WO2022154639A1 - Method and device for providing multicasting and broadcasting service in communication system - Google Patents

Method and device for providing multicasting and broadcasting service in communication system Download PDF

Info

Publication number
WO2022154639A1
WO2022154639A1 PCT/KR2022/000913 KR2022000913W WO2022154639A1 WO 2022154639 A1 WO2022154639 A1 WO 2022154639A1 KR 2022000913 W KR2022000913 W KR 2022000913W WO 2022154639 A1 WO2022154639 A1 WO 2022154639A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
mcs
rnti
pdsch
information
Prior art date
Application number
PCT/KR2022/000913
Other languages
French (fr)
Korean (ko)
Inventor
윤수하
여정호
명세호
박성진
정의창
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2022154639A1 publication Critical patent/WO2022154639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present disclosure relates to a mobile communication system, and more particularly, to a method of transmitting data to a plurality of terminals.
  • 5G mobile communication technology defines a wide frequency band to enable fast transmission speed and new services. It can also be implemented in the very high frequency band ('Above 6GHz') called Wave).
  • 6G mobile communication technology which is called a system after 5G communication (Beyond 5G)
  • Beyond 5G in order to achieve transmission speed 50 times faster than 5G mobile communication technology and ultra-low latency reduced by one-tenth, Tera Implementations in the Terahertz band (such as, for example, the 95 GHz to 3 THz band) are being considered.
  • ultra-wideband service enhanced Mobile BroadBand, eMBB
  • high reliability / ultra-low latency communication Ultra-Reliable Low-Latency Communications, URLLC
  • massive-scale mechanical communication massive Machine-Type Communications, mMTC
  • Beamforming and Massive MIMO to increase the propagation distance and mitigate the path loss of radio waves in the ultra-high frequency band with the goal of service support and performance requirements, and efficient use of ultra-high frequency resources
  • various numerology eg, operation of multiple subcarrier intervals
  • New channel coding methods such as LDPC (Low Density Parity Check) code for data transmission and polar code for reliable transmission of control information, L2 pre-processing, dedicated dedicated to specific services Standardization of network slicing that provides a network has progressed.
  • LDPC Low Density Parity Check
  • the Intelligent Factory Intelligent Internet of Things, IIoT
  • IAB Intelligent Internet of Things
  • IAB Intelligent Internet of Things
  • 5G baseline for the grafting of Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies Standardization of the system architecture/service field for architecture (eg, Service based Architecture, Service based Interface), Mobile Edge Computing (MEC) receiving services based on the location of the terminal, etc.
  • NFV Network Functions Virtualization
  • SDN Software-Defined Networking
  • the present disclosure provides a configuration method and apparatus for transmitting/receiving a group common physical downlink shared channel (PDSCH) and unicast PDSCH in a communication system.
  • PDSCH group common physical downlink shared channel
  • the present disclosure provides a method and apparatus for transmitting/receiving a PDSCH retransmission of a group common PDSCH in a communication system.
  • a method performed by a terminal in a communication system comprising: receiving configuration information for a group common resource from a base station; receiving downlink control information (DCI) from the base station based on the configuration information; checking whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI; and determining a code rate and a modulation order based on group common modulation and coding scheme (MCS) related information when the group common RNTI is used.
  • DCI downlink control information
  • RNTI group common radio network temporary identifier
  • CRC cyclic redundancy check
  • MCS group common modulation and coding scheme
  • the method comprising: transmitting configuration information for a group common resource to a terminal; transmitting downlink control information (DCI) to the terminal based on the configuration information; and transmitting data based on the DCI.
  • DCI downlink control information
  • RNTI group common radio network temporary identifier
  • CRC cyclic redundancy check
  • the MCS included in the DCI It is characterized in that the modulation and coding scheme index is determined based on group common modulation and coding scheme (MCS) related information.
  • a transceiver in a terminal in a communication system, a transceiver; and connected to the transceiver, receiving configuration information for a group common resource from a base station, receiving downlink control information (DCI) from the base station based on the configuration information, and attaching to the DCI It is checked whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC), and when the group common RNTI is used, the code rate and It characterized in that it comprises a control unit for determining the modulation order.
  • DCI downlink control information
  • CRC cyclic redundancy check
  • a transceiver in a base station in a communication system, transmits configuration information for group common resources to the terminal, transmits downlink control information (DCI) to the terminal based on the configuration information, and based on the DCI a control unit for transmitting data, wherein when a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, a modulation and coding scheme (MCS) index included in the DCI It is characterized in that it is determined based on group common modulation and coding scheme (MCS) related information.
  • RNTI group common radio network temporary identifier
  • CRC cyclic redundancy check
  • MCS modulation and coding scheme
  • the present disclosure when data is transmitted to a plurality of terminals through a common PDSCH and a unicast PDSCH in a communication system, the present disclosure provides a configuration method for the PDSCHs, thereby enabling more efficient data transmission/reception.
  • a terminal and a base station can smoothly communicate.
  • FIG. 1 is a diagram illustrating a structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a 5G communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a slot structure considered in a 5G system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system according to an embodiment of the present disclosure.
  • CA 6 is a diagram for explaining carrier aggregation (CA) according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a cross-carrier scheduling method according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of setting a control resource set (CORESET) of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • CORESET control resource set
  • FIG. 9 is a diagram illustrating an example of a downlink data channel (Physical Downlink Shared Channel) processing in a wireless communication system according to an embodiment of the present disclosure.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • FIG. 10 is a diagram illustrating an example of a method of obtaining a size of a transport block in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an operation of determining a modulation and coding scheme (mcs)-Table of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a DCI generation operation of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a method of obtaining the size of a transport block of a terminal according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
  • 16 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • 17 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flowchart block(s) may also be possible for the instructions stored in the flowchart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible for instructions to perform the processing equipment to provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in the blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles do.
  • '-part' is not limited to software or hardware.
  • ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the base station is a subject performing resource allocation of the terminal, and may be at least one of a gNode B, an eNode B, a Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • computer or a multimedia system capable of performing a communication function.
  • the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after a 4 th generation (4G) system with an Internet of Things (IoT) technology, and a system thereof.
  • the present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • 3GPP NR new radio or new radio access technology
  • FIG. 1 is a diagram illustrating a structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the radio access network of the next-generation mobile communication system is a next-generation base station (new radio node B, hereinafter, NR gNB or NR base station) 110 and a next-generation radio core network (new radio core network, NR CN) 105 .
  • a new radio user equipment (NR UE or terminal) 115 may access an external network through the NR gNB 110 and the NR CN 105 .
  • the NR gNB 110 may correspond to an evolved node B (eNB) of the existing LTE system.
  • the NR gNB is connected to the NR UE 115 through a radio channel, and can provide a more improved service than the existing Node B.
  • all user traffic may be serviced through a shared channel. Accordingly, an apparatus for scheduling by collecting status information such as buffer status, available transmission power status, and channel status of UEs is required, and the NR gNB 110 may be responsible for this.
  • One NR gNB can control multiple cells.
  • a bandwidth greater than or equal to the current maximum bandwidth may be applied to implement ultra-high-speed data transmission compared to current LTE.
  • beamforming technology may be additionally grafted by using orthogonal frequency division multiplexing (OFDM) as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • AMC adaptive modulation & doding
  • the NR CN 105 may perform functions such as mobility support, bearer establishment, and QoS establishment.
  • the NR CN is a device in charge of various control functions as well as a mobility management function for the terminal, and can be connected to a plurality of base stations.
  • the next-generation mobile communication system may be interlocked with the existing LTE system, and the NR CN may be connected to the MME 125 through a network interface.
  • the MME may be connected to the existing base station, the eNB 130 .
  • FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • radio protocols of the next-generation mobile communication system are NR service data adaptation protocol (SDAP) 201 and 245, NR PDCP 205, 240, and NR RLC ( 210, 235), NR MAC (215, 230), and NR PHY (220, 225).
  • SDAP NR service data adaptation protocol
  • NR PDCP 205, 240 and NR RLC ( 210, 235), NR MAC (215, 230), and NR PHY (220, 225).
  • the main functions of the NR SDAPs 201 and 245 may include some of the following functions.
  • the UE uses the header of the SDAP layer device for each PDCP layer device or for each bearer or for each logical channel as a radio resource control (RRC) message or whether to use the function of the SDAP layer device can be set.
  • RRC radio resource control
  • the terminal reflects the non-access stratum (NAS) quality of service (QoS) reflection setting 1-bit indicator (NAS reflective QoS) of the SDAP header and the access layer (access stratum, AS) QoS reflection As a set 1-bit indicator (AS reflective QoS), it can be instructed so that the UE can update or reconfigure mapping information for uplink and downlink QoS flows and data bearers.
  • the SDAP header may include QoS flow ID information indicating QoS.
  • the QoS information may be used as data processing priority, scheduling information, etc. to support a smooth service.
  • the main functions of the NR PDCPs 205 and 240 may include some of the following functions.
  • the reordering function of the NR PDCP device may refer to a function of reordering PDCP PDUs received from a lower layer in order based on a PDCP sequence number (SN).
  • the reordering function of the NR PDCP device may include a function of delivering data to a higher layer in the rearranged order, and may include a function of directly delivering data without considering the order, It may include a function of recording PDCP PDUs, a function of reporting a status on the lost PDCP PDUs to the transmitting side, and a function of requesting retransmission of the lost PDCP PDUs.
  • the main functions of the NR RLCs 210 and 235 may include some of the following functions.
  • in-sequence delivery of the NR RLC device may refer to a function of sequentially delivering RLC SDUs received from a lower layer to a higher layer.
  • the in-sequence delivery function of the NR RLC device may include a function of reassembling it and delivering it.
  • In-sequence delivery of the NR RLC device may include a function of rearranging the received RLC PDUs based on an RLC sequence number (SN) or a PDCP sequence number (SN), and may be lost by rearranging the order It may include a function of recording the lost RLC PDUs, a function of reporting a status on the lost RLC PDUs to the transmitting side, and a function of requesting retransmission of the lost RLC PDUs. have.
  • the in-sequence delivery function of the NR RLC (210, 235) device may include a function of sequentially delivering only RLC SDUs before the lost RLC SDU to a higher layer when there is a lost RLC SDU.
  • the in-sequence delivery function of the NR RLC device includes a function of sequentially delivering all RLC SDUs received before the timer starts to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. can do.
  • the in-sequence delivery function of the NR RLC device may include a function of sequentially delivering all RLC SDUs received so far to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. .
  • the NR RLC (210, 235) device may process the RLC PDUs in the order in which they are received, regardless of the sequence number (Out of sequence delivery), and deliver it to the NR PDCP (205, 240) device.
  • the NR RLC (210, 235) device When the NR RLC (210, 235) device receives a segment, it receives the segments stored in the buffer or to be received later, reconstructs it into one complete RLC PDU, and then delivers it to the NR PDCP device. have.
  • the NR RLC layer may not include a concatenation function, and may perform a function in the NR MAC layer or may be replaced with a multiplexing function of the NR MAC layer.
  • the out-of-sequence delivery function of the NR RLC device may refer to a function of directly delivering RLC SDUs received from a lower layer to a higher layer regardless of order.
  • the out-of-sequence delivery function of the NR RLC device may include a function of reassembling and delivering when one RLC SDU is originally divided into several RLC SDUs and received.
  • the out of sequence delivery function of the NR RLC device may include a function of storing the RLC SN or PDCP SN of the received RLC PDUs and arranging the order to record the lost RLC PDUs.
  • the NR MACs 215 and 230 may be connected to several NR RLC layer devices configured in one terminal, and the main function of the NR MAC may include some of the following functions.
  • the NR PHY layers 220 and 225 channel-code and modulate the upper layer data, make an OFDM symbol and transmit it to the radio channel, or demodulate the OFDM symbol received through the radio channel, decode the channel, and deliver the operation to the upper layer. can be done
  • FIG. 3 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a 5G system.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • the basic unit of resources in the time and frequency domain is a resource element (RE) 301 as one orthogonal frequency division multiplexing (OFDM) symbol 302 on the time axis and one subcarrier (subcarrier) 303 on the frequency axis.
  • RE resource element
  • OFDM orthogonal frequency division multiplexing
  • subcarrier subcarrier
  • RB resource block
  • FIG. 4 is a diagram illustrating an example of a slot structure considered in a 5G system.
  • One frame 400 may be defined as 10 ms.
  • One subframe 401 may be defined as 1 ms, and therefore, one frame 400 may consist of a total of 10 subframes 401 .
  • One subframe 401 may consist of one or a plurality of slots 402 and 403, and the number of slots 402 and 403 per one subframe 401 is a set value ⁇ (404, 405) for the subcarrier spacing. ) may vary depending on In the example of FIG.
  • one subframe 401 may consist of one slot 402
  • one subframe 401 may consist of two slots 403.
  • each subcarrier spacing setting ⁇ and may be defined in Table 1 below.
  • bandwidth part (BWP) setting in the 5G communication system will be described in detail with reference to FIG. 5 .
  • 5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system.
  • the base station may set one or a plurality of bandwidth portions to the terminal, and may set information as shown in Table 2 below for each bandwidth portion, for example.
  • the following BWP may be referred to as BWP setting information.
  • various parameters related to the bandwidth portion may be configured in the terminal.
  • the information may be transmitted from the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • RRC signaling for example, RRC signaling.
  • At least one bandwidth portion among the set one or a plurality of bandwidth portions may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling or may be dynamically transmitted through downlink control information (DCI).
  • DCI downlink control information
  • the terminal before the RRC connection may receive an initial bandwidth portion (initial BWP) for the initial connection from the base station through a master information block (MIB). More specifically, the UE may transmit a PDCCH for reception of system information (remaining system information; RMSI or system information block 1; may correspond to SIB1) required for initial access through the MIB in the initial access step.
  • system information maining system information; RMSI or system information block 1; may correspond to SIB1
  • Setting information for a control resource set (CORESET) and a search space may be received.
  • the control resource set and search space set by the MIB may be regarded as an identifier (identity, ID) 0, respectively.
  • the base station may notify the terminal of configuration information such as frequency allocation information, time allocation information, and numerology for the control resource set #0 through the MIB.
  • the base station may notify the terminal through the MIB of configuration information on the monitoring period and occasion for the control resource set #0, that is, configuration information on the search space #0.
  • the UE may regard the frequency domain set as the control resource set #0 obtained from the MIB as an initial bandwidth portion for initial access.
  • the identifier (ID) of the initial bandwidth portion may be regarded as 0.
  • the configuration of the bandwidth part supported by the 5G may be used for various purposes.
  • the bandwidth supported by the terminal when the bandwidth supported by the terminal is smaller than the system bandwidth, this may be supported through the bandwidth part setting.
  • the base station sets the frequency position (setting information 2) of the bandwidth portion to the terminal, the terminal can transmit/receive data at a specific frequency location within the system bandwidth.
  • the base station may set a plurality of bandwidth portions to the terminal for the purpose of supporting different numerologies. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to a certain terminal, two bandwidth portions may be set to a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be frequency division multiplexed, and when data is transmitted and received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
  • the base station may set a bandwidth portion having different sizes of bandwidths to the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits and receives data using the corresponding bandwidth, very large power consumption may occur. In particular, monitoring an unnecessary downlink control channel with a large bandwidth of 100 MHz in a situation without traffic may be very inefficient in terms of power consumption.
  • the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In a situation in which there is no traffic, the terminal may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data in the 100 MHz bandwidth portion according to the instruction of the base station.
  • terminals before RRC connection may receive configuration information for the initial bandwidth part through the MIB in the initial access step. More specifically, the UE may receive a control resource set (CORESET) for a downlink control channel through which DCI scheduling SIB can be transmitted from the MIB of a physical broadcast channel (PBCH).
  • CORESET control resource set
  • the bandwidth of the control resource set set as the MIB may be regarded as an initial bandwidth portion, and the terminal may receive the PDSCH through which the SIB is transmitted through the configured initial bandwidth portion.
  • the initial bandwidth portion may be utilized for other system information (OSI), paging, and random access in addition to the purpose of receiving the SIB.
  • OSI system information
  • CA 6 is a diagram for explaining carrier aggregation (CA) according to an embodiment of the present disclosure.
  • a primary cell (PCell) and a secondary cell (SCell) may be configured in the terminal.
  • PCell is included in PCC (primary component carrier), RRC connection establishment/re-establishment, measurement, mobility procedure, random access procedure and selection, system information acquisition, initial random access, security key change and non-access stratum (NAS) function etc. can be provided.
  • PCC primary component carrier
  • RRC connection establishment/re-establishment measurement, mobility procedure, random access procedure and selection, system information acquisition, initial random access, security key change and non-access stratum (NAS) function etc.
  • the PCell Since the UE performs system information monitoring through the PCell, the PCell is not deactivated, and the PCC in the UL is carried through a physical uplink control channel (PUCCH) for transmitting control information.
  • PUCCH physical uplink control channel
  • only one RRC connection is possible between the UE and the PCell, and PDCCH/PDSCH/PUSCH (physical uplink shared channel)/PUCCH transmission is possible.
  • a spcell of a secondary cell group may be configured and operated as the PCell. The operation for the PCell described below may also be performed by the PSCell.
  • a maximum of 31 SCells can be added, and when additional radio resource provision is required, the SCell can be configured through an RRC message message (eg, dedicated signaling).
  • the RRC message may include a physical cell ID for each cell, and may include a DL carrier frequency (absolute radio frequency channel number: ARFCN).
  • ARFCN absolute radio frequency channel number
  • Cross-carrier scheduling may mean allocating at least one (eg, PDCCH) of all L1 control channels or L2 control channels for at least one other CC (component carrier) to one CC.
  • a carrier indicator field may be used to transmit data information of another CC through the PDCCH of one CC.
  • Resources (PDSCH, PUSCH) for data transmission of the CC or resources (PDSCH, PUSCH) for data transmission of another CC may be allocated through control information transmitted through the PDCCH of one CC.
  • the n-bit CIF is added to the DCI format by applying the cross-carrier scheduling, the bit size may vary according to the higher layer configuration or the DCI format, and the position of the CIF in the DCI format may be fixed.
  • FIG. 7 is a diagram illustrating an example of a cross-carrier scheduling method according to an embodiment of the present disclosure.
  • PDSCH or PUSCH for two CCs may be scheduled through the PDCCH 701 of one CC.
  • the PDSCH or PUSCH of each CC may be scheduled using the PDCCHs 721 and 723 of the two CCs.
  • Each CC may be mapped to a CI (carrier indicator) value for CIF application, which may be transmitted from the base station to the terminal through a dedicated RRC signal as a UE-specific configuration.
  • CI carrier indicator
  • Each PDSCH/PUSCH CC may be scheduled from one DL CC. Accordingly, the UE only needs to monitor the PDCCH for the DL CC for each PDSCH/PUSCH CC.
  • the UE may monitor the PDCCH in the DL CC to obtain PUSCH scheduling information in the linked UL carrier.
  • the UE may monitor the PDCCH in the DL CC to obtain PDSCH scheduling information in the linked DL carrier.
  • FIG. 8 is a diagram illustrating an example of setting a control area (CORESET) of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • CORESET control area
  • control region #1 (CORESET #1) 801) in a bandwidth part 810 of the terminal on the frequency axis and one slot 820 on the time axis.
  • #2 (CORESET #2) 802) is set is shown.
  • the control regions 801 and 802 may be set in a specific frequency resource 803 within the entire terminal bandwidth portion 810 on the frequency axis.
  • the control regions 801 and 802 may be set with one or a plurality of OFDM symbols on the time axis, which may be defined as a control resource set duration (804).
  • the control region #1 801 is set to a control region length of two symbols
  • the control region #2 802 is set to a control region length of one symbol.
  • the control region in 5G described above may be configured by the base station through higher layer signaling (eg, system information, MIB, RRC signaling) to the terminal.
  • Setting the control region to the terminal means to provide the terminal with information such as a control region identity, a frequency position of the control region, and a symbol length of the control region.
  • the information in Table 3 may be included.
  • the number of CCEs required to transmit the PDCCH may be 1, 2, 4, 8, or 16 according to an aggregation level (AL), and the number of different CCEs is based on link adaptation of the downlink control channel.
  • AL aggregation level
  • the UE must detect a signal (blind decoding) without knowing information about the downlink control channel, and a search space indicating a set of CCEs is defined for blind decoding.
  • the search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level, and various aggregations that make one bundle with 1, 2, 4, 8, or 16 CCEs Since there is a level, the terminal may have a plurality of search spaces.
  • a search space set may be defined as a set of search spaces in all set aggregation levels.
  • the search space may be classified into a common search space and a UE-specific search space.
  • a group of terminals or all terminals may search the common search space of the PDCCH in order to receive control information common to cells such as dynamic scheduling for system information or a paging message.
  • the PDSCH scheduling assignment information for transmission of the SIB including the operator information of the cell may be received by examining the common search space of the PDCCH.
  • the common search space since terminals of a certain group or all terminals need to receive the PDCCH, it may be defined as a set of promised CCEs.
  • the UE-specific scheduling assignment information for PDSCH or PUSCH may be received by examining the UE-specific search space of the PDCCH.
  • the UE-specific search space may be UE-specifically defined as a function of UE identity and various system parameters.
  • the parameter for the search space for the PDCCH may be set from the base station to the terminal through higher layer signaling (eg, SIB, MIB, RRC signaling).
  • the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), A combination of a DCI format and a radio network temporary identifier (RNTI) to be monitored in the corresponding search space, a control resource set index for monitoring the search space, etc. may be set to the UE.
  • the parameter for the search space for the PDCCH may include, for example, at least a part of information as shown in Table 4 below.
  • the base station may set one or a plurality of search space sets to the terminal. According to some embodiments, the base station may set the search space set 1 and the search space set 2 to the terminal. In search space set 1, the UE may be configured to monitor DCI format A scrambled with X-RNTI in the common search space, and in search space set 2, the UE uses DCI format B scrambled with Y-RNTI in the UE-specific search space. can be set to monitor.
  • one or a plurality of search space sets may exist in the common search space or the terminal-specific search space.
  • the search space set #1 and the search space set #2 may be set as the common search space
  • the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
  • a combination of the following DCI format and RNTI may be monitored.
  • DCI format a combination of the following DCI format and RNTI.
  • RNTI a combination of the following DCI format and RNTI.
  • the specified RNTIs may follow the definitions and uses below.
  • C-RNTI Cell RNTI
  • Cell RNTI UE-specific PDSCH scheduling purpose
  • TC-RNTI Temporal Cell RNTI
  • CS-RNTI Configured Scheduling RNTI
  • RA-RNTI Random Access RNTI
  • P-RNTI Paging RNTI
  • SI-RNTI System Information RNTI
  • INT-RNTI Used to indicate whether PDSCH is pucturing
  • TPC-PUSCH-RNTI Transmit Power Control for PUSCH RNTI
  • TPC-PUCCH-RNTI Transmit Power Control for PUCCH RNTI
  • TPC-SRS-RNTI Transmit Power Control for SRS RNTI
  • the search space of the aggregation level L in the control resource set p and the search space set s may be expressed as in Equation 1 below.
  • the value may correspond to 0 in the case of a common search space.
  • the value may correspond to a value that changes depending on the terminal's identity (C-RNTI or ID set for the terminal by the base station) and the time index.
  • the terminal may monitor the PDCCH in the control region configured by the base station, and may transmit/receive data based on the received control information.
  • scheduling information for uplink data (or physical uplink data channel (PUSCH)) or downlink data (or physical downlink data channel (PDSCH)) may be transmitted from the base station to the terminal through DCI.
  • the UE may monitor a DCI format for fallback and a DCI format for non-fallback for PUSCH or PDSCH.
  • the DCI format for countermeasures may be composed of a fixed field predetermined between the base station and the terminal, and the DCI format for non-prevention may include a configurable field.
  • DCI may be transmitted through a PDCCH, which is a physical downlink control channel, through channel coding and modulation.
  • a CRC is added to the DCI message payload, and the CRC may be scrambling based on the RNTI corresponding to the identity of the UE.
  • Different RNTIs may be used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but included in the CRC calculation process and transmitted.
  • the UE Upon receiving the DCI message transmitted on the PDCCH, the UE checks the CRC using the assigned RNTI. If the CRC check result is correct, the UE can know that the message has been transmitted to the UE.
  • DCI scheduling PDSCH for system information may be scrambled with SI-RNTI.
  • DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI.
  • DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI.
  • DCI notifying a slot format indicator (SFI) may be scrambled with an SFI-RNTI.
  • DCI notifying transmit power control (TPC) may be scrambled with TPC-RNTI.
  • DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (cell RNTI).
  • various types of DCI formats may be provided as shown in Table 5 below for efficient reception of control information of the UE.
  • the base station may use DCI format 1_0, DCI format 1_1, or DCI format 1_2 to allocate (scheduling) the PDSCH for one cell to the terminal.
  • the base station may use DCI format 0_0, DCI format 0_1, or DCI format 0_2 to allocate (scheduling) a PUSCH for one cell to the terminal.
  • DCI format 1_0 is C-RNTI
  • N RBG bits or bits indicates frequency axis resource allocation, and when DCI format 1_0 is monitored in the UE specific search space is the size of the active DL BWP, otherwise is the size of the initial DL BWP.
  • N RBG is the number of resource block groups. For a detailed method, refer to the frequency axis resource allocation.
  • - Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • - New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
  • - Redundancy version (2 bits) indicates the redundancy version used for PDSCH transmission.
  • - HARQ process number (4 bits): indicates the HARQ process number used for PDSCH transmission.
  • - PDSCH-to-HARQ_feedback timing indicator (3 bits): As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as a higher layer.
  • DCI format 1_1 is transmitted together with CRC scrambled by cell radio network temporary identifier (C-RNTI) or configured scheduling RNTI (CS-RNTI) or MCS-C-RNTI or new-RNTI, for example, at least the table It may include information such as 7.
  • C-RNTI cell radio network temporary identifier
  • CS-RNTI configured scheduling RNTI
  • MCS-C-RNTI new-RNTI
  • - Identifier for DCI formats (1 bit): Always set to 1 as a DCI format indicator - Carrier indicator (0 or 3 bits): indicates the CC (or cell) to which the PDSCH allocated by the corresponding DCI is transmitted.
  • - Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
  • Frequency domain resource assignment (determining payload according to the frequency axis resource allocation): indicates frequency axis resource allocation, is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
  • - Time domain resource assignment (0 ⁇ 4 bits): indicates time domain resource assignment according to the above description.
  • - VRB-to-PRB mapping (0 or 1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. It is 0 bit when frequency axis resource allocation is set to resource allocation type 0 or when interleaved VRB-to-PRB mapping is not set by an upper layer.
  • - PRB bundling size indicator (0 or 1 bit): When the upper layer parameter prb-BundlingType is not set or is set to 'static', it is 0 bit, and when it is set to 'dynamic', it is 1 bit.
  • - Rate matching indicator (0 or 1 or 2 bits): indicates the rate matching pattern.
  • - ZP CSI-RS trigger (0 or 1 or 2 bits): an indicator for triggering aperiodic ZP CSI-RS.
  • - Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • - New data indicator (1 bit) indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
  • - Transmission configuration indication (0 or 3 bits): TCI indicator.
  • CBG transmission information (0 or 2 or 4 or 6 or 8 bits): an indicator indicating whether to transmit code block groups in the allocated PDSCH. 0 means that the CBG is not transmitted, and 1 means that it is transmitted.
  • - CBG flushing out information (0 or 1 bit): An indicator indicating whether previous CBGs are contaminated. If 0, it means that it may have been contaminated, and if 1, it means that it can be used when receiving retransmission (combinable).
  • - DMRS sequence initialization (0 or 1 bit): DMRS scrambling ID selection indicator
  • DCI format 1_2 is transmitted together with CRC scrambled by C-RNTI (cell radio network temporary identifier) or CS-RNTI (configured scheduling RNTI) or MCS-C-RNTI or new-RNTI, for example, at least the table It may include information such as 8.
  • - Identifier for DCI formats (1 bit): Always set to 1 as a DCI format indicator - Carrier indicator (0 or 1 or 2 or 3 bits): indicates the CC (or cell) to which the PDSCH allocated by the corresponding DCI is transmitted.
  • - Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
  • Frequency domain resource assignment (determining payload according to the frequency axis resource allocation): indicates frequency axis resource allocation, is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
  • - Time domain resource assignment (0 ⁇ 4 bits): indicates time domain resource assignment according to the above description.
  • - VRB-to-PRB mapping (0 or 1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. If the vrb-ToPRB-InterleaverForDCI-Format1-2 setting parameter of the upper layer is not set, it is 0 bit.
  • - PRB bundling size indicator (0 or 1 bit): 0 bit if the upper layer parameter prb-BundlingTypeForDCI-Format1-2 is not set or set to 'static', and 1 bit if set to 'dynamic'.
  • - Rate matching indicator (0 or 1 or 2 bits): indicates the rate matching pattern.
  • - ZP CSI-RS trigger (0 or 1 or 2 bits): an indicator for triggering aperiodic ZP CSI-RS.
  • - Modulation and coding scheme (5 bits): indicates the modulation order and coding rate used for PDSCH transmission.
  • - New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
  • - Redundancy version (0 or 1 or 2 bits): indicates the redundancy version used for PDSCH transmission.
  • - HARQ process number (0 or 1 or 2 or 3 or 4 bits): indicates the HARQ process number used for PDSCH transmission.
  • - PDSCH-to-HARQ_feedback timing indicator (0 or 1 or 2 or 3 bits): As a HARQ feedback timing indicator, it indicates one of the feedback timing offsets set as a higher layer.
  • Antenna port (4 or 5 or 6 bits): indicates DMRS port and CDM group without data.
  • - Transmission configuration indication (0 or 1 or 2 or 3 bits): TCI indicator.
  • the maximum number of DCIs of different sizes that the UE can receive per slot in the corresponding cell is 4.
  • the maximum number of DCIs of different sizes scrambled with C-RNTI per slot in the cell by the UE is 3.
  • the base station provides the UE with time domain resources for a downlink data channel (PDSCH) and an uplink data channel (PUSCH).
  • Allocation information (eg, may be information configured in the form of a table) may be configured through higher layer signaling (eg, RRC signaling).
  • resource allocation information for example, composed of table-type information
  • the time domain resource allocation information includes, for example, the PDCCH-to-PDSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PDSCH scheduled by the received PDCCH is transmitted, denoted by K0) or PDCCH-to-PUSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PUSCH scheduled by the received PDCCH is transmitted, denoted by K2), the PDSCH or PUSCH scheduled within the slot Information on the position and length of the start symbol, the mapping type of PDSCH or PUSCH, etc. may be included. For example, information as shown in Table 9 or Table 10 below may be notified from the base station to the terminal.
  • the base station may notify the UE of one of the entries in the table for the time domain resource allocation information through L1 signaling (eg, DCI) (eg, it may be indicated by the time domain resource allocation field in DCI).
  • the UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
  • resource allocation type 0 and resource allocation type 1 are supported as a method of indicating frequency domain resource allocation information for a downlink data channel (PDSCH) and an uplink data channel (PUSCH).
  • PDSCH downlink data channel
  • PUSCH uplink data channel
  • RB allocation information may be notified from the base station to the terminal in the form of a bitmap for a resource block group (RBG).
  • RBG resource block group
  • the RBG may be composed of a set of consecutive VRBs, and the size P of the RBG is based on a value set as a higher layer parameter (rbg-Size) and a size value of the bandwidth part defined as shown in Table 11 below. can be determined by
  • the total number of RBGs in bandwidth part i ( ) may be defined as follows.
  • the size of the first RBG is .
  • the size of all other RBGs is P.
  • Each bit of the bit-sized bitmap may correspond to each RBG.
  • RBGs may be indexed in the order of increasing frequency, starting from the lowest frequency position of the bandwidth part. within the bandwidth For RBGs, from RBG#0 to RBG#( ) may be mapped from the MSB to the LSB of the RBG bitmap.
  • a specific bit value in the bitmap is 1, the UE can determine that the RBG corresponding to the bit value is allocated, and when the specific bit value in the bitmap is 0, the RBG corresponding to the bit value is not allocated. can judge
  • RB allocation information may be notified from the base station to the terminal as information on the start position and length of the continuously allocated VRBs.
  • interleaving or non-interleaving may be additionally applied to consecutively allocated VRBs.
  • the resource allocation field of resource allocation type 1 may consist of a resource indication value (RIV), and the RIV is the starting point of the VRB ( ) and the length of consecutively allocated RBs ( ) may consist of More specifically,
  • the RIV in the bandwidth part of the size may be defined as follows.
  • FIG. 9 is a diagram illustrating an example of downlink data channel processing in a wireless communication system according to an embodiment of the present disclosure.
  • a scrambling process may be performed for each of one codeword or two codewords ( S901 ). length a sequence of codewords q with A scrambling sequence obtained through initialization as in Equation 3 A sequence scrambled through the same process as in Equation 2 using can be obtained. The value is set through the upper layer parameter, or otherwise as the cell ID value. can be determined, may mean an RNTI associated with PDSCH transmission.
  • a modulation symbol sequence with a length of may be generated (902).
  • Each modulation symbol may be mapped (903), which represents same as Table 12 shows the relationship between the number of layers, the number of codewords, and the codeword-layer mapping.
  • the modulation symbols mapped to the layer may be mapped to an antenna port as shown in Equation (4). may be determined by information included in the DCI format (904).
  • Symbols may be mapped to REs that satisfy conditions that can be used for PDSCH transmission among REs in VRBs allocated for transmission (eg, mapping impossible to DM-RS resources, etc.) (905).
  • VRBs that have completed the above process may be mapped to PRBs through an interleaving mapping method or a non-interleaving mapping method ( 906 ).
  • the mapping method may be indicated through the VRB-to-PRB mapping field in DCI. If there is no indication of the mapping method, it may mean a non-interleaving mapping method.
  • VRB n may be mapped to PRB n except in specific cases.
  • VRB n of a PDSCH scheduled using DCI format 1_0 through a common search space is PRB ( may include a case in which the DCI is mapped to the first PRB of the transmitted CORESET).
  • RBs in the BWP are RB bundles are divided into RB bundles, and the RB bundles may be mapped in the manner shown in Table 13.
  • RBs in BWP One example of dividing into RB bundles may be as follows. Starting point within the BWP with A set of RBs is It is divided into RB bundles, and the RB bundles may be indexed in an increasing order.
  • L i means a bundle size in BWP i, which may be transmitted to the UE by the higher layer parameter vrb-ToPRB-Interleaver.
  • RB bundle 0 is Consists of RBs, RB bundle Is If you are satisfied with RBs, otherwise it may be composed of L i RBs. And the remaining RB bundles may be composed of L i RBs.
  • the MCS index for the PDSCH ie, the modulation order (or method) Qm and the target code rate R, may be determined through the following process.
  • DCI with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI (e.g., DCI format 1_0, DCI format 1_1, or DCI format 1_2) including PDCCH (PDCCH with DCI format 1_0, format 1_1, or format 1_2 with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, For PDSCH scheduled through SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI), or without corresponding PDCCH transmission, using the PDSCH configuration SPS-Config (or SPS configuration) provided in the upper layer For the scheduled PDSCH,
  • the UE determines the modulation order Qm and the target code rate R To do this, the MCS index I MCS value of [Table 15] can be used.
  • (c) The conditions of (a) and (b) do not hold, and the UE is set by MCS-C-RNTI, and the PDSCH is scheduled by the PDCCH to which the CRC scrambled by the MCS-C-RNTI is applied.
  • the UE determines the modulation order Qm and the target code rate R [Table 16] MCS index I MCS value can be used.
  • PDSCH is scheduled by PDCCH of DCI format 1_1 to which CRC scrambled by CS-RNTI is applied (if the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by CS-RNTI or),
  • the UE may use the MCS index I MCS value of [Table 15] to determine the modulation order Qm and the target code rate R.
  • PDSCH is scheduled by PDCCH to which CRC scrambled by CS-RNTI is applied (if the PDSCH is scheduled by a PDCCH with CRC scrambled by CS-RNTI or),
  • the UE may use the MCS index I MCS value of [Table 16] to determine the modulation order Qm and the target code rate R.
  • the UE determines the modulation order Qm and the target code rate R of [Table 14].
  • MCS index I MCS value can be used.
  • MCS Index I MCS Modulation Order Qm Target code rate [R x 1024] Spectral efficiency 0 2 30 0.0586 One 2 40 0.0781 2 2 50 0.0977 3 2 64 0.1250 4 2 78 0.1523 5 2 99 0.1934 6 2 120 0.2344 7 2 157 0.3066 8 2 193 0.3770 9 2 251 0.4902 10 2 308 0.6016 11 2 379 0.7402 12 2 449 0.8770 13 2 526 1.0273 14 2 602 1.1758 15 4 340 1.3281 16 4 378 1.4766 17 4 434 1.6953 18 4 490 1.9141 19 4 553 2.1602 20 4 616 2.4063 21 6 438 2.5664 22 6 466 2.7305 23 6 517 3.0293 24 6 567 3.3223 25 6 616 3.6094 26 6 666 3.9023 27 6 719 4.2129 28 6 772 4.5234 29 2 reserved 30 4 reserved 31 6 reserved
  • FIG. 10 is a diagram illustrating an example of a method of obtaining a size (transport block size, TBS) of a transport block in a wireless communication system according to an embodiment of the present disclosure. It is possible to obtain (determine, or calculate) the number of REs (N RE ) of (1001).
  • the UE is the number of REs allocated to PDSCH mapping in one PRB in the allocated resource. can be obtained (calculated). Is can be calculated as From here, is 12, may indicate the number of OFDM symbols allocated to the PDSCH. is the number of REs of DMRSs of the same CDM group within one PRB. is the number of REs occupied by the overhead in the PRB as long as it is set by higher-order signaling, and may be set to one of 0, 6, 12, or 18 (if not set as higher-order signaling, it may be set to 0).
  • the total number of REs allocated to the PDSCH can be calculated. Is is calculated based on indicates the number of PRBs allocated to the UE. The value can be calculated as above. Alternatively, information including the number of all cases that can be set as the value of N RE (for example, it may be configured in the form of at least one or more tables) is stored, , , , , , In the stored information (eg, table) through at least one parameter value of A value may be obtained.
  • the number of temporary information bits can be obtained (computed) (1002).
  • N info is can be calculated as
  • R denotes a code rate
  • Qm denotes a modulation order
  • the information includes modulation and coding scheme (MCS) information included in control information (eg, DCI, RRC configuration information, etc.).
  • MCS modulation and coding scheme
  • v may mean the number of allocated layers. The value is calculated as above or information including the number of all cases (eg, in the form of at least one or more tables) is stored, and the stored information is stored through at least one parameter value among R, Qm, and v from information A value may be obtained.
  • a value of 3824 can be compared with the value of 3824 (1003). different methods depending on whether the value of is less than or equal to 3824 and TBS may be obtained (computed) (1004).
  • n A value may be obtained.
  • TBS in Table 17 of values not less than can be determined as the closest value to .
  • the value is calculated as above or information about the number of all cases (eg, at least one table) is stored, , in the stored table through at least one parameter value of n A value may be obtained.
  • TBS It can be determined through the value and the pseudo code included in Table 18 or another type of pseudo code that produces the same result. Or, the TBS stores information on the number of all cases (eg, at least one or more tables), R, A TBS value may be obtained from the stored information through at least one parameter value among , C .
  • the maximum data rate supported by the UE in the NR system may be determined through Equation (6).
  • the terminal can be reported by setting it to one of 1, 0.8, 0.75, or 0.4, can be given as in Table 19.
  • Is can be calculated as is the maximum number of RBs in BW(j). As an overhead value, it may be given as 0.14 in the downlink of FR1 (band below 6 GHz) and 0.18 in the uplink, and as 0.08 in the downlink of FR2 (band above 6 GHz) and 0.10 in the uplink.
  • the maximum data rate in downlink in a cell having a 100 MHz frequency bandwidth at a 30 kHz subcarrier interval may be as shown in Table 20 below.
  • the actual data rate representing the actual data transmission efficiency may be a value obtained by dividing the amount of transmitted data by the data transmission time. That is, it may be a value obtained by dividing the TBS in one TB transmission or the sum of two TBSs in two transmissions by a transmission time interval (TTI) length.
  • TTI transmission time interval
  • the maximum actual downlink data rate in a cell having a 30 kHz subcarrier interval and a 100 MHz frequency bandwidth may be determined as shown in Table 21 below according to the number of allocated PDSCH symbols.
  • the data rate supportable of the terminal may be determined (calculated, obtained) between the base station and the terminal using the maximum frequency band, the maximum modulation order, the maximum number of layers, etc. supported by the terminal.
  • the data rate supportable by the terminal may be different from the actual data rate calculated based on TBS and TTI, and in some cases, the base station transmits data having a TBS larger than the data rate supportable by the terminal to the terminal. can happen
  • the base station may transmit data to the terminal in a 1:1 relationship (uni-cast) or may transmit data in a 1:N relationship (multi-cast, group-cast, broad -cast, etc.).
  • a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common RNTI (RNTI) is a group-common PDCCH (PDCCH).
  • the DCI may schedule a group-common PDSCH (PDSCH).
  • the RNTI used in Equation 3 of step 901 may be a group-common RNTI (RNTI), and the same value may be set for the group-common RNTI for the terminals of the group.
  • the group common RNTI of the present disclosure may be a newly defined RNTI for group communication, or an RNTI configured to be used for group communication among RNTIs configured in the terminal.
  • a DCI-specific PDCCH to which a scrambled CRC (CRC generated using DCI information) is attached based on a UE-specific RNTI (eg, C-RNTI) per UE. -specific PDCCH).
  • the DCI may schedule a group-common PDSCH (PDSCH).
  • the RNTI used in Equation 3 of step 901 may be a group-common RNTI (RNTI), and the same value may be set for the terminals of the group.
  • the base station may configure an mcs-Table (eg, Table 14, Table 15, or Table 16) for group-common PDSCH (PDSCH) transmission to the terminal.
  • mcs-Table information information on at least one modulation order and target code rate that can be determined according to at least one MCS index value
  • mcs-Table information information on at least one modulation order and target code rate that can be determined according to at least one MCS index value
  • MCS-related information e.g. MCS-related information
  • mcs-Table group common mcs-Table for group communication
  • group common PDSCH group-common PDSCH
  • transmission configured in the terminal is mcs-Table (or UE- It may be set separately from the specific mcs-Table).
  • the mcs-Table for group common PDSCH transmission may be defined (or designed) or configured in consideration of lower performance than the mcs-Table for unicast PDSCH.
  • an embodiment of the present disclosure is not limited thereto, and the mcs-Table for group common PDSCH transmission may include at least one or at least a part of mcs-Table entries configured for unicast PDSCH.
  • the mcs-Table configuration for group-common PDSCH (PDSCH) transmission may be included in the PDSCH configuration parameter in the BWP configuration parameter and configured for each BWP.
  • configuration information for downlink BWP (BWP-Downlink) and configuration information for uplink BWP (BWP-Uplink) may be configured in the terminal.
  • the downlink BWP may include configuration information for a downlink common BWP (BWP-DownlinkCommon) and a downlink dedicated BWP (BWP-DownlinkDedicated).
  • the downlink common BWP is a cell-specific BWP, and the downlink common BWP configuration information may include parameters commonly applied to terminals located in the cell.
  • the downlink-specific BWP is a UE-specific BWP, and the downlink-specific BWP configuration information may include a UE-specific (dedicated) parameter.
  • the BWP including the group common PDSCH may be referred to as a group common BWP. That is, the group common BWP may mean a BWP used for 1: multiple communication, such as multicast or broadcast.
  • the group common BWP may be set in the terminal as a BWP separate from the previously configured BWP (legacy BWP), or some frequency resources of the BWP configured in the terminal may be set in the terminal as a group common BWP.
  • configuration information for the group common BWP is included in the downlink common BWP, or configuration information for the group common BWP may be defined separately.
  • the configuration information for the group common BWP may include information on the group common PDCCH region and information on the group common PDSCH region.
  • the terminal may use all or part of the downlink common BWP as the group common BWP.
  • some BWPs or frequency resources among a plurality of BWPs set in the terminal may be used as the group common BWP.
  • the group common BWP setting information may be included in the PDSCH configuration information included in .
  • the mcs-Table configuration for group-common PDSCH (group-common PDSCH) transmission is included in the group common frequency resource configuration parameter for group-common PDSCH transmission in the PDSCH configuration parameter. It may be set for each common frequency resource.
  • the group common frequency resource may be configured with a part or all of the BWP, and in the present disclosure, the group common frequency resource may be configured with all or at least a part of the frequency resource of the group common BWP. Accordingly, the group common frequency resource may also be set as a part of the frequency resource configured in the terminal or a frequency resource separate from the frequency resource configured in the terminal, and the information for setting the group common frequency resource is included in the mcs-Table settings may be included.
  • a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common RNTI (RNTI) is a group-common PDCCH (PDCCH).
  • RNTI group-common RNTI
  • PDCH group-common PDCCH
  • the UE may use the mcs-Table configured for group common PDSCH transmission.
  • the UE uses the mcs-Table configured for the unicast PDSCH to modulate the modulation and coding scheme field (I MCS ) included in the DCI.
  • I MCS modulation and coding scheme field
  • the order Qm and the target code rate R may be determined.
  • a DCI format defined separately for group communication or a DCI format previously defined for unicast communication may be used.
  • the UE when receiving a PDCCH scheduled through a group-specific search space, the UE receives a modulation order (Qm) corresponding to the Modulation and Coding Scheme field (I MCS ) included in the DCI. ) and the target code rate R, the mcs-Table configured for group common PDSCH transmission may be used. If the mcs-Table configured for the group common PDSCH transmission does not exist, the UE uses the mcs-Table configured for the unicast PDSCH to modulate the modulation and coding scheme field (I MCS ) included in the DCI. The order Qm and the target code rate R may be determined. Meanwhile, DCI transmitted through the group-specific search space may use a DCI format defined separately for group communication or a DCI format previously defined for unicast communication may be used.
  • Qm modulation order
  • I MCS Modulation and Coding Scheme field
  • a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common RNTI (RNTI) is a group-common PDCCH (PDCCH).
  • RNTI group-common RNTI
  • PDCH group-common PDCCH
  • the UE may use the mcs-Table configured for group common PDSCH transmission.
  • the UE uses the mcs-Table configured for the unicast PDSCH to modulate the modulation and coding scheme field (I MCS ) included in the DCI.
  • I MCS modulation and coding scheme field
  • FIG. 11 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • the terminal may receive configuration information from the base station.
  • the configuration information may be received through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP, and in the present disclosure, the setting information may include information on mcs-Table and the like.
  • the mcs-Table may include at least one of mcs-Table configured for unicast PDSCH or mcs-Table configured for group common PDSCH.
  • the mcs-Table configured for the group common PDSCH may be configured for each BWP or group common frequency resource as described above. In this case, the detailed content of the configuration information for the BWP or the configuration information for the group common frequency resource is the same as described above, and will be omitted below.
  • the UE may monitor the PDCCH in at least one search space according to the above embodiments ( 1101 ).
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly configured only for a specific group i for group communication.
  • the group search space commonly set only to the group i can be obtained by setting the Yp,-1 value of Equation 1 to the group common RNTI and substituting it in Equation 1.
  • the terminal included in the group may monitor the PDCCH in the group search space, and information included in the DCI received in the group search space may be used for group communication of the terminal.
  • the base station may transmit information on the group search space to the terminal.
  • the base station may configure information on the PDCCH in which the group search space is located (or to be used for group communication) to the terminal through RRC signaling or SIB.
  • time resource information and frequency resource information for the CORESET may be directly indicated through RRC signaling, MIB, or SIB.
  • the time resource information and the frequency resource information for the PDCCH indicate any one of predetermined information (eg, information configured in the form of a table) through RRC signaling, MIB, or information included in SIB. can make it
  • the CCE index of the common search space included in the PDCCH may be determined based on Equation 1 above.
  • DCI may be detected ( 1102 ). That is, the UE may receive DCI through the PDCCH as a result of monitoring the PDCCH.
  • the UE may check whether the RNTI used for scrambling the CRC of the DCI transmitted through the PDCCH is the first RNTI or the second RNTI (1103).
  • the terminal included in group i may be assigned a group common RNTI (received through higher layer signaling, MIB, or SIB), and when the group common RNTI is assigned, step 1103 may be performed.
  • the second RNTI may refer to a group common RNTI
  • the first RNTI may refer to an RNTI other than the group common RNTI configured in the UE.
  • step 1103 may be a step of confirming whether the RNTI used for scrambling the CRC of the DCI is the second RNTI. That is, the terminal may determine whether a scrambled CRC is attached based on the group common RNTI, and may determine whether scheduling information for group communication is received based on this.
  • step 1103 may be omitted.
  • step 1103 may be changed to a step of determining whether the DCI is for group communication (or whether the DCI is group common or UE-specific).
  • the UE may use the first mcs-Table (or mcs-Table #1) (1104). That is, the UE may identify at least one of the modulation order (Qm) and the target code rate R corresponding to the value of the MCS index (I MCS ) bit field included in the received DCI.
  • the UE may use the second mcs-Table (or mcs-Table #2) (1105). That is, the UE may check at least one of the modulation order (Qm) and the target code rate R corresponding to the MCS index (I MCS ) value included in the received DCI.
  • the terminal determines the modulation order (Qm) and the target code rate R of the PDSCH scheduled by the DCI based on the confirmed at least one modulation order (Qm) and the target code rate R, and a subsequent operation, for example, determination of TBS etc. can be performed.
  • the first mcs-Table may correspond to an mcs-Table configured for a unicast PDSCH
  • the second mcs-Table may correspond to an mcs-Table configured for a group common PDSCH.
  • FIG. 12 is a diagram illustrating a DCI generation operation of a base station according to an embodiment of the present disclosure.
  • the base station may transmit configuration information to the terminal ( 1201 ).
  • the configuration information may refer to information transmitted through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP, and in the present disclosure, the setting information may include information on mcs-Table and the like.
  • the mcs-Table may be at least one of mcs-Table configured for unicast PDSCH or mcs-Table configured for group common PDSCH.
  • the mcs-Table configured for the group common PDSCH may be configured for each BWP or group common frequency resource as described above. In this case, the detailed content of the configuration information for the BWP or the configuration information for the group common frequency resource is the same as described above, and will be omitted below.
  • the base station may determine the type of DCI to transmit (1202). However, step 1202 may be omitted. Specific details will be described later.
  • the base station may determine the type of DCI according to data to be transmitted through the PDSCH (or according to whether the data is for group communication, or whether the data is group common data or UE-specific data). For example, the type of DCI may be determined depending on whether data is transmitted to one terminal or data transmitted to terminals belonging to a specific group (ie, multiple terminals).
  • the base station determines a modulation order (Qm) and a target code rate R of data to be transmitted through the PDSCH, and an MCS index (I MCS ) for indicating the modulation order (Qm) and/or the target code rate R can be decided
  • the MCS index uses different mcs-Tables according to the data (that is, whether data is transmitted for group communication or data for unicast transmission) or according to the determined DCI type. It may be determined, and specific details will be described later. However, as described above, the DCI type (or format) for group communication and the DCI type (or format) for unicast communication may be the same, and in this case, step 1202 may be omitted.
  • the base station may determine the type of DCI according to whether the DCI to be transmitted through the PDCCH is for group communication (or whether the DCI is group common or UE-specific) ( 1202 ).
  • the DCI may be for one UE (UE-specific) or a specific group (group-common). Therefore, the base station determines the modulation order (Qm) and the target code rate R of data to be transmitted through the PDSCH scheduled by the DCI, and the MCS index (I) for indicating the modulation order (Qm) and/or the target code rate R MCS ) can be determined.
  • the MCS index may be determined using different mcs-Tables according to the determined DCI type, and details will be described later.
  • the DCI type (or format) for group communication and the DCI type (or format) for unicast communication may be the same, and in this case, step 1202 may be omitted.
  • the base station When the determined DCI is UE-specific, the base station generates a DCI using the first mcs-Table (mcs-Table #1) (1203), generates a CRC using the generated DCI, and sets the CRC to the first
  • the RNTI may be used to scramble ( 1205 ).
  • the first mcs-Table may be an mcs-Table set in the UE for unicast PDSCH through the process of 1201, and the RNTI is a UE-specific RNTI (UE-specific RNTI), including, for example, a C-RNTI. can do.
  • the base station may transmit the DCI and CRC generated as above through the PDCCH.
  • the base station When the determined DCI type is group-common, the base station generates a DCI using the second mcs-Table (1204), generates a CRC using the generated DCI, and scrambles the CRC using a second RNTI. Can (1206).
  • the second mcs-Table may be an mcs-Table set in the UE for the group common PDSCH through the process of 1201, and the RNTI may include a group common RNTI (RNTI).
  • the base station may transmit the DCI and CRC generated as above through the PDCCH.
  • the PDCCH may be transmitted by being mapped to a common search space or a group search space.
  • a group-common PDSCH may be used for retransmission of data transmitted through a group-common PDSCH (PDSCH).
  • a UE-specific PDSCH scheduled through a UE-specific PDCCH (UE-specific PDCCH) for retransmission for data transmitted through a group-common PDSCH (PDSCH) ) can be used.
  • UE-specific PDCCH UE-specific PDCCH
  • PDSCH group-common PDSCH
  • a group common PDSCH (group-common PDSCH) scheduled through a UE-specific PDCCH (UE-specific PDCCH) for retransmission for data transmitted through a group-common PDSCH (PDSCH) PDSCH) may be used.
  • group-common PDSCH UE-specific PDCCH
  • PDSCH group-common PDSCH
  • whether retransmission for a TB transmitted through the group common PDSCH is determined by a first RNTI transmitted through the first PDCCH scheduling the first PDSCH (CRC generated using the first DCI)
  • a first HARQ process number and a first New Data Indicator (NDI) value included in the first DCI using may be determined by the second HARQ process number and the second NDI value included in the second DCI (used for scrambling the CRC generated using DCI).
  • the second PDSCH is The data TB transmitted through the first PDSCH is determined by retransmission of the data TB transmitted through the first PDSCH, and a subsequent operation (eg, combining) may be performed accordingly. That is, even when the first RNTI and the second RNTI are different RNTIs (eg, a UE-specific RNTI and a UE common RNTI), the number of HARQ processes included in the DCI is the same, and the NDI value is not toggled.
  • RNTI and the second RNTI are different RNTIs (eg, a UE-specific RNTI and a UE common RNTI)
  • the number of HARQ processes included in the DCI is the same, and the NDI value is not toggled.
  • An operation for retransmission may be performed.
  • the first RNTI and the second RNTI are the same RNTI (eg, terminal common RNTI)
  • the number of HARQ processes included in the DCI is the same, and when the NDI value is not toggled, transmitted through the second PDSCH Data may be understood as retransmission data.
  • the second NDI value is different from the first NDI value (ie, toggled)
  • the data TB transmitted through the second PDSCH may be understood as new data.
  • the first RNTI may be, for example, a group common RNTI
  • the second RNTI may be a UE-specific RNTI (C-RNTI).
  • the first RNTI may be a group common RNTI
  • the second RNTI may also be a group common RNTI.
  • the determination of whether to retransmit as in the above embodiment may be performed for each MAC entity.
  • FIG. 13 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
  • the UE may monitor the PDCCH in at least one search space according to the above embodiments (not shown).
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
  • the UE may receive the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1) (1301).
  • the first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
  • the UE may receive a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2) (1302).
  • the second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
  • steps 1301 and 1302 may be changed according to an embodiment of the present disclosure. That is, the order of steps 1301 and 1302 is changed, or the terminal may receive the first DCI scrambled with the first RNTI in steps 1301 and 1302, or the terminal may scramble with the second RNTI in steps 1301 and 1302.
  • the second DCI may be received.
  • steps 1301 and 1302 may be changed to receiving the first DCI and the second DCI, respectively, and the first DCI and the second DCI may not be limited to a specific RNTI.
  • the UE may determine whether to retransmit according to whether the NDI value is toggled for the same HARQ process number. At this time, when the NDI value is not toggled for the same HARQ process number, the UE may perform retransmission regardless of the RNTI associated with the DCI.
  • the UE may compare the value of the HARQ process number of the second DCI (DCI #2) with the value of the HARQ process number of the first DCI (DCI #1).
  • the UE compares the first NDI value included in the second DCI (DCI #2) with the second NDI value included in the first DCI (DCI #1). It may be determined whether the second NDI value is toggled (for example, from 0 to 1 or from 1 to 0) (1303).
  • the terminal may understand the data included in the second PDSCH scheduled by DCI #2 as a new transmission, and then proceed with processing ( 1304 ).
  • the processing may include, for example, calculation of TBS, flush operation of a buffer corresponding to the HARQ process number, and the like.
  • the UE understands the data included in the second PDSCH scheduled by DCI #2 as retransmission of the first PDSCH #1, if not toggled, that is, if the value is the same according to whether the second NDI value is toggled, Thereafter, processing may proceed ( 1305 ).
  • the processing may include, for example, calculating the TBS, combining LLR values of the first PDSCH #1 and the second PDSCH #2, and the like.
  • the UE even if the value of the first RNTI scrambling the CRC of the first DCI scheduling the first PDSCH #1 is different from the value of the second RNTI scrambling the CRC of the second DCI scheduling the second PDSCH #2, the UE , it is possible to determine whether to retransmit or not based on whether the HARQ process number and the NDI value included in each DCI are toggled, and process the PDSCH later.
  • the same operation as in FIG. 13 may be performed even when the first RNTI (RNTI #1) and the second RNTI (RNTI #2) of FIG. 13 are the same. If the reception and decoding of PDSCH #1 is successful, the UE may not perform the processing operation 1305 of the second PDSCH.
  • the operation of the base station may be as follows.
  • the base station may transmit DCI through at least one search space according to embodiments.
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
  • the base station may transmit the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1).
  • the first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
  • the base station may transmit a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2).
  • the second RNTI may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH. Meanwhile, the first DCI and the second DCI may not be limited to a specific RNTI.
  • the NDI value is identically set for the same HARQ process number regardless of the RNTI values used in the first DCI and the second DCI. can be transmitted to the terminal. Meanwhile, when the base station wants to transmit new data in the second PDSCH, the NDI value included in the second DCI may be toggled and transmitted to the terminal.
  • DCI transmitted through a UE-specific PDCCH (Scrambling CRC through UE-specific RNTI) indicating retransmission for a group-common PDSCH (PDSCH)
  • the modulation order (Qm) corresponding to the modulation and coding scheme field (I MCS ) and the mcs-Table used for determining the target code rate R may be determined through the MCS index table determination method of the above embodiment.
  • a group common PDCCH group-common PDCCH, scrambling CRC through a group common RNTI
  • group common PDSCH group-common PDSCH
  • the mcs-Table used for determining the modulation order (Qm) and the target code rate R corresponding to the Modulation and Coding Scheme field (I MCS ) included in DCI is the mcs-Table set for group common PDSCH transmission of the above embodiment. This can be used
  • the TBS may be determined using at least some of the mcs-Table and I MCS values determined through the above embodiments.
  • the UE sets the value of the TBS scheduled by the DCI to that of the most recently transmitted TBS. It can be set equal to the value.
  • the TB scheduled by the DCI may be a retransmission of the most recently transmitted TB or a TB for new transmission.
  • Table 15 is used as an mcs-Table for the value of the Modulation and Coding Scheme field (I MCS ) in the first DCI, and I MCS included in the first DCI received by the UE.
  • the size (TBS) of a TB scheduled through the first DCI is 0 or more and 27 or less in Table 15. value, or a value of 0 or more and 28 or less of Table 14, or an MCS index (I MCS ) corresponding to a value of 0 or more and 28 or less of Table 16 (ie, MCS index that does not indicate code rate reserved). It may be the same as the TBS determined by the second DCI transmitted through the latest PDCCH (the latest PDCCH) transmitted for the TB.
  • Table 14 or Table 16 is used as the mcs-Table for the value of the Modulation and Coding Scheme field (I MCS ) in the first DCI, and I MCS included in the first DCI received by the UE.
  • the size (TBS) of a TB scheduled through the first DCI is a value of 0 or more and 28 or less in Table 14, or a value in Table 16.
  • I MCS MCS index
  • FIG. 14 is a diagram illustrating an example of a method of obtaining the size of a transport block of a terminal according to an embodiment of the present disclosure.
  • the UE may monitor the PDCCH in at least one search space according to the above embodiments (not shown).
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly configured only for a specific group i for group communication.
  • the UE may receive the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1) (1401).
  • the first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
  • the UE may receive a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2) (1402).
  • the second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
  • the terminal for example, mcs for determining the modulation order (Qm) and the target code rate R corresponding to the value of the MCS index (I MCS ) included in the second DCI (DCI #2) through the process as shown in FIG. 11 .
  • -Table can be determined (1403).
  • the mcs-Table may be determined based on mc used for scrambling of the received DCI.
  • the mcs-Table may correspond to an mcs-Table configured for the unicast PDSCH.
  • steps 1401 and 1402 may be changed according to an embodiment of the present disclosure. That is, the order of steps 1401 and 1402 is changed, or the terminal may receive the first DCI scrambled with the first RNTI in steps 1401 and 1402, or the terminal may scramble with the second RNTI in steps 1401 and 1402.
  • the second DCI may be received.
  • steps 1401 and 1402 may be changed to receiving the first DCI and the second DCI, respectively, and the first DCI and the second DCI may not be limited to a specific RNTI.
  • the UE transmits the TBS transmitted through the second PDSCH scheduled by the second DCI to the first scheduled by the first DCI. 1 It can be determined the same as the TBS transmitted through the PDSCH.
  • the UE may determine whether the value of I MCS included in the second DCI is greater than or equal to a specific value 1 (threshold value 1 or value 1) ( 1404 ).
  • the specific value may be determined by the mcs-Table determined in step 1403 . For example, if the mcs-Table corresponds to Table 15, the specific value may correspond to 28, and if the mcs-Table corresponds to Table 14 or 16, the specific value may correspond to 29.
  • the specific value may be a value for which the target code rate and spectral efficiency of the mcs-Table are reserved.
  • the UE determines that the TBS of the second PDSCH scheduled through the second DCI is mcs- corresponding to the first DCI. It can be determined to be the same as the TBS determined by the value of I MCS included in the Table and the first DCI (1405).
  • the mcs-Table corresponding to the first DCI may be an mcs-Table configured by the base station for group common PDSCH transmission.
  • the value of I MCS included in the first DCI may have a value of 0 or more and 27 or less, and the mcs-Table corresponding to the first DCI is shown in Table 15.
  • the value of I MCS included in the first DCI may have a value of 0 or more and 28 or less
  • I MCS included in the first DCI The value of the bit field may have a value of 0 or more and 28 or less.
  • the value of I MCS included in the first DCI may be a value in which the target code rate and spectral efficiency of the mcs-Table are not reserved.
  • the terminal according to the mcs-Table corresponding to the second DCI and the value of I MCS included in the second DCI A TBS may be determined (computed) (1406).
  • the operation of the base station may be as follows.
  • the base station may transmit DCI in at least one search space according to embodiments.
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
  • the base station may transmit a first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1).
  • the first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
  • the UE may transmit a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2).
  • the second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
  • the base station may determine the mcs-Table for determining the value of the modulation order (Qm) to be included in the second DCI and the MCS index (I MCS ) corresponding to the target code rate R. For example, the base station may check whether the second DCI is a group common DCI or a unicast DCI. Alternatively, the base station may check whether the second PDSCH scheduled by the second DCI is a group common PDSCH or a unicast PDSCH. For example, in the case of group common DCI or group common PDSCH, the base station may determine the MCS index by using the mcs-Table configured for the group common PDSCH. Meanwhile, the first DCI and the second DCI may not be limited to a specific RNTI.
  • the base station when the base station intends to transmit data having the same TBS as the TBS determined by the value of I MCS included in the first DCI, the base station sets the value of the MCS index included in the second DCI to a specific value 1 (threshold value 1). Alternatively, it can be set to value 1) or higher.
  • the specific value may be determined by the determined mcs-Table. For example, if the mcs-Table corresponds to Table 15, the specific value may correspond to 28, and if the mcs-Table corresponds to Table 14 or 16, the specific value may correspond to 29.
  • the specific value when the group common mcs-Table is separately set, the specific value may be a value for which the target code rate and spectral efficiency of the mcs-Table are reserved.
  • the base station MCS index included in the second DCI The value of can be set to less than a specific value 1 (value 1).
  • the scheduled instantaneous data rate is expressed by Equation (7).
  • L denotes the number of OFDM symbols allocated to the PDSCH
  • M denotes the number of TBs transmitted in the corresponding PDSCH.
  • Is can be calculated as denotes a subcarrier interval used for PDSCH transmission.
  • A is the size of the TB (TBS)
  • C is the number of code blocks (CBs) included in the TB
  • C' is the number of code blocks scheduled in the TB.
  • C and C' may be different. is the largest integer not greater than x.
  • the maximum data rate DataRateCC supported by the UE in one carrier or serving cell may be determined based on Equation 6 or calculated as Equation 8.
  • Equation 8 shows an example of calculating the DataRateCC of the j-th serving cell. Since the parameters included in Equation 8 have been described in Equation 6, they are omitted here.
  • the instantaneous data rate transmitted in the J serving cells is as shown in Equation (9).
  • the actual instantaneous data rate in carriers or serving cells set in the terminal is determined by comparing the value of Equation 9 and the value of Equation 6 in the carriers or the serving cells. It may be checked whether the capability of the terminal is satisfied. The comparison may be a condition applied to all cases including initial transmission and retransmission. That is, when the value of Equation 9 (instantaneous data rate for the serving cell(s)) is less than or equal to the value of Equation 6 (the maximum data rate supported by the UE in the serving cell(s)), the UE selects the PDSCH HARQ-ACK information can be fed back by receiving and decoding.
  • Equation 9 instantaneous data rate for the serving cell(s)
  • Equation 6 the maximum data rate supported by the UE in the serving cell(s)
  • the UE ignores the PDSCH scheduling information, or does not receive the PDSCH Otherwise, decoding of the PDSCH may not be performed, HARQ-ACK information may be set to NACK, or HARQ-ACK information may not be fed back.
  • the base station checks the maximum data rate (value of Equation 6) supported by the terminal in the serving cell(s) for each of the terminals belonging to one group, and Check the minimum value (the minimum value among the values of Equation 6), and the value of the instantaneous data rate (Equation 9) for the serving cell(s) is the minimum value of the maximum data rate for each of the terminals belonging to the group (Equation 6) value) or less, the group common PDSCH to the group of the terminal may be scheduled through the group common PDCCH.
  • the terminal has the instantaneous data rate (the value of Equation 9) for the serving cell(s) is the value of the maximum data rate supported by the terminal in the serving cell(s) (or to a plurality of terminals) If it is less than or equal to the value of the maximum data rate (the value of Equation 6), the UE may feed back HARQ-ACK information by receiving and decoding the group common PDSCH. It is possible to ignore scheduling information, do not receive group common PDSCH, do not perform group common PDSCH decoding, set HARQ-ACK information to NACK, or not feed back HARQ-ACK information.
  • the actual instantaneous data rate in one carrier or serving cell is determined by the capability of the terminal in the carrier or the serving cell. ) can be verified.
  • the comparison may be a condition applied to retransmission. That is, when the value of the instantaneous data rate (value of Equation 7) in one carrier or serving cell is less than or equal to the maximum data rate (value in Equation 8) supported by the UE in one carrier or serving cell, the UE may receive and decode the PDSCH to feed back HARQ-ACK information. Otherwise, the UE ignores the PDSCH scheduling information, does not receive PDSCH, does not perform PDSCH decoding, sets HARQ-ACK information to NACK, or may not feed back HARQ-ACK information.
  • the base station checks the maximum data rate value (the value of Equation 8) supported by the terminal in one carrier or serving cell for each of the terminals belonging to one group, and the terminal Check the minimum value of the maximum data rate for each of the terminals (the minimum value among the values of Equation 8 of each of the terminals), and the value of the instantaneous data rate (the value of Equation 7) in one carrier or serving cell is one carrier Or, in the serving cell, the group common retransmission PDSCH to the group of terminals is scheduled to be less than or equal to the minimum value (the minimum value of Equation 6) of the maximum data rate for the terminals belonging to the group through the group common PDCCH or the terminal specific PDCCH. can do.
  • the terminal when the value of the instantaneous data rate in one carrier or serving cell is less than or equal to the minimum value of the maximum data rate for the terminals, the terminal receives the group common retransmission PDSCH and decode to feed back HARQ-ACK information. Otherwise, the terminal ignores the group common retransmission PDSCH scheduling information, does not receive the group common retransmission PDSCH, does not perform decoding of the group common retransmission PDSCH, or sets HARQ-ACK information to NACK, or , HARQ-ACK information may not be fed back.
  • the base station identifies the terminals in the group that have fed back NACK for group common PDSCH transmission, and the value of the maximum data rate supported by the terminal in one carrier or serving cell for each of the terminals.
  • values of Equation 8 of each of the terminals and the instantaneous data rates (values of Equation 7) in one carrier or serving cell for each of the terminals are the maximum data rates for each of the terminals UE-specific retransmission PDSCHs for each UE may be scheduled through UE-specific PDCCHs so as to be less than or equal to the value of Equation (8).
  • the terminal has an instantaneous data rate (value of Equation 7) in one carrier or serving cell is less than the maximum data rate (value in Equation 8) in one carrier or serving cell. or equal to, the UE may receive and decode the UE-specific retransmission PDSCH transmitted as a retransmission for the group common PDSCH transmission to feed back HARQ-ACK information.
  • the terminal ignores the information on scheduling the terminal-specific retransmission PDSCH transmitted as retransmission for the group common PDSCH transmission, or does not receive or decode the terminal-specific retransmission PDSCH transmitted as the retransmission for the group common PDSCH transmission, HARQ-ACK information may be set to NACK, or HARQ-ACK information may not be fed back.
  • the mcs-Table set in DCI for scheduling retransmission is Table 14 or Table 16
  • the I MCS value is a value of 29 to 31, in Table 15
  • the I MCS value is 28 to 31 value, or a newly added mcs-Table (or an mcs-Table defined for group communication) is used and the I MCS value included in the received DCI is reserved for the target code rate and spectral efficiency of the newly added mcs-Table.
  • the UE may understand the DCI as a DCI indicating retransmission. Also, even if a different I MCS value is used, retransmission may be performed when the conditions according to the above embodiments are satisfied.
  • the scheduling restrictions eg, , the comparison of the instantaneous data rate and the maximum data rate supported by the terminal or the comparison of the value of Equation 7 and the value of Equation 8) may be limited to a specific case.
  • the scheduling constraints for example, comparison of the instantaneous data rate and the maximum data rate supported by the terminal or comparison of the value of Equation 7 and the value of Equation 8) are considered. There may be ways not to do it.
  • a method of not considering the scheduling constraints may include
  • the number of symbols L allocated to the retransmission group common PDSCH or the retransmission terminal specific PDSCH is smaller than the number of symbols L used for the group common PDSCH initial transmission, and is smaller than the specific symbol number (eg, 7). It can be limited only to cases. That is, when the above condition is not satisfied, the scheduling constraints (for example, comparison of the instantaneous data rate and the maximum data rate supported by the terminal or comparison of the value of Equation 7 and the value of Equation 8) are considered. There may be ways not to do it.
  • the number of symbols L allocated to the retransmission group common PDSCH or the retransmission terminal specific PDSCH is the number of symbols L-x used for initial transmission of the group common PDSCH (x value is, for example, a fixed value such as 2 or 3) is applied or the base station may set it through higher level signaling.). That is, if the above condition is not satisfied, the scheduling constraint (a comparison of an instantaneous data rate and a maximum data rate supported by the terminal or a comparison of the value of Equation 7 and the value of Equation 8) is not considered.
  • a demodulation reference signal for PDSCH may be included. That is, it may be counting all symbols for PDSCH transmission delivered through DCI or higher signaling indicating PDSCH mapping information.
  • 15 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
  • the UE may monitor the PDCCH in at least one search space according to the above embodiments (not shown).
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
  • the UE may receive the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1) (1501).
  • the first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
  • the UE schedules a second PDSCH (PDSCH #2) corresponding to retransmission for the first PDSCH (PDSCH #1), in which the CRC is scrambled by the second RNTI (RNTI #2) (DCI # 2) can be received (1502).
  • the second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
  • steps 1501 and 1502 may be changed according to an embodiment of the present disclosure. That is, the order of steps 1501 and 1502 is changed, or the terminal may receive the first DCI scrambled with the first RNTI in steps 1501 and 1502, or the terminal may scramble with the second RNTI in steps 1501 and 1502.
  • the second DCI may be received.
  • steps 1501 and 1502 may be changed to receiving the first DCI and the second DCI, respectively, and the first DCI and the second DCI may not be limited to a specific RNTI.
  • the UE may determine whether to process the second PDSCH according to information of time domain resource assignment.
  • the UE determines whether a specific condition is satisfied by using at least one of time resource assignment information included in the first DCI (hereinafter, information of time domain resource assignment) and time domain resource assignment information included in the second DCI. can (1503).
  • the specific condition is, for example, "when the number of symbols L allocated to the second PDSCH through time domain resource assignment included in the second DCI is smaller than the specific number of symbols" or "time domain resource assignment included in the second DCI" When the number of symbols L allocated to the second PDSCH through is less than the number of symbols L allocated to the first PDSCH through time domain resource assignment included in the first DCI” or “time domain resource assignment included in the second DCI” When the number of symbols L allocated to the second PDSCH through The number of symbols L allocated to the second PDSCH through time domain resource assignment is the number of symbols L-x allocated to the first PDSCH through time domain resource assignment included in the first DCI (x value is, for example, fixed such as 2 or 3) value is applied, or the base station may set it through higher level
  • the UE determines the scheduling constraint (eg, the result value of Equation 7 and the result value of Equation 8 for comparing the instantaneous data rate and the maximum data rate supported by the UE)
  • the second PDSCH may be processed regardless of the comparison result of ( 1505 ).
  • the UE may check whether the scheduling constraint is satisfied. That is, the terminal may check whether the instantaneous data rate (eg, the result value of Equation 7) is less than or equal to the maximum data rate supported by the terminal (eg, the result value of Equation 8) (1504) . If the instantaneous data rate (eg, the result value of Equation 7) is less than or equal to the maximum data rate supported by the UE (eg, the result value of Equation 8), the UE performs the processing of the second PDSCH Can (1505).
  • the instantaneous data rate eg, the result value of Equation 7
  • the maximum data rate supported by the UE eg, the result value of Equation 8
  • the UE may ignore the second DCI ( 1506). That is, processing of the second PDSCH scheduled by the second DCI may not be performed.
  • the operation of the base station may be as follows.
  • the base station may transmit DCI in at least one search space according to the above embodiments.
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
  • the base station may transmit the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1).
  • the first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
  • the base station schedules a second PDSCH (PDSCH #2) corresponding to retransmission for the first PDSCH (PDSCH #1), in which the CRC is scrambled by the second RNTI (RNTI #2) (DCI # 2) can be transmitted.
  • the second RNTI may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH. Meanwhile, the first DCI and the second DCI may not be limited to a specific RNTI.
  • the base station may transmit data to the terminal.
  • the base station may set information of time domain resource assignment included in the DCI in order to process the data regardless of scheduling restrictions.
  • the terminal may process the data based on the scheduling constraint.
  • the specific condition is, for example, "when the number of symbols L allocated to the second PDSCH through time domain resource assignment included in the second DCI is smaller than the specific number of symbols" or "time domain resource assignment included in the second DCI" When the number of symbols L allocated to the second PDSCH through is less than the number of symbols L allocated to the first PDSCH through time domain resource assignment included in the first DCI” or “time domain resource assignment included in the second DCI” When the number of symbols L allocated to the second PDSCH through The number of symbols L allocated to the second PDSCH through time domain resource assignment is the number of symbols L-x allocated to the first PDSCH through time domain resource assignment included in the first DCI (x value is, for example, fixed such as 2 or 3) value is applied, or the base station may set it through higher level signaling).
  • the terminal checks whether a scrambled CRC is attached based on the group common RNTI, and when it is checked whether scheduling information for group communication is received based on this, scheduling information for the group communication
  • the bwp-InactivityTimer associated with the BWP to which the group common PDSCH scheduled by can (re)start.
  • the bwp-InactivityTimer expires, if the defaultDownlinkBWP is set, the BWP is changed to the defaultDownlinkBWP, and if not set, the BWP may be changed to the initialDownlinkBWP.
  • 16 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 1610 , a control unit 1620 , and a storage unit 1 ⁇ 30 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 1610 may transmit/receive signals to and from other network entities.
  • the transceiver 1610 may receive, for example, configuration information from a base station, and the configuration information may be received through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP and information on mcs-Table.
  • the transceiver 1610 may receive DCI through a group common PDCCH or a group specific PDCCH. Also, the transceiver 1610 may receive data from the base station.
  • the transceiver 1610 may receive new transmission data or retransmission data from the base station.
  • the controller 1620 may control the overall operation of the terminal according to the embodiment proposed in the present invention. For example, the controller 1620 may control a signal flow between blocks to perform an operation according to the above-described flowchart. For example, the controller 1620 may check whether the received DCI is for group communication. The controller 1620 may check whether the DCI is for group communication according to whether the CRC included in the DCI is scrambled based on the first RNTI or the second RNTI. In this case, the first RNTI and the second RNTI may each include either a UE-specific RNTI (eg, C-RNTI) or a group common RNTI.
  • a UE-specific RNTI eg, C-RNTI
  • the controller 1620 may use different mcs-Tables according to whether the DCI is for group communication or unicast communication (or whether DCI is group common or UE-specific). That is, when DCI is UE-specific, the UE may check at least one of a modulation order and a target code rate using the first mcs-Table. In addition, when DCI is group common, the UE may check at least one of a modulation order and a target code rate using the second mcs-Table.
  • the controller 1620 understands the received data as retransmission data when the number of the HARQ process included in the DCI is the same and the NDI value is not toggled. and perform subsequent actions. On the other hand, when the NDI value is toggled, the controller 1620 may understand the received data as new data.
  • the controller 1620 may set the value of the TBS scheduled by the DCI to be the same as the value of the most recently transmitted TBS.
  • the control unit 1620 receives and decodes the group common retransmission PDSCH or the UE specific retransmission PDSCH as retransmissions for the group common PDSCH or UE specific PDSCH, and HARQ-ACK information. can give feedback
  • the control unit ignores the retransmission PDSCH scheduling information, does not receive the retransmission PDSCH, does not perform decoding of the retransmission PDSCH, or NACKs HARQ-ACK information or may not feed back HARQ-ACK information.
  • the controller 1620 may not consider the scheduling constraint (a comparison between an instantaneous data rate and a maximum data rate).
  • the above-described operation of the terminal may be controlled by the controller 1620, and detailed description thereof will be omitted.
  • the storage unit 1630 may store at least one of information transmitted and received through the transceiver 1610 and information generated through the control unit 1620 .
  • 17 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 1710 , a control unit 1720 , and a storage unit 1730 .
  • the controller may be defined as a circuit or an application-specific integrated circuit or at least one processor.
  • the transceiver 1710 may transmit/receive signals to and from other network entities.
  • the transceiver 1710 may transmit, for example, configuration information from the base station to the terminal, and the configuration information may be transmitted through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP and information on mcs-Table.
  • the transceiver 1710 may transmit DCI through a group common PDCCH or a group specific PDCCH. Also, the transceiver 1710 may transmit data to the terminal.
  • the transceiver 1710 may transmit new transmission data or retransmission data to the terminal.
  • the controller 1720 may control the overall operation of the base station according to the embodiment proposed in the present invention. For example, the controller 1720 may control a signal flow between blocks to perform an operation according to the above-described flowchart. For example, the controller 1720 may generate a DCI according to an embodiment of the present disclosure. The controller 1720 may determine DCI according to whether data to be transmitted is for group communication (or whether the data is group common data or UE-specific data). Alternatively, the controller 1720 may determine the type of DCI according to whether the DCI to be transmitted is for group communication (or according to whether the DCI is a group common DCI or a UE-specific DCI).
  • the controller 1720 may determine a modulation order and a target code rate of data to be transmitted through a PDSCH scheduled by DCI, and may determine an MCS index indicating the modulation order and the target code rate.
  • the MCS index may be determined using different mcs-Tables according to the type of DCI.
  • the controller 1720 may transmit the DCI including the MCS index to the terminal.
  • the controller 1720 may transmit the first DCI and the second DCI.
  • the NDI value is set the same for the same HARQ process number regardless of the RNTI values used in the first DCI and the second DCI and transmitted to the terminal.
  • the controller 1720 may set the value of the MCS index included in the second DCI to a specific value or more.
  • the time domain resource assignment information included in the DCI may set not to satisfy (or satisfy) a specific condition. The above-described operation of the base station may be controlled by the controller 1720, and detailed description thereof will be omitted.
  • the storage unit 1730 may store at least one of information transmitted and received through the transceiver 1710 and information generated through the control unit 1720 .
  • a method performed by a terminal in a communication system comprising: receiving configuration information for a group common resource from a base station; receiving downlink control information (DCI) from the base station based on the configuration information; checking whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI; and determining a code rate and a modulation order based on group common modulation and coding scheme (MCS) related information when the group common RNTI is used.
  • DCI downlink control information
  • RNTI group common radio network temporary identifier
  • CRC cyclic redundancy check
  • MCS group common modulation and coding scheme
  • the method comprising: transmitting configuration information for a group common resource to a terminal; transmitting downlink control information (DCI) to the terminal based on the configuration information; and transmitting data based on the DCI.
  • DCI downlink control information
  • RNTI group common radio network temporary identifier
  • CRC cyclic redundancy check
  • the MCS included in the DCI It is characterized in that the modulation and coding scheme index is determined based on group common modulation and coding scheme (MCS) related information.
  • a transceiver in a terminal in a communication system, a transceiver; and connected to the transceiver, receiving configuration information for a group common resource from a base station, receiving downlink control information (DCI) from the base station based on the configuration information, and attaching to the DCI It is checked whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC), and when the group common RNTI is used, the code rate and It characterized in that it comprises a control unit for determining the modulation order.
  • DCI downlink control information
  • CRC cyclic redundancy check
  • a transceiver in a base station in a communication system, transmits configuration information for group common resources to the terminal, transmits downlink control information (DCI) to the terminal based on the configuration information, and based on the DCI a control unit for transmitting data, wherein when a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, a modulation and coding scheme (MCS) index included in the DCI It is characterized in that it is determined based on group common modulation and coding scheme (MCS) related information.
  • RNTI group common radio network temporary identifier
  • CRC cyclic redundancy check
  • MCS modulation and coding scheme
  • drawings for explaining the method of the present invention may omit some components and include only some components within a range that does not impair the essence of the present invention.
  • the method of the present invention may be implemented in a combination of some or all of the contents contained in each embodiment within a range that does not impair the essence of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a 5G or 6G communication system for supporting higher data transmission rates. A method performed by a terminal in a communication system according to the present disclosure comprises the steps of: receiving configuration information for a group common resource from a base station; receiving downlink control information (DCI) from the base station on the basis of the configuration information; confirming whether a group-common radio network temporary identifier (RNTI) was used for scrambling a cyclic redundancy check (CRC) attached to the DCI; and, if the group-common RNTI was used, determining an encoding rate and a modulation order on the basis of group-common modulation and coding scheme (MCS)-related information.

Description

통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치Method and apparatus for providing multicasting and broadcasting in a communication system
본 개시는 이동 통신 시스템에 대한 것으로, 보다 구체적으로 복수의 단말에 데이터를 전송하는 방법에 관한 것이다.The present disclosure relates to a mobile communication system, and more particularly, to a method of transmitting data to a plurality of terminals.
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수(‘Sub 6GHz’) 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역(‘Above 6GHz’)에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz) 대역(예를 들어, 95GHz에서 3 테라헤르츠(3THz) 대역과 같은)에서의 구현이 고려되고 있다.5G mobile communication technology defines a wide frequency band to enable fast transmission speed and new services. It can also be implemented in the very high frequency band ('Above 6GHz') called Wave). In addition, in the case of 6G mobile communication technology, which is called a system after 5G communication (Beyond 5G), in order to achieve transmission speed 50 times faster than 5G mobile communication technology and ultra-low latency reduced by one-tenth, Tera Implementations in the Terahertz band (such as, for example, the 95 GHz to 3 THz band) are being considered.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신 (massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.In the early days of 5G mobile communication technology, ultra-wideband service (enhanced Mobile BroadBand, eMBB), high reliability / ultra-low latency communication (Ultra-Reliable Low-Latency Communications, URLLC), large-scale mechanical communication (massive Machine-Type Communications, mMTC) Beamforming and Massive MIMO to increase the propagation distance and mitigate the path loss of radio waves in the ultra-high frequency band with the goal of service support and performance requirements, and efficient use of ultra-high frequency resources Supports various numerology (eg, operation of multiple subcarrier intervals) for New channel coding methods such as LDPC (Low Density Parity Check) code for data transmission and polar code for reliable transmission of control information, L2 pre-processing, dedicated dedicated to specific services Standardization of network slicing that provides a network has progressed.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다. At present, in consideration of the services that 5G mobile communication technology intends to support, discussions are underway for improvement and performance enhancement of the initial 5G mobile communication technology, and based on the vehicle's own location and status information NR-U (New Radio Unlicensed) for the purpose of operating systems that meet various regulatory requirements in V2X (Vehicle-to-Everything) to help autonomous vehicle driving judgment and increase user convenience ), NR terminal low power consumption technology (UE Power Saving), terminal-satellite direct communication for securing coverage in areas where communication with the terrestrial network is impossible, Non-Terrestrial Network (NTN), Positioning, etc. Physical layer standardization of technology is in progress.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장 (Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.In addition, the Intelligent Factory (Industrial Internet of Things, IIoT) for supporting new services through linkage and convergence with other industries, and IAB (Industrial Internet of Things), which provides nodes for network service area expansion by integrating wireless backhaul links and access links Integrated Access and Backhaul), Mobility Enhancement including Conditional Handover and Dual Active Protocol Stack (DAPS) handover, 2-step RACH for simplifying random access procedures Standardization of the air interface architecture/protocol field for technologies such as NR) is also in progress, and the 5G baseline for the grafting of Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies Standardization of the system architecture/service field for architecture (eg, Service based Architecture, Service based Interface), Mobile Edge Computing (MEC) receiving services based on the location of the terminal, etc. is also in progress.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.When such a 5G mobile communication system is commercialized, connected devices, which are on an explosive increase, will be connected to the communication network. Accordingly, it is expected that the function and performance of the 5G mobile communication system will be strengthened and the integrated operation of the connected devices will be required. To this end, eXtended Reality (XR), artificial intelligence (Artificial Intelligence) to efficiently support augmented reality (AR), virtual reality (VR), mixed reality (MR), etc. , AI) and machine learning (ML) to improve 5G performance and reduce complexity, AI service support, metaverse service support, drone communication, etc.
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.In addition, the development of such a 5G mobile communication system is a new waveform (Waveform), Full Dimensional MIMO (FD-MIMO), and Array Antenna for guaranteeing coverage in the terahertz band of 6G mobile communication technology. , multi-antenna transmission technology such as large scale antenna, metamaterial-based lens and antenna to improve the coverage of terahertz band signals, high-dimensional spatial multiplexing technology using OAM (Orbital Angular Momentum), RIS ( Not only Reconfigurable Intelligent Surface technology, but also full duplex technology, satellite, and AI (Artificial Intelligence) for frequency efficiency improvement and system network improvement of 6G mobile communication technology are utilized from the design stage and end-to-end -to-end) Development of AI-based communication technology that realizes system optimization by internalizing AI support functions, and next-generation distributed computing technology that realizes services with complexity that exceed the limits of terminal computing power by utilizing ultra-high-performance communication and computing resources could be the basis for
본 개시는 통신 시스템에서 그룹 공통의 PDSCH (physical downlink shared channel) 및 유니캐스트(unicast) PDSCH의 송수신 처리를 위한 설정 방법 및 장치를 제공한다.The present disclosure provides a configuration method and apparatus for transmitting/receiving a group common physical downlink shared channel (PDSCH) and unicast PDSCH in a communication system.
본 개시는 통신 시스템에서 그룹 공통의 PDSCH의 재전송 PDSCH의 송수신 처리를 위한 방법 및 장치를 제공한다. The present disclosure provides a method and apparatus for transmitting/receiving a PDSCH retransmission of a group common PDSCH in a communication system.
본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, 기지국으로부터 그룹 공통 자원에 대한 설정 정보를 수신하는 단계; 상기 설정 정보에 기반하여 상기 기지국으로부터 하향링크 제어 정보 (downlink control information: DCI)를 수신하는 단계; 상기 DCI에 부착된 CRC (cyclic redundancy check) 의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용되었는지 확인하는 단계; 및 상기 그룹 공통 RNTI가 사용된 경우, 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 단계를 포함하는 것을 특징으로 한다. According to various embodiments of the present disclosure, there is provided a method performed by a terminal in a communication system, the method comprising: receiving configuration information for a group common resource from a base station; receiving downlink control information (DCI) from the base station based on the configuration information; checking whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI; and determining a code rate and a modulation order based on group common modulation and coding scheme (MCS) related information when the group common RNTI is used.
또한, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서, 단말에 그룹 공통 자원에 대한 설정 정보를 전송하는 단계; 상기 설정 정보에 기반하여 상기 단말에 하향링크 제어 정보 (downlink control information: DCI)를 전송하는 단계; 및 상기 DCI에 기반하여 데이터를 전송하는 단계를 포함하며, 상기 DCI에 부착된 CRC (cyclic redundancy check)의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용된 경우, 상기 DCI에 포함되는 MCS (modulation and coding scheme) 인덱스는 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 결정되는 것을 특징으로 한다. In addition, according to various embodiments of the present disclosure, in a method performed by a base station in a communication system, the method comprising: transmitting configuration information for a group common resource to a terminal; transmitting downlink control information (DCI) to the terminal based on the configuration information; and transmitting data based on the DCI. When a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, the MCS included in the DCI ( It is characterized in that the modulation and coding scheme index is determined based on group common modulation and coding scheme (MCS) related information.
또한, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 단말에 있어서, 송수신부; 및 상기 송수신부와 연결되고, 기지국으로부터 그룹 공통 자원에 대한 설정 정보를 수신하고, 상기 설정 정보에 기반하여 상기 기지국으로부터 하향링크 제어 정보 (downlink control information: DCI)를 수신하고, 상기 DCI에 부착된 CRC (cyclic redundancy check) 의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용되었는지 확인하고, 상기 그룹 공통 RNTI가 사용된 경우, 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 제어부를 포함하는 것을 특징으로 한다. In addition, according to various embodiments of the present disclosure, in a terminal in a communication system, a transceiver; and connected to the transceiver, receiving configuration information for a group common resource from a base station, receiving downlink control information (DCI) from the base station based on the configuration information, and attaching to the DCI It is checked whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC), and when the group common RNTI is used, the code rate and It characterized in that it comprises a control unit for determining the modulation order.
또한, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 기지국에 있어서, 송수신부; 및 상기 송수신부와 연결되고, 단말에 그룹 공통 자원에 대한 설정 정보를 전송하고, 상기 설정 정보에 기반하여 상기 단말에 하향링크 제어 정보 (downlink control information: DCI)를 전송하고, 상기 DCI에 기반하여 데이터를 전송하는 제어부를 포함하며, 상기 DCI에 부착된 CRC (cyclic redundancy check)의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용된 경우, 상기 DCI에 포함되는 MCS (modulation and coding scheme) 인덱스는 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 결정되는 것을 특징으로 한다. In addition, according to various embodiments of the present disclosure, in a base station in a communication system, a transceiver; and connected to the transceiver, transmits configuration information for group common resources to the terminal, transmits downlink control information (DCI) to the terminal based on the configuration information, and based on the DCI a control unit for transmitting data, wherein when a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, a modulation and coding scheme (MCS) index included in the DCI It is characterized in that it is determined based on group common modulation and coding scheme (MCS) related information.
본 개시에 따르면, 통신 시스템에서 복수의 단말에 공통의 PDSCH 및 유니캐스트 PDSCH를 통해 데이터가 전송되는 경우, 상기 PDSCH들을 위한 설정 방법을 제공함으로서, 보다 효율적인 데이터 송수신을 수행할 수 있다.According to the present disclosure, when data is transmitted to a plurality of terminals through a common PDSCH and a unicast PDSCH in a communication system, the present disclosure provides a configuration method for the PDSCHs, thereby enabling more efficient data transmission/reception.
본 개시에 따르면, 그룹 공통의 PDSCH의 재전송 PDSCH의 송수신 처리 방법을 제공함으로써, 단말과 기지국이 원활하게 통신을 수행할 수 있다.According to the present disclosure, by providing a method for transmitting and receiving PDSCH retransmission of a group common PDSCH, a terminal and a base station can smoothly communicate.
도 1은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다. 1 is a diagram illustrating a structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다.2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 5G 통신시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. 3 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a 5G communication system according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 5G 시스템에서 고려하는 슬롯 구조의 일 예를 도시한 도면이다.4 is a diagram illustrating an example of a slot structure considered in a 5G system according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 5G 통신 시스템에서 대역폭부분에 대한 설정의 일 예를 도시한 도면이다.5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시예에 따른 캐리어 어그리게이션 (carrier aggregation: CA)을 설명하기 위한 도면이다. 6 is a diagram for explaining carrier aggregation (CA) according to an embodiment of the present disclosure.
도 7은 본 개시의 일 실시예에 따른 크로스 캐리어 스케줄링 방법의 일 예를 도시한 도면이다. 7 is a diagram illustrating an example of a cross-carrier scheduling method according to an embodiment of the present disclosure.
도 8은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역(control resource set, CORESET) 설정의 일 예를 도시한 도면이다.8 is a diagram illustrating an example of setting a control resource set (CORESET) of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 데이터 채널(Physical Downlink Shared Channel) 처리의 일 예를 도시한 도면이다. 9 is a diagram illustrating an example of a downlink data channel (Physical Downlink Shared Channel) processing in a wireless communication system according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 트랜스포트 블록의 크기를 획득하는 방법의 일 예를 도시한 도면이다.10 is a diagram illustrating an example of a method of obtaining a size of a transport block in a wireless communication system according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시예에 따른 단말의 mcs (modulation and coding scheme)-Table 결정 동작을 도시한 도면이다.11 is a diagram illustrating an operation of determining a modulation and coding scheme (mcs)-Table of a terminal according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따른 기지국의 DCI 생성 동작을 도시한 도면이다.12 is a diagram illustrating a DCI generation operation of a base station according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시예에 따른 단말의 하향링크 데이터 채널의 일 예를 도시한 도면이다.13 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
도 14는 본 개시의 일 실시예에 따른 단말의 트랜스포트 블록의 크기를 획득하는 방법의 일 예를 도시한 도면이다.14 is a diagram illustrating an example of a method of obtaining the size of a transport block of a terminal according to an embodiment of the present disclosure.
도 15는 본 개시의 일 실시예에 따른 단말의 하향링크 데이터 채널의 일 예를 도시한 도면이다.15 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
도 16은 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다. 16 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
도 17은 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다. 17 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents that are well known in the technical field to which the present invention pertains and are not directly related to the present invention will be omitted. This is to more clearly convey the gist of the present invention by omitting unnecessary description.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components are exaggerated, omitted, or schematically illustrated in the accompanying drawings. In addition, the size of each component does not fully reflect the actual size. In each figure, the same or corresponding elements are assigned the same reference numerals.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시예들은 본 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the embodiments of the present disclosure make the present disclosure complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.At this time, it will be understood that each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions. These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions. These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory. It may also be possible for the instructions stored in the flowchart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s). The computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible for instructions to perform the processing equipment to provide steps for performing the functions described in the flowchart block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in the blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다. At this time, the term '~ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~ unit' performs certain roles do. However, '-part' is not limited to software or hardware. '~unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Accordingly, according to some embodiments, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided in the components and '~ units' may be combined into a smaller number of components and '~ units' or further separated into additional components and '~ units'. In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card. Also, according to some embodiments, '~ unit' may include one or more processors.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. 이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.Hereinafter, the operating principle of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms described below are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. Hereinafter, the base station is a subject performing resource allocation of the terminal, and may be at least one of a gNode B, an eNode B, a Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network. The terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function. Of course, it is not limited to the above example. Hereinafter, the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system. The present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after a 4 th generation (4G) system with an Internet of Things (IoT) technology, and a system thereof. The present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.A term referring to broadcast information, a term referring to control information, a term related to communication coverage, a term referring to a state change (eg, an event), and network entities used in the following description Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격 혹은 3GPP NR (new radio 혹은 new radio access technology) 에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, some terms and names defined in 3GPP LTE (3rd generation partnership project long term evolution) standard or 3GPP NR (new radio or new radio access technology) may be used. However, the present invention is not limited by the above terms and names, and may be equally applied to systems conforming to other standards.
도 1은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다. 1 is a diagram illustrating a structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 1를 참조하면, 차세대 이동통신 시스템(이하 NR 또는 5g)의 무선 액세스 네트워크는 차세대 기지국(new radio node B, 이하 NR gNB 또는 NR 기지국)(110)과 차세대 무선 코어 네트워크(new radio core network, NR CN)(105)로 구성될 수 있다. 차세대 무선 사용자 단말(new radio user equipment, NR UE 또는 단말)(115)은 NR gNB(110) 및 NR CN (105)를 통해 외부 네트워크에 접속할 수 있다.1, the radio access network of the next-generation mobile communication system (hereinafter NR or 5g) is a next-generation base station (new radio node B, hereinafter, NR gNB or NR base station) 110 and a next-generation radio core network (new radio core network, NR CN) 105 . A new radio user equipment (NR UE or terminal) 115 may access an external network through the NR gNB 110 and the NR CN 105 .
도 1에서 NR gNB(110)는 기존 LTE 시스템의 eNB (evolved node B)에 대응될 수 있다. NR gNB는 NR UE(115)와 무선 채널로 연결되며, 기존 노드 B 보다 더 향상된 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR gNB(110)가 담당할 수 있다. 하나의 NR gNB는 다수의 셀들을 제어할 수 있다. 차세대 이동통신 시스템에서는, 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서, 현재의 최대 대역폭 이상의 대역폭이 적용될 수 있다. 또한, 직교 주파수 분할 다중 방식(orthogonal frequency division multiplexing, OFDM)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한, 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(adaptive modulation & doding, 이하 AMC라 한다) 방식이 적용될 수 있다. In FIG. 1 , the NR gNB 110 may correspond to an evolved node B (eNB) of the existing LTE system. The NR gNB is connected to the NR UE 115 through a radio channel, and can provide a more improved service than the existing Node B. In the next-generation mobile communication system, all user traffic may be serviced through a shared channel. Accordingly, an apparatus for scheduling by collecting status information such as buffer status, available transmission power status, and channel status of UEs is required, and the NR gNB 110 may be responsible for this. One NR gNB can control multiple cells. In a next-generation mobile communication system, a bandwidth greater than or equal to the current maximum bandwidth may be applied to implement ultra-high-speed data transmission compared to current LTE. In addition, beamforming technology may be additionally grafted by using orthogonal frequency division multiplexing (OFDM) as a radio access technology. In addition, an adaptive modulation & doding (AMC) scheme for determining a modulation scheme and a channel coding rate according to the channel state of the terminal may be applied.
NR CN (105)는 이동성 지원, 베어러 설정, 및 QoS 설정 등의 기능을 수행할 수 있다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME (125)와 네트워크 인터페이스를 통해 연결될 수 있다. MME는 기존 기지국인 eNB (130)과 연결될 수 있다.The NR CN 105 may perform functions such as mobility support, bearer establishment, and QoS establishment. The NR CN is a device in charge of various control functions as well as a mobility management function for the terminal, and can be connected to a plurality of base stations. In addition, the next-generation mobile communication system may be interlocked with the existing LTE system, and the NR CN may be connected to the MME 125 through a network interface. The MME may be connected to the existing base station, the eNB 130 .
도 2는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 2를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR 서비스 데이터 적응 프로토콜(service data adaptation protocol, SDAP)(201, 245), NR PDCP(205, 240), NR RLC(210, 235), NR MAC(215, 230), NR PHY(220, 225)으로 이루어진다. Referring to FIG. 2, radio protocols of the next-generation mobile communication system are NR service data adaptation protocol (SDAP) 201 and 245, NR PDCP 205, 240, and NR RLC ( 210, 235), NR MAC (215, 230), and NR PHY (220, 225).
NR SDAP(201, 245)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.The main functions of the NR SDAPs 201 and 245 may include some of the following functions.
- 사용자 데이터의 전달 기능(transfer of user plane data)- Transfer of user plane data
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)- Mapping between a QoS flow and a DRB for both DL and UL for uplink and downlink
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)- Marking QoS flow ID in both DL and UL packets for uplink and downlink
- 상향 링크 SDAP PDU들에 대해서 reflective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs). - A function of mapping a reflective QoS flow to a data bearer for uplink SDAP PDUs (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 무선 자원 제어(radio resource control, RRC) 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. SDAP 헤더가 설정된 경우, 단말은 SDAP 헤더의 비접속 계층(non-access stratum, NAS) QoS(quality of service) 반영 설정 1비트 지시자(NAS reflective QoS)와, 접속 계층 (access stratum, AS) QoS 반영 설정 1비트 지시자(AS reflective QoS)로, 단말이 상향 링크와 하향 링크의 QoS 플로우(flow)와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. QoS 정보는 원활한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케줄링 정보 등으로 사용될 수 있다. For the SDAP layer device, the UE uses the header of the SDAP layer device for each PDCP layer device or for each bearer or for each logical channel as a radio resource control (RRC) message or whether to use the function of the SDAP layer device can be set. When the SDAP header is set, the terminal reflects the non-access stratum (NAS) quality of service (QoS) reflection setting 1-bit indicator (NAS reflective QoS) of the SDAP header and the access layer (access stratum, AS) QoS reflection As a set 1-bit indicator (AS reflective QoS), it can be instructed so that the UE can update or reconfigure mapping information for uplink and downlink QoS flows and data bearers. The SDAP header may include QoS flow ID information indicating QoS. The QoS information may be used as data processing priority, scheduling information, etc. to support a smooth service.
NR PDCP (205, 240)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. The main functions of the NR PDCPs 205 and 240 may include some of the following functions.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)- Header compression and decompression (ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)- Transfer of user data
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)- In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)- Out-of-sequence delivery of upper layer PDUs
- 순서 재정렬 기능(PDCP PDU reordering for reception)- Order reordering function (PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)- Duplicate detection of lower layer SDUs
- 재전송 기능(Retransmission of PDCP SDUs)- Retransmission of PDCP SDUs
- 암호화 및 복호화 기능(Ciphering and deciphering)- Encryption and decryption function (Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)- Timer-based SDU discard in uplink.
상술한 내용에서, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 의미할 수 있다. NR PDCP 장치의 순서 재정렬 기능(reordering)은 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있고, 순서를 고려하지 않고 바로 전달하는 기능을 포함할 수 있고, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있고, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다. In the above description, the reordering function of the NR PDCP device may refer to a function of reordering PDCP PDUs received from a lower layer in order based on a PDCP sequence number (SN). The reordering function of the NR PDCP device may include a function of delivering data to a higher layer in the rearranged order, and may include a function of directly delivering data without considering the order, It may include a function of recording PDCP PDUs, a function of reporting a status on the lost PDCP PDUs to the transmitting side, and a function of requesting retransmission of the lost PDCP PDUs. .
NR RLC(210, 235)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.The main functions of the NR RLCs 210 and 235 may include some of the following functions.
- 데이터 전송 기능(Transfer of upper layer PDUs)- Data transfer function (Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)- In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)- Out-of-sequence delivery of upper layer PDUs
- ARQ 기능(Error Correction through ARQ)- ARQ function (Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)- Concatenation, segmentation and reassembly of RLC SDUs
- 재분할 기능(Re-segmentation of RLC data PDUs)- Re-segmentation of RLC data PDUs
- 순서 재정렬 기능(Reordering of RLC data PDUs)- Reordering of RLC data PDUs
- 중복 탐지 기능(Duplicate detection)- Duplicate detection
- 오류 탐지 기능(Protocol error detection)- Protocol error detection
- RLC SDU 삭제 기능(RLC SDU discard)- RLC SDU discard function (RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)- RLC re-establishment function (RLC re-establishment)
상술한 내용에서, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미할 수 있다. 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 이를 재조립하여 전달하는 기능을 포함할 수 있다. In the above description, in-sequence delivery of the NR RLC device may refer to a function of sequentially delivering RLC SDUs received from a lower layer to a higher layer. When one RLC SDU is originally divided into several RLC SDUs and received, the in-sequence delivery function of the NR RLC device may include a function of reassembling it and delivering it.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 수신한 RLC PDU들을 RLC SN(sequence number) 또는 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.In-sequence delivery of the NR RLC device may include a function of rearranging the received RLC PDUs based on an RLC sequence number (SN) or a PDCP sequence number (SN), and may be lost by rearranging the order It may include a function of recording the lost RLC PDUs, a function of reporting a status on the lost RLC PDUs to the transmitting side, and a function of requesting retransmission of the lost RLC PDUs. have.
NR RLC (210, 235) 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. The in-sequence delivery function of the NR RLC (210, 235) device may include a function of sequentially delivering only RLC SDUs before the lost RLC SDU to a higher layer when there is a lost RLC SDU. can In addition, the in-sequence delivery function of the NR RLC device includes a function of sequentially delivering all RLC SDUs received before the timer starts to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. can do. In addition, the in-sequence delivery function of the NR RLC device may include a function of sequentially delivering all RLC SDUs received so far to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. .
NR RLC (210, 235) 장치는, 일련번호(Sequence number)의 순서와 상관없이(Out of sequence delivery) RLC PDU들을 수신하는 순서대로 처리하여 NR PDCP(205, 240) 장치로 전달할 수 있다. The NR RLC (210, 235) device may process the RLC PDUs in the order in which they are received, regardless of the sequence number (Out of sequence delivery), and deliver it to the NR PDCP (205, 240) device.
NR RLC(210, 235) 장치가 세그먼트(segment)를 수신할 경우에는, 버퍼에 저장되어 있거나 추후에 수신될 세그먼트들을 수신하여, 온전한 하나의 RLC PDU로 재구성한 후, 이를 NR PDCP 장치로 전달할 수 있다. When the NR RLC (210, 235) device receives a segment, it receives the segments stored in the buffer or to be received later, reconstructs it into one complete RLC PDU, and then delivers it to the NR PDCP device. have.
NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고, NR MAC 계층에서 기능을 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다. The NR RLC layer may not include a concatenation function, and may perform a function in the NR MAC layer or may be replaced with a multiplexing function of the NR MAC layer.
상술한 내용에서, NR RLC 장치의 비순차적 전달 기능(Out of sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 의미할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out of sequence delivery)은, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out of sequence delivery)은, 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다. In the above description, the out-of-sequence delivery function of the NR RLC device may refer to a function of directly delivering RLC SDUs received from a lower layer to a higher layer regardless of order. The out-of-sequence delivery function of the NR RLC device may include a function of reassembling and delivering when one RLC SDU is originally divided into several RLC SDUs and received. The out of sequence delivery function of the NR RLC device may include a function of storing the RLC SN or PDCP SN of the received RLC PDUs and arranging the order to record the lost RLC PDUs.
NR MAC(215, 230)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. The NR MACs 215 and 230 may be connected to several NR RLC layer devices configured in one terminal, and the main function of the NR MAC may include some of the following functions.
- 맵핑 기능(Mapping between logical channels and transport channels)- Mapping function (Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)- Multiplexing/demultiplexing of MAC SDUs
- 스케줄링 정보 보고 기능(Scheduling information reporting)- Scheduling information reporting function
- HARQ 기능(Error correction through HARQ (hybrid automatic repeat request))- HARQ function (Error correction through HARQ (hybrid automatic repeat request))
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)- Priority handling between logical channels of one UE
- 단말 간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)- Priority handling between UEs by means of dynamic scheduling
- MBMS 서비스 확인 기능(MBMS service identification)- MBMS service identification
- 전송 포맷 선택 기능(Transport format selection)- Transport format selection
- 패딩 기능(Padding)- Padding function
NR PHY 계층(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.The NR PHY layers 220 and 225 channel-code and modulate the upper layer data, make an OFDM symbol and transmit it to the radio channel, or demodulate the OFDM symbol received through the radio channel, decode the channel, and deliver the operation to the upper layer. can be done
이하에서는 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.Hereinafter, the frame structure of the 5G system will be described in more detail with reference to the drawings.
도 3은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. 3 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a 5G system.
도 3의 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(resource element, RE)(301)로서 시간 축으로 1 OFDM(orthogonal frequency division multiplexing) 심볼(302) 및 주파수 축으로 1 부반송파(subcarrier)(303)로 정의될 수 있다. 주파수 영역에서
Figure PCTKR2022000913-appb-I000001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(resource block, RB)(304)을 구성할 수 있다.
3 , the horizontal axis represents the time domain, and the vertical axis represents the frequency domain. The basic unit of resources in the time and frequency domain is a resource element (RE) 301 as one orthogonal frequency division multiplexing (OFDM) symbol 302 on the time axis and one subcarrier (subcarrier) 303 on the frequency axis. can be defined. in the frequency domain
Figure PCTKR2022000913-appb-I000001
(for example, 12) consecutive REs may constitute one resource block (RB) 304 .
도 4는 5G 시스템에서 고려하는 슬롯 구조의 일 예를 도시한 도면이다.4 is a diagram illustrating an example of a slot structure considered in a 5G system.
도 4에는 프레임(frame)(400), 서브프레임(subframe)(401), 슬롯(slot)(402) 구조의 일 예가 도시되어 있다. 1 프레임(400)은 10ms로 정의될 수 있다. 1 서브프레임(401)은 1ms로 정의될 수 있으며, 따라서 1 프레임(400)은 총 10개의 서브프레임(401)으로 구성될 수 있다. 1 슬롯(402, 403)은 14개의 OFDM 심볼로 정의될 수 있다(즉 1 슬롯 당 심볼 수(
Figure PCTKR2022000913-appb-I000002
)=14). 1 서브프레임(401)은 하나 또는 복수 개의 슬롯(402, 403)으로 구성될 수 있으며, 1 서브프레임(401)당 슬롯(402, 403)의 개수는 부반송파 간격에 대한 설정 값 μ(404, 405)에 따라 다를 수 있다. 도 4의 일 예에서는 부반송파 간격 설정 값으로 μ=0(404)인 경우와 μ=1(405)인 경우가 도시되어 있다. μ=0(404)일 경우, 1 서브프레임(401)은 1개의 슬롯(402)으로 구성될 수 있고, μ=1(405)일 경우, 1 서브프레임(401)은 2개의 슬롯(403)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure PCTKR2022000913-appb-I000003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure PCTKR2022000913-appb-I000004
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2022000913-appb-I000005
Figure PCTKR2022000913-appb-I000006
는 하기의 표 1로 정의될 수 있다.
4 shows an example of a structure of a frame 400 , a subframe 401 , and a slot 402 . One frame 400 may be defined as 10 ms. One subframe 401 may be defined as 1 ms, and therefore, one frame 400 may consist of a total of 10 subframes 401 . One slot (402, 403) may be defined as 14 OFDM symbols (that is, the number of symbols per slot (
Figure PCTKR2022000913-appb-I000002
)=14). One subframe 401 may consist of one or a plurality of slots 402 and 403, and the number of slots 402 and 403 per one subframe 401 is a set value μ(404, 405) for the subcarrier spacing. ) may vary depending on In the example of FIG. 4 , a case of μ=0 (404) and a case of μ=1 (405) are illustrated as subcarrier spacing setting values. When μ=0 (404), one subframe 401 may consist of one slot 402, and when μ=1 (405), one subframe 401 may consist of two slots 403. can be composed of That is, the number of slots per subframe (
Figure PCTKR2022000913-appb-I000003
) may vary, and accordingly, the number of slots per frame (
Figure PCTKR2022000913-appb-I000004
) may be different. According to each subcarrier spacing setting μ
Figure PCTKR2022000913-appb-I000005
and
Figure PCTKR2022000913-appb-I000006
may be defined in Table 1 below.
[표 1][Table 1]
Figure PCTKR2022000913-appb-I000007
Figure PCTKR2022000913-appb-I000007
다음으로 5G 통신 시스템에서 대역폭부분(Bandwidth Part; BWP) 설정에 대하여 도 5를 참조하여 구체적으로 설명하도록 한다. Next, a bandwidth part (BWP) setting in the 5G communication system will be described in detail with reference to FIG. 5 .
도 5는 5G 통신 시스템에서 대역폭부분에 대한 설정의 일 예를 도시한 도면이다. 5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system.
도 5에는 단말 대역폭(UE bandwidth)(500)이 두 개의 대역폭부분, 즉, 대역폭부분#1(BWP#1)(501)과 대역폭부분#2(BWP#2)(502)로 설정된 일 예가 도시되어 있다. 기지국은 단말에게 하나 또는 복수 개의 대역폭부분을 설정해줄 수 있으며, 각 대역폭부분에 대하여 예를 들어 하기의 표 2와 같은 정보들을 설정해 줄 수 있다. 하기의 BWP는 BWP 설정 정보라 칭할 수 있다. 5 shows an example in which the UE bandwidth 500 is set to two bandwidth parts, that is, a bandwidth part #1 (BWP#1) 501 and a bandwidth part #2 (BWP#2) 502. has been The base station may set one or a plurality of bandwidth portions to the terminal, and may set information as shown in Table 2 below for each bandwidth portion, for example. The following BWP may be referred to as BWP setting information.
[표 2][Table 2]
Figure PCTKR2022000913-appb-I000008
Figure PCTKR2022000913-appb-I000008
물론 상기 예시에 제한되는 것은 아니며, 상기 설정 정보 외에도 대역폭부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상기 정보들은 상위 계층 시그널링, 예를 들면, RRC 시그널링을 통해 기지국이 단말에게 전달될 수 있다. 설정된 하나 또는 복수 개의 대역폭부분들 중에서 적어도 하나의 대역폭부분이 활성화 (activation)될 수 있다. 설정된 대역폭부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적으로 전달되거나 DCI (downlink control information)를 통해 동적으로 전달될 수 있다.Of course, it is not limited to the above example, and in addition to the configuration information, various parameters related to the bandwidth portion may be configured in the terminal. The information may be transmitted from the base station to the terminal through higher layer signaling, for example, RRC signaling. At least one bandwidth portion among the set one or a plurality of bandwidth portions may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling or may be dynamically transmitted through downlink control information (DCI).
일부 실시예에 따르면, RRC 연결 전의 단말은 초기 접속을 위한 초기 대역폭부분 (initial BWP)을 MIB(master information block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로 설명하면, 단말은 초기 접속 단계에서 MIB를 통해 초기 접속에 필요한 시스템 정보(remaining system information; RMSI 또는 system Information block 1; SIB1에 해당할 수 있음)의 수신을 위한 PDCCH가 전송될 수 있는 제어자원세트(CORESET)와 탐색 공간(search space)에 대한 설정 정보를 수신할 수 있다. MIB로 설정되는 제어자원세트와 탐색공간은 각각 식별자(identity, ID) 0으로 간주될 수 있다. 기지국은 단말에게 MIB를 통해 제어자원세트#0에 대한 주파수 할당 정보, 시간 할당 정보, 뉴머롤로지(numerology) 등의 설정 정보를 통지할 수 있다. 또한 기지국은 단말에게 MIB를 통해 제어자원세트#0에 대한 모니터링 주기 및 occasion에 대한 설정정보, 즉 탐색공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어자원세트#0으로 설정된 주파수 영역을 초기 접속을 위한 초기 대역폭부분으로 간주할 수 있다. 이때, 초기 대역폭부분의 식별자(ID)는 0으로 간주될 수 있다.According to some embodiments, the terminal before the RRC connection may receive an initial bandwidth portion (initial BWP) for the initial connection from the base station through a master information block (MIB). More specifically, the UE may transmit a PDCCH for reception of system information (remaining system information; RMSI or system information block 1; may correspond to SIB1) required for initial access through the MIB in the initial access step. Setting information for a control resource set (CORESET) and a search space may be received. The control resource set and search space set by the MIB may be regarded as an identifier (identity, ID) 0, respectively. The base station may notify the terminal of configuration information such as frequency allocation information, time allocation information, and numerology for the control resource set #0 through the MIB. In addition, the base station may notify the terminal through the MIB of configuration information on the monitoring period and occasion for the control resource set #0, that is, configuration information on the search space #0. The UE may regard the frequency domain set as the control resource set #0 obtained from the MIB as an initial bandwidth portion for initial access. In this case, the identifier (ID) of the initial bandwidth portion may be regarded as 0.
상기 5G에서 지원하는 대역폭부분에 대한 설정은 다양한 목적으로 사용될 수 있다. The configuration of the bandwidth part supported by the 5G may be used for various purposes.
일부 실시 예에 따르면, 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에 상기 대역폭부분 설정을 통해 이를 지원할 수 있다. 예를 들면, 기지국이 대역폭부분의 주파수 위치(설정정보 2)를 단말에게 설정함으로써, 단말이 시스템 대역폭 내의 특정 주파수 위치에서 데이터를 송수신할 수 있다.According to some embodiments, when the bandwidth supported by the terminal is smaller than the system bandwidth, this may be supported through the bandwidth part setting. For example, when the base station sets the frequency position (setting information 2) of the bandwidth portion to the terminal, the terminal can transmit/receive data at a specific frequency location within the system bandwidth.
또한 일부 실시예에 따르면, 서로 다른 뉴머롤로지를 지원하기 위한 목적으로 기지국이 단말에게 복수 개의 대역폭부분을 설정할 수 있다. 예를 들면, 어떤 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분을 각각 15kHz와 30kHz의 부반송파 간격으로 설정할 수 있다. 서로 다른 대역폭 부분은 주파수 분할 다중화(frequency division multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우, 해당 부반송파 간격으로 설정되어 있는 대역폭부분이 활성화 될 수 있다.Also, according to some embodiments, the base station may set a plurality of bandwidth portions to the terminal for the purpose of supporting different numerologies. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to a certain terminal, two bandwidth portions may be set to a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be frequency division multiplexed, and when data is transmitted and received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
또한 일부 실시예에 따르면, 단말의 전력 소모 감소를 위한 목적으로 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭부분을 설정할 수 있다. 예를 들면, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모가 발생될 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 100MHz의 큰 대역폭으로 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적일 수 있다. 단말의 전력 소모를 줄이기 위한 목적으로, 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭부분, 예를 들면, 20MHz의 대역폭부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭부분으로 데이터를 송수신할 수 있다.Also, according to some embodiments, for the purpose of reducing power consumption of the terminal, the base station may set a bandwidth portion having different sizes of bandwidths to the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits and receives data using the corresponding bandwidth, very large power consumption may occur. In particular, monitoring an unnecessary downlink control channel with a large bandwidth of 100 MHz in a situation without traffic may be very inefficient in terms of power consumption. For the purpose of reducing power consumption of the terminal, the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In a situation in which there is no traffic, the terminal may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data in the 100 MHz bandwidth portion according to the instruction of the base station.
대역폭부분을 설정하는 방법에 있어서, RRC 연결(connected) 전의 단말들은 초기 접속 단계에서 MIB을 통해 초기 대역폭부분(initial bandwidth part)에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로 설명하면, 단말은 PBCH(physical broadcast channel)의 MIB로부터 SIB를 스케줄링하는 DCI가 전송될 수 있는 하향링크 제어채널을 위한 제어자원세트(CORESET)를 설정 받을 수 있다. MIB로 설정된 제어자원세트의 대역폭이 초기 대역폭부분으로 간주될 수 있으며, 설정된 초기 대역폭부분을 통해 단말은 SIB가 전송되는 PDSCH를 수신할 수 있다. 초기 대역폭부분은 SIB을 수신하는 용도 외에도, 다른 시스템 정보(other system information, OSI), 페이징(paging), 랜덤 엑세스(random access) 용으로 활용될 수도 있다.In the method of setting the bandwidth part, terminals before RRC connection (connected) may receive configuration information for the initial bandwidth part through the MIB in the initial access step. More specifically, the UE may receive a control resource set (CORESET) for a downlink control channel through which DCI scheduling SIB can be transmitted from the MIB of a physical broadcast channel (PBCH). The bandwidth of the control resource set set as the MIB may be regarded as an initial bandwidth portion, and the terminal may receive the PDSCH through which the SIB is transmitted through the configured initial bandwidth portion. The initial bandwidth portion may be utilized for other system information (OSI), paging, and random access in addition to the purpose of receiving the SIB.
도 6은 본 개시의 일 실시예에 따른 캐리어 어그리게션 (CA)을 설명하기 위한 도면이다. 6 is a diagram for explaining carrier aggregation (CA) according to an embodiment of the present disclosure.
도 6을 참고하면, CA가 설정되는 경우 (600), PCell (primary cell)과 SCell (secondary cell)이 단말에 설정될 수 있다. Referring to FIG. 6 , when CA is configured ( 600 ), a primary cell (PCell) and a secondary cell (SCell) may be configured in the terminal.
PCell은 PCC (primary component carrier)에 포함되며, RRC 연결 수립/재수립, 측정, 이동성 절차, 랜덤 액세스 절차 및 selection, 시스템 정보 취득, initial random access, security key 변경과 non-access stratum (NAS)기능 등을 제공할 수 있다. PCell is included in PCC (primary component carrier), RRC connection establishment/re-establishment, measurement, mobility procedure, random access procedure and selection, system information acquisition, initial random access, security key change and non-access stratum (NAS) function etc. can be provided.
단말은 PCell을 통해 시스템 정보 모니터링을 수행하기 때문에, 상기 PCell은 비활성화되지 않으며, UL에서 PCC는 제어 정보 (control information) 전송을 위해 PUCCH (physical uplink control channel)를 통해 운반된다. 또한, 단말과 상기 PCell 사이에 하나의 RRC만 연결이 가능하며, PDCCH/PDSCH/PUSCH (physical uplink shared channel)/PUCCH 전송이 가능하다. 또한 secondary cell group에서는 PSCell (spcell of a secondary cell group)이 상기 PCell로 설정되어 동작할 수 있다. 이하 기술되는 PCell에 대한 동작은 PSCell서도 수행할 수 있다.Since the UE performs system information monitoring through the PCell, the PCell is not deactivated, and the PCC in the UL is carried through a physical uplink control channel (PUCCH) for transmitting control information. In addition, only one RRC connection is possible between the UE and the PCell, and PDCCH/PDSCH/PUSCH (physical uplink shared channel)/PUCCH transmission is possible. Also, in the secondary cell group, a spcell of a secondary cell group (PSCell) may be configured and operated as the PCell. The operation for the PCell described below may also be performed by the PSCell.
SCell은 최대 총 31개까지 추가가 가능하며, 추가적인 무선 자원 제공이 필요한 경우에 RRC message 메시지 (예: dedicated signaling)을 통해 SCell이 설정될 수 있다. RRC 메시지에는 각 cell에 대한 물리적 cell ID가 포함될 수 있으며, DL carrier frequency (absolute radio frequency channel number: ARFCN)가 포함될 수 있다. SCell을 통해 PDCCH/PDSCH/PUSCH 전송이 가능하다. MAC 계층을 통해 UE의 배터리 보존을 위하여 SCell의 동적 활성, 비활성 절차를 지원한다.A maximum of 31 SCells can be added, and when additional radio resource provision is required, the SCell can be configured through an RRC message message (eg, dedicated signaling). The RRC message may include a physical cell ID for each cell, and may include a DL carrier frequency (absolute radio frequency channel number: ARFCN). PDCCH/PDSCH/PUSCH transmission is possible through the SCell. Supports dynamic activation and deactivation procedures of SCell for battery conservation of UE through MAC layer.
크로스 캐리어 스케줄링은 적어도 하나의 다른 CC (component carrier)에 대한 모든 L1 제어채널 또는 L2 제어채널 중 적어도 하나(예를 들어, PDCCH)를 하나의 CC에 할당하는 것을 의미할 수 있다. 하나의 CC의 PDCCH를 통해 다른 CC의 데이터 정보를 전송하기 위해 CIF(carrier indicator field)가 사용될 수 있다. Cross-carrier scheduling may mean allocating at least one (eg, PDCCH) of all L1 control channels or L2 control channels for at least one other CC (component carrier) to one CC. A carrier indicator field (CIF) may be used to transmit data information of another CC through the PDCCH of one CC.
하나의 CC의 PDCCH를 통해 전송되는 제어 정보를 통해 상기 CC의 데이터 전송을 위한 자원 (PDSCH, PUSCH) 혹은 다른 CC의 데이터 전송을 위한 자원 (PDSCH, PUSCH)이 할당될 수 있다. Resources (PDSCH, PUSCH) for data transmission of the CC or resources (PDSCH, PUSCH) for data transmission of another CC may be allocated through control information transmitted through the PDCCH of one CC.
크로스 캐리어 스케줄링의 적용으로 DCI 포맷에 n-bit CIF가 추가 되었으며, bit의 크기는 상위레이어 설정 혹은 DCI format에 따라 다를 수 있으며, DCI 포맷 내의 CIF의 위치는 고정될 수 있다.The n-bit CIF is added to the DCI format by applying the cross-carrier scheduling, the bit size may vary according to the higher layer configuration or the DCI format, and the position of the CIF in the DCI format may be fixed.
도 7은 본 개시의 일 실시예에 따른 크로스 캐리어 스케줄링 방법의 일 예를 도시한 도면이다. 7 is a diagram illustrating an example of a cross-carrier scheduling method according to an embodiment of the present disclosure.
도 7의 710을 참고하면, 한 CC의 PDCCH (701)를 통해 두 개의 CC에 대한 PDSCH 또는 PUSCH를 스케줄링할 수 있다. Referring to 710 of FIG. 7 , PDSCH or PUSCH for two CCs may be scheduled through the PDCCH 701 of one CC.
또한, 도 7의 720을 참고하면, 총 4개의 CC가 설정되는 경우, 두 CC의 PDCCH (721, 723)를 이용하여 각 CC의 PDSCH 또는 PUSCH를 스케줄링할 수 있다. In addition, referring to 720 of FIG. 7 , when a total of four CCs are configured, the PDSCH or PUSCH of each CC may be scheduled using the PDCCHs 721 and 723 of the two CCs.
각 CC는 CIF 적용을 위해 CI (carrier indicator)값으로 매핑될 수 있으며, 이는 UE specific 설정으로 dedicated RRC 신호를 통해 기지국이 단말에 전송될 수 있다.Each CC may be mapped to a CI (carrier indicator) value for CIF application, which may be transmitted from the base station to the terminal through a dedicated RRC signal as a UE-specific configuration.
각 PDSCH/PUSCH CC는 하나의 DL CC로부터 스케줄링 될 수 있다. 따라서, UE는 각 PDSCH/PUSCH CC에 대해 상기 DL CC에서만 PDCCH을 모니터링 하면 된다. 단말은 상기 DL CC에서 PDCCH를 모니터링하여, 링크된 UL carrier에서의 PUSCH 스케줄링 정보를 획득할 수 있다. 단말은 상기 DL CC에서 PDCCH를 모니터링하여, 링크된 DL carrier에서의 PDSCH 스케줄링 정보를 획득할 수 있다.Each PDSCH/PUSCH CC may be scheduled from one DL CC. Accordingly, the UE only needs to monitor the PDCCH for the DL CC for each PDSCH/PUSCH CC. The UE may monitor the PDCCH in the DL CC to obtain PUSCH scheduling information in the linked UL carrier. The UE may monitor the PDCCH in the DL CC to obtain PDSCH scheduling information in the linked DL carrier.
도 8는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역(CORESET) 설정의 일 예를 도시한 도면이다.8 is a diagram illustrating an example of setting a control area (CORESET) of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
도 8을 참조하면, 도 8에는 주파수 축으로 단말의 대역폭 부분(810), 시간 축으로 하나의 슬롯(820) 내에 2개의 제어영역(제어영역 #1(CORESET #1)(801), 제어영역 #2(CORESET #2)(802))이 설정되어 있는 일 예가 도시되어 있다. 제어영역(801, 802)은 주파수 축으로 전체 단말 대역폭 부분(810) 내에서 특정 주파수 자원(803)에 설정될 수 있다. 제어영역(801, 802)은 시간 축으로는 하나 혹은 다수 개의 OFDM 심볼로 설정될 수 있고, 이는 제어영역 길이(control resource set duration, 804)로 정의될 수 있다. 도 8의 일 예에서 제어영역 #1(801)은 2개의 심볼의 제어영역 길이로 설정되어 있고, 제어영역 #2(802)는 1개의 심볼의 제어영역 길이로 설정되어 있다. Referring to FIG. 8 , in FIG. 8 , there are two control regions (control region #1 (CORESET #1) 801) in a bandwidth part 810 of the terminal on the frequency axis and one slot 820 on the time axis. An example in which #2 (CORESET #2) 802) is set is shown. The control regions 801 and 802 may be set in a specific frequency resource 803 within the entire terminal bandwidth portion 810 on the frequency axis. The control regions 801 and 802 may be set with one or a plurality of OFDM symbols on the time axis, which may be defined as a control resource set duration (804). In the example of FIG. 8 , the control region #1 801 is set to a control region length of two symbols, and the control region #2 802 is set to a control region length of one symbol.
상기에서 설명된 5G에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보, MIB, RRC 시그널링)을 통해 설정할 수 있다. 단말에게 제어영역을 설정한다는 것은, 단말에게 제어영역 식별자(identity), 제어영역의 주파수 위치, 제어영역의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예컨대 표 3의 정보들이 포함될 수 있다.The control region in 5G described above may be configured by the base station through higher layer signaling (eg, system information, MIB, RRC signaling) to the terminal. Setting the control region to the terminal means to provide the terminal with information such as a control region identity, a frequency position of the control region, and a symbol length of the control region. For example, the information in Table 3 may be included.
[표 3][Table 3]
Figure PCTKR2022000913-appb-I000009
Figure PCTKR2022000913-appb-I000009
Figure PCTKR2022000913-appb-I000010
Figure PCTKR2022000913-appb-I000010
PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(aggregation level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예컨대, AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다. 단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출 (블라인드 디코딩)해야 하며, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space) 이 정의되었다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(candidate)들의 집합이며, 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로 단말은 복수개의 탐색공간을 가질 수 있다. 탐색공간 세트(set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.The number of CCEs required to transmit the PDCCH may be 1, 2, 4, 8, or 16 according to an aggregation level (AL), and the number of different CCEs is based on link adaptation of the downlink control channel. can be used to implement For example, when AL=L, one downlink control channel may be transmitted through L CCEs. The UE must detect a signal (blind decoding) without knowing information about the downlink control channel, and a search space indicating a set of CCEs is defined for blind decoding. The search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level, and various aggregations that make one bundle with 1, 2, 4, 8, or 16 CCEs Since there is a level, the terminal may have a plurality of search spaces. A search space set may be defined as a set of search spaces in all set aggregation levels.
탐색공간은 공통(common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 일정 그룹의 단말들 또는 모든 단말들이 시스템정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다. 예를 들어, 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보는 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신해야 하므로 기 약속된 CCE의 집합으로써 정의될 수 있다. 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케줄링 할당 정보는 PDCCH의 단말-특정 탐색공간을 조사함으로써 수신될 수 있다. 단말-특정 탐색공간은 단말의 신원(identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다. The search space may be classified into a common search space and a UE-specific search space. A group of terminals or all terminals may search the common search space of the PDCCH in order to receive control information common to cells such as dynamic scheduling for system information or a paging message. For example, the PDSCH scheduling assignment information for transmission of the SIB including the operator information of the cell may be received by examining the common search space of the PDCCH. In the case of the common search space, since terminals of a certain group or all terminals need to receive the PDCCH, it may be defined as a set of promised CCEs. The UE-specific scheduling assignment information for PDSCH or PUSCH may be received by examining the UE-specific search space of the PDCCH. The UE-specific search space may be UE-specifically defined as a function of UE identity and various system parameters.
5G에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)을 통해 기지국으로부터 단말에 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI (radio network temporary identifier)의 조합, 탐색공간을 모니터링 하고자 하는 제어자원세트 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, PDCCH에 대한 탐색공간에 대한 파라미터는 예컨데 하기의 표 4와 같은 정보들의 적어도 일부를 포함할 수 있다.In 5G, the parameter for the search space for the PDCCH may be set from the base station to the terminal through higher layer signaling (eg, SIB, MIB, RRC signaling). For example, the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), A combination of a DCI format and a radio network temporary identifier (RNTI) to be monitored in the corresponding search space, a control resource set index for monitoring the search space, etc. may be set to the UE. For example, the parameter for the search space for the PDCCH may include, for example, at least a part of information as shown in Table 4 below.
[표 4][Table 4]
Figure PCTKR2022000913-appb-I000011
Figure PCTKR2022000913-appb-I000011
Figure PCTKR2022000913-appb-I000012
Figure PCTKR2022000913-appb-I000012
Figure PCTKR2022000913-appb-I000013
Figure PCTKR2022000913-appb-I000013
기지국은 단말에게 하나 또는 복수 개의 탐색공간 세트를 설정할 수 있다. 일부 실시예에 따르면, 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있다. 탐색공간 세트 1에서는 단말이 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정될 수 있고, 탐색공간 세트 2에서는 단말이 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정될 수 있다.The base station may set one or a plurality of search space sets to the terminal. According to some embodiments, the base station may set the search space set 1 and the search space set 2 to the terminal. In search space set 1, the UE may be configured to monitor DCI format A scrambled with X-RNTI in the common search space, and in search space set 2, the UE uses DCI format B scrambled with Y-RNTI in the UE-specific search space. can be set to monitor.
설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 복수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.According to the configuration information, one or a plurality of search space sets may exist in the common search space or the terminal-specific search space. For example, the search space set #1 and the search space set #2 may be set as the common search space, and the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
공통 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.In the common search space, a combination of the following DCI format and RNTI may be monitored. Of course, it is not limited to the following examples.
DCI format 0_0/1_0 with CRC (cyclic redundancy check) scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTIDCI format 0_0/1_0 with CRC (cyclic redundancy check) scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
DCI format 2_0 with CRC scrambled by SFI-RNTIDCI format 2_0 with CRC scrambled by SFI-RNTI
DCI format 2_1 with CRC scrambled by INT-RNTIDCI format 2_1 with CRC scrambled by INT-RNTI
DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTIDCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
DCI format 2_3 with CRC scrambled by TPC-SRS-RNTIDCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.In the UE-specific search space, a combination of the following DCI format and RNTI may be monitored. Of course, it is not limited to the following examples.
DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTIDCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTIDCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
명시되어 있는 RNTI들은 하기의 정의 및 용도를 따를 수 있다.The specified RNTIs may follow the definitions and uses below.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케줄링 용도C-RNTI (Cell RNTI): UE-specific PDSCH scheduling purpose
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케줄링 용도TC-RNTI (Temporary Cell RNTI): UE-specific PDSCH scheduling purpose
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케줄링 용도CS-RNTI (Configured Scheduling RNTI): semi-statically configured UE-specific PDSCH scheduling purpose
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케줄링 용도RA-RNTI (Random Access RNTI): Used for scheduling PDSCH in the random access phase
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케줄링 용도P-RNTI (Paging RNTI): Used for scheduling PDSCH in which paging is transmitted
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케줄링 용도SI-RNTI (System Information RNTI): Used for scheduling PDSCH in which system information is transmitted
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도INT-RNTI (Interruption RNTI): Used to indicate whether PDSCH is pucturing
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): Used to indicate power control command for PUSCH
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): Used to indicate power control command for PUCCH
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도 TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): Used to indicate power control command for SRS
5G에서 제어자원세트 p, 탐색공간 세트 s에서 집성 레벨 L의 탐색공간은 하기의 수학식 1과 같이 표현될 수 있다.In 5G, the search space of the aggregation level L in the control resource set p and the search space set s may be expressed as in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022000913-appb-I000014
Figure PCTKR2022000913-appb-I000014
Figure PCTKR2022000913-appb-I000015
Figure PCTKR2022000913-appb-I000015
Figure PCTKR2022000913-appb-I000016
값은 공통 탐색공간의 경우 0에 해당할 수 있다.
Figure PCTKR2022000913-appb-I000016
The value may correspond to 0 in the case of a common search space.
Figure PCTKR2022000913-appb-I000017
값은 단말-특정 탐색공간의 경우, 단말의 신원(C-RNTI 또는 기지국이 단말에게 설정해준 ID)과 시간 인덱스에 따라 변하는 값에 해당할 수 있다.
Figure PCTKR2022000913-appb-I000017
In the case of a terminal-specific search space, the value may correspond to a value that changes depending on the terminal's identity (C-RNTI or ID set for the terminal by the base station) and the time index.
따라서, 단말은 기지국으로부터 설정된 제어영역에서 PDCCH를 모니터링할 수 있고, 수신된 제어 정보에 기반하여 데이터를 송수신할 수 있다. Accordingly, the terminal may monitor the PDCCH in the control region configured by the base station, and may transmit/receive data based on the received control information.
5G 시스템에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(PDSCH))에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달될 수 있다. 단말은 PUSCH 또는 PDSCH에 대하여 대비책(Fallback)용 DCI 포맷과 비대비책(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 대비책 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 비대비책용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.In the 5G system, scheduling information for uplink data (or physical uplink data channel (PUSCH)) or downlink data (or physical downlink data channel (PDSCH)) may be transmitted from the base station to the terminal through DCI. The UE may monitor a DCI format for fallback and a DCI format for non-fallback for PUSCH or PDSCH. The DCI format for countermeasures may be composed of a fixed field predetermined between the base station and the terminal, and the DCI format for non-prevention may include a configurable field.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC가 부착 (add)되며 CRC는 단말의 신원에 해당하는 RNTI에 기반하여 스크램블링(scrambling) 될 수 있다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송된다. PDCCH 상으로 전송되는 DCI 메시지를 수신하면 단말은 할당 받은 RNTI를 사용하여 CRC를 확인하여 CRC 확인 결과가 맞으면 단말은 해당 메시지가 단말에게 전송된 것임을 알 수 있다.DCI may be transmitted through a PDCCH, which is a physical downlink control channel, through channel coding and modulation. A CRC is added to the DCI message payload, and the CRC may be scrambling based on the RNTI corresponding to the identity of the UE. Different RNTIs may be used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but included in the CRC calculation process and transmitted. Upon receiving the DCI message transmitted on the PDCCH, the UE checks the CRC using the assigned RNTI. If the CRC check result is correct, the UE can know that the message has been transmitted to the UE.
예를 들면, 시스템 정보(system information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(random access response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(slot format indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(transmit power control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(cell RNTI)로 스크램블링 될 수 있다.For example, DCI scheduling PDSCH for system information (SI) may be scrambled with SI-RNTI. DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI. DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI. DCI notifying a slot format indicator (SFI) may be scrambled with an SFI-RNTI. DCI notifying transmit power control (TPC) may be scrambled with TPC-RNTI. DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (cell RNTI).
한편, NR에서는 단말의 효율적인 제어 정보 수신을 위해 아래 표 5와 같이 다양한 형태의 DCI format을 제공할 수 있다. Meanwhile, in NR, various types of DCI formats may be provided as shown in Table 5 below for efficient reception of control information of the UE.
DCI formatDCI format UsageUsage
0_00_0 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
0_10_1 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
0_20_2 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
1_01_0 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
1_11_1 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
1_21_2 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
2_02_0 Notifying a group of UEs of the slot formatNotifying a group of UEs of the slot format
2_12_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UENotifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_22_2 Transmission of TPC commands for PUCCH and PUSCHTransmission of TPC commands for PUCCH and PUSCH
2_32_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEsTransmission of a group of TPC commands for SRS transmissions by one or more UEs
예를 들어, 기지국은 하나의 셀(cell)에 대한 PDSCH를 단말에 할당(scheduling)하기 위하여 DCI format 1_0, DCI format 1_1 혹은 DCI format 1_2를 사용할 수 있다. 또 다른 예를 들어, 기지국은 하나의 셀(cell)에 대한 PUSCH를 단말에 할당(scheduling)하기 위하여 DCI format 0_0, DCI format 0_1 혹은 DCI format 0_2를 사용할 수 있다.DCI format 1_0은, C-RNTI 혹은 CS-RNTI 혹은 MCS-C-RNTI 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 예를 들어 적어도 표 6과 같은 정보들을 포함할 수 있다:For example, the base station may use DCI format 1_0, DCI format 1_1, or DCI format 1_2 to allocate (scheduling) the PDSCH for one cell to the terminal. As another example, the base station may use DCI format 0_0, DCI format 0_1, or DCI format 0_2 to allocate (scheduling) a PUSCH for one cell to the terminal. DCI format 1_0 is C-RNTI Alternatively, when transmitted together with a CRC scrambled by CS-RNTI, MCS-C-RNTI, or new-RNTI, it may include, for example, at least the information shown in Table 6:
- Identifier for DCI formats(1 bits): DCI format 지시자로 항상 1로 설정
- frequency domain resource assignment(NRBG bits 혹은
Figure PCTKR2022000913-appb-I000018
bits): 주파수 축 자원 할당을 지시하며, DCI format 1_0이 UE specific search space에서 모니터 되는 경우
Figure PCTKR2022000913-appb-I000019
는 active DL BWP의 크기이며, 이외의 경우
Figure PCTKR2022000913-appb-I000020
는 initial DL BWP의 크기이다. NRBG 는 resource block group의 숫자이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- time domain resource assignment(0~4 bits): PDSCH의 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다.
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(2 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(3 bits): PUCCH 자원 지시자로, 상위레이어로 설정된 8가지 자원 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
- Identifier for DCI formats(1 bits): Always set to 1 as a DCI format indicator
- frequency domain resource assignment (N RBG bits or
Figure PCTKR2022000913-appb-I000018
bits): indicates frequency axis resource allocation, and when DCI format 1_0 is monitored in the UE specific search space
Figure PCTKR2022000913-appb-I000019
is the size of the active DL BWP, otherwise
Figure PCTKR2022000913-appb-I000020
is the size of the initial DL BWP. N RBG is the number of resource block groups. For a detailed method, refer to the frequency axis resource allocation.
- time domain resource assignment (0~4 bits): indicates time domain resource assignment of PDSCH.
- VRB-to-PRB mapping (1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping.
- Modulation and coding scheme (5 bits): indicates the modulation order and coding rate used for PDSCH transmission.
- New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
- Redundancy version (2 bits): indicates the redundancy version used for PDSCH transmission.
- HARQ process number (4 bits): indicates the HARQ process number used for PDSCH transmission.
- Downlink assignment index (2 bits): DAI indicator
- TPC command for scheduled PUCCH (2 bits): PUCCH power control indicator
- PUCCH resource indicator (3 bits): As a PUCCH resource indicator, it indicates one of eight resources configured as a higher layer.
- PDSCH-to-HARQ_feedback timing indicator (3 bits): As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as a higher layer.
DCI format 1_1은, C-RNTI(cell radio network temporary identifier) 혹은 CS-RNTI(configured scheduling RNTI) 혹은 MCS-C-RNTI 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 예를 들어 적어도 표 7과 같은 정보들을 포함할 수 있다.DCI format 1_1 is transmitted together with CRC scrambled by cell radio network temporary identifier (C-RNTI) or configured scheduling RNTI (CS-RNTI) or MCS-C-RNTI or new-RNTI, for example, at least the table It may include information such as 7.
- Identifier for DCI formats(1 bit): DCI format 지시자로 항상 1로 설정
- Carrier indicator(0 또는 3 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 CC(혹은 cell)을 지시한다.
- Bandwidth part indicator(0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 BWP을 지시한다.
- Frequency domain resource assignment(상기 주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2022000913-appb-I000021
는 active DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- Time domain resource assignment(0 ~ 4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(0 or 1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다. 주파수 축 자원 할당이 resource allocation type 0으로 설정된 경우 혹은 상위 레이어에 의해 interleaved VRB-to-PRB mapping이 설정되지 않은 경우 0 bit 이다.
- PRB bundling size indicator(0 or 1 bit): 상위 레이어 파라미터 prb-BundlingType이 설정되지 않거나 혹은 'static'으로 설정된 경우 0 bit 이며, 'dynamic'으로 설정된 경우 1 bit 이다.
- Rate matching indicator(0 or 1 or 2 bits): rate matching pattern을 지시한다.
- ZP CSI-RS trigger(0 or 1 or 2 bits): aperiodic ZP CSI-RS를 트리거하는 지시자.
- For transport block 1:
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- For transport block 2:
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(0 or 2 or 4 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(3 bits): PUCCH 자원 지시자로, 상위 레이어로 설정된 8가지 자원 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
- Antenna port(4 or 5 or 6 bits): DMRS port 및 CDM group without data를 지시한다.
- Transmission configuration indication(0 or 3 bits): TCI 지시자.
- SRS request(2 or 3 bits): SRS 전송 요청 지시자
- CBG transmission information(0 or 2 or 4 or 6 or 8 bits): 할당된 PDSCH 내 code block group들에 대한 전송 여부를 알려주는 지시자. 0은 해당 CBG가 전송되지 않음을 의미하고, 1은 전송 됨을 의미한다.
- CBG flushing out information(0 or 1 bit): 이전 CBG들의 오염 여부를 알려주는 지시자로, 0이면 오염되었을 수 있음을 의미하고, 1이면 재전송 수신 시 사용할 수 있음(combinable)을 의미한다.
- DMRS sequence initialization(0 or 1 bit): DMRS scrambling ID 선택 지시자
- Identifier for DCI formats (1 bit): Always set to 1 as a DCI format indicator
- Carrier indicator (0 or 3 bits): indicates the CC (or cell) to which the PDSCH allocated by the corresponding DCI is transmitted.
- Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
- Frequency domain resource assignment (determining payload according to the frequency axis resource allocation): indicates frequency axis resource allocation,
Figure PCTKR2022000913-appb-I000021
is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
- Time domain resource assignment (0 ~ 4 bits): indicates time domain resource assignment according to the above description.
- VRB-to-PRB mapping (0 or 1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. It is 0 bit when frequency axis resource allocation is set to resource allocation type 0 or when interleaved VRB-to-PRB mapping is not set by an upper layer.
- PRB bundling size indicator (0 or 1 bit): When the upper layer parameter prb-BundlingType is not set or is set to 'static', it is 0 bit, and when it is set to 'dynamic', it is 1 bit.
- Rate matching indicator (0 or 1 or 2 bits): indicates the rate matching pattern.
- ZP CSI-RS trigger (0 or 1 or 2 bits): an indicator for triggering aperiodic ZP CSI-RS.
- For transport block 1:
- Modulation and coding scheme (5 bits): indicates the modulation order and coding rate used for PDSCH transmission.
- New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
- Redundancy version (2 bits): indicates the redundancy version used for PDSCH transmission.
- For transport block 2:
- Modulation and coding scheme (5 bits): indicates the modulation order and coding rate used for PDSCH transmission.
- New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
- Redundancy version (2 bits): indicates the redundancy version used for PDSCH transmission.
- HARQ process number (4 bits): indicates the HARQ process number used for PDSCH transmission.
- Downlink assignment index (0 or 2 or 4 bits): DAI indicator
- TPC command for scheduled PUCCH (2 bits): PUCCH power control indicator
- PUCCH resource indicator (3 bits): As a PUCCH resource indicator, it indicates one of eight resources configured as a higher layer.
- PDSCH-to-HARQ_feedback timing indicator (3 bits): As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as a higher layer.
- Antenna port (4 or 5 or 6 bits): indicates DMRS port and CDM group without data.
- Transmission configuration indication (0 or 3 bits): TCI indicator.
- SRS request (2 or 3 bits): SRS transmission request indicator
- CBG transmission information (0 or 2 or 4 or 6 or 8 bits): an indicator indicating whether to transmit code block groups in the allocated PDSCH. 0 means that the CBG is not transmitted, and 1 means that it is transmitted.
- CBG flushing out information (0 or 1 bit): An indicator indicating whether previous CBGs are contaminated. If 0, it means that it may have been contaminated, and if 1, it means that it can be used when receiving retransmission (combinable).
- DMRS sequence initialization (0 or 1 bit): DMRS scrambling ID selection indicator
DCI format 1_2는, C-RNTI(cell radio network temporary identifier) 혹은 CS-RNTI(configured scheduling RNTI) 혹은 MCS-C-RNTI 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 예를 들어 적어도 표 8과 같은 정보들을 포함할 수 있다.When DCI format 1_2 is transmitted together with CRC scrambled by C-RNTI (cell radio network temporary identifier) or CS-RNTI (configured scheduling RNTI) or MCS-C-RNTI or new-RNTI, for example, at least the table It may include information such as 8.
- Identifier for DCI formats(1 bit): DCI format 지시자로 항상 1로 설정
- Carrier indicator(0 or 1 or 2 or 3 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 CC(혹은 cell)을 지시한다.
- Bandwidth part indicator(0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 BWP을 지시한다.
- Frequency domain resource assignment(상기 주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2022000913-appb-I000022
는 active DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- Time domain resource assignment(0 ~ 4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(0 or 1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다. 상위 레이어의 vrb-ToPRB-InterleaverForDCI-Format1-2 설정 파라미터가 설정되지 않은 경우 0 bit 이다.
- PRB bundling size indicator(0 or 1 bit): 상위 레이어 파라미터 prb-BundlingTypeForDCI-Format1-2이 설정되지 않거나 혹은 'static'으로 설정된 경우 0 bit 이며, 'dynamic'으로 설정된 경우 1 bit 이다.
- Rate matching indicator(0 or 1 or 2 bits): rate matching pattern을 지시한다.
- ZP CSI-RS trigger(0 or 1 or 2 bits): aperiodic ZP CSI-RS를 트리거하는 지시자.
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(0 or 1 or 2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(0 or 1 or 2 or 3 or 4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(0 or 1 or 2 or 4 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(0 or 1 or 2 or 3 bits): PUCCH 자원 지시자로, 상위 레이어로 설정된 자원들 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(0 or 1 or 2 or 3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 feedback timing offset들 중 하나를 지시한다.
- Antenna port(4 or 5 or 6 bits): DMRS port 및 CDM group without data를 지시한다.
- Transmission configuration indication(0 or 1 or 2 or 3 bits): TCI 지시자.
- SRS request(0 or 1 or 2 or 3 bits): SRS 전송 요청 지시자
- DMRS sequence initialization(0 or 1 bit): DMRS scrambling ID 선택 지시자
- Priority indicator(0 or 1 bit): 상위레이어 priorityIndicatorForDCI-Format1-2 파라미터가 설정되지 않으면 0 bit, 설정되면 1 bit
- Identifier for DCI formats (1 bit): Always set to 1 as a DCI format indicator
- Carrier indicator (0 or 1 or 2 or 3 bits): indicates the CC (or cell) to which the PDSCH allocated by the corresponding DCI is transmitted.
- Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
- Frequency domain resource assignment (determining payload according to the frequency axis resource allocation): indicates frequency axis resource allocation,
Figure PCTKR2022000913-appb-I000022
is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
- Time domain resource assignment (0 ~ 4 bits): indicates time domain resource assignment according to the above description.
- VRB-to-PRB mapping (0 or 1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. If the vrb-ToPRB-InterleaverForDCI-Format1-2 setting parameter of the upper layer is not set, it is 0 bit.
- PRB bundling size indicator (0 or 1 bit): 0 bit if the upper layer parameter prb-BundlingTypeForDCI-Format1-2 is not set or set to 'static', and 1 bit if set to 'dynamic'.
- Rate matching indicator (0 or 1 or 2 bits): indicates the rate matching pattern.
- ZP CSI-RS trigger (0 or 1 or 2 bits): an indicator for triggering aperiodic ZP CSI-RS.
- Modulation and coding scheme (5 bits): indicates the modulation order and coding rate used for PDSCH transmission.
- New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
- Redundancy version (0 or 1 or 2 bits): indicates the redundancy version used for PDSCH transmission.
- HARQ process number (0 or 1 or 2 or 3 or 4 bits): indicates the HARQ process number used for PDSCH transmission.
- Downlink assignment index (0 or 1 or 2 or 4 bits): DAI indicator
- TPC command for scheduled PUCCH (2 bits): PUCCH power control indicator
- PUCCH resource indicator (0 or 1 or 2 or 3 bits): A PUCCH resource indicator, indicating one of the resources configured as a higher layer.
- PDSCH-to-HARQ_feedback timing indicator (0 or 1 or 2 or 3 bits): As a HARQ feedback timing indicator, it indicates one of the feedback timing offsets set as a higher layer.
- Antenna port (4 or 5 or 6 bits): indicates DMRS port and CDM group without data.
- Transmission configuration indication (0 or 1 or 2 or 3 bits): TCI indicator.
- SRS request(0 or 1 or 2 or 3 bits): SRS transmission request indicator
- DMRS sequence initialization (0 or 1 bit): DMRS scrambling ID selection indicator
- Priority indicator (0 or 1 bit): 0 bit if higher layer priorityIndicatorForDCI-Format1-2 parameter is not set, 1 bit if set
단말이 해당 cell에서 slot 당 수신 가능한 서로 다른 크기의 DCI 수는 최대 4이다. 단말이 해당 셀에서 slot 당 수신 가능한 C-RNTI로 스크램블링 된 서로 다른 크기의 DCI 수는 최대 3이다.기지국은 단말에게 하향링크 데이터채널(PDSCH) 및 상향링크 데이터채널(PUSCH)에 대한 시간 도메인 자원할당 정보 (예를 들어, 테이블(table)의 형태로 구성된 정보일 수 있다)을 상위 계층 시그널링 (예를 들어 RRC 시그널링)을 통해 설정할 수 있다. 기지국은 PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 자원할당 정보 (예를 들어, 테이블 형태의 정보로 구성됨)를 설정할 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 자원할당 정보 (예를 들어, 테이블 형태의 정보로 구성됨)을 설정할 수 있다. 시간 도메인 자원할당 정보에는 예를 들어 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함) 또는 PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케줄링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다. 예를 들어 하기의 표 9 혹은 표 10과 같은 정보들이 기지국으로부터 단말로 통지될 수 있다.The maximum number of DCIs of different sizes that the UE can receive per slot in the corresponding cell is 4. The maximum number of DCIs of different sizes scrambled with C-RNTI per slot in the cell by the UE is 3. The base station provides the UE with time domain resources for a downlink data channel (PDSCH) and an uplink data channel (PUSCH). Allocation information (eg, may be information configured in the form of a table) may be configured through higher layer signaling (eg, RRC signaling). The base station can set resource allocation information (for example, composed of table-type information) consisting of a maximum of maxNrofDL-Allocations = 16 entries for the PDSCH, and a maximum of maxNrofUL-Allocations = 16 entries for the PUSCH ( Entry), resource allocation information (eg, table-type information) can be set. The time domain resource allocation information includes, for example, the PDCCH-to-PDSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PDSCH scheduled by the received PDCCH is transmitted, denoted by K0) or PDCCH-to-PUSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PUSCH scheduled by the received PDCCH is transmitted, denoted by K2), the PDSCH or PUSCH scheduled within the slot Information on the position and length of the start symbol, the mapping type of PDSCH or PUSCH, etc. may be included. For example, information as shown in Table 9 or Table 10 below may be notified from the base station to the terminal.
[표 9][Table 9]
Figure PCTKR2022000913-appb-I000023
Figure PCTKR2022000913-appb-I000023
[표 10][Table 10]
Figure PCTKR2022000913-appb-I000024
Figure PCTKR2022000913-appb-I000024
기지국은 상기 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 하나를 L1 시그널링(예를 들어 DCI)를 통해 단말에게 통지할 수 있다 (예를 들어 DCI 내의 시간 도메인 자원할당 필드로 지시할 수 있음). 단말은 기지국으로부터 수신한 DCI에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.The base station may notify the UE of one of the entries in the table for the time domain resource allocation information through L1 signaling (eg, DCI) (eg, it may be indicated by the time domain resource allocation field in DCI). The UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
하기에서는 5G 통신 시스템에서 데이터 채널에 대한 주파수 도메인 자원할당 방법에 대해 설명하도록 한다.Hereinafter, a method of allocating a frequency domain resource for a data channel in a 5G communication system will be described.
5G에서는 하향링크 데이터채널(PDSCH) 및 상향링크 데이터채널(PUSCH)에 대한 주파수 도메인 자원 할당 정보를 지시하는 방법으로 두가지 타입, 자원할당 타입 0 및 자원할당 타입 1을 지원한다. In 5G, two types, resource allocation type 0 and resource allocation type 1, are supported as a method of indicating frequency domain resource allocation information for a downlink data channel (PDSCH) and an uplink data channel (PUSCH).
자원할당 타입 0에서는, RB 할당 정보가 RBG(resource block group)에 대한 비트맵(bitmap)의 형태로 기지국으로부터 단말로 통지될 수 있다. 이 때, RBG는 연속적인 VRB들의 세트로 구성될 수 있으며, RBG의 크기 P는 상위 계층 파라미터(rbg-Size)로 설정되는 값과 하기의 표 11과 같이 정의되어 있는 대역폭 파트의 크기 값에 기반하여 결정될 수 있다. In resource allocation type 0, RB allocation information may be notified from the base station to the terminal in the form of a bitmap for a resource block group (RBG). In this case, the RBG may be composed of a set of consecutive VRBs, and the size P of the RBG is based on a value set as a higher layer parameter (rbg-Size) and a size value of the bandwidth part defined as shown in Table 11 below. can be determined by
[표 11] Nominal RBG size P[Table 11] Nominal RBG size P
Figure PCTKR2022000913-appb-I000025
Figure PCTKR2022000913-appb-I000025
크기가
Figure PCTKR2022000913-appb-I000026
인 대역폭 파트 i의 총 RBG의 수 (
Figure PCTKR2022000913-appb-I000027
)는 하기와 같이 정의될 수 있다.
size
Figure PCTKR2022000913-appb-I000026
the total number of RBGs in bandwidth part i (
Figure PCTKR2022000913-appb-I000027
) may be defined as follows.
Figure PCTKR2022000913-appb-I000028
, where
Figure PCTKR2022000913-appb-I000028
, where
the size of the first RBG is
Figure PCTKR2022000913-appb-I000029
,
the size of the first RBG is
Figure PCTKR2022000913-appb-I000029
,
the size of last RBG is
Figure PCTKR2022000913-appb-I000030
if
Figure PCTKR2022000913-appb-I000031
and P otherwise,
the size of last RBG is
Figure PCTKR2022000913-appb-I000030
if
Figure PCTKR2022000913-appb-I000031
and P otherwise,
the size of all other RBGs is P.the size of all other RBGs is P.
Figure PCTKR2022000913-appb-I000032
비트 크기의 비트맵의 각 비트들은 각각의 RBG에 대응될 수 있다. RBG들은 대역폭파트의 가장 낮은 주파수 위치에서 시작하여 주파수가 증가하는 순서대로 인덱스가 부여될 수 있다. 대역폭파트 내의
Figure PCTKR2022000913-appb-I000033
개의 RBG들에 대하여, RBG#0에서부터 RBG#(
Figure PCTKR2022000913-appb-I000034
)이 RBG 비트맵의 MSB에서부터 LSB로 매핑될 수 있다. 비트맵 내의 특정 비트 값이 1일 경우, 단말은 해당 비트 값에 대응되는 RBG가 할당되었다고 판단할 수 있고, 비트맵 내의 특정 비트 값이 0일 경우, 해당 비트 값에 대응되는 RBG가 할당되지 않았다고 판단할 수 있다.
Figure PCTKR2022000913-appb-I000032
Each bit of the bit-sized bitmap may correspond to each RBG. RBGs may be indexed in the order of increasing frequency, starting from the lowest frequency position of the bandwidth part. within the bandwidth
Figure PCTKR2022000913-appb-I000033
For RBGs, from RBG#0 to RBG#(
Figure PCTKR2022000913-appb-I000034
) may be mapped from the MSB to the LSB of the RBG bitmap. When a specific bit value in the bitmap is 1, the UE can determine that the RBG corresponding to the bit value is allocated, and when the specific bit value in the bitmap is 0, the RBG corresponding to the bit value is not allocated. can judge
자원할당 타입 1에서는, RB 할당 정보가 연속적으로 할당된 VRB들에 대한 시작 위치 및 길이에 대한 정보로 기지국으로부터 단말로 통지될 수 있다. 이 때, 연속적으로 할당된 VRB들에 대하여 인터리빙 또는 비인터리빙이 추가적으로 적용될 수 있다. 자원할당 타입 1의 자원할당 필드는 자원 지시자 값 (resource indication value, RIV)으로 구성될 수 있으며, RIV는 VRB의 시작 지점 (
Figure PCTKR2022000913-appb-I000035
)과 연속적으로 할당된 RB의 길이 (
Figure PCTKR2022000913-appb-I000036
)로 구성될 수 있다. 보다 구체적으로,
Figure PCTKR2022000913-appb-I000037
크기의 대역폭파트 내의 RIV는 하기와 같이 정의될 수 있다.
In resource allocation type 1, RB allocation information may be notified from the base station to the terminal as information on the start position and length of the continuously allocated VRBs. In this case, interleaving or non-interleaving may be additionally applied to consecutively allocated VRBs. The resource allocation field of resource allocation type 1 may consist of a resource indication value (RIV), and the RIV is the starting point of the VRB (
Figure PCTKR2022000913-appb-I000035
) and the length of consecutively allocated RBs (
Figure PCTKR2022000913-appb-I000036
) may consist of More specifically,
Figure PCTKR2022000913-appb-I000037
The RIV in the bandwidth part of the size may be defined as follows.
Figure PCTKR2022000913-appb-I000038
Figure PCTKR2022000913-appb-I000038
도 9는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 데이터 채널 처리의 일 예를 도시한 도면이다. 9 is a diagram illustrating an example of downlink data channel processing in a wireless communication system according to an embodiment of the present disclosure.
한 개의 코드워드(codeword) 혹은 두 개의 코드워드 각각에 대해 스크램블링(scrambling)과정이 수행될 수 있다(901). 길이
Figure PCTKR2022000913-appb-I000039
를 가지는 코드워드 q의 시퀀스
Figure PCTKR2022000913-appb-I000040
를 수학식 3과 같은 초기화를 통해 얻어진 스크램블링 시퀀스
Figure PCTKR2022000913-appb-I000041
를 사용하여 수학식 2와 같은 과정을 통해 스크램블링 된 시퀀스
Figure PCTKR2022000913-appb-I000042
를 획득할 수 있다.
Figure PCTKR2022000913-appb-I000043
는 상위레이어 파라미터를 통해 그 값이 설정되거나, 그렇지 않을 경우 셀 ID값으로
Figure PCTKR2022000913-appb-I000044
정해질 수 있으며,
Figure PCTKR2022000913-appb-I000045
는 PDSCH 전송과 연계된 RNTI를 의미할 수 있다.
A scrambling process may be performed for each of one codeword or two codewords ( S901 ). length
Figure PCTKR2022000913-appb-I000039
a sequence of codewords q with
Figure PCTKR2022000913-appb-I000040
A scrambling sequence obtained through initialization as in Equation 3
Figure PCTKR2022000913-appb-I000041
A sequence scrambled through the same process as in Equation 2 using
Figure PCTKR2022000913-appb-I000042
can be obtained.
Figure PCTKR2022000913-appb-I000043
The value is set through the upper layer parameter, or otherwise as the cell ID value.
Figure PCTKR2022000913-appb-I000044
can be determined,
Figure PCTKR2022000913-appb-I000045
may mean an RNTI associated with PDSCH transmission.
Figure PCTKR2022000913-appb-I000046
Figure PCTKR2022000913-appb-I000046
스크램블링된 비트들의 시퀀스
Figure PCTKR2022000913-appb-I000047
및 무선 통신 시스템이 지원하는 다양한 변조 방식(modulation scheme) 중 한 개를 이용하여
Figure PCTKR2022000913-appb-I000048
의 길이를 가지는 변조 심볼 시퀀스
Figure PCTKR2022000913-appb-I000049
가 생성될 수 있다(902).
sequence of scrambled bits
Figure PCTKR2022000913-appb-I000047
and using one of various modulation schemes supported by the wireless communication system.
Figure PCTKR2022000913-appb-I000048
A modulation symbol sequence with a length of
Figure PCTKR2022000913-appb-I000049
may be generated (902).
v 개의 레이어(layer)에 각 레이어 별로
Figure PCTKR2022000913-appb-I000050
개씩의 변조 심볼들이 매핑될 수 있고 (903), 이를 표현하면
Figure PCTKR2022000913-appb-I000051
와 같다. 레이어 개수 와 코드워드 개수와 코드워드-레이어 매핑 관계는 표 12와 같다.
For each layer in v layers
Figure PCTKR2022000913-appb-I000050
Each modulation symbol may be mapped (903), which represents
Figure PCTKR2022000913-appb-I000051
same as Table 12 shows the relationship between the number of layers, the number of codewords, and the codeword-layer mapping.
[표 12][Table 12]
Figure PCTKR2022000913-appb-I000052
Figure PCTKR2022000913-appb-I000052
레이어에 매핑된 변조 심볼들은 수학식 4와 같이 안테나 포트(antenna port)에 매핑될 수 있다.
Figure PCTKR2022000913-appb-I000053
는 DCI format에 포함된 정보에 의해 결정될 수 있다 (904).
The modulation symbols mapped to the layer may be mapped to an antenna port as shown in Equation (4).
Figure PCTKR2022000913-appb-I000053
may be determined by information included in the DCI format (904).
[수학식 4][Equation 4]
Figure PCTKR2022000913-appb-I000054
Figure PCTKR2022000913-appb-I000054
위의 과정을 마친
Figure PCTKR2022000913-appb-I000055
심볼들은 전송을 위해 할당된 VRB들 내의 RE들 중 PDSCH의 전송에 사용될 수 있는 조건들(예. DM-RS 자원에는 매핑 불가 등)을 만족하는 RE들에 매핑될 수 있다 (905).
completed the above process
Figure PCTKR2022000913-appb-I000055
Symbols may be mapped to REs that satisfy conditions that can be used for PDSCH transmission among REs in VRBs allocated for transmission (eg, mapping impossible to DM-RS resources, etc.) (905).
위의 과정을 마친 VRB들은 PRB들에 인터리빙(interleaving) 매핑 방식 혹은 비인터리빙(non-interleaving) 매핑 방식을 통해 매핑될 수 있다 (906). 매핑 방식은 DCI 내의 VRB-to-PRB mapping 필드를 통해 지시될 수 있는데, 매핑 방식에 대한 지시가 없는 경우 비인터리빙 매핑 방식을 의미할 수 있다. VRBs that have completed the above process may be mapped to PRBs through an interleaving mapping method or a non-interleaving mapping method ( 906 ). The mapping method may be indicated through the VRB-to-PRB mapping field in DCI. If there is no indication of the mapping method, it may mean a non-interleaving mapping method.
비인터리빙 매핑 방식이 사용되는 경우 VRB n 은 특정 경우를 제외하고는 PRB n 으로 매핑될 수 있다. 예를 들어, 상기 특정 경우는 공통 탐색 공간을 통해 DCI format 1_0을 사용하여 스케줄링된 PDSCH의 VRB n 이 PRB
Figure PCTKR2022000913-appb-I000056
(
Figure PCTKR2022000913-appb-I000057
은 상기 DCI가 전송된 CORESET의 첫번째 PRB를 의미)에 매핑되는 경우를 포함할 수 있다.
When a non-interleaving mapping method is used, VRB n may be mapped to PRB n except in specific cases. For example, in the specific case, VRB n of a PDSCH scheduled using DCI format 1_0 through a common search space is PRB
Figure PCTKR2022000913-appb-I000056
(
Figure PCTKR2022000913-appb-I000057
may include a case in which the DCI is mapped to the first PRB of the transmitted CORESET).
인터리빙 매핑 방식이 사용되는 경우, BWP 내의 RB들을
Figure PCTKR2022000913-appb-I000058
개의 RB 번들들(RB bundles)로 나누고, 상기 RB 번들들을 표 13과 같은 방식을 통해 매핑할 수 있다.
When the interleaving mapping method is used, RBs in the BWP are
Figure PCTKR2022000913-appb-I000058
RB bundles are divided into RB bundles, and the RB bundles may be mapped in the manner shown in Table 13.
BWP 내의 RB들을
Figure PCTKR2022000913-appb-I000059
개의 RB 번들들(RB bundles)로 나누는 한 가지 예를 들면 다음과 같을 수 있다. 시작점
Figure PCTKR2022000913-appb-I000060
을 가진 BWP 내의
Figure PCTKR2022000913-appb-I000061
개의 RB들의 셋(set)은
Figure PCTKR2022000913-appb-I000062
개의 RB 번들들로 나눠지는데, 상기 RB 번들들은 오름차순(increasing order)으로 인덱싱(indexing)될 수 있다. 여기서 Li 는 BWP i 에서의 번들 크기(bundle size)를 의미하며, 이는 상위 레이어 파라미터 vrb-ToPRB-Interleaver에 의해 단말에 전송될 수 있다. 그리고, RB 번들 0는
Figure PCTKR2022000913-appb-I000063
개의 RB들로 구성되고, RB 번들
Figure PCTKR2022000913-appb-I000064
Figure PCTKR2022000913-appb-I000065
을 만족하면
Figure PCTKR2022000913-appb-I000066
개의 RB들로 구성되고 그렇지 않으면 Li 개의 RB들로 구성될 수 있다. 그리고 나머지 RB 번들들은 Li 개의 RB들로 구성될 수 있다.
RBs in BWP
Figure PCTKR2022000913-appb-I000059
One example of dividing into RB bundles may be as follows. starting point
Figure PCTKR2022000913-appb-I000060
within the BWP with
Figure PCTKR2022000913-appb-I000061
A set of RBs is
Figure PCTKR2022000913-appb-I000062
It is divided into RB bundles, and the RB bundles may be indexed in an increasing order. Here, L i means a bundle size in BWP i, which may be transmitted to the UE by the higher layer parameter vrb-ToPRB-Interleaver. And, RB bundle 0 is
Figure PCTKR2022000913-appb-I000063
Consists of RBs, RB bundle
Figure PCTKR2022000913-appb-I000064
Is
Figure PCTKR2022000913-appb-I000065
If you are satisfied with
Figure PCTKR2022000913-appb-I000066
RBs, otherwise it may be composed of L i RBs. And the remaining RB bundles may be composed of L i RBs.
[표 13][Table 13]
Figure PCTKR2022000913-appb-I000067
Figure PCTKR2022000913-appb-I000067
본 개시의 일 실시예에 따르면, 5G NR 시스템에서는 다음과 같은 과정을 통해 PDSCH에 대한 MCS 인덱스, 즉, 변조 오더 (또는 방식) Qm 및 타겟 부호율 R이 결정될 수 있다. According to an embodiment of the present disclosure, in the 5G NR system, the MCS index for the PDSCH, ie, the modulation order (or method) Qm and the target code rate R, may be determined through the following process.
[MCS index 테이블 결정 방법] [How to determine the MCS index table]
C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI에 의해 스크램블된 CRC와 함께인 DCI (예를 들어, DCI format 1_0, DCI format 1_1, or DCI format 1_2)을 포함하는 PDCCH (PDCCH with DCI format 1_0, format 1_1, or format 1_2 with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI)를 통해 스케줄링되는 PDSCH에 대해서, 또는 대응되는 PDCCH 전송 없이, 상위 계층에서 제공되는 PDSCH configuartion SPS-Config (또는 SPS configuration)을 사용하여 스케줄링되는 PDSCH에 대해서,DCI with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI (e.g., DCI format 1_0, DCI format 1_1, or DCI format 1_2) including PDCCH (PDCCH with DCI format 1_0, format 1_1, or format 1_2 with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, For PDSCH scheduled through SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI), or without corresponding PDCCH transmission, using the PDSCH configuration SPS-Config (or SPS configuration) provided in the upper layer For the scheduled PDSCH,
(a) PDSCH-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 'qam256'으로 세팅되었고, PDSCH가 C-RNTI에 의해 스크램블된 CRC와 함께인 DCI 포맷 1_1의 PDCCH에 의해 스케줄링 된 경우 (if the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256', and the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by C-RNTI)에 단말은 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 15]의 MCS index IMCS 값을 사용할 수 있다. (a) When the upper layer parameter mcs-Table given by PDSCH-Config is set to 'qam256', and the PDSCH is scheduled by the PDCCH of DCI format 1_1 with CRC scrambled by C-RNTI (if the higher In layer parameter mcs-Table given by PDSCH-Config is set to 'qam256', and the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by C-RNTI), the UE determines the modulation order Qm and the target code rate R To do this, the MCS index I MCS value of [Table 15] can be used.
(b) (a)의 조건이 성립하지 않고, 또한 UE가 MCS-C-RNTI에 의해 설정되지 않았으며 (UE is not configured with MCS-C-RNTI), PDSCH-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 'qam64LowSE'로 설정되었고, PDSCH가 C-RNTI에 의해 스크램블된 CRC와 함께인 UE-Specific 서치 공간 (search space)에 있는 PDCCH에 의해 스케줄링 된 경우에 (if the UE is not configured with MCS-C-RNTI, the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam64LowSE', and the PDSCH is scheduled by a PDCCH with a DCI format other than DCI format 1_2 in a UE-specific search space with CRC scrambled by C-RNTI), UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 16]의 MCS index IMCS 값을 사용할 수 있다.(b) the condition of (a) is not established, and the UE is not configured by MCS-C-RNTI (UE is not configured with MCS-C-RNTI), higher layer parameter mcs given by PDSCH-Config -Table is set to 'qam64LowSE', and when the PDSCH is scheduled by the PDCCH in the UE-Specific search space with the CRC scrambled by the C-RNTI (if the UE is not configured with MCS) -C-RNTI, the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam64LowSE', and the PDSCH is scheduled by a PDCCH with a DCI format other than DCI format 1_2 in a UE-specific search space with CRC scrambled by C-RNTI), the UE may use the MCS index I MCS value of [Table 16] to determine the modulation order Qm and the target code rate R.
(c) (a), (b)의 조건이 성립하지 않고, 또한 UE가 MCS-C-RNTI에 의해 설정되어 있으며, PDSCH가 MCS-C-RNTI에 의해 스크램블된 CRC를 적용한 PDCCH에 의해 스케줄링 된 경우에 (if the UE is configured with MCS-C-RNTI, and the PDSCH is scheduled by a PDCCH with CRC scrambled by MCS-C-RNTI), UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 16]의 MCS index IMCS 값을 사용할 수 있다.(c) The conditions of (a) and (b) do not hold, and the UE is set by MCS-C-RNTI, and the PDSCH is scheduled by the PDCCH to which the CRC scrambled by the MCS-C-RNTI is applied. In this case (if the UE is configured with MCS-C-RNTI, and the PDSCH is scheduled by a PDCCH with CRC scrambled by MCS-C-RNTI), the UE determines the modulation order Qm and the target code rate R [Table 16] MCS index I MCS value can be used.
(d) (a), (b), (c)의 조건이 성립하지 않고, 또한 UE가 SPS-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table에 의해 설정되지 않았고, PDSCH-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 'qam256'으로 세팅 되었고 (if the UE is not configured with the higher layer parameter mcs-Table given by SPS-Config, and the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256'), (d) The conditions of (a), (b), (c) do not hold, and the UE is not set by the upper layer parameter mcs-Table given by SPS-Config, and the upper layer given by PDSCH-Config Parameter mcs-Table was set to 'qam256' (if the UE is not configured with the higher layer parameter mcs-Table given by SPS-Config, and the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256 '),
(d-1) CS-RNTI에 의해 스크램블된 CRC를 적용한 DCI format 1_1의 PDCCH에 의해 PDSCH가 스케줄링 되었거나 (if the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by CS-RNTI or), (d-1) PDSCH is scheduled by PDCCH of DCI format 1_1 to which CRC scrambled by CS-RNTI is applied (if the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by CS-RNTI or),
(d-2) SPS-Config를 사용하는 대응되는 PDCCH 전송 없이 PDSCH가 스케줄링 되었을 경우에, (d-2) When the PDSCH is scheduled without the corresponding PDCCH transmission using the SPS-Config,
단말은 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 15]의 MCS index IMCS 값을 사용할 수 있다. The UE may use the MCS index I MCS value of [Table 15] to determine the modulation order Qm and the target code rate R.
(e) (a), (b), (c), (d)의 조건이 성립하지 않고, UE가 SPS-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 qam64LowSE로 세팅되어 설정 되었을 경우에 (if the UE is configured with the higher layer parameter mcs-Table given by SPS-Config set to 'qam64LowSE'),(e) When the conditions of (a), (b), (c), (d) do not hold, and the upper layer parameter mcs-Table given by the UE SPS-Config is set to qam64LowSE (if the UE is configured with the higher layer parameter mcs-Table given by SPS-Config set to 'qam64LowSE'),
(e-1) CS-RNTI에 의해 스크램블된 CRC를 적용한 PDCCH에 의해 PDSCH가 스케줄링 되었거나 (if the PDSCH is scheduled by a PDCCH with CRC scrambled by CS-RNTI or), (e-1) PDSCH is scheduled by PDCCH to which CRC scrambled by CS-RNTI is applied (if the PDSCH is scheduled by a PDCCH with CRC scrambled by CS-RNTI or),
(e-2) SPS-Config를 사용하는 대응되는 PDCCH 전송 없이 PDSCH가 스케줄링 되었을 경우에 (if the PDSCH is scheduled without corresponding PDCCH transmission using SPS-Config,), (e-2) when the PDSCH is scheduled without corresponding PDCCH transmission using SPS-Config (if the PDSCH is scheduled without corresponding PDCCH transmission using SPS-Config,),
UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 16]의 MCS index IMCS 값을 사용할 수 있다. The UE may use the MCS index I MCS value of [Table 16] to determine the modulation order Qm and the target code rate R.
(f) (a), (b), (c), (d), (e)의 조건이 성립하지 않는 경우에, UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 14]의 MCS index IMCS 값을 사용할 수 있다.(f) When the conditions of (a), (b), (c), (d), and (e) do not hold, the UE determines the modulation order Qm and the target code rate R of [Table 14]. MCS index I MCS value can be used.
MCS Index
IMCS
MCS Index
I MCS
Modulation Order
Qm
Modulation Order
Qm
Target code Rate
[R x 1024]
Target code rate
[R x 1024]
Spectral
efficiency
Spectral
efficiency
00 22 120120 0.23440.2344
1One 22 157157 0.30660.3066
22 22 193193 0.37700.3770
33 22 251251 0.49020.4902
44 22 308308 0.60160.6016
55 22 379379 0.74020.7402
66 22 449449 0.87700.8770
77 22 526526 1.02731.0273
88 22 602602 1.17581.1758
99 22 679679 1.32621.3262
1010 44 340340 1.32811.3281
1111 44 378378 1.47661.4766
1212 44 434434 1.69531.6953
1313 44 490490 1.91411.9141
1414 44 553553 2.16022.1602
1515 44 616616 2.40632.4063
1616 44 658658 2.57032.5703
1717 66 438438 2.56642.5664
1818 66 466466 2.73052.7305
1919 66 517517 3.02933.0293
2020 66 567567 3.32233.3223
2121 66 616616 3.60943.6094
2222 66 666666 3.90233.9023
2323 66 719719 4.21294.2129
2424 66 772772 4.52344.5234
2525 66 822822 4.81644.8164
2626 66 873873 5.11525.1152
2727 66 910910 5.33205.3320
2828 66 948948 5.55475.5547
2929 22 reservedreserved
3030 44 reservedreserved
3131 66 reservedreserved
MCS Index
IMCS
MCS Index
I MCS
Modulation Order
Qm
Modulation Order
Qm
Target code Rate
[R x 1024]
Target code rate
[R x 1024]
Spectral
efficiency
Spectral
efficiency
00 22 120120 0.23440.2344
1One 22 193193 0.37700.3770
22 22 308308 0.60160.6016
33 22 449449 0.87700.8770
44 22 602602 1.17581.1758
55 44 378378 1.47661.4766
66 44 434434 1.69531.6953
77 44 490490 1.91411.9141
88 44 553553 2.16022.1602
99 44 616616 2.40632.4063
1010 44 658658 2.57032.5703
1111 66 466466 2.73052.7305
1212 66 517517 3.02933.0293
1313 66 567567 3.32233.3223
1414 66 616616 3.60943.6094
1515 66 666666 3.90233.9023
1616 66 719719 4.21294.2129
1717 66 772772 4.52344.5234
1818 66 822822 4.81644.8164
1919 66 873873 5.11525.1152
2020 88 682.5682.5 5.33205.3320
2121 88 711711 5.55475.5547
2222 88 754754 5.89065.8906
2323 88 797797 6.22666.2266
2424 88 841841 6.57036.5703
2525 88 885885 6.91416.9141
2626 88 916.5916.5 7.16027.1602
2727 88 948948 7.40637.4063
2828 22 reservedreserved
2929 44 reservedreserved
3030 66 reservedreserved
3131 88 reservedreserved
MCS Index
IMCS
MCS Index
I MCS
Modulation Order
Qm
Modulation Order
Qm
Target code Rate
[R x 1024]
Target code rate
[R x 1024]
Spectral
efficiency
Spectral
efficiency
00 22 3030 0.05860.0586
1One 22 4040 0.07810.0781
22 22 5050 0.09770.0977
33 22 6464 0.12500.1250
44 22 7878 0.15230.1523
55 22 9999 0.19340.1934
66 22 120120  0.23440.2344
77 22 157157  0.30660.3066
88 22 193193  0.37700.3770
99 22 251251  0.49020.4902
1010 22 308308  0.60160.6016
1111 22 379379  0.74020.7402
1212 22 449449  0.87700.8770
1313 22 526526  1.02731.0273
1414 22 602602  1.17581.1758
1515 44 340340  1.32811.3281
1616 44 378378 1.4766 1.4766
1717 44 434434  1.69531.6953
1818 44 490490  1.91411.9141
1919 44 553553  2.16022.1602
2020 44 616616  2.40632.4063
2121 66 438438  2.56642.5664
2222 66 466466  2.73052.7305
2323 66 517517  3.02933.0293
2424 66 567567  3.32233.3223
2525 66 616616  3.60943.6094
2626 66 666666  3.90233.9023
2727 66 719719  4.21294.2129
2828 66 772772  4.52344.5234
2929 22 reservedreserved
3030 44 reservedreserved
3131 66 reservedreserved
도 10은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 트랜스포트 블록(transport block)의 크기(transport block size, TBS)를 획득하는 방법의 일 예를 도시한 도면이다.단말은 먼저 슬롯 내에서의 RE의 수 (NRE)를 획득 (결정, 또는 계산)할 수 있다 (1001). 단말은 할당된 자원 내의 한 PRB에서 PDSCH 매핑에 할당된 RE 수인
Figure PCTKR2022000913-appb-I000068
를 획득(계산)할 수 있다.
Figure PCTKR2022000913-appb-I000069
Figure PCTKR2022000913-appb-I000070
로 계산될 수 있다. 여기에서,
Figure PCTKR2022000913-appb-I000071
는 12이며,
Figure PCTKR2022000913-appb-I000072
는 PDSCH에 할당된 OFDM 심볼 수를 나타낼 수 있다.
Figure PCTKR2022000913-appb-I000073
는 한 PRB 내에서 같은 CDM 그룹의 DMRS의 RE 수이다.
Figure PCTKR2022000913-appb-I000074
는 상위 시그널링으로 설정되는 한 PRB 내의 오버헤드가 차지하는 RE 수이며, 0, 6, 12, 18 중 하나로 설정될 수 있다 (상위 시그널링으로 설정되지 않는 경우 0으로 설정 될 수 있다).
10 is a diagram illustrating an example of a method of obtaining a size (transport block size, TBS) of a transport block in a wireless communication system according to an embodiment of the present disclosure. It is possible to obtain (determine, or calculate) the number of REs (N RE ) of (1001). The UE is the number of REs allocated to PDSCH mapping in one PRB in the allocated resource.
Figure PCTKR2022000913-appb-I000068
can be obtained (calculated).
Figure PCTKR2022000913-appb-I000069
Is
Figure PCTKR2022000913-appb-I000070
can be calculated as From here,
Figure PCTKR2022000913-appb-I000071
is 12,
Figure PCTKR2022000913-appb-I000072
may indicate the number of OFDM symbols allocated to the PDSCH.
Figure PCTKR2022000913-appb-I000073
is the number of REs of DMRSs of the same CDM group within one PRB.
Figure PCTKR2022000913-appb-I000074
is the number of REs occupied by the overhead in the PRB as long as it is set by higher-order signaling, and may be set to one of 0, 6, 12, or 18 (if not set as higher-order signaling, it may be set to 0).
그리고, PDSCH에 할당된 총 RE 수
Figure PCTKR2022000913-appb-I000075
가 계산될 수 있다.
Figure PCTKR2022000913-appb-I000076
Figure PCTKR2022000913-appb-I000077
에 기반하여 계산되며,
Figure PCTKR2022000913-appb-I000078
는 단말에게 할당된 PRB의 개수를 나타낸다.
Figure PCTKR2022000913-appb-I000079
값은 위와 같이 계산될 수 있다. 또는, NRE의 값으로 설정될 수 있는 모든 경우의 수를 포함한 정보 (예를 들어, 적어도 한 개 이상의 표(table)의 형태로 구성될 수 있다)가 저장되고,
Figure PCTKR2022000913-appb-I000080
,
Figure PCTKR2022000913-appb-I000081
,
Figure PCTKR2022000913-appb-I000082
,
Figure PCTKR2022000913-appb-I000083
,
Figure PCTKR2022000913-appb-I000084
중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보 (예를 들어, 표)에서
Figure PCTKR2022000913-appb-I000085
값이 획득될 수 있다.
And, the total number of REs allocated to the PDSCH
Figure PCTKR2022000913-appb-I000075
can be calculated.
Figure PCTKR2022000913-appb-I000076
Is
Figure PCTKR2022000913-appb-I000077
is calculated based on
Figure PCTKR2022000913-appb-I000078
indicates the number of PRBs allocated to the UE.
Figure PCTKR2022000913-appb-I000079
The value can be calculated as above. Alternatively, information including the number of all cases that can be set as the value of N RE (for example, it may be configured in the form of at least one or more tables) is stored,
Figure PCTKR2022000913-appb-I000080
,
Figure PCTKR2022000913-appb-I000081
,
Figure PCTKR2022000913-appb-I000082
,
Figure PCTKR2022000913-appb-I000083
,
Figure PCTKR2022000913-appb-I000084
In the stored information (eg, table) through at least one parameter value of
Figure PCTKR2022000913-appb-I000085
A value may be obtained.
그리고, 단말은 임시 정보 비트 수
Figure PCTKR2022000913-appb-I000086
를 획득(계산)할 수 있다 (1002). 예를 들어, 상기 임시 정보 비트 수 Ninfo
Figure PCTKR2022000913-appb-I000087
과 같이 계산될 수 있다. 여기에서, R은 부호율을, Qm은 변조 오더 (modulation order)를 의미하며, 상기 정보는 제어 정보(예를 들어, DCI, RRC 설정 정보 등)에 포함된 MCS(modulation and coding scheme) 정보에 기반하여 결정될 수 있다. 구체적으로, 상기 부호율과 변조 오더에 대해 미리 약속된 정보 (예를 들어 표 12, 13, 14 등의 MCS 인덱스 테이블)가 사용될 수 있으며, 상기 부호율과 변조 오더는 상기 MCS 정보와 상기 미리 약속된 정보에 기반하여 결정될 수 있다. v는 할당된 레이어 수를 의미할 수 있다.
Figure PCTKR2022000913-appb-I000088
값은 위와 같이 계산되거나 혹은 모든 경우의 수를 포함한 정보 (예를 들어, 적어도 한 개 이상의 표(table)의 형태)가 저장되고, R, Qm, v 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보에서
Figure PCTKR2022000913-appb-I000089
값이 획득될 수 있다.
And, the number of temporary information bits
Figure PCTKR2022000913-appb-I000086
can be obtained (computed) (1002). For example, the number of temporary information bits N info is
Figure PCTKR2022000913-appb-I000087
can be calculated as Here, R denotes a code rate, Qm denotes a modulation order, and the information includes modulation and coding scheme (MCS) information included in control information (eg, DCI, RRC configuration information, etc.). can be determined based on Specifically, information (eg, an MCS index table of Tables 12, 13, 14, etc.) previously agreed on for the code rate and the modulation order may be used, and the code rate and the modulation order are the MCS information and the previously agreed upon order. It can be determined based on the available information. v may mean the number of allocated layers.
Figure PCTKR2022000913-appb-I000088
The value is calculated as above or information including the number of all cases (eg, in the form of at least one or more tables) is stored, and the stored information is stored through at least one parameter value among R, Qm, and v from information
Figure PCTKR2022000913-appb-I000089
A value may be obtained.
단말은 획득(계산)한
Figure PCTKR2022000913-appb-I000090
의 값과 3824의 값을 비교할 수 있다(1003).
Figure PCTKR2022000913-appb-I000091
의 값이 3824 이하인지 혹은 초과인지에 따라 다른 방법으로
Figure PCTKR2022000913-appb-I000092
및 TBS가 획득(계산)될 수 있다 (1004).
The terminal acquired (calculated)
Figure PCTKR2022000913-appb-I000090
A value of 3824 can be compared with the value of 3824 (1003).
Figure PCTKR2022000913-appb-I000091
different methods depending on whether the value of is less than or equal to 3824
Figure PCTKR2022000913-appb-I000092
and TBS may be obtained (computed) (1004).
Figure PCTKR2022000913-appb-I000093
인 경우에는,
Figure PCTKR2022000913-appb-I000094
Figure PCTKR2022000913-appb-I000095
의 수식을 통해
Figure PCTKR2022000913-appb-I000096
가 계산될 수 있다.
Figure PCTKR2022000913-appb-I000097
값은 위와 같이 계산되거나 혹은 모든 경우의 수에 대한 정보 (예를 들어, 적어도 한 개 이상의 표(table))가 저장되고,
Figure PCTKR2022000913-appb-I000098
, n 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보에서
Figure PCTKR2022000913-appb-I000099
값이 획득될 수 있다. TBS는 표 17에서
Figure PCTKR2022000913-appb-I000100
보다 작지 않은 값 중
Figure PCTKR2022000913-appb-I000101
에 가장 가까운 값으로 결정될 수 있다.
Figure PCTKR2022000913-appb-I000093
In case of
Figure PCTKR2022000913-appb-I000094
Wow
Figure PCTKR2022000913-appb-I000095
through the formula of
Figure PCTKR2022000913-appb-I000096
can be calculated.
Figure PCTKR2022000913-appb-I000097
The value is calculated as above, or information about the number of all cases (eg, at least one table) is stored,
Figure PCTKR2022000913-appb-I000098
In the stored information through at least one parameter value of , n
Figure PCTKR2022000913-appb-I000099
A value may be obtained. TBS in Table 17
Figure PCTKR2022000913-appb-I000100
of values not less than
Figure PCTKR2022000913-appb-I000101
can be determined as the closest value to .
[표 17][Table 17]
Figure PCTKR2022000913-appb-I000102
Figure PCTKR2022000913-appb-I000102
Figure PCTKR2022000913-appb-I000103
인 경우에는,
Figure PCTKR2022000913-appb-I000104
Figure PCTKR2022000913-appb-I000105
의 수식을 통해
Figure PCTKR2022000913-appb-I000106
가 계산될 수 있다.
Figure PCTKR2022000913-appb-I000107
값은 위와 같이 계산되거나 혹은 모든 경우의 수에 대한 정보 (예를 들어, 적어도 한 개 이상의 표(table))가 저장되고,
Figure PCTKR2022000913-appb-I000108
, n 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 표에서
Figure PCTKR2022000913-appb-I000109
값이 획득될 수 있다. TBS는
Figure PCTKR2022000913-appb-I000110
값 및 표 18에 포함된 pseudo code 혹은 같은 결과를 내는 다른 형태의 pseudo code를 통해 결정될 수 있다. 혹은 상기 TBS는 모든 경우의 수에 대한 정보 (예를 들어, 적어도 한 개 이상의 표(table))가 저장되고, R,
Figure PCTKR2022000913-appb-I000111
, C 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보에서 TBS 값이 획득될 수 있다.
Figure PCTKR2022000913-appb-I000103
In case of
Figure PCTKR2022000913-appb-I000104
Wow
Figure PCTKR2022000913-appb-I000105
through the formula of
Figure PCTKR2022000913-appb-I000106
can be calculated.
Figure PCTKR2022000913-appb-I000107
The value is calculated as above or information about the number of all cases (eg, at least one table) is stored,
Figure PCTKR2022000913-appb-I000108
, in the stored table through at least one parameter value of n
Figure PCTKR2022000913-appb-I000109
A value may be obtained. TBS
Figure PCTKR2022000913-appb-I000110
It can be determined through the value and the pseudo code included in Table 18 or another type of pseudo code that produces the same result. Or, the TBS stores information on the number of all cases (eg, at least one or more tables), R,
Figure PCTKR2022000913-appb-I000111
A TBS value may be obtained from the stored information through at least one parameter value among , C .
[표 18][Table 18]
Figure PCTKR2022000913-appb-I000112
Figure PCTKR2022000913-appb-I000112
NR 시스템에서 단말이 지원하는 최대 데이터율은 수학식 6을 통해 결정될 수 있다.The maximum data rate supported by the UE in the NR system may be determined through Equation (6).
[수학식 6][Equation 6]
Figure PCTKR2022000913-appb-I000113
Figure PCTKR2022000913-appb-I000113
수학식 6에서 J는 주파수 집적(carrier aggregation)으로 묶인 캐리어의 수이며, Rmax = 948/1024,
Figure PCTKR2022000913-appb-I000114
는 최대 레이어 수,
Figure PCTKR2022000913-appb-I000115
는 최대 변조 오더,
Figure PCTKR2022000913-appb-I000116
는 스케일링 지수,
Figure PCTKR2022000913-appb-I000117
는 부반송파 간격을 의미할 수 있다. 단말은
Figure PCTKR2022000913-appb-I000118
을 1, 0.8, 0.75, 0.4 중 하나의 값으로 설정하여 보고할 수 있으며,
Figure PCTKR2022000913-appb-I000119
는 표 19와 같이 주어질 수 있다.
In Equation 6, J is the number of carriers bundled by frequency aggregation, Rmax = 948/1024,
Figure PCTKR2022000913-appb-I000114
is the maximum number of layers,
Figure PCTKR2022000913-appb-I000115
is the maximum modulation order,
Figure PCTKR2022000913-appb-I000116
is the scaling exponent,
Figure PCTKR2022000913-appb-I000117
may mean a subcarrier spacing. the terminal
Figure PCTKR2022000913-appb-I000118
can be reported by setting it to one of 1, 0.8, 0.75, or 0.4,
Figure PCTKR2022000913-appb-I000119
can be given as in Table 19.
[표 19][Table 19]
Figure PCTKR2022000913-appb-I000120
Figure PCTKR2022000913-appb-I000120
Figure PCTKR2022000913-appb-I000121
는 평균 OFDM 심볼 길이이며,
Figure PCTKR2022000913-appb-I000122
Figure PCTKR2022000913-appb-I000123
로 계산될 수 있고,
Figure PCTKR2022000913-appb-I000124
는 BW(j)에서 최대 RB 개수이다.
Figure PCTKR2022000913-appb-I000125
는 오버헤드 값으로, FR1 (6 GHz 이하 대역)의 하향링크에서는 0.14, 상향링크에서는 0.18로 주어질 수 있으며, FR2 (6 GHz 초과 대역)의 하향링크에서는 0.08, 상향링크에서는 0.10로 주어질 수 있다. 예를 들어, 수학식 6을 통해 30 kHz 부반송파 간격에서 100 MHz 주파수 대역폭을 갖는 셀에서의 하향링크에서의 최대 데이터율은 하기의 표 20과 같을 수 있다.
Figure PCTKR2022000913-appb-I000121
is the average OFDM symbol length,
Figure PCTKR2022000913-appb-I000122
Is
Figure PCTKR2022000913-appb-I000123
can be calculated as
Figure PCTKR2022000913-appb-I000124
is the maximum number of RBs in BW(j).
Figure PCTKR2022000913-appb-I000125
As an overhead value, it may be given as 0.14 in the downlink of FR1 (band below 6 GHz) and 0.18 in the uplink, and as 0.08 in the downlink of FR2 (band above 6 GHz) and 0.10 in the uplink. For example, through Equation 6, the maximum data rate in downlink in a cell having a 100 MHz frequency bandwidth at a 30 kHz subcarrier interval may be as shown in Table 20 below.
[표 20][Table 20]
Figure PCTKR2022000913-appb-I000126
Figure PCTKR2022000913-appb-I000126
한편, 실제 데이터 전송 효율을 나타내는 실제 데이터율은 전송 데이터양을 데이터 전송 시간으로 나눈 값이 될 수 있다. 즉, 1개 TB 전송에서는 TBS 또는 2개 전송에서는 TBS 2개의 합을 TTI(transmission time interval) 길이로 나눈 값이 될 수 있다. 30 kHz 부반송파 간격, 100 MHz 주파수 대역폭을 갖는 셀에서의 하향링크 최대 실제 데이터율은 할당된 PDSCH 심볼 개수에 따라 하기의 표 21과 같이 정해질 수 있다.Meanwhile, the actual data rate representing the actual data transmission efficiency may be a value obtained by dividing the amount of transmitted data by the data transmission time. That is, it may be a value obtained by dividing the TBS in one TB transmission or the sum of two TBSs in two transmissions by a transmission time interval (TTI) length. The maximum actual downlink data rate in a cell having a 30 kHz subcarrier interval and a 100 MHz frequency bandwidth may be determined as shown in Table 21 below according to the number of allocated PDSCH symbols.
[표 21][Table 21]
Figure PCTKR2022000913-appb-I000127
Figure PCTKR2022000913-appb-I000127
표 20과 같은 단말이 지원하는 최대 데이터율과 표 21과 같은 할당된 TBS에 따른 실제 데이터율을 참고하면, 스케줄링 정보에 따라 상기 단말이 지원하는 최대 데이터율보다 실제 데이터율이 더 큰 경우가 있는 것을 확인할 수 있다.Referring to the maximum data rate supported by the terminal as shown in Table 20 and the actual data rate according to the assigned TBS as shown in Table 21, there is a case where the actual data rate is greater than the maximum data rate supported by the terminal according to scheduling information. that can be checked
무선 통신 시스템, NR 시스템에서는 단말이 지원하는 최대 주파수 대역, 최대 변조 오더, 최대 레이어 수 등을 이용하여 단말의 지원 가능한 데이터율이 기지국과 단말 사이에 결정(계산, 획득)될 수 있다. 다만, 단말이 지원 가능한 데이터율은 TBS 및 TTI에 기반하여 계산되는 실제 데이터율과 다를 수 있고, 어떤 경우에는 단말의 지원 가능한 데이터율에 비해 큰 TBS를 가지는 데이터를 기지국이 단말에 전송하는 경우가 생길 수 있다.In a wireless communication system and an NR system, the data rate supportable of the terminal may be determined (calculated, obtained) between the base station and the terminal using the maximum frequency band, the maximum modulation order, the maximum number of layers, etc. supported by the terminal. However, the data rate supportable by the terminal may be different from the actual data rate calculated based on TBS and TTI, and in some cases, the base station transmits data having a TBS larger than the data rate supportable by the terminal to the terminal. can happen
본 개시의 일 실시예에 따르면, 기지국은 단말에 1:1의 관계로 데이터를 전송하거나(uni-cast) 혹은 1:N의 관계로 데이터를 전송할 수 있다(multi-cast, group-cast, broad-cast 등).According to an embodiment of the present disclosure, the base station may transmit data to the terminal in a 1:1 relationship (uni-cast) or may transmit data in a 1:N relationship (multi-cast, group-cast, broad -cast, etc.).
본 개시의 일 실시예에 따르면, 그룹 공통의 RNTI(group-common RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI가 그룹 공통의 PDCCH(group-common PDCCH)를 통해 전송될 수 있다. 상기 DCI는 그룹 공통의 PDSCH(group-common PDSCH)를 스케줄링할 수 있다. 이 때 901 과정의 수학식 3에서 사용되는 RNTI는 상기 그룹 공통의 RNTI(group-common RNTI)일 수 있으며, 상기 그룹 공통의 RNTI는 상기 그룹의 단말에 대해 동일한 값이 설정될 수 있다. 한편, 본 개시의 그룹 공통의 RNTI는 그룹 통신을 위해 새롭게 정의된 RNTI일 수 있으며, 혹은 단말에 설정된 RNTI 중 그룹 통신을 위해 사용하도록 설정된 RNTI일 수 있다. According to an embodiment of the present disclosure, a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common RNTI (RNTI) is a group-common PDCCH (PDCCH). can be transmitted through The DCI may schedule a group-common PDSCH (PDSCH). In this case, the RNTI used in Equation 3 of step 901 may be a group-common RNTI (RNTI), and the same value may be set for the group-common RNTI for the terminals of the group. Meanwhile, the group common RNTI of the present disclosure may be a newly defined RNTI for group communication, or an RNTI configured to be used for group communication among RNTIs configured in the terminal.
본 개시의 일 실시예에 따르면, 단말 별 RNTI(UE-specific RNTI, 예를 들어 C-RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI 단말 별 PDCCH(UE-specific PDCCH)를 통해 전송될 수 있다. 상기 DCI는 그룹 공통의 PDSCH(group-common PDSCH)를 스케줄링할 수 있다. 이 때 901 과정의 수학식 3에서 사용되는 RNTI는 상기 그룹 공통의 RNTI(group-common RNTI)일 수 있으며, 상기 그룹의 단말에 대해 동일한 값이 설정될 수 있다.한편, 본 개시의 일 실시예에 따르면, 기지국은 단말에 그룹 공통의 PDSCH (group-common PDSCH) 전송을 위한 mcs-Table(예를 들어, 표 14, 표 15 혹은 표 16)을 설정할 수 있다. 이하 본 개시에서는 적어도 하나의 MCS index 값에 따라 결정될 수 있는 적어도 하나의 변조 오더 및 타겟 부호율에 대한 정보를 mcs-Table 정보라 칭할 수 있으나, 이외에 다른 용어 (예를 들어, MCS 관련 정보)로 칭할 수 있음은 자명하다. 상기 단말에 설정되는 그룹 공통의 PDSCH (group-common PDSCH) 전송을 위한 mcs-Table (그룹 통신을 위한 mcs-Table 또는 group common mcs-Table)은 유니캐스트 PDSCH를 위해 설정된 mcs-Table (또는 UE-specific mcs-Table)과 별도로 설정되는 것일 수 있다. 예를 들어, 그룹 공통의 PDSCH 전송을 위한 mcs-Table은 유니캐스트 PDSCH를 위한 mcs-Table보다 더 낮은 성능을 고려하여 정의될 (또는, 설계될) 수 혹은 설정될 수 있다. 다만, 본 개시의 일 실시예가 이에 한정되는 것은 아니며, 그룹 공통의 PDSCH 전송을 위한 mcs-Table은 유니캐스트 PDSCH를 위해 설정된 mcs-Table 엔트리(entry)의 적어도 하나 또는 적어도 일부를 포함할 수 있다. According to an embodiment of the present disclosure, a DCI-specific PDCCH (UE) to which a scrambled CRC (CRC generated using DCI information) is attached based on a UE-specific RNTI (eg, C-RNTI) per UE. -specific PDCCH). The DCI may schedule a group-common PDSCH (PDSCH). In this case, the RNTI used in Equation 3 of step 901 may be a group-common RNTI (RNTI), and the same value may be set for the terminals of the group. According to , the base station may configure an mcs-Table (eg, Table 14, Table 15, or Table 16) for group-common PDSCH (PDSCH) transmission to the terminal. Hereinafter, in the present disclosure, information on at least one modulation order and target code rate that can be determined according to at least one MCS index value may be referred to as mcs-Table information, but in other terms (eg, MCS-related information). It is self-evident that it can be called mcs-Table (mcs-Table or group common mcs-Table for group communication) for group common PDSCH (group-common PDSCH) transmission configured in the terminal is mcs-Table (or UE- It may be set separately from the specific mcs-Table). For example, the mcs-Table for group common PDSCH transmission may be defined (or designed) or configured in consideration of lower performance than the mcs-Table for unicast PDSCH. However, an embodiment of the present disclosure is not limited thereto, and the mcs-Table for group common PDSCH transmission may include at least one or at least a part of mcs-Table entries configured for unicast PDSCH.
본 개시의 일 실시예에 따르면, 그룹 공통의 PDSCH(group-common PDSCH) 전송을 위한 mcs-Table 설정은 BWP 설정 파라미터 내의 PDSCH 설정 파라미터에 포함되어 BWP별로 설정될 수 있다.According to an embodiment of the present disclosure, the mcs-Table configuration for group-common PDSCH (PDSCH) transmission may be included in the PDSCH configuration parameter in the BWP configuration parameter and configured for each BWP.
구체적으로, 하향링크 BWP에 대한 설정 정보 (BWP-Downlink) 및 상향링크 BWP에 대한 설정 정보 (BWP-Uplink)가 단말에 설정될 수 있다. 상기 하향링크 BWP는 하향링크 공통 BWP (BWP-DownlinkCommon)과 하향링크 전용 BWP (BWP-DownlinkDedicated)에 대한 설정 정보를 포함할 수 있다. 하향링크 공통 BWP는 셀 특정 BWP로서, 하향링크 공통 BWP 설정 정보는 셀 내에 위치한 단말에 공통적으로 적용되는 파라미터를 포함할 수 있다. 하향링크 특정 BWP는 단말 특정 BWP로서, 하향링크 전용 BWP 설정 정보는 단말 전용 (dedicated) 파라미터를 포함할 수 있다. 한편, 본 개시에서 그룹 공통의 PDSCH이 포함되는 BWP는 그룹 공통 BWP라 칭할 수 있다. 즉, 그룹 공통 BWP는 멀티캐스트 또는 브로드캐스트와 같이 1: 다수의 통신을 위해 사용되는 BWP를 의미할 수 있다. 상기 그룹 공통 BWP는 기존에 설정되는 BWP (legacy BWP)와 별개의 BWP로서 단말에 설정되거나, 또는 단말에 설정된 BWP 중 일부의 주파수 자원이 그룹 공통 BWP로 단말에 설정될 수 있다. Specifically, configuration information for downlink BWP (BWP-Downlink) and configuration information for uplink BWP (BWP-Uplink) may be configured in the terminal. The downlink BWP may include configuration information for a downlink common BWP (BWP-DownlinkCommon) and a downlink dedicated BWP (BWP-DownlinkDedicated). The downlink common BWP is a cell-specific BWP, and the downlink common BWP configuration information may include parameters commonly applied to terminals located in the cell. The downlink-specific BWP is a UE-specific BWP, and the downlink-specific BWP configuration information may include a UE-specific (dedicated) parameter. Meanwhile, in the present disclosure, the BWP including the group common PDSCH may be referred to as a group common BWP. That is, the group common BWP may mean a BWP used for 1: multiple communication, such as multicast or broadcast. The group common BWP may be set in the terminal as a BWP separate from the previously configured BWP (legacy BWP), or some frequency resources of the BWP configured in the terminal may be set in the terminal as a group common BWP.
legacy BWP와 별개의 BWP로 단말에 설정되는 경우, 하향링크 공통 BWP 내에 그룹 공통 BWP를 위한 설정 정보가 포함되거나, 또는 그룹 공통 BWP를 위한 설정 정보가 별도로 정의될 수도 있다. 그룹 공통 BWP를 위한 설정 정보에는 그룹 공통의 PDCCH 영역에 대한 정보 및 그룹 공통의 PDSCH 영역에 대한 정보 등이 포함될 수 있다. When configured in the terminal as a BWP separate from the legacy BWP, configuration information for the group common BWP is included in the downlink common BWP, or configuration information for the group common BWP may be defined separately. The configuration information for the group common BWP may include information on the group common PDCCH region and information on the group common PDSCH region.
단말에 설정된 BWP 중 특정 주파수 자원이 그룹 공통 BWP로 단말에 설정되는 경우, 예를 들어, 단말은 하향링크 공통 BWP의 전부 또는 일부를 그룹 공통 BWP로 사용할 수 있다. 또는, 단말에 설정되는 복수의 BWP 중 일부의 BWP 또는 주파수 자원이 그룹 공통 BWP로 사용될 수 있다.When a specific frequency resource among BWPs set in the terminal is set in the terminal as the group common BWP, for example, the terminal may use all or part of the downlink common BWP as the group common BWP. Alternatively, some BWPs or frequency resources among a plurality of BWPs set in the terminal may be used as the group common BWP.
따라서, 본 개시의 일 실시예에 따르면, 단말의 BWP와 별개의 BWP로 그룹 공통 BWP가 설정되는 경우 또는 단말에 설정된 BWP 중 특정 주파수 자원이 그룹 공통 BWP로 설정되는 경우, 상기 그룹 공통 BWP 설정 정보에 포함된 PDSCH 설정 정보 내에 mcs-Table에 대한 설정이 포함될 수 있다. Therefore, according to an embodiment of the present disclosure, when the group common BWP is set as a BWP separate from the BWP of the terminal, or when a specific frequency resource among BWPs set in the terminal is set as the group common BWP, the group common BWP setting information The configuration for the mcs-Table may be included in the PDSCH configuration information included in .
본 개시의 일 실시예에 따르면, 그룹 공통의 PDSCH(group-common PDSCH) 전송을 위한 mcs-Table 설정은 PDSCH 설정 파라미터 내의 상기 그룹 공통의 PDSCH 전송을 위한 그룹 공통의 주파수 자원 설정 파라미터에 포함되어 그룹 공통 주파수 자원별로 설정될 수 있다.According to an embodiment of the present disclosure, the mcs-Table configuration for group-common PDSCH (group-common PDSCH) transmission is included in the group common frequency resource configuration parameter for group-common PDSCH transmission in the PDSCH configuration parameter. It may be set for each common frequency resource.
상기 그룹 공통 주파수 자원은 BWP의 일부 또는 전체의 자원으로 구성될 수 있으며, 본 개시에서 상기 그룹 공통 주파수 자원은 상기 그룹 공통 BWP의 전체 또는 적어도 일부의 주파수 자원으로 구성될 수 있다. 따라서, 상기 그룹 공통 주파수 자원 역시 단말에 설정되는 주파수 자원의 일부 또는 단말에 설정되는 주파수 자원과는 별도의 주파수 자원으로 설정될 수 있으며, 상기 그룹 공통 주파수 자원을 설정하기 위한 정보에 상기 mcs-Table 설정이 포함될 수 있다. The group common frequency resource may be configured with a part or all of the BWP, and in the present disclosure, the group common frequency resource may be configured with all or at least a part of the frequency resource of the group common BWP. Accordingly, the group common frequency resource may also be set as a part of the frequency resource configured in the terminal or a frequency resource separate from the frequency resource configured in the terminal, and the information for setting the group common frequency resource is included in the mcs-Table settings may be included.
본 개시의 일 실시예에 따르면, 그룹 공통의 RNTI(group-common RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI가 그룹 공통의 PDCCH(group-common PDCCH)를 통해 수신될 수 있다. 단말은 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위하여, 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table을 사용할 수 있다. 만약 상기 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table이 존재하지 않는 경우 단말은 유니캐스트 PDSCH를 위해 설정된 mcs-Table을 사용하여 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정할 수 있다. 이 때, 상기 그룹 공통의 RNTI에 기반하여 스크램블링된 CRC가 부착된 DCI는 그룹 통신을 위해 별도로 정의된 DCI 포맷이 사용되거나 혹은 유니캐스트 통신을 위해 기 정의된 DCI 포맷이 사용될 수 있다. According to an embodiment of the present disclosure, a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common RNTI (RNTI) is a group-common PDCCH (PDCCH). can be received through In order to determine the modulation order (Qm) and the target code rate R corresponding to the Modulation and Coding Scheme field (I MCS ) included in the DCI, the UE may use the mcs-Table configured for group common PDSCH transmission. If the mcs-Table configured for the group common PDSCH transmission does not exist, the UE uses the mcs-Table configured for the unicast PDSCH to modulate the modulation and coding scheme field (I MCS ) included in the DCI. The order Qm and the target code rate R may be determined. In this case, for the DCI to which the CRC scrambled based on the group common RNTI is attached, a DCI format defined separately for group communication or a DCI format previously defined for unicast communication may be used.
본 개시의 일 실시예에 따르면, group-specific 서치 공간 (search space)를 통해 스케줄링된 PDCCH를 수신하는 경우 단말은 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위하여, 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table을 사용할 수 있다. 만약 상기 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table이 존재하지 않는 경우 단말은 유니캐스트 PDSCH를 위해 설정된 mcs-Table을 사용하여 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정할 수 있다. 한편, group-specific search space를 통해 전송되는 DCI는 그룹 통신을 위해 별도로 정의된 DCI 포맷이 사용되거나 혹은 유니캐스트 통신을 위해 기 정의된 DCI 포맷이 사용될 수 있다.According to an embodiment of the present disclosure, when receiving a PDCCH scheduled through a group-specific search space, the UE receives a modulation order (Qm) corresponding to the Modulation and Coding Scheme field (I MCS ) included in the DCI. ) and the target code rate R, the mcs-Table configured for group common PDSCH transmission may be used. If the mcs-Table configured for the group common PDSCH transmission does not exist, the UE uses the mcs-Table configured for the unicast PDSCH to modulate the modulation and coding scheme field (I MCS ) included in the DCI. The order Qm and the target code rate R may be determined. Meanwhile, DCI transmitted through the group-specific search space may use a DCI format defined separately for group communication or a DCI format previously defined for unicast communication may be used.
본 개시의 일 실시예에 따르면, 그룹 공통의 RNTI(group-common RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI가 그룹 공통의 PDCCH(group-common PDCCH)의 group-specific 서치 공간 (search space)를 통해 수신될 수 있다. 단말은 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위하여, 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table을 사용할 수 있다. 만약 상기 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table이 존재하지 않는 경우 단말은 유니캐스트 PDSCH를 위해 설정된 mcs-Table을 사용하여 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정할 수 있다.According to an embodiment of the present disclosure, a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common RNTI (RNTI) is a group-common PDCCH (PDCCH). may be received through a group-specific search space of In order to determine the modulation order (Qm) and the target code rate R corresponding to the Modulation and Coding Scheme field (I MCS ) included in the DCI, the UE may use the mcs-Table configured for group common PDSCH transmission. If the mcs-Table configured for the group common PDSCH transmission does not exist, the UE uses the mcs-Table configured for the unicast PDSCH to modulate the modulation and coding scheme field (I MCS ) included in the DCI. The order Qm and the target code rate R may be determined.
도 11은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 도면이다.11 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
도 11을 참고하면, 단말은 기지국으로부터 설정 정보를 수신할 수 있다. 상기 설정 정보는 RRC 시그널링, MIB, 또는 SIB를 통해 수신될 수 있다. Referring to FIG. 11 , the terminal may receive configuration information from the base station. The configuration information may be received through RRC signaling, MIB, or SIB.
상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, 본 개시에서 상기 설정 정보에는 mcs-Table에 대한 정보 등이 포함될 수 있다. 상술한 바와 같이 상기 mcs-Table은 유니캐스트 PDSCH를 위해 설정되는 mcs-Table 또는 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table 중 적어도 하나를 포함할 수 있다. 상기 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table은 상술한 바와 같이 BWP별로 설정되거나 혹은 그룹 공통 주파수 자원별로 설정될 수 있다. 이 때, BWP에 대한 설정 정보 또는 그룹 공통 주파수 자원에 대한 설정 정보에 대한 구체적인 내용은 상술한 바와 동일하며, 이하에서는 생략한다. The setting information may include information on BWP, and in the present disclosure, the setting information may include information on mcs-Table and the like. As described above, the mcs-Table may include at least one of mcs-Table configured for unicast PDSCH or mcs-Table configured for group common PDSCH. The mcs-Table configured for the group common PDSCH may be configured for each BWP or group common frequency resource as described above. In this case, the detailed content of the configuration information for the BWP or the configuration information for the group common frequency resource is the same as described above, and will be omitted below.
단말은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 PDCCH를 모니터링할 수 있다 (1101). 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. The UE may monitor the PDCCH in at least one search space according to the above embodiments ( 1101 ). The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly configured only for a specific group i for group communication.
보다 구체적으로 말하면, 상기 group i 에게만 공통적으로 설정된 group search space는 수학식 1의 Yp,-1 값을 그룹 공통의 RNTI로 설정하여 수학식 1에 대입함으로써 구해질 수 있다. 그룹에 포함되는 단말은 상기 group search space에서 PDCCH를 모니터링할 수 있으며, 상기 group search space에서 수신된 DCI에 포함된 정보는 단말의 그룹 통신에 사용될 수 있다. More specifically, the group search space commonly set only to the group i can be obtained by setting the Yp,-1 value of Equation 1 to the group common RNTI and substituting it in Equation 1. The terminal included in the group may monitor the PDCCH in the group search space, and information included in the DCI received in the group search space may be used for group communication of the terminal.
또는, 상기 group search space에 대한 정보를 기지국이 단말에 전송할 수 있다. 기지국은 group search space가 위치하는 (또는 그룹 통신에 사용될) PDCCH에 대한 정보를 RRC 시그널링 또는 SIB를 통해 단말에 설정할 수 있다. 이 때, 상기 CORESET에 대한 시간 자원 정보 및 주파수 자원 정보는 RRC 시그널링, MIB, 또는 SIB를 통해 직접적으로 지시될 수 있다. 또는 상기 PDCCH에 대한 시간 자원 정보 및 주파수 자원 정보는 미리 정해진 정보들 (예를 들어, 테이블의 형태로 구성된 정보일 수 있다) 중 어느 하나를 RRC 시그널링, MIB, 또는 SIB에 포함된 정보를 통해 지시하도록 할 수 있다. 또한, 상기 PDCCH에 포함되는 common search space의 CCE index는 상술한 수학식 1에 기반하여 결정될 수 있다. Alternatively, the base station may transmit information on the group search space to the terminal. The base station may configure information on the PDCCH in which the group search space is located (or to be used for group communication) to the terminal through RRC signaling or SIB. In this case, time resource information and frequency resource information for the CORESET may be directly indicated through RRC signaling, MIB, or SIB. Alternatively, the time resource information and the frequency resource information for the PDCCH indicate any one of predetermined information (eg, information configured in the form of a table) through RRC signaling, MIB, or information included in SIB. can make it In addition, the CCE index of the common search space included in the PDCCH may be determined based on Equation 1 above.
단말의 모니터링 결과 DCI가 수신(detect)될 수 있다 (1102). 즉, 단말은 PDCCH를 모니터링한 결과 상기 PDCCH를 통해 DCI를 수신할 수 있다. As a result of monitoring of the terminal, DCI may be detected ( 1102 ). That is, the UE may receive DCI through the PDCCH as a result of monitoring the PDCCH.
DCI가 수신된 경우 단말은 상기 PDCCH를 통해 전송된 DCI의 CRC의 스크램블링에 사용된 RNTI가 제1 RNTI인지 혹은 제2 RNTI인지를 확인할 수 있다 (1103). 상술한 바와 같이 group i에 포함된 단말은 그룹 공통 RNTI를 할당 받을 수 있으며 (상위레이어 시그널링, MIB, 또는 SIB를 통해 수신할 수 있다), 그룹 공통 RNTI를 할당 받은 경우 1103 단계가 수행될 수 있다. 본 개시에서는 상기 제2 RNTI가 그룹 공통 RNTI를 지칭할 수 있으며, 제1 RNTI는 단말에 설정된 그룹 공통 RNTI 이외의 RNTI를 지칭할 수 있다. 한편, 본 개시에서 1103 단계는 DCI의 CRC의 스크램블링에 사용된 RNTI가 제2 RNTI인지 확인하는 단계일 수 있다. 즉, 단말은 그룹 공통 RNTI에 기반하여 스크램블링된 CRC가 부착되었는지 여부를 확인하고, 이에 기반하여 그룹 통신을 위한 스케줄링 정보가 수신되었는지 확인할 수 있다. When the DCI is received, the UE may check whether the RNTI used for scrambling the CRC of the DCI transmitted through the PDCCH is the first RNTI or the second RNTI (1103). As described above, the terminal included in group i may be assigned a group common RNTI (received through higher layer signaling, MIB, or SIB), and when the group common RNTI is assigned, step 1103 may be performed. . In the present disclosure, the second RNTI may refer to a group common RNTI, and the first RNTI may refer to an RNTI other than the group common RNTI configured in the UE. Meanwhile, in the present disclosure, step 1103 may be a step of confirming whether the RNTI used for scrambling the CRC of the DCI is the second RNTI. That is, the terminal may determine whether a scrambled CRC is attached based on the group common RNTI, and may determine whether scheduling information for group communication is received based on this.
다만, group search space는 그룹 공통 RNTI에 기반하여 group i에게만 공통적으로 설정된 search space인 경우, group search space에서 수신된 DCI는 그룹 공통의 DCI이므로, 1103 단계를 생략할 수 있다.However, when the group search space is a search space commonly set only to group i based on the group common RNTI, since the DCI received in the group search space is the group common DCI, step 1103 may be omitted.
또한, 1103 단계는 상기 DCI가 그룹 통신을 위한 것인지 여부 (또는 DCI가 group common한지 UE-specific한지 여부)를 판단하는 단계로 변경될 수 있다. Also, step 1103 may be changed to a step of determining whether the DCI is for group communication (or whether the DCI is group common or UE-specific).
상기 RNTI가 제 1 RNTI인 경우 단말은 제1 mcs-Table (또는, mcs-Table #1)을 사용할 수 있다 (1104). 즉, 단말은 수신된 DCI 내에 포함된 MCS index (IMCS) 비트 필드의 값에 상응하는 변조 오더(Qm)과 타겟 부호율 R 중 적어도 한 개를 확인할 수 있다. If the RNTI is the first RNTI, the UE may use the first mcs-Table (or mcs-Table #1) (1104). That is, the UE may identify at least one of the modulation order (Qm) and the target code rate R corresponding to the value of the MCS index (I MCS ) bit field included in the received DCI.
상기 RNTI가 제 2 RNTI인 경우 단말은 제2 mcs-Table (또는, mcs-Table #2)를 사용할 수 있다 (1105). 즉, 단말은 수신된 DCI 내에 포함된 MCS index (IMCS) 값에 상응하는 변조 오더(Qm)과 타겟 부호율 R 중 적어도 한 개를 확인할 수 있다. When the RNTI is the second RNTI, the UE may use the second mcs-Table (or mcs-Table #2) (1105). That is, the UE may check at least one of the modulation order (Qm) and the target code rate R corresponding to the MCS index (I MCS ) value included in the received DCI.
단말은 상기 확인된 적어도 한 개의 변조 오더(Qm)과 타겟 부호율 R에 기반하여 상기 DCI가 스케줄링하는 PDSCH의 변조 오더(Qm)과 타겟 부호율 R를 결정하고, 추후 동작 예를 들어 TBS의 결정 등을 수행할 수 있다. The terminal determines the modulation order (Qm) and the target code rate R of the PDSCH scheduled by the DCI based on the confirmed at least one modulation order (Qm) and the target code rate R, and a subsequent operation, for example, determination of TBS etc. can be performed.
상기 제1 mcs-Table은 유니캐스트 PDSCH를 위해 설정되는 mcs-Table에 해당할 수 있고, 상기 제2 mcs-Table는 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table에 해당할 수 있다.The first mcs-Table may correspond to an mcs-Table configured for a unicast PDSCH, and the second mcs-Table may correspond to an mcs-Table configured for a group common PDSCH.
도 12는 본 개시의 일 실시예에 따른 기지국의 DCI 생성 동작을 도시한 도면이다.12 is a diagram illustrating a DCI generation operation of a base station according to an embodiment of the present disclosure.
도 12를 참고하면, 기지국은 단말에 설정 정보를 전송할 수 있다 (1201). 상기 설정 정보는 RRC 시그널링, MIB, 또는 SIB를 통해 송신되는 정보를 의미할 수 있다.Referring to FIG. 12 , the base station may transmit configuration information to the terminal ( 1201 ). The configuration information may refer to information transmitted through RRC signaling, MIB, or SIB.
상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, 본 개시에서 상기 설정 정보에는 mcs-Table에 대한 정보 등이 포함될 수 있다. 상술한 바와 같이 상기 mcs-Table은 유니캐스트 PDSCH를 위해 설정되는 mcs-Table 또는 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table 중 적어도 하나를 할 수 있다. 상기 그룹 공통의 PDSCH를 위해 설정하는 mcs-Table은 상술한 바와 같이 BWP별로 설정하거나 혹은 그룹 공통 주파수 자원별로 설정할 수 있다. 이 때, BWP에 대한 설정 정보 또는 그룹 공통 주파수 자원에 대한 설정 정보에 대한 구체적인 내용은 상술한 바와 동일하며, 이하에서는 생략한다.The setting information may include information on BWP, and in the present disclosure, the setting information may include information on mcs-Table and the like. As described above, the mcs-Table may be at least one of mcs-Table configured for unicast PDSCH or mcs-Table configured for group common PDSCH. The mcs-Table configured for the group common PDSCH may be configured for each BWP or group common frequency resource as described above. In this case, the detailed content of the configuration information for the BWP or the configuration information for the group common frequency resource is the same as described above, and will be omitted below.
그리고, 기지국은 전송할 DCI의 타입을 결정할 수 있다 (1202). 다만, 1202 단계는 생략될 수 있다. 구체적인 내용은 후술한다. Then, the base station may determine the type of DCI to transmit (1202). However, step 1202 may be omitted. Specific details will be described later.
구체적으로, 기지국은 PDSCH를 통해 전송하고자 하는 데이터에 따라 (또는 그룹 통신을 위한 데이터인지 여부에 따라, 또는 데이터가 group common 데이터인지 UE-specific 데이터인지 여부에 따라) DCI의 타입을 결정할 수 있다. 예를 들어, 단말 1개에 전송되는 데이터인지 혹은 특정 그룹에 속한 단말들 (즉, 다수의 단말)에 전송하는 데이터 인지 여부에 따라 DCI의 타입이 결정될 수 있다. 기지국은 상기 PDSCH를 통해 전송하고자 하는 데이터의 변조 오더(Qm)과 타겟 부호율 R을 결정하고, 상기 변조 오더(Qm) 및/또는 타겟 부호율 R을 지시하기 위한 MCS 인덱스 (IMCS)의 값을 결정할 수 있다. 이 때, 상기 MCS 인덱스는 상기 데이터에 따라 (즉, 그룹 통신을 위해 전송되는 데이터인지 혹은 유니캐스트 전송을 위한 데이터인지 여부에 따라) 또는 상기 정해진 DCI의 타입에 따라서 각기 다른 mcs-Table를 사용하여 결정될 수 있으며, 구체적인 내용은 후술한다. 다만, 상술한 바와 같이 그룹 통신에 대한 DCI의 타입 (또는 포맷)과 유니캐스트 통신에 대한 DCI의 타입 (또는 포맷)이 동일할 수 있으며, 이와 같은 경우에 1202 단계는 생략될 수 있다. Specifically, the base station may determine the type of DCI according to data to be transmitted through the PDSCH (or according to whether the data is for group communication, or whether the data is group common data or UE-specific data). For example, the type of DCI may be determined depending on whether data is transmitted to one terminal or data transmitted to terminals belonging to a specific group (ie, multiple terminals). The base station determines a modulation order (Qm) and a target code rate R of data to be transmitted through the PDSCH, and an MCS index (I MCS ) for indicating the modulation order (Qm) and/or the target code rate R can be decided At this time, the MCS index uses different mcs-Tables according to the data (that is, whether data is transmitted for group communication or data for unicast transmission) or according to the determined DCI type. It may be determined, and specific details will be described later. However, as described above, the DCI type (or format) for group communication and the DCI type (or format) for unicast communication may be the same, and in this case, step 1202 may be omitted.
혹은 기지국은 PDCCH를 통해 전송하고자 하는 DCI가 그룹 통신을 위한 것인지 여부 (또는 DCI가 group common인지 UE-specific인지 여부)에 따라 DCI의 타입을 결정할 수 있다 (1202). 예를 들어, 상기 DCI가 단말 1개 (UE-specific) 혹은 특정 그룹 (group-common)에 대한 것일 수 있다. 따라서, 기지국은 상기 DCI가 스케줄링하는 PDSCH를 통해 전송할 데이터의 변조 오더(Qm)과 타겟 부호율 R을 결정하고, 상기 변조 오더(Qm) 및/또는 타겟 부호율 R을 지시하기 위한 MCS 인덱스 (IMCS)의 값을 결정할 수 있다. 이 때, 상기 MCS 인덱스는 상기 정해진 DCI의 타입에 따라서 각기 다른 mcs-Table를 사용하여 결정될 있으며, 구체적인 내용은 후술한다. 다만, 상술한 바와 같이 그룹 통신에 대한 DCI의 타입 (또는 포맷)과 유니캐스트 통신에 대한 DCI의 타입 (또는 포맷)이 동일할 수 있으며, 이와 같은 경우에 1202 단계는 생략될 수 있다.Alternatively, the base station may determine the type of DCI according to whether the DCI to be transmitted through the PDCCH is for group communication (or whether the DCI is group common or UE-specific) ( 1202 ). For example, the DCI may be for one UE (UE-specific) or a specific group (group-common). Therefore, the base station determines the modulation order (Qm) and the target code rate R of data to be transmitted through the PDSCH scheduled by the DCI, and the MCS index (I) for indicating the modulation order (Qm) and/or the target code rate R MCS ) can be determined. In this case, the MCS index may be determined using different mcs-Tables according to the determined DCI type, and details will be described later. However, as described above, the DCI type (or format) for group communication and the DCI type (or format) for unicast communication may be the same, and in this case, step 1202 may be omitted.
기지국은 상기 결정된 DCI가 UE-specific한 경우 제1 mcs-Table (mcs-Table #1)을 사용하여 DCI를 생성하고 (1203), 생성된 DCI를 사용하여 CRC를 생성하고, 상기 CRC를 제1 RNTI를 사용하여 스크램블할 수 있다 (1205). 상기 제1 mcs-Table은 1201의 과정을 통해 유니캐스트 PDSCH를 위해 단말에 설정한 mcs-Table일 수 있으며, 상기 RNTI는 단말별 RNTI (UE-specific RNTI)로써, 예를 들어 C-RNTI를 포함할 수 있다. 기지국은 위와 같이 생성된 DCI 및 CRC를 PDCCH를 통하여 전송할 수 있다. When the determined DCI is UE-specific, the base station generates a DCI using the first mcs-Table (mcs-Table #1) (1203), generates a CRC using the generated DCI, and sets the CRC to the first The RNTI may be used to scramble ( 1205 ). The first mcs-Table may be an mcs-Table set in the UE for unicast PDSCH through the process of 1201, and the RNTI is a UE-specific RNTI (UE-specific RNTI), including, for example, a C-RNTI. can do. The base station may transmit the DCI and CRC generated as above through the PDCCH.
기지국은 상기 결정된 DCI의 type이 group-common한 경우 제2 mcs-Table를 사용하여 DCI를 생성하고 (1204), 생성된 DCI를 사용하여 CRC를 생성하고, 상기 CRC를 제2 RNTI를 사용하여 스크램블할 수 있다 (1206). 상기 제2 mcs-Table는 1201의 과정을 통해 그룹 공통의 PDSCH를 위해 단말에 설정한 mcs-Table일 수 있으며, 상기 RNTI는 그룹 공통의 RNTI (group-common RNTI)를 포함할 수 있다. 기지국은 위와 같이 생성된 DCI 및 CRC를 PDCCH를 통하여 전송할 수 있다. 상기 PDCCH는 common search space 혹은 group search space에 매핑되어 전송될 수 있다.When the determined DCI type is group-common, the base station generates a DCI using the second mcs-Table (1204), generates a CRC using the generated DCI, and scrambles the CRC using a second RNTI. Can (1206). The second mcs-Table may be an mcs-Table set in the UE for the group common PDSCH through the process of 1201, and the RNTI may include a group common RNTI (RNTI). The base station may transmit the DCI and CRC generated as above through the PDCCH. The PDCCH may be transmitted by being mapped to a common search space or a group search space.
본 개시의 일 실시예에 따르면, 그룹 공통의 PDSCH(group-common PDSCH)를 통해 전송된 데이터에 대하여 재전송을 위해 그룹 공통의 PDSCH(group-common PDSCH)이 사용될 수 있다. According to an embodiment of the present disclosure, a group-common PDSCH (PDSCH) may be used for retransmission of data transmitted through a group-common PDSCH (PDSCH).
본 개시의 일 실시예에 따르면, 그룹 공통의 PDSCH(group-common PDSCH)를 통해 전송된 데이터에 대하여 재전송을 위해 단말 특정 PDCCH(UE-specific PDCCH)를 통해 스케줄링된 단말 특정 PDSCH(UE-specific PDSCH)가 사용될 수 있다.According to an embodiment of the present disclosure, a UE-specific PDSCH scheduled through a UE-specific PDCCH (UE-specific PDCCH) for retransmission for data transmitted through a group-common PDSCH (PDSCH) ) can be used.
본 개시의 일 실시예에 따르면, 그룹 공통의 PDSCH(group-common PDSCH)를 통해 전송된 데이터에 대하여 재전송을 위해 단말 특정 PDCCH(UE-specific PDCCH)를 통해 스케줄링된 그룹 공통의 PDSCH(group-common PDSCH)가 사용될 수 있다.According to an embodiment of the present disclosure, a group common PDSCH (group-common PDSCH) scheduled through a UE-specific PDCCH (UE-specific PDCCH) for retransmission for data transmitted through a group-common PDSCH (PDSCH) PDSCH) may be used.
본 개시의 일 실시예에 따르면, 그룹 공통의 PDSCH를 통해 전송된 TB에 대한 재전송 여부는 제1 PDSCH를 스케줄링하는, 제1 PDCCH를 통해 전송되는 제1 RNTI (제 1 DCI를 사용하여 생성된 CRC를 스크램블링하는 것에 사용)를 사용한 제1 DCI에 포함된 제1 HARQ 프로세스 번호 및 제 1 NDI(New Data Indicator) 값, 그리고 제2 PDSCH를 스케줄링하는, 제 2 PDCCH를 통해 전송되는 제2 RNTI (제2 DCI를 사용하여 생성된 CRC를 스크램블링하는 것에 사용)를 사용한 제2 DCI에 포함된 제2 HARQ 프로세스 번호 및 제2 NDI 값에 의해 결정될 수 있다. According to an embodiment of the present disclosure, whether retransmission for a TB transmitted through the group common PDSCH is determined by a first RNTI transmitted through the first PDCCH scheduling the first PDSCH (CRC generated using the first DCI) A first HARQ process number and a first New Data Indicator (NDI) value included in the first DCI using (used for scrambling 2 may be determined by the second HARQ process number and the second NDI value included in the second DCI (used for scrambling the CRC generated using DCI).
보다 구체적으로 설명하면, 제1 RNTI 및 제2 RNTI가 같은지 여부에 관계 없이, 상기 제1 HARQ 프로세스 번호와 제2 HARQ 프로세스 번호가 같고, 제2 NDI 값이 제1 NDI값과 같으면 제2 PDSCH를 통해 전송되는 데이터(TB)는 제1 PDSCH를 통해 전송되는 데이터(TB)의 재전송으로 결정되고, 이에 따른 후속 동작(예. 컴바이닝)이 수행될 수 있다. 즉, 제1 RNTI와 제2 RNTI가 서로 다른 RNTI (예를 들어, 단말 특정 RNTI와 단말 공통 RNTI)인 경우에도, DCI에 포함된 HARQ 프로세스의 번호가 같고, NDI 값이 토글되지 않은 경우에는 TB 재전송을 위한 동작이 수행될 수 있다. 또는 제1 RNTI와 제2 RNTI가 같은 RNTI (예를 들어, 단말 공통 RNTI)인 경우에, DCI에 포함된 HARQ 프로세스의 번호가 같고, NDI 값이 토글되지 않은 경우에는 제2 PDSCH를 통해 전송되는 데이터는 재전송 데이터로 이해될 수 있다. 한편, 상기 제2 NDI값이 제1 NDI값과 다르면(즉, toggle되면) 제2 PDSCH를 통해 전송되는 데이터(TB)는 새로운 데이터로 이해될 수 있다. 상기 제1 RNTI는 예를 들어, 그룹 공통의 RNTI일 수 있고, 제2 RNTI는 단말 특정 RNTI(UE-specific RNTI, C-RNTI)일 수 있다. 또 다른 예를 들어, 상기 제1 RNTI는 그룹 공통의 RNTI일 수 있고, 제2 RNTI 또한 그룹 공통의 RNTI일 수 있다. 본 개시의 일 실시예에 따르면, 상기 실시예와 같은 재전송 여부의 결정은 MAC 엔티티(entity)별로 수행될 수 있다. More specifically, regardless of whether the first RNTI and the second RNTI are the same, if the first HARQ process number and the second HARQ process number are the same, and the second NDI value is the same as the first NDI value, the second PDSCH is The data TB transmitted through the first PDSCH is determined by retransmission of the data TB transmitted through the first PDSCH, and a subsequent operation (eg, combining) may be performed accordingly. That is, even when the first RNTI and the second RNTI are different RNTIs (eg, a UE-specific RNTI and a UE common RNTI), the number of HARQ processes included in the DCI is the same, and the NDI value is not toggled. An operation for retransmission may be performed. Alternatively, when the first RNTI and the second RNTI are the same RNTI (eg, terminal common RNTI), the number of HARQ processes included in the DCI is the same, and when the NDI value is not toggled, transmitted through the second PDSCH Data may be understood as retransmission data. Meanwhile, if the second NDI value is different from the first NDI value (ie, toggled), the data TB transmitted through the second PDSCH may be understood as new data. The first RNTI may be, for example, a group common RNTI, and the second RNTI may be a UE-specific RNTI (C-RNTI). As another example, the first RNTI may be a group common RNTI, and the second RNTI may also be a group common RNTI. According to an embodiment of the present disclosure, the determination of whether to retransmit as in the above embodiment may be performed for each MAC entity.
도 13은 본 개시의 일 실시예에 따른 단말의 하향링크 데이터 채널의 일 예를 도시한 도면이다.13 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
도 13을 참고하면, 단말은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 PDCCH를 모니터링할 수 있다 (미도시). 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. Referring to FIG. 13 , the UE may monitor the PDCCH in at least one search space according to the above embodiments (not shown). The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
상기 모니터링의 결과 단말은 CRC가 제1 RNTI (RNTI #1)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)를 스케줄링하는 제1 DCI (DCI #1)을 수신할 수 있다 (1301). 상기 제1 RNTI (RNTI #1)은 그룹 공통의 RNTI이고, 제1 PDSCH (PDSCH #1)은 그룹 공통의 PDSCH에 해당할 수 있다. As a result of the monitoring, the UE may receive the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1) (1301). The first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
또한, 단말은 CRC가 제2 RNTI (RNTI #2)에 의해 스크램블링된, 제2 PDSCH (PDSCH #2)를 스케줄링하는 제2 DCI (DCI #2)를 수신할 수 있다 (1302). 상기 제2 RNTI (RNTI #2)는 단말 특정 RNTI (UE-specific RNTI, 예를 들어, C-RNTI)이고, 제2 PDSCH (PDSCH #2)는 단말 특정 PDSCH에 해당할 수 있다.In addition, the UE may receive a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2) (1302). The second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
한편, 상기 1301 단계와 1302 단계는 본 개시의 실시예에 따라 변경될 수 있다. 즉, 1301 단계와 1302 단계의 순서가 변경되거나, 단말은 1301 단계와 1302 단계에서 제1 RNTI로 스크램블링된 제1 DCI를 수신할 수 있으며, 또는 단말은 1301 단계와 1302 단계에서 제2 RNTI로 스크램블링된 제2 DCI를 수신할 수 있다. 또는, 1301 단계와 1302 단계는 각각 제1 DCI와 제2 DCI를 수신하는 단계로 변경될 수 있으며, 상기 제1 DCI와 제2 DCI는 특정 RNTI에 한정되지 않을 수 있다. 그리고, 단말은 후술하는 바와 같이 동일한 HARQ process number에 대해 NDI 값이 toggle되었는지 여부에 따라 재전송 여부를 결정할 수 있다. 이 때, 단말은 동일한 HARQ process number에 대해 NDI 값이 toggle되지 않은 경우, DCI가 연관된 RNTI와 관계 없이 재전송을 수행할 수 있다. Meanwhile, steps 1301 and 1302 may be changed according to an embodiment of the present disclosure. That is, the order of steps 1301 and 1302 is changed, or the terminal may receive the first DCI scrambled with the first RNTI in steps 1301 and 1302, or the terminal may scramble with the second RNTI in steps 1301 and 1302. The second DCI may be received. Alternatively, steps 1301 and 1302 may be changed to receiving the first DCI and the second DCI, respectively, and the first DCI and the second DCI may not be limited to a specific RNTI. And, as will be described later, the UE may determine whether to retransmit according to whether the NDI value is toggled for the same HARQ process number. At this time, when the NDI value is not toggled for the same HARQ process number, the UE may perform retransmission regardless of the RNTI associated with the DCI.
구체적으로, 단말은 상기 제2 DCI (DCI #2)의 HARQ process number와 제1 DCI (DCI #1)의 HARQ process number의 값을 비교할 수 있다. 상기 두 개 DCI의 HARQ process number의 값이 같을 경우, 단말은 제2 DCI (DCI #2) 내에 포함된 제1 NDI 값을 제1 DCI (DCI #1) 내에 포함된 제2 NDI 값과 비교하여 상기 제2 NDI 값이 toggle (예를 들어 0에서 1로, 혹은 1에서 0으로 값 변경)되었는지 여부를 결정할 수 있다 (1303). Specifically, the UE may compare the value of the HARQ process number of the second DCI (DCI #2) with the value of the HARQ process number of the first DCI (DCI #1). When the HARQ process number values of the two DCIs are the same, the UE compares the first NDI value included in the second DCI (DCI #2) with the second NDI value included in the first DCI (DCI #1). It may be determined whether the second NDI value is toggled (for example, from 0 to 1 or from 1 to 0) (1303).
단말은 상기 제2 NDI 값의 toggle 여부에 따라, 만약 toggle되었으면 상기 DCI #2가 스케줄링한 제2 PDSCH에 포함된 데이터를 새로운 신규 전송으로 이해하고, 이후 프로세싱을 진행할 수 있다 (1304). 상기 프로세싱은 예를 들어, TBS의 계산, 상기 HARQ process number에 상응하는 buffer의 flush 동작 등을 포함할 수 있다.According to whether the second NDI value is toggled, if it is toggled, the terminal may understand the data included in the second PDSCH scheduled by DCI #2 as a new transmission, and then proceed with processing ( 1304 ). The processing may include, for example, calculation of TBS, flush operation of a buffer corresponding to the HARQ process number, and the like.
단말은 상기 제2 NDI 값의 toggle 여부에 따라, 만약 toggle되지 않았으면, 즉 값이 같으면, 상기 DCI #2가 스케줄링한 제2 PDSCH에 포함된 데이터를 제1 PDSCH #1의 재전송으로 이해하고, 이후 프로세싱을 진행할 수 있다 (1305). 상기 프로세싱은 예를 들어, 상기 TBS의 계산, 제1 PDSCH #1와 제2 PDSCH #2의 LLR 값 컴버이닝 등을 포함할 수 있다. 즉, 단말은 제1 PDSCH #1을 스케줄링한 제1 DCI의 CRC를 스크램블링한 제 1 RNTI의 값과 제2 PDSCH #2를 스케줄링한 제2 DCI의 CRC를 스크램블링한 제 2 RNTI의 값이 다르더라도, 각 DCI에 포함된 HARQ process 번호와 NDI값의 toggle 여부에 기반하여 재전송 여부를 결정하고, 추후 PDSCH의 프로세싱을 수행할 수 있다. The UE understands the data included in the second PDSCH scheduled by DCI #2 as retransmission of the first PDSCH #1, if not toggled, that is, if the value is the same according to whether the second NDI value is toggled, Thereafter, processing may proceed ( 1305 ). The processing may include, for example, calculating the TBS, combining LLR values of the first PDSCH #1 and the second PDSCH #2, and the like. That is, even if the value of the first RNTI scrambling the CRC of the first DCI scheduling the first PDSCH #1 is different from the value of the second RNTI scrambling the CRC of the second DCI scheduling the second PDSCH #2, the UE , it is possible to determine whether to retransmit or not based on whether the HARQ process number and the NDI value included in each DCI are toggled, and process the PDSCH later.
본 개시의 일 실시예에 따르면, 도 13의 제1 RNTI (RNTI #1)과 제2 RNTI (RNTI #2)가 같은 경우에 대해서도 도 13과 같은 동작이 수행될 수 있으며, 만약 단말이 제 1 PDSCH #1의 수신 및 디코딩에 성공하였을 경우, 단말은 제 2 PDSCH의 처리 동작 (1305)을 수행하지 않을 수 있다. According to an embodiment of the present disclosure, the same operation as in FIG. 13 may be performed even when the first RNTI (RNTI #1) and the second RNTI (RNTI #2) of FIG. 13 are the same. If the reception and decoding of PDSCH #1 is successful, the UE may not perform the processing operation 1305 of the second PDSCH.
이에 따른 기지국의 동작은 하기와 같을 수 있다. 기지국은 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)을 통해 DCI를 전송할 수 있다. 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. Accordingly, the operation of the base station may be as follows. The base station may transmit DCI through at least one search space according to embodiments. The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
이 때 기지국은 CRC가 제1 RNTI (RNTI #1)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)를 스케줄링하는 제1 DCI (DCI #1)을 전송할 수 있다. 상기 제1 RNTI (RNTI #1)은 그룹 공통의 RNTI이고, 제1 PDSCH (PDSCH #1)은 그룹 공통의 PDSCH에 해당할 수 있다. 또한, 기지국은 CRC가 제2 RNTI (RNTI #2)에 의해 스크램블링된, 제2 PDSCH (PDSCH #2)를 스케줄링하는 제2 DCI (DCI #2)를 전송할 수 있다. 상기 제2 RNTI (RNTI #2)는 단말 특정 RNTI (UE-specific RNTI, 예를 들어, C-RNTI)이고, 제2 PDSCH (PDSCH #2)는 단말 특정 PDSCH에 해당할 수 있다. 한편, 상기 제1 DCI와 제2 DCI는 특정 RNTI에 한정되지 않을 수 있다. At this time, the base station may transmit the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1). The first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH. In addition, the base station may transmit a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2). The second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH. Meanwhile, the first DCI and the second DCI may not be limited to a specific RNTI.
그리고, 기지국은 제1 PDSCH에서 전송된 데이터를 제2 PDSCH에서 재전송하고자 하는 경우, 상기 제1 DCI와 제2 DCI에 사용된 RNTI의 값과 상관 없이 동일한 HARQ process number에 대해 NDI 값을 동일하게 설정하여 단말에 전송할 수 있다. 한편, 기지국은 제2 PDSCH에서 신규 데이터를 전송하고자 하는 경우, 제2 DCI에 포함된 NDI 값을 변경 (toggle)하여 단말에 전송할 수 있다. In addition, when the base station intends to retransmit data transmitted in the first PDSCH in the second PDSCH, the NDI value is identically set for the same HARQ process number regardless of the RNTI values used in the first DCI and the second DCI. can be transmitted to the terminal. Meanwhile, when the base station wants to transmit new data in the second PDSCH, the NDI value included in the second DCI may be toggled and transmitted to the terminal.
본 개시의 일 실시예에 다르면, 그룹 공통의 PDSCH(group-common PDSCH)에 대한 재전송을 지시하는 단말 특정 PDCCH(UE-specific PDCCH, UE-specific RNTI를 통해 CRC를 스크램블링함)를 통해 전송되는 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R의 결정을 위해 사용되는 mcs-Table은 상기 실시예의 MCS index 테이블 결정 방법을 통해 결정될 수 있다.According to an embodiment of the present disclosure, DCI transmitted through a UE-specific PDCCH (Scrambling CRC through UE-specific RNTI) indicating retransmission for a group-common PDSCH (PDSCH) The modulation order (Qm) corresponding to the modulation and coding scheme field (I MCS ) and the mcs-Table used for determining the target code rate R may be determined through the MCS index table determination method of the above embodiment.
본 개시의 일 실시예에 다르면, 그룹 공통의 PDSCH(group-common PDSCH)에 대한 재전송을 지시하는 그룹 공통의 PDCCH(group-common PDCCH, group 공통의 RNTI를 통해 CRC를 스크램블링함)를 통해 전송되는 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R의 결정을 위해 사용되는 mcs-Table은 상기 실시예의 그룹 공통의 PDSCH 전송을 위해 설정된 mcs-Table이 사용될 수 있다.According to an embodiment of the present disclosure, transmitted through a group common PDCCH (group-common PDCCH, scrambling CRC through a group common RNTI) indicating retransmission for a group common PDSCH (group-common PDSCH) The mcs-Table used for determining the modulation order (Qm) and the target code rate R corresponding to the Modulation and Coding Scheme field (I MCS ) included in DCI is the mcs-Table set for group common PDSCH transmission of the above embodiment. this can be used
한편, 본 개시의 일 실시예에 따르면, 상기 실시예들을 통해 정해진 mcs-Table 및 IMCS 값 등의 적어도 일부를 사용하여 TBS를 결정할 수 있다.Meanwhile, according to an embodiment of the present disclosure, the TBS may be determined using at least some of the mcs-Table and I MCS values determined through the above embodiments.
구체적으로, DCI에 포함된 MCS index 에 의해 지시되는 부호율이 reserved인 경우 (혹은 MCS index가 reserved를 지시하는 경우), 단말은 상기 DCI에 의해 스케줄링된 TBS의 값을 가장 최근에 전송된 TBS의 값과 동일하게 설정할 수 있다. 이 때 상기 DCI에 의해 스케줄링된 TB는 상기 가장 최근에 전송된 TB의 재전송이거나 신규 전송을 위한 TB일 수 있다. Specifically, when the code rate indicated by the MCS index included in the DCI is reserved (or when the MCS index indicates reserved), the UE sets the value of the TBS scheduled by the DCI to that of the most recently transmitted TBS. It can be set equal to the value. In this case, the TB scheduled by the DCI may be a retransmission of the most recently transmitted TB or a TB for new transmission.
구체적으로, 본 개시의 일 실시예에 따르면, 표 15가 제1 DCI 내의 Modulation and coding scheme 필드(IMCS)의 값을 위한 mcs-Table로 사용되고, 단말이 수신한 제1 DCI에 포함된 IMCS의 값이 28 이상 31 이하인 경우 (즉, 상기 DCI에 포함된 MCS index가 reserved를 지시하는 경우), 상기 제1 DCI를 통해 스케줄링되는 TB의 크기(TBS)는, 표 15의 0 이상 27 이하의 값, 혹은 표 14의 0 이상 28 이하의 값, 혹은 표 16의 0 이상 28 이하의 값에 상응하는 MCS 인덱스 (IMCS)(즉, 부호율 reserved를 지시하지 않는 MCS index)를 포함하는, 같은 TB를 위해 전송된 가장 최근의 PDCCH(the latest PDCCH)를 통해 전송된 제2 DCI에 의해 결정된 TBS와 같을 수 있다.Specifically, according to an embodiment of the present disclosure, Table 15 is used as an mcs-Table for the value of the Modulation and Coding Scheme field (I MCS ) in the first DCI, and I MCS included in the first DCI received by the UE. When the value of is 28 or more and 31 or less (that is, when the MCS index included in the DCI indicates reserved), the size (TBS) of a TB scheduled through the first DCI is 0 or more and 27 or less in Table 15. value, or a value of 0 or more and 28 or less of Table 14, or an MCS index (I MCS ) corresponding to a value of 0 or more and 28 or less of Table 16 (ie, MCS index that does not indicate code rate reserved). It may be the same as the TBS determined by the second DCI transmitted through the latest PDCCH (the latest PDCCH) transmitted for the TB.
본 개시의 일 실시예에 따르면, 표 14 혹은 표 16이 제1 DCI내의 Modulation and coding scheme 필드(IMCS)의 값을 위한 mcs-Table로 사용되고, 단말이 수신한 제1 DCI에 포함된 IMCS의 값이 29 이상 31 이하인 경우 (혹은 MCS index가 reserved를 지시하는 경우), 상기 제1 DCI을 통해 스케줄링되는 TB의 크기(TBS)는, 표 14의 0 이상 28 이하의 값, 혹은 표 16의 0 이상 28 이하의 값, 혹은 표 15의 0 이상 27 이하의 값에 상응하는 MCS 인덱스 (IMCS)를 포함하는, 같은 TB를 위해 전송된 가장 최근의 PDCCH(the latest PDCCH)를 통해 전송된 제2 DCI에 의해 결정된 TBS와 같을 수 있다.According to an embodiment of the present disclosure, Table 14 or Table 16 is used as the mcs-Table for the value of the Modulation and Coding Scheme field (I MCS ) in the first DCI, and I MCS included in the first DCI received by the UE. When the value of is 29 or more and 31 or less (or when the MCS index indicates reserved), the size (TBS) of a TB scheduled through the first DCI is a value of 0 or more and 28 or less in Table 14, or a value in Table 16. The first transmitted through the most recent PDCCH (the latest PDCCH) transmitted for the same TB, including the MCS index (I MCS ) corresponding to a value of 0 or more and 28 or less, or a value of 0 or more and 27 or less in Table 15 2 It may be the same as TBS determined by DCI.
도 14는 본 개시의 일 실시예에 따른 단말의 트랜스포트 블록의 크기를 획득하는 방법의 일 예를 도시한 도면이다.14 is a diagram illustrating an example of a method of obtaining the size of a transport block of a terminal according to an embodiment of the present disclosure.
도 14를 참고하면, 단말은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 PDCCH를 모니터링할 수 있다 (미도시). 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. Referring to FIG. 14 , the UE may monitor the PDCCH in at least one search space according to the above embodiments (not shown). The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly configured only for a specific group i for group communication.
상기 모니터링의 결과 단말은 CRC가 제1 RNTI (RNTI #1)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)를 스케줄링하는 제1 DCI (DCI #1)를 수신할 수 있다 (1401). 상기 제1 RNTI (RNTI #1)은 그룹 공통의 RNTI이고, 제1 PDSCH (PDSCH #1)은 그룹 공통의 PDSCH에 해당할 수 있다. As a result of the monitoring, the UE may receive the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1) (1401). The first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
또한, 단말은 CRC가 제2 RNTI (RNTI #2)에 의해 스크램블링된, 제2 PDSCH (PDSCH #2)를 스케줄링하는 제2 DCI (DCI #2)를 수신할 수 있다 (1402). 상기 제 2 RNTI (RNTI #2)는 단말 특정 RNTI (UE-specific RNTI, 예를 들어, C-RNTI)이고, 제2 PDSCH (PDSCH #2)는 단말 특정 PDSCH에 해당할 수 있다.In addition, the UE may receive a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2) (1402). The second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
단말은 예를 들어, 도 11과 같은 과정을 통하여 제2 DCI (DCI #2)에 포함된 MCS 인덱스 (IMCS)의 값에 상응하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위한 mcs-Table을 결정할 수 있다 (1403). 예를 들어 상기 mcs-Table은 수신된 DCI의 스크램블링에 사용된 에 기반하여 결정될 수 있다. 예를 들어, 제2 RNTI에 기반하여 스크램블링된 경우, 상기 mcs-Table은 유니캐스트 PDSCH를 위해 설정되는 mcs-Table에 해당할 수 있다. The terminal, for example, mcs for determining the modulation order (Qm) and the target code rate R corresponding to the value of the MCS index (I MCS ) included in the second DCI (DCI #2) through the process as shown in FIG. 11 . -Table can be determined (1403). For example, the mcs-Table may be determined based on mc used for scrambling of the received DCI. For example, when scrambled based on the second RNTI, the mcs-Table may correspond to an mcs-Table configured for the unicast PDSCH.
한편, 상기 1401 단계와 1402 단계는 본 개시의 실시예에 따라 변경될 수 있다. 즉, 1401 단계와 1402 단계의 순서가 변경되거나, 단말은 1401 단계와 1402 단계에서 제1 RNTI로 스크램블링된 제1 DCI를 수신할 수 있으며, 또는 단말은 1401 단계와 1402 단계에서 제2 RNTI로 스크램블링된 제2 DCI를 수신할 수 있다. 또는, 1401 단계와 1402 단계는 각각 제1 DCI와 제2 DCI를 수신하는 단계로 변경될 수 있으며, 상기 제1 DCI와 제2 DCI는 특정 RNTI에 한정되지 않을 수 있다. 단말은 후술하는 바와 같이 제2 DCI에 포함된 MCS index의 값이 미리 정해진 값 또는 특정 값 이상인 경우, 제2 DCI에 의해 스케줄링된 제2 PDSCH를 통해 전송되는 TBS는 제1 DCI에 의해 스케줄링된 제1 PDSCH를 통해 전송된 TBS와 동일하게 판단할 수 있다. Meanwhile, steps 1401 and 1402 may be changed according to an embodiment of the present disclosure. That is, the order of steps 1401 and 1402 is changed, or the terminal may receive the first DCI scrambled with the first RNTI in steps 1401 and 1402, or the terminal may scramble with the second RNTI in steps 1401 and 1402. The second DCI may be received. Alternatively, steps 1401 and 1402 may be changed to receiving the first DCI and the second DCI, respectively, and the first DCI and the second DCI may not be limited to a specific RNTI. As will be described later, when the value of the MCS index included in the second DCI is equal to or greater than a predetermined value or a specific value, the UE transmits the TBS transmitted through the second PDSCH scheduled by the second DCI to the first scheduled by the first DCI. 1 It can be determined the same as the TBS transmitted through the PDSCH.
구체적으로, 단말은 제2 DCI에 포함된 IMCS의 값이 특정 값 1(임계 값 1 또는 value 1) 이상인지 여부를 결정할 수 있다 (1404). 상기 특정 값은 1403 과정에서 결정된 mcs-Table에 의해 결정될 수 있다. 예를 들어 상기 mcs-Table이 표 15에 해당하는 경우 상기 특정 값은 28, 표 14 혹은 표 16에 해당하는 경우 상기 특정 값은 29에 해당할 수 있다. 또한, 그룹 공통의 mcs-Table이 별도로 설정되는 경우, 상기 특정 값은 mcs-Table의 target code rate과 spectral efficiency가 reserved인 값일 수 있다. Specifically, the UE may determine whether the value of I MCS included in the second DCI is greater than or equal to a specific value 1 (threshold value 1 or value 1) ( 1404 ). The specific value may be determined by the mcs-Table determined in step 1403 . For example, if the mcs-Table corresponds to Table 15, the specific value may correspond to 28, and if the mcs-Table corresponds to Table 14 or 16, the specific value may correspond to 29. In addition, when the group common mcs-Table is separately set, the specific value may be a value for which the target code rate and spectral efficiency of the mcs-Table are reserved.
단말은 1404 과정에 따라, 제2 DCI에 포함된 IMCS의 값이 특정 값 1(value 1) 이상인 경우, 상기 제2 DCI를 통해 스케줄링된 제2 PDSCH의 TBS는 제1 DCI에 상응하는 mcs-Table 및 제1 DCI에 포함된 IMCS의 값에 의해 결정된 TBS와 같은 것으로 결정할 수 있다 (1405). 상기 제1 DCI에 상응하는 mcs-Table은 기지국이 그룹 공통의 PDSCH 전송을 위해 설정한 mcs-Table일 수 있다. According to process 1404, when the value of I MCS included in the second DCI is greater than or equal to a specific value 1 (value 1) according to the process 1404, the UE determines that the TBS of the second PDSCH scheduled through the second DCI is mcs- corresponding to the first DCI. It can be determined to be the same as the TBS determined by the value of I MCS included in the Table and the first DCI (1405). The mcs-Table corresponding to the first DCI may be an mcs-Table configured by the base station for group common PDSCH transmission.
상기 제1 DCI에 상응하는 mcs-Table이 표 15인 경우 상기 제1 DCI에 포함된 IMCS의 값은 0 이상 27 이하의 값을 가질 수 있고, 상기 제1 DCI에 상응하는 mcs-Table이 표 14인 경우 상기 제1 DCI에 포함된 IMCS의 값은 0 이상 28 이하의 값을 가질 수 있고, 상기 제1 DCI에 상응하는 mcs-Table이 표 16인 경우 상기 제 1 DCI에 포함된 IMCS 비트필드의 값은 0 이상 28 이하의 값을 가질 수 있다. 또한, 그룹 공통의 mcs-Table이 별도로 설정되는 경우, 상기 제1 DCI에 포함된 IMCS의 값은 mcs-Table의 target code rate과 spectral efficiency가 reserved가 아닌 값일 수 있다. When the mcs-Table corresponding to the first DCI is Table 15, the value of I MCS included in the first DCI may have a value of 0 or more and 27 or less, and the mcs-Table corresponding to the first DCI is shown in Table 15. In the case of 14, the value of I MCS included in the first DCI may have a value of 0 or more and 28 or less, and when the mcs-Table corresponding to the first DCI is Table 16, I MCS included in the first DCI The value of the bit field may have a value of 0 or more and 28 or less. In addition, when the group common mcs-Table is separately configured, the value of I MCS included in the first DCI may be a value in which the target code rate and spectral efficiency of the mcs-Table are not reserved.
단말은 1404 과정에 따라, 제2 DCI에 포함된 IMCS의 값이 특정 값 1(value 1) 미만인 경우, 제2 DCI에 상응하는 mcs-Table 및 제 2 DCI에 포함된 IMCS의 값에 따라 TBS를 결정(계산)할 수 있다 (1406).According to the process 1404, when the value of I MCS included in the second DCI is less than a specific value 1 (value 1), the terminal according to the mcs-Table corresponding to the second DCI and the value of I MCS included in the second DCI A TBS may be determined (computed) (1406).
이에 따른 기지국의 동작은 하기와 같을 수 있다. 기지국은 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 DCI를 전송할 수 있다. 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. Accordingly, the operation of the base station may be as follows. The base station may transmit DCI in at least one search space according to embodiments. The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
이 때, 기지국은 CRC가 제1 RNTI (RNTI #1)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)를 스케줄링하는 제1 DCI (DCI #1)를 전송할 수 있다. 상기 제1 RNTI (RNTI #1)은 그룹 공통의 RNTI이고, 제1 PDSCH (PDSCH #1)은 그룹 공통의 PDSCH에 해당할 수 있다. 또한, 단말은 CRC가 제2 RNTI (RNTI #2)에 의해 스크램블링된, 제2 PDSCH (PDSCH #2)를 스케줄링하는 제2 DCI (DCI #2)를 전송할 수 있다. 상기 제 2 RNTI (RNTI #2)는 단말 특정 RNTI (UE-specific RNTI, 예를 들어, C-RNTI)이고, 제2 PDSCH (PDSCH #2)는 단말 특정 PDSCH에 해당할 수 있다.In this case, the base station may transmit a first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1). The first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH. In addition, the UE may transmit a second DCI (DCI #2) scheduling the second PDSCH (PDSCH #2), in which the CRC is scrambled by the second RNTI (RNTI #2). The second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
그리고, 기지국은 제2 DCI에 포함될 변조 오더(Qm)과 타겟 부호율 R에 상응하는 MCS 인덱스 (IMCS)의 값을 결정하기 위한 mcs-Table을 결정할 수 있다. 예를 들어, 기지국은 상기 제2 DCI가 group common DCI인지 unicast DCI인지 여부를 확인할 수 있다. 또는, 기지국은 상기 제2 DCI에 의해 스케줄링되는 제2 PDSCH가 group common PDSCH인지 unicast PDSCH 여부를 확인할 수 있다. 예를 들어, group common DCI 또는 group common PDSCH인 경우, 기지국은 group common PDSCH를 위해 설정되는 mcs-Table을 이용하여 MCS 인덱스를 결정할 수 있다. 한편, 상기 제1 DCI와 제2 DCI는 특정 RNTI에 한정되지 않을 수 있다. In addition, the base station may determine the mcs-Table for determining the value of the modulation order (Qm) to be included in the second DCI and the MCS index (I MCS ) corresponding to the target code rate R. For example, the base station may check whether the second DCI is a group common DCI or a unicast DCI. Alternatively, the base station may check whether the second PDSCH scheduled by the second DCI is a group common PDSCH or a unicast PDSCH. For example, in the case of group common DCI or group common PDSCH, the base station may determine the MCS index by using the mcs-Table configured for the group common PDSCH. Meanwhile, the first DCI and the second DCI may not be limited to a specific RNTI.
또한, 기지국은 제1 DCI에 포함된 IMCS의 값에 의해 결정된 TBS와 같은 TBS를 갖는 데이터를 전송하고자 하는 경우, 기지국은 제2 DCI에 포함된 MCS 인덱스의 값을 특정 값 1(임계 값 1 또는 value 1) 이상으로 설정할 수 있다. 상기 특정 값은 상기 결정된 mcs-Table에 의해 결정될 수 있다. 예를 들어 상기 mcs-Table이 표 15에 해당하는 경우 상기 특정 값은 28, 표 14 혹은 표 16에 해당하는 경우 상기 특정 값은 29에 해당할 수 있다. 또한, 그룹 공통의 mcs-Table이 별도로 설정되는 경우, 상기 특정 값은 mcs-Table의 target code rate과 spectral efficiency가 reserved인 값일 수 있다. In addition, when the base station intends to transmit data having the same TBS as the TBS determined by the value of I MCS included in the first DCI, the base station sets the value of the MCS index included in the second DCI to a specific value 1 (threshold value 1). Alternatively, it can be set to value 1) or higher. The specific value may be determined by the determined mcs-Table. For example, if the mcs-Table corresponds to Table 15, the specific value may correspond to 28, and if the mcs-Table corresponds to Table 14 or 16, the specific value may correspond to 29. In addition, when the group common mcs-Table is separately set, the specific value may be a value for which the target code rate and spectral efficiency of the mcs-Table are reserved.
한편, 기지국은 제1 DCI에 포함된 MCS 인덱스의 값에 의해 결정된 TBS와 다른 TBS를 갖는 데이터를 전송하고자 하는 경우 혹은, 새로운 데이터를 전송하고자 하는 경우), 기지국은 제2 DCI에 포함된 MCS 인덱스의 값을 특정 값 1(value 1) 미만으로 설정할 수 있다. On the other hand, when the base station wants to transmit data having a TBS different from the TBS determined by the value of the MCS index included in the first DCI or when new data is to be transmitted), the base station MCS index included in the second DCI The value of can be set to less than a specific value 1 (value 1).
본 개시의 일 실시예에 따르면, 스케줄링된 순간 데이터율은 수학식 7과 같다. L은 PDSCH에 할당된 OFDM 심볼 개수를, M은 해당 PDSCH에서 전송되는 TB의 개수를 뜻한다.
Figure PCTKR2022000913-appb-I000128
Figure PCTKR2022000913-appb-I000129
로 계산될 수 있으며,
Figure PCTKR2022000913-appb-I000130
는 PDSCH 전송에 사용되는 부반송파 간격을 뜻한다. m번째 TB에 있어서,
Figure PCTKR2022000913-appb-I000131
Figure PCTKR2022000913-appb-I000132
로 계산될 수 있으며, A는 TB의 크기 (TBS)이며, C는 TB에 포함된 코드블록(code block, CB)의 개수이며, C'은 해당 TB에서 스케줄된 코드블록의 개수이다. CBG (code block group) 재전송의 경우에는 C와 C'은 다를 수 있다.
Figure PCTKR2022000913-appb-I000133
는 x보다 크지 않은 최대 정수를 의미한다.
According to an embodiment of the present disclosure, the scheduled instantaneous data rate is expressed by Equation (7). L denotes the number of OFDM symbols allocated to the PDSCH, and M denotes the number of TBs transmitted in the corresponding PDSCH.
Figure PCTKR2022000913-appb-I000128
Is
Figure PCTKR2022000913-appb-I000129
can be calculated as
Figure PCTKR2022000913-appb-I000130
denotes a subcarrier interval used for PDSCH transmission. In the mth TB,
Figure PCTKR2022000913-appb-I000131
Is
Figure PCTKR2022000913-appb-I000132
, where A is the size of the TB (TBS), C is the number of code blocks (CBs) included in the TB, and C' is the number of code blocks scheduled in the TB. In the case of CBG (code block group) retransmission, C and C' may be different.
Figure PCTKR2022000913-appb-I000133
is the largest integer not greater than x.
[수학식 7][Equation 7]
Figure PCTKR2022000913-appb-I000134
Figure PCTKR2022000913-appb-I000134
본 개시의 일 실시예에 따르면, 한 개 캐리어(carrier) 혹은 서빙셀에서 단말이 지원하는 최대 데이터율 DataRateCC 는 수학식 6에 기반하여 결정되거나, 혹은 수학식 8과 같이 계산될 수 있다. 수학식 8은 j번째 서빙셀의 DataRateCC 를 계산하는 한 예를 나타낸 것이다. 수학식 8에 포함된 파라미터들은 수학식 6에서 설명하였으므로 여기서는 생략한다.According to an embodiment of the present disclosure, the maximum data rate DataRateCC supported by the UE in one carrier or serving cell may be determined based on Equation 6 or calculated as Equation 8. Equation 8 shows an example of calculating the DataRateCC of the j-th serving cell. Since the parameters included in Equation 8 have been described in Equation 6, they are omitted here.
[수학식 8][Equation 8]
Figure PCTKR2022000913-appb-I000135
Figure PCTKR2022000913-appb-I000135
본 개시의 일 실시예에 따르면, J개의 서빙셀에서 전송되는 순간 데이터율은 수학식 9와 같다.According to an embodiment of the present disclosure, the instantaneous data rate transmitted in the J serving cells is as shown in Equation (9).
[수학식 9][Equation 9]
Figure PCTKR2022000913-appb-I000136
Figure PCTKR2022000913-appb-I000136
본 개시의 일 실시예에 따르면, 수학식 9의 값과 수학식 6의 값의 비교를 통해 단말에 설정된 캐리어들 혹은 서빙셀들에서의 실제 순간 데이터율이 상기 캐리어들 혹은 상기 서빙셀들에서의 단말의 능력(capability)를 만족하는지 여부가 확인될 수 있다. 상기 비교는 초기전송과 재전송을 포함한 모든 경우에 적용되는 조건일 수 있다. 즉, 수학식 9의 값 (서빙셀(들)에 대한 순간 데이터율)이 수학식 6의 값 (서빙셀(들)에서 단말이 지원하는 최대 데이터율)보다 작거나 같을 경우, 단말은 PDSCH를 수신하고 디코딩하여 HARQ-ACK 정보를 피드백할 수 있다. 그렇지 않은 경우 (즉, 서빙셀(들)에 대한 순간 데이터율이 서빙셀(들)에서 단말이 지원하는 최대 데이터율보다 큰 경우) 단말은 상기 PDSCH를 스케줄링한 정보를 무시하거나, PDSCH를 수신하지 않거나, PDSCH의 디코딩을 수행하지 않거나, HARQ-ACK 정보를 NACK으로 설정하거나, HARQ-ACK 정보를 피드백하지 않을 수 있다.According to an embodiment of the present disclosure, the actual instantaneous data rate in carriers or serving cells set in the terminal is determined by comparing the value of Equation 9 and the value of Equation 6 in the carriers or the serving cells. It may be checked whether the capability of the terminal is satisfied. The comparison may be a condition applied to all cases including initial transmission and retransmission. That is, when the value of Equation 9 (instantaneous data rate for the serving cell(s)) is less than or equal to the value of Equation 6 (the maximum data rate supported by the UE in the serving cell(s)), the UE selects the PDSCH HARQ-ACK information can be fed back by receiving and decoding. Otherwise (that is, when the instantaneous data rate for the serving cell(s) is greater than the maximum data rate supported by the UE in the serving cell(s)), the UE ignores the PDSCH scheduling information, or does not receive the PDSCH Otherwise, decoding of the PDSCH may not be performed, HARQ-ACK information may be set to NACK, or HARQ-ACK information may not be fed back.
본 개시의 일 실시예에 따르면, 기지국은 한 개 그룹에 속한 단말들 각각에 대해 서빙셀(들)에서 단말이 지원하는 최대 데이터율 (수학식 6의 값)을 확인하고, 상기 최대 데이터율의 최소값 (수학식 6의 값 중 최소값)을 확인하고, 서빙셀(들)에 대한 순간 데이터율 (수학식 9)의 값이 상기 그룹에 속한 단말들의 각각에 대한 최대 데이터율의 최소값 (수학식 6 값의 최소값) 이하가 되도록 상기 단말의 그룹에 그룹 공통의 PDSCH를 그룹 공통의 PDCCH를 통하여 스케줄링할 수 있다.According to an embodiment of the present disclosure, the base station checks the maximum data rate (value of Equation 6) supported by the terminal in the serving cell(s) for each of the terminals belonging to one group, and Check the minimum value (the minimum value among the values of Equation 6), and the value of the instantaneous data rate (Equation 9) for the serving cell(s) is the minimum value of the maximum data rate for each of the terminals belonging to the group (Equation 6) value) or less, the group common PDSCH to the group of the terminal may be scheduled through the group common PDCCH.
본 개시의 일 실시예에 따르면, 단말은 서빙셀(들)에 대한 순간 데이터율 (수학식 9의 값)이 서빙셀(들)에서 단말이 지원하는 최대 데이터율의 값 (또는 복수의 단말에 대한 최대 데이터율의 값 (수학식 6의 값)보다 작거나 같을 경우, 단말은 그룹 공통의 PDSCH를 수신하고 디코딩하여 HARQ-ACK 정보를 피드백할 수 있다. 그렇지 않은 경우 단말은 상기 그룹 공통의 PDSCH를 스케줄링한 정보를 무시하거나, 그룹 공통의 PDSCH를 수신하지 않거나, 그룹 공통의 PDSCH의 디코딩을 수행하지 않거나, HARQ-ACK 정보를 NACK으로 설정하거나, HARQ-ACK 정보를 피드백하지 않을 수 있다.According to an embodiment of the present disclosure, the terminal has the instantaneous data rate (the value of Equation 9) for the serving cell(s) is the value of the maximum data rate supported by the terminal in the serving cell(s) (or to a plurality of terminals) If it is less than or equal to the value of the maximum data rate (the value of Equation 6), the UE may feed back HARQ-ACK information by receiving and decoding the group common PDSCH. It is possible to ignore scheduling information, do not receive group common PDSCH, do not perform group common PDSCH decoding, set HARQ-ACK information to NACK, or not feed back HARQ-ACK information.
본 개시의 일 실시예에 따르면, 수학식 7의 값과 수학식 8의 값의 비교를 통해 한 개 캐리어 혹은 서빙셀에서의 실제 순간 데이터율이 상기 캐리어 혹은 상기 서빙셀에서의 단말의 능력(capability)를 만족하는지 여부가 확인될 수 있다. 상기 비교는 재전송에 적용되는 조건일 수 있다. 즉 한 개의 캐리어 혹은 서빙셀에서의 순간 데이터율의 값 (수학식 7의 값)이 한 개의 캐리어 혹은 서빙셀에서 단말이 지원하는 최대 데이터율 (수학식 8의 값)보다 작거나 같을 경우, 단말은 PDSCH를 수신하고 디코딩하여 HARQ-ACK 정보를 피드백할 수 있다. 그렇지 않은 경우 단말은 상기 PDSCH를 스케줄링한 정보를 무시하거나, PDSCH를 수신하지 않거나, PDSCH의 디코딩을 수행하지 않거나, HARQ-ACK 정보를 NACK으로 설정하거나, HARQ-ACK 정보를 피드백하지 않을 수 있다.According to an embodiment of the present disclosure, by comparing the value of Equation 7 and the value of Equation 8, the actual instantaneous data rate in one carrier or serving cell is determined by the capability of the terminal in the carrier or the serving cell. ) can be verified. The comparison may be a condition applied to retransmission. That is, when the value of the instantaneous data rate (value of Equation 7) in one carrier or serving cell is less than or equal to the maximum data rate (value in Equation 8) supported by the UE in one carrier or serving cell, the UE may receive and decode the PDSCH to feed back HARQ-ACK information. Otherwise, the UE ignores the PDSCH scheduling information, does not receive PDSCH, does not perform PDSCH decoding, sets HARQ-ACK information to NACK, or may not feed back HARQ-ACK information.
본 개시의 일 실시예에 따르면, 기지국은 한 개 그룹에 속한 단말들 각각에 대해 한 개의 캐리어 혹은 서빙셀에서 단말이 지원하는 최대 데이터율의 값 (수학식 8의 값)을 확인하고, 상기 단말들에 대한 최대 데이터율의 최소 값 (단말들 각각의 수학식 8의 값 중 최소값)을 확인하고, 한 개의 캐리어 혹은 서빙셀에서의 순간 데이터율의 값 (수학식 7의 값)이 한 개의 캐리어 혹은 서빙셀에서 상기 그룹에 속한 단말들에 대한 최대 데이터율의 최소값 (수학식 6 값의 최소값) 이하가 되도록 상기 단말의 그룹에 그룹 공통의 재전송 PDSCH를 그룹 공통의 PDCCH 혹은 단말 특정 PDCCH를 통하여 스케줄링할 수 있다.According to an embodiment of the present disclosure, the base station checks the maximum data rate value (the value of Equation 8) supported by the terminal in one carrier or serving cell for each of the terminals belonging to one group, and the terminal Check the minimum value of the maximum data rate for each of the terminals (the minimum value among the values of Equation 8 of each of the terminals), and the value of the instantaneous data rate (the value of Equation 7) in one carrier or serving cell is one carrier Or, in the serving cell, the group common retransmission PDSCH to the group of terminals is scheduled to be less than or equal to the minimum value (the minimum value of Equation 6) of the maximum data rate for the terminals belonging to the group through the group common PDCCH or the terminal specific PDCCH. can do.
본 개시의 일 실시예에 따르면, 단말은 한 개의 캐리어 혹은 서빙셀에서의 순간 데이터율의 값이 상기 단말들에 대한 최대 데이터율의 최소값보다 작거나 같을 경우, 단말은 그룹 공통의 재전송 PDSCH를 수신하고 디코딩하여 HARQ-ACK 정보를 피드백할 수 있다. 그렇지 않은 경우 단말은 상기 그룹 공통의 재전송 PDSCH를 스케줄링한 정보를 무시하거나, 그룹 공통의 재전송 PDSCH를 수신하지 않거나, 그룹 공통의 재전송 PDSCH의 디코딩을 수행하지 않거나, HARQ-ACK 정보를 NACK으로 설정하거나, HARQ-ACK 정보를 피드백하지 않을 수 있다.According to an embodiment of the present disclosure, when the value of the instantaneous data rate in one carrier or serving cell is less than or equal to the minimum value of the maximum data rate for the terminals, the terminal receives the group common retransmission PDSCH and decode to feed back HARQ-ACK information. Otherwise, the terminal ignores the group common retransmission PDSCH scheduling information, does not receive the group common retransmission PDSCH, does not perform decoding of the group common retransmission PDSCH, or sets HARQ-ACK information to NACK, or , HARQ-ACK information may not be fed back.
본 개시의 일 실시예에 따르면, 기지국은 그룹 공통 PDSCH 전송에 대해 NACK을 피드백한 그룹 내의 단말들을 식별하고, 상기 단말들 각각에 대해 한 개의 캐리어 혹은 서빙셀에서 단말이 지원하는 최대 데이터율의 값 (상기 단말들 각각의 수학식 8의 값)들을 확인하고, 상기 단말들 각각에 대해 한 개의 캐리어 혹은 서빙셀에서의 순간 데이터율 (수학식 7의 값)들이 상기 단말들 각각에 대한 최대 데이터율의 값 (수학식 8의 값) 이하가 되도록 상기 단말들 별로 단말 특정 재전송 PDSCH들을 단말 특정 PDCCH들을 통하여 스케줄링할 수 있다.According to an embodiment of the present disclosure, the base station identifies the terminals in the group that have fed back NACK for group common PDSCH transmission, and the value of the maximum data rate supported by the terminal in one carrier or serving cell for each of the terminals. (values of Equation 8 of each of the terminals), and the instantaneous data rates (values of Equation 7) in one carrier or serving cell for each of the terminals are the maximum data rates for each of the terminals UE-specific retransmission PDSCHs for each UE may be scheduled through UE-specific PDCCHs so as to be less than or equal to the value of Equation (8).
본 개시의 일 실시예에 따르면, 단말은 한 개의 캐리어 혹은 서빙셀에서의 순간 데이터율 (수학식 7의 값)이 한 개의 캐리어 혹은 서빙셀에서의 최대 데이터율 (수학식 8의 값)보다 작거나 같을 경우, 단말은 그룹 공통 PDSCH 전송에 대한 재전송으로써 전송된 단말 특정 재전송 PDSCH를 수신하고 디코딩하여 HARQ-ACK 정보를 피드백할 수 있다. 그렇지 않은 경우 단말은 상기 그룹 공통 PDSCH 전송에 대한 재전송으로써 전송된 단말 특정 재전송 PDSCH를 스케줄링한 정보를 무시하거나, 상기 그룹 공통 PDSCH 전송에 대한 재전송으로써 전송된 단말 특정 재전송 PDSCH를 수신 혹은 디코딩하지 않거나, HARQ-ACK 정보를 NACK으로 설정하거나, HARQ-ACK 정보를 피드백하지 않을 수 있다. According to an embodiment of the present disclosure, the terminal has an instantaneous data rate (value of Equation 7) in one carrier or serving cell is less than the maximum data rate (value in Equation 8) in one carrier or serving cell. or equal to, the UE may receive and decode the UE-specific retransmission PDSCH transmitted as a retransmission for the group common PDSCH transmission to feed back HARQ-ACK information. Otherwise, the terminal ignores the information on scheduling the terminal-specific retransmission PDSCH transmitted as retransmission for the group common PDSCH transmission, or does not receive or decode the terminal-specific retransmission PDSCH transmitted as the retransmission for the group common PDSCH transmission, HARQ-ACK information may be set to NACK, or HARQ-ACK information may not be fed back.
본 개시의 상기 실시예들과 같은 기지국의 스케줄링 제약 혹은 단말의 동작에 따라 재전송이 스케줄링되지 못하는 경우가 많이 발생할 수 있다. There may be many cases in which retransmission cannot be scheduled according to the scheduling constraints of the base station or the operation of the terminal as in the above embodiments of the present disclosure.
본 개시의 일 실시예에 따르면, 재전송을 스케줄링하는 DCI에 설정된 mcs-Table이 표 14 혹은 표 16인 경우 IMCS 값이 29~31의 값일 때, 표 15인 경우 IMCS 값이 28~31의 값일 때, 혹은 새롭게 추가되는 mcs-Table (혹은 그룹 통신에 대해 정의된 mcs-Table)이 사용되고 수신된 DCI에 포함된 IMCS 값이 상기 새롭게 추가되는 mcs-Table의 Target code rate 및 spectral efficiency가 reserved에 해당하는 경우, 단말은 상기 DCI를 재전송을 지시하는 DCI로 이해할 수 있다. 또한 다른 IMCS 값을 사용되더라도 상기 실시예들에 따른 조건을 만족하는 경우 재전송이 수행될 수 있다. According to an embodiment of the present disclosure, when the mcs-Table set in DCI for scheduling retransmission is Table 14 or Table 16, when the I MCS value is a value of 29 to 31, in Table 15, the I MCS value is 28 to 31 value, or a newly added mcs-Table (or an mcs-Table defined for group communication) is used and the I MCS value included in the received DCI is reserved for the target code rate and spectral efficiency of the newly added mcs-Table. In the case of , the UE may understand the DCI as a DCI indicating retransmission. Also, even if a different I MCS value is used, retransmission may be performed when the conditions according to the above embodiments are satisfied.
본 개시의 일 실시예에 따르면, 기지국이 단말 혹은 단말들의 그룹에 전송된 그룹 공통의 PDSCH(group-common PDSCH)에 대한 재전송이 이루어 질 때, 상기 실시예들에서 개시된 스케줄링 대한 제약 (예를 들어, 순간 데이터율과 단말이 지원하는 최대 데이터율의 비교 또는 수학식 7의 값과 수학식 8의 값의 비교)을 고려하는 것을 특정한 경우로 한정할 수 있다. According to an embodiment of the present disclosure, when the base station retransmits a group-common PDSCH (PDSCH) transmitted to a terminal or a group of terminals, the scheduling restrictions (eg, , the comparison of the instantaneous data rate and the maximum data rate supported by the terminal or the comparison of the value of Equation 7 and the value of Equation 8) may be limited to a specific case.
예를 들어, 재전송 그룹 공통의 PDSCH 혹은 재전송 단말 특정 PDSCH에 할당된 심볼 개수 L이 특정 심볼 개수(예를 들어 7)보다 작을 경우만으로 한정할 수 있다. 즉 상기 조건을 만족하지 않는 경우에는 상기 스케줄링에 대한 제약 (예를 들어, 순간 데이터율과 단말이 지원하는 최대 데이터율의 비교 또는 상기 수학식 7의 값과 수학식 8의 값의 비교)를 고려하지 않는 방법을 포함할 수 있다.For example, it can be limited only when the number of symbols L allocated to the retransmission group common PDSCH or the retransmission terminal specific PDSCH is less than the specific symbol number (eg, 7). That is, when the above condition is not satisfied, the scheduling constraints (for example, comparison of the instantaneous data rate and the maximum data rate supported by the terminal or comparison of the value of Equation 7 and the value of Equation 8) are considered. There may be ways not to do it.
또 다른 예를 들어, 재전송 그룹 공통의 PDSCH 혹은 재전송 단말 특정 PDSCH에 할당된 심볼 개수 L이 그룹 공통의 PDSCH 초기 전송에 사용된 심볼 개수 L보다 작을 경우만으로 한정할 수 있다. 즉 상기 조건을 만족하지 않는 경우에는 상기 스케줄링에 대한 제약 (순간 데이터율과 단말이 지원하는 최대 데이터율의 비교 또는 상기 수학식 7의 값과 수학식 8의 값의 비교)를 고려하지 않는 방법을 포함할 수 있다.As another example, it can be limited only when the number of symbols L allocated to a common retransmission group PDSCH or a retransmission terminal-specific PDSCH is smaller than the number L of symbols used for initial transmission of the group common PDSCH. That is, if the above condition is not satisfied, a method of not considering the scheduling constraints (a comparison of an instantaneous data rate and a maximum data rate supported by the terminal or a comparison of the value of Equation 7 and the value of Equation 8) may include
또 다른 예를 들어, 재전송 그룹 공통의 PDSCH 혹은 재전송 단말 특정 PDSCH에 할당된 심볼 개수 L이 그룹 공통의 PDSCH 초기 전송에 사용된 심볼 개수 L보다 작고, 특정 심볼 개수(예를 들어, 7)보다 작을 경우만으로 한정할 수 있다. 즉 상기 조건을 만족하지 않는 경우에는 상기 스케줄링에 대한 제약 (예를 들어, 순간 데이터율과 단말이 지원하는 최대 데이터율의 비교 또는 상기 수학식 7의 값과 수학식 8의 값의 비교)를 고려하지 않는 방법을 포함할 수 있다.For another example, the number of symbols L allocated to the retransmission group common PDSCH or the retransmission terminal specific PDSCH is smaller than the number of symbols L used for the group common PDSCH initial transmission, and is smaller than the specific symbol number (eg, 7). It can be limited only to cases. That is, when the above condition is not satisfied, the scheduling constraints (for example, comparison of the instantaneous data rate and the maximum data rate supported by the terminal or comparison of the value of Equation 7 and the value of Equation 8) are considered. There may be ways not to do it.
또 다른 예를 들어, 재전송 그룹 공통의 PDSCH 혹은 재전송 단말 특정 PDSCH에 할당된 심볼 개수 L이 그룹 공통의 PDSCH 초기 전송에 사용된 심볼 개수 L-x(x 값은 예를 들어, 2 혹은 3과 같은 고정 값이 적용되거나, 기지국이 상위 시그널링를 통해 설정할 수 있다.)보다 작을 경우만으로 한정할 수 있다. 즉 상기 조건을 만족하지 않는 경우에는 상기 스케줄링에 대한 제약 (순간 데이터율과 단말이 지원하는 최대 데이터율의 비교 또는 상기 수학식 7의 값과 수학식 8의 값의 비교)를 고려하지 않는 방법일 수 있다.For another example, the number of symbols L allocated to the retransmission group common PDSCH or the retransmission terminal specific PDSCH is the number of symbols L-x used for initial transmission of the group common PDSCH (x value is, for example, a fixed value such as 2 or 3) is applied or the base station may set it through higher level signaling.). That is, if the above condition is not satisfied, the scheduling constraint (a comparison of an instantaneous data rate and a maximum data rate supported by the terminal or a comparison of the value of Equation 7 and the value of Equation 8) is not considered. can
본 개시의 일 실시예에 따르면, 상기 예들에서 PDSCH 매핑에 사용된 심볼 개수, 또는 PDSCH 전송에 할당된 심볼 수 또는 PDSCH 전송에 사용된 심볼 개수를 계산할 때, PDSCH를 위한 복조기준신호 (demodulation reference signal: DMRS) 심볼도 포함할 수 있다. 즉, PDSCH 매핑 정보를 지시하는 DCI나 상위 시그널링으로 전달된 PDSCH 전송을 위한 심볼들을 모두 세는(counting) 것일 수 있다.According to an embodiment of the present disclosure, when calculating the number of symbols used for PDSCH mapping or the number of symbols allocated for PDSCH transmission or the number of symbols used for PDSCH transmission in the above examples, a demodulation reference signal for PDSCH : DMRS) symbol may be included. That is, it may be counting all symbols for PDSCH transmission delivered through DCI or higher signaling indicating PDSCH mapping information.
도 15는 본 개시의 일 실시예에 따른 단말의 하향링크 데이터 채널의 일 예를 도시한 도면이다.15 is a diagram illustrating an example of a downlink data channel of a terminal according to an embodiment of the present disclosure.
도 15를 참고하면, 단말은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 PDCCH를 모니터링할 수 있다 (미도시). 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. Referring to FIG. 15 , the UE may monitor the PDCCH in at least one search space according to the above embodiments (not shown). The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
상기 모니터링의 결과 단말은 CRC가 제1 RNTI (RNTI #1)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)을 스케줄링하는 제1 DCI (DCI #1)을 수신할 수 있다 (1501). 상기 제1 RNTI (RNTI #1)은 그룹 공통의 RNTI이고, 제1 PDSCH (PDSCH #1)은 그룹 공통의 PDSCH에 해당할 수 있다. As a result of the monitoring, the UE may receive the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1) (1501). The first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH.
또한, 단말은 CRC가 제2 RNTI (RNTI #2)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)에 대한 재전송에 해당하는 제2 PDSCH (PDSCH #2)를 스케줄링하는 제2 DCI (DCI #2)를 수신할 수 있다 (1502). 상기 제2 RNTI (RNTI #2)는 단말 특정 RNTI (UE-specific RNTI, 예를 들어, C-RNTI)이고, 제2 PDSCH (PDSCH #2)는 단말 특정 PDSCH에 해당할 수 있다.In addition, the UE schedules a second PDSCH (PDSCH #2) corresponding to retransmission for the first PDSCH (PDSCH #1), in which the CRC is scrambled by the second RNTI (RNTI #2) (DCI # 2) can be received (1502). The second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH.
한편, 상기 1501 단계와 1502 단계는 본 개시의 실시예에 따라 변경될 수 있다. 즉, 1501 단계와 1502 단계의 순서가 변경되거나, 단말은 1501 단계와 1502 단계에서 제1 RNTI로 스크램블링된 제1 DCI를 수신할 수 있으며, 또는 단말은 1501 단계와 1502 단계에서 제2 RNTI로 스크램블링된 제2 DCI를 수신할 수 있다. 또는, 1501 단계와 1502 단계는 각각 제1 DCI와 제2 DCI를 수신하는 단계로 변경될 수 있으며, 상기 제1 DCI와 제2 DCI는 특정 RNTI에 한정되지 않을 수 있다. 그리고, 단말은 후술하는 바와 같이 time domain resource assignment의 정보에 따라 제2 PDSCH의 처리 여부를 결정할 수 있다. Meanwhile, steps 1501 and 1502 may be changed according to an embodiment of the present disclosure. That is, the order of steps 1501 and 1502 is changed, or the terminal may receive the first DCI scrambled with the first RNTI in steps 1501 and 1502, or the terminal may scramble with the second RNTI in steps 1501 and 1502. The second DCI may be received. Alternatively, steps 1501 and 1502 may be changed to receiving the first DCI and the second DCI, respectively, and the first DCI and the second DCI may not be limited to a specific RNTI. And, as described later, the UE may determine whether to process the second PDSCH according to information of time domain resource assignment.
단말은 제1 DCI에 포함된 시간 자원 할당 정보 (이하, time domain resource assignment의 정보), 제2 DCI에 포함된 time domain resource assignment 의 정보 중 적어도 한 개를 이용하여 특정 조건이 만족하는지 여부를 결정할 수 있다 (1503). 상기 특정 조건은 예를 들어, "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 특정 심볼 개수보다 작은 경우" 혹은 "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 제1 DCI에 포함된 time domain resource assignment를 통해 제1 PDSCH에 할당된 심볼 개수 L보다 작은 경우" 혹은 "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 제1 DCI에 포함된 Time domain resource assignment 비트필드를 통해 제1 PDSCH에 할당된 심볼 개수 L 및 특정 심볼 개수보다 작은 경우" 혹은 "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 제1 DCI에 포함된 time domain resource assignment를 통해 제1 PDSCH에 할당된 심볼 L-x(x 값은 예를 들어, 2 혹은 3과 같은 고정 값이 적용되거나, 기지국이 상위 시그널링를 통해 설정할 수 있다.) 개수보다 작은 경우 중 한 가지 조건에 해당할 수 있다.The UE determines whether a specific condition is satisfied by using at least one of time resource assignment information included in the first DCI (hereinafter, information of time domain resource assignment) and time domain resource assignment information included in the second DCI. can (1503). The specific condition is, for example, "when the number of symbols L allocated to the second PDSCH through time domain resource assignment included in the second DCI is smaller than the specific number of symbols" or "time domain resource assignment included in the second DCI" When the number of symbols L allocated to the second PDSCH through is less than the number of symbols L allocated to the first PDSCH through time domain resource assignment included in the first DCI” or “time domain resource assignment included in the second DCI” When the number of symbols L allocated to the second PDSCH through The number of symbols L allocated to the second PDSCH through time domain resource assignment is the number of symbols L-x allocated to the first PDSCH through time domain resource assignment included in the first DCI (x value is, for example, fixed such as 2 or 3) value is applied, or the base station may set it through higher level signaling).
1503의 과정에서 특정 조건을 만족하지 않는 경우, 단말은 상기 스케줄링에 대한 제약 (예를 들어, 순간 데이터율과 단말이 지원하는 최대 데이터율의 비교 수학식 7의 결과 값과 수학식 8의 결과 값의 비교 결과)에 상관 없이 제2 PDSCH의 처리를 수행할 수 있다 (1505). If a specific condition is not satisfied in the process 1503, the UE determines the scheduling constraint (eg, the result value of Equation 7 and the result value of Equation 8 for comparing the instantaneous data rate and the maximum data rate supported by the UE) The second PDSCH may be processed regardless of the comparison result of ( 1505 ).
1503의 과정에서 특정 조건을 만족하는 것으로 결정된 경우, 단말은 상기 스케줄링에 대한 제약을 만족하는지 여부를 확인할 수 있다. 즉, 단말은 순간 데이터율 (예를 들어, 수학식 7의 결과 값)이 단말이 지원하는 최대 데이터율 (예를 들어, 수학식 8의 결과 값)보다 작거나 같은지를 확인할 수 있다 (1504). 만약 순간 데이터율 (예를 들어, 수학식 7의 결과 값)이 단말이 지원하는 최대 데이터율 (예를 들어, 수학식 8의 결과값)보다 작거나 같은 경우 단말은 제2 PDSCH의 처리를 수행할 수 있다 (1505). If it is determined in step 1503 that a specific condition is satisfied, the UE may check whether the scheduling constraint is satisfied. That is, the terminal may check whether the instantaneous data rate (eg, the result value of Equation 7) is less than or equal to the maximum data rate supported by the terminal (eg, the result value of Equation 8) (1504) . If the instantaneous data rate (eg, the result value of Equation 7) is less than or equal to the maximum data rate supported by the UE (eg, the result value of Equation 8), the UE performs the processing of the second PDSCH Can (1505).
만약, 순간 데이터율 (예를 들어, 수학식 7의 결과 값)이 단말이 지원하는 최대 데이터율 (예를 들어, 수학식 8의 결과값)보다 큰 경우 단말은 제2 DCI를 무시할 수 있다 (1506). 즉, 제2 DCI가 스케줄링한 제2 PDSCH의 처리를 수행하지 않을 수 있다.If the instantaneous data rate (eg, the result value of Equation 7) is greater than the maximum data rate supported by the UE (eg, the result value of Equation 8), the UE may ignore the second DCI ( 1506). That is, processing of the second PDSCH scheduled by the second DCI may not be performed.
이에 따른 기지국의 동작은 하기와 같을 수 있다. 기지국은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 DCI를 전송할 수 있다. 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. Accordingly, the operation of the base station may be as follows. The base station may transmit DCI in at least one search space according to the above embodiments. The search space may include a common search space. The common search space may include a group search space commonly set only to a specific group i for group communication. Also, the search space may include a UE-specific search space. The UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
이 때 기지국은 CRC가 제1 RNTI (RNTI #1)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)을 스케줄링하는 제1 DCI (DCI #1)을 전송할 수 있다. 상기 제1 RNTI (RNTI #1)은 그룹 공통의 RNTI이고, 제1 PDSCH (PDSCH #1)은 그룹 공통의 PDSCH에 해당할 수 있다. 또한, 기지국은 CRC가 제2 RNTI (RNTI #2)에 의해 스크램블링된, 제1 PDSCH (PDSCH #1)에 대한 재전송에 해당하는 제2 PDSCH (PDSCH #2)를 스케줄링하는 제2 DCI (DCI #2)를 전송할 수 있다. 상기 제2 RNTI (RNTI #2)는 단말 특정 RNTI (UE-specific RNTI, 예를 들어, C-RNTI)이고, 제2 PDSCH (PDSCH #2)는 단말 특정 PDSCH에 해당할 수 있다. 한편 상기 제1 DCI와 제2 DCI는 특정 RNTI에 한정되지 않을 수 있다. At this time, the base station may transmit the first DCI (DCI #1) scheduling the first PDSCH (PDSCH #1), in which the CRC is scrambled by the first RNTI (RNTI #1). The first RNTI (RNTI #1) may be a group common RNTI, and the first PDSCH (PDSCH #1) may correspond to a group common PDSCH. In addition, the base station schedules a second PDSCH (PDSCH #2) corresponding to retransmission for the first PDSCH (PDSCH #1), in which the CRC is scrambled by the second RNTI (RNTI #2) (DCI # 2) can be transmitted. The second RNTI (RNTI #2) may be a UE-specific RNTI (eg, C-RNTI), and the second PDSCH (PDSCH #2) may correspond to a UE-specific PDSCH. Meanwhile, the first DCI and the second DCI may not be limited to a specific RNTI.
그리고, 기지국은 상기 단말에 데이터를 전송할 수 있다. And, the base station may transmit data to the terminal.
이 때 상기 제1 DCI에 포함된 time domain resource assignment의 정보, 제2 DCI에 포함된 time domain resource assignment 의 정보 중 적어도 한 개에 기반하여 특정 조건이 만족되지 않는 경우, 스케줄링에 대한 제약에 상관 없이 상기 데이터가 처리될 수 있다. 따라서, 기지국은 스케줄링에 대한 제약에 상관 없이 상기 데이터가 처리되도록 하기 위해 상기 DCI에 포함되는 time domain resource assignment의 정보를 설정할 수 있다. 한편, 상기 특정 조건이 만족되는 경우, 단말은 상기 스케줄링에 대한 제약에 기반하여 상기 데이터가 처리될 수 있다. 상기 특정 조건은 예를 들어, "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 특정 심볼 개수보다 작은 경우" 혹은 "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 제1 DCI에 포함된 time domain resource assignment를 통해 제1 PDSCH에 할당된 심볼 개수 L보다 작은 경우" 혹은 "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 제1 DCI에 포함된 Time domain resource assignment 비트필드를 통해 제1 PDSCH에 할당된 심볼 개수 L 및 특정 심볼 개수보다 작은 경우" 혹은 "제2 DCI에 포함된 time domain resource assignment를 통해 제2 PDSCH에 할당된 심볼 개수 L이 제1 DCI에 포함된 time domain resource assignment를 통해 제1 PDSCH에 할당된 심볼 L-x(x 값은 예를 들어, 2 혹은 3과 같은 고정 값이 적용되거나, 기지국이 상위 시그널링를 통해 설정할 수 있다.) 개수보다 작은 경우 중 한 가지 조건에 해당할 수 있다.At this time, if a specific condition is not satisfied based on at least one of the time domain resource assignment information included in the first DCI and the time domain resource assignment information included in the second DCI, regardless of the restrictions on scheduling The data may be processed. Accordingly, the base station may set information of time domain resource assignment included in the DCI in order to process the data regardless of scheduling restrictions. Meanwhile, when the specific condition is satisfied, the terminal may process the data based on the scheduling constraint. The specific condition is, for example, "when the number of symbols L allocated to the second PDSCH through time domain resource assignment included in the second DCI is smaller than the specific number of symbols" or "time domain resource assignment included in the second DCI" When the number of symbols L allocated to the second PDSCH through is less than the number of symbols L allocated to the first PDSCH through time domain resource assignment included in the first DCI” or “time domain resource assignment included in the second DCI” When the number of symbols L allocated to the second PDSCH through The number of symbols L allocated to the second PDSCH through time domain resource assignment is the number of symbols L-x allocated to the first PDSCH through time domain resource assignment included in the first DCI (x value is, for example, fixed such as 2 or 3) value is applied, or the base station may set it through higher level signaling).
본 개시의 일 실시예에 따르면, 단말은 그룹 공통 RNTI에 기반하여 스크램블링된 CRC가 부착되었는지 여부를 확인하고, 이에 기반하여 그룹 통신을 위한 스케줄링 정보가 수신되었는지 확인되면, 상기 그룹 통신을 위한 스케줄링 정보가 스케줄링하는 그룹 공통의 PDSCH가 속해 있는 BWP에 연계된 bwp-InactivityTimer를 (재)시작 할 수 있다. 상기 bwp-InactivityTimer가 만료(expire)되는 경우, 만약 defaultDownlinkBWP가 설정되어 있으면 상기 defaultDownlinkBWP로 BWP는 변경되고, 설정되어 있지 않으면, initialDownlinkBWP로 BWP는 변경될 수 있다.According to an embodiment of the present disclosure, the terminal checks whether a scrambled CRC is attached based on the group common RNTI, and when it is checked whether scheduling information for group communication is received based on this, scheduling information for the group communication The bwp-InactivityTimer associated with the BWP to which the group common PDSCH scheduled by can (re)start. When the bwp-InactivityTimer expires, if the defaultDownlinkBWP is set, the BWP is changed to the defaultDownlinkBWP, and if not set, the BWP may be changed to the initialDownlinkBWP.
도 16은 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다. 16 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
도 16을 참고하면, 단말은 송수신부 (1610), 제어부 (1620), 저장부 (1^30)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 16 , the terminal may include a transceiver 1610 , a control unit 1620 , and a storage unit 1^30 . In the present invention, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부 (1610)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부 (1610)는 예를 들어, 기지국으로부터 설정 정보를 수신할 수 있으며, 상기 설정 정보는 RRC 시그널링, MIB 또는 SIB를 통해 수신될 수 있다. 상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, mcs-Table에 대한 정보가 포함될 수 있다. 송수신부 (1610)는 그룹 공통 PDCCH 또는 그룹 특정 PDCCH를 통해 DCI를 수신할 수 있다. 또한, 송수신부 (1610)은 기지국으로부터 데이터를 수신할 수 있다. 송수신부 (1610)는 기지국으로부터 신규 전송 데이터 혹은 재전송 데이터를 수신할 수 있다. The transceiver 1610 may transmit/receive signals to and from other network entities. The transceiver 1610 may receive, for example, configuration information from a base station, and the configuration information may be received through RRC signaling, MIB, or SIB. The setting information may include information on BWP and information on mcs-Table. The transceiver 1610 may receive DCI through a group common PDCCH or a group specific PDCCH. Also, the transceiver 1610 may receive data from the base station. The transceiver 1610 may receive new transmission data or retransmission data from the base station.
제어부 (1620)은 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1620)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 예를 들어, 제어부 (1620)는 수신된 DCI가 그룹 통신을 위한 것인지 확인할 수 있다. 제어부 (1620)는 DCI에 포함된 CRC가 제1 RNTI에 기반하여 스크램블링되었는지 제2 RNTI에 기반하여 스크램블링되었는지 여부에 따라 상기 DCI가 그룹 통신을 위한 것인지 확인할 수 있다. 이 때, 상기 제1 RNTI와 제2 RNTI는 각각 단말 특정 RNTI (예를 들어, C-RNTI) 또는 그룹 공통 RNTI 중 어느 하나를 포함할 수 있다. 그리고, 제어부 (1620)는 상기 DCI가 그룹 통신에 대한 것인지 유니캐스트 통신에 대한 것인지 (또는 DCI가 group common한지 UE-specific한지) 여부에 따라 서로 다른 mcs-Table을 사용할 수 있다. 즉, DCI가 UE-specific한 경우, 단말은 제1 mcs-Table을 사용하여 변조 오더 및 타겟 부호율 중 적어도 하나를 확인할 수 있다. 또한, DCI가 group common한 경우, 단말은 제2 mcs-Table을 사용하여 변조 오더 및 타겟 부호율 중 적어도 하나를 확인할 수 있다. The controller 1620 may control the overall operation of the terminal according to the embodiment proposed in the present invention. For example, the controller 1620 may control a signal flow between blocks to perform an operation according to the above-described flowchart. For example, the controller 1620 may check whether the received DCI is for group communication. The controller 1620 may check whether the DCI is for group communication according to whether the CRC included in the DCI is scrambled based on the first RNTI or the second RNTI. In this case, the first RNTI and the second RNTI may each include either a UE-specific RNTI (eg, C-RNTI) or a group common RNTI. In addition, the controller 1620 may use different mcs-Tables according to whether the DCI is for group communication or unicast communication (or whether DCI is group common or UE-specific). That is, when DCI is UE-specific, the UE may check at least one of a modulation order and a target code rate using the first mcs-Table. In addition, when DCI is group common, the UE may check at least one of a modulation order and a target code rate using the second mcs-Table.
또한, 제어부 (1620)는 서로 다른 RNTI로 스크램블링된 CRC가 포함된 DCI를 수신하는 경우에도, DCI에 포함된 HARQ 프로세스의 번호가 같고 NDI 값이 토글되지 않은 경우에는 수신된 데이터를 재전송 데이터로 이해하고 후속 동작을 수행할 수 있다. 반면, 제어부 (1620)는 NDI 값이 토글된 경우, 수신된 데이터를 새로운 데이터로 이해할 수 있다. Also, even when receiving a DCI including a CRC scrambled with a different RNTI, the controller 1620 understands the received data as retransmission data when the number of the HARQ process included in the DCI is the same and the NDI value is not toggled. and perform subsequent actions. On the other hand, when the NDI value is toggled, the controller 1620 may understand the received data as new data.
또한, DCI에 포함된 MCS index에 의해 지시되는 부호율이 유니캐스트 통신에 대해 정의된 mcs-Table 혹은 그룹 통신에 대해 정의된 mcs-Table의 목표 부호율 및 spectral efficiency 값을 reserved로 지시하는 경우, 상기 제어부 (1620)는 상기 DCI에 의해 스케줄링된 TBS의 값을 가장 최근에 전송된 TBS의 값과 동일하게 설정할 수 있다.In addition, when the code rate indicated by the MCS index included in DCI indicates that the target code rate and spectral efficiency values of the mcs-Table defined for unicast communication or mcs-Table defined for group communication are reserved, The controller 1620 may set the value of the TBS scheduled by the DCI to be the same as the value of the most recently transmitted TBS.
또한, 제어부 (1620)는 순간 데이터율이 최대 데이터율보다 작거나 같은 경우, 그룹 공통 PDSCH 또는 단말 특정 PDSCH에 대한 재전송으로서 그룹 공통 재전송 PDSCH 또는 단말 특정 재전송 PDSCH를 수신하고 디코딩하여 HARQ-ACK 정보를 피드백할 수 있다. 한편, 제어부는 순간 데이터율이 최대 데이터율보다 큰 경우, 재전송 PDSCH를 스케줄링한 정보를 무시하거나, 상기 재전송 PDSCH를 수신하지 않거나, 상기 재전송 PDSCH의 디코딩을 수행하지 않거나, HARQ-ACK 정보를 NACK올 설정하거나, HARQ-ACK 정보를 피드백하지 않을 수 있다. In addition, when the instantaneous data rate is less than or equal to the maximum data rate, the control unit 1620 receives and decodes the group common retransmission PDSCH or the UE specific retransmission PDSCH as retransmissions for the group common PDSCH or UE specific PDSCH, and HARQ-ACK information. can give feedback On the other hand, when the instantaneous data rate is greater than the maximum data rate, the control unit ignores the retransmission PDSCH scheduling information, does not receive the retransmission PDSCH, does not perform decoding of the retransmission PDSCH, or NACKs HARQ-ACK information or may not feed back HARQ-ACK information.
또한, 제어부 (1620)는 특정 조건을 만족하는 경우 상기 스케줄링 제약 (순간 데이터율과 최대 데이터율의 비교)를 고려하지 않을 수 있다. 상기에서 기술한 단말의 동작은 제어부 (1620)에 의해 제어될 수 있으며, 구체적인 내용은 생략한다.Also, when a specific condition is satisfied, the controller 1620 may not consider the scheduling constraint (a comparison between an instantaneous data rate and a maximum data rate). The above-described operation of the terminal may be controlled by the controller 1620, and detailed description thereof will be omitted.
저장부(1630)는 상기 송수신부 (1610)를 통해 송수신되는 정보 및 제어부 (1620)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.The storage unit 1630 may store at least one of information transmitted and received through the transceiver 1610 and information generated through the control unit 1620 .
도 17는 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다. 17 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
도 17를 참고하면, 기지국은 송수신부 (1710), 제어부 (1720), 저장부 (1730)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 17 , the base station may include a transceiver 1710 , a control unit 1720 , and a storage unit 1730 . In the present invention, the controller may be defined as a circuit or an application-specific integrated circuit or at least one processor.
송수신부 (1710)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부 (1710)는 예를 들어, 단말에 기지국으로부터 설정 정보를 전송할 수 있으며, 상기 설정 정보는 RRC 시그널링, MIB 또는 SIB를 통해 전송될 수 있다. 상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, mcs-Table에 대한 정보가 포함될 수 있다. 송수신부 (1710)는 그룹 공통 PDCCH 또는 그룹 특정 PDCCH를 통해 DCI를 전송할 수 있다. 또한, 송수신부 (1710)는 단말에 데이터를 전송할 수 있다. 송수신부 (1710)는 단말에 신규 전송 데이터 혹은 재전송 데이터를 전송할 수 있다. The transceiver 1710 may transmit/receive signals to and from other network entities. The transceiver 1710 may transmit, for example, configuration information from the base station to the terminal, and the configuration information may be transmitted through RRC signaling, MIB, or SIB. The setting information may include information on BWP and information on mcs-Table. The transceiver 1710 may transmit DCI through a group common PDCCH or a group specific PDCCH. Also, the transceiver 1710 may transmit data to the terminal. The transceiver 1710 may transmit new transmission data or retransmission data to the terminal.
제어부 (1720)은 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1720)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 예를 들어, 제어부 (1720)는 본 개시의 실시예에 따라 DCI를 생성할 수 있다. 제어부 (1720)는 전송하고자 하는 데이터가 그룹 통신을 위한 것인지 여부에 따라 (또는 데이터가 group common 데이터인지 UE-specific 데이터인지 여부에 따라) DCI를 결정할 수 있다. 또는, 제어부 (1720)는 전송하고자 하는 DCI가 그룹 통신을 위한 것인지 여부에 따라 (또는 DCI가 group common DCI인지 UE-specific DCI인지 여부에 따라) DCI의 타입을 결정할 수 있다. 제어부 (1720)는 DCI가 스케줄링하는 PDSCH를 통해 전송할 데이터의 변조 오더와 타겟 부호율을 결정할 수 있으며, 상기 변조 오더와 타겟 부호율을 지시하는 MCS 인덱스를 결정할 수 있다. 상기 MCS 인덱스는 상기 DCI의 타입에 따라 각기 다른 mcs-Table을 사용하여 결정될 수 있다. 그리고 제어부 (1720)는 상기 MCS 인덱스를 포함한 DCI를 단말에 전송할 수 있다. The controller 1720 may control the overall operation of the base station according to the embodiment proposed in the present invention. For example, the controller 1720 may control a signal flow between blocks to perform an operation according to the above-described flowchart. For example, the controller 1720 may generate a DCI according to an embodiment of the present disclosure. The controller 1720 may determine DCI according to whether data to be transmitted is for group communication (or whether the data is group common data or UE-specific data). Alternatively, the controller 1720 may determine the type of DCI according to whether the DCI to be transmitted is for group communication (or according to whether the DCI is a group common DCI or a UE-specific DCI). The controller 1720 may determine a modulation order and a target code rate of data to be transmitted through a PDSCH scheduled by DCI, and may determine an MCS index indicating the modulation order and the target code rate. The MCS index may be determined using different mcs-Tables according to the type of DCI. In addition, the controller 1720 may transmit the DCI including the MCS index to the terminal.
또한, 제어부 (1720)는 제1 DCI와 제2 DCI를 전송할 수 있다. 제1 PDSCH에서 전송된 데이터를 제2 PDSCH에서 재전송하고자 하는 경우, 상기 제1 DCI와 제2 DCI에 사용된 RNTI의 값과 상관 없이 동일한 HARQ process number에 대해 NDI 값을 동일하게 설정하여 단말에 전송할 수 있다. 또한, 제어부 (1720)는 제1 PDSCH에서 전송된 데이터와 동일한 TBS를 갖는 데이터를 전송하고자 하는 경우, 제2 DCI에 포함된 MCS 인덱스의 값을 특정 값 이상으로 설정할 수 있다. 또한, 제어부 (1720)는 스케줄링에 대한 제약에 상관 없이 데이터가 처리되도록 하고자 하는 경우, 상기 DCI에 포함되는 time domain resource assignment 정보가 특정 조건을 만족하지 않도록 (또는 만족하도록) 설정할 수 있다. 상기에서 기술한 기지국의 동작은 제어부 (1720)에 의해 제어될 수 있으며, 구체적인 내용은 생략한다.Also, the controller 1720 may transmit the first DCI and the second DCI. When data transmitted in the first PDSCH is to be retransmitted in the second PDSCH, the NDI value is set the same for the same HARQ process number regardless of the RNTI values used in the first DCI and the second DCI and transmitted to the terminal. can Also, when the controller 1720 intends to transmit data having the same TBS as data transmitted in the first PDSCH, the controller 1720 may set the value of the MCS index included in the second DCI to a specific value or more. In addition, when the controller 1720 intends to process data regardless of scheduling restrictions, the time domain resource assignment information included in the DCI may set not to satisfy (or satisfy) a specific condition. The above-described operation of the base station may be controlled by the controller 1720, and detailed description thereof will be omitted.
저장부 (1730)는 상기 송수신부 (1710)를 통해 송수신되는 정보 및 제어부 (1720)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.The storage unit 1730 may store at least one of information transmitted and received through the transceiver 1710 and information generated through the control unit 1720 .
따라서, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, 기지국으로부터 그룹 공통 자원에 대한 설정 정보를 수신하는 단계; 상기 설정 정보에 기반하여 상기 기지국으로부터 하향링크 제어 정보 (downlink control information: DCI)를 수신하는 단계; 상기 DCI에 부착된 CRC (cyclic redundancy check) 의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용되었는지 확인하는 단계; 및 상기 그룹 공통 RNTI가 사용된 경우, 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 단계를 포함하는 것을 특징으로 한다. Accordingly, according to various embodiments of the present disclosure, in a method performed by a terminal in a communication system, in a method performed by a terminal in a communication system, the method comprising: receiving configuration information for a group common resource from a base station; receiving downlink control information (DCI) from the base station based on the configuration information; checking whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI; and determining a code rate and a modulation order based on group common modulation and coding scheme (MCS) related information when the group common RNTI is used.
또한, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서, 단말에 그룹 공통 자원에 대한 설정 정보를 전송하는 단계; 상기 설정 정보에 기반하여 상기 단말에 하향링크 제어 정보 (downlink control information: DCI)를 전송하는 단계; 및 상기 DCI에 기반하여 데이터를 전송하는 단계를 포함하며, 상기 DCI에 부착된 CRC (cyclic redundancy check)의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용된 경우, 상기 DCI에 포함되는 MCS (modulation and coding scheme) 인덱스는 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 결정되는 것을 특징으로 한다. In addition, according to various embodiments of the present disclosure, in a method performed by a base station in a communication system, the method comprising: transmitting configuration information for a group common resource to a terminal; transmitting downlink control information (DCI) to the terminal based on the configuration information; and transmitting data based on the DCI. When a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, the MCS included in the DCI ( It is characterized in that the modulation and coding scheme index is determined based on group common modulation and coding scheme (MCS) related information.
또한, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 단말에 있어서, 송수신부; 및 상기 송수신부와 연결되고, 기지국으로부터 그룹 공통 자원에 대한 설정 정보를 수신하고, 상기 설정 정보에 기반하여 상기 기지국으로부터 하향링크 제어 정보 (downlink control information: DCI)를 수신하고, 상기 DCI에 부착된 CRC (cyclic redundancy check) 의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용되었는지 확인하고, 상기 그룹 공통 RNTI가 사용된 경우, 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 제어부를 포함하는 것을 특징으로 한다. In addition, according to various embodiments of the present disclosure, in a terminal in a communication system, a transceiver; and connected to the transceiver, receiving configuration information for a group common resource from a base station, receiving downlink control information (DCI) from the base station based on the configuration information, and attaching to the DCI It is checked whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC), and when the group common RNTI is used, the code rate and It characterized in that it comprises a control unit for determining the modulation order.
또한, 본 개시의 다양한 실시예들에 따르면, 통신 시스템에서 기지국에 있어서, 송수신부; 및 상기 송수신부와 연결되고, 단말에 그룹 공통 자원에 대한 설정 정보를 전송하고, 상기 설정 정보에 기반하여 상기 단말에 하향링크 제어 정보 (downlink control information: DCI)를 전송하고, 상기 DCI에 기반하여 데이터를 전송하는 제어부를 포함하며, 상기 DCI에 부착된 CRC (cyclic redundancy check)의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용된 경우, 상기 DCI에 포함되는 MCS (modulation and coding scheme) 인덱스는 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 결정되는 것을 특징으로 한다. In addition, according to various embodiments of the present disclosure, in a base station in a communication system, a transceiver; and connected to the transceiver, transmits configuration information for group common resources to the terminal, transmits downlink control information (DCI) to the terminal based on the configuration information, and based on the DCI a control unit for transmitting data, wherein when a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, a modulation and coding scheme (MCS) index included in the DCI It is characterized in that it is determined based on group common modulation and coding scheme (MCS) related information.
한편, 본 발명의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행 될 수도 있다. On the other hand, in the drawings for explaining the method of the present invention, the order of description does not necessarily correspond to the order of execution, and the precedence relationship may be changed or may be executed in parallel.
또는, 본 발명의 방법을 설명하는 도면은 본 발명의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.Alternatively, the drawings for explaining the method of the present invention may omit some components and include only some components within a range that does not impair the essence of the present invention.
또한, 본 발명의 방법은 발명의 본질을 해치지 않는 범위 내에서 각 실시예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.In addition, the method of the present invention may be implemented in a combination of some or all of the contents contained in each embodiment within a range that does not impair the essence of the invention.

Claims (15)

  1. 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, A method performed by a terminal in a communication system, comprising:
    기지국으로부터 그룹 공통 자원에 대한 설정 정보를 수신하는 단계;Receiving configuration information for a group common resource from the base station;
    상기 설정 정보에 기반하여 상기 기지국으로부터 하향링크 제어 정보 (downlink control information: DCI)를 수신하는 단계;receiving downlink control information (DCI) from the base station based on the configuration information;
    상기 DCI에 부착된 CRC (cyclic redundancy check) 의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용되었는지 확인하는 단계; 및checking whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI; and
    상기 그룹 공통 RNTI가 사용된 경우, 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 단계를 포함하는 것을 특징으로 하는 방법.and determining a code rate and a modulation order based on group common modulation and coding scheme (MCS) related information when the group common RNTI is used.
  2. 제1항에 있어서,According to claim 1,
    상기 그룹 공통 RNTI가 사용되지 않은 경우, 단말 특정 MCS 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 단계를 더 포함하며, If the group common RNTI is not used, further comprising determining a code rate and a modulation order based on UE-specific MCS-related information,
    상기 설정 정보는 상기 그룹 공통 MCS 관련 정보 또는 단말 특정 MCS 관련 정보 중 적어도 하나를 포함하며, The configuration information includes at least one of the group common MCS-related information or terminal-specific MCS-related information,
    상기 MCS 관련 정보는 MCS 인덱스에 상응하는 부호율 및 변조 오더에 대한 정보를 포함하는 것을 특징으로 하는 방법. The MCS-related information comprises information on a code rate and a modulation order corresponding to the MCS index.
  3. 제1항에 있어서,According to claim 1,
    상기 DCI는 제1 DCI이고, The DCI is a first DCI,
    제2 DCI가 수신되는 경우, 상기 제1 DCI 및 상기 제2 DCI와 관련된 RNTI가 다른 경우에도 상기 제2 DCI에 포함된 NDI가 토글되지 않는 경우, 제2 DCI에 의해 스케줄링된 자원에서 수신되는 데이터는 재전송 데이터인 것을 특징으로 하는 방법. When the second DCI is received, even when the RNTIs associated with the first DCI and the second DCI are different, when the NDI included in the second DCI is not toggled, data received from a resource scheduled by the second DCI is retransmission data.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제2 DCI에 포함된 MCS 인덱스가 특정 값 이상인 경우, 상기 제2 DCI에 의해 스케줄링된 자원에서 수신되는 데이터의 크기는 상기 제1 DCI에 의해 스케줄링된 자원에서 수신되는 데이터의 크기와 동일하며, When the MCS index included in the second DCI is equal to or greater than a specific value, the size of data received in the resource scheduled by the second DCI is the same as the size of data received in the resource scheduled by the first DCI,
    상기 제2 DCI에 포함된 시간 자원 할당 정보에 기반하여 결정된 심볼의 수가 미리 정해진 조건을 만족하지 않는 경우, 순간 데이터율이 상기 단말이 지원하는 최대 데이터율보다 큰 경우에도 상기 제2 DCI에 의해 스케줄링된 자원에서 수신된 데이터를 처리하는 것을 특징으로 하는 방법. When the number of symbols determined based on the time resource allocation information included in the second DCI does not satisfy a predetermined condition, scheduling by the second DCI even when the instantaneous data rate is greater than the maximum data rate supported by the terminal A method characterized in that the data received from the resource is processed.
  5. 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서, A method performed by a base station in a communication system, comprising:
    단말에 그룹 공통 자원에 대한 설정 정보를 전송하는 단계; transmitting configuration information for a group common resource to the terminal;
    상기 설정 정보에 기반하여 상기 단말에 하향링크 제어 정보 (downlink control information: DCI)를 전송하는 단계; 및transmitting downlink control information (DCI) to the terminal based on the configuration information; and
    상기 DCI에 기반하여 데이터를 전송하는 단계를 포함하며,Transmitting data based on the DCI,
    상기 DCI에 부착된 CRC (cyclic redundancy check)의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용된 경우, 상기 DCI에 포함되는 MCS (modulation and coding scheme) 인덱스는 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 결정되는 것을 특징으로 하는 방법.When a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, a modulation and coding scheme (MCS) index included in the DCI is a group common modulation and coding scheme (MCS) index. ) is determined based on the relevant information.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 그룹 공통 RNTI가 사용되지 않은 경우, 상기 DCI에 포함되는 MCS 인덱스는 단말 특정 MCS 관련 정보에 기반하여 결정되며, When the group common RNTI is not used, the MCS index included in the DCI is determined based on UE-specific MCS-related information,
    상기 설정 정보는 상기 그룹 공통 MCS 관련 정보 또는 단말 특정 MCS 관련 정보 중 적어도 하나를 포함하며, The configuration information includes at least one of the group common MCS-related information or terminal-specific MCS-related information,
    상기 MCS 관련 정보는 MCS 인덱스에 상응하는 부호율 및 변조 오더에 대한 정보를 포함하는 것을 특징으로 하는 방법. The MCS-related information comprises information on a code rate and a modulation order corresponding to the MCS index.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 DCI는 제1 DCI이고, The DCI is a first DCI,
    제2 DCI가 전송되는 경우, 상기 제1 DCI 및 상기 제2 DCI와 관련된 RNTI가 다른 경우에도 상기 제2 DCI에 포함된 NDI가 토글되지 않는 경우, 제2 DCI에 의해 스케줄링된 자원에서 전송되는 데이터는 재전송 데이터인 것을 특징으로 하는 방법. When the second DCI is transmitted, when the NDI included in the second DCI is not toggled even when the RNTIs associated with the first DCI and the second DCI are different, data transmitted from a resource scheduled by the second DCI is retransmission data.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 제2 DCI에 포함된 MCS 인덱스가 특정 값 이상인 경우, 상기 제2 DCI에 의해 스케줄링된 자원에서 전송되는 데이터의 크기는 상기 제1 DCI에 의해 스케줄링된 자원에서 수신되는 데이터의 크기와 동일하며, When the MCS index included in the second DCI is equal to or greater than a specific value, the size of data transmitted in the resource scheduled by the second DCI is the same as the size of data received in the resource scheduled by the first DCI,
    상기 제2 DCI에 포함된 시간 자원 할당 정보에 기반하여 결정된 심볼의 수가 미리 정해진 조건을 만족하지 않는 경우, 순간 데이터율이 상기 단말이 지원하는 최대 데이터율보다 큰 경우에도 상기 제2 DCI에 의해 스케줄링된 자원에서 전송된 데이터가 처리되는 것을 특징으로 하는 방법. When the number of symbols determined based on the time resource allocation information included in the second DCI does not satisfy a predetermined condition, scheduling by the second DCI even when the instantaneous data rate is greater than the maximum data rate supported by the terminal Method characterized in that the data transmitted from the resource is processed.
  9. 통신 시스템에서 단말에 있어서, In a terminal in a communication system,
    송수신부; 및transceiver; and
    상기 송수신부와 연결되고, connected to the transceiver,
    기지국으로부터 그룹 공통 자원에 대한 설정 정보를 수신하고, Receive configuration information for group common resources from the base station,
    상기 설정 정보에 기반하여 상기 기지국으로부터 하향링크 제어 정보 (downlink control information: DCI)를 수신하고,Receive downlink control information (DCI) from the base station based on the configuration information,
    상기 DCI에 부착된 CRC (cyclic redundancy check) 의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용되었는지 확인하고,Check whether a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI,
    상기 그룹 공통 RNTI가 사용된 경우, 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 제어부를 포함하는 것을 특징으로 하는 단말.and a controller for determining a code rate and a modulation order based on group common modulation and coding scheme (MCS) related information when the group common RNTI is used.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 그룹 공통 RNTI가 사용되지 않은 경우, 단말 특정 MCS 관련 정보에 기반하여 부호율 및 변조 오더를 결정하는 단계를 더 포함하며, If the group common RNTI is not used, further comprising determining a code rate and a modulation order based on UE-specific MCS-related information,
    상기 설정 정보는 상기 그룹 공통 MCS 관련 정보 또는 단말 특정 MCS 관련 정보 중 적어도 하나를 포함하며, The configuration information includes at least one of the group common MCS-related information or terminal-specific MCS-related information,
    상기 MCS 관련 정보는 MCS 인덱스에 상응하는 부호율 및 변조 오더에 대한 정보를 포함하는 것을 특징으로 하는 단말. The MCS-related information terminal, characterized in that it includes information on a code rate and modulation order corresponding to the MCS index.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 DCI는 제1 DCI이고, The DCI is a first DCI,
    제2 DCI가 수신되는 경우, 상기 제1 DCI 및 상기 제2 DCI와 관련된 RNTI가 다른 경우에도 상기 제2 DCI에 포함된 NDI가 토글되지 않는 경우, 제2 DCI에 의해 스케줄링된 자원에서 수신되는 데이터는 재전송 데이터인 것을 특징으로 하는 단말. When the second DCI is received, even when the RNTIs associated with the first DCI and the second DCI are different, when the NDI included in the second DCI is not toggled, data received from a resource scheduled by the second DCI is retransmission data.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 제2 DCI에 포함된 MCS 인덱스가 특정 값 이상인 경우, 상기 제2 DCI에 의해 스케줄링된 자원에서 수신되는 데이터의 크기는 상기 제1 DCI에 의해 스케줄링된 자원에서 수신되는 데이터의 크기와 동일하며, When the MCS index included in the second DCI is equal to or greater than a specific value, the size of data received in the resource scheduled by the second DCI is the same as the size of data received in the resource scheduled by the first DCI,
    상기 제2 DCI에 포함된 시간 자원 할당 정보에 기반하여 결정된 심볼의 수가 미리 정해진 조건을 만족하지 않는 경우, 순간 데이터율이 상기 단말이 지원하는 최대 데이터율보다 큰 경우에도 상기 제2 DCI에 의해 스케줄링된 자원에서 수신된 데이터를 처리하는 것을 특징으로 하는 단말. When the number of symbols determined based on the time resource allocation information included in the second DCI does not satisfy a predetermined condition, scheduling by the second DCI even when the instantaneous data rate is greater than the maximum data rate supported by the terminal A terminal, characterized in that for processing the data received from the resource.
  13. 통신 시스템에서 기지국에 있어서, In a base station in a communication system,
    송수신부; 및transceiver; and
    상기 송수신부와 연결되고, connected to the transceiver,
    단말에 그룹 공통 자원에 대한 설정 정보를 전송하고, Transmitting configuration information for group common resources to the terminal,
    상기 설정 정보에 기반하여 상기 단말에 하향링크 제어 정보 (downlink control information: DCI)를 전송하고, Transmitting downlink control information (DCI) to the terminal based on the configuration information,
    상기 DCI에 기반하여 데이터를 전송하는 제어부를 포함하며,A control unit for transmitting data based on the DCI,
    상기 DCI에 부착된 CRC (cyclic redundancy check)의 스크램블링에 그룹 공통 RNTI (radio network temporary identifier)가 사용된 경우, 상기 DCI에 포함되는 MCS (modulation and coding scheme) 인덱스는 그룹 공통 MCS (modulation and coding scheme) 관련 정보에 기반하여 결정되는 것을 특징으로 하는 기지국.When a group common radio network temporary identifier (RNTI) is used for scrambling of a cyclic redundancy check (CRC) attached to the DCI, a modulation and coding scheme (MCS) index included in the DCI is a group common modulation and coding scheme (MCS) index. ) base station, characterized in that determined based on the related information.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 그룹 공통 RNTI가 사용되지 않은 경우, 상기 DCI에 포함되는 MCS 인덱스는 단말 특정 MCS 관련 정보에 기반하여 결정되며, When the group common RNTI is not used, the MCS index included in the DCI is determined based on UE-specific MCS-related information,
    상기 설정 정보는 상기 그룹 공통 MCS 관련 정보 또는 단말 특정 MCS 관련 정보 중 적어도 하나를 포함하며, The configuration information includes at least one of the group common MCS-related information or terminal-specific MCS-related information,
    상기 MCS 관련 정보는 MCS 인덱스에 상응하는 부호율 및 변조 오더에 대한 정보를 포함하는 것을 특징으로 하는 기지국. The MCS-related information is a base station, characterized in that it includes information on a code rate and a modulation order corresponding to the MCS index.
  15. 제16항에 있어서,17. The method of claim 16,
    상기 DCI는 제1 DCI이고, The DCI is a first DCI,
    제2 DCI가 전송되는 경우, 상기 제1 DCI 및 상기 제2 DCI와 관련된 RNTI가 다른 경우에도 상기 제2 DCI에 포함된 NDI가 토글되지 않는 경우, 제2 DCI에 의해 스케줄링된 자원에서 전송되는 데이터는 재전송 데이터이며, When the second DCI is transmitted, when the NDI included in the second DCI is not toggled even when the RNTIs associated with the first DCI and the second DCI are different, data transmitted from a resource scheduled by the second DCI is the retransmission data,
    상기 제2 DCI에 포함된 MCS 인덱스가 특정 값 이상인 경우, 상기 제2 DCI에 의해 스케줄링된 자원에서 전송되는 데이터의 크기는 상기 제1 DCI에 의해 스케줄링된 자원에서 수신되는 데이터의 크기와 동일하고, When the MCS index included in the second DCI is equal to or greater than a specific value, the size of data transmitted in the resource scheduled by the second DCI is the same as the size of data received in the resource scheduled by the first DCI,
    상기 제2 DCI에 포함된 시간 자원 할당 정보에 기반하여 결정된 심볼의 수가 미리 정해진 조건을 만족하지 않는 경우, 순간 데이터율이 상기 단말이 지원하는 최대 데이터율보다 큰 경우에도 상기 제2 DCI에 의해 스케줄링된 자원에서 전송된 데이터가 처리되는 것을 특징으로 하는 기지국. When the number of symbols determined based on the time resource allocation information included in the second DCI does not satisfy a predetermined condition, scheduling by the second DCI even when the instantaneous data rate is greater than the maximum data rate supported by the terminal Base station, characterized in that the data transmitted from the resource is processed.
PCT/KR2022/000913 2021-01-18 2022-01-18 Method and device for providing multicasting and broadcasting service in communication system WO2022154639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0007004 2021-01-18
KR1020210007004A KR20220104544A (en) 2021-01-18 2021-01-18 A method and apparatus for multicasting and broadcasting in communication system

Publications (1)

Publication Number Publication Date
WO2022154639A1 true WO2022154639A1 (en) 2022-07-21

Family

ID=82447428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000913 WO2022154639A1 (en) 2021-01-18 2022-01-18 Method and device for providing multicasting and broadcasting service in communication system

Country Status (2)

Country Link
KR (1) KR20220104544A (en)
WO (1) WO2022154639A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349130A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Multi-user data packet
US20200008097A1 (en) * 2015-04-10 2020-01-02 Kyocera Corporation Base station and user terminal
US20200100263A1 (en) * 2018-09-26 2020-03-26 Qualcomm Incorporated User equipment groups for group physical downlink control channel communications
US20200252948A1 (en) * 2018-02-11 2020-08-06 Sony Corporation Electronic device, radio communication method, and computer readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200008097A1 (en) * 2015-04-10 2020-01-02 Kyocera Corporation Base station and user terminal
US20200252948A1 (en) * 2018-02-11 2020-08-06 Sony Corporation Electronic device, radio communication method, and computer readable storage medium
US20190349130A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Multi-user data packet
US20200100263A1 (en) * 2018-09-26 2020-03-26 Qualcomm Incorporated User equipment groups for group physical downlink control channel communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASIA PACIFIC TELECOM: "Discussion on mechanisms to support group scheduling for RRC_CONNECTED UEs", 3GPP DRAFT; R1-2009055, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946802 *

Also Published As

Publication number Publication date
KR20220104544A (en) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2021006662A1 (en) Method and apparatus for performing communication in wireless communication system
WO2020197215A1 (en) Method and apparatus for control channel reception in wireless communication systems
WO2019093835A1 (en) Method and apparatus for wireless communication in wireless communication system
WO2021157938A1 (en) Method and device for transmitting/receiving downlink control information in wireless communication system
WO2016122268A1 (en) Method and apparatus for tranceiving common control message in wireless access system supporting narrow band internet of things
WO2022145882A1 (en) Method and apparatus for transmitting and receiving pdcch in wireless communication system
WO2021034023A1 (en) Method and apparatus for sharing frequency resources between mobile communication providers in wireless communication system
WO2022060027A1 (en) Method and apparatus for transmission and reception of groupcast and broadcast data in wireless cellular communication system
WO2020222624A1 (en) Method, device, and system for downlink data reception and harq-ack transmission in wireless communication system
EP3665973A1 (en) Method and apparatus for wireless communication in wireless communication system
WO2016053057A1 (en) Method for managing soft buffer in wireless communication system and apparatus for performing same
WO2022154607A1 (en) Method and apparatus of explicit linkage between repetitive transmission and reception for downlink control information in wireless communication system
WO2022086183A1 (en) Method and device for communication in wireless communication system supporting groupcast
WO2022015019A1 (en) Method and apparatus for indicating timing advance in communication system
EP4158963A1 (en) Method and device for determination of scheduling timing in communications system
WO2022086268A1 (en) Method, user equipment, processing device, storage medium and computer program for transmitting channel state information report, and method and base station for receiving channel state information report
WO2021206395A1 (en) Method and apparatus for transmitting or receiving uplink data channel in wireless communication system
WO2022225327A1 (en) Method and device for providing multicasting and broadcasting in communication system
WO2022191590A1 (en) Method and apparatus for configuring beam in wireless communication system
WO2022065963A1 (en) Method, apparatus, and system for generating harq-ack codebook in wireless communication system
WO2021206446A1 (en) Blind decoding-based method and device for transmitting and receiving downlink channel in wireless communication system
WO2019035701A1 (en) Downlink control channel configuration method and apparatus in wireless communication system for reducing power consumption of terminal
WO2023055217A1 (en) Device and method for transmitting or receiving control information and data in communication system
WO2022211585A1 (en) Method and device for providing multicasting and broadcasting in communication system
WO2023153864A1 (en) Method and device for harq-ack transmission in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739831

Country of ref document: EP

Kind code of ref document: A1