WO2022155912A1 - 一种双向充电系统控制电路及车载双向充电机 - Google Patents

一种双向充电系统控制电路及车载双向充电机 Download PDF

Info

Publication number
WO2022155912A1
WO2022155912A1 PCT/CN2021/073368 CN2021073368W WO2022155912A1 WO 2022155912 A1 WO2022155912 A1 WO 2022155912A1 CN 2021073368 W CN2021073368 W CN 2021073368W WO 2022155912 A1 WO2022155912 A1 WO 2022155912A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
switch tube
switch
resistor
terminal
Prior art date
Application number
PCT/CN2021/073368
Other languages
English (en)
French (fr)
Inventor
刘佩甲
赵德琦
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN202180000925.4A priority Critical patent/CN112970183B/zh
Priority to PCT/CN2021/073368 priority patent/WO2022155912A1/zh
Publication of WO2022155912A1 publication Critical patent/WO2022155912A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the field of circuit technology, and in particular, to a bidirectional charging system control circuit and a vehicle-mounted bidirectional charger.
  • the main power source of electric vehicles is the bidirectional charging system.
  • the bidirectional charging system includes a primary side bridge circuit and a secondary side bridge circuit, and its working modes include forward mode and reverse mode.
  • forward mode the two ends of the primary side bridge circuit are connected to 220V alternating current, and the alternating current is converted into high voltage direct current through the primary side bridge circuit and the secondary side bridge circuit and supplied to the high voltage power battery.
  • reverse mode the high-voltage DC power of the high-voltage power battery is converted into AC power through the secondary side bridge circuit and the primary side bridge circuit, and the AC power can be provided to the AC power equipment outside the vehicle.
  • the switch tube of the primary bridge circuit In the forward mode, the switch tube of the primary bridge circuit needs to work in the switching state, and the switch tube of the secondary bridge circuit needs to work in the rectification state. In the reverse mode, the switch tube of the secondary bridge circuit needs to work in the switching state, and the switch tube of the primary bridge circuit needs to work in the rectification state. Therefore, when the bidirectional charging system is switched from the forward mode to the reverse mode, the states of the respective switches of the primary-side bridge circuit and the secondary-side bridge circuit also need to be switched.
  • the state of the switch tube will be chaotic, for example: the primary side bridge circuit and The respective switch tubes of the secondary-side bridge circuit are all in the switching state or in the rectifying state.
  • the working state of the entire bidirectional charging system is chaotic, which may damage the components in the bidirectional charging system and the devices connected thereto.
  • the purpose of this application is to provide a bidirectional charging system control circuit and a vehicle-mounted bidirectional charger, which control the respective switch tubes of the primary side bridge circuit and the secondary side bridge circuit to be in the correct state, and reduce the possibility that the bidirectional charging system has a chaotic working state. performance, and reduce damage to the components of the bidirectional charging system and the equipment connected to it.
  • a first aspect of the present application provides a bidirectional charging system control circuit, comprising: an input module, a first switch module, a second switch module and an output module connected in sequence;
  • the input module includes an input terminal and an input switch;
  • the first switch module includes a first switch module a switch tube, the second switch module includes a second switch tube, the output module includes a third switch tube and an output terminal;
  • the input terminal is respectively connected with one end of the input switch and the first pole of the first switch tube, and the first switch tube
  • One pole and the second pole are respectively connected to the voltage source;
  • the third pole of the first switch tube and the other end of the input switch are respectively connected to the ground terminal;
  • the first pole of the second switch tube is connected to the second pole of the first switch tube ,
  • the second pole of the second switch tube is connected to the voltage source,
  • the third pole of the second switch tube is connected to the first pole of the third switch tube, the second pole of the third switch tube is connected to the voltage source, and the third switch tube
  • the first switch module further includes a first resistor, a second resistor, a third resistor and a fourth resistor; the first resistor and the second resistor are connected in series to form a resistor string, and a third resistor is arranged between the first resistor and the second resistor.
  • the second switch module further includes a fourth switch tube, the first pole of the fourth switch tube is connected to the second pole of the second switch tube, and the second pole of the fourth switch tube is connected to the first pole of the second switch tube.
  • the pole is connected, and the third pole of the fourth switch tube is connected to the voltage source.
  • the second switch module further includes a diode, a fifth resistor, a sixth resistor and a seventh resistor; the first pole of the second switch tube is connected to the second pole of the first switch tube through the diode, and the second pole of the second switch tube is connected to the second pole of the first switch tube.
  • the second pole is connected to the voltage source through the fifth resistor; the sixth resistor is connected between the first pole of the second switch tube and the ground; the seventh resistor is connected between the first pole and the third pole of the fourth switch tube .
  • the output module further includes an eighth resistor, a ninth resistor and a tenth resistor; the first pole of the third switch tube is connected to the third pole of the second switch tube through the eighth resistor, and the second pole of the third switch tube is connected.
  • the pole is connected to the voltage source through the ninth resistor, and the tenth resistor is connected between the first pole of the third switch tube and the ground.
  • it also includes a switch module; the switch module is connected between the first switch module and the second switch module; the switch module includes a switch terminal and a fifth switch tube; the switch terminal is connected to the first pole of the fifth switch tube, and the first switch The second pole of the fifth switch tube is connected to the first pole of the second switch tube, and the third pole of the fifth switch tube is connected to the ground; the switching terminal is used to provide electrical signals to the first pole of the fifth switch tube.
  • the switching module further includes an eleventh resistor and a twelfth resistor; the switching terminal is connected to the first pole of the fifth switch tube through the eleventh resistor, and the twelfth resistor is connected to the first pole of the fifth switch tube between the ground.
  • the first switch tube, the second switch tube and the third switch tube are all triodes; the first pole of the transistor is the base, the second pole of the transistor is the collector, and the third pole of the transistor is the emitter.
  • the input terminals include hard-wired terminals.
  • a second aspect of the present application provides a vehicle-mounted bidirectional charger, including the bidirectional charging system control circuit of any one of the first aspect of the present application.
  • the bidirectional charging system control circuit includes: an input module, a first switch module, a second switch module and an output module connected in sequence; the input module includes an input terminal and an input switch; the first switch module includes a first switch tube, and the first switch module includes a first switch tube.
  • the second switch module includes a second switch tube, and the output module includes a third switch tube and an output terminal; the input terminal is respectively connected to one end of the input switch and the first pole of the first switch tube, and the first pole and the second pole of the first switch tube are respectively connected.
  • the poles are respectively connected to the voltage source; the third pole of the first switch tube and the other end of the input switch are respectively connected to the ground; the first pole of the second switch tube is connected to the second pole of the first switch tube, and the second switch tube
  • the second pole of the second switch tube is connected to the voltage source, the third pole of the second switch tube is connected to the first pole of the third switch tube, the second pole of the third switch tube is connected to the voltage source, and the third pole of the third switch tube is connected to the voltage source.
  • the ground terminal is connected, and the output terminal is connected with the second pole of the third switch tube.
  • the bidirectional charging system control circuit controls the signal DRIVE_STATE of the output terminal to be high level or low level by opening and closing the input switch.
  • DRIVE_STATE When DRIVE_STATE is high, the two-way charging system can only work in charging mode, and when DRIVE_STATE is low, the two-way charging system can only work in reverse mode. As a result, the working state of the entire bidirectional charging system is kept stable, and the possibility of damaging the components in the bidirectional charging system and the equipment connected thereto is reduced.
  • FIG. 1 is a schematic structural diagram of a bidirectional charging system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a bidirectional charging system control circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another bidirectional charging system control circuit provided by an embodiment of the present application.
  • the bidirectional charging system includes a primary side full-bridge circuit and a secondary side full-bridge circuit.
  • the primary side full-bridge circuit includes parallel-arranged primary side capacitors, a first primary side half-bridge and the second primary side half bridge
  • the secondary side full bridge circuit includes a first secondary side half bridge, a second secondary side half bridge and a secondary side capacitor arranged in parallel.
  • the first primary half bridge includes a first primary switch Q11 and a second primary switch Q12, and the second primary half bridge includes a third primary switch Q13 and a fourth primary switch Q14;
  • the first The secondary side half bridge includes a first secondary side switch transistor Q21 and a second secondary side switch transistor Q22, and the second secondary side half bridge includes a third secondary side switch transistor Q23 and a fourth secondary side switch transistor Q24.
  • the first primary side switch transistors Q11 to the fourth primary side switch transistors Q14 are all MOS transistors
  • the first secondary side switch transistors Q21 to the fourth secondary side switch transistors Q24 are all MOS transistors.
  • both ends of the primary full-bridge circuit are connected to the charger, and the charger can be connected to the 220V mains. Both ends of the secondary-side full-bridge circuit are connected to the high-voltage power battery.
  • the bidirectional charging system control circuit provided by the embodiment of the present application, as shown in FIG. 2 and FIG. 3 , the bidirectional charging system control circuit controls the working state of the switch tube of the bidirectional charging system.
  • the bidirectional charging system control circuit specifically includes: an input module 100 , a first switch module 200 , a second switch module 300 and an output module 400 which are connected in sequence.
  • the input module 100 includes an input terminal D1 and an input switch K; the first switch module 200 includes a first switch tube Q1, the second switch module 300 includes a second switch tube Q2, and the output module 400 includes a third switch tube Q3 and an output terminal D2.
  • the input terminal D1 is respectively connected to one end of the input switch K and the first pole b1 of the first switch tube Q1, and the first pole b1 and the second pole c2 of the first switch tube Q1 are respectively connected to the voltage source VCC;
  • the third pole e1 of the switch tube Q1 and the other end of the input switch K are respectively connected to the ground;
  • the first pole b2 of the second switch tube Q2 is connected to the second pole c1 of the first switch tube Q1, and the second pole of the second switch tube Q2
  • the second pole c2 is connected to the voltage source VCC
  • the third pole e2 of the second switch tube Q2 is connected to the first pole b3 of the third switch tube Q3, and the second pole c3 of the third switch tube Q3 is connected to the voltage source VCC.
  • the third pole e3 of the three switch tube Q3 is connected to the ground, and the output terminal D2 is connected to the second pole c3 of the third switch tube Q3.
  • the input switch K when the input switch K is turned off, the input terminal D1 and the ground terminal are disconnected, and the signal of the input terminal D2 is at a high level, so that the first switch tube Q1 is turned on, the second switch tube Q2 is turned off, and the third switch tube Q2 is turned off.
  • the switch tube Q3 is turned off, the output terminal D2 and the ground terminal are disconnected, and the signal of the output terminal D2 is high level; when the input switch K is closed, the input terminal D1 is connected to the ground terminal, and the signal of the input terminal D1 is low level , so that the first switch tube Q1 is turned off, the second switch tube Q2 is turned on, the third switch tube Q3 is turned on, the output terminal D2 is connected to the ground, and the signal of the output terminal D2 is low level.
  • the output terminal D2 of the bidirectional charging system control circuit is connected through the first chip and the first primary side switch tube Q11 to the fourth primary side switch tube Q14 of the primary side full bridge circuit, and the output terminal D2 is connected by the second chip and the fourth primary side switch tube Q14.
  • the first secondary side switch tube Q21 to the fourth secondary side switch tube Q24 of the secondary side full-bridge circuit are connected, and the following is the level signal DRIVE_STATE output by the output terminal D2 and the first primary side switch tube Q11 to the fourth
  • the first primary side switch transistors Q11 to The four primary side switch transistors Q14 work in the switching state
  • the first secondary side switch transistors Q21 to the fourth secondary side switch transistors Q24 in the secondary side full-bridge circuit work in the body diode D rectification state.
  • the first primary side switch Q11 to the fourth primary side switch Q14 in the primary side full-bridge circuit work in the body diode D rectification state, and the secondary side
  • the first secondary side switch transistors Q21 to the fourth secondary side switch transistors Q24 in the full-bridge circuit work in the switching state.
  • the input terminal D1 is connected between the voltage source VCC and the input switch K, and the input switch K is connected between the input terminal D1 and the ground terminal.
  • the input switch K is disconnected, the input terminal D1 and the ground terminal are disconnected, so The signal IVT_CTR of the input terminal D1 is pulled to a high level.
  • a current flows into the first pole b1 of the first switch tube Q1, and the current makes the second pole c1 and the third pole e1 of the first switch tube Q1 conduct.
  • the third pole e1 of the first switch tube Q1 is grounded, and the first pole b2 of the second switch tube Q2 is connected to the second pole c1 of the first switch tube Q1, there is no current in the first pole b2 of the second switch tube Q2 Inflow, then the second switch tube Q2 is turned off, that is, the second pole c2 and the third pole e2 of the second switch tube Q2 are not turned on, and no current flows between them. Since the first pole b3 of the third switch tube Q3 is connected to the third pole e2 of the second switch tube Q2, and the second switch tube Q2 is turned off, no current flows into the first pole b3 of the third switch tube Q3, so the third switch tube Q2 is turned off.
  • the switch tube Q3 is also turned off, that is, the second pole c3 and the third pole e3 of the third switch tube Q3 are not turned on, and no current flows between them. Because the output terminal D2 is connected between the voltage source VCC and the second pole c3 of the third switch tube Q3, the third pole e3 of the third switch tube Q3 is connected to the ground, and the third switch tube Q3 is turned off, the output terminal D2 and The ground terminals are disconnected, so the signal DRIVE_STATE at the output terminal D2 is high.
  • the input terminal D1 when the input switch K is closed, the input terminal D1 is connected to the ground terminal, so the signal IVT_CTR of the input terminal D1 is low level, because the input terminal D1 is connected to the first pole b1 of the first switch tube Q1, Therefore, the signal IVT_CTR of the input terminal D1 is at a low level, which is equivalent to short-circuiting the first pole b1 of the first switch tube Q1 to the ground. At this time, no current flows into the first pole b1 of the first switch tube Q1, and the second pole c1 and the third pole e1 of the first switch tube Q1 are turned off.
  • the first switch Q1 is turned off, and the first pole b2 of the second switch Q2 is connected between the voltage source VCC and the second pole c1 of the first switch Q1, the first pole b2 of the second switch Q2 has When the current flows in, the second pole c2 and the third pole e2 of the second switch tube Q2 are turned on, and current flows between them.
  • the first pole b3 of the third switch tube Q3 is connected to the third pole e2 of the second switch tube Q2, the current flowing through the second pole c2 and the third pole e2 of the second switch tube Q2 will flow into the third switch tube.
  • the current makes the second pole c3 and the third pole e3 of the third switch tube Q3 conduct, and current flows therebetween.
  • the output terminal D2 is connected to the second pole c3 of the third switch tube Q3, the third pole e3 of the third switch tube Q3 is connected to the ground terminal, the third switch tube Q3 is turned on, and the output terminal D2 is short-circuited to the ground terminal , so the signal DRIVE_STATE of the output terminal D2 is low.
  • the bidirectional charging system control circuit controls the signal DRIVE_STATE of the output terminal D2 to be a high level or a low level by opening and closing the input switch K.
  • DRIVE_STATE When DRIVE_STATE is high, the two-way charging system can only work in charging mode, and when DRIVE_STATE is low, the two-way charging system can only work in reverse mode. As a result, the working state of the entire bidirectional charging system is kept stable, and the possibility of damaging the components in the bidirectional charging system and the equipment connected thereto is reduced.
  • the level signal DRIVE_STATE output by the output terminal D2 is a high level signal
  • the first primary side switch tube Q11 to the fourth primary side switch tube Q14 in the primary side full bridge circuit work in the switching state
  • the secondary side full bridge circuit is in the switching state.
  • the first secondary side switch transistor Q21 to the fourth secondary side switch transistor Q24 in the circuit work in the body diode D rectification state.
  • the first primary side switch Q11 to the fourth primary side switch Q14 in the primary side full-bridge circuit work in the body diode D rectification state, and the secondary side
  • the first secondary side switch transistors Q21 to the fourth secondary side switch transistors Q24 in the full-bridge circuit work in the switching state.
  • the first switch transistor Q1, the second switch transistor Q2 and the third switch transistor Q3 are all triodes; the first pole of the transistor is the base, the second pole of the transistor is the collector, and the third pole of the transistor Extremely emitter.
  • the triode is an NPN type triode. Adopt NPN type triode as switch tube, its cost is lower.
  • the first switch module 200 further includes a first resistor R1, a second resistor R2, a third resistor R3 and a fourth resistor R4; the first resistor R1 and the second resistor R2 is connected in series to form a resistor string, and a first node is provided between the first resistor R1 and the second resistor R2.
  • the input terminal D1 is connected to the first node, the first pole b1 of the first switch tube Q1 is connected to the voltage source VCC through the resistor string, and the second pole c1 of the first switch tube Q1 is connected to the voltage source VCC through the third resistor R3 , the fourth resistor R4 is connected between the first pole b1 of the first switch tube Q1 and the ground.
  • the first resistor R1 and the second resistor R2 are connected in series between the first pole b1 of the first switch tube Q1 and the voltage source VCC, which can reduce the current of the first pole b1 of the first switch tube Q1 , so that the current of the first pole b1 of the first switch tube Q1 works within the allowable range, so as to ensure the reliability and stability of the first switch tube Q1.
  • the second pole c1 of the first switch tube Q1 is connected to the third resistor R3, which acts as a current limiting resistor, so that the voltage of the second pole c1 of the first switch tube Q1 follows the voltage of the first pole b1 of the first switch tube Q1.
  • the current changes, so that the voltage loaded on the third resistor R3 changes, which plays the role of stabilizing the current.
  • the fourth resistor R4 is connected between the first pole b1 of the first switch tube Q1 and the ground terminal, and serves as a pull-up resistor, thereby reducing the possibility of the first switch tube Q1 malfunctioning due to unstable input signals.
  • the second switch module 300 further includes a fourth switch transistor Q4, the first pole of the fourth switch transistor Q4 is connected to the second pole c2 of the second switch transistor Q2, The second pole of the fourth switch tube Q4 is connected to the first pole b2 of the second switch tube Q2, and the third pole of the fourth switch tube Q4 is connected to the voltage source VCC.
  • the fourth switch Q4 may be a PNP transistor; when the fourth switch Q4 is a PNP transistor, the first pole is the base, the second pole is the collector, and the third pole is the emitter.
  • the second switch tube Q2 is turned on. Because the first pole of the fourth switch tube Q4 is connected to the second pole c2 of the second switch tube Q2, the second switch tube Q2 is connected. After Q2 is turned on, the fourth switch tube Q4 is also turned on. Because the second pole of the fourth switch tube Q4 is connected to the first pole b2 of the second switch tube Q2, the second switch tube Q2 and the fourth switch tube Q4 form a blocking relation. Due to the blocking relationship between the second switch transistor Q2 and the fourth switch transistor Q4, that is, the second switch transistor Q2 and the fourth switch transistor Q4 are in a mutually conducting state, the third switch transistor Q3 is also always on.
  • the third switch transistor Q3 is kept in a conducting state, and the conducting state is not affected by the signal IVT_CTR of the input terminal D1.
  • the level signal DRIVE_STATE output by the output terminal D2 remains at a low level, and the bidirectional charging system is locked in the inverter mode, and will not switch to the charging mode at will, which increases the safety factor.
  • the second switch module 300 further includes a diode D, a fifth resistor R5 , a sixth resistor R6 and a seventh resistor R7 .
  • the first pole b2 of the second switch tube Q2 is connected to the second pole c1 of the first switch tube Q1 through the diode D, and the second pole c2 of the second switch tube Q2 is connected to the voltage source VCC through the fifth resistor R5;
  • the six resistors R6 are connected between the first pole b2 of the second switch tube Q2 and the ground; the seventh resistor R7 is connected between the first pole and the third pole of the fourth switch tube Q4.
  • the diode D is equivalent to the switch between the first switch module 200 and the second switch module 300.
  • the second switch module 300 can be turned on.
  • the second switch tube Q2 is turned off. This prevents the second switch module 300 from malfunctioning.
  • the second pole c2 of the second switch tube Q2 is connected to the fifth resistor R5, and the fifth resistor R5 acts as a current limiting resistor, so that the voltage of the second pole c2 of the second switch tube Q2 follows the voltage of the first pole b2 of the second switch tube Q2 The current changes, so that the voltage loaded on the fifth resistor R5 changes, which plays the role of stabilizing the current.
  • the sixth resistor R6 is connected between the first pole b2 of the second switch tube Q2 and the ground terminal, and serves as a pull-up resistor, thereby reducing the possibility of the second switch tube Q2 malfunctioning due to unstable input signals.
  • the seventh resistor R7 is used as a pull-up resistor of the fourth switch tube Q4 to prevent the fourth switch tube Q4 from malfunctioning.
  • the output module 400 further includes an eighth resistor R8 , a ninth resistor R9 and a tenth resistor R10 .
  • the first pole b3 of the third switch tube Q3 is connected to the third pole e2 of the second switch tube Q2 through the eighth resistor R8, and the second pole c3 of the third switch tube Q3 is connected to the voltage source VCC through the ninth resistor R9 , the tenth resistor R10 is connected between the first pole b3 of the third switch tube Q3 and the ground.
  • the eighth resistor R8 is used as the current limiting resistor of the third switch tube Q3
  • the ninth resistor R9 is used as the current limiting resistor of the third switch tube Q3
  • the tenth resistor R10 is used as the pull-up resistor of the third switch tube Q3. function, so as to make the third switch tube Q3 work smoothly, safely and stably, and reduce the probability that the instability of the third switch tube Q3 causes the unstable state of the entire circuit.
  • the bidirectional charging system control circuit further includes a switch module; the switch module is connected between the first switch module 200 and the second switch module 300 ; the switch module includes switch terminals D3 and The fifth switch tube Q5.
  • the switching terminal D3 is connected to the first pole of the fifth switch tube Q5, the second pole of the fifth switch tube Q5 is connected to the first pole b2 of the second switch tube Q2, and the third pole of the fifth switch tube Q5 is connected to the ground
  • the terminal is connected; the switch terminal D3 is used to provide an electrical signal to the first pole of the fifth switch tube Q5.
  • the fifth switch tube Q5 is turned on. Because the second pole of the fifth switch tube Q5 is connected to the first pole b2 of the second switch tube Q2, and the third pole of the fifth switch tube Q5 is connected to the ground terminal, after the fifth switch tube Q5 is turned on, it is equivalent to turning the first pole of the second switch tube Q5 on.
  • the first pole b2 of the second switch tube Q2 is shorted to the ground terminal, at this time the second switch tube Q2 is turned off, the fourth switch tube Q4 is turned off accordingly, and the latching relationship between the second switch tube Q2 and the fourth switch tube Q4 is released; this When the signal DRIVE_STATE of the output terminal D2 is at a high level, the entire bidirectional charging system switches to the charging mode.
  • the switching module further includes an eleventh resistor R11 and a twelfth resistor R12; the switching terminal D3 passes through the eleventh resistor R11 and the first pole of the fifth switch transistor Q5 connected, the twelfth resistor R12 is connected between the first pole of the fifth switch tube Q5 and the ground.
  • the eleventh resistor R11 is used as the current limiting resistor of the fifth switch tube Q5
  • the twelfth resistor R12 is used as the pull-up resistor of the fifth switch tube Q5, thereby ensuring the stability of the fifth switch tube Q5 and reducing the The possibility that the instability of the five-switch Q5 leads to the instability of the entire circuit.
  • the input terminal D1 comprises a hard-wired terminal. Whether the hard-wired terminal is grounded or not can be realized by suspending the hard-wired terminal or contacting the vehicle body.
  • the hard-wired terminal is a physical wiring harness. When the hard-wired terminal is suspended, it is equivalent to disconnecting the input switch K, and when the hard-wired terminal is overlapped on the vehicle body, it is equivalent to connecting to the ground.
  • Embodiments of the present application also provide a vehicle-mounted two-way charger, including the two-way charging system control circuit of any example of the present application.

Abstract

提供了一种双向充电系统控制电路及车载双向充电机,双向充电系统控制电路包括依次连接的输入模块(100)、第一开关模块(200)、第二开关模块(300)和输出模块(400);输入模块(100)包括输入端子(D1)和输入开关(K);第一开关模块(200)包括第一开关管(Q1),第二开关模块(300)包括第二开关管(Q2),输出模块(400)包括第三开关管(Q3)和输出端子(D2)。通过输入开关(K)的断开和闭合,控制输出端子(D2)的信号DRIVE_STATE为高电平或低电平。DRIVE_STATE为高电平的情况下,双向充电系统只能工作在充电模式,DRIVE_STATE为低电平的情况下,双向充电系统只能工作在逆向模式。由此使得整个双向充电系统的工作状态保持稳定,降低损伤双向充电系统中的元器件以及与之连接的设备的可能性。

Description

一种双向充电系统控制电路及车载双向充电机 技术领域
本申请涉及电路技术领域,尤其涉及一种双向充电系统控制电路及车载双向充电机。
背景技术
传统燃油汽车其动力系统依赖于石油,燃油汽车排放的废气对环境污染比较严重,且随着石油资源的紧缺,我国对外国的石油依赖度逐年提升。因此,出于不可再生资源-石油的短缺危机和环境保护的客观要求,新能源汽车是整个产业的需求。
目前新能源汽车中,电动汽车以电能作为动力来源,对环境污染比较小,并且电能相对而言属于可再生资源,因此,电动汽车成为主流发展趋势。电动汽车主要动力来源为双向充电系统,双向充电系统包括原边桥式电路和副边桥式电路,其工作模式包括具有正向模式和逆向模式两种。其中在正向模式下,原边桥式电路的两端外接220V交流电,该交流电经过原边桥式电路和副边桥式电路转换成高压直流电提供至高压动力电池。在逆向模式下,高压动力电池的高压直流电经过副边桥式电路和原边桥式电路逆变为交流电,该交流电可以提供给车外交流用电设备使用。
在正向模式下,原边桥式电路的开关管需工作在开关状态,副边桥式电路的开关管需工作在整流状态。在逆向模式下,副边桥式电路的开关管需工作在开关状态,原边桥式电路的开关管需工作在整流状态。因此,双向充电系统从正向模式切换为逆向模式时,原边桥式电路和副边桥式电路各自开关管的状态也需要进行切换。
然而,在实际应用中发现,双向充电系统从正向模式切换为逆向模式时,或者从逆向模式切换为正向模式时,会出现开关管的状态混乱的情况,例如:原边桥式电路和副边桥式电路各自的开关管都处于开关状态或者都处于整流状态。由此导致整个双向充电系统工作状态混乱,可能会损伤双向充电系统中的元器件以及与之连接的设备。
发明内容
本申请的目的在于提供一种双向充电系统控制电路及车载双向充电机,控制原边桥式电路和副边桥式电路各自的开关管处于正确的状态,降低双向充电系统出现工作状态混乱的可能性,以及降低对双向充电系统元器件和与之连接的设备的损伤。
本申请第一方面提供一种双向充电系统控制电路,包括:依次连接的输入模块、第一开关模块、第二开关模块和输出模块;输入模块包括输入端子和输入开关;第一开关模块包括第一开关管,第二开关模块包括第二开关管,输出模块包括第三开关管和输出端子;输入端子分别与输入开关的一端和第一开关管的第一极连接,第一开关管的第一极和第二极分别和电压源连接;第一开关管的第三极和输入开关的另一端分别和地端连接;第二开关管的第一极和第一开关管的第二极连接,第二开关管的第二极和电压源连接,第二开关管的第三极和第三开关管的第一极连接,第三开关管的第二极和电压源连接,第三开关管的第三极和地端连接,输出端子和第三开关管的第二极连接;在输入开关断开的情况下,输入端子和地端断开,输入端子的信号为高电平,以使第一开关管导通,第二开关管截止,第三开关管截止,输出端子和地端断开,输出端子的信号为高电平;在输入开关闭合的情况下,输入端子和地端连接,输入端子的信号为低电平,以使第一开关管截止,第二开关管导通,第三开关管导通,输出端子和地端连接,输出端子的信号为低电平。
可选的,第一开关模块还包括第一电阻、第二电阻、第三电阻和第四电阻;第一电阻和第二电阻串联成电阻串,第一电阻和第二电阻之间设有第一节点;输入端子和第一节点连接,第一开关管的第一极通过电阻串和电压源连接,第一开关管的第二极通过第三电阻和电压源连接,第四电阻连接在第一开关管的第一极和地端之间。
可选的,第二开关模块还包括第四开关管,第四开关管的第一极和第二开关管的第二极连接,第四开关管的第二极和第二开关管的第一极连接,第四开关管的第三极和电压源连接。
可选的,第二开关模块还包括二极管、第五电阻、第六电阻和第七电阻; 第二开关管的第一极通过二极管和第一开关管的第二极连接,第二开关管的第二极通过第五电阻和电压源连接;第六电阻连接在第二开关管的第一极和地端之间;第七电阻连接在第四开关管的第一极和第三极之间。
可选的,输出模块还包括第八电阻、第九电阻和第十电阻;第三开关管的第一极通过第八电阻和第二开关管的第三极连接,第三开关管的第二极通过第九电阻和电压源连接,第十电阻连接在第三开关管的第一极和地端之间。
可选的,还包括切换模块;切换模块连接在第一开关模块和第二开关模块之间;切换模块包括切换端子和第五开关管;切换端子和第五开关管的第一极连接,第五开关管的第二极和第二开关管的第一极连接,第五开关管的第三极和地端连接;切换端子用于向第五开关管的第一极提供电信号。
可选的,切换模块还包括第十一电阻和第十二电阻;切换端子通过第十一电阻和第五开关管的第一极连接,第十二电阻连接在第五开关管的第一极和地端之间。
可选的,第一开关管、第二开关管和第三开关管均为三极管;三极管的第一极为基极,三极管的第二极为集电极,三极管的第三极为发射极。
可选的,输入端子包括硬线端子。
本申请第二方面提供一种车载双向充电机,包括本申请第一方面中任一项的双向充电系统控制电路。
本申请提供的双向充电系统控制电路包括:依次连接的输入模块、第一开关模块、第二开关模块和输出模块;输入模块包括输入端子和输入开关;第一开关模块包括第一开关管,第二开关模块包括第二开关管,输出模块包括第三开关管和输出端子;输入端子分别与输入开关的一端和第一开关管的第一极连接,第一开关管的第一极和第二极分别和电压源连接;第一开关管的第三极和输入开关的另一端分别和地端连接;第二开关管的第一极和第一开关管的第二极连接,第二开关管的第二极和电压源连接,第二开关管的第三极和第三开关管的第一极连接,第三开关管的第二极和电压源连接,第三开关管的第三极和地端连接,输出端子和第三开关管的第二极连接。
本申请提供的双向充电系统控制电路,通过输入开关的断开和闭合,控制输出端子的信号DRIVE_STATE为高电平或低电平。DRIVE_STATE为高电平 的情况下,双向充电系统只能工作在充电模式,DRIVE_STATE为低电平的情况下,双向充电系统只能工作在逆向模式。由此使得整个双向充电系统的工作状态保持稳定,降低损伤双向充电系统中的元器件以及与之连接的设备的可能性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的双向充电系统的结构示意图;
图2是本申请实施例提供的双向充电系统控制电路的结构示意图;
图3是本申请实施例提供的另一双向充电系统控制电路的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明,后文中将详细的描述。
具体实施方式
以下详述本申请的实施例。
首先声明一种双向充电系统,如图1所示,该双向充电系统包括原边全桥电路和副边全桥电路,原边全桥电路包括并列设置的原边电容、第一原边半桥和第二原边半桥,副边全桥电路包括并列设置的第一副边半桥、第二副边半桥和副边电容。其中,第一原边半桥包括第一原边开关管Q11和第二原边开关管Q12,第二原边半桥包括第三原边开关管Q13和第四原边开关管Q14;第一副边半桥包括第一副边开关管Q21和第二副边开关管Q22,第二副边半桥包括第三副边开关管Q23和第四副边开关管Q24。可选的,上述第一原边开关管Q11至第四原边开关管Q14均为MOS管,上述第一副边开关管Q21至第四副边开关管Q24均为MOS管。
实际应用时,原边全桥电路的两端连接充电器,充电器可以和220V市电连接。副边全桥电路的两端连接高压动力电池。
本申请实施例提供的双向充电系统控制电路,如图2和图3所示,该双向 充电系统控制电路控制上述双向充电系统的开关管的工作状态。该双向充电系统控制电路具体包括:依次连接的输入模块100、第一开关模块200、第二开关模块300和输出模块400。
其中,输入模块100包括输入端子D1和输入开关K;第一开关模块200包括第一开关管Q1,第二开关模块300包括第二开关管Q2,输出模块400包括第三开关管Q3和输出端子D2。
具体的,输入端子D1分别与输入开关K的一端和第一开关管Q1的第一极b1连接,第一开关管Q1的第一极b1和第二极c2分别和电压源VCC连接;第一开关管Q1的第三极e1和输入开关K的另一端分别和地端连接;第二开关管Q2的第一极b2和第一开关管Q1的第二极c1连接,第二开关管Q2的第二极c2和电压源VCC连接,第二开关管Q2的第三极e2和第三开关管Q3的第一极b3连接,第三开关管Q3的第二极c3和电压源VCC连接,第三开关管Q3的第三极e3和地端连接,输出端子D2和第三开关管Q3的第二极c3连接。
其中,在输入开关K断开的情况下,输入端子D1和地端断开,输入端子D2的信号为高电平,以使第一开关管Q1导通,第二开关管Q2截止,第三开关管Q3截止,输出端子D2和地端断开,输出端子D2的信号为高电平;在输入开关K闭合的情况下,输入端子D1和地端连接,输入端子D1的信号为低电平,以使第一开关管Q1截止,第二开关管Q2导通,第三开关管Q3导通,输出端子D2和地端连接,输出端子D2的信号为低电平。
实际应用时,双向充电系统控制电路的输出端子D2通过第一芯片和原边全桥电路的第一原边开关管Q11至第四原边开关管Q14连接,该输出端子D2通过第二芯片和副边全桥电路的第一副边开关管Q21至第四副边开关管Q24连接,以下为输出端子D2输出的电平信号DRIVE_STATE与原边全桥电路的第一原边开关管Q11至第四原边开关管Q14和副边全桥电路的第一副边开关管Q21至第四副边开关管Q24的工作状态对应关系。
Figure PCTCN2021073368-appb-000001
由上可见,只要本申请实施例提供的双向充电系统控制电路中,输出端子D2输出的电平信号DRIVE_STATE为高电平信号,则原边全桥电路中的第一原边开关管Q11至第四原边开关管Q14工作在开关状态,副边全桥电路中的第一副边开关管Q21至第四副边开关管Q24工作在体二极管D整流状态。相反的,输出端子D2输出的电平信号DRIVE_STATE为低电平,则原边全桥电路中的第一原边开关管Q11至第四原边开关管Q14工作在体二极管D整流状态,副边全桥电路中的第一副边开关管Q21至第四副边开关管Q24工作在开关状态。
以下详述双向充电系统控制电路的工作原理:
输入端子D1连接在电压源VCC和输入开关K之间,输入开关K连接在输入端子D1和地端之间,在输入开关K断开的情况下,输入端子D1和地端之间断开,因此输入端子D1的信号IVT_CTR被拉升至高电平。此时第一开关管Q1的第一极b1有电流流入,该电流使得第一开关管Q1的第二极c1和第三极e1导通。因第一开关管Q1的第三极e1接地,而第二开关管Q2的第一极b2和第一开关管Q1的第二极c1连接,因此第二开关管Q2的第一极b2没有电流流入,那么第二开关管Q2截止,也即第二开关管Q2的第二极c2和第三极e2未导通,二者之间没有电流流经。因第三开关管Q3的第一极b3和第二开关管Q2的第三极e2连接,第二开关管Q2截止,则第三开关管Q3的第一极b3也没有电流流入,因此第三开关管Q3也截止,也即第三开关管Q3的第二极c3和第三极e3未导通,二者之间没有电流流经。因输出端子D2连接在电压源VCC和第三开关管Q3的第二极c3之间,第三开关管Q3的第三极e3和地端连接,第三开关管Q3截止,则输出端子D2和地端之间断开,因此输出端子D2的信号DRIVE_STATE为高电平。
同样的道理,在输入开关K闭合的情况下,输入端子D1和地端连接,因此输入端子D1的信号IVT_CTR为低电平,因输入端子D1和第一开关管Q1的第一极b1连接,因此输入端子D1的信号IVT_CTR为低电平,相当于第一开关管Q1的第一极b1短接至地端。此时第一开关管Q1的第一极b1没有电流流入,第一开关管Q1的第二极c1和第三极e1截止。因第一开关管Q1截止,且第二开关管Q2的第一极b2连接在电压源VCC和第一开关管Q1的第二极c1之间,因此第二开关管Q2的第一极b2有电流流入,第二开关管Q2的第二极c2和第三极e2导通,二者之间有电流流经。
因第三开关管Q3的第一极b3和第二开关管Q2的第三极e2连接,因此第二开关管Q2的第二极c2和第三极e2流经的电流会流入第三开关管Q3的第一极b3,该电流使得第三开关管Q3的第二极c3和第三极e3导通,二者之间有电流流经。因输出端子D2和第三开关管Q3的第二极c3连接,第三开关管Q3的第三极e3和地端连接,第三开关管Q3导通,则输出端子D2被短接至地端,因此输出端子D2的信号DRIVE_STATE为低电平。
也即,本申请实施例提供的双向充电系统控制电路,通过输入开关K的断开和闭合,控制输出端子D2的信号DRIVE_STATE为高电平或低电平。DRIVE_STATE为高电平的情况下,双向充电系统只能工作在充电模式,DRIVE_STATE为低电平的情况下,双向充电系统只能工作在逆向模式。由此使得整个双向充电系统的工作状态保持稳定,降低损伤双向充电系统中的元器件以及与之连接的设备的可能性。
详细的,输出端子D2输出的电平信号DRIVE_STATE为高电平信号,则原边全桥电路中的第一原边开关管Q11至第四原边开关管Q14工作在开关状态,副边全桥电路中的第一副边开关管Q21至第四副边开关管Q24工作在体二极管D整流状态。相反的,输出端子D2输出的电平信号DRIVE_STATE为低电平,则原边全桥电路中的第一原边开关管Q11至第四原边开关管Q14工作在体二极管D整流状态,副边全桥电路中的第一副边开关管Q21至第四副边开关管Q24工作在开关状态。
在一种可选实施方式中,第一开关管Q1、第二开关管Q2和第三开关管Q3均为三极管;三极管的第一极为基极,三极管的第二极为集电极,三极管 的第三极为发射极。在一种可选实施方式中,三极管为NPN型三极管。采用NPN型三极管作为开关管,其成本较低。
在一种可选实施方式中,如图3所示,第一开关模块200还包括第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4;第一电阻R1和第二电阻R2串联成电阻串,第一电阻R1和第二电阻R2之间设有第一节点。其中,输入端子D1和第一节点连接,第一开关管Q1的第一极b1通过电阻串和电压源VCC连接,第一开关管Q1的第二极c1通过第三电阻R3和电压源VCC连接,第四电阻R4连接在第一开关管Q1的第一极b1和地端之间。
具体的,第一电阻R1和第二电阻R2串联后连接在第一开关管Q1的第一极b1和电压源VCC之间,可以起到降低第一开关管Q1的第一极b1电流的作用,使第一开关管Q1的第一极b1电流工作在允许范围之内,以确保第一开关管Q1可靠性和稳定性。第一开关管Q1的第二极c1连接第三电阻R3,该第三电阻R3作为限流电阻,使第一开关管Q1的第二极c1电压随第一开关管Q1的第一极b1的电流进行变化,从而使得加载在第三电阻R3上电压的发生改变,起到稳定电流作用。第四电阻R4连接在第一开关管Q1的第一极b1和地端之间,作为上拉电阻,从而降低因输入信号不稳定导致的第一开关管Q1误动作的可能性。
在一种可选实施方式中,如图3所示,第二开关模块300还包括第四开关管Q4,第四开关管Q4的第一极和第二开关管Q2的第二极c2连接,第四开关管Q4的第二极和第二开关管Q2的第一极b2连接,第四开关管Q4的第三极和电压源VCC连接。具体的,该第四开关管Q4可以为PNP型三极管;第四开关管Q4为PNP型三极管的情况下,其第一极为基极,第二极为集电极,第三极为发射极。
上述已经提及,在输入开关K闭合的情况下,第二开关管Q2导通,因第四开关管Q4的第一极和第二开关管Q2的第二极c2连接,因此第二开关管Q2导通后,第四开关管Q4也导通,因第四开关管Q4的第二极和第二开关管Q2的第一极b2连接,第二开关管Q2和第四开关管Q4形成闭锁关系。因第二开关管Q2和第四开关管Q4的闭锁关系,也即第二开关管Q2和第四开关管Q4处于相互导通的状态,因此第三开关管Q3也会一直导通。此时,第三 开关管Q3保持导通状态,且该导通状态不会受到输入端子D1的信号IVT_CTR的影响。此时,输出端子D2输出的电平信号DRIVE_STATE保持为低电平,双向充电系统被锁定在逆变模式,而不会随意切换至充电模式,增加了安全系数。
在一种可选实施方式中,如图3所示,第二开关模块300还包括二极管D、第五电阻R5、第六电阻R6和第七电阻R7。其中,第二开关管Q2的第一极b2通过二极管D和第一开关管Q1的第二极c1连接,第二开关管Q2的第二极c2通过第五电阻R5和电压源VCC连接;第六电阻R6连接在第二开关管Q2的第一极b2和地端之间;第七电阻R7连接在第四开关管Q4的第一极和第三极之间。
其中二极管D相当于第一开关模块200和第二开关模块300之间的开关,二极管D导通,则第二开关模块300才能导通,二极管D截止,则第二开关管Q2断开,由此避免第二开关模块300误动作。第二开关管Q2的第二极c2连接第五电阻R5,该第五电阻R5作为限流电阻,使第二开关管Q2的第二极c2电压随第二开关管Q2的第一极b2的电流进行变化,从而使得加载在第五电阻R5上电压的发生改变,起到稳定电流作用。第六电阻R6连接在第二开关管Q2的第一极b2和地端之间,作为上拉电阻,从而降低因输入信号不稳定导致的第二开关管Q2误动作的可能性。第七电阻R7作为第四开关管Q4的上拉电阻,避免第四开关管Q4误动作。
由此可见,设置二极管D、第五电阻R5、第六电阻R6和第七电阻R7,可以使得第二开关管Q2和第四开关管Q4稳定工作,降低第二开关管Q2和第四开关管Q4导致整个电路状态不稳定的概率。
在一种可选实施方式中,如图3所示,输出模块400还包括第八电阻R8、第九电阻R9和第十电阻R10。其中,第三开关管Q3的第一极b3通过第八电阻R8和第二开关管Q2的第三极e2连接,第三开关管Q3的第二极c3通过第九电阻R9和电压源VCC连接,第十电阻R10连接在第三开关管Q3的第一极b3和地端之间。
其中第八电阻R8作为第三开关管Q3的限流电阻,第九电阻R9作为第三开关管Q3的限流电阻,第十电阻R10作为第三开关管Q3的上拉电阻,三个 电阻共同作用,以使第三开关管Q3顺利、安全且稳定的进行工作,降低第三开关管Q3不稳定导致整个电路状态不稳定的概率。
在一种可选实施方式中,如图3所示,双向充电系统控制电路还包括切换模块;切换模块连接在第一开关模块200和第二开关模块300之间;切换模块包括切换端子D3和第五开关管Q5。其中,切换端子D3和第五开关管Q5的第一极连接,第五开关管Q5的第二极和第二开关管Q2的第一极b2连接,第五开关管Q5的第三极和地端连接;切换端子D3用于向第五开关管Q5的第一极提供电信号。
具体的,断开输入开关K,且切换端子D3向第五开关管Q5的第一极提供的信号IVT_STOP为高电平的情况下,第五开关管Q5导通。因第五开关管Q5的第二极和第二开关管Q2的第一极b2连接,第五开关管Q5的第三极和地端连接,第五开关管Q5导通后,相当于将第二开关管Q2的第一极b2短接至地端,此时第二开关管Q2截止,第四开关管Q4随之截止,第二开关管Q2和第四开关管Q4的闭锁关系解除;此时输出端子D2的信号DRIVE_STATE为高电平,整个双向充电系统切换至充电模式。
当然,本领域技术人员可以理解的是,需要再次切换为逆变模式时,再次闭合输入开关K即可,而再次从逆变模式切换为充电模式时,断开输入开关K且给切换端子D3输入高电平信号即可。
在一种可选实施方式中,如图3所示,切换模块还包括第十一电阻R11和第十二电阻R12;切换端子D3通过第十一电阻R11和第五开关管Q5的第一极连接,第十二电阻R12连接在第五开关管Q5的第一极和地端之间。
其中,第十一电阻R11作为第五开关管Q5的限流电阻,第十二电阻R12作为第五开关管Q5的上拉电阻,由此确保第五开关管Q5工作的稳定性,降低因第五开关管Q5不稳定导致整个电路不稳定的可能性。
在一种可选实施方式中,输入端子D1包括硬线端子。该硬线端子接地与否,可以通过硬线端子的悬空或者接触车身实现。具体的,硬线端子为物理线束,在该硬线端子悬空时,相当于输入开关K断开,硬线端子搭接在车身上时,相当于和地端连接。
本申请实施例还提供一种车载双向充电机,包括本申请任意示例的双向充 电系统控制电路。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种双向充电系统控制电路,其特征在于,包括:依次连接的输入模块、第一开关模块、第二开关模块和输出模块;
    所述输入模块包括输入端子和输入开关;所述第一开关模块包括第一开关管,所述第二开关模块包括第二开关管,所述输出模块包括第三开关管和输出端子;
    所述输入端子分别与所述输入开关的一端和所述第一开关管的第一极连接,所述第一开关管的第一极和第二极分别和电压源连接;所述第一开关管的第三极和所述输入开关的另一端分别和地端连接;所述第二开关管的第一极和所述第一开关管的第二极连接,所述第二开关管的第二极和所述电压源连接,所述第二开关管的第三极和所述第三开关管的第一极连接,所述第三开关管的第二极和所述电压源连接,所述第三开关管的第三极和所述地端连接,所述输出端子和所述第三开关管的第二极连接;
    在所述输入开关断开的情况下,所述输入端子和所述地端断开,所述输入端子的信号为高电平,以使所述第一开关管导通,所述第二开关管截止,所述第三开关管截止,所述输出端子和所述地端断开,所述输出端子的信号为高电平;
    在所述输入开关闭合的情况下,所述输入端子和所述地端连接,所述输入端子的信号为低电平,以使所述第一开关管截止,所述第二开关管导通,所述第三开关管导通,所述输出端子和所述地端连接,所述输出端子的信号为低电平。
  2. 根据权利要求1所述的双向充电系统控制电路,其特征在于,所述第一开关模块还包括第一电阻、第二电阻、第三电阻和第四电阻;所述第一电阻和所述第二电阻串联成电阻串,所述第一电阻和所述第二电阻之间设有第一节点;
    所述输入端子和所述第一节点连接,第一开关管的第一极通过所述电阻串和所述电压源连接,所述第一开关管的第二极通过所述第三电阻和所述电压源连接,所述第四电阻连接在所述第一开关管的第一极和所述地端之间。
  3. 根据权利要求1所述的双向充电系统控制电路,其特征在于,所述第二开关模块还包括第四开关管,所述第四开关管的第一极和所述第二开关管的第二极连接,所述第四开关管的第二极和所述第二开关管的第一极连接,所述第四开关管的第三极和所述电压源连接。
  4. 根据权利要求3所述的双向充电系统控制电路,其特征在于,所述第二开关模块还包括二极管、第五电阻、第六电阻和第七电阻;
    所述第二开关管的第一极通过所述二极管和所述第一开关管的第二极连接,所述第二开关管的第二极通过第五电阻和所述电压源连接;所述第六电阻连接在所述第二开关管的第一极和所述地端之间;所述第七电阻连接在所述第四开关管的第一极和第三极之间。
  5. 根据权利要求1所述的双向充电系统控制电路,其特征在于,所述输出模块还包括第八电阻、第九电阻和第十电阻;
    所述第三开关管的第一极通过所述第八电阻和所述第二开关管的第三极连接,所述第三开关管的第二极通过所述第九电阻和所述电压源连接,所述第十电阻连接在所述第三开关管的第一极和所述地端之间。
  6. 根据权利要求1所述的双向充电系统控制电路,其特征在于,还包括切换模块;所述切换模块连接在所述第一开关模块和所述第二开关模块之间;所述切换模块包括切换端子和第五开关管;
    所述切换端子和所述第五开关管的第一极连接,所述第五开关管的第二极和所述第二开关管的第一极连接,所述第五开关管的第三极和所述地端连接;所述切换端子用于向所述第五开关管的第一极提供电信号。
  7. 根据权利要求6所述的双向充电系统控制电路,其特征在于,所述切换模块还包括第十一电阻和第十二电阻;
    所述切换端子通过所述第十一电阻和所述第五开关管的第一极连接,所述第十二电阻连接在所述第五开关管的第一极和所述地端之间。
  8. 根据权利要求1至7中任一项所述的双向充电系统控制电路,其特征在于,所述第一开关管、所述第二开关管和所述第三开关管均为三极管;所述三极管的第一极为基极,所述三极管的第二极为集电极,所述三极管的第三极为发射极。
  9. 根据权利要求1至7中任一项所述的双向充电系统控制电路,其特征在于,所述输入端子包括硬线端子。
  10. 一种车载双向充电机,其特征在于,包括权利要求1至9中任一项所述的双向充电系统控制电路。
PCT/CN2021/073368 2021-01-22 2021-01-22 一种双向充电系统控制电路及车载双向充电机 WO2022155912A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180000925.4A CN112970183B (zh) 2021-01-22 2021-01-22 一种双向充电系统控制电路及车载双向充电机
PCT/CN2021/073368 WO2022155912A1 (zh) 2021-01-22 2021-01-22 一种双向充电系统控制电路及车载双向充电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073368 WO2022155912A1 (zh) 2021-01-22 2021-01-22 一种双向充电系统控制电路及车载双向充电机

Publications (1)

Publication Number Publication Date
WO2022155912A1 true WO2022155912A1 (zh) 2022-07-28

Family

ID=76275634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073368 WO2022155912A1 (zh) 2021-01-22 2021-01-22 一种双向充电系统控制电路及车载双向充电机

Country Status (2)

Country Link
CN (1) CN112970183B (zh)
WO (1) WO2022155912A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459887B (zh) * 2021-06-26 2023-02-10 深圳欣锐科技股份有限公司 双向充电系统及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812483A (ja) * 1981-07-15 1983-01-24 Matsushita Electric Ind Co Ltd ビデオテ−プレコ−ダ内蔵テレビ受信機
CN104469605A (zh) * 2013-09-16 2015-03-25 鸿富锦精密工业(深圳)有限公司 具音频控制电路的电子装置
CN105630080A (zh) * 2014-11-06 2016-06-01 鸿富锦精密工业(武汉)有限公司 电脑系统及其开机电路
CN108696267A (zh) * 2017-04-12 2018-10-23 赤多尼科两合股份有限公司 一种场效应管驱动装置、驱动方法以及供电装置
CN210899112U (zh) * 2019-09-18 2020-06-30 陕西中科天地航空模块有限公司 一种低功耗的电子开关电路
CN112117950A (zh) * 2020-09-08 2020-12-22 华帝股份有限公司 直流变频电机的下桥臂驱动电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204731673U (zh) * 2015-07-10 2015-10-28 四川奇胜科技有限公司 转速传感器的驱动电路
JP2018207189A (ja) * 2017-05-31 2018-12-27 日立オートモティブシステムズ株式会社 電磁負荷駆動回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812483A (ja) * 1981-07-15 1983-01-24 Matsushita Electric Ind Co Ltd ビデオテ−プレコ−ダ内蔵テレビ受信機
CN104469605A (zh) * 2013-09-16 2015-03-25 鸿富锦精密工业(深圳)有限公司 具音频控制电路的电子装置
CN105630080A (zh) * 2014-11-06 2016-06-01 鸿富锦精密工业(武汉)有限公司 电脑系统及其开机电路
CN108696267A (zh) * 2017-04-12 2018-10-23 赤多尼科两合股份有限公司 一种场效应管驱动装置、驱动方法以及供电装置
CN210899112U (zh) * 2019-09-18 2020-06-30 陕西中科天地航空模块有限公司 一种低功耗的电子开关电路
CN112117950A (zh) * 2020-09-08 2020-12-22 华帝股份有限公司 直流变频电机的下桥臂驱动电路

Also Published As

Publication number Publication date
CN112970183A (zh) 2021-06-15
CN112970183B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2022155912A1 (zh) 一种双向充电系统控制电路及车载双向充电机
CN105763089A (zh) 一种带耗能电阻的自阻型子模块及其应用
CN102377326A (zh) 基于igbt桥式开关拓扑的驱动电路及其保护模块
CN214429458U (zh) 一种双向充电系统控制电路及车载双向充电机
WO2024055869A1 (zh) 一种电流补偿电路、准谐振电源及充电装置
WO2023207442A1 (zh) 一种电源电路及电源适配器
CN104953541B (zh) 一种过电压保护装置
CN106535418A (zh) Led驱动芯片及驱动电路
CN103427621A (zh) 一种矿用隔离式本安led驱动电源
CN105762779A (zh) 电路保护装置
CN212086084U (zh) 功率可调小功率射流点火电源
CN205546091U (zh) 一种led灯丝灯调光电路
CN107579648A (zh) 一种反激式开关电源及其控制电路
CN210807213U (zh) 磁保持继电器单火线开关通用电路及使用其的智能语音开关取电控制电路
CN107086540A (zh) 具有硬件保护功能的电磁炉
CN208094446U (zh) 一种大功率不间断电源
WO2021012156A1 (zh) 一种灯管及应用于灯管的保护电路、保护装置
CN220475634U (zh) 一种基于ipm的直流600v风机的电机驱动系统
CN104869723A (zh) 基于门极驱动的混合型节能栅极驱动系统
CN110165879A (zh) 一种磁力矩器控制电路
CN108957108A (zh) 一种市电停电检测电路
CN217159558U (zh) 一种大功率收割机调压稳压控制器
CN210518939U (zh) 一种用于led灯具调光的pwm信号的隔离传输电路
CN216699595U (zh) 充电电路及能源路由器
CN114963346B (zh) 一种图腾柱电路、空调外机及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920310

Country of ref document: EP

Kind code of ref document: A1