけるセンサコイル120Bの位置と第1方向におけるセンサコイル120Cの位置とが異なる例について説明する。なお、実施の形態1,2と同様の構成及び処理については、説明を省略又は簡略化する。
(Embodiment 3)
Embodiment 1 describes an example in which the position of sensor coil 120B in the first direction is the same as the position of sensor coil 120C in the first direction. In this embodiment, an example in which the position of sensor coil 120B in the first direction is different from the position of sensor coil 120C in the first direction will be described. Note that the description of the same configuration and processing as in the first and second embodiments will be omitted or simplified.
 本実施の形態に係る検出コイルユニット110Bの正面図は、図3示す正面図と同様であるため、図示を省略する。図12に、本実施の形態に係る検出コイルユニット110Bの断面の模式図を示す。なお、理解を容易にするため、図12には、検出コイルユニット110Bの断面に加え、送電コイルユニット210の断面を模式的に示す模式図を示している。 A front view of the detection coil unit 110B according to the present embodiment is the same as the front view shown in FIG. 3, so illustration is omitted. FIG. 12 shows a schematic diagram of a cross section of detection coil unit 110B according to the present embodiment. In order to facilitate understanding, FIG. 12 shows a schematic diagram schematically showing a cross section of the power transmission coil unit 210 in addition to the cross section of the detection coil unit 110B.
 図12に示すように、本実施の形態では、複数のセンサコイル120Aのそれぞれと複数のセンサコイル120Cのそれぞれとは、第1方向において、センサコイル120Bよりも送電コイル211から離れた位置に配置されている。つまり、検出コイル基板140内において複数のセンサコイル120Aのそれぞれと複数のセンサコイル120Cのそれぞれとが配置される層は、検出コイル基板140内においてセンサコイル120Bが配置される層よりも、送電コイル211から離れている。 As shown in FIG. 12, in the present embodiment, each of the plurality of sensor coils 120A and each of the plurality of sensor coils 120C are arranged at positions farther from power transmitting coil 211 than sensor coil 120B in the first direction. It is In other words, the layer in which each of the plurality of sensor coils 120A and each of the plurality of sensor coils 120C are arranged in the detection coil substrate 140 is closer to the power transmission coil than the layer in which the sensor coil 120B is arranged in the detection coil substrate 140. Away from 211.
 ここで、送電コイル211が発生する磁束の磁束密度は、基本的に、送電コイル211から離れた位置ほど低い。このため、上記構成では、センサコイル120Aが配置される位置における磁束密度とセンサコイル120Cが配置される位置における磁束密度とが極めて高くなることが抑制される。つまり、本実施の形態によれば、センサコイル120Aに誘起される誘起電圧とセンサコイル120Cに誘起される誘起電圧とが極めて高くなることが抑制され、センサコイル120Aとセンサコイル120Cとの焼損等が更に抑制される。 Here, the magnetic flux density of the magnetic flux generated by the power transmission coil 211 is basically lower at positions farther away from the power transmission coil 211 . Therefore, in the above configuration, the magnetic flux density at the position where the sensor coil 120A is arranged and the magnetic flux density at the position where the sensor coil 120C is arranged are prevented from becoming extremely high. That is, according to the present embodiment, the induced voltage induced in the sensor coil 120A and the induced voltage induced in the sensor coil 120C are prevented from becoming extremely high, and burning of the sensor coil 120A and the sensor coil 120C, etc. is further suppressed.
 また、センサコイル120Aは、センサコイル120Aの近くに配置された異物10の検出は可能であるが、センサコイル120Aの遠くに配置された異物10の検出は極めて困難である。また、センサコイル120Cは、センサコイル120Cの近くに配置された異物10の検出は可能であるが、センサコイル120Cの遠くに配置された異物10の検出は困難である。本実施の形態によれば、センサコイル120Aとセンサコイル120Cとが、センサコイル120Bよりも異物10寄りに配置されるため、効率の良い異物検知が期待できる。 Also, the sensor coil 120A can detect the foreign object 10 placed near the sensor coil 120A, but it is extremely difficult to detect the foreign object 10 placed far from the sensor coil 120A. Also, the sensor coil 120C can detect a foreign object 10 placed near the sensor coil 120C, but it is difficult to detect a foreign object 10 placed far from the sensor coil 120C. According to the present embodiment, the sensor coil 120A and the sensor coil 120C are arranged closer to the foreign object 10 than the sensor coil 120B, so efficient foreign object detection can be expected.
(実施の形態4)
 実施の形態3では、第1方向におけるセンサコイル120Aの位置と第1方向におけるセンサコイル120Cの位置とが同じである例について説明した。本実施の形態では、第1方向におけるセンサコイル120Aの位置と第1方向におけるセンサコイル120Cの位置とが異なる例について説明する。なお、実施の形態1-3と同様の構成及び処理については、説明を省略又は簡略化する。
(Embodiment 4)
Embodiment 3 has described an example in which the position of sensor coil 120A in the first direction is the same as the position of sensor coil 120C in the first direction. In this embodiment, an example will be described in which the position of sensor coil 120A in the first direction is different from the position of sensor coil 120C in the first direction. Note that the description of the same configuration and processing as in Embodiments 1-3 will be omitted or simplified.
 本実施の形態に係る検出コイルユニット110Cの正面図は、図3示す正面図と同様であるため、図示を省略する。図13に、本実施の形態に係る検出コイルユニット110Cの断面の模式図を示す。なお、理解を容易にするため、図13には、検出コイルユニット110Cの断面に加え、送電コイルユニット210の断面を模式的に示す模式図を示している。 A front view of the detection coil unit 110C according to the present embodiment is the same as the front view shown in FIG. 3, so illustration is omitted. FIG. 13 shows a schematic cross-sectional view of a detection coil unit 110C according to this embodiment. To facilitate understanding, FIG. 13 shows a schematic diagram schematically showing a cross section of the power transmission coil unit 210 in addition to the cross section of the detection coil unit 110C.
 図13に示すように、本実施の形態では、複数のセンサコイル120Cのそれぞれは、第1方向において、複数のセンサコイル120Aのそれぞれよりも送電コイル211に近く、センサコイル120Bよりも送電コイル211から離れた位置に配置されている。つまり、検出コイル基板140内において複数のセンサコイル120Cのそれぞれが配置される層は、検出コイル基板140内において複数のセンサコイル120Aのそれぞれが配置される層よりも送電コイル211から近く、検出コイル基板140内においてセンサコイル120Bは配置される層よりも送電コイル211から離れている。 As shown in FIG. 13, in the present embodiment, each of the multiple sensor coils 120C is closer to the power transmission coil 211 than each of the multiple sensor coils 120A in the first direction, and is closer to the power transmission coil 211 than the sensor coil 120B. is placed away from That is, the layer in which each of the plurality of sensor coils 120C is arranged in the detection coil substrate 140 is closer to the power transmission coil 211 than the layer in which each of the plurality of sensor coils 120A is arranged in the detection coil substrate 140, and the detection coil In the substrate 140, the sensor coil 120B is farther from the power transmission coil 211 than the layer in which it is arranged.
 ここで、送電コイル211が発生する磁束の磁束密度は、基本的に、送電コイル211から離れた位置ほど低い。このため、上記構成では、センサコイル120Aが配置される位置における磁束密度が極めて高くなることが抑制される。また、上記構成では、センサコイル120Cが配置される位置における磁束密度が極めて高くなることがある程度抑制される。つまり、本実施の形態によれば、センサコイル120Aに誘起される誘起電圧が極めて高くなることが抑制され、センサコイル120Cに誘起される誘起電圧が極めて高くなることがある程度抑制され、センサコイル120Aとセンサコイル120Cとの焼損等が更に抑制される。 Here, the magnetic flux density of the magnetic flux generated by the power transmission coil 211 is basically lower at positions farther away from the power transmission coil 211 . Therefore, in the above configuration, the magnetic flux density at the position where the sensor coil 120A is arranged is suppressed from becoming extremely high. Moreover, in the above configuration, the magnetic flux density at the position where the sensor coil 120C is arranged is suppressed to some extent from becoming extremely high. That is, according to the present embodiment, the induced voltage induced in sensor coil 120A is suppressed from becoming extremely high, and the induced voltage induced in sensor coil 120C is suppressed from becoming extremely high to some extent. and the sensor coil 120C are further suppressed.
 また、センサコイル120Aは、センサコイル120Aの近くに配置された異物10の検出は可能であるが、センサコイル120Aの遠くに配置された異物10の検出は極めて困難である。また、センサコイル120Cは、センサコイル120Cの近くに配置された異物10の検出は可能であるが、センサコイル120Cの遠くに配置された異物10の検出は困難である。本実施の形態によれば、センサコイル120Cが、センサコイル120Aよりも異物10から離れ、センサコイル120Bよりも異物10寄りに配置されるため、効率の良い異物検知が期待できる。 Also, the sensor coil 120A can detect the foreign object 10 placed near the sensor coil 120A, but it is extremely difficult to detect the foreign object 10 placed far from the sensor coil 120A. Also, the sensor coil 120C can detect a foreign object 10 placed near the sensor coil 120C, but it is difficult to detect a foreign object 10 placed far from the sensor coil 120C. According to the present embodiment, since the sensor coil 120C is arranged further from the foreign object 10 than the sensor coil 120A and closer to the foreign object 10 than the sensor coil 120B, efficient foreign object detection can be expected.
(変形例)
 以上、本開示の実施の形態を説明したが、本開示を実施するにあたっては、種々の形態による変形及び応用が可能である。本開示において、上記実施の形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本開示において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。また、上記実施の形態は、適宜、自由に組み合わせることができる。また、上記実施の形態で説明した構成要素の個数は、適宜、調整することができる。また、本開示において採用可能な素材、サイズ、電気的特性等が、上記実施の形態において示したものに限定されないことは勿論である。
(Modification)
Although the embodiments of the present disclosure have been described above, various modifications and applications are possible in carrying out the present disclosure. In the present disclosure, any part of the configurations, functions, and operations described in the above embodiments may be adopted. Further, in addition to the configurations, functions, and operations described above, additional configurations, functions, and operations may be employed in the present disclosure. Moreover, the above embodiments can be freely combined as appropriate. Also, the number of components described in the above embodiment can be adjusted as appropriate. Further, it goes without saying that materials, sizes, electrical characteristics, etc. that can be employed in the present disclosure are not limited to those shown in the above embodiments.
 各センサコイル120の第1方向における位置は、実施の形態1,3,4で説明した例に限定されず、適宜、調整することができる。例えば、第1方向において、センサコイル120Aの位置とセンサコイル120Bの位置とセンサコイル120Cの位置とセンサコイル120Dの位置とが、全て同じであってもよい。また、第1方向において、センサコイル120Aの位置とセンサコイル120Bの位置とセンサコイル120Cの位置とセンサコイル120Dの位置とが、全て異なっていてもよい。この場合、開口面積とターン数との積が大きいセンサコイル120ほど、第1方向において送電コイル211寄りに配置されることが好適である。 The position of each sensor coil 120 in the first direction is not limited to the examples described in Embodiments 1, 3, and 4, and can be adjusted as appropriate. For example, the position of the sensor coil 120A, the position of the sensor coil 120B, the position of the sensor coil 120C, and the position of the sensor coil 120D may all be the same in the first direction. Moreover, in the first direction, the position of the sensor coil 120A, the position of the sensor coil 120B, the position of the sensor coil 120C, and the position of the sensor coil 120D may all be different. In this case, it is preferable that the sensor coil 120 having a larger product of the opening area and the number of turns be arranged closer to the power transmission coil 211 in the first direction.
 実施の形態1では、センサコイル120のターン数が2である例について説明した。センサコイル120のターン数は、1でもよいし、3以上でもよい。また、実施の形態1では、開口面積が調整され、ターン数が調整されない例について説明し、実施の形態2では、開口面積が調整されず、ターン数が調整される例について説明した。開口面積とターン数との双方が調整されてもよい。この場合、開口面積とターン数との積が大きいセンサコイル120ほど、磁束密度が低い位置に配置されることが好適である。 In the first embodiment, an example in which the sensor coil 120 has two turns has been described. The number of turns of the sensor coil 120 may be one, or three or more. Further, in Embodiment 1, an example in which the opening area is adjusted and the number of turns is not adjusted is described, and in Embodiment 2, an example in which the opening area is not adjusted and the number of turns is adjusted is described. Both the opening area and the number of turns may be adjusted. In this case, the sensor coil 120 having a larger product of the opening area and the number of turns is preferably arranged at a position where the magnetic flux density is lower.
 実施の形態1では、全てのセンサコイル120に誘起される誘起電圧が同一になるように、開口面積とターン数とが調整される例について説明した。全てのセンサコイル120に誘起される誘起電圧が同一である必要はない。但し、全てのセンサコイル120に誘起される誘起電圧になるべく差が生じないように、開口面積とターン数とが調整されることが好適である。 In the first embodiment, an example has been described in which the opening area and the number of turns are adjusted so that the induced voltages induced in all the sensor coils 120 are the same. The induced voltages induced in all sensor coils 120 need not be the same. However, it is preferable to adjust the opening area and the number of turns so that the induced voltages induced in all the sensor coils 120 have as little difference as possible.
 実施の形態1-4では、異物検出装置100が、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとセンサコイル120Dとの4種類のセンサコイル120を備える例について説明した。異物検出装置100は、これらの4種類のセンサコイル120を備えていなくてもよい。異物検出装置100は、これらの4種類のセンサコイル120のうち、少なくとも2種類のセンサコイル120を備えていればよい。 In Embodiments 1-4, an example in which foreign object detection device 100 includes four types of sensor coils 120, sensor coil 120A, sensor coil 120B, sensor coil 120C, and sensor coil 120D, has been described. Foreign object detection device 100 does not have to include these four types of sensor coils 120 . Foreign object detection device 100 may include at least two types of sensor coils 120 out of these four types of sensor coils 120 .
 例えば、異物検出装置100は、センサコイル120Aとセンサコイル120Bとの2種類のセンサコイル120を備えていてもよいし、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとの3種類のセンサコイル120を備えていてもよい。また、各種類のセンサコイル120の個数は、実施の形態1,2で説明した個数に限定されない。 For example, the foreign object detection device 100 may include two types of sensor coils 120, a sensor coil 120A and a sensor coil 120B, or three types of sensor coils 120, a sensor coil 120A, a sensor coil 120B, and a sensor coil 120C. may be provided. Also, the number of sensor coils 120 of each type is not limited to the number described in the first and second embodiments.
 実施の形態1では、センサコイル120の駆動方式として、駆動部153による制御に従ってパルス発生部160が発生したパルス状の電圧をセンサコイル120の駆動に用いる自励方式を採用する例について説明した。センサコイル120の駆動方式として、他励方式を採用することができる。例えば、送電コイル211が発生する磁束を用いてセンサコイル120を駆動する他励方式を採用することができる。 In the first embodiment, an example in which the sensor coil 120 is driven by a self-exciting method in which the pulse-like voltage generated by the pulse generating section 160 under the control of the driving section 153 is used to drive the sensor coil 120 has been described. As a method for driving the sensor coil 120, a separate excitation method can be adopted. For example, it is possible to employ a separate excitation method in which the sensor coil 120 is driven using the magnetic flux generated by the power transmission coil 211 .
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 Various embodiments and modifications of the present disclosure are possible without departing from the broad spirit and scope of the present disclosure. In addition, the embodiments described above are for explaining the present disclosure, and do not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the scope of equivalent disclosure are considered to be within the scope of the present disclosure.
10 異物
100 異物検出装置
110,110A,110B,110C 検出コイルユニット
120,120A,120B,120C,120D センサコイル
121A,121B,121C,121D コイル導体
123,123A,123B,123C,123D,211A,212A 開口部
131 キャパシタ
132,133 スイッチ
140 検出コイル基板
150 検出部
151 検出制御部
152 選択部
153 駆動部
154 出力値取得部
155 記憶部
156 結果出力部
157 送電制御部
160 パルス発生部
170 通知部
200 送電装置
210 送電コイルユニット
211 送電コイル
211B 導線
212 磁性体板
213 金属板
220 電力供給装置
300 受電装置
310 受電コイルユニット
311 受電コイル
312 磁性体板
320 整流回路
400 商用電源
500 蓄電池
600 端末装置
700 電気自動車
1000 電力伝送システム
10 Foreign object 100 Foreign object detection device 110, 110A, 110B, 110C Detection coil unit 120, 120A, 120B, 120C, 120D Sensor coil 121A, 121B, 121C, 121D Coil conductor 123, 123A, 123B, 123C, 123D, 211A, 212A Opening Unit 131 Capacitors 132, 133 Switch 140 Detection coil substrate 150 Detection unit 151 Detection control unit 152 Selection unit 153 Driving unit 154 Output value acquisition unit 155 Storage unit 156 Result output unit 157 Power transmission control unit 160 Pulse generation unit 170 Notification unit 200 Power transmission device 210 power transmission coil unit 211 power transmission coil 211B conducting wire 212 magnetic plate 213 metal plate 220 power supply device 300 power receiving device 310 power receiving coil unit 311 power receiving coil 312 magnetic plate 320 rectifier circuit 400 commercial power supply 500 storage battery 600 terminal device 700 electric vehicle 1000 electric power transmission system

Claims (15)

  1.  導線が巻回されて構成され、開口部を有する送電コイルと、
     前記送電コイルと対向する磁性体と、
     異物検出装置と、を備え、
     前記異物検出装置は、複数のセンサコイルと、前記複数のセンサコイルから出力される信号に基づいて、異物検出領域に存在する異物を検出する検出部と、を有し、
     前記複数のセンサコイルは、第1センサ開口部を有し、前記送電コイルのコイル軸が延在する第1方向から見て、前記開口部内に配置され、前記磁性体と対向する複数の第1センサコイルと、第2センサ開口部を有し、前記第1方向から見て、前記複数の第1センサコイルよりも前記送電コイルの中心寄りに配置された第2センサコイルと、を有し、
     前記第1センサ開口部の面積をS1、前記複数の第1センサコイルのそれぞれのターン数をN1、前記第2センサ開口部の面積をS2、前記第2センサコイルのターン数をN2、としたとき、N1×S1<N2×S2を満たす、
     送電装置。
    a power transmission coil configured by winding a conductor wire and having an opening;
    a magnetic body facing the power transmission coil;
    a foreign object detection device,
    The foreign matter detection device includes a plurality of sensor coils and a detection unit that detects a foreign matter present in a foreign matter detection area based on signals output from the plurality of sensor coils,
    The plurality of sensor coils have a first sensor opening, and are arranged in the opening when viewed from a first direction in which the coil axis of the power transmission coil extends, and a plurality of first sensor coils facing the magnetic body. a sensor coil, and a second sensor coil having a second sensor opening and arranged closer to the center of the power transmission coil than the plurality of first sensor coils when viewed from the first direction,
    The area of the first sensor opening is S1, the number of turns of each of the plurality of first sensor coils is N1, the area of the second sensor opening is S2, and the number of turns of the second sensor coil is N2. when N1×S1<N2×S2 is satisfied,
    transmission device.
  2.  前記第1方向から見て、前記第1センサ開口部は、前記第2センサ開口部よりも小さい、
     請求項1に記載の送電装置。
    when viewed from the first direction, the first sensor opening is smaller than the second sensor opening;
    The power transmission device according to claim 1 .
  3.  前記複数の第1センサコイルのそれぞれのターン数は、前記第2センサコイルのターン数よりも少ない、
     請求項1又は2に記載の送電装置。
    The number of turns of each of the plurality of first sensor coils is less than the number of turns of the second sensor coil,
    The power transmission device according to claim 1 or 2.
  4.  前記複数の第1センサコイルのそれぞれは、前記第1方向において、前記第2センサコイルよりも前記送電コイルから離れた位置に配置されている、
     請求項1から3の何れか1項に記載の送電装置。
    Each of the plurality of first sensor coils is arranged at a position farther from the power transmission coil than the second sensor coil in the first direction,
    The power transmission device according to any one of claims 1 to 3.
  5.  前記送電コイルが発生する磁束が前記複数の第1センサコイルのそれぞれに鎖交したときに前記複数の第1センサコイルのそれぞれに誘起される電圧と、前記磁束が前記第2センサコイルに鎖交したときに前記第2センサコイルに誘起される電圧とが、同一である、
     請求項1から4の何れか1項に記載の送電装置。
    a voltage induced in each of the plurality of first sensor coils when the magnetic flux generated by the power transmission coil interlinks with each of the plurality of first sensor coils; and the magnetic flux interlinks with the second sensor coil. is the same as the voltage induced in the second sensor coil when
    The power transmission device according to any one of claims 1 to 4.
  6.  前記複数の第1センサコイルは、前記第1方向から見て、環状に配置されている、
     請求項1から5の何れか1項に記載の送電装置。
    The plurality of first sensor coils are arranged annularly when viewed from the first direction,
    The power transmission device according to any one of claims 1 to 5.
  7.  前記複数の第1センサコイルのそれぞれと前記第2センサコイルとは、前記第1方向から見て、略方形形状である、
     請求項1から6の何れか1項に記載の送電装置。
    Each of the plurality of first sensor coils and the second sensor coil have a substantially square shape when viewed from the first direction,
    The power transmission device according to any one of claims 1 to 6.
  8.  前記複数のセンサコイルは、第3センサ開口部を有し、前記第1方向から見て、前記導線と重なる複数の第3センサコイルを有し、
     前記第3センサ開口部の面積をS3、前記複数の第3センサコイルのそれぞれのターン数をN3、としたとき、N3×S3<N2×S2を満たす、
     請求項1から7の何れか1項に記載の送電装置。
    The plurality of sensor coils have a third sensor opening, and have a plurality of third sensor coils overlapping the conductor wire when viewed from the first direction,
    When the area of the third sensor opening is S3 and the number of turns of each of the plurality of third sensor coils is N3, N3×S3<N2×S2 is satisfied.
    The power transmission device according to any one of claims 1 to 7.
  9.  前記第1方向から見て、前記第1センサ開口部と前記第3センサ開口部とは、前記第2センサ開口部よりも小さい、
     請求項8に記載の送電装置。
    When viewed from the first direction, the first sensor opening and the third sensor opening are smaller than the second sensor opening,
    The power transmission device according to claim 8 .
  10.  前記複数の第1センサコイルのそれぞれのターン数と前記複数の第3センサコイルのそれぞれのターン数とは、前記第2センサコイルのターン数よりも少ない、
     請求項8又は9に記載の送電装置。
    The number of turns of each of the plurality of first sensor coils and the number of turns of each of the plurality of third sensor coils are less than the number of turns of the second sensor coil,
    The power transmission device according to claim 8 or 9.
  11.  前記複数の第1センサコイルのそれぞれと前記複数の第3センサコイルのそれぞれとは、前記第1方向において、前記第2センサコイルよりも前記送電コイルから離れた位置に配置されている、
     請求項8から10の何れか1項に記載の送電装置。
    Each of the plurality of first sensor coils and each of the plurality of third sensor coils are arranged at a position farther from the power transmission coil than the second sensor coil in the first direction,
    The power transmission device according to any one of claims 8 to 10.
  12.  前記送電コイルが発生する磁束が前記複数の第1センサコイルのそれぞれに鎖交したときに前記複数の第1センサコイルのそれぞれに誘起される電圧と、前記磁束が前記第2センサコイルに鎖交したときに前記第2センサコイルに誘起される電圧と、前記磁束が前記複数の第3センサコイルのそれぞれに鎖交したときに前記複数の第3センサコイルのそれぞれに誘起される電圧とが、同一である、
     請求項8から11の何れか1項に記載の送電装置。
    a voltage induced in each of the plurality of first sensor coils when the magnetic flux generated by the power transmission coil interlinks with each of the plurality of first sensor coils; and the magnetic flux interlinks with the second sensor coil. and a voltage induced in each of the plurality of third sensor coils when the magnetic flux interlinks with each of the plurality of third sensor coils, are identical,
    The power transmission device according to any one of claims 8 to 11.
  13.  前記複数のセンサコイルは、第4センサ開口部を有し、前記第1方向から見て、前記複数の第3センサコイルよりも前記送電コイルの中心から離れた位置に配置された複数の第4センサコイルを有し、
     前記第4センサ開口部の面積をS4、前記複数の第4センサコイルのそれぞれのターン数をN4、としたとき、N3×S3<N4×S4を満たす、
     請求項8から12の何れか1項に記載の送電装置。
    The plurality of sensor coils has a fourth sensor opening, and a plurality of fourth sensor coils arranged at a position farther from the center of the power transmission coil than the plurality of third sensor coils when viewed from the first direction. having a sensor coil,
    When the area of the fourth sensor opening is S4 and the number of turns of each of the plurality of fourth sensor coils is N4, N3×S3<N4×S4 is satisfied.
    The power transmission device according to any one of claims 8 to 12.
  14.  前記送電コイルが発生する磁束が前記複数の第1センサコイルのそれぞれに鎖交したときに前記複数の第1センサコイルのそれぞれに誘起される電圧と、前記磁束が前記第2センサコイルに鎖交したときに前記第2センサコイルに誘起される電圧と、前記磁束が前記複数の第3センサコイルのそれぞれに鎖交したときに前記複数の第3センサコイルのそれぞれに誘起される電圧と、前記磁束が前記複数の第4センサコイルのそれぞれに鎖交したときに前記複数の第4センサコイルのそれぞれに誘起される電圧とが、同一である、
     請求項13に記載の送電装置。
    a voltage induced in each of the plurality of first sensor coils when the magnetic flux generated by the power transmission coil interlinks with each of the plurality of first sensor coils; and the magnetic flux interlinks with the second sensor coil. a voltage induced in each of the plurality of third sensor coils when the magnetic flux interlinks with each of the plurality of third sensor coils; and The voltage induced in each of the plurality of fourth sensor coils when the magnetic flux interlinks with each of the plurality of fourth sensor coils is the same.
    The power transmission device according to claim 13.
  15.  請求項1から14の何れか1項に記載の送電装置と、
     前記送電装置から受電する受電装置と、を備える、
     電力伝送システム。
    The power transmission device according to any one of claims 1 to 14;
    a power receiving device that receives power from the power transmitting device;
    power transmission system.
PCT/JP2021/001730 2021-01-19 2021-01-19 Power transmission device and power transfer system WO2022157837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001730 WO2022157837A1 (en) 2021-01-19 2021-01-19 Power transmission device and power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001730 WO2022157837A1 (en) 2021-01-19 2021-01-19 Power transmission device and power transfer system

Publications (1)

Publication Number Publication Date
WO2022157837A1 true WO2022157837A1 (en) 2022-07-28

Family

ID=82549617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001730 WO2022157837A1 (en) 2021-01-19 2021-01-19 Power transmission device and power transfer system

Country Status (1)

Country Link
WO (1) WO2022157837A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160282500A1 (en) * 2015-03-23 2016-09-29 Schneider Electric USA, Inc. Sensor and method for foreign object detection in induction electric charger
JP2020058162A (en) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 Power transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160282500A1 (en) * 2015-03-23 2016-09-29 Schneider Electric USA, Inc. Sensor and method for foreign object detection in induction electric charger
JP2020058162A (en) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 Power transmission device

Similar Documents

Publication Publication Date Title
EP3093957B1 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
US9997929B2 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
JP5904250B2 (en) Coil unit and non-contact power transmission device
US10566853B2 (en) Inductive power transmitter
US11251661B2 (en) Inductive power transmitter
JP5480573B2 (en) Contactless charging system
JP5592242B2 (en) Power receiving device, power transmitting device, and wireless power transmission system
JP5904251B2 (en) Coil unit and non-contact power transmission device
CN105720695B (en) Inductive wireless power transfer system
JP2012249401A (en) Non-contact power supply device
JP5400734B2 (en) Non-contact power transmission device
JP5592241B2 (en) Power receiving device, power transmitting device, and wireless power transmission system
JP5559312B2 (en) Electromagnetic equipment using shared magnetic flux in multi-load parallel magnetic circuit and its operation method
CN105720699B (en) Inductive wireless power transfer system
WO2022157837A1 (en) Power transmission device and power transfer system
US10305330B2 (en) Power transmission device
JP6737301B2 (en) Wireless power transmission system
WO2022157835A1 (en) Power transmission device and power transmission system
CN114056136A (en) Foreign matter detection device, power supply device, power reception device, and power transmission system
WO2022144993A1 (en) Foreign object detection device, power transmission device, power reception device, and power transmission system
CN114056137B (en) Foreign matter detection device, power supply device, power receiving device, and power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP