WO2022154463A1 - Metal-organic composite particles and composition comprising metal-organic composite particles - Google Patents

Metal-organic composite particles and composition comprising metal-organic composite particles Download PDF

Info

Publication number
WO2022154463A1
WO2022154463A1 PCT/KR2022/000539 KR2022000539W WO2022154463A1 WO 2022154463 A1 WO2022154463 A1 WO 2022154463A1 KR 2022000539 W KR2022000539 W KR 2022000539W WO 2022154463 A1 WO2022154463 A1 WO 2022154463A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
metal
composite particles
organic
benzene
Prior art date
Application number
PCT/KR2022/000539
Other languages
French (fr)
Korean (ko)
Inventor
최경민
이현신
강서영
Original Assignee
랩인큐브 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210192388A external-priority patent/KR20220103624A/en
Application filed by 랩인큐브 주식회사 filed Critical 랩인큐브 주식회사
Publication of WO2022154463A1 publication Critical patent/WO2022154463A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals

Definitions

  • the present invention relates to a metal-organic composite particle formed by combining a metal and an organic material.
  • Nanomaterials that combine molecules to form pores have emerged as a major research field for the past few decades, and are being applied in various fields such as catalysts, adsorption/separation/storage, electronics, health care, semiconductors, food, and detergents.
  • Nanomaterials having these pores have very high adsorption performance, can control adsorption performance, can create active sites in the backbone, have pore sizes similar to biomolecules, and have excellent ion exchange with most pores ability, and also has insulator, semiconductor and conductor properties.
  • the metal-organic framework is a porous material in which a metal ion cluster and an organic linker or organic bridging ligands are linked by a coordination bond to form a three-dimensional structure. Since the metal-organic framework has an open pore structure as well as a large surface area, it is possible to move a large amount of molecules or solvents compared to other known porous materials.
  • One object of the present invention is to provide a metal-organic composite particle that can be used to adsorb, store and release a substance having the same size as a molecular gas to a substance having a size larger than that of a molecular gas, such as drugs, proteins, DNA, RNA, and cells. .
  • Another object of the present invention is to provide a composition that can be used to slowly release the active material by adhering to or mixing with a variety of objects and having a higher amount of active material than the metal-organic framework.
  • Another object of the present invention is to provide a composition that can be used for alleviating or removing inflammation by efficiently adsorbing substances such as protein signaling substances that cause inflammation.
  • a first aspect of the present invention for achieving the above object is a composite particle formed by combining a metal and an organic material, wherein a peak indicating crystallinity is not observed in the powder X-ray diffraction analysis of the composite particle, and the TEM electron In the diffraction analysis, it has a structure in which a ring-shaped diffraction pattern is observed, a plurality of pores having a size of 1 nm to 10 ⁇ m are formed inside the composite particle, and it is to provide a metal-organic composite particle including a supported active ingredient. .
  • a second aspect of the present invention for achieving the other object includes a biodegradable polymer, a composite particle formed by combining a metal and an organic material dispersed in the biodegradable polymer, and an active ingredient supported on the composite particle, ,
  • the composite particle has a structure in which a peak indicating crystallinity is not observed in powder X-ray diffraction analysis, and a ring-shaped diffraction pattern is observed in TEM electron diffraction analysis, and the inside of the composite particle has a size of 1 nm to 10 ⁇ m It is to provide a composition in which a plurality of pores are formed, and at least a portion of the active ingredient is supported in the plurality of pores.
  • the metal-organic composite particles according to the present invention can be used to adsorb, store, or release materials of a relatively large size, such as drugs, proteins, DNA, RNA, and cells, from small-sized substances such as molecular gases together, so that the metal-organic framework It can be used for adsorption, storage and release of a variety of substances compared to
  • composition according to an embodiment of the present invention exhibits significantly improved active material loading and dispersibility compared to the sustained-release composition using the metal-organic framework powder, and when used in medical or cosmetic fields, treatment, prevention, and cosmetic properties can be improved.
  • composition according to an embodiment of the present invention can be used for alleviating or removing inflammation by efficiently adsorbing and removing substances such as protein signaling substances that cause inflammation.
  • Example 1 is a scanning electron microscope image of the composite particles prepared according to Example 1 of the present invention.
  • Example 4 is a transmission electron microscope image of the composite particles prepared according to Example 1 of the present invention.
  • Example 6 shows the results of powder X-ray diffraction analysis of the composite particles prepared according to Example 1.
  • 16 is a photograph comparing the sustained-release coatings of Examples 2 and 3 coated on a plastic spoon with those coated with PLGA.
  • the metal-organic composite particle according to the present invention is a composite particle formed by combining a metal and an organic material, and in the composite particle, a peak indicating crystallinity is not observed in powder X-ray diffraction analysis, and a ring shape in TEM electron diffraction analysis It has a structure in which the diffraction pattern of the composite particle is observed, and a plurality of pores having a size of 1 nm to 10 ⁇ m are formed inside the composite particle, and it is characterized in that it contains a supported active ingredient.
  • the metal-organic composite particles according to the present invention unlike the metal-organic framework, a peak enough to confirm crystallinity was not observed in powder X-ray diffraction analysis, whereas a ring-shaped diffraction pattern was observed in TEM electron diffraction analysis. It is observed. That is, it has crystallinity of a fine short range order on an amorphous basis.
  • a plurality of pores having a size of 1 nm to 10 ⁇ m, which are not formed in the metal-organic framework have a microstructure formed therein.
  • 'a plurality of pores formed in the interior of the composite particle' is an open type of pores that are depressed from the surface of the composite particle toward the inside, and a closed shape inside the composite particle. It is used in the meaning of including all qigong.
  • the shape of the adsorption/desorption curve may indicate adsorption by a plurality of multi-composite pores increasing at all pressures.
  • 'adsorption by a plurality of multi-composite pores' means adsorption in a form in which adsorption by micropores, mesopores, and macropores all appear.
  • the metal-organic composite particle when a low-temperature gas adsorption analysis is performed, the adsorption/desorption curve shows that a large amount of gas is adsorbed at the beginning of the analysis, and then the amount of gas adsorption is slightly increased even if the partial pressure is increased. represents the pattern of In contrast, in the present invention, the metal-organic composite particle exhibits a multi-pore shape showing a rapid increase after a small amount of gas adsorption occurs in the initial stage of low-temperature gas adsorption analysis, and then linearly increases when the partial pressure increases.
  • the plurality of pores may adsorb one or more selected from molecular gas, drug, protein, DNA, virus, cell, intracellular signal transduction material (eg, protein signal material). it could be
  • the active ingredient may be, for example, at least one selected from the group consisting of organic acids, drugs, metal ions, oxides, molecular gases, tissue regeneration materials, and the like.
  • the metal is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd , Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs , Mg, Ca, Sr, and may be at least one element selected from the group consisting of Ba, or an ion thereof.
  • the organic material is, for example, 4,4'-biphenyldicarboxilic acid, benzene-1,4-dicarboxylic acid (benzene- 1,4-dicarboxylic acid), 9,10-anthracenedicarboxylic acid, biphenyl-3,3,5,5'-tetracarboxylic acid (biphenyl-3,3,5) ,5'-tetracarboxylic acid, biphenyl-3,4',5-tricarboxylic acid, 5-bromoisophthalic acid, 5 -Cyano-1,3-benzenedicarboxylic acid (5-cyano-1,3-benzenedicarboxylic acid), 2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-diamino -4,4'-stilbenedicarboxylic acid), 2,5-diaminoterephthalic acid (2,5-diaminoterephthalic acid), 1,1,2,2-te
  • the metal-organic composite particles have a particle size of less than 0.01 ⁇ m or more than 100 ⁇ m, the amount of adsorption of the active material may not be sufficient, and thus, it is preferable to have a particle size of 0.01 to 100 ⁇ m.
  • the adsorption, storage and release properties of various substances of the metal-organic composite particles according to the present invention can be used for various purposes.
  • cosmetics substances for storing proteins, substances for storing antibacterial agents, additives for food and animal feed, substances for collecting harmful gases such as odor components, fine dust, radiation gas, substances for air purification, substances for collecting moisture, hydrogen or electronic parts
  • Gas storage materials such as process gases, materials for electrode materials for secondary batteries, materials for capacitors, materials for electrolytes in batteries, materials for gas sensors, materials for ion exchangers, pharmaceutical carriers for medical devices, coatings for contact lenses, sustained release animals It can be applied to drugs, sustained-release human drugs, sustained-release preventive drugs, food preservation containers, and deodorants.
  • the composition according to the present invention comprises a biodegradable polymer, a composite particle formed by combining a metal and an organic material dispersed in the biodegradable polymer, and an active ingredient supported on the composite particle, wherein the composite particle is a powder In X-ray diffraction analysis, a peak indicating crystallinity is not observed, and in TEM electron diffraction analysis, a ring-shaped diffraction pattern is observed, and a plurality of pores with a size of 1 nm to 10 ⁇ m are formed inside the composite particle. and at least a portion of the active ingredient may be supported in the plurality of pores.
  • the composition Since the composite particles carrying the active ingredient are dispersed in the biodegradable polymer, the composition has a sustained-release property such that the active ingredient supported on the composite particles is gradually released as the biodegradable polymer is decomposed.
  • the shape of the adsorption/desorption curve may represent the shape of the composite pores increasing at all pressures.
  • the metal is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh , Pd, Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb , Cs, Mg, Ca, Sr, and may be at least one element selected from the group consisting of Ba, or an ion thereof.
  • the organic material is, for example, 4,4'-biphenyldicarboxylic acid (4,4'-biphenyldicarboxilic acid), benzene-1,4-dicar benzene-1,4-dicarboxylic acid, 9,10-anthracenedicarboxylic acid, biphenyl-3,3,5,5'-tetracarboxylic acid (biphenyl) -3,3,5,5'-tetracarboxylic acid), biphenyl-3,4',5-tricarboxylic acid (biphenyl-3,4',5-tricarboxylic acid), 5-bromoisophthalic acid (5 -bromoisophthalic acid), 5-cyano-1,3-benzenedicarboxylic acid (5-cyano-1,3-benzenedicarboxylic acid), 2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-
  • the organic material may preferably include ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin.
  • the organic material may include crosslinking of other organic molecules in addition to the above three types of cyclodextrins, thereby forming a gap between metals (ions) to form empty regions, that is, pores in the structure, and the size can be adjusted.
  • cyclodextrins when ⁇ -cyclodextrin is used, the space formed is the largest, and thus the ability to capture the active material is the best, so it may be the most preferred example.
  • the biodegradable polymer is, for example, polylactide-glycolide copolymer (PLGA), chitosan (chitosan), polydioxanone (polydioxanone), polylactide- polycaprolactone copolymer (PLA) -PCL), polyglycolide-polycaprolactone copolymer (PGA-PCL), polydioxanone-polycaprolactone copolymer (PDO-PCL), polytrimethylene carbonate (PTMC), polycarbonate (PC), poly Butylene succinate (PBS), polyhydroxybutyrate (PHB), polyhydroalkanoate (PHA), aliphatic polyphosphate ester, aromatic polyester (aromatic polyester) and polyphosphazene (Polyphosphazene) It may be one or more selected from the group consisting of.
  • PLGA polylactide-glycolide copolymer
  • chitosan chitosan
  • a copolymer is a polymer made by polymerizing two or more different monomers, and each monomer can be independently arranged, alternately arranged in a form, a certain part agglomerated, arbitrarily arranged in a form, one main chain It may be in a form linked to a side chain or in a form crosslinked by a side chain between the main polymer chains.
  • the copolymer may be an alternating copolymer, a random copolymer, a block copolymer, or a graft copolymer, but is not limited thereto.
  • the biodegradable copolymer may be a polylactide-glycolide copolymer (PLGA), and the polylactide-glycolide copolymer may have a molar ratio of lactide and glycolide of 0.1:1 to 9:1.
  • the polylactide-glycolide copolymer is coated on the metal-organic framework, so that the release pattern of the active material can be changed, and the release amount and release rate can be controlled according to the composition of the copolymer.
  • the biodegradable polymer may be 150 to 300 parts by weight based on 100 parts by weight of the metal-organic composite particles. More specifically, the weight ratio of the polylactide-glycolide copolymer may be 150 to 300 parts by weight based on 100 parts by weight of the metal-organic framework on which the active material is supported.
  • the weight ratio corresponds to the metal-organic framework may be coated with a biodegradable polymer, and if the weight of the biodegradable polymer is lower than 150, the release amount of the active ingredient may be small due to the uneven surface due to not being sufficiently coated, When the weight part of the biodegradable polymer is greater than 300, the thickness of the polymer coating of the metal-organic framework may be increased, and thus the amount of active ingredient released may be reduced.
  • the active ingredient may be, for example, at least one selected from the group consisting of organic acids, drugs, metal ions, oxides, molecular gases, tissue regeneration materials, and the like.
  • the tissue regeneration material may be at least one selected from the group consisting of protein, DNA, RNA, and stem cells.
  • the metal-organic composite particles may have an adsorption amount of the active material of 100 mg/g or more, preferably 150 mg/g or more, more preferably 250 mg/g or more, and most preferably 500 mg/g or more.
  • the adsorption amount of the active material may not be sufficient, so it is preferably made of 0.01 to 100 ⁇ m.
  • a solvent for dissolving the biodegradable polymer may be further included. That is, the composition may be used in a state in which the solvent for dissolving the biodegradable polymer is completely removed, or in a state in which the solvent is partially removed or not removed.
  • the solvent may be one selected from the group consisting of acetonitrile, chloroform, dichloromethane, water, ethyl acetate, acetone, ethanol and methanol, or a mixture thereof.
  • composition according to the present invention can be used for various purposes.
  • the composition may include an implant, stent, artificial bone, artificial joint, catheter or canola, hemostatic clip, vascular access device, peripheral blood vessel, intravenous site, drainage, gastrotrophic tube, airway tube, guide wire , pacemaker, organ regeneration guide tube, dental filler, dental support building resin, dental coating material, indwelling tube, suture, lifting thread, needle, sanitary napkin, tissue adhesion prevention material, contact lens, bone cement, dental use It can be used for sustained release of antibacterial/anti-inflammatory agents of articles that are inserted, attached, or applied to the human body, such as adhesives and medical casts.
  • the antibacterial/anti-inflammatory agent is not particularly limited as long as it can be supported on the metal-organic composite particles according to the present invention, but may be appropriately selected and used in consideration of the drug properties required for the object to be coated.
  • minocycline hydrochloride as an antibacterial/anti-inflammatory agent for dental implants (fixtures, abutments, crowns, etc.), dental fillers, resins for building dental supports, or ointments applied after mechanical cleaning of teeth (Minocycline Hydrochloride) and Tetracycline.
  • the antibacterial/anti-inflammatory agent When the antibacterial/anti-inflammatory agent is supported on the metal-organic composite particle according to the present invention and used in the form of a sustained-release coating, filler or ointment, due to the increase in the drug loading and the sustained-release effect, for example, antibacterial/anti-inflammatory after implantation.
  • the number of treatments ie, number of dental visits) can be significantly reduced.
  • trehalose, rapamycin, perhexiline, amiodarone, niclosamide which are substances that can be used for promoting autophagy after surgery on implants , rottlerin, torin1, PI103, phenylethylisothiocyanate, dexamethasone, lithium, L-690,330, carbamazepine, sodium valpro Sodium valproate, verapamil, loperamide, nimodipine, nitrendipine, niguldipine, nicardipine, pimozide, Calpastatin, calpeptin, clonidine, rilmenidine, 2',5'-dideoxyadenosine, NF449, minoxidil, penitrem A, spermidine, resveratrol, fluspirilene, trifluoperazine, small-molecule enhancer (SMER) 10, SMER 18, SMER 28 and A substance selected from
  • Metal-organic composite particles were prepared by the following process.
  • Cyclodextrin (Cyclodextrin) solution is prepared by putting 0.125 mmol (0.162 g) of cyclodextrin, 1 mmol (0.056 g) of KOH, 2 mL of deionized water (DI) and 2 mL of ethanol (EtOH) in a 10 mL glass bottle. Then, the prepared solution was rapidly dried with hot air at 120° C. to prepare a powder.
  • an active ingredient-supported sustained-release composition was prepared by the following process.
  • Ethanol 1 mL, CTAB (cetyltrimethylammonium bromide) 0.022mmol (0.008g), and tetracycline hydrochloride 0.21mmol (0.093g) were put into a 20mL glass bottle, and then supported on the powder prepared according to Example 1. .
  • a biodegradable polymer After dissolving PLGA, a biodegradable polymer, in 1 mL of acetone, it was added to the composite particles subjected to drug loading treatment, and stirred to prepare a coating agent in which the composite particles were homogeneously dispersed.
  • the coating agent thus prepared contained 0.15 g of PLGA, 1 mL of acetone, and 0.06 g of metal-organic composite particles, and the content of metal-organic composite particles was 6 wt%.
  • the theoretical content of this coating is 87.4 mg tetracycline /g total .
  • an active ingredient-supported sustained-release composition was prepared by the following process.
  • the sustained-release composition was prepared in the same manner as in Example 2, except that the coating agent contained 0.15 g of PLGA, 1 mL of acetone, and 0.15 g of metal-organic composite particles, and the content of metal-organic composite particles was 14 wt%. The theoretical content of this coating is 145.7 mg tetracycline /g total .
  • Metal-organic composite particles were prepared by the following process.
  • a 10mL glass bottle prepared with the cyclodextrin solution was placed in a 120mL container containing 20mL MeOH, and reacted for 6 hours in an oven maintained at 50°C without a lid to prepare a powder.
  • Ethanol 1 mL, CTAB (cetyltrimethylammonium bromide) 0.022 mmol (0.008 g), and tetracycline hydrochloride 0.21 mmol (0.093 g) were added to a 20 mL glass bottle, and then loaded onto the powder prepared according to Comparative Example 1. .
  • a biodegradable polymer After dissolving PLGA, a biodegradable polymer, in 1 mL of acetone, it was added to the composite particles subjected to drug loading treatment, and stirred to prepare a coating agent in which the composite particles were homogeneously dispersed.
  • the coating agent thus prepared contained 0.15 g of PLGA, 1 mL of acetone, and 0.06 g of metal-organic composite particles, and the content of metal-organic composite particles was 6 wt%.
  • the theoretical content of this coating is 87.4 mg tetracycline /g total .
  • an active ingredient-supported sustained-release composition was prepared by the following process.
  • the sustained-release composition was prepared in the same manner as in Comparative Example 2, except that the coating agent contained 0.15 g of PLGA, 1 mL of acetone, and 0.1 g of organic metal composite particles, and the content of the organic metal composite particles was 10% by weight.
  • the theoretical content of this coating is 15 mg tetracycline /g total .
  • Metal-organic composite particles were prepared by the following process.
  • FIG. 1 is a scanning electron microscope image of a composite particle prepared according to Example 1 of the present invention
  • FIG. 2 is a scanning electron microscope image of a metal-organic composite particle prepared according to Comparative Example 1
  • FIG. It is a scanning electron microscope image of metal-organic composite particles prepared according to
  • the metal-organic composite particles prepared according to Example 1 of the present invention are generally spherical particles, particles with one or both sides depressed, donut-shaped particles with a hole in the center, etc. It is mixed, and the surface of each particle has a rough surface.
  • the metal-organic composite particles prepared according to Comparative Example 1 are composed of cube-shaped particles with a smooth surface, as shown in FIG. 2 , and this shape is a typical shape of the metal-organic framework.
  • the metal-organic composite particles prepared according to Comparative Example 4 had irregular particle shapes and, unlike Comparative Example 1, did not form a smooth surface, and had a shape in which a large number of particles were agglomerated.
  • FIG. 4 is a transmission electron microscope image of the composite particles prepared according to Example 1 of the present invention
  • FIG. 5 is a transmission electron microscope image of the metal-organic composite particles prepared according to Comparative Example 1.
  • FIG. 6 shows the powder X-ray diffraction analysis results of the composite particles prepared according to Example 1
  • FIG. 7 shows the powder X-ray diffraction analysis results of the composite particles prepared according to Comparative Example 1
  • FIG. 8 shows the results of powder X-ray diffraction analysis of the composite particles prepared according to Comparative Example 4.
  • FIG. 9 shows the TEM electron diffraction analysis results of the composite particles prepared according to Example 1
  • FIG. 10 shows the TEM electron diffraction analysis results of the composite particles prepared according to Comparative Example 1
  • FIG. 11 is Comparative Example 4 TEM electron diffraction analysis results of the composite particles prepared according to the method are shown.
  • the composite particles prepared according to Example 1 showed a ring-type electron diffraction pattern diffracted by fine crystals in the electron diffraction analysis result of a transmission electron microscope. That is, in the composite particles prepared according to Example 1 of the present invention, crystallinity could not be confirmed within the resolution range of the powder X-ray diffraction apparatus, but the crystallinity of the short range order level was not confirmed in TEM. appears to have an organization.
  • the composite particles according to the present invention can be obtained from molecular gas, protein DNA, RNA, It is presumed to have the property of simultaneously adsorbing relatively large-sized substances such as cells.
  • FIG. 12 shows the low-temperature nitrogen adsorption analysis result of the powder of the composite particle prepared according to Example 1
  • FIG. 13 shows the low-temperature nitrogen adsorption analysis result of the powder of the composite particle prepared according to Comparative Example 1.
  • the adsorption/desorption curve shows a tendency to slightly adsorb at the initial stage when the partial pressure of the gas is low, and to increase the adsorption amount as the partial pressure increases.
  • the curve pattern shows a multi-composite pore shape in which microporous, mesoporous, and macroporous are mixed during low-temperature nitrogen adsorption analysis.
  • the adsorption/desorption curve shows a "microporous" in which the gas adsorption amount slightly increases even if the partial pressure increases after most of the gas is adsorbed in a state where the partial pressure of the gas is low. " represents the shape.
  • Example 14 shows the activity of the composite particles prepared in Example 1 (indicated as “metal-organic composite particles” in the drawing) and the composite particles prepared by Comparative Example 1 (indicated by "metal-organic frameworks” in the drawings); This is the result of comparing the absorption amount of the active substance according to the substance concentration.
  • the drug absorption amount of the metal-organic composite particles prepared according to Example 1 was increased by 9 to 18 times compared to the metal-organic framework prepared according to Comparative Example 1.
  • the absorption amount of the active material increased as the concentration of the active material increased, but in the case of the metal-organic framework prepared according to Comparative Example 1, the concentration of the active material increased. However, the absorption amount of the active material did not increase any more.
  • sustained-release coatings according to Examples 2 and 3 increased the drug release amount by about 17 to 22 times compared to Comparative Examples 2 and 3, and sustained release of the drug for 14 days or more is possible is also confirmed.
  • the sustained-release compositions prepared according to Examples 2 and 3 of the present invention carry a drug at least 17 times more than the sustained-release compositions of Comparative Examples 2 and 3, and can be released over a longer period of time. It has sustained release properties.
  • 16 is a photograph comparing the sustained-release coatings of Examples 2 and 3 coated on a plastic spoon with those coated with PLGA.
  • Example 1 dispersed in the sustained-release coating agents of Examples 2 and 3 have very good dispersibility on the surface of PLGA. This means that when the coating agent according to Examples 2 and 3 is coated on the target article, homogeneous medicinal effect can be expected in all coating layers.
  • a coating layer is formed in a state in which a plurality of particles are aggregated.
  • the particles are distributed and coated in such a form, there is a problem that an even drug effect cannot be expected throughout the coating layer.
  • the coating agents according to Examples 2 and 3 have significantly improved properties compared to the particles made of the metal-organic framework in terms of dispersibility of the drug-carrying particles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to composite particles which are formed by combination of a metal ion and an organic linker or an organic ligand and have a porous structure capable of supporting a functional material. The composite particles according to the present invention are composite particles formed by combining a metal and an organic material, wherein the composite particles have a structure of which powder X-ray diffraction analysis does not show a peak indicating crystallinity and of which TEM electron diffraction analysis show a ring-shaped diffraction pattern, have a plurality of pores having the size of 1 nm to 10 μm formed thereinside, and include supported active ingredients.

Description

금속유기 복합입자 및 금속유기 복합입자를 포함하는 조성물Composition comprising metal-organic composite particles and metal-organic composite particles
본 발명은 금속과 유기물의 결합에 의해 형성되는 금속유기 복합입자에 관한 것이다.The present invention relates to a metal-organic composite particle formed by combining a metal and an organic material.
분자를 조합하여 기공을 형성하는 나노 물질들은 지난 수십 년 동안 주요 연구 분야로 떠오르고 있으며, 촉매, 흡착/분리/저장, 전자, 보건, 반도체, 식품, 세제 등 다양한 분야에 응용되고 있다.Nanomaterials that combine molecules to form pores have emerged as a major research field for the past few decades, and are being applied in various fields such as catalysts, adsorption/separation/storage, electronics, health care, semiconductors, food, and detergents.
이러한 기공을 갖는 나노 물질들은 흡착성능이 매우 높을 뿐만 아니라, 흡착성능의 조절이 가능하고, 활성 사이트들을 골격 내에 생성할 수 있으며, 기공의 크기가 바이오 분자들과 유사하고, 기공 대부분이 우수한 이온교환 능력이 있으며, 절연체, 반도체 및 도체 특성도 갖는다.Nanomaterials having these pores have very high adsorption performance, can control adsorption performance, can create active sites in the backbone, have pore sizes similar to biomolecules, and have excellent ion exchange with most pores ability, and also has insulator, semiconductor and conductor properties.
현재 기공성 물질들 중에서 금속유기 골격체(Metal Organic Framework; MOF)가 가장 주목을 받고 있는 물질이다. 금속유기 골격체는 금속 이온 클러스터와 유기 링커(organic linker) 또는 유기 브리징 리간드(organic bridging ligands)가 배위결합에 의해 연결되어 3차원적인 구조를 형성하는 다공성 물질이다. 이러한 금속유기 골격체는 표면적이 넓을 뿐만 아니라 열려 있는 기공 구조를 가지고 있기 때문에 기존에 알려진 다른 다공성 물질에 비해 대량의 분자 또는 용매 등의 이동이 가능하다.Among porous materials, a metal organic framework (MOF) is currently receiving the most attention. The metal-organic framework is a porous material in which a metal ion cluster and an organic linker or organic bridging ligands are linked by a coordination bond to form a three-dimensional structure. Since the metal-organic framework has an open pore structure as well as a large surface area, it is possible to move a large amount of molecules or solvents compared to other known porous materials.
그런데 금속유기 골격체의 경우, 기공의 크기가 매우 작기 때문에 단원자 또는 분자 기체를 흡착시키거나 저장하는데는 유리하나, 약물, 단백질, DNA, RNA, 세포 등 분자 기체에 비해 큰 크기의 물질을 흡착, 저장 및 방출하기는 어렵다.However, in the case of metal-organic frameworks, because the pores are very small, it is advantageous for adsorbing or storing monoatomic or molecular gases, but adsorbs substances with a larger size than molecular gases such as drugs, proteins, DNA, RNA, and cells. , difficult to store and release.
본 발명의 일 목적은 분자 기체와 같은 크기의 물질부터 약물, 단백질, DNA, RNA, 세포 등 분자 기체에 비해 큰 크기의 물질을 흡착, 저장 및 방출하는데 사용될 수 있는 금속유기 복합입자를 제공하는데 있다.One object of the present invention is to provide a metal-organic composite particle that can be used to adsorb, store and release a substance having the same size as a molecular gas to a substance having a size larger than that of a molecular gas, such as drugs, proteins, DNA, RNA, and cells. .
본 발명의 다른 목적은 금속유기 골격체에 비해 활성물질의 담지량이 많고 다양한 물체에 부착 또는 물질에 혼합되어 상기 활성물질을 서서히 방출하는데 사용될 수 있는 조성물을 제공하는데 있다.Another object of the present invention is to provide a composition that can be used to slowly release the active material by adhering to or mixing with a variety of objects and having a higher amount of active material than the metal-organic framework.
본 발명의 또 다른 목적은 염증을 유발하는 단백질 신호물질과 같은 물질을 효율적으로 흡착함으로써, 염증의 완화 또는 제거에 사용될 수 있는 조성물을 제공하는데 있다.Another object of the present invention is to provide a composition that can be used for alleviating or removing inflammation by efficiently adsorbing substances such as protein signaling substances that cause inflammation.
상기 일 목적을 달성하기 위한 본 발명의 제 1 측면은, 금속과 유기물이 결합하여 형성되는 복합입자로, 상기 복합입자는 분말 X-선 회절분석에서는 결정성을 나타내는 피크가 관찰되지 않고, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰되는 구조를 가지고, 상기 복합입자의 내부에는 1nm ~ 10㎛ 크기의 복수의 기공이 형성되어 있고, 담지된 활성성분을 포함하는, 금속유기 복합입자을 제공하는 것이다.A first aspect of the present invention for achieving the above object is a composite particle formed by combining a metal and an organic material, wherein a peak indicating crystallinity is not observed in the powder X-ray diffraction analysis of the composite particle, and the TEM electron In the diffraction analysis, it has a structure in which a ring-shaped diffraction pattern is observed, a plurality of pores having a size of 1 nm to 10 μm are formed inside the composite particle, and it is to provide a metal-organic composite particle including a supported active ingredient. .
상기 다른 목적을 달성하기 위한 본 발명의 제 2 측면은, 생분해성 고분자와, 상기 생분해성 고분자에 분산된 금속과 유기물이 결합하여 형성되는 복합입자와, 상기 복합입자에 담지된 활성성분을 포함하고, 상기 복합입자는 분말 X-선 회절분석에서는 결정성을 나타내는 피크가 관찰되지 않고, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰되는 구조를 가지고, 상기 복합입자의 내부에는 1nm ~ 10㎛ 크기의 복수의 기공이 형성되어 있고, 상기 활성성분의 적어도 일부는 상기 복수의 기공 내에 담지되어 있는 조성물을 제공하는 것이다.A second aspect of the present invention for achieving the other object includes a biodegradable polymer, a composite particle formed by combining a metal and an organic material dispersed in the biodegradable polymer, and an active ingredient supported on the composite particle, , The composite particle has a structure in which a peak indicating crystallinity is not observed in powder X-ray diffraction analysis, and a ring-shaped diffraction pattern is observed in TEM electron diffraction analysis, and the inside of the composite particle has a size of 1 nm to 10 μm It is to provide a composition in which a plurality of pores are formed, and at least a portion of the active ingredient is supported in the plurality of pores.
본 발명에 따른 금속유기 복합입자는 분자 기체와 같은 작은 크기의 물질부터 약물, 단백질, DNA, RNA, 세포 등 상대적으로 큰 크기의 물질을 함께 흡착, 저장 또는 방출하는데 사용될 수 있어, 금속유기 골격체에 비해 다양한 물질의 흡착, 저장 및 방출용에 사용할 수 있다.The metal-organic composite particles according to the present invention can be used to adsorb, store, or release materials of a relatively large size, such as drugs, proteins, DNA, RNA, and cells, from small-sized substances such as molecular gases together, so that the metal-organic framework It can be used for adsorption, storage and release of a variety of substances compared to
본 발명의 일 실시형태에 따른 조성물은, 금속유기 골격체 분말을 사용하는 서방형 조성물에 비해 현저하게 향상된 활성물질 담지량과 분산성을 나타내어, 의료 또는 미용 분야에 사용되었을 때, 치료, 예방, 미용 특성이 향상될 수 있다.The composition according to an embodiment of the present invention exhibits significantly improved active material loading and dispersibility compared to the sustained-release composition using the metal-organic framework powder, and when used in medical or cosmetic fields, treatment, prevention, and cosmetic properties can be improved.
본 발명의 일 실시형태에 따른 조성물은, 염증을 유발하는 단백질 신호물질과 같은 물질을 효율적으로 흡착하여 제거함으로써, 염증의 완화 또는 제거에 사용될 수 있다.The composition according to an embodiment of the present invention can be used for alleviating or removing inflammation by efficiently adsorbing and removing substances such as protein signaling substances that cause inflammation.
도 1은 본 발명의 실시예 1에 따라 제조한 복합입자의 주사전자현미경 이미지이다.1 is a scanning electron microscope image of the composite particles prepared according to Example 1 of the present invention.
도 2는 비교예 1에 따라 제조한 금속유기 복합입자의 주사전자현미경 이미지이다.2 is a scanning electron microscope image of the metal-organic composite particles prepared according to Comparative Example 1.
도 3은 비교예 4에 따라 제조한 금속유기 복합입자의 주사전자현미경 이미지이다.3 is a scanning electron microscope image of the metal-organic composite particles prepared according to Comparative Example 4.
도 4는 본 발명의 실시예 1에 따라 제조한 복합입자의 투과전자현미경 이미지이다.4 is a transmission electron microscope image of the composite particles prepared according to Example 1 of the present invention.
도 5는 비교예 1에 따라 제조한 금속유기 복합입자의 투과전자현미경 이미지이다.5 is a transmission electron microscope image of the metal-organic composite particles prepared according to Comparative Example 1.
도 6은 실시예 1에 따라 제조한 복합입자의 분말 X-선 회절 분석 결과를 나타낸 것이다.6 shows the results of powder X-ray diffraction analysis of the composite particles prepared according to Example 1.
도 7은 비교예 1에 따라 제조한 복합입자의 분말 X-선 회절 분석 결과를 나타낸 것이다.7 shows the results of powder X-ray diffraction analysis of the composite particles prepared according to Comparative Example 1.
도 8은 비교예 4에 따라 제조한 복합입자의 분말 X-선 회절 분석 결과를 나타낸 것이다.8 shows the results of powder X-ray diffraction analysis of the composite particles prepared according to Comparative Example 4.
도 9는 실시예 1에 따라 제조한 복합입자의 TEM 전자회절 분석 결과를 나타낸 것이다.9 shows the results of TEM electron diffraction analysis of the composite particles prepared according to Example 1.
도 10은 비교예 1에 따라 제조한 복합입자의 TEM 전자회절 분석 결과를 나타낸 것이다.10 shows the results of TEM electron diffraction analysis of the composite particles prepared according to Comparative Example 1.
도 11은 비교예 4에 따라 제조한 복합입자의 TEM 전자회절 분석 분석 결과를 나타낸 것이다.11 shows the results of TEM electron diffraction analysis of the composite particles prepared according to Comparative Example 4.
도 12는 실시예 1에 따라 제조한 복합입자의 분말의 저온 질소흡착 분석 결과를 나타낸 것이다.12 shows the results of low-temperature nitrogen adsorption analysis of the powder of the composite particles prepared according to Example 1.
도 13은 비교예 1에 따라 제조한 복합입자의 분말의 저온 질소흡착 분석 결과를 나타낸 것이다.13 shows the results of low-temperature nitrogen adsorption analysis of the powder of the composite particles prepared according to Comparative Example 1.
도 14는 실시예 1에 의해 제조된 복합입자와 비교예 1에 의해 제조된 복합입자의 활성물질 농도에 따른 활성물질의 흡수량을 비교한 결과이다.14 is a result of comparing the absorption amount of the active material according to the active material concentration of the composite particles prepared in Example 1 and the composite particles prepared in Comparative Example 1.
도 15는 실시예 2 및 3의 서방형 코팅제와, 비교예 2 및 3의 서방형 코팅제, 그리고 PLGA의 약물 방출량을 측정한 결과를 나타낸 것이다.15 shows the results of measuring the drug release amount of the sustained-release coating agents of Examples 2 and 3, the sustained-release coating agents of Comparative Examples 2 and 3, and PLGA.
도 16은 실시예 2 및 3의 서방형 코팅제를 플라스킥 스푼에 코팅한 것과 PLGA를 코팅한 것을 비교한 사진이다.16 is a photograph comparing the sustained-release coatings of Examples 2 and 3 coated on a plastic spoon with those coated with PLGA.
도 17은 본 비교예 2 및 3의 서방형 코팅제를 플라스틱 스푼에 코팅한 것의 사진이다.17 is a photograph of the sustained-release coating agent of Comparative Examples 2 and 3 coated on a plastic spoon.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
그러나 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.However, the embodiments of the present invention illustrated below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.
본 발명에 따른 금속유기 복합입자는, 금속과 유기물이 결합하여 형성되는 복합입자로, 상기 복합입자는 분말 X-선 회절분석에서는 결정성을 나타내는 피크가 관찰되지 않고, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰되는 구조를 가지고, 상기 복합입자의 내부에는 1nm ~ 10㎛ 크기의 복수의 기공이 형성되어 있고, 담지된 활성성분을 포함하는 것을 특징으로 한다.The metal-organic composite particle according to the present invention is a composite particle formed by combining a metal and an organic material, and in the composite particle, a peak indicating crystallinity is not observed in powder X-ray diffraction analysis, and a ring shape in TEM electron diffraction analysis It has a structure in which the diffraction pattern of the composite particle is observed, and a plurality of pores having a size of 1 nm to 10 μm are formed inside the composite particle, and it is characterized in that it contains a supported active ingredient.
즉, 본 발명에 따른 금속유기 복합입자는 금속유기 골격체와 달리 분말 X-선 회절분석에서는 결정성을 확인할 수 있을 정도의 피크가 관찰되지 않는 반면, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰된다. 즉, 비정질 기반에 미세한 단범위 규칙(short range order)의 결정성을 갖는다. 이에 더해, 금속유기 골격체에서는 형성되지 않는 1nm ~ 10㎛ 크기의 복수의 기공이 내부에 형성된 미세조직을 가진다.That is, in the metal-organic composite particles according to the present invention, unlike the metal-organic framework, a peak enough to confirm crystallinity was not observed in powder X-ray diffraction analysis, whereas a ring-shaped diffraction pattern was observed in TEM electron diffraction analysis. It is observed. That is, it has crystallinity of a fine short range order on an amorphous basis. In addition, a plurality of pores having a size of 1 nm to 10 μm, which are not formed in the metal-organic framework, have a microstructure formed therein.
본 발명에 있어서, '복합입자의 내부에 형성되는 복수의 기공'은 복합입자의 표면에서 내부를 향해 함몰되어 개방된(open) 형태의 기공과, 복합입자의 내부에 폐쇄된(closed) 형상의 기공을 모두 포함하는 의미로 사용한다.In the present invention, 'a plurality of pores formed in the interior of the composite particle' is an open type of pores that are depressed from the surface of the composite particle toward the inside, and a closed shape inside the composite particle. It is used in the meaning of including all qigong.
상기 금속유기 복합입자에 있어서, 상기 금속유기 복합입자의 분말에 대한 저온기체 흡착 분석 시, 흡탈착 곡선의 형태가 모든 압력에서 증가하는 복수의 다중 복합 기공에 의한 흡착을 나타낼 수 있다. 여기서, '복수의 다중 복합 기공에 의한 흡착'이란 마이크로 기공, 메조기공 및 마크로 기공에 의한 흡착이 모두 나타나는 형태의 흡착을 의미한다.In the metal-organic composite particle, in the low-temperature gas adsorption analysis for the powder of the metal-organic composite particle, the shape of the adsorption/desorption curve may indicate adsorption by a plurality of multi-composite pores increasing at all pressures. Here, 'adsorption by a plurality of multi-composite pores' means adsorption in a form in which adsorption by micropores, mesopores, and macropores all appear.
금속유기 골격체의 경우, 저온 기체흡착 분석을 하게 되면, 흡탈착 곡선은 분석 초기에 대량의 가스가 흡착된 후 부분압력이 증가하더라도 기체 흡착량은 미미하게 증가하는 미세다공(microporous)을 가진 물질의 패턴을 나타낸다. 이에 비해, 본 발명에 금속유기 복합입자는 저온 기체흡착 분석 초기에 가스의 흡착이 소량 발생한 후, 이후 부분압력이 증가할 때 선형적인 증가를 하다가 이후 급격한 증가를 나타내는 복수 기공 형태를 보인다.In the case of metal-organic frameworks, when a low-temperature gas adsorption analysis is performed, the adsorption/desorption curve shows that a large amount of gas is adsorbed at the beginning of the analysis, and then the amount of gas adsorption is slightly increased even if the partial pressure is increased. represents the pattern of In contrast, in the present invention, the metal-organic composite particle exhibits a multi-pore shape showing a rapid increase after a small amount of gas adsorption occurs in the initial stage of low-temperature gas adsorption analysis, and then linearly increases when the partial pressure increases.
상기 금속유기 복합입자에 있어서, 상기 복수의 기공은 분자 기체, 약물, 단백질, DNA, 바이러스, 세포, 세포내 신호전달물질 (예를 들어, 단백질 신호물질) 중에서 선택된 1종 이상을 흡착할 수 있는 것일 수 있다.In the metal-organic composite particle, the plurality of pores may adsorb one or more selected from molecular gas, drug, protein, DNA, virus, cell, intracellular signal transduction material (eg, protein signal material). it could be
이와 같이, 크기가 상이한 물질을 1종 이상 흡착할 수 있게 되면, 물질의 흡착, 저장 및 방출 시에 보다 다양한 특성의 구현이 가능할 수 있다.As such, if one or more materials having different sizes can be adsorbed, more diverse properties may be realized during adsorption, storage, and release of materials.
상기 금속유기 복합입자에 있어서, 상기 활성성분은 예를 들어, 유기산, 약물, 금속이온, 산화물, 분자 기체, 조직재생물질 등으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.In the metal-organic composite particle, the active ingredient may be, for example, at least one selected from the group consisting of organic acids, drugs, metal ions, oxides, molecular gases, tissue regeneration materials, and the like.
상기 금속유기 복합입자에 있어서, 상기 금속은 예를 들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 Ba로 이루어진 군으로부터 선택되는 1종 이상의 원소 또는 이의 이온일 수 있다.In the metal-organic composite particle, the metal is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd , Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs , Mg, Ca, Sr, and may be at least one element selected from the group consisting of Ba, or an ion thereof.
상기 금속유기 복합입자에 있어서, 상기 유기물은, 예를 들어, 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3,5-트리카르복시벤젠(1,3,5-tricarboxybenzene), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene), α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린으로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다.In the metal-organic composite particle, the organic material is, for example, 4,4'-biphenyldicarboxilic acid, benzene-1,4-dicarboxylic acid (benzene- 1,4-dicarboxylic acid), 9,10-anthracenedicarboxylic acid, biphenyl-3,3,5,5'-tetracarboxylic acid (biphenyl-3,3,5) ,5'-tetracarboxylic acid, biphenyl-3,4',5-tricarboxylic acid, 5-bromoisophthalic acid, 5 -Cyano-1,3-benzenedicarboxylic acid (5-cyano-1,3-benzenedicarboxylic acid), 2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-diamino -4,4'-stilbenedicarboxylic acid), 2,5-diaminoterephthalic acid (2,5-diaminoterephthalic acid), 1,1,2,2-tetra(4-carboxylphenyl)ethylene (1,1,2, 2-tetra (4-carboxylphenyl) ethylene), 2,5-dihydroxyterephthalic acid (2,5-dihydroxyterephthalic acid), 2,2-dinitro-4,4-stilbenedicarboxylic acid (2,2- dinitro-4,4-stilbenedicarboxylic acid), 5-ethynyl-1,3-benzenedicarboxylic acid (5-ethynyl-1,3-benzenedicarboxylic acid), 2-hydroxyterephthalic acid (2-hydroxyterephthalic acid), 2 ,6-naphthalenedicarboxylic acid (2,6-naphthalenedicarboxylic acid), 1,2,4,5-tetrakis (4-carboxyphenyl) benzene (1,2,4,5-tetrakis (4-carboxyphenyl) benzene ), 4,4,4″-s-triazine-2,4,6-triyl-tribenzoic acid (4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3 ,5-Tricarboxy Cybenzene (1,3,5-tricarboxybenzene), 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (1,4,7,10 -tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene (1, 3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-tris(4-carboxyphenyl)benzene (1,3,5-tris(4- carboxyphenyl)benzene), 1,3,5-triscarboxyphenylethynylbenzene (1,3,5-triscarboxyphenylethynylbenzene), α-cyclodextrin, β-cyclodextrin, may be at least one selected from the group consisting of γ-cyclodextrin have.
상기 금속유기 복합입자는 입자 크기가 0.01㎛ 미만이거나 100㎛ 초과일 경우, 활성물질의 흡착량이 충분하지 않을 수 있으므로, 0.01 ~ 100㎛로 이루어지는 것이 바람직하다.When the metal-organic composite particles have a particle size of less than 0.01 μm or more than 100 μm, the amount of adsorption of the active material may not be sufficient, and thus, it is preferable to have a particle size of 0.01 to 100 μm.
본 발명에 따른 금속유기 복합입자가 갖는 다양한 물질의 흡착, 저장 및 방출성은 다양한 용도로 사용될 수 있다.The adsorption, storage and release properties of various substances of the metal-organic composite particles according to the present invention can be used for various purposes.
예를 들어, 화장품, 단백질 저장용 물질, 항균제 저장용 물질, 식품 및 동물용 사료용 첨가제, 악취성분, 미세먼지, 방사선 가스 등 유해가스 포집용 물질, 공기 정화용 물질, 수분 포집 물질, 수소나 전자부품 공정 가스와 같은 기체 저장 물질, 이차전지 전극재료용 물질, 캐패시터용 물질, 전지의 전해질용 물질, 가스센서용 물질, 이온 교환기용 물질, 의료 기기용 의약품 담지체, 콘택트 렌즈용 코팅제, 서방형 동물약물, 서방형 인체 약물, 서방형 예방의약품, 식품 보존용기, 탈취제 등에 적용될 수 있다.For example, cosmetics, substances for storing proteins, substances for storing antibacterial agents, additives for food and animal feed, substances for collecting harmful gases such as odor components, fine dust, radiation gas, substances for air purification, substances for collecting moisture, hydrogen or electronic parts Gas storage materials such as process gases, materials for electrode materials for secondary batteries, materials for capacitors, materials for electrolytes in batteries, materials for gas sensors, materials for ion exchangers, pharmaceutical carriers for medical devices, coatings for contact lenses, sustained release animals It can be applied to drugs, sustained-release human drugs, sustained-release preventive drugs, food preservation containers, and deodorants.
또한, 본 발명에 따른 조성물은, 생분해성 고분자와, 상기 생분해성 고분자에 분산된 금속과 유기물이 결합하여 형성되는 복합입자와, 상기 복합입자에 담지된 활성성분을 포함하고, 상기 복합입자는 분말 X-선 회절분석에서는 결정성을 나타내는 피크가 관찰되지 않고, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰되는 구조를 가지고, 상기 복합입자의 내부에는 1nm ~ 10㎛ 크기의 복수의 기공이 형성되어 있고, 상기 활성성분의 적어도 일부는 상기 복수의 기공 내에 담지되어 있는 것일 수 있다.In addition, the composition according to the present invention comprises a biodegradable polymer, a composite particle formed by combining a metal and an organic material dispersed in the biodegradable polymer, and an active ingredient supported on the composite particle, wherein the composite particle is a powder In X-ray diffraction analysis, a peak indicating crystallinity is not observed, and in TEM electron diffraction analysis, a ring-shaped diffraction pattern is observed, and a plurality of pores with a size of 1 nm to 10 μm are formed inside the composite particle. and at least a portion of the active ingredient may be supported in the plurality of pores.
상기 조성물은 활성성분을 담지하고 있는 복합입자가 생분해성 고분자에 분산되어 있기 때문에, 생분해성 고분자가 분해됨에 따라 복합입자에 담지된 활성성분이 서서히 방출되도록 하는 서방형 특성을 가진다.Since the composite particles carrying the active ingredient are dispersed in the biodegradable polymer, the composition has a sustained-release property such that the active ingredient supported on the composite particles is gradually released as the biodegradable polymer is decomposed.
상기 조성물에 포함되는 복합입자에 있어서, 상기 금속유기 복합입자의 분말에 대한 저온 기체흡착 분석 시, 흡탈착 곡선의 형태가 모든 압력에서 증가하는 복합기공의 형태를 나타낼 수 있다.In the composite particles included in the composition, when analyzing the low-temperature gas adsorption for the powder of the metal-organic composite particles, the shape of the adsorption/desorption curve may represent the shape of the composite pores increasing at all pressures.
상기 조성물에 포함되는 복합입자에 있어서, 상기 금속은 예를 들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 Ba로 이루어진 군으로부터 선택되는 1종 이상의 원소 또는 이의 이온일 수 있다.In the composite particles included in the composition, the metal is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh , Pd, Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb , Cs, Mg, Ca, Sr, and may be at least one element selected from the group consisting of Ba, or an ion thereof.
상기 조성물에 포함되는 복합입자에 있어서, 상기 유기물(유기 리간드)은, 예를 들어, 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3,5-트리카르복시벤젠(1,3,5-tricarboxybenzene), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene), α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린으로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다.In the composite particles included in the composition, the organic material (organic ligand) is, for example, 4,4'-biphenyldicarboxylic acid (4,4'-biphenyldicarboxilic acid), benzene-1,4-dicar benzene-1,4-dicarboxylic acid, 9,10-anthracenedicarboxylic acid, biphenyl-3,3,5,5'-tetracarboxylic acid (biphenyl) -3,3,5,5'-tetracarboxylic acid), biphenyl-3,4',5-tricarboxylic acid (biphenyl-3,4',5-tricarboxylic acid), 5-bromoisophthalic acid (5 -bromoisophthalic acid), 5-cyano-1,3-benzenedicarboxylic acid (5-cyano-1,3-benzenedicarboxylic acid), 2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-diaminoterephthalic acid (2,5-diaminoterephthalic acid), 1,1,2,2-tetra (4-carboxylphenyl) ethylene ( 1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-dihydroxyterephthalic acid (2,5-dihydroxyterephthalic acid), 2,2-dinitro-4,4-stilbenedicarboxyl Acid (2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-ethynyl-1,3-benzenedicarboxylic acid (5-ethynyl-1,3-benzenedicarboxylic acid), 2-hydroxyterephthalic acid (2 -hydroxyterephthalic acid), 2,6-naphthalenedicarboxylic acid (2,6-naphthalenedicarboxylic acid), 1,2,4,5-tetrakis (4-carboxyphenyl)benzene (1,2,4,5-tetrakis) (4-carboxyphenyl)benzene), 4,4,4″-s-triazine-2,4,6-triyl-tribenzoic acid (4,4,4″-s-triazine-2,4,6-triyltribenzoic acid) , 1,3,5-tricarboxybenzene (1,3,5-tricarboxybenzene), 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-tris(4-carboxy[1,1'-biphenyl]- 4-yl) benzene (1,3,5-tris (4-carboxy [1,1'-biphenyl] -4-yl) benzene), 1,3,5-tris (4-carboxyphenyl) benzene (1, 3,5-tris(4-carboxyphenyl)benzene), 1,3,5-triscarboxyphenylethynylbenzene (1,3,5-triscarboxyphenylethynylbenzene), α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin It may be at least one selected from the group consisting of.
상기 조성물에 있어서, 상기 유기물은 바람직하게 α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린을 포함할 수 있다.In the composition, the organic material may preferably include α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin.
유기물에는 상기 3종의 사이클로덱스트린 외에 다른 유기 분자들이 가교 결합되는 것을 포함할 수 있고, 이를 통해 금속(이온)들 간의 간격을 형성하여 생성되는 구조물 내부에 빈 영역들 즉 기공을 형성하고, 그 크기를 조절할 수 있다. 사이클로덱스트린 중에서 γ-사이클로덱스트린을 사용하였을 때 형성되는 공간이 가장 크기 때문에 활성물질의 포획 능력이 가장 우수하므로 가장 바람직한 예일 수 있다.The organic material may include crosslinking of other organic molecules in addition to the above three types of cyclodextrins, thereby forming a gap between metals (ions) to form empty regions, that is, pores in the structure, and the size can be adjusted. Among cyclodextrins, when γ-cyclodextrin is used, the space formed is the largest, and thus the ability to capture the active material is the best, so it may be the most preferred example.
상기 조성물에 있어서, 상기 생분해성 고분자는 예를 들어, 폴리락타이드-글리콜라이드 공중합체(PLGA), 키토산(chitosan), 폴리다이옥사논(polydioxanone), 폴리락타이드-폴리카프로락톤 공중합체(PLA-PCL), 폴리글리콜라이드-폴리카프로락톤 공중합체(PGA-PCL), 폴리다이옥사논-폴리카프로락톤 공중합체(PDO-PCL), 폴리트리메틸렌카보네이트(PTMC), 폴리카보네이트(PC), 폴리부틸렌석시네이트(PBS), 폴리히드록시부틸레이트(PHB), 폴리하이드로알카노에이트(PHA), 지방족 폴리에스테르(aliphatic polyphosphate ester), 방향족 폴리에스터(aromatic polyester) 및 폴리포스파젠(Polyphosphazene)으로 구성된 군으로부터 선택된 1종 이상일 수 있다.In the composition, the biodegradable polymer is, for example, polylactide-glycolide copolymer (PLGA), chitosan (chitosan), polydioxanone (polydioxanone), polylactide- polycaprolactone copolymer (PLA) -PCL), polyglycolide-polycaprolactone copolymer (PGA-PCL), polydioxanone-polycaprolactone copolymer (PDO-PCL), polytrimethylene carbonate (PTMC), polycarbonate (PC), poly Butylene succinate (PBS), polyhydroxybutyrate (PHB), polyhydroalkanoate (PHA), aliphatic polyphosphate ester, aromatic polyester (aromatic polyester) and polyphosphazene (Polyphosphazene) It may be one or more selected from the group consisting of.
또한, 본 명세서에서 공중합체는 서로 다른 2가지 이상의 단량체를 중합시켜 만든 고분자로서, 각 단량체는 독립적으로 배열될 수 있고, 교대로 배열된 형태, 일정 부분 뭉친형태, 임의로 배열된 형태, 하나의 주쇄에 측쇄로 연결된 형태 또는 고분자 주쇄간에 측쇄로 가교된 형태일 수 있다. 공중합체는 교대공중합체(alternating copolymer), 랜덤공중합체(random copolymer), 블록공중합체(block copolymer), 그래프트 공중합체(graft copolymer)일 수 있으나, 이에 한정되는 것은 아니다.In addition, in the present specification, a copolymer is a polymer made by polymerizing two or more different monomers, and each monomer can be independently arranged, alternately arranged in a form, a certain part agglomerated, arbitrarily arranged in a form, one main chain It may be in a form linked to a side chain or in a form crosslinked by a side chain between the main polymer chains. The copolymer may be an alternating copolymer, a random copolymer, a block copolymer, or a graft copolymer, but is not limited thereto.
또한, 상기 생분해성 공중합체는 폴리락타이드-글리콜라이드 공중합체(PLGA)이고, 폴리락타이드-글리콜라이드 공중합체는 락타이드와 글리콜라이드의 몰 비가 0.1 : 1 ~ 9 : 1 일 수 있다. 폴리락타이드-글리콜라이드 공중합체는 금속유기 골격체에 코팅되어서 활성물질의 방출양상을 달리할 수 있고, 공중합체의 조성에 따라 방출량 및 방출속도를 제어할 수 있다.In addition, the biodegradable copolymer may be a polylactide-glycolide copolymer (PLGA), and the polylactide-glycolide copolymer may have a molar ratio of lactide and glycolide of 0.1:1 to 9:1. The polylactide-glycolide copolymer is coated on the metal-organic framework, so that the release pattern of the active material can be changed, and the release amount and release rate can be controlled according to the composition of the copolymer.
또한, 상기 생분해성 고분자는 금속유기 복합입자 100 중량부 대비 150 내지 300 중량부일 수 있다. 보다 구체적으로, 폴리락타이드-글리콜라이드 공중합체의 중량비는 활성물질이 담지된 금속유기 골격체 100 중량부에 대해 150 내지 300 중량부일 수 있다. 상기 중량비에 해당하는 경우 금속유기 골격체에 생분해성 고분자가 코팅될 수 있고, 생분해성 고분자의 중량부가 150 보다 낮은 경우 충분히 코팅되지 않음으로 인해 고르지 못한 표면에 의해 활성성분의 방출량이 적을 수 있으며, 생분해성 고분자의 중량부가 300 보다 큰 경우 금속유기 골격체의 고분자 코팅 두께가 두꺼워져 활성성분의 방출량이 적어질 수 있다.In addition, the biodegradable polymer may be 150 to 300 parts by weight based on 100 parts by weight of the metal-organic composite particles. More specifically, the weight ratio of the polylactide-glycolide copolymer may be 150 to 300 parts by weight based on 100 parts by weight of the metal-organic framework on which the active material is supported. If the weight ratio corresponds to the metal-organic framework may be coated with a biodegradable polymer, and if the weight of the biodegradable polymer is lower than 150, the release amount of the active ingredient may be small due to the uneven surface due to not being sufficiently coated, When the weight part of the biodegradable polymer is greater than 300, the thickness of the polymer coating of the metal-organic framework may be increased, and thus the amount of active ingredient released may be reduced.
상기 조성물에 있어서, 상기 활성성분은 예를 들어, 유기산, 약물, 금속이온, 산화물, 분자 기체, 조직재생물질 등으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.In the composition, the active ingredient may be, for example, at least one selected from the group consisting of organic acids, drugs, metal ions, oxides, molecular gases, tissue regeneration materials, and the like.
상기 조성물에 있어서, 상기 조직재생물질은 단백질, DNA, RNA, 줄기세포로 이루어진 군에서 선택되는 1종 이상일 수 있다.In the composition, the tissue regeneration material may be at least one selected from the group consisting of protein, DNA, RNA, and stem cells.
상기 금속유기 복합입자는 활성물질의 흡착량이 100 mg/g 이상, 바람직하게는 150 mg/g 이상, 더 바람직하게는 250 mg/g 이상, 가장 바람직하게는 500 mg/g 이상일 수 있다.The metal-organic composite particles may have an adsorption amount of the active material of 100 mg/g or more, preferably 150 mg/g or more, more preferably 250 mg/g or more, and most preferably 500 mg/g or more.
상기 조성물에 포함되는 복합입자는 그 입자크기가 0.01㎛ 미만이거나 100㎛ 초과일 경우, 활성물질의 흡착량이 충분하지 않을 수 있으므로, 0.01 ~ 100㎛로 이루어지는 것이 바람직하다.When the particle size of the composite particles included in the composition is less than 0.01 μm or exceeds 100 μm, the adsorption amount of the active material may not be sufficient, so it is preferably made of 0.01 to 100 μm.
상기 조성물에 있어서, 상기 생분해성 고분자를 용해하는 용매를 더 포함할 수 있다. 즉, 상기 조성물은 상기 생분해성 고분자를 용해하는 용매를 완전히 제거한 상태로 사용되거나, 용매를 부분적으로 제거하거나 제거하지 않은 상태로 사용될 수 있다.In the composition, a solvent for dissolving the biodegradable polymer may be further included. That is, the composition may be used in a state in which the solvent for dissolving the biodegradable polymer is completely removed, or in a state in which the solvent is partially removed or not removed.
상기 조성물에 있어서, 상기 용매는 아세토나이트릴, 클로로포름, 다이클로로메탄, 물, 에틸아세테이트, 아세톤, 에탄올 및 메탄올으로 구성된 군으로부터 선택된 1종 또는 이들의 혼합물일 수 있다.In the composition, the solvent may be one selected from the group consisting of acetonitrile, chloroform, dichloromethane, water, ethyl acetate, acetone, ethanol and methanol, or a mixture thereof.
본 발명에 따른 조성물은 다양한 용도로 사용될 수 있다.The composition according to the present invention can be used for various purposes.
예를 들어, 상기 조성물은, 임플란트, 스텐트(stent), 인공뼈, 인공관절, 카테터 또는 캐놀라, 지혈클립, 혈관 접근 장치, 말초 혈관, 정맥내 부위, 배액, 위영양공급관, 기도관, 가이드 와이어, 심박조율기, 기관 재생 유도관, 치과용 충전제, 치과용 지지대 구축용 레진, 치과용 코팅재, 유치관, 봉합사, 리프팅실, 주사바늘, 생리대, 조직유착 방지재, 콘텍트 렌즈, 골 시멘트, 치과용 접착제, 의료용 깁스 등 인체에 삽입, 부착 또는 도포되어 사용되는 물품의 항균/항염증제 서방출용으로 사용될 수 있다.For example, the composition may include an implant, stent, artificial bone, artificial joint, catheter or canola, hemostatic clip, vascular access device, peripheral blood vessel, intravenous site, drainage, gastrotrophic tube, airway tube, guide wire , pacemaker, organ regeneration guide tube, dental filler, dental support building resin, dental coating material, indwelling tube, suture, lifting thread, needle, sanitary napkin, tissue adhesion prevention material, contact lens, bone cement, dental use It can be used for sustained release of antibacterial/anti-inflammatory agents of articles that are inserted, attached, or applied to the human body, such as adhesives and medical casts.
상기 항균/항염증제로는 본 발명에 따른 금속유기 복합입자에 담지될 수 있는 것이라면 특별히 제한되지 않으나, 코팅되는 대상물에 요구되는 약물 특성을 고려하여 적합하게 선택되어 사용될 수 있다.The antibacterial/anti-inflammatory agent is not particularly limited as long as it can be supported on the metal-organic composite particles according to the present invention, but may be appropriately selected and used in consideration of the drug properties required for the object to be coated.
예를 들어, 치과용 임플란트(픽스처, 어버트먼트(지대주), 크라운 등), 치과용 충전제, 치과용 지지대 구축용 레진 또는 치아의 기계적 세정 후 도포하는 연고용 레진의 항균/항염증제로는 미노사이클린염산염(Minocycline Hydrochloride), 테트라사이클린(Tetracycline)이 있다.For example, minocycline hydrochloride as an antibacterial/anti-inflammatory agent for dental implants (fixtures, abutments, crowns, etc.), dental fillers, resins for building dental supports, or ointments applied after mechanical cleaning of teeth (Minocycline Hydrochloride) and Tetracycline.
이러한 항균/항염증제가 본 발명에 따른 금속유기 복합입자에 담지되어 서방형 코팅제, 충진제 또는 연고 형태로 사용될 경우, 약물 담지량의 증대 및 서방출 효과로 인해, 예를 들어 임플란트 시술 후에 이루어지는 항균/항염증 치료 횟수(즉, 치과 방문 횟수)를 크게 줄일 수 있다.When the antibacterial/anti-inflammatory agent is supported on the metal-organic composite particle according to the present invention and used in the form of a sustained-release coating, filler or ointment, due to the increase in the drug loading and the sustained-release effect, for example, antibacterial/anti-inflammatory after implantation. The number of treatments (ie, number of dental visits) can be significantly reduced.
또한, 상기 활성성분으로는 임플란트에 시술 후 자가포식 항진용으로 사용될 수 있는 물질인, 트레할로스(trehalose), 라파마이신(rapamycin), 퍼헥실린(perhexiline), 아미오다론(amiodarone), 니클로사마이드(niclosamide), 로틀린(rottlerin), 토린1(torin1), PI103, 페닐에틸 이소싸이오시아네이트(phenethylisothiocyanate), 덱사메타손(dexamethasone), 리튬(lithium), L-690,330, 카르바마제핀(carbamazepine), 소듐 발프로에이트(sodium valproate), 베라파밀(verapamil), 로페라마이드(loperamide), 니모디핀(nimodipine), 니트렌디핀(nitrendipine), 니글디핀(niguldipine), 니카르디핀(nicardipine), 피모자이드(pimozide), 칼파스타틴(calpastatin), 칼펩틴(calpeptin), 클로니딘(clonidine), 릴메니딘(rilmenidine), 2',5'-디데옥시아데노신(2',5'-dideoxyadenosine), NF449, 미녹시딜(minoxidil), 페니트렘 A(penitrem A), 스퍼미딘(spermidine), 레스베라트롤(resveratrol), 플루스피릴렌(fluspirilene), 트리플루오페라진(trifluoperazine), SMER(small-molecule enhancer) 10, SMER 18, SMER 28 및 도르소모르핀(dorsomorphin)으로 이루어진 군에서 선택된 물질도 사용될 수 있다.In addition, as the active ingredient, trehalose, rapamycin, perhexiline, amiodarone, niclosamide, which are substances that can be used for promoting autophagy after surgery on implants , rottlerin, torin1, PI103, phenylethylisothiocyanate, dexamethasone, lithium, L-690,330, carbamazepine, sodium valpro Sodium valproate, verapamil, loperamide, nimodipine, nitrendipine, niguldipine, nicardipine, pimozide, Calpastatin, calpeptin, clonidine, rilmenidine, 2',5'-dideoxyadenosine, NF449, minoxidil, penitrem A, spermidine, resveratrol, fluspirilene, trifluoperazine, small-molecule enhancer (SMER) 10, SMER 18, SMER 28 and A substance selected from the group consisting of dorsomorphin may also be used.
<실시예 1><Example 1>
금속유기 복합입자를 다음과 같은 공정으로 제조하였다.Metal-organic composite particles were prepared by the following process.
10mL 유리병에 사이클로덱스트린(Cyclodextrin) 0.125mmol(0.162g), KOH 1mmol(0.056g)과 탈이온수(DI) 2mL 및 에탄올(EtOH) 2mL를 투입하여, 사이클로덱스트린(Cyclodextrin) 용액을 제조한다. 그리고 제조된 용액을 120℃에서 급속 열풍 건조하여 분말을 제조하였다.Cyclodextrin (Cyclodextrin) solution is prepared by putting 0.125 mmol (0.162 g) of cyclodextrin, 1 mmol (0.056 g) of KOH, 2 mL of deionized water (DI) and 2 mL of ethanol (EtOH) in a 10 mL glass bottle. Then, the prepared solution was rapidly dried with hot air at 120° C. to prepare a powder.
<실시예 2><Example 2>
실시예 1에서 제조한 금속유기 복합입자를 사용하여 활성성분을 담지한 서방형 조성물을 다음과 같은 공정으로 제조하였다.Using the metal-organic composite particles prepared in Example 1, an active ingredient-supported sustained-release composition was prepared by the following process.
에탄올 1 mL, CTAB(cetyltrimethylammonium bromide) 0.022mmol(0.008g), 테트라사이클린 하이드로클로라이드(Tetracycline hydrochloride) 0.21mmol(0.093g)을 20mL 유리병에 투입한 후, 실시예 1에 따라 제조된 분말에 담지한다.Ethanol 1 mL, CTAB (cetyltrimethylammonium bromide) 0.022mmol (0.008g), and tetracycline hydrochloride 0.21mmol (0.093g) were put into a 20mL glass bottle, and then supported on the powder prepared according to Example 1. .
담지가 이루어진 후, 상등액은 버리고 잔류물을 이소프로필 알콜로 세정한 후 진공 건조하여 약물 담지 처리한 복합입자를 제조하였다.After the loading was made, the supernatant was discarded, the residue was washed with isopropyl alcohol, and vacuum dried to prepare drug-supported composite particles.
생분해성 고분자인 PLGA를 아세톤 1mL에 용해한 후, 약물 담지 처리를 수행한 복합입자에 투입한 후, 교반하여 복합입자가 균질하게 분산된 코팅제를 제조하였다.After dissolving PLGA, a biodegradable polymer, in 1 mL of acetone, it was added to the composite particles subjected to drug loading treatment, and stirred to prepare a coating agent in which the composite particles were homogeneously dispersed.
이와 같이 제조된 코팅제는 PLGA 0.15g, 아세톤 1mL, 금속유기 복합입자 0.06g을 포함하고, 금속유기 복합입자의 함량은 6 중량%였다. 이 코팅제의 이론 함량은 87.4 mgtetracycline/gtotal 이다.The coating agent thus prepared contained 0.15 g of PLGA, 1 mL of acetone, and 0.06 g of metal-organic composite particles, and the content of metal-organic composite particles was 6 wt%. The theoretical content of this coating is 87.4 mg tetracycline /g total .
플라스틱 스푼의 표면에 상기 코팅제를 도포한 후, 60℃ 오븐에서 3분간 가열하여 코팅제에 포함된 용매를 실질적으로 제거함으로써, 고형의 코팅층을 형성하였다.After applying the coating agent to the surface of the plastic spoon, by heating in an oven at 60° C. for 3 minutes to substantially remove the solvent contained in the coating agent, a solid coating layer was formed.
<실시예 3><Example 3>
실시예 1에서 제조한 금속유기 복합입자를 사용하여 활성성분을 담지한 서방형 조성물을 다음과 같은 공정으로 제조하였다.Using the metal-organic composite particles prepared in Example 1, an active ingredient-supported sustained-release composition was prepared by the following process.
서방형 조성물은 실시예 2와 동일한 방법으로 제조하였으며, 다만 코팅제는 PLGA 0.15g, 아세톤 1mL, 금속유기 복합입자 0.15g을 포함하고, 금속유기 복합입자의 함량은 14 중량%가 되도록 하였다. 이 코팅제의 이론 함량은 145.7 mgtetracycline/gtotal 이다.The sustained-release composition was prepared in the same manner as in Example 2, except that the coating agent contained 0.15 g of PLGA, 1 mL of acetone, and 0.15 g of metal-organic composite particles, and the content of metal-organic composite particles was 14 wt%. The theoretical content of this coating is 145.7 mg tetracycline /g total .
<비교예 1><Comparative Example 1>
다음과 같은 공정으로 금속유기 복합입자를 제조하였다.Metal-organic composite particles were prepared by the following process.
10mL 유리병에 사이클로덱스트린(Cyclodextrin) 0.125mmol(0.162g), KOH 1mmol(0.056g)과 탈이온수(DI) 5mL, 에탄올(EtOH) 0.5mL를 투입하여 사이클로덱스트린 용액을 제조한다.In a 10 mL glass bottle, 0.125 mmol (0.162 g) of cyclodextrin, 1 mmol (0.056 g) of KOH, 5 mL of deionized water (DI), and 0.5 mL of ethanol (EtOH) are added to prepare a cyclodextrin solution.
이어서 20ml MeOH가 담긴 120mL 용기에 상기 사이클로덱스트린 용액이 만들어진 10mL 유리병을 넣고 뚜껑을 닫지 않은 상태로 50℃로 유지된 오븐에서 6시간 동안 반응시켜 분말을 제조하였다.Then, a 10mL glass bottle prepared with the cyclodextrin solution was placed in a 120mL container containing 20mL MeOH, and reacted for 6 hours in an oven maintained at 50°C without a lid to prepare a powder.
<비교예 2><Comparative Example 2>
에탄올 1 mL, CTAB(cetyltrimethylammonium bromide) 0.022mmol(0.008g), 테트라사이클린 하이드로클로라이드(Tetracycline hydrochloride) 0.21mmol(0.093g)을 20mL 유리병에 투입한 후, 비교예 1에 따라 제조된 분말에 담지한다.Ethanol 1 mL, CTAB (cetyltrimethylammonium bromide) 0.022 mmol (0.008 g), and tetracycline hydrochloride 0.21 mmol (0.093 g) were added to a 20 mL glass bottle, and then loaded onto the powder prepared according to Comparative Example 1. .
담지가 이루어진 후, 상등액은 버리고 잔류물을 이소프로필 알콜로 세정한 후 진공 건조하여 약물 담지 처리한 복합입자를 제조하였다.After the loading was made, the supernatant was discarded, the residue was washed with isopropyl alcohol, and vacuum dried to prepare drug-supported composite particles.
생분해성 고분자인 PLGA를 아세톤 1mL에 용해한 후, 약물 담지 처리를 수행한 복합입자에 투입한 후, 교반하여 복합입자가 균질하게 분산된 코팅제를 제조하였다.After dissolving PLGA, a biodegradable polymer, in 1 mL of acetone, it was added to the composite particles subjected to drug loading treatment, and stirred to prepare a coating agent in which the composite particles were homogeneously dispersed.
이와 같이 제조된 코팅제는 PLGA 0.15g, 아세톤 1mL, 금속유기 복합입자 0.06g을 포함하고, 금속유기 복합입자의 함량은 6 중량%였다. 이 코팅제의 이론 함량은 87.4 mgtetracycline/gtotal 이다.The coating agent thus prepared contained 0.15 g of PLGA, 1 mL of acetone, and 0.06 g of metal-organic composite particles, and the content of metal-organic composite particles was 6 wt%. The theoretical content of this coating is 87.4 mg tetracycline /g total .
플라스틱 스푼의 표면에 상기 코팅제를 도포한 후, 60℃ 오븐에서 3분간 가열하여 코팅제에 포함된 용매를 실질적으로 제거함으로써, 고형의 코팅층을 형성하였다.After applying the coating agent to the surface of the plastic spoon, by heating in an oven at 60° C. for 3 minutes to substantially remove the solvent contained in the coating agent, a solid coating layer was formed.
<비교예 3><Comparative Example 3>
비교에 1에서 제조한 금속유기 복합입자를 사용하여 활성성분을 담지한 서방형 조성물을 다음과 같은 공정으로 제조하였다.By using the metal-organic composite particles prepared in Comparative 1, an active ingredient-supported sustained-release composition was prepared by the following process.
서방형 조성물은 비교예 2와 동일한 방법으로 제조하였으며, 다만, 코팅제는 PLGA 0.15g, 아세톤 1mL, 유기 금속 복합입자 0.1g을 포함하고, 유기 금속 복합입자의 함량은 10 중량%가 되도록 하였다. 이 코팅제의 이론 함량은 15 mgtetracycline/gtotal 이다.The sustained-release composition was prepared in the same manner as in Comparative Example 2, except that the coating agent contained 0.15 g of PLGA, 1 mL of acetone, and 0.1 g of organic metal composite particles, and the content of the organic metal composite particles was 10% by weight. The theoretical content of this coating is 15 mg tetracycline /g total .
<비교예 4><Comparative Example 4>
다음과 같은 공정으로 금속유기 복합입자를 제조하였다.Metal-organic composite particles were prepared by the following process.
10mL 유리병에 사이클로덱스트린(Cyclodextrin) 0.125 mmol(0.162g), KOH 1 mmol(0.056g)과 탈이온수(DI) 5mL, 에탄올(EtOH) 0.5mL를 투입하여 사이클로덱스트린 용액을 제조한다. 그리고 제조된 용액을 급속 냉각하여 용매를 제거하여 복합입자를 제조하였다.In a 10 mL glass bottle, 0.125 mmol (0.162 g) of cyclodextrin, 1 mmol (0.056 g) of KOH, 5 mL of deionized water (DI), and 0.5 mL of ethanol (EtOH) are added to prepare a cyclodextrin solution. Then, the prepared solution was rapidly cooled to remove the solvent to prepare composite particles.
복합입자의 형상Composite particle shape
도 1은 본 발명의 실시예 1에 따라 제조한 복합입자의 주사전자현미경 이미지이고, 도 2는 비교예 1에 따라 제조한 금속유기 복합입자의 주사전자현미경 이미지이고, 도 3은 비교예 4에 따라 제조한 금속유기 복합입자의 주사전자현미경 이미지이고1 is a scanning electron microscope image of a composite particle prepared according to Example 1 of the present invention, FIG. 2 is a scanning electron microscope image of a metal-organic composite particle prepared according to Comparative Example 1, and FIG. It is a scanning electron microscope image of metal-organic composite particles prepared according to
도 1에서 확인되는 바와 같이, 본 발명의 실시예 1에 따라 제조된 금속유기 복합입자는 전체적으로 구 형상의 입자, 일측 또는 양측이 함몰된 형상의 입자, 중앙부에 구멍이 뚫린 도넛 형상의 입자 등으로 혼합되어 있으며, 각 입자의 표면은 거친 표면을 가지고 있다.As can be seen in Figure 1, the metal-organic composite particles prepared according to Example 1 of the present invention are generally spherical particles, particles with one or both sides depressed, donut-shaped particles with a hole in the center, etc. It is mixed, and the surface of each particle has a rough surface.
이에 비해, 비교예 1에 따라 제조한 금속유기 복합입자는 도 2에 나타난 것과 같이, 표면이 매끄러운 큐브 형상의 입자로 이루어져 있으며, 이러한 형상은 금속유기 골격체가 가지는 전형적인 형상이다.In contrast, the metal-organic composite particles prepared according to Comparative Example 1 are composed of cube-shaped particles with a smooth surface, as shown in FIG. 2 , and this shape is a typical shape of the metal-organic framework.
한편, 비교예 4에 따라 제조된 금속유기 복합입자는 입자의 형상이 불규칙하면서 비교예 1과 달리 매끈한 표면이 형성되지 않았고, 다수의 입자가 뭉쳐져 있는 형상으로 이루어져 있다.On the other hand, the metal-organic composite particles prepared according to Comparative Example 4 had irregular particle shapes and, unlike Comparative Example 1, did not form a smooth surface, and had a shape in which a large number of particles were agglomerated.
도 4는 본 발명의 실시예 1에 따라 제조한 복합입자의 투과전자현미경 이미지이고, 도 5는 비교예 1에 따라 제조한 금속유기 복합입자의 투과전자현미경 이미지이다.4 is a transmission electron microscope image of the composite particles prepared according to Example 1 of the present invention, and FIG. 5 is a transmission electron microscope image of the metal-organic composite particles prepared according to Comparative Example 1.
도 4에서 확인되는 바와 같이, 실시예 1에 따라 제조한 복합입자의 내부에는 다수의 기공이 관찰되며, 이러한 기공은의 크기는 복합입자의 크기와 유사한 수 마이크로미터 부터 수 나노미터까지 다양한 크기가 관찰된다.As can be seen in FIG. 4 , a number of pores are observed inside the composite particles prepared according to Example 1, and the size of these pores varies from a few micrometers to a few nanometers similar to the size of the composite particles. It is observed.
이에 비해, 도 5에 나타난 것과 같이, 비교예 1에 따라 제조된 복합입자의 내부에는 실시예 1과 같은 기공은 관찰되지 않았다.In contrast, as shown in FIG. 5 , pores similar to those of Example 1 were not observed inside the composite particles prepared according to Comparative Example 1.
복합입자의 결정구조Crystal Structure of Composite Particles
도 6은 실시예 1에 따라 제조한 복합입자의 분말 X-선 회절 분석 결과를 나타낸 것이고, 도 7은 비교예 1에 따라 제조한 복합입자의 분말 X-선 회절 분석 결과를 나타낸 것이고, 도 8은 비교예 4에 따라 제조한 복합입자의 분말 X-선 회절 분석 결과를 나타낸 것이다.6 shows the powder X-ray diffraction analysis results of the composite particles prepared according to Example 1, FIG. 7 shows the powder X-ray diffraction analysis results of the composite particles prepared according to Comparative Example 1, and FIG. 8 shows the results of powder X-ray diffraction analysis of the composite particles prepared according to Comparative Example 4.
도 6에서 확인되는 것과 같이, 실시예 1에 따라 제조한 복합입자의 분말 X-선 회절분석 결과에서는 결정성을 확인할 수 있는 피크를 관찰할 수 없었다.As can be seen in FIG. 6 , a peak confirming crystallinity could not be observed in the powder X-ray diffraction analysis results of the composite particles prepared according to Example 1.
이에 비해, 비교예 1에 따라 제조한 복합입자의 경우, 도 7에서 나타난 것과 같이, 분말 X-선 회절분석에서 강한 결정성을 나타내는 다수의 피크가 관찰되었다. In contrast, in the case of the composite particles prepared according to Comparative Example 1, as shown in FIG. 7 , a number of peaks indicating strong crystallinity were observed in powder X-ray diffraction analysis.
한편, 비교예 4에 따라 제조한 복합입자의 경우에는, 도 8에 나타난 것과 같이, 실시예 1과 동일하게 분말 X-선 회절분석 결과에서는 결정성을 나타내는 피크를 관찰할 수 없었다.On the other hand, in the case of the composite particles prepared according to Comparative Example 4, as shown in FIG. 8, as in Example 1, a peak indicating crystallinity could not be observed in the powder X-ray diffraction analysis result.
도 9는 실시예 1에 따라 제조한 복합입자의 TEM 전자회절 분석 결과를 나타낸 것이고, 도 10은 비교예 1에 따라 제조한 복합입자의 TEM 전자회절 분석 결과를 나타낸 것이고, 도 11은 비교예 4에 따라 제조한 복합입자의 TEM 전자회절 분석 분석 결과를 나타낸 것이다.9 shows the TEM electron diffraction analysis results of the composite particles prepared according to Example 1, FIG. 10 shows the TEM electron diffraction analysis results of the composite particles prepared according to Comparative Example 1, and FIG. 11 is Comparative Example 4 TEM electron diffraction analysis results of the composite particles prepared according to the method are shown.
도 9에서 확인되는 것과 같이, 실시예 1에 따라 제조된 복합입자는 투과전자현미경의 전자회절분석 결과에서는 미세한 결정에 의해 회절된 환(ring) 형의 전자회절 패턴을 나타났다. 즉, 본 발명의 실시예 1에 따라 제조된 복합입자는 분말 X-선 회절장치가 갖는 분해능의 범위 내에서는 결정성을 확인할 수 없으나, TEM에서는 단범위 오더(short range order) 수준의 결정성을 갖는 조직을 가진 것으로 보인다. 이와 같이 X-선 회절에서 관찰되지 않으면서 TEM에서 미세하게 나타나는 결정성과 함께 전술한 수nm ~ 수㎛ 수준의 기공이 내부에 형성됨으로써, 본 발명에 따른 복합입자는 분자 기체부터 단백질 DNA, RNA, 세포 등과 같이 상대적으로 큰 크기의 물질을 동시에 흡착할 수 있는 특성을 가지는 것을 추정된다.As can be seen in FIG. 9, the composite particles prepared according to Example 1 showed a ring-type electron diffraction pattern diffracted by fine crystals in the electron diffraction analysis result of a transmission electron microscope. That is, in the composite particles prepared according to Example 1 of the present invention, crystallinity could not be confirmed within the resolution range of the powder X-ray diffraction apparatus, but the crystallinity of the short range order level was not confirmed in TEM. appears to have an organization. As described above, pores of several nm to several μm level are formed inside together with crystallinity that is minutely shown in TEM without being observed in X-ray diffraction, so that the composite particles according to the present invention can be obtained from molecular gas, protein DNA, RNA, It is presumed to have the property of simultaneously adsorbing relatively large-sized substances such as cells.
이에 비해, 도 10에서 확인되는 바와 같이, 비교예 1에 따라 제조한 복합입자는 투과전자현미경의 전자회절분석에서도 명확한 결정성을 나타내는 다수의 전자 회절점이 관찰된다.In contrast, as shown in FIG. 10 , in the composite particles prepared according to Comparative Example 1, a number of electron diffraction points showing clear crystallinity were observed even in electron diffraction analysis of a transmission electron microscope.
한편, 도 11에서 확인되는 바와 같이, 비교예 4에 따라 제조한 복합입자는 투과전자현미경의 전자회절분석 결과에서 결정에 의한 회절이 전혀 관찰되지 않았다. 즉, 비교예4에 따른 물질은 비결정질로 이루어진 것이다.On the other hand, as shown in FIG. 11 , in the composite particles prepared according to Comparative Example 4, no crystal diffraction was observed in the electron diffraction analysis results of a transmission electron microscope. That is, the material according to Comparative Example 4 is amorphous.
저온 질소흡착 분석Low-temperature nitrogen adsorption analysis
도 12는 실시예 1에 따라 제조한 복합입자의 분말의 저온 질소흡착 분석 결과를 나타낸 것이고, 도 13은 비교예 1에 따라 제조한 복합입자의 분말의 저온 질소흡착 분석 결과를 나타낸 것이다.12 shows the low-temperature nitrogen adsorption analysis result of the powder of the composite particle prepared according to Example 1, and FIG. 13 shows the low-temperature nitrogen adsorption analysis result of the powder of the composite particle prepared according to Comparative Example 1.
도 12에 나타난 것과 같이, 실시예 1의 복합입자의 경우, 흡탈착 곡선은 기체의 부분압력이 낮은 초기에는 약간 흡착이 이루어지고 부분압력이 증가함에 따라 흡착량이 증가하는 경향을 보이는데, 이러한 흡탈착 곡선의 패턴은 저온 질소흡착 분석 시, 미세다공(microporous), 메조다공(mesoporous), 마크로다공(macroporous)가 혼합된 다중 복합 기공 형태를 나타낸다.As shown in FIG. 12 , in the case of the composite particles of Example 1, the adsorption/desorption curve shows a tendency to slightly adsorb at the initial stage when the partial pressure of the gas is low, and to increase the adsorption amount as the partial pressure increases. The curve pattern shows a multi-composite pore shape in which microporous, mesoporous, and macroporous are mixed during low-temperature nitrogen adsorption analysis.
이에 비해, 비교예 1의 복합입자의 경우, 흡탈착 곡선은 기체의 부분압력이 낮은 상태에서 대부분의 기체가 흡착된 후 부분압력이 증가하더라도 기체 흡착량은 미미하게 증가하는 "미세다공(microporous)" 형태를 나타낸다.On the other hand, in the case of the composite particles of Comparative Example 1, the adsorption/desorption curve shows a "microporous" in which the gas adsorption amount slightly increases even if the partial pressure increases after most of the gas is adsorbed in a state where the partial pressure of the gas is low. " represents the shape.
약물 흡수 특성 평가Evaluation of drug absorption properties
도 14는 실시예 1에 의해 제조된 복합입자(도면에서 "금속유기복합입자"로 표시된 것)와 비교예 1에 의해 제조된 복합입자(도면에서 "금속유기골격체"로 표시된 것)의 활성물질 농도에 따른 활성물질의 흡수량을 비교한 결과이다.14 shows the activity of the composite particles prepared in Example 1 (indicated as "metal-organic composite particles" in the drawing) and the composite particles prepared by Comparative Example 1 (indicated by "metal-organic frameworks" in the drawings); This is the result of comparing the absorption amount of the active substance according to the substance concentration.
도 14에서 확인되는 바와 같이, 활성성분의 농도가 58 mM인 경우 실시예 1의 복합입자는 291 mg/g을 흡수하였으며, 비교예 1의 금속유기골격체는 32 mg/g을 흡수하는 것을 확인하였다. 또한, 활성물질의 농도가 60 mM인 경우 실시예 1의 복합입자는 501 mg/g을 흡수하였으며, 비교예 1의 금속유기골격체는 37 mg/g을 흡수하였다. 또한, 활성물질의 농도가 63 mM인 경우 실시예 1의 금속유기 복합입자는 698 mg/g을 흡수하였으며, 비교예 1의 금속유기골격체는 37 mg/g을 흡수하였다.14, when the concentration of the active ingredient was 58 mM, the composite particles of Example 1 absorbed 291 mg/g, and it was confirmed that the metal-organic framework of Comparative Example 1 absorbed 32 mg/g. did. In addition, when the concentration of the active material was 60 mM, the composite particles of Example 1 absorbed 501 mg/g, and the metal-organic framework of Comparative Example 1 absorbed 37 mg/g. In addition, when the concentration of the active material was 63 mM, the metal-organic composite particles of Example 1 absorbed 698 mg/g, and the metal-organic framework of Comparative Example 1 absorbed 37 mg/g.
즉, 실시예 1에 따라 제조된 금속유기 복합입자의 약물 흡수량은 비교예 1에 의해 제조된 금속유기골격체에 비해 9 ~ 18배 증가하였다.That is, the drug absorption amount of the metal-organic composite particles prepared according to Example 1 was increased by 9 to 18 times compared to the metal-organic framework prepared according to Comparative Example 1.
더욱이, 실시예 1에 의해 제조된 금속유기 복합입자는 활성물질의 농도가 높아짐에 따라 활성물질의 흡수량도 증가하였으나, 비교예 1에 의해 제조된 금속유기골격체의 경우는 활성물질의 농도가 증가하더라도 활성물질의 흡수량은 더 이상 증가하지 않는 특성을 나타내었다.Furthermore, in the metal-organic composite particles prepared according to Example 1, the absorption amount of the active material increased as the concentration of the active material increased, but in the case of the metal-organic framework prepared according to Comparative Example 1, the concentration of the active material increased. However, the absorption amount of the active material did not increase any more.
한편, 일반적으로 비정질로 구조를 갖는 금속유기 복합입자의 경우, 결정성 금속유기 골격체에 비해 약물 담지량(흡착량)이 낮다고 알려져 있어, 비교예 4에 의해 제조된 복합입자에 대해서는 약물 담지 특성에 대한 평가를 하지 않았다.On the other hand, in the case of metal-organic composite particles having an amorphous structure in general, it is known that the drug loading amount (adsorption amount) is lower than that of the crystalline metal-organic framework. did not evaluate
약물 서방출 특성 평가Evaluation of drug sustained-release properties
도 15는 실시예 2 및 3의 서방형 코팅제와, 비교예 2 및 3의 서방형 코팅제, 그리고 PLGA의 약물 방출량을 측정한 결과를 나타낸 것이다.15 shows the results of measuring the drug release amount of the sustained-release coating agents of Examples 2 and 3, the sustained-release coating agents of Comparative Examples 2 and 3, and PLGA.
도 15에서 확인되는 바와 같이, 실시예 2 및 3에 따른 서방형 코팅제는 비교예 2 및 3에 비해 약물 방출량이 17 ~ 22배 정도 증가된 것을 알 수 있으며, 14일 이상 약물의 지속 방출이 가능함도 확인이 된다.15, it can be seen that the sustained-release coatings according to Examples 2 and 3 increased the drug release amount by about 17 to 22 times compared to Comparative Examples 2 and 3, and sustained release of the drug for 14 days or more is possible is also confirmed.
즉, 본 발명의 실시예 2 및 3에 따라 제조된 서방형 조성물은 비교예 2 및 3의 서방형 조성물에 비해 약물을 최소 17배 이상 담지하며, 보다 긴 기간에 걸쳐 이를 방출할 수 있어, 우수한 서방출 특성을 가진다.That is, the sustained-release compositions prepared according to Examples 2 and 3 of the present invention carry a drug at least 17 times more than the sustained-release compositions of Comparative Examples 2 and 3, and can be released over a longer period of time. It has sustained release properties.
코팅제 내의 입자 분산성 평가Evaluation of particle dispersibility in coatings
도 16은 실시예 2 및 3의 서방형 코팅제를 플라스킥 스푼에 코팅한 것과 PLGA를 코팅한 것을 비교한 사진이다.16 is a photograph comparing the sustained-release coatings of Examples 2 and 3 coated on a plastic spoon with those coated with PLGA.
도 16을 참조하면, 투명한 색상의 스푼에 PLGA만을 코팅하게 되면 투명성에 차이가 없다. 이에 비해, 본 발명의 실시예 2 및 3에 따른 서방형 코팅제를 투명한 플라스틱 스푼의 표면에 침지한 후 건조 공정을 하게 되면, 옅은 노란색의 색상이 나타난다. 노란색은 실시예 2 및 3의 서방형 코팅제에 포함되는 실시예 1에 의해 제조된 복합입자에 기인하는 것이다.Referring to FIG. 16 , when only PLGA is coated on a spoon of a transparent color, there is no difference in transparency. In contrast, when the sustained-release coating agent according to Examples 2 and 3 of the present invention is immersed in the surface of a transparent plastic spoon and then dried, a pale yellow color appears. The yellow color is due to the composite particles prepared in Example 1 included in the sustained-release coatings of Examples 2 and 3.
코팅된 스푼의 색상에서 알 수 있는 것과 같이, 실시예 2 및 3의 서방형 코팅제에 분산된 실시예 1의 복합입자는 PLGA의 표면에서의 분산성이 매우 우수한 것을 알 수 있다. 이는 실시예 2 및 3에 따른 코팅제를 대상물품에 코팅하였을 때, 모든 코팅층에서 균질한 약효를 기대할 수 있다는 것을 의미한다.As can be seen from the color of the coated spoon, it can be seen that the composite particles of Example 1 dispersed in the sustained-release coating agents of Examples 2 and 3 have very good dispersibility on the surface of PLGA. This means that when the coating agent according to Examples 2 and 3 is coated on the target article, homogeneous medicinal effect can be expected in all coating layers.
도 17은 본 비교예 2 및 3의 서방형 코팅제를 플라스틱 스푼에 코팅한 것의 사진이다.17 is a photograph of the sustained-release coating agent of Comparative Examples 2 and 3 coated on a plastic spoon.
도 17에서 확인되는 것과 같이, 비교예 2 및 3에 따른 코팅제의 경우, 다수의 입자들이 응집된 상태로 코팅층이 형성된다. 이와 같은 형태로 입자들이 분포하여 코팅될 경우, 코팅층 전반에 걸쳐 고른 약효를 기대할 수 없는 문제점이 있다.17, in the case of the coating agent according to Comparative Examples 2 and 3, a coating layer is formed in a state in which a plurality of particles are aggregated. When the particles are distributed and coated in such a form, there is a problem that an even drug effect cannot be expected throughout the coating layer.
즉, 실시예 2 및 3에 따른 코팅제는 약물을 담지한 입자의 분산성의 측면에서도 금속유기 골격체로 이루어진 입자에 비해 현저히 개선된 특성을 갖는 것이라고 할 수 있다.That is, it can be said that the coating agents according to Examples 2 and 3 have significantly improved properties compared to the particles made of the metal-organic framework in terms of dispersibility of the drug-carrying particles.

Claims (20)

  1. 금속과 유기물이 결합하여 형성되는 복합입자로,Composite particles formed by combining metal and organic matter,
    상기 복합입자는 분말 X-선 회절분석에서는 결정성을 나타내는 피크가 관찰되지 않고, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰되는 구조를 가지고,The composite particles have a structure in which a peak indicating crystallinity is not observed in powder X-ray diffraction analysis, and a ring-shaped diffraction pattern is observed in TEM electron diffraction analysis,
    상기 복합입자의 내부에는 1nm ~ 10㎛ 크기의 복수의 기공이 형성되어 있고,A plurality of pores having a size of 1 nm to 10 μm are formed inside the composite particles,
    담지된 활성성분을 포함하는, 금속유기 복합입자.A metal-organic composite particle comprising a supported active ingredient.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 금속유기 복합입자의 분말에 대한 저온 기체흡착 분석 시, 흡탈착 곡선의 형태가 모든 압력에서 증가하는 형태를 나타내는, 금속유기 복합입자.When analyzing the low-temperature gas adsorption for the powder of the metal-organic composite particle, the shape of the adsorption/desorption curve indicates an increase at all pressures, the metal-organic composite particle.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 복합입자의 기공은 분자 기체, 약물, 단백질, DNA, 바이러스, 세포, 세포내 신호전달물질 중에서 선택된 1종 이상을 흡착할 수 있는 것인, 금속유기 복합입자.The pore of the composite particle will be capable of adsorbing at least one selected from molecular gas, drug, protein, DNA, virus, cell, and intracellular signaling material, the metal-organic composite particle.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 활성성분은 유기산, 약물, 금속이온, 산화물, 조직재생물질로 이루어진 군에서 선택되는 1종 이상인, 금속유기 복합입자.The active ingredient is at least one selected from the group consisting of organic acids, drugs, metal ions, oxides, and tissue regeneration materials, metal-organic composite particles.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 Ba로 이루어진 군으로부터 선택되는 1종 이상의 원소 또는 이의 이온인, 금속유기 복합입자.The metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, La, W, Os, Ir, Pt , Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba from the group consisting of One or more selected elements or ions thereof, metal-organic composite particles.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 유기물은, 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3,5-트리카르복시벤젠(1,3,5-tricarboxybenzene), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene), α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린으로 이루어진 그룹으로부터 선택된 1종 이상인, 금속유기 복합입자.The organic material is, 4,4'-biphenyldicarboxylic acid (4,4'-biphenyldicarboxilic acid), benzene-1,4-dicarboxylic acid (benzene-1,4-dicarboxylic acid), 9,10- Anthracenedicarboxylic acid (9,10-anthracenedicarboxylic acid), biphenyl-3,3,5,5'-tetracarboxylic acid (biphenyl-3,3,5,5'-tetracarboxylic acid), biphenyl-3 ,4',5-tricarboxylic acid (biphenyl-3,4',5-tricarboxylic acid), 5-bromoisophthalic acid (5-bromoisophthalic acid), 5-cyano-1,3-benzenedicarboxyl Acid (5-cyano-1,3-benzenedicarboxylic acid), 2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-diamino-4,4'-stilbenedicarboxylic acid), 2, 5-diaminoterephthalic acid (2,5-diaminoterephthalic acid), 1,1,2,2-tetra (4-carboxylphenyl) ethylene (1,1,2,2-tetra (4-carboxylphenyl) ethylene), 2 ,5-dihydroxyterephthalic acid (2,5-dihydroxyterephthalic acid), 2,2-dinitro-4,4-stilbenedicarboxylic acid (2,2-dinitro-4,4-stilbenedicarboxylic acid), 5- Ethynyl-1,3-benzenedicarboxylic acid (5-ethynyl-1,3-benzenedicarboxylic acid), 2-hydroxyterephthalic acid (2-hydroxyterephthalic acid), 2,6-naphthalenedicarboxylic acid (2,6) -naphthalenedicarboxylic acid), 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-tri Azine-2,4,6-triyl-tribenzoic acid (4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3,5-tricarboxybenzene (1,3,5 -tricarboxybenzen e), 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (1,4,7,10-tetraazacyclododecane-N,N',N '',N'''-tetraacetic acid), 1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene (1,3,5-tris(4-carboxy [1,1'-biphenyl]-4-yl)benzene), 1,3,5-tris(4-carboxyphenyl)benzene (1,3,5-tris(4-carboxyphenyl)benzene), 1,3, At least one selected from the group consisting of 5-triscarboxyphenylethynylbenzene (1,3,5-triscarboxyphenylethynylbenzene), α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, metal-organic composite particles.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 금속유기 복합입자의 크기는 0.1㎛ ~ 100㎛인, 금속유기 복합입자.The size of the metal-organic composite particles is 0.1㎛ ~ 100㎛, metal-organic composite particles.
  8. 생분해성 고분자와,biodegradable polymers,
    상기 생분해성 고분자에 분산된 금속과 유기물이 결합하여 형성되는 복합입자와,Composite particles formed by combining a metal and an organic material dispersed in the biodegradable polymer;
    상기 복합입자에 담지된 활성성분을 포함하고,Including the active ingredient supported on the composite particles,
    상기 복합입자는 분말 X-선 회절분석에서는 결정성을 나타내는 피크가 관찰되지 않고, TEM 전자회절분석에서는 환 형태의 회절패턴이 관찰되는 구조를 가지고, 상기 복합입자의 내부에는 1nm ~ 10㎛ 크기의 복수의 기공이 형성되어 있고,The composite particle has a structure in which a peak indicating crystallinity is not observed in powder X-ray diffraction analysis, and a ring-shaped diffraction pattern is observed in TEM electron diffraction analysis, and the inside of the composite particle has a size of 1 nm to 10 μm. A plurality of pores are formed,
    상기 활성성분의 적어도 일부는 상기 복수의 기공 내에 담지되어 있는, 조성물.At least a portion of the active ingredient is supported in the plurality of pores, the composition.
  9. 제 8 항에 있어서,9. The method of claim 8,
    상기 금속유기 복합입자의 분말에 대한 저온 기체흡착 분석 시, 흡탈착 곡선의 형태가 모든 압력에서 균일하게 증가하는 형태를 나타내는, 조성물.In the case of low-temperature gas adsorption analysis for the powder of the metal-organic composite particle, the composition shows a form in which the form of the adsorption/desorption curve is uniformly increased at all pressures.
  10. 제 8 항에 있어서,9. The method of claim 8,
    상기 금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, La, W, Os, Ir, Pt, Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 Ba로 이루어진 군으로부터 선택되는 1종 이상의 원소 또는 이의 이온인, 조성물.The metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, La, W, Os, Ir, Pt , Au, Hg, Sm, Eu, Gd, Tb, Dy, Ho, Al, Ga, In, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba from the group consisting of at least one element selected or an ion thereof.
  11. 제 8 항에 있어서,9. The method of claim 8,
    상기 유기물은, 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3,5-트리카르복시벤젠(1,3,5-tricarboxybenzene), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene), α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린으로 이루어진 그룹으로부터 선택된 1종 이상인, 조성물.The organic material is, 4,4'-biphenyldicarboxylic acid (4,4'-biphenyldicarboxilic acid), benzene-1,4-dicarboxylic acid (benzene-1,4-dicarboxylic acid), 9,10- Anthracenedicarboxylic acid (9,10-anthracenedicarboxylic acid), biphenyl-3,3,5,5'-tetracarboxylic acid (biphenyl-3,3,5,5'-tetracarboxylic acid), biphenyl-3 ,4',5-tricarboxylic acid (biphenyl-3,4',5-tricarboxylic acid), 5-bromoisophthalic acid (5-bromoisophthalic acid), 5-cyano-1,3-benzenedicarboxyl Acid (5-cyano-1,3-benzenedicarboxylic acid), 2,2-diamino-4,4'-stilbenedicarboxylic acid (2,2-diamino-4,4'-stilbenedicarboxylic acid), 2, 5-diaminoterephthalic acid (2,5-diaminoterephthalic acid), 1,1,2,2-tetra (4-carboxylphenyl) ethylene (1,1,2,2-tetra (4-carboxylphenyl) ethylene), 2 ,5-dihydroxyterephthalic acid (2,5-dihydroxyterephthalic acid), 2,2-dinitro-4,4-stilbenedicarboxylic acid (2,2-dinitro-4,4-stilbenedicarboxylic acid), 5- Ethynyl-1,3-benzenedicarboxylic acid (5-ethynyl-1,3-benzenedicarboxylic acid), 2-hydroxyterephthalic acid (2-hydroxyterephthalic acid), 2,6-naphthalenedicarboxylic acid (2,6) -naphthalenedicarboxylic acid), 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-tri Azine-2,4,6-triyl-tribenzoic acid (4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,3,5-tricarboxybenzene (1,3,5 -tricarboxybenzen e), 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (1,4,7,10-tetraazacyclododecane-N,N',N '',N'''-tetraacetic acid), 1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene (1,3,5-tris(4-carboxy [1,1'-biphenyl]-4-yl)benzene), 1,3,5-tris(4-carboxyphenyl)benzene (1,3,5-tris(4-carboxyphenyl)benzene), 1,3, One or more selected from the group consisting of 5-triscarboxyphenylethynylbenzene (1,3,5-triscarboxyphenylethynylbenzene), α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, the composition.
  12. 제 8 항에 있어서,9. The method of claim 8,
    상기 유기물은 α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린 중에서 선택된 1종 이상인, 조성물.The organic material is at least one selected from α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, the composition.
  13. 제 8 항에 있어서,9. The method of claim 8,
    상기 생분해성 고분자는 폴리락타이드-글리콜라이드 공중합체(PLGA), 키토산(chitosan), 폴리다이옥사논(polydioxanone), 폴리락타이드-폴리카프로락톤 공중합체(PLA-PCL), 폴리글리콜라이드-폴리카프로락톤 공중합체(PGA-PCL), 폴리다이옥사논-폴리카프로락톤 공중합체(PDO-PCL), 폴리트리메틸렌카보네이트(PTMC), 폴리카보네이트(PC), 폴리부틸렌석시네이트(PBS), 폴리히드록시부틸레이트(PHB), 폴리하이드로알카노에이트(PHA), 지방족 폴리에스테르(aliphatic polyphosphate ester), 방향족 폴리에스터(aromatic polyester) 및 폴리포스파젠(Polyphosphazene)으로 구성된 군으로부터 선택된 1종 이상인, 조성물.The biodegradable polymer is polylactide-glycolide copolymer (PLGA), chitosan (chitosan), polydioxanone (polydioxanone), polylactide-polycaprolactone copolymer (PLA-PCL), polyglycolide-poly Caprolactone copolymer (PGA-PCL), polydioxanone-polycaprolactone copolymer (PDO-PCL), polytrimethylene carbonate (PTMC), polycarbonate (PC), polybutylene succinate (PBS), poly At least one selected from the group consisting of hydroxybutylate (PHB), polyhydroalkanoate (PHA), aliphatic polyphosphate ester, aromatic polyester, and polyphosphazene, composition .
  14. 제 8 항에 있어서,9. The method of claim 8,
    상기 생분해성 공중합체는 폴리락타이드-글리콜라이드 공중합체(PLGA)이고,The biodegradable copolymer is a polylactide-glycolide copolymer (PLGA),
    상기 폴리락타이드-글리콜라이드 공중합체는 락타이드와 글리콜라이드의 몰 비가 0.1 : 1 ~ 9 : 1인, 조성물.The polylactide-glycolide copolymer has a molar ratio of lactide and glycolide of 0.1: 1 to 9: 1, the composition.
  15. 제 8 항에 있어서,9. The method of claim 8,
    상기 생분해성 고분자를 상기 금속유기 복합입자 100 중량부 대비 50 내지 500 중량부로 포함하는, 조성물.A composition comprising 50 to 500 parts by weight of the biodegradable polymer based on 100 parts by weight of the metal-organic composite particles.
  16. 제 8 항에 있어서,9. The method of claim 8,
    상기 활성성분은 유기산, 약물, 금속이온, 산화물, 조직재생물질로 이루어진 군에서 선택되는 1종 이상인, 조성물.The active ingredient is at least one selected from the group consisting of organic acids, drugs, metal ions, oxides, and tissue regeneration materials, the composition.
  17. 제 16 항에 있어서,17. The method of claim 16,
    상기 조직재생물질은 단백질, DNA, RNA, 줄기세포로 이루어진 군에서 선택되는 1종 이상인, 조성물.The tissue regeneration material is at least one selected from the group consisting of protein, DNA, RNA, stem cells, the composition.
  18. 제 8 항에 있어서,9. The method of claim 8,
    상기 금속유기 복합입자의 크기는 0.01㎛ ~ 100㎛인, 조성물.The size of the metal-organic composite particles is 0.01㎛ ~ 100㎛, composition.
  19. 제 8 항에 있어서,9. The method of claim 8,
    상기 생분해성 고분자를 용해하는 용매를 더 포함하는, 조성물.A composition further comprising a solvent for dissolving the biodegradable polymer.
  20. 제 19 항에 있어서,20. The method of claim 19,
    상기 용매는 아세토나이트릴, 클로로포름, 다이클로로메탄, 물, 에틸아세테이트, 아세톤, 에탄올 및 메탄올으로 구성된 군으로부터 선택된 1종 또는 이들의 혼합물인, 조성물.The solvent is one selected from the group consisting of acetonitrile, chloroform, dichloromethane, water, ethyl acetate, acetone, ethanol and methanol, or a mixture thereof, the composition.
PCT/KR2022/000539 2021-01-15 2022-01-12 Metal-organic composite particles and composition comprising metal-organic composite particles WO2022154463A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0005844 2021-01-15
KR20210005844 2021-01-15
KR10-2021-0192388 2021-12-30
KR1020210192388A KR20220103624A (en) 2021-01-15 2021-12-30 Metal organic composite particles and compositions comprising the metal organic composite particles

Publications (1)

Publication Number Publication Date
WO2022154463A1 true WO2022154463A1 (en) 2022-07-21

Family

ID=82447329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000539 WO2022154463A1 (en) 2021-01-15 2022-01-12 Metal-organic composite particles and composition comprising metal-organic composite particles

Country Status (1)

Country Link
WO (1) WO2022154463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019401A1 (en) * 2022-07-20 2024-01-25 숙명여자대학교산학협력단 Metal organic composite particles capable of adsorbing, storing, or releasing two or more types of functional substances and composition comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374098B1 (en) * 1994-04-08 2003-06-09 아트릭스 라보라토리스, 인코포레이션 Liquid delivery compositions suitable for controlled release graft formation
JP2006131577A (en) * 2004-11-09 2006-05-25 Ltt Bio-Pharma Co Ltd Method for preparing nanoparticle having different particle diameters and containing sealed medicine and nanoparticle obtained by the method
KR20140098739A (en) * 2011-09-21 2014-08-08 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. Nano delivery systems for sirna
KR101513318B1 (en) * 2007-05-14 2015-04-17 가부시키가이샤 엘티티 바이오파마 Low-molecule drug-containing nanoparticle having sustained release negatively charged group
KR20170005977A (en) * 2015-07-07 2017-01-17 한국과학기술원 Method for preparing porous micro capsule and semi permeable micro capsule thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374098B1 (en) * 1994-04-08 2003-06-09 아트릭스 라보라토리스, 인코포레이션 Liquid delivery compositions suitable for controlled release graft formation
JP2006131577A (en) * 2004-11-09 2006-05-25 Ltt Bio-Pharma Co Ltd Method for preparing nanoparticle having different particle diameters and containing sealed medicine and nanoparticle obtained by the method
KR101513318B1 (en) * 2007-05-14 2015-04-17 가부시키가이샤 엘티티 바이오파마 Low-molecule drug-containing nanoparticle having sustained release negatively charged group
KR20140098739A (en) * 2011-09-21 2014-08-08 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. Nano delivery systems for sirna
KR20170005977A (en) * 2015-07-07 2017-01-17 한국과학기술원 Method for preparing porous micro capsule and semi permeable micro capsule thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019401A1 (en) * 2022-07-20 2024-01-25 숙명여자대학교산학협력단 Metal organic composite particles capable of adsorbing, storing, or releasing two or more types of functional substances and composition comprising same

Similar Documents

Publication Publication Date Title
US8034363B2 (en) Sustained release systems of ascorbic acid phosphate
Wang et al. Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs
KR100422391B1 (en) Preparation of biodegradable microspheres containing peptides by a melt process
EP0952171B1 (en) Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof
KR101756493B1 (en) Sterilization of biodegradable hydrogels
US6576263B2 (en) Delivery systems using preformed biodegradable polymer compositions and methods
EP0737703B1 (en) Hydrogel-forming , self-solvating absorbable polyester copolymers, and methods for use therefor
FI80284B (en) PHARMACEUTICAL FORM OF VETERINAERT GODTAGBAR AMFIPATISK BLOCKSAMPOLYMER OCH DESS FRAMSTAELLNING.
US6844010B1 (en) Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
JP3842042B2 (en) Absorbable microparticles
WO2022154463A1 (en) Metal-organic composite particles and composition comprising metal-organic composite particles
CN101873869A (en) Biodegradable polymer support and preparation method thereof
DK1968638T3 (en) Controlled release gels
WO2011081253A1 (en) Injectable porous microparticle filler system
MXPA02006272A (en) Liquid composition of biodegradable block copolymer for drug delivery system and process for the preparation thereof.
NZ224722A (en) Method of making a microcapsule composition
JP2007526911A (en) Polymer NO Donor Predrug Nanofiber Coating for Medical Devices and Therapy
TWI584825B (en) Formed sheet product and hemostatic material
AU2296699A (en) Process for making absorbable microparticles
CA2529503A1 (en) Drug polymer complexes
KR20220103624A (en) Metal organic composite particles and compositions comprising the metal organic composite particles
WO2024019401A1 (en) Metal organic composite particles capable of adsorbing, storing, or releasing two or more types of functional substances and composition comprising same
WO2019147065A1 (en) Photodegradable metal-organic frameworks and preparation method therefor
WO2021045556A1 (en) Biomedical implant comprising surface-modified inorganic nanoparticle and biodegradable polymer, and preparation method therefor
Jayasuriya et al. Optimization of scaled-up chitosan microparticles for bone regeneration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739658

Country of ref document: EP

Kind code of ref document: A1