WO2022154634A1 - Corrosion test apparatus - Google Patents

Corrosion test apparatus Download PDF

Info

Publication number
WO2022154634A1
WO2022154634A1 PCT/KR2022/000898 KR2022000898W WO2022154634A1 WO 2022154634 A1 WO2022154634 A1 WO 2022154634A1 KR 2022000898 W KR2022000898 W KR 2022000898W WO 2022154634 A1 WO2022154634 A1 WO 2022154634A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
corrosion test
specimen
test apparatus
disk
Prior art date
Application number
PCT/KR2022/000898
Other languages
French (fr)
Korean (ko)
Inventor
이유호
황일순
최재원
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210083145A external-priority patent/KR20220104619A/en
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2022154634A1 publication Critical patent/WO2022154634A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator

Definitions

  • the present invention relates to a corrosion test apparatus, and more particularly, it is possible to test the corrosion of materials according to various flow rates of a fluid, and simultaneously control the flow rate of the fluid, the temperature of the fluid, and the concentration of oxygen in the fluid, and perform the corrosion test. It relates to a corrosion test apparatus that can be performed.
  • PWR pressurized light water reactor
  • a liquid metal cooling fast reactor refers to a reactor that uses sodium, lead, or lead-bismuth eutectic (LBE) as a coolant, unlike conventional reactors that use water as a coolant.
  • LBE lead-bismuth eutectic
  • the fast reactor is a nuclear reactor that propagates nuclear fuel with a fast neutron, unlike a conventional nuclear reactor in which a nuclear fission reaction occurs with thermal neutrons.
  • thermal neutrons which fission only 0.7% of uranium-235 (ULSUP235) in nature
  • fast neutrons burn uranium-238 (ULSUP238), which exists in nature at a rate of 99.3%, into plutonium-239 (PLSUP239u). make it Therefore, it is known that the high-speed reactor consumes only a small amount of fuel, so that it has high thermal efficiency and economic feasibility, and high safety and nuclear proliferation resistance.
  • the risk of loss of coolant is low, the probability of serious accidents such as the Three Mile and Fukushima accidents is very low.
  • the lead-cooled fast reactor which uses a lead-bismuth alloy as a coolant, has the advantage that compared to other types of fast reactors, the reactivity of the coolant is very low and the possibility of fire and explosion is significantly reduced due to its high boiling point. is being actively researched.
  • molten salt reactor In addition to lead-cooled fast reactors, another type of next-generation reactor that compensates for the shortcomings of pressurized light reactors is the molten salt reactor (MSR).
  • the molten salt reactor uses molten salt of a fluorine or chlorine compound as a coolant instead of water, and the molten salt has high chemical stability and high boiling point, so it is safe in operation and maintenance like a lead-cooled fast reactor.
  • nuclear fuel can be melted and burned together with a coolant, which has the advantage of simplifying the reactor structure, making the combustion uniform, and facilitating the reprocessing of spent nuclear fuel.
  • liquid lead-bismuth has a property of corroding components such as iron and nickel of the material it comes into contact with, but studies on how their flow rates affect corrosion are still lacking.
  • the pool-type equipment that cannot make the flow rate is difficult to see as an actual nuclear reactor environment, and the loop-type equipment can observe the effect of the flow rate of liquid metal, but the scale is too large compared to the pull-type equipment, so the construction cost is high, and the It takes a lot of time and money to obtain experimental results, and has disadvantages in that it is difficult to control minute variables such as dissolved oxygen concentration.
  • an object of the present invention is to solve such a problem in the prior art, in which the specimen is arranged long in the radial direction of the disk rotating in the fluid, so that corrosion can be simultaneously tested under various flow rate conditions according to the radial position. To provide an experimental device.
  • a chamber in which a fluid is accommodated; a disk for mounting the specimen and positioned within the fluid; and a driving unit for rotating the disk, wherein the specimen is disposed in a radial direction of the disk to inspect corrosion according to the relative flow rate of the fluid continuously changing in the radial direction when the disk rotates. can be achieved.
  • the disk may be formed with a specimen holder that is elongated in the radial direction so that the specimen is inserted.
  • a plurality of the specimen holder parts may be formed in a circumferential direction.
  • the length in the circumferential direction of the specimen holder may be different from each other.
  • the specimen may have a dog bone shape or a tube shape.
  • the specimen holder may be coated with an insulating material.
  • the temperature of the fluid may be controlled.
  • it may further include an oxygen concentration control unit for controlling the concentration of oxygen in the chamber.
  • the oxygen concentration control unit may include a gas supply line for supplying the oxygen concentration control gas into the chamber.
  • the oxygen concentration control unit may control the concentration of oxygen by using a potential difference between the fluid and the thin film using an EOP (Electrochemical Oxygen Pumping) technology.
  • EOP Electrochemical Oxygen Pumping
  • the fluid may be any one of a liquid metal or a molten salt.
  • the liquid metal may be any one of sodium, lead, lead-bismuth alloy, and lead-lithium alloy.
  • the molten salt includes at least one of sodium, potassium, magnesium, lithium, beryllium, chlorine, and fluorine, and may contain a fissile material.
  • the corrosion test apparatus of the present invention as described above, there is an advantage that the corrosion test can be simultaneously performed under various flow rate conditions according to the radius by arranging and rotating the specimen in the radial direction of the disk.
  • FIG. 1 is a cross-sectional view showing the configuration of a corrosion test apparatus according to an embodiment of the present invention.
  • Fig. 2 is a plan view of the disk of Fig. 1;
  • FIG 3 is a plan view showing a specimen according to the present invention.
  • FIG. 4 is a view showing a state in which the specimen is fixed to the disk.
  • FIG. 1 is a cross-sectional view showing the configuration of a corrosion test apparatus according to an embodiment of the present invention
  • FIG. 2 is a plan view of the disk of FIG. 1
  • FIG. 3 is a plan view showing a specimen according to the present invention
  • FIG. 4 is It is a view showing a state in which the specimen is fixed to the disk.
  • a corrosion test apparatus may include a chamber 110 , a disk 120 , and a driving unit 130 .
  • the chamber 110 accommodates the fluid P.
  • the present invention is an apparatus for accommodating the fluid (P) in the chamber (110) and testing the corrosion of the specimen (200) according to the flow rate of the fluid (P). It is known that the flow velocity of the fluid P, the temperature of the fluid P, and the concentration of oxygen in the fluid P are the causes of the greatest influence on the corrosion of the material in contact with the fluid P. As will be described later, in the present invention Corrosion test apparatus according to the flow rate of the fluid (P), as well as the temperature of the fluid (P), the oxygen concentration in the fluid (P) can be simultaneously controlled and the corrosion test can be performed.
  • the fluid P that can be used in the corrosion test in this embodiment may be a liquid metal used as a coolant in a liquid metal cooling fast reactor.
  • a liquid metal used as a coolant in a liquid metal cooling fast reactor.
  • any one of sodium, lead, lead-bismuth alloy, and lead-lithium alloy may be used as the liquid metal. Therefore, it is possible to understand the effect of the flow rate of liquid metal on the corrosion of a nuclear reactor through a corrosion test.
  • the fluid P that can be used in the corrosion test in the present invention may be a molten salt used as a coolant of a molten salt reactor (MSR).
  • the molten salt may include at least one of potassium, magnesium, lithium, beryllium, chlorine, and fluorine, and may contain a fissile material such as uranium or plutonium.
  • the fluid (P) used in the corrosion test apparatus according to the present invention is not limited to the liquid metal or molten salt, and it is corroded using any fluid (P) that is difficult to generate a direct flow due to its high density or high viscosity. experiments can be performed.
  • the corrosion test apparatus according to the present invention has high versatility and can be used in corrosion tests using general fluids (P) such as water and organic compounds.
  • the chamber 110 is preferably formed of alumina or a metal crucible coated with an alumina material. do.
  • the chamber 110 may be accommodated in the autoclave 115 .
  • the temperature of the liquid metal accommodated in the chamber 110 may be heated to a high temperature of 200° C. or more by the heating means 1151 of the autoclave 115, and the temperature may be controlled to an appropriate temperature.
  • a temperature sensor 150 for measuring the temperature of the fluid P may be included.
  • the upper end of the chamber 110 and the autoclave 115 is formed to be separated by a separate cover so that it is sealed after accommodating the fluid P inside the chamber 110, so that external air or moisture to block the inflow.
  • an oxygen concentration control unit for controlling the concentration of oxygen in the chamber 110 may be formed.
  • the oxygen concentration control unit may be a gas supply line 140 that supplies a gas for controlling the oxygen concentration into the chamber 110 .
  • a gas for controlling the oxygen concentration into the chamber 110 As an example of the oxygen concentration control gas, hydrogen gas may be used. Hydrogen supplied to the inside of the chamber 110 through the control valve 142 formed in the gas supply line 140 reacts with oxygen contained in the fluid P in the chamber 110 to increase the amount of oxygen dissolved in the fluid P. You can control the amount.
  • the amount of dissolved oxygen included in the fluid P may be controlled by using Electrochemical Oxygen Pumping (EOP) technology.
  • EOP Electrochemical Oxygen Pumping
  • the EOP method is a technique applied to control the concentration of oxygen dissolved in liquid LBE (lead-bismuth eutectic) or to produce high-purity oxygen. technology to control
  • J.Lim Electrochemical Oxygen Pumping
  • an oxygen sensor 160 including a Bi/Bi2O3 electrode is provided in the chamber 110 to measure the concentration of oxygen dissolved in the liquid metal.
  • the disk 120 may be formed as a circular disk, and the specimen 200 is mounted and rotated in the fluid P by the driving unit 130 . Therefore, in the present invention, a flow relative to the specimen 200 is formed by rotating the disk 120 within the fluid P, rather than forming a flow that is directly transmitted to the fluid P using a pump or the like. ), a corrosion test is performed according to the flow rate.
  • the corrosion test according to the flow rate is performed even when the density of the fluid P is high or the viscosity is high, such as liquid metal. can be done
  • the specimen 200 is elongated in the radial direction of the disk 120 . Even when the disk 120 rotates at the same angular speed, the circumferential speed increases according to the radial position, and the influence of the flow velocity on the specimen varies according to the radial position. Therefore, in the present invention, it is possible to continuously perform abrasion tests due to different relative flow rates in the radial direction by arranging the specimen 200 long in the radial direction. That is, as the single specimen 200 is continuously exposed to different flow rates according to positions, abrasion tests for various flow rates can be performed at once.
  • the reactor material research takes about several thousand to ten thousand hours in one experiment, but the wear test apparatus according to the present invention can perform wear tests for various flow rates at once, so that the test time can be drastically reduced.
  • a specimen holder 122 which is elongated in the radial direction, may be formed in the disk 120 . Accordingly, the specimen 200 long in the radial direction is inserted and fixed in the specimen holder part 122 .
  • a screw hole 124 into which a screw is inserted is formed in both radially outer portions of the specimen holder portion 122 . Therefore, as shown in FIG. 4 , after inserting the specimen 200 into the specimen holder portion 122 , the screw 125 is inserted into the screw hole 124 at a position close to the specimen holder portion 122 .
  • the specimen 200 may be fixed to the disk 120 by supporting the specimen 200 by the head.
  • a plurality of specimen holder parts 122 may be disposed in a circumferential direction. Therefore, in the present invention, a corrosion test may be performed on a plurality of specimens 200 .
  • the specimens 200 of different sizes may be fixed to the disk 120 to perform a corrosion test at once.
  • specimen holder portion 122 elongated in the radial direction of the disk 120 is illustrated, but the present invention is not limited thereto and the specimen holder portion elongated in the tangential direction may also be formed. That is, not only the specimen holder part 122 formed long in the radial direction of the disk 120 but also the specimen holder part having a different direction or a different size or shape may be formed together, so that a corrosion test can be performed at the same time.
  • the specimen 200 is preferably formed to be elongated in one direction in the form of a dogbone-shaped plate. Accordingly, the shape of the specimen holder 122 may also be formed according to the shape of the dogbone. The shape of the specimen 200 is not limited thereto, and may be formed in the form of a long tube having a hollow therein.
  • a separate processing process for the specimen 200 after performing a corrosion test for the fluid P using the corrosion test apparatus according to the present invention A mechanical strength test (for example, a tensile strength test) of the specimen 200 may be immediately performed without it.
  • the specimen 200, the specimen holder part 122, and the screw for fixing the specimen 200 are made of the same material. This is because, when formed of different materials, an electrical potential is generated in the course of a corrosion test, which can affect corrosion. When it is difficult to manufacture the same material, it is preferable to coat the specimen holder 122 with an insulating material to block the electrochemical influence on the specimen 200 . In this case, when the corrosion test is performed on the specimens 200 of different materials, the influence by the electrical potential can be blocked.
  • the driving unit 130 rotates the disk 120 in the chamber 110 .
  • the driving unit 130 is coupled to the center of the disk 120 to include a driving shaft 132 extending outside the chamber 110 and a motor 134 for rotating the driving shaft 132 outside the chamber 110 .
  • the controller 180 receives the temperature of the fluid P inside the chamber 110 from the temperature sensor 150 , and receives the oxygen concentration in the fluid P from the oxygen sensor 160 , and controls the rotational speed of the motor 134 . Control of the relative speed of the fluid P through the control of the relative speed of the autoclave 115, the temperature control of the fluid P through the control of the heating means 1151 of the autoclave 115, and the opening and closing of the control valve 142 formed in the gas supply line 140 As a control, the oxygen concentration in the fluid P may be controlled by controlling the amount of hydrogen gas supplied into the chamber 110 .
  • the corrosion test apparatus performs a corrosion test while simultaneously controlling the velocity of the fluid P, the temperature of the fluid P, and the concentration of oxygen in the fluid P, which are known factors that have the greatest influence on corrosion. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The present invention relates to a corrosion test apparatus, the corrosion test apparatus according to the present invention comprising: a chamber accommodating a fluid; a disc on which a specimen is mounted and which is located in the fluid; and a driving unit which rotates the disc, wherein the specimen is arranged in the radial direction of the disc for a test of corrosion according to the relative flow velocity of the fluid, which continuously changes in the radial direction when the disc is rotating.

Description

부식 실험 장치corrosion test equipment
본 발명은 부식 실험 장치에 관한 것으로서, 보다 상세하게는 유체의 다양한 유속에 따른 재료의 부식을 실험할 수 있고, 유체의 유속, 유체의 온도, 및 유체 내 산소의 농도를 동시에 제어하며 부식 실험을 수행할 수 있는 부식 실험 장치에 관한 것이다.The present invention relates to a corrosion test apparatus, and more particularly, it is possible to test the corrosion of materials according to various flow rates of a fluid, and simultaneously control the flow rate of the fluid, the temperature of the fluid, and the concentration of oxygen in the fluid, and perform the corrosion test. It relates to a corrosion test apparatus that can be performed.
세계에서 가장 많이 쓰이는 원자로는 가압경수로(PWR)로서, 가압시킨 물을 이용해 핵연료봉에서 나온 에너지를 흡수하여 터빈으로 전달함으로써 전력을 생산한다. The most widely used nuclear reactor in the world is a pressurized light water reactor (PWR), which uses pressurized water to absorb energy from nuclear fuel rods and transmit it to a turbine to generate electricity.
한편, 액체 금속 냉각 고속로는 물을 냉각재로 쓰는 기존 원자로와는 달리 소듐, 납 혹은 납-비스무트 융용물(LBE, Lead-Bismuth Eutectic)을 냉각재로 사용하는 원자로를 말한다. On the other hand, a liquid metal cooling fast reactor refers to a reactor that uses sodium, lead, or lead-bismuth eutectic (LBE) as a coolant, unlike conventional reactors that use water as a coolant.
상기 고속로는 열중성자로 핵분열 반응을 일으키는 기존 원자로와 달리 고속 중성자로 핵연료를 증식시키는 원자로이다. 천연 상태에서 0.7%밖에 존재하지 않는 우라늄-235(ULSUP235) 만을 핵분열시키는 열중성자와는 달리 고속 중성자는 자연에 99.3% 비율로 존재하는 우라늄-238(ULSUP238)을 플루토늄-239(PLSUP239u)로 바꾸어 연소시킨다. 따라서, 상기 고속로는 적은 연료만을 소비하여 열효율 및 경제성이 높고, 안전성 및 핵 확산 저항성도 높은 특징을 가지는 것으로 알려져 있다. 특히, 냉각재 상실의 위험이 적어 쓰리마일, 후쿠시마 사고와 같은 중대사고가 일어날 확률이 크게 낮다. The fast reactor is a nuclear reactor that propagates nuclear fuel with a fast neutron, unlike a conventional nuclear reactor in which a nuclear fission reaction occurs with thermal neutrons. Unlike thermal neutrons, which fission only 0.7% of uranium-235 (ULSUP235) in nature, fast neutrons burn uranium-238 (ULSUP238), which exists in nature at a rate of 99.3%, into plutonium-239 (PLSUP239u). make it Therefore, it is known that the high-speed reactor consumes only a small amount of fuel, so that it has high thermal efficiency and economic feasibility, and high safety and nuclear proliferation resistance. In particular, since the risk of loss of coolant is low, the probability of serious accidents such as the Three Mile and Fukushima accidents is very low.
나아가, 냉각제로서 납-비스무트 합금을 쓰는 납 냉각 고속로(LFR)는 또 다른 종류의 고속로에 비해 냉각재의 반응성이 매우 적고 끓는점이 높아 화재 및 폭발의 가능성이 현저하게 작다는 장점을 가져 차세대 원자로로서 활발하게 연구가 진행되고 있다.Furthermore, the lead-cooled fast reactor (LFR), which uses a lead-bismuth alloy as a coolant, has the advantage that compared to other types of fast reactors, the reactivity of the coolant is very low and the possibility of fire and explosion is significantly reduced due to its high boiling point. is being actively researched.
납 냉각 고속로 외에 가압 경수로의 단점을 보완한 또 다른 차세대 원자로 형태 중 하나는 용융염 원자로(MSR)이다. 용융염 원자로는 물 대신 불소 혹은 염소 화합물의 용융염을 냉각재로 사용하는데, 상기 용융염은 화학적 안정성이 높고 끓는점이 높아 납 냉각 고속로와 마찬가지로 가동과 유지에 있어서 안전하다. 또한 이 원자로에서는 핵연료를 냉각재와 함께 녹여서 연소시킬 수 있는데, 이로 인해 원자로 구조가 단순해지고 연소도가 균일해지며 사용 후 핵연료의 재처리가 용이해 진다는 장점을 가지고 있다.In addition to lead-cooled fast reactors, another type of next-generation reactor that compensates for the shortcomings of pressurized light reactors is the molten salt reactor (MSR). The molten salt reactor uses molten salt of a fluorine or chlorine compound as a coolant instead of water, and the molten salt has high chemical stability and high boiling point, so it is safe in operation and maintenance like a lead-cooled fast reactor. In addition, in this reactor, nuclear fuel can be melted and burned together with a coolant, which has the advantage of simplifying the reactor structure, making the combustion uniform, and facilitating the reprocessing of spent nuclear fuel.
하지만 상기한 납 냉각 고속로와 용융염 원자로 모두 아직 개발 초기 단계로서 연구가 필요한 분야가 산적해 있다. 특히, 액체 납과 같은 액체 금속, 그리고 용융염은 아직 발전 산업에서 사용된 바가 없어 이들이 구조재 위에서 흐를 때 구조재의 건전성에 어떤 영향을 미치는지에 대한 연구가 크게 부족한 상황이다. However, both the lead-cooled fast reactor and the molten salt reactor are still in the early stages of development, and there are many fields that require research. In particular, liquid metals such as liquid lead and molten salt have not yet been used in the power generation industry, so research on how they affect the soundness of structural materials when flowing over them is insufficient.
이런 차세대 원자로의 개발에 있어 가장 큰 난점 중 하나는 원자로를 구성하는 재료들이 기존 원자로보다 2~3배에 달하는 높은 온도와 방사선 손상을 견뎌내야 한다는 것이다. 예를 들어, 액체 납-비스무트는 접촉한 재료의 철, 니켈등의 성분을 부식시키는 성질을 가지고 있지만, 아직 이들의 유속이 부식에 어떤 영향을 미치는지에 대한 연구는 크게 부족한 상황이다. One of the biggest challenges in the development of these next-generation reactors is that the materials that make up the reactors have to withstand temperatures and radiation damage that are two to three times higher than those of conventional reactors. For example, liquid lead-bismuth has a property of corroding components such as iron and nickel of the material it comes into contact with, but studies on how their flow rates affect corrosion are still lacking.
기존의 액체 금속, 혹은 용융염에 의한 부식 연구는 주로 풀(pool)형 실험 장치에서 유속이 없는(stagnant) 상태의 납에 시편을 담가 그 결과를 지켜보거나, 펌프가 구비된 룹(loop)을 이용해 액체 금속의 유동을 만들어 실험을 진행한 경우가 대부분이었다. Corrosion studies by conventional liquid metals or molten salts are mainly conducted by immersing the specimen in lead in a stagnant state in a pool-type experimental device and observing the results, or using a loop equipped with a pump. In most cases, experiments were conducted by creating a flow of liquid metal using
유속을 만들 수 없는 풀형 장비는 실제 원자로와 같은 환경이라고 보기 어렵고, 룹형 장비는 액체 금속의 유속에 따른 영향을 관찰할 수 있으나 그 규모가 풀형 장비에 비해 너무 커 건설비가 많이 들고, 다양한 유속에 대한 실험 결과를 얻기 위해서는 아주 많은 시간과 비용이 소요되며, 용존 산소 농도와 같은 미세한 변인의 통제가 어렵다는 단점이 있다.The pool-type equipment that cannot make the flow rate is difficult to see as an actual nuclear reactor environment, and the loop-type equipment can observe the effect of the flow rate of liquid metal, but the scale is too large compared to the pull-type equipment, so the construction cost is high, and the It takes a lot of time and money to obtain experimental results, and has disadvantages in that it is difficult to control minute variables such as dissolved oxygen concentration.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 유체 내에서 회전하는 디스크의 반경 방향으로 시편이 길게 배치되어 반경 위치에 따른 다양한 유속 조건에서의 부식을 동시에 실험할 수 있는 부식 실험 장치를 제공함에 있다.Accordingly, an object of the present invention is to solve such a problem in the prior art, in which the specimen is arranged long in the radial direction of the disk rotating in the fluid, so that corrosion can be simultaneously tested under various flow rate conditions according to the radial position. To provide an experimental device.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적은, 본 발명에 따라, 유체가 수용되는 챔버; 시편을 장착시키고 상기 유체 내에 위치하는 디스크; 및 상기 디스크를 회전시키는 구동부를 포함하며, 상기 시편은 상기 디스크의 반경 방향으로 배치되어 상기 디스크가 회전할 때 반경 방향으로 연속적으로 변하는 상기 유체의 상대 유속에 따른 부식을 검사하는 부식 실험 장치에 의해 달성될 수 있다. The above object, according to the present invention, a chamber in which a fluid is accommodated; a disk for mounting the specimen and positioned within the fluid; and a driving unit for rotating the disk, wherein the specimen is disposed in a radial direction of the disk to inspect corrosion according to the relative flow rate of the fluid continuously changing in the radial direction when the disk rotates. can be achieved.
여기서, 상기 디스크에는 상기 시편이 삽입되도록 반경 방향으로 길게 파여진 시편홀더부가 형성될 수 있다. Here, the disk may be formed with a specimen holder that is elongated in the radial direction so that the specimen is inserted.
여기서, 상기 시편홀더부는 원주 방향으로 복수 개 형성될 수 있다. Here, a plurality of the specimen holder parts may be formed in a circumferential direction.
여기서, 상기 시편홀더부의 원주 방향 길이는 서로 다를 수 있다. Here, the length in the circumferential direction of the specimen holder may be different from each other.
여기서, 상기 시편은 도그본(dog bone) 형상 또는 튜브(tube) 형상일 수 있다. Here, the specimen may have a dog bone shape or a tube shape.
여기서, 상기 시편홀더부는 절연 물질로 코팅될 수 있다. Here, the specimen holder may be coated with an insulating material.
여기서, 상기 챔버를 수용하는 오토클레이브를 더 포함하고, 상기 유체의 온도는 제어될 수 있다. Here, further comprising an autoclave accommodating the chamber, the temperature of the fluid may be controlled.
여기서, 상기 챔버 내 산소의 농도를 제어하는 산소농도제어부를 더 포함할 수 있다. Here, it may further include an oxygen concentration control unit for controlling the concentration of oxygen in the chamber.
여기서, 상기 산소농도제어부는 상기 챔버 내부로 산소농도 제어용 가스를 공급하는 가스공급라인을 포함할 수 있다. Here, the oxygen concentration control unit may include a gas supply line for supplying the oxygen concentration control gas into the chamber.
여기서, 상기 산소농도제어부는 EOP(Electrochemical Oxygen Pumping) 기술을 이용하여 유체와 박막 사이의 전위차를 이용해 산소의 농도를 제어할 수 있다.Here, the oxygen concentration control unit may control the concentration of oxygen by using a potential difference between the fluid and the thin film using an EOP (Electrochemical Oxygen Pumping) technology.
여기서, 상기 유체는 액체 금속 또는 용융염 중 어느 하나일 수 있다.Here, the fluid may be any one of a liquid metal or a molten salt.
여기서, 상기 액체 금속은 소듐, 납, 납-비스무트 합금, 납-리튬 합금 중 어느 하나일 수 있다. Here, the liquid metal may be any one of sodium, lead, lead-bismuth alloy, and lead-lithium alloy.
여기서, 용융염은 소듐, 칼륨, 마그네슘, 리튬, 베릴륨, 염소, 플루오린 중 적어도 하나 이상을 포함하고, 핵분열 물질을 함유할 수 있다.Here, the molten salt includes at least one of sodium, potassium, magnesium, lithium, beryllium, chlorine, and fluorine, and may contain a fissile material.
상기한 바와 같은 본 발명의 부식 실험 장치에 따르면 디스크의 반경 방향으로 시편을 배치시켜 회전시킴으로써 반경에 따른 다양한 유속 조건에서의 부식 실험을 동시에 수행할 수 있다는 장점이 있다. According to the corrosion test apparatus of the present invention as described above, there is an advantage that the corrosion test can be simultaneously performed under various flow rate conditions according to the radius by arranging and rotating the specimen in the radial direction of the disk.
또한, 밀도나 점성이 매우 높아 펌프를 이용해 유동을 발생시키기 어려운 유체에 대해서도 효과적으로 다양한 유속을 생성하며 부식 실험을 수행할 수 있어서 유체의 종류에 구애 받지 않는다는 장점도 있다. In addition, it has the advantage of not being limited by the type of fluid because it can effectively generate various flow rates and perform corrosion tests even for fluids that are difficult to generate flow by using a pump because of their very high density or viscosity.
또한, 시편을 도그본(dog bone) 형태로 제작하여 시편에 대한 별도 가공 가정을 거치지 않고 부식 실험 이후에 기계적 강도 실험을 수행할 수 있다는 장점도 있다.In addition, there is an advantage that the mechanical strength test can be performed after the corrosion test without going through a separate processing assumption for the specimen by manufacturing the specimen in the form of a dog bone.
도 1은 본 발명의 일 실시예에 따른 부식 실험 장치의 구성을 도시하는 단면도이다. 1 is a cross-sectional view showing the configuration of a corrosion test apparatus according to an embodiment of the present invention.
도 2는 도 1의 디스크의 평면도이다. Fig. 2 is a plan view of the disk of Fig. 1;
도 3은 본 발명에 따른 시편을 도시하는 평면도이다.3 is a plan view showing a specimen according to the present invention.
도 4는 디스크에 시편이 고정된 상태를 도시하는 도면이다. 4 is a view showing a state in which the specimen is fixed to the disk.
*부호의 설명**Description of symbols*
110: 챔버110: chamber
115: 오토클레이브115: autoclave
1151: 가열수단1151: heating means
120: 디스크120: disk
122: 시편홀더부122: specimen holder part
124: 나사홀124: screw hole
125: 나사125: screw
130: 구동부130: driving unit
132: 구동축132: drive shaft
134: 모터134: motor
140: 가스공급라인140: gas supply line
142: 조절 밸브142: control valve
150: 온도 센서150: temperature sensor
160: 산소 센서160: oxygen sensor
180: 제어부180: control unit
200: 시편200: Psalm
P: 유체P: fluid
실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.The specific details of the embodiments are included in the detailed description and drawings.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다 Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the technical field to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
이하, 본 발명의 실시예들에 의하여 부식 실험 장치를 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.Hereinafter, the present invention will be described with reference to the drawings for explaining the corrosion test apparatus according to the embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 부식 실험 장치의 구성을 도시하는 단면도이고, 도 2는 도 1의 디스크의 평면도이고, 도 3은 본 발명에 따른 시편을 도시하는 평면도이고, 도 4는 디스크에 시편이 고정된 상태를 도시하는 도면이다. 1 is a cross-sectional view showing the configuration of a corrosion test apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of the disk of FIG. 1, FIG. 3 is a plan view showing a specimen according to the present invention, FIG. 4 is It is a view showing a state in which the specimen is fixed to the disk.
본 발명의 일 실시예에 따른 부식 실험 장치는 챔버(110), 디스크(120) 및 구동부(130)를 포함할 수 있다. A corrosion test apparatus according to an embodiment of the present invention may include a chamber 110 , a disk 120 , and a driving unit 130 .
챔버(110)는 유체(P)를 수용한다. 본 발명은 챔버(110) 내에 유체(P)를 수용하고 유체(P)의 유속에 따른 시편(200)의 부식을 실험하는 장치이다. 유체(P)의 유속, 유체(P)의 온도 및 유체(P) 내 산소의 농도가 유체(P)와 접하는 재료의 부식에 가장 큰 영향을 미치는 원인으로 알려져 있는데, 후술하는 바와 같이 본 발명에 따른 부식 실험 장치는 유체(P)의 유속뿐만 아니라 유체(P)의 온도, 유체(P) 내 산소 농도를 동시에 제어하며 부식 실험을 수행할 수 있다. The chamber 110 accommodates the fluid P. The present invention is an apparatus for accommodating the fluid (P) in the chamber (110) and testing the corrosion of the specimen (200) according to the flow rate of the fluid (P). It is known that the flow velocity of the fluid P, the temperature of the fluid P, and the concentration of oxygen in the fluid P are the causes of the greatest influence on the corrosion of the material in contact with the fluid P. As will be described later, in the present invention Corrosion test apparatus according to the flow rate of the fluid (P), as well as the temperature of the fluid (P), the oxygen concentration in the fluid (P) can be simultaneously controlled and the corrosion test can be performed.
특히, 본 실시예에서 부식 실험에 사용될 수 있는 유체(P)는 액체 금속 냉각 고속로에 냉각재로 사용되는 액체 금속일 수 있다. 예를 들어, 상기 액체 금속으로 소듐, 납, 납-비스무트 합금, 납-리튬 합금 중 어느 하나가 사용될 수 있다. 따라서, 부식 실험을 통해 액체 금속의 유속이 원자로의 부식에 미치는 영향을 파악할 수 있다. In particular, the fluid P that can be used in the corrosion test in this embodiment may be a liquid metal used as a coolant in a liquid metal cooling fast reactor. For example, any one of sodium, lead, lead-bismuth alloy, and lead-lithium alloy may be used as the liquid metal. Therefore, it is possible to understand the effect of the flow rate of liquid metal on the corrosion of a nuclear reactor through a corrosion test.
또한, 본 발명에서 부식 실험에 사용될 수 있는 유체(P)는 용융염 원자로(MSR)의 냉각재로 사용되는 용융염일 수 있다. 이때, 상기 용융염은 칼륨, 마그네슘, 리튬, 베릴륨, 염소, 플루오린 중 적어도 하나 이상을 포함하고, 우라늄 또는 플루토늄과 같은 핵분열 물질을 함유할 수 있다. In addition, the fluid P that can be used in the corrosion test in the present invention may be a molten salt used as a coolant of a molten salt reactor (MSR). In this case, the molten salt may include at least one of potassium, magnesium, lithium, beryllium, chlorine, and fluorine, and may contain a fissile material such as uranium or plutonium.
하지만, 본 발명에 따른 부식 실험 장치에서 사용되는 유체(P)는 상기 액체 금속 또는 융융염에 한정되지 않고, 밀도가 높거나 점성이 커 직접 유동을 발생시키기 어려운 모든 유체(P)를 이용하여 부식 실험을 수행할 수 있다. 나아가, 본 발명에 따른 부식 실험 장치는 범용성이 높아서 물, 유기 화합물과 같은 일반적인 유체(P)를 이용한 부식 실험에서도 사용될 수 있다. However, the fluid (P) used in the corrosion test apparatus according to the present invention is not limited to the liquid metal or molten salt, and it is corroded using any fluid (P) that is difficult to generate a direct flow due to its high density or high viscosity. experiments can be performed. Furthermore, the corrosion test apparatus according to the present invention has high versatility and can be used in corrosion tests using general fluids (P) such as water and organic compounds.
액체 금속이 챔버(110)를 부식시켜 장치의 건정성을 저하시키고 실험의 신뢰도를 떨어뜨릴 수 있으므로, 챔버(110)는 알루미나 혹은 알루미나 재질로 코팅된 금속 재질의 도가니(crucible)로 형성하는 것이 바람직하다. Since liquid metal may corrode the chamber 110 to reduce the device's health and reduce the reliability of the experiment, the chamber 110 is preferably formed of alumina or a metal crucible coated with an alumina material. do.
상기 챔버(110)는 오토클레이브(115) 내에 수용될 수 있다. 오토클레이브(115)의 가열수단(1151)에 의해 챔버(110) 내 수용된 액체 금속의 온도를 200℃ 이상의 고온으로 가열시킬 수 있으며, 적정 온도로 온도를 제어할 수 있다. 또한, 상기 유체(P)의 온도를 측정하는 온도 센서(150)가 포함될 수 있다. The chamber 110 may be accommodated in the autoclave 115 . The temperature of the liquid metal accommodated in the chamber 110 may be heated to a high temperature of 200° C. or more by the heating means 1151 of the autoclave 115, and the temperature may be controlled to an appropriate temperature. In addition, a temperature sensor 150 for measuring the temperature of the fluid P may be included.
도시되어 있지 않지만, 상기 챔버(110)와 오토클레이브(115)는 상단부가 별도 덮개로 분리 형성되어 내부에 챔버(110) 내부에 유체(P)를 수용한 이후에 밀폐되도록 하여 외부의 공기 또는 수분 등이 유입되는 것을 차단한다. Although not shown, the upper end of the chamber 110 and the autoclave 115 is formed to be separated by a separate cover so that it is sealed after accommodating the fluid P inside the chamber 110, so that external air or moisture to block the inflow.
또한, 액체 금속에 의한 금속 재료의 부식은 액체 금속 내부에 녹아 있는 산소 농도가 큰 영향을 미치므로, 챔버(110) 내 산소의 농도를 제어하는 산소농도제어부가 형성될 수 있다. In addition, since the concentration of oxygen dissolved in the liquid metal greatly affects corrosion of the metal material by the liquid metal, an oxygen concentration control unit for controlling the concentration of oxygen in the chamber 110 may be formed.
산소농도제어부는 챔버(110) 내부로 산소농도 제어용 가스를 공급하는 가스공급라인(140)일 수 있다. 산소농도 제어용 가스의 일 예로 수소 가스가 사용될 수 있다. 가스공급라인(140)에 형성된 조절 밸브(142)를 통해 챔버(110) 내부에 공급되는 수소는 챔버(110) 내 유체(P)에 포함된 산소와 반응하여 유체(P)에 녹아 있는 산소의 양을 제어할 수 있다. The oxygen concentration control unit may be a gas supply line 140 that supplies a gas for controlling the oxygen concentration into the chamber 110 . As an example of the oxygen concentration control gas, hydrogen gas may be used. Hydrogen supplied to the inside of the chamber 110 through the control valve 142 formed in the gas supply line 140 reacts with oxygen contained in the fluid P in the chamber 110 to increase the amount of oxygen dissolved in the fluid P. You can control the amount.
또는, EOP(Electrochemical Oxygen Pumping) 기술을 이용하여 유체(P)에 포함된 용존 산소의 양을 제어할 수 있다. EOP 방법은 액체 LBE(lead-bismuth eutectic)에 녹아 있는 산소 농도 제어 또는 고순도 산소 제조를 위해 적용된 기술로, 타겟 매질(예를 들어, LBE)과 박막 사이의 전위차를 이용해 매질 내 용존된 산소의 양을 제어하는 기술이다. 논문, "Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping, J.Lim", (https://www.sciencedirect.com/science/article/pii/S0925400514009575)에는 산소 센서와 EOP를 연동시켜 매질 내 녹아 있는 산소 농도를 목표치와 거의 일치하게 제어하는 기술 내용을 개시하고 있는 바, EOP 기술에 대한 상세한 설명은 생략하기로 한다. Alternatively, the amount of dissolved oxygen included in the fluid P may be controlled by using Electrochemical Oxygen Pumping (EOP) technology. The EOP method is a technique applied to control the concentration of oxygen dissolved in liquid LBE (lead-bismuth eutectic) or to produce high-purity oxygen. technology to control In the paper, "Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping, J.Lim", (https://www.sciencedirect.com/science/article/pii/S0925400514009575), the oxygen sensor and EOP are interlocked to dissolve in the medium. Since the description of the technology for controlling the oxygen concentration to be almost identical to the target value is disclosed, a detailed description of the EOP technology will be omitted.
이때, 가스공급라인(140)을 통해 챔버(110)로 수소 가스를 공급할 때 아르곤과 같은 비활성 기체와 혼합하여 공급하는 것이 바람직하다. 고온 고압의 환경에서 수소가 폭발 반응을 일으킬 수 있기 때문이다. At this time, when supplying hydrogen gas to the chamber 110 through the gas supply line 140, it is preferable to supply it mixed with an inert gas such as argon. This is because hydrogen can cause an explosive reaction in a high-temperature and high-pressure environment.
또한, 챔버(110) 내에는 Bi/Bi2O3 전극으로 구성된 산소 센서(160)가 구비되어 액체 금속에 녹아 있는 산소의 농도를 측정할 수 있다. In addition, an oxygen sensor 160 including a Bi/Bi2O3 electrode is provided in the chamber 110 to measure the concentration of oxygen dissolved in the liquid metal.
디스크(120)는 원형의 원판으로 형성될 수 있으며 시편(200)을 장착시키고 구동부(130)에 의해 유체(P) 내에서 회전한다. 따라서, 본 발명에서는 펌프 등을 이용하여 유체(P)에 직접전인 유동을 형성하는 것이 아니라 유체(P) 내에서 디스크(120)를 회전시킴으로써 시편(200)에 대한 상대적인 유동을 형성하여 유체(P)의 유속에 따른 부식 실험을 수행한다. The disk 120 may be formed as a circular disk, and the specimen 200 is mounted and rotated in the fluid P by the driving unit 130 . Therefore, in the present invention, a flow relative to the specimen 200 is formed by rotating the disk 120 within the fluid P, rather than forming a flow that is directly transmitted to the fluid P using a pump or the like. ), a corrosion test is performed according to the flow rate.
유체(P)가 밀도가 높거나 점성이 클 경우 유체(P)에 직접적인 유동을 일으켜 유의미한 수준의 유속을 얻는데 아주 높은 에너지가 요구된다. 하지만, 본 발명에서와 같이 시편(200)이 고정되는 디스크(120)를 회전시켜 상대적인 유동을 일으킴으로써 액체 금속과 같이 유체(P)의 밀도가 높거나 점성이 클 경우에도 유속에 따른 부식 실험을 수행할 수가 있다. When the fluid P has high density or high viscosity, a very high energy is required to directly flow in the fluid P to obtain a meaningful level of flow velocity. However, as in the present invention, by rotating the disk 120 to which the specimen 200 is fixed to generate a relative flow, the corrosion test according to the flow rate is performed even when the density of the fluid P is high or the viscosity is high, such as liquid metal. can be done
본 발명에서는 디스크(120)의 반경 방향으로 시편(200)이 길게 배치된다. 디스크(120)가 회전할 때 같은 각속도로 회전을 하더라도 반경 방향 위치에 따라서 원주 방향 속도가 빨라지게 되어, 반경 방향 위치에 따라서 시편에 미치는 유속의 영향이 달라지게 된다. 따라서, 본 발명에서는 시편(200)을 반경 방향으로 길게 배치시켜 반경 방향으로 서로 다른 상대 유속에 의한 마모 실험을 연속적으로 수행할 수가 있다. 즉, 단일 시편(200)이 위치에 따라 연속적으로 다른 유속에 노출됨에 따라서, 다양한 유속에 대한 마모 실험을 한번에 수행할 수가 있다. 원자로 재료 연구는 한 번의 실험에서 수천 내지 만 시간 정도 소요되나, 본 발명에 따른 마모 실험 장치는 다양한 유속에 대한 마모 실험을 한꺼번에 수행할 수 있어서 실험 시간을 획기적으로 줄일 수가 있다. In the present invention, the specimen 200 is elongated in the radial direction of the disk 120 . Even when the disk 120 rotates at the same angular speed, the circumferential speed increases according to the radial position, and the influence of the flow velocity on the specimen varies according to the radial position. Therefore, in the present invention, it is possible to continuously perform abrasion tests due to different relative flow rates in the radial direction by arranging the specimen 200 long in the radial direction. That is, as the single specimen 200 is continuously exposed to different flow rates according to positions, abrasion tests for various flow rates can be performed at once. The reactor material research takes about several thousand to ten thousand hours in one experiment, but the wear test apparatus according to the present invention can perform wear tests for various flow rates at once, so that the test time can be drastically reduced.
도 2에 도시되어 있는 것과 같이 디스크(120)에는 반경 방향으로 길게 파여진 시편홀더부(122)가 형성될 수 있다. 따라서, 반경 방향으로 긴 시편(200)이 시편홀더부(122)에 삽입되어 고정된다. As shown in FIG. 2 , a specimen holder 122 , which is elongated in the radial direction, may be formed in the disk 120 . Accordingly, the specimen 200 long in the radial direction is inserted and fixed in the specimen holder part 122 .
시편홀더부(122)의 반경 방향 양쪽 바깥부위에는 나사가 삽입되는 나사홀(124)이 형성된다. 따라서, 도 4에 도시되어 있는 것과 같이 시편홀더부(122)에 시편(200)을 삽입한 후에 시편홀더부(122)에 근접하는 위치의 나사홀(124)에 나사(125)를 삽입시켜 나사 머리에 의해 시편(200)을 지지하도록 하여 시편(200)을 디스크(120)에 고정시킬 수 있다. A screw hole 124 into which a screw is inserted is formed in both radially outer portions of the specimen holder portion 122 . Therefore, as shown in FIG. 4 , after inserting the specimen 200 into the specimen holder portion 122 , the screw 125 is inserted into the screw hole 124 at a position close to the specimen holder portion 122 . The specimen 200 may be fixed to the disk 120 by supporting the specimen 200 by the head.
이때, 도시되어 있는 것과 같이 시편홀더부(122)는 원주 방향으로 복수 개 배치될 수 있다. 따라서, 본 발명에서는 복수의 시편(200)에 대해 부식 실험을 수행할 수 있다. At this time, as illustrated, a plurality of specimen holder parts 122 may be disposed in a circumferential direction. Therefore, in the present invention, a corrosion test may be performed on a plurality of specimens 200 .
또한, 시편홀더부(122)의 원주 방향 길이는 서로 달라, 서로 다른 크기의 시편(200)을 디스크(120)에 고정시켜 한꺼번에 부식 실험을 수행할 수 있다. In addition, since the lengths in the circumferential direction of the specimen holder part 122 are different from each other, the specimens 200 of different sizes may be fixed to the disk 120 to perform a corrosion test at once.
도면에서는 디스크(120)의 반경 방향으로 길게 형성된 시편홀더부(122)만 도시하고 있으나, 이에 한정되지 않고 접선 방향으로 길게 형성된 시편홀더부도 함께 형성될 수도 있다. 즉, 디스크(120)의 반경 방향으로 길게 형성된 시편홀더부(122) 뿐만 아니라 이외 다른 방향 또는 다른 크기 또는 다른 형상의 시편홀더부도 함께 형성되어 동시에 부식 실험을 수행할 수 있다. In the drawings, only the specimen holder portion 122 elongated in the radial direction of the disk 120 is illustrated, but the present invention is not limited thereto and the specimen holder portion elongated in the tangential direction may also be formed. That is, not only the specimen holder part 122 formed long in the radial direction of the disk 120 but also the specimen holder part having a different direction or a different size or shape may be formed together, so that a corrosion test can be performed at the same time.
도 3에 도시되어 있는 것과 같이 본 발명에서 시편(200)은 도그본 형상의 판형으로 일 방향으로 길게 형성되는 것이 바람직하다. 따라서, 시편홀더부(122)의 형상도 도그본의 형상에 따라 형성될 수 있다. 시편(200)의 형상은 이에 한정되지 않고 내부에 중공이 형성된 긴 튜브 형태로 형성될 수도 있다. As shown in FIG. 3 , in the present invention, the specimen 200 is preferably formed to be elongated in one direction in the form of a dogbone-shaped plate. Accordingly, the shape of the specimen holder 122 may also be formed according to the shape of the dogbone. The shape of the specimen 200 is not limited thereto, and may be formed in the form of a long tube having a hollow therein.
시편(200)이 일 방향으로 긴 도그본 형상을 가짐에 따라서 본 발명에 따른 부식 실험 장치를 이용하여 유체(P)에 이한 부식 실험을 수행한 이후에, 시편(200)에 대하여 별도의 가공 공정 없이 즉각적으로 시편(200)의 기계적 강도 실험(예를 들어, 인장 강도 실험)을 수행할 수 있다. As the specimen 200 has a long dogbone shape in one direction, a separate processing process for the specimen 200 after performing a corrosion test for the fluid P using the corrosion test apparatus according to the present invention A mechanical strength test (for example, a tensile strength test) of the specimen 200 may be immediately performed without it.
시편(200)과 시편홀더부(122) 및 시편(200)을 고정시키는 나사는 같은 재질로 형성되는 것이 바람직하다. 서로 다른 재질로 형성하는 경우 부식 실험 과정에서 전기적 포텐셜이 발생하여 부식에 영향을 미칠 수 있기 때문이다. 같은 재질로의 제작이 어려운 경우 시편홀더부(122)를 절연 물질로 코팅해서 시편(200)으로의 전기화학적 영향을 차단하는 것이 바람직하다. 이 경우, 서로 다른 재질의 시편(200)에 대해서 부식 실험을 수행할 때 전기적 포텐셜에 의한 영향을 차단시킬 수 있다. It is preferable that the specimen 200, the specimen holder part 122, and the screw for fixing the specimen 200 are made of the same material. This is because, when formed of different materials, an electrical potential is generated in the course of a corrosion test, which can affect corrosion. When it is difficult to manufacture the same material, it is preferable to coat the specimen holder 122 with an insulating material to block the electrochemical influence on the specimen 200 . In this case, when the corrosion test is performed on the specimens 200 of different materials, the influence by the electrical potential can be blocked.
구동부(130)는 챔버(110) 내 디스크(120)를 회전시킨다. 구동부(130)는 디스크(120)의 중앙에 결합되어 챔버(110) 바깥으로 연장되는 구동축(132) 및 챔버(110) 바깥에서 상기 구동축(132)을 회전시키는 모터(134)를 포함하여 구성될 수 있다. The driving unit 130 rotates the disk 120 in the chamber 110 . The driving unit 130 is coupled to the center of the disk 120 to include a driving shaft 132 extending outside the chamber 110 and a motor 134 for rotating the driving shaft 132 outside the chamber 110 . can
제어부(180)는 온도 센서(150)로부터 챔버(110) 내부의 유체(P) 온도를 입력 받고 산소 센서(160)로부터 유체(P) 내 산소 농도를 입력 받으며, 모터(134)의 회전 속도 제어를 통한 유체(P)의 상대 속도 제어, 오토클레이브(115)의 가열수단(1151)의 제어를 통한 유체(P)의 온도 제어, 및 가스공급라인(140)에 형성된 조절 밸브(142)의 개폐 제어로 챔버(110) 내부로 공급되는 수소 가스의 양 제어를 통한 유체(P) 내 산소 농도의 제어를 수행할 수 있다. The controller 180 receives the temperature of the fluid P inside the chamber 110 from the temperature sensor 150 , and receives the oxygen concentration in the fluid P from the oxygen sensor 160 , and controls the rotational speed of the motor 134 . Control of the relative speed of the fluid P through the control of the relative speed of the autoclave 115, the temperature control of the fluid P through the control of the heating means 1151 of the autoclave 115, and the opening and closing of the control valve 142 formed in the gas supply line 140 As a control, the oxygen concentration in the fluid P may be controlled by controlling the amount of hydrogen gas supplied into the chamber 110 .
따라서, 본 발명에 따른 부식 실험 장치는 부식에 가장 큰 영향을 미치는 요인으로 알려진 유체(P)의 속도, 유체(P)의 온도 및 유체(P) 내 산소의 농도를 동시에 제어하며 부식 실험을 수행할 수 있다. Therefore, the corrosion test apparatus according to the present invention performs a corrosion test while simultaneously controlling the velocity of the fluid P, the temperature of the fluid P, and the concentration of oxygen in the fluid P, which are known factors that have the greatest influence on corrosion. can do.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiments, but may be implemented in various forms within the scope of the appended claims. Without departing from the gist of the present invention claimed in the claims, it is considered to be within the scope of the claims of the present invention to the extent that various modifications can be made by anyone skilled in the art to which the invention pertains.

Claims (13)

  1. 유체가 수용되는 챔버;a chamber in which the fluid is received;
    시편을 장착시키고 상기 유체 내에 위치하는 디스크; 및a disk for mounting the specimen and positioned within the fluid; and
    상기 디스크를 회전시키는 구동부를 포함하며, It includes a driving unit for rotating the disk,
    상기 시편은 상기 디스크의 반경 방향으로 배치되어 상기 디스크가 회전할 때 반경 방향으로 연속적으로 변하는 상기 유체의 상대 유속에 따른 부식을 검사하는 부식 실험 장치.The specimen is disposed in the radial direction of the disk to test corrosion according to the relative flow rate of the fluid continuously changing in the radial direction when the disk rotates.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 디스크에는 상기 시편이 삽입되도록 반경 방향으로 길게 파여진 시편홀더부가 형성되는 부식 실험 장치.Corrosion test apparatus in which a specimen holder part long in a radial direction is formed in the disk to insert the specimen.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 시편홀더부는 원주 방향으로 복수 개 형성되는 부식 실험 장치.Corrosion test apparatus in which a plurality of specimen holder portions are formed in a circumferential direction.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 시편홀더부의 원주 방향 길이는 서로 다른 부식 실험 장치.The length in the circumferential direction of the specimen holder is different from each other.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 시편은 도그본(dog bone) 형상 또는 튜브 (tube) 형상인 부식 실험 장치.The specimen is a dog bone (dog bone) shape or a tube (tube) shape of the corrosion test apparatus.
  6. 제 2 항에 있어서,3. The method of claim 2,
    상기 시편홀더부는 절연 물질로 코팅되는 부식 실험 장치. The specimen holder portion is a corrosion test device that is coated with an insulating material.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 챔버를 수용하는 오토클레이브를 더 포함하고, Further comprising an autoclave accommodating the chamber,
    상기 유체의 온도는 제어되는 부식 실험 장치.The temperature of the fluid is controlled corrosion test apparatus.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 챔버 내 산소의 농도를 제어하는 산소농도제어부를 더 포함하는 부식 실험 장치.Corrosion test apparatus further comprising an oxygen concentration control unit for controlling the concentration of oxygen in the chamber.
  9. 제 8 항에 있어서,9. The method of claim 8,
    상기 산소농도제어부는 상기 챔버 내부로 산소농도 제어용 가스를 공급하는 가스공급라인을 포함하는 부식 실험 장치.The oxygen concentration control unit is a corrosion test apparatus including a gas supply line for supplying the oxygen concentration control gas into the chamber.
  10. 제 8 항에 있어서,9. The method of claim 8,
    상기 산소농도제어부는 EOP(Electrochemical Oxygen Pumping) 기술을 이용하여 유체와 박막 사이의 전위차를 이용해 산소의 농도를 제어하는 부식 실험 장치.The oxygen concentration control unit is a corrosion test apparatus for controlling the concentration of oxygen using the potential difference between the fluid and the thin film using EOP (Electrochemical Oxygen Pumping) technology.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 유체는 액체 금속 또는 용융염 중 어느 하나인 부식 실험 장치.The fluid is any one of liquid metal or molten salt corrosion test apparatus.
  12. 제 11 항에 있어서,12. The method of claim 11,
    상기 액체 금속은 소듐, 납, 납-비스무트, 납-리튬 합금 중 어느 하나인 부식 실험 장치.The liquid metal is any one of sodium, lead, lead-bismuth, and lead-lithium alloy.
  13. 제 11 항에 있어서,12. The method of claim 11,
    상기 용융염은 소듐, 칼륨, 마그네슘, 리튬, 베릴륨, 염소, 플루오린 중 적어도 하나 이상을 포함하고, 핵분열 물질을 함유하는 부식 실험 장치.The molten salt includes at least one of sodium, potassium, magnesium, lithium, beryllium, chlorine, and fluorine, and a corrosion test apparatus containing a fissile material.
PCT/KR2022/000898 2021-01-18 2022-01-18 Corrosion test apparatus WO2022154634A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210006668 2021-01-18
KR10-2021-0006668 2021-01-18
KR10-2021-0083145 2021-06-25
KR1020210083145A KR20220104619A (en) 2021-01-18 2021-06-25 Corrosion test apparatus

Publications (1)

Publication Number Publication Date
WO2022154634A1 true WO2022154634A1 (en) 2022-07-21

Family

ID=82447421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000898 WO2022154634A1 (en) 2021-01-18 2022-01-18 Corrosion test apparatus

Country Status (1)

Country Link
WO (1) WO2022154634A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439751B1 (en) * 2013-03-08 2014-09-11 주식회사 포스코 Apparatus for erosion-corrosion test in aqueous slurry environment
KR101440554B1 (en) * 2013-05-10 2014-09-17 재단법인 포항산업과학연구원 Seawater corrosion fatigue test system
JP2016045007A (en) * 2014-08-20 2016-04-04 三菱マテリアル株式会社 Corrosion test device, and corrosion test method
KR101797380B1 (en) * 2016-07-28 2017-11-14 주식회사 포스코 Specimen corrosion apparatus and control method for the same
CN111982733A (en) * 2020-09-04 2020-11-24 中国核动力研究设计院 Test device for erosion corrosion test of lead-bismuth alloy melt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439751B1 (en) * 2013-03-08 2014-09-11 주식회사 포스코 Apparatus for erosion-corrosion test in aqueous slurry environment
KR101440554B1 (en) * 2013-05-10 2014-09-17 재단법인 포항산업과학연구원 Seawater corrosion fatigue test system
JP2016045007A (en) * 2014-08-20 2016-04-04 三菱マテリアル株式会社 Corrosion test device, and corrosion test method
KR101797380B1 (en) * 2016-07-28 2017-11-14 주식회사 포스코 Specimen corrosion apparatus and control method for the same
CN111982733A (en) * 2020-09-04 2020-11-24 中国核动力研究设计院 Test device for erosion corrosion test of lead-bismuth alloy melt

Similar Documents

Publication Publication Date Title
Zhang et al. Redox potential control in molten salt systems for corrosion mitigation
CN1029270C (en) Incore instrumentation system for pressurized water reactor
WO2022154634A1 (en) Corrosion test apparatus
JP3124140B2 (en) In-core equipment for fusion reactors
WO2011043513A1 (en) Outer-wall cooling apparatus of reactor vessel
Nouduru et al. Nodular corrosion of zirconium alloys in gaseous environment containing different contaminants
CN207489489U (en) Central core monitoring device component
KR20220104619A (en) Corrosion test apparatus
WO2014035009A1 (en) Intrinsically safe water-cooled reactor system for generating electricity
Laurie et al. New temperature monitoring devices for high-temperature irradiation experiments in the High Flux Reactor Petten
Carpenter et al. MITR Users’ Guide
WO2023113174A1 (en) Molten salt reactor and passive fuel injection method therefor
Greenslade et al. FFTF as an irradiation test bed for fusion materials and components
Demkowicz TristructuralIsotropic (TRISO) Fuel Qualification in the US
CN217333645U (en) High-burnup fuel cladding oxidation test device
Lentz et al. EBR-II: twenty years of operating experience
Stuckert et al. Results of metallographic analysis of the QUENCH-20 bundle with B4C absorber
JPH04204199A (en) Fuel breakage detector
Alberman et al. Irradiation facilities development at CEA for solid and liquid breeder blankets qualification programs
Hayes et al. Irradiations for Advanced Reactors
Sato et al. Design and operational features of the low temperature fissiochemical loop
CN114609184A (en) Radioactive material high-temperature steam oxidation test device and using method thereof
Rose et al. The joint AN/CNEN/NPPC irradiation programme
BR112016013357B1 (en) METHOD FOR PASSIVATION OF INTERNAL CONTOUR OF STEEL SURFACES OF A NUCLEAR REACTOR
CN112735613A (en) Tracking and monitoring method for integrity of domestic nuclear fuel assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739826

Country of ref document: EP

Kind code of ref document: A1