WO2022156619A1 - 一种光伏组件的检测设备 - Google Patents

一种光伏组件的检测设备 Download PDF

Info

Publication number
WO2022156619A1
WO2022156619A1 PCT/CN2022/072279 CN2022072279W WO2022156619A1 WO 2022156619 A1 WO2022156619 A1 WO 2022156619A1 CN 2022072279 W CN2022072279 W CN 2022072279W WO 2022156619 A1 WO2022156619 A1 WO 2022156619A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
detection device
control signal
photovoltaic
control
Prior art date
Application number
PCT/CN2022/072279
Other languages
English (en)
French (fr)
Inventor
罗宇浩
周懂明
朱璇
Original Assignee
浙江英达威芯电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江英达威芯电子有限公司 filed Critical 浙江英达威芯电子有限公司
Priority to US18/273,442 priority Critical patent/US20240088833A1/en
Publication of WO2022156619A1 publication Critical patent/WO2022156619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the utility model relates to the field of renewable energy, in particular to a detection device for photovoltaic components.
  • a common photovoltaic system consists of multiple photovoltaic modules connected in series to form a string, and then connected to an inverter to convert the DC output from the PV module string to AC and connect to the grid.
  • the PV array test is usually performed on the PV module string, and according to the test results, it is judged whether there are problems such as PV module damage, cable damage or bad joints.
  • the output of the PV module string is usually The terminal is connected to the photovoltaic array tester.
  • a shutdown device is installed at the output end of each photovoltaic module.
  • the output of each photovoltaic module is disconnected to ensure the safety of users.
  • the shutdown device disconnects the output of each PV module, and the PV module cannot output current and voltage, so the PV array test cannot be performed, and the PV module string cannot be checked for faults.
  • the purpose of the present invention is to provide a detection device for photovoltaic modules, which can control the conduction of a shutdown device connected to the output end of the photovoltaic modules, so that the photovoltaic modules can output voltage and current to the detection device, so that the detection device is based on the photovoltaic modules.
  • the output voltage and current test whether the photovoltaic modules and their connecting circuits are in a normal working state, that is, to realize the photovoltaic array test, and to check the faults of the photovoltaic module strings, so as to ensure the normal use of the photovoltaic modules.
  • the present utility model provides a detection device for photovoltaic modules, the output end of the photovoltaic module is provided with a shut-off device, and the detection device includes:
  • a detection device whose input end is connected to the output end of the shut-off device, for detecting whether the photovoltaic assembly and its connecting circuit are in a normal working state based on the voltage and/or current output by the photovoltaic assembly;
  • a control device disposed between the shut-off device and the detection device is used to control the shut-off device to be turned on, so that the photovoltaic module outputs voltage and/or current to the detection device.
  • it also includes:
  • the power supply module whose output end is connected to the power input end of the control device is used for supplying power to the control device.
  • the power module is a mobile power supply.
  • it also includes:
  • a prompting module connected to the detection device is used to provide a corresponding prompt to the user based on the detection result of the detection device.
  • the prompt module is a voice prompt module and/or a display prompt module.
  • the sound prompt module is a buzzer
  • the display prompt module is an indicator light.
  • control device includes:
  • the power input end is a control signal generating device of the power input end of the control device, used for generating a control signal for controlling the conduction of the shut-off device;
  • the input end is connected to the output end of the control signal generating device, and the output end is connected to the control signal coupling device on the wire between the control device and the shut-off device, for coupling the control signal to the control signal on the wire;
  • a control signal conducting device disposed between the shut-off device and the detection device is used to provide a loop for the control signal.
  • control signal conducting means is a capacitor.
  • control signal coupling device is an inductor.
  • the present application provides a detection device for a photovoltaic module, including a detection device and a control device, wherein the control device can control the turn-off device connected to the output end of the photovoltaic module to be turned on, so that the photovoltaic module can output voltage and current to the detection device , so that the detection device can detect whether the photovoltaic modules and their connecting circuits are in a normal working state based on the output voltage and current of the photovoltaic modules, that is, to realize the photovoltaic array test, and to check the faults of the photovoltaic module strings, so as to ensure the normal operation of the photovoltaic modules. use.
  • FIG. 1 is a schematic structural diagram of a detection device for a photovoltaic module provided by the present invention
  • FIG. 2 is a schematic structural diagram of the connection between a photovoltaic module and an inverter in the prior art
  • FIG. 3 is a schematic structural diagram of a detection device for a photovoltaic module in the prior art
  • FIG. 4 is a schematic structural diagram of an output end of a photovoltaic module in the prior art provided with a shut-off device
  • FIG. 5 is a schematic structural diagram of a prior art photovoltaic module with an output end provided with a shut-off device and connected to a detection device;
  • FIG. 6 is a schematic diagram of a specific structure of a detection device for a photovoltaic module provided by the present invention.
  • FIG. 7 is a schematic structural diagram of a control device provided by the present invention.
  • the core of the present invention is to provide a detection device for a photovoltaic module, which can control the conduction of a shutdown device connected to the output end of the photovoltaic module, so that the photovoltaic module can output voltage and current to the detection device, so that the detection device is based on the photovoltaic module.
  • the output voltage and current test whether the photovoltaic modules and their connecting circuits are in a normal working state, that is, to realize the photovoltaic array test, and to check the faults of the photovoltaic module strings, so as to ensure the normal use of the photovoltaic modules.
  • FIG. 1 is a schematic structural diagram of a detection device for a photovoltaic module provided by the present invention.
  • the output end of the photovoltaic module 1 is provided with a disconnection device 2, and the detection equipment includes:
  • a detection device 4 whose input end is connected to the output end of the shutdown device 2, for detecting whether the photovoltaic assembly 1 and its connecting circuit are in a normal working state based on the voltage and/or current output by the photovoltaic assembly 1;
  • the control device 3 disposed between the shut-off device 2 and the detection device 4 is used to control the shut-off device 2 to be turned on, so that the photovoltaic module 1 outputs voltage and/or current to the detection device 4 .
  • FIG. 2 is a schematic structural diagram of the connection between a photovoltaic module and an inverter in the prior art.
  • Each PV module 1 outputs DC power, and the inverter converts the DC power to AC power and outputs the AC power to the grid.
  • the PV module 1 and its connection circuit usually need to be tested.
  • the photovoltaic module 1 is usually connected to a detection device 4, such as a photovoltaic array tester.
  • FIG. 3 is a schematic structural diagram of a photovoltaic module detection device in the prior art.
  • the photovoltaic array tester detects the voltage and/or current output by the photovoltaic module 1, and judges whether the photovoltaic module 1 and its connection circuit are normal.
  • Disconnecting device 2 please refer to FIG. 4
  • FIG. 4 is a schematic diagram of the structure of the output end of the photovoltaic module in the prior art with a disconnecting device, please refer to FIG. 5, FIG.
  • the schematic diagram of the structure of the disconnection device and the connection with the detection device, the shutdown device 2 is in the OFF state when it does not receive a start signal, that is, the photovoltaic module 1 cannot output voltage and/or current to the detection device 4, and the detection device 4 cannot perform detection.
  • the detection equipment of the photovoltaic module 1 in the present application is provided with a detection device 4 and a control device 3 arranged between the shut-off device 2 and the detection device 4 , please refer to FIG. 6 , which is the utility model Provided is a schematic diagram of the specific structure of the detection equipment for photovoltaic modules.
  • the control device 3 can control the turn-off device 2 to conduct when the photovoltaic module 1 and its connection relationship need to be detected, so that the output voltage and/or current of the photovoltaic module 1 can be detected.
  • the detection device 4 can be, but is not limited to, a photovoltaic array tester, which can detect whether the photovoltaic assembly 1 and its connecting circuit are in a normal working state based on the voltage and/or current output by the photovoltaic assembly 1 .
  • control device 3 may be provided with a voltage detection module and a display device to detect the voltage and/or current output by the photovoltaic module 1 after the turn-off device 2 is controlled to be turned on, so as to display the voltage-current curve to the user through the display device display so that the user can proceed to the next step.
  • the resistance to ground of the photovoltaic module 1 can also be detected, so as to determine whether the photovoltaic module 1 is working normally.
  • the PV input terminal of the control device 3 is connected to the PV output terminal of the shutdown device 2
  • the PV input terminal of the detection device 4 is connected to the PV output terminal of the control device 3 .
  • connection circuit of the photovoltaic module 1 in this application refers to, for example, detection of the cables in the circuit and the joints connected between the various parts to determine whether it is normal, so as to ensure the normal operation of the circuit.
  • each photovoltaic module 1 is usually connected in series, that is, a module array is formed.
  • the output end of each photovoltaic module 1 is connected to a shutdown device 2, and each shutdown device 2 controls the
  • the detection equipment of the photovoltaic module 1 in this application can detect whether the array of the photovoltaic module 1 is damaged, but if the cost problem is not considered, it can also be judged that the photovoltaic module 1 occurs when the damage occurs. It is not limited in this application whether the damage is or the cable or the connector is damaged.
  • control device 3 in the present application couples the control signal to the power line connected to the shutdown device 2, and the shutdown device 2 is provided with a PLC (Powerline Communication, power line communication) communication module, which can perform control signals on the power line.
  • PLC Powerline Communication, power line communication
  • the switch connected to the output end of the photovoltaic module 1 in the shutdown device 2 is closed, so that the photovoltaic module 1 can output voltage and/or current normally; when the collected power line does not exist
  • the switch connected to the output end of the photovoltaic module 1 in the shut-off device 2 is turned off, so as to disconnect the output of the photovoltaic module 1 .
  • a power supply module 5 needs to be connected to the power input end of the control device 3, please refer to FIG. power supply.
  • connection sequence and working sequence of the detection equipment of the photovoltaic modules 1 in this application are as follows: connect the output ends of the photovoltaic modules 1 to a shut-off device 2 respectively; connect the shut-off devices 2 in series in sequence; connect the series
  • the output terminals of the shutdown device 2 at both ends are connected to the power line, that is, the PV+ output terminal and the PV- output terminal are respectively connected to the power line; the power lines connected to the PV+ output terminal and the PV- output terminal of the shutdown device 2 are respectively connected to the control device.
  • control device 3 can control the turn-off device 2 connected to the output end of the photovoltaic module 1 to be turned on, so that the photovoltaic module 1 can output voltage and current to the detection device 4 , so that the detection device 4 is based on the voltage output by the photovoltaic module 1 . and current to detect whether the photovoltaic module 1 and its connecting circuit are in a normal working state, that is, to realize the photovoltaic array test, and to check the fault of the photovoltaic module 1 string to ensure the normal use of the photovoltaic module 1.
  • it also includes:
  • the power module 5 whose output end is connected to the power input end of the control device 3 is used to supply power to the control device 3 .
  • the power supply module 5 is provided to supply power to the control device 3, which can ensure the normal operation of the control device 3, so that the control device 3 controls the shutdown device 2 to conduct, so that the detection device 4 can connect the photovoltaic module 1 and its connection circuit. test.
  • control module in the present application starts to control each shutdown device 2 to be turned on after the power supply module 5 is powered on.
  • the power supply module 5 is a mobile power supply.
  • the mobile power supply is used as the power supply module 5 to supply power to the control device 3, which can not only ensure the normal operation of the control device 3, but also can be moved at any time, which further facilitates the operation of the user.
  • the present application does not limit the power supply module 5 to be a mobile power supply, and can supply power to the control module 3 .
  • it also includes:
  • the prompting module connected to the detection device 4 is used to provide corresponding prompts to the user based on the detection result of the detection device 4 .
  • the control prompting module sends out an abnormality prompt to prompt the staff to deal with the photovoltaic module 1 and its connection circuit.
  • the detection device 4 detects that the voltage and/or current output by the photovoltaic module 1 is not abnormal, it can also send a prompt to the staff that there is no abnormality.
  • the prompting module is a sound prompting module and/or a display prompting module.
  • the prompt module includes a voice prompt module or a display prompt module.
  • the sound prompt module can issue a sound prompt
  • the display prompt module can issue a light prompt.
  • the prompting module may only include a sound prompting module or a display prompting module, and the prompting module may also include a sound prompting module and a display prompting module at the same time.
  • the prompt module can include a voice prompt module and a display prompt module at the same time, in a relatively noisy working environment, the staff cannot hear the voice prompt, but can know the detection result of the detection device 4 through the display prompt module;
  • the display prompt module cannot be seen within the personnel's field of vision, the detection result of the detection device 4 can be obtained through the sound prompt module, so that the photovoltaic module 1 and its connection circuit can be processed more quickly in the event of an abnormality.
  • the sound prompt module is a buzzer
  • the display prompt module is an indicator light.
  • a buzzer is selected as the sound prompt module, and the buzzer can realize the sound prompt;
  • the indicator light is selected as the display prompt module, and the indicator light can realize the light prompt.
  • the buzzer has the characteristics of low cost and high sensitivity; the light-emitting diode also has the advantage of low cost, and can share a control port with the buzzer.
  • control device 3 includes:
  • the power input end is the control signal generating device 31 of the power input end of the control device 3, which is used to generate a control signal for controlling the turn-on of the shut-off device 2;
  • the input end is connected to the output end of the control signal generating device 31, and the output end is connected to the control signal coupling device 32 on the wire between the control device 3 and the shut-off device 2, for coupling the control signal to the wire;
  • a control signal conducting device 33 disposed between the shut-off device 2 and the detection device 3 is used to provide a loop for the control signal.
  • control device 3 is provided with a control signal generating device 31 , a control signal conducting device 33 and a control signal coupling device 32 , please refer to FIG. 7 , which is a schematic structural diagram of a control device provided by the present invention , wherein, the control signal generating device 31 can generate a control signal when the photovoltaic module 1 and its connecting circuit need to be detected, and the control signal coupling device 32 couples the control signal to the power line connected with the shut-off device 2, so as to shut off the device 2 is turned on when a control signal is detected on the power line, so that the photovoltaic module 1 outputs a voltage to the detection device 4 .
  • control signal conduction device 33 in this embodiment can provide a path for the control signal to control the normal control signal.
  • the shut-off device 2 is turned on.
  • control signal coupling device 33 in the present application couples the control signal to the power line connected to its own PV input terminal.
  • control signal conducting device 33 is a capacitor C.
  • the capacitor C is set as the control signal conducting device 33 , specifically, please refer to FIG.
  • the second end is connected to the second output end of the shut-off device 2 and the second input end of the detection device 3.
  • the capacitor C can not only provide a path for the control signal, but also has the characteristics of low cost and simple connection.
  • the present application does not limit the use of the capacitor C as the control signal conducting device 33, nor does it limit the capacity of the capacitor C, as long as a path can be provided for the control signal.
  • control signal coupling device 32 is an inductor.
  • the inductor is set as the control signal coupling device 32, which not only can realize the coupling of the control signal to the power line, but also has the characteristics of low cost and simple connection.
  • the present application does not limit the use of the inductor as the control signal coupling device 32, and the control signal can be coupled to the power line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种光伏组件(1)的检测设备,包括检测装置(4)及控制装置(3),其中,控制装置(3)能够控制连接在光伏组件(1)的输出端的关断装置(2)导通,从而使光伏组件(1)能够输出电压及电流至检测装置(4),以使检测装置(4)基于光伏组件(1)输出的电压及电流对光伏组件(1)及其连接电路是否处于正常工作的状态进行检测,也即实现光伏阵列测试,对光伏组件(1)串进行故障检查,保证了光伏组件(1)的正常使用。

Description

一种光伏组件的检测设备
本申请要求于2021年1月20日提交至中国专利局、申请号为202120151194.0、实用新型名称为“一种光伏组件的检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及再生能源领域,特别是涉及一种光伏组件的检测设备。
背景技术
由于太阳能的可再生性及清洁性,光伏并网发电技术得以迅猛发展。常见的光伏系统是由多个光伏组件串联形成组串,然后接入逆变器,以实现将光伏组件串输出的直流转换为交流电并且并网。光伏组件串与逆变器连接之前,通常会对光伏组件串进行光伏阵列测试,并根据测试结果判断是否出现光伏组件损坏、线缆损坏或接头不良等问题,测试时通常将光伏组件串的输出端与光伏阵列测试仪连接,但是,为了避免光伏系统工作时对用户的安全产生影响,每个光伏组件的输出端均设有一个关断装置,关断装置在没有接收到启动信号的时候将各个光伏组件的输出断开,以保证用户的安全。而在对光伏组件串进行光伏阵列测试时,关断装置将各个光伏组件的输出断开,光伏组件无法输出电流和电压,也就无法进行光伏阵列测试,无法对光伏组件串进行故障检查。
实用新型内容
本实用新型的目的是提供一种光伏组件的检测设备,能够控制连接在光伏组件的输出端的关断装置导通,从而使光伏组件能够输出电压及电流至检测装置,以使检测装置基于光伏组件输出的电压及电流对光伏组件及其连接电路是否处于正常工作的状态进行检测,也即实现光伏阵列测试,对光伏组件串进行故障检查,保证了光伏组件的正常使用。
为解决上述技术问题,本实用新型提供了一种光伏组件的检测设备,所述光伏组件输出端设有关断装置,所述检测设备包括:
输入端与所述关断装置的输出端连接的检测装置,用于基于所述光伏组件输出的电压和/或电流检测所述光伏组件及其连接电路是否处于正常工作的状态;
设置于所述关断装置及所述检测装置之间的控制装置,用于控制所述关断装置导通,以使所述光伏组件将电压和/或电流输出至所述检测装置。
优选地,还包括:
输出端与所述控制装置的电源输入端连接的电源模块,用于为所述控制装置供电。
优选地,所述电源模块为移动电源。
优选地,还包括:
与所述检测装置连接的提示模块,用于基于所述检测装置的检测结果对用户进行相应的提示。
优选地,所述提示模块为声音提示模块和/或显示提示模块。
优选地,所述声音提示模块为蜂鸣器;
所述显示提示模块为指示灯。
优选地,所述控制装置包括:
电源输入端为所述控制装置的电源输入端的控制信号生成装置,用于生成控制所述关断装置导通的控制信号;
输入端与所述控制信号生成装置的输出端连接,输出端连接到所述控制装置及所述关断装置之间的导线上的控制信号耦合装置,用于将所述控制信号耦合到所述导线上;
设置于所述关断装置及所述检测装置之间的控制信号导通装置,用于为所述控制信号提供回路。
优选地,所述控制信号导通装置为电容。
优选地,所述控制信号耦合装置为电感。
本申请提供了一种光伏组件的检测设备,包括检测装置及控制装置,其中,控制装置能够控制连接在光伏组件的输出端的关断装置导通,从而使光伏组件能够输出电压及电流至检测装置,以使检测装置基于光伏组件输出的电压及电流对光伏组件及其连接电路是否处于正常工作的状态进行 检测,也即实现光伏阵列测试,对光伏组件串进行故障检查,保证了光伏组件的正常使用。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型提供的光伏组件的检测设备的结构示意图;
图2为现有技术中的光伏组件与逆变器连接的结构示意图;
图3为现有技术中的光伏组件的检测设备的结构示意图;
图4为现有技术中的光伏组件的输出端设有关断装置的结构示意图;
图5为现有技术中的光伏组件的输出端设有关断装置且与检测装置连接的结构示意图;
图6为本实用新型提供的光伏组件的检测设备的具体结构示意图;
图7为本实用新型提供的一种控制装置的结构示意图。
具体实施方式
本实用新型的核心是提供一种光伏组件的检测设备,能够控制连接在光伏组件的输出端的关断装置导通,从而使光伏组件能够输出电压及电流至检测装置,以使检测装置基于光伏组件输出的电压及电流对光伏组件及其连接电路是否处于正常工作的状态进行检测,也即实现光伏阵列测试,对光伏组件串进行故障检查,保证了光伏组件的正常使用。
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
请参照图1,图1为本实用新型提供的光伏组件的检测设备的结构示意图。
光伏组件1输出端设有关断装置2,该检测设备包括:
输入端与关断装置2的输出端连接的检测装置4,用于基于光伏组件1输出的电压和/或电流检测光伏组件1及其连接电路是否处于正常工作的状态;
设置于关断装置2及检测装置4之间的控制装置3,用于控制关断装置2导通,以使光伏组件1将电压和/或电流输出至检测装置4。
现有技术中,光伏组件1通常与逆变器连接,请参照图2,图2为现有技术中的光伏组件与逆变器连接的结构示意图,图2中设有多个光伏组件1,各个光伏组件1输出直流电,逆变器将直流电转换为交流电,并将交流电输出至电网,但是,在光伏组件1与逆变器连接之前,通常需要对光伏组件1及其连接电路进行检测,在对光伏组件1及其连接电路进行检测时,通常将光伏组件1与检测装置4,例如光伏阵列测试仪连接,请参照图3,图3为现有技术中的光伏组件的检测设备的结构示意图,光伏阵列测试仪对光伏组件1输出的电压和/或电流进行检测,并判断光伏组件1及其连接电路是否均正常,但是,为了保证用户的安全,通常在光伏组件1的输出端连接关断装置2,请参照图4,图4为现有技术中的光伏组件的输出端设有关断装置的结构示意图,请参照图5,图5为现有技术中的光伏组件的输出端设有关断装置且与检测装置连接的结构示意图,关断装置2在没有接收到启动信号时处于关断状态,即光伏组件1无法输出电压和/或电流至检测装置4,检测装置4无法进行检测。
为了解决上述技术问题,本申请中的光伏组件1的检测设备设有检测装置4及设置于关断装置2及检测装置4之间的控制装置3,请参照图6,图6为本实用新型提供的光伏组件的检测设备的具体结构示意图,控制装置3能够在需要对光伏组件1及其连接关系进行检测时控制关断装置2导通,以使光伏组件1输出电压和/或电流至检测装置4,以便检测装置4基于光伏组件1输出的电压和/或电流检测光伏组件1及其连接电路是否处于正常工作的状 态。
其中,检测装置4可以但不限定为光伏阵列测试仪,能够基于光伏组件1输出的电压和/或电流检测光伏组件1及其连接电路是否处于正常工作的状态即可。
此外,控制装置3中可以设有电压检测模块和显示装置,在控制关断装置2导通后对光伏组件1输出的电压和/或电流进行检测,从而将电压-电流曲线通过显示装置向用户展示,以便用户进行下一步处理。
当然,本申请中也可以对光伏组件1的对地电阻进行检测,从而判断光伏组件1是否正常工作。
此外,本申请中控制装置3的PV输入端子与关断装置2的PV输出端子连接,检测装置4的PV输入端子与控制装置3的PV输出端子连接。
需要说明的是,本申请中对光伏组件1的连接电路进行检测是指对例如电路中的线缆及各个部分之间连接的接头进行检测,判断是否正常,以保证电路的正常工作。
需要说明的是,现有技术中通常为多个光伏组件1串联的结构,也即构成组件阵列,每个光伏组件1的输出端均连接了一个关断装置2,各个关断装置2分别控制与自身连接的光伏组件1的输出,本申请中的光伏组件1的检测设备能够检测出光伏组件1阵列是否存在损坏,但是若不考虑成本问题,也可以判断出现损坏时具体是光伏组件1出现损坏还是线缆或接头出现损坏,本申请对此不作限定。
此外,本申请中的控制装置3将控制信号耦合到与关断装置2连接的电力线上,关断装置2中设有PLC(Powerline Communication,电力线通信)通信模块,能够对电力线上的控制信号进行采集,当采集到电力线上存在控制信号时,则将关断装置2中连接在光伏组件1输出端的开关闭合,以使光伏组件1能够正常输出电压和/或电流;当采集到电力线上不存在控制信号时,则将关断装置2中连接在光伏组件1输出端的开关断开,以断开光伏组件1的输出。
此外,为了保证控制装置3的正常工作,还需在控制装置3的电源输入端连接电源模块5,请参照图6,电源模块5可以但不限定为移动电源或固定 电源,能够实现对控制模块的供电即可。
需要说明的是,本申请中的光伏组件1的检测设备的连接顺序及工作顺序为:将各个光伏组件1的输出端分别连接一个关断装置2;将各个关断装置2依次串联;将串联后处于两端的关断装置2的输出端子连接电力线,也即PV+输出端子与PV-输出端子分别连接电力线;将关断装置2的PV+输出端子与PV-输出端子连接的电力线分别连接至控制装置3相应的PV+输入端子及PV-输入端子;将控制装置3的PV+输出端子与PV-输出端子分别连接至检测装置4相应的PV+输入端子及PV-输入端子;将控制装置3的电源输入端连接电源模块5;控制装置3上可设置指示灯,电源模块5开始为控制装置3供电后指示灯被点亮,即控制装置3输出了控制信号;等待预设时间后,此时各个关断装置2均导通,检测装置4基于光伏组件1输出的电压和/或电流对光伏组件1及其连接电路进行检测。
综上,控制装置3能够控制连接在光伏组件1的输出端的关断装置2导通,从而使光伏组件1能够输出电压及电流至检测装置4,以使检测装置4基于光伏组件1输出的电压及电流对光伏组件1及其连接电路是否处于正常工作的状态进行检测,也即实现光伏阵列测试,对光伏组件1串进行故障检查,保证了光伏组件1的正常使用。
在上述实施例的基础上:
作为一种优选的实施例,还包括:
输出端与控制装置3的电源输入端连接的电源模块5,用于为控制装置3供电。
本实施例中设置了电源模块5为控制装置3供电,能够保证控制装置3的正常工作,从而使控制装置3控制关断装置2导通,以使检测装置4对光伏组件1及其连接电路进行检测。
需要说明的是,本申请中的控制模块在电源模块5为其上电后即开始控制各个关断装置2导通。
作为一种优选的实施例,电源模块5为移动电源。
本实施例中,将移动电源作为电源模块5为控制装置3进行供电,不仅 能够保证控制装置3的正常工作,还能够随时移动,进一步便于用户的操作。
当然,本申请并不限定电源模块5为移动电源,能够实现为控制模块3供电即可。
作为一种优选的实施例,还包括:
与检测装置4连接的提示模块,用于基于检测装置4的检测结果对用户进行相应的提示。
本实施例中,考虑到检测装置4检测到光伏组件1输出的电压和/或电流异常、电池模块电压不足或长时间没有操作各个装置自动停机时需要及时告知工作人员进行处理,因此,加入了提示模块。检测装置4检测到异常后,控制提示模块发出异常提示,以提示工作人员对光伏组件1及其连接电路进行处理。
此外,若检测装置4检测到光伏组件1输出的电压和/或电流未发生异常,也可以向工作人员发出未出现异常的提示。
作为一种优选的实施例,提示模块为声音提示模块和/或显示提示模块。
本实施例中,提示模块包括声音提示模块或显示提示模块。声音提示模块可以发出声音的提示,显示提示模块可以发出灯光的提示。
具体地,提示模块可以仅包括声音提示模块或显示提示模块,提示模块还可以同时包括声音提示模块和显示提示模块。其中,在提示模块可以同时包括声音提示模块和显示提示模块时,较为嘈杂的工作环境下,工作人员听不到声音的提示,但是可以通过显示提示模块得知检测装置4的检测结果;当工作人员视野范围内看不到显示提示模块时,可以通过声音提示模块得知检测装置4的检测结果,以便在异常时更快地对光伏组件1及其连接电路进行处理。
作为一种优选的实施例,声音提示模块为蜂鸣器;
显示提示模块为指示灯。
本实施例中,选用蜂鸣器作为声音提示模块,蜂鸣器能够实现声音的提示;选用指示灯作为显示提示模块,指示灯能够实现灯光的提示。
此外,蜂鸣器还具有成本低,灵敏度高的特点;发光二极管还具有成 本低的优点,可以和蜂鸣器共用一个控制口。
作为一种优选的实施例,控制装置3包括:
电源输入端为控制装置3的电源输入端的控制信号生成装置31,用于生成控制关断装置2导通的控制信号;
输入端与控制信号生成装置31的输出端连接,输出端连接到控制装置3及关断装置2之间的导线上的控制信号耦合装置32,用于将控制信号耦合到导线上;
设置于关断装置2及检测装置3之间的控制信号导通装置33,用于为控制信号提供回路。
本实施例中,控制装置3中设有控制信号生成装置31、控制信号导通33装置及控制信号耦合装置32,请参照图7,图7为本实用新型提供的一种控制装置的结构示意图,其中,控制信号生成装置31能够在需要对光伏组件1及其连接电路进行检测时生成控制信号,控制信号耦合装置32将控制信号耦合到与关断装置2连接的电力线上,以便关断装置2在检测到电力线上有控制信号时导通,使光伏组件1输出电压至检测装置4。
此外,申请人考虑到控制装置3与关断装置2连接时,没有完整的通路使控制信号正常传输,因此,本实施例中的控制信号导通装置33能够为控制信号提供通路,以正常控制关断装置2导通。
需要说明的是,本申请中的控制信号耦合装置33将控制信号耦合到与自身的PV输入端子连接的电力线上。
作为一种优选的实施例,控制信号导通装置33为电容C。
本实施例中将电容C设置为控制信号导通装置33,具体地,请参照图7,可见,电容C的第一端与关断装置2的第一输出端及检测装置3的第一输入端连接,第二端与关断装置2的第二输出端及检测装置3的第二输入端连接,电容C不仅能够实现为控制信号提供通路,还具有成本低,连接简单的特点。
当然,本申请并不限定将电容C作为控制信号导通装置33,也不限制电容C的容量,能够实现对为控制信号提供通路即可。
作为一种优选的实施例,控制信号耦合装置32为电感。
本实施例中将电感设置为控制信号耦合装置32,不仅能够实现将控制信号耦合至电力线上,还具有成本低,连接简单的特点。
当然,本申请并不限定将电感作为控制信号耦合装置32,能够实现将控制信号耦合至电力线上即可。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其他实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种光伏组件的检测设备,其特征在于,所述光伏组件输出端设有关断装置,所述检测设备包括:
    输入端与所述关断装置的输出端连接的检测装置,用于基于所述光伏组件输出的电压和/或电流检测所述光伏组件及其连接电路是否处于正常工作的状态;
    设置于所述关断装置及所述检测装置之间的控制装置,用于控制所述关断装置导通,以使所述光伏组件将电压和/或电流输出至所述检测装置。
  2. 如权利要求1所述的光伏组件的检测设备,其特征在于,还包括:
    输出端与所述控制装置的电源输入端连接的电源模块,用于为所述控制装置供电。
  3. 如权利要求2所述的光伏组件的检测设备,其特征在于,所述电源模块为移动电源。
  4. 如权利要求1所述的光伏组件的检测设备,其特征在于,还包括:
    与所述检测装置连接的提示模块,用于基于所述检测装置的检测结果对用户进行相应的提示。
  5. 如权利要求4所述的芯片检测电路,其特征在于,所述提示模块为声音提示模块和/或显示提示模块。
  6. 如权利要求5所述的芯片检测电路,其特征在于,所述声音提示模块为蜂鸣器;
    所述显示提示模块为指示灯。
  7. 如权利要求1至6任一项所述的光伏组件的检测设备,其特征在于,所述控制装置包括:
    电源输入端为所述控制装置的电源输入端的控制信号生成装置,用于生成控制所述关断装置导通的控制信号;
    输入端与所述控制信号生成装置的输出端连接,输出端连接到所述控制装置及所述关断装置之间的导线上的控制信号耦合装置,用于将所述控制信号耦合到所述导线上;
    设置于所述关断装置及所述检测装置之间的控制信号导通装置,用于 为所述控制信号提供回路。
  8. 如权利要求7所述的光伏组件的检测设备,其特征在于,所述控制信号导通装置为电容。
  9. 如权利要求7所述的光伏组件的检测设备,其特征在于,所述控制信号耦合装置为电感。
PCT/CN2022/072279 2021-01-20 2022-01-17 一种光伏组件的检测设备 WO2022156619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/273,442 US20240088833A1 (en) 2021-01-20 2022-01-17 Detection device for photovoltaic assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120151194.0 2021-01-20
CN202120151194.0U CN214045571U (zh) 2021-01-20 2021-01-20 一种光伏组件的检测设备

Publications (1)

Publication Number Publication Date
WO2022156619A1 true WO2022156619A1 (zh) 2022-07-28

Family

ID=77346995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072279 WO2022156619A1 (zh) 2021-01-20 2022-01-17 一种光伏组件的检测设备

Country Status (3)

Country Link
US (1) US20240088833A1 (zh)
CN (1) CN214045571U (zh)
WO (1) WO2022156619A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117411160A (zh) * 2023-12-14 2024-01-16 江苏天合清特电气有限公司 储能供电系统、方法及储能系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214045571U (zh) * 2021-01-20 2021-08-24 浙江英达威芯电子有限公司 一种光伏组件的检测设备
WO2024065211A1 (zh) * 2022-09-27 2024-04-04 宁德时代新能源科技股份有限公司 光伏阵列检测方法和系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070201252A1 (en) * 2006-02-24 2007-08-30 Ta-Yung Yang Control circuit having two-level under voltage lockout threshold to improve the protection of power supply
CN102005742A (zh) * 2010-11-17 2011-04-06 中国电力科学研究院 基于工频载波的分布式发电孤岛检测系统及其检测方法
JP2015073377A (ja) * 2013-10-03 2015-04-16 三洋電機株式会社 太陽電池電源装置
CN105553421A (zh) * 2015-12-02 2016-05-04 蚌埠电子信息产业技术研究院 一种光伏发电系统在线iv曲线测试装置及测试方法
CN107959475A (zh) * 2017-11-29 2018-04-24 中国电力科学研究院有限公司 一种光伏组件户外测试系统及方法
CN110022130A (zh) * 2019-03-11 2019-07-16 江苏大学 一种光伏阵列故障检测设备和方法
KR102000684B1 (ko) * 2018-11-23 2019-07-17 주식회사 더블유피 솔라 파인더를 적용한 태양광 장치와 그 장치의 불량 검출 방법
CN110412414A (zh) * 2018-04-27 2019-11-05 华为技术有限公司 一种线路检测装置及其检测方法、直流供电系统
CN112367049A (zh) * 2020-11-09 2021-02-12 华北电力科学研究院有限责任公司 光伏电站i-v曲线测试装置及方法
CN214045571U (zh) * 2021-01-20 2021-08-24 浙江英达威芯电子有限公司 一种光伏组件的检测设备
CN113541602A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 光伏组件、光伏系统和光伏测试方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070201252A1 (en) * 2006-02-24 2007-08-30 Ta-Yung Yang Control circuit having two-level under voltage lockout threshold to improve the protection of power supply
CN102005742A (zh) * 2010-11-17 2011-04-06 中国电力科学研究院 基于工频载波的分布式发电孤岛检测系统及其检测方法
JP2015073377A (ja) * 2013-10-03 2015-04-16 三洋電機株式会社 太陽電池電源装置
CN105553421A (zh) * 2015-12-02 2016-05-04 蚌埠电子信息产业技术研究院 一种光伏发电系统在线iv曲线测试装置及测试方法
CN107959475A (zh) * 2017-11-29 2018-04-24 中国电力科学研究院有限公司 一种光伏组件户外测试系统及方法
CN110412414A (zh) * 2018-04-27 2019-11-05 华为技术有限公司 一种线路检测装置及其检测方法、直流供电系统
KR102000684B1 (ko) * 2018-11-23 2019-07-17 주식회사 더블유피 솔라 파인더를 적용한 태양광 장치와 그 장치의 불량 검출 방법
CN110022130A (zh) * 2019-03-11 2019-07-16 江苏大学 一种光伏阵列故障检测设备和方法
CN113541602A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 光伏组件、光伏系统和光伏测试方法
CN112367049A (zh) * 2020-11-09 2021-02-12 华北电力科学研究院有限责任公司 光伏电站i-v曲线测试装置及方法
CN214045571U (zh) * 2021-01-20 2021-08-24 浙江英达威芯电子有限公司 一种光伏组件的检测设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117411160A (zh) * 2023-12-14 2024-01-16 江苏天合清特电气有限公司 储能供电系统、方法及储能系统
CN117411160B (zh) * 2023-12-14 2024-04-16 江苏天合清特电气有限公司 储能供电系统、方法及储能系统

Also Published As

Publication number Publication date
CN214045571U (zh) 2021-08-24
US20240088833A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022156619A1 (zh) 一种光伏组件的检测设备
CN103475271B (zh) 一种光伏发电系统及其控制方法
CN102540070B (zh) 一种四个继电器控制和检测电路及其检测方法
CN103048544B (zh) 一种光伏发电系统的绝缘阻抗监测方法
US20170364040A1 (en) Access control method for parallel direct current power supplies and device thereof
CN103503290A (zh) 线路变流器系统中熔接开关接触的检测
CN103929086B (zh) 光伏逆变器及其开机自检方法
CN101806848A (zh) 电压互感器防止误接线检测装置及其检测方法
CN106405313A (zh) 芯片的虚焊测试装置及测试方法
CN104702208A (zh) 大功率光伏逆变器的光伏方阵对地绝缘阻抗在线检测系统
US11874327B2 (en) Automated digitized system and methods for verifying power relay disconnect
CN105021977A (zh) 一种光伏逆变器并网前交流继电器检测方法及系统
TW201505356A (zh) 太陽能發電系統、量測模組與定位方法
CN105510730B (zh) 适用于换流阀反向恢复期保护单元rpu的测试装置及方法
CN201083789Y (zh) 一种用于检测直流远供电源线对电流不均衡的装置
WO2024032051A1 (zh) 一种汇流设备、光伏系统及故障检测方法
CN103780204A (zh) 光伏基板组串的故障检测装置及方法
CN213986735U (zh) 一种用于数字电路故障诊断的系统
CN214013869U (zh) 一种可靠市电单相接线侦测电路
CN207571272U (zh) 一种基于直流提供电路的继电保护出口检测系统
CN102157954B (zh) 光伏逆变装置
CN201204436Y (zh) 太阳能光伏并网逆变器的漏电检测保护装置
CN206594286U (zh) 一种快速查找故障电能表的装置
KR20190138205A (ko) 태양광 발전 시스템의 단선 감지를 위한 장치
CN220552952U (zh) 充电桩的继电器检测装置及充电桩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742098

Country of ref document: EP

Kind code of ref document: A1