WO2022154304A1 - 변압기 수명 평가 장치 및 방법 - Google Patents

변압기 수명 평가 장치 및 방법 Download PDF

Info

Publication number
WO2022154304A1
WO2022154304A1 PCT/KR2021/019662 KR2021019662W WO2022154304A1 WO 2022154304 A1 WO2022154304 A1 WO 2022154304A1 KR 2021019662 W KR2021019662 W KR 2021019662W WO 2022154304 A1 WO2022154304 A1 WO 2022154304A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
methanol
light
unit
life
Prior art date
Application number
PCT/KR2021/019662
Other languages
English (en)
French (fr)
Inventor
윤재훈
Original Assignee
엘에스일렉트릭(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210006152A external-priority patent/KR102601865B1/ko
Priority claimed from KR1020210042457A external-priority patent/KR102601867B1/ko
Application filed by 엘에스일렉트릭(주) filed Critical 엘에스일렉트릭(주)
Priority to US18/272,421 priority Critical patent/US20240077415A1/en
Priority to CN202180088132.2A priority patent/CN116802479A/zh
Publication of WO2022154304A1 publication Critical patent/WO2022154304A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2841Gas in oils, e.g. hydrogen in insulating oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • G01N2021/1742Optionally different kinds of measurements; Method being valid for different kinds of measurement either absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/558Measuring reflectivity and transmission

Definitions

  • the present invention relates to a transformer life evaluation apparatus and method, and more particularly, to an oil-immersed transformer life evaluation apparatus and method.
  • the lifespan of the oil-immersed transformer is related to the insulating material such as insulating oil and insulating paper, and the lifespan of the oil-immersed transformer is determined by the mechanical life of the insulating paper (cellulose). That is, as the insulating paper deteriorates, the mechanical strength of the insulating paper is reduced, and the mechanical life of the insulating paper is also reduced. This is because the cellulose fibers are weakened by chemical reactions that cut the long chains of cellulose molecules in the insulating paper.
  • the lifespan of an oil-immersed transformer depends on the quality (polymerization) of the insulating paper, so the decrease in the strength of the insulating paper due to deterioration can directly or indirectly cause transformer failure. Therefore, diagnosis of the state (degree of polymerization) of insulating paper is very important.
  • Polymerization diagnosis technology includes a method of directly detecting a change in a material and an indirect method of detecting a secondary change such as a change in a geometric shape due to deterioration or deformation of a material.
  • the diagnosis should be made in the state of operation (live line, on-line) without stopping the operation of the facility.
  • DGA Dissolved Gas Analysis
  • the conventional DGA method for analyzing methane gas has a problem in that the price of the gas-in-oil sensor for detecting the gas in oil is very high, and thus economical efficiency is lowered.
  • An object of the present invention is to provide a transformer life evaluation device using the optical characteristics of methanol contained in insulating oil.
  • An object of the present specification is to provide a transformer life evaluation method capable of evaluating the lifespan of a transformer without directly extracting methanol through the relationship between the polymerization degree of methanol and insulating paper contained in insulating oil.
  • a first storage unit for storing insulating oil used for insulation of a transformer a second storage unit for storing insulating oil not used for insulation of the transformer is provided separately from the first storage unit , a light emitting unit emitting light of a specific wavelength, a light receiving unit receiving the light emitted from the light emitting unit, connecting the light emitting unit and the light receiving unit, providing a movement path of light emitted from the light emitting unit and received by the light receiving unit, and first storage
  • a first optical cable disposed to penetrate the unit, connecting the light emitting unit and the light receiving unit, providing a movement path of light emitted from the light emitting unit and received by the light receiving unit, a second optical cable arranged to pass through the second storage unit, and connecting to the light receiving unit and may include a calculation unit for receiving information on the optical characteristics of methanol from the light receiving unit.
  • the light receiving unit may transmit information on optical characteristics of methanol included in the insulating oil stored in each of the first storage unit and the second storage unit to the calculating unit.
  • the optical characteristic may include at least one of absorbance, reflectance, and refractive index.
  • the calculation unit includes a methanol content analysis unit for calculating the methanol content in the insulating oil of the transformer based on light of a specific wavelength, a polymerization degree calculating unit for calculating the polymerization degree of insulating paper provided in the transformer based on the calculated methanol content, and the calculated It may include a life evaluation unit for evaluating the life of the transformer based on the degree of polymerization.
  • the methanol content analysis unit may calculate the methanol content included in the insulating oil of the transformer based on the absorbance of methanol received from the light receiving unit.
  • the specific wavelength may be a wavelength having a band in the range of 317 nm to 328 nm.
  • the operation unit may compare optical characteristics of methanol stored in each of the first storage unit and the second storage unit with each other, and when the difference value of the optical characteristics exceeds a set range, it may be determined that the transformer cannot be used.
  • a light emitting unit irradiating light of a specific wavelength to the insulating oil stored in the first storage unit and the second storage unit, and the light receiving unit of methanol stored in the first storage unit and the second storage unit, respectively
  • the method may include transmitting information on the optical characteristics to the operation unit, and comparing the optical characteristics of the methanol stored in each of the first storage unit and the second storage unit by the operation unit with each other.
  • the calculation unit may determine that the transformer cannot be used when the difference value of the respective optical characteristics exceeds a set range.
  • the calculating unit calculates the content of methanol contained in the insulating oil stored in the first storage unit, and the calculating unit calculates the polymerization degree of insulating paper provided in the transformer based on the methanol content of the first storage unit It may further include the step of evaluating the life of the transformer based on the polymerization degree calculated by the calculation unit and the operation unit.
  • the calculating unit evaluates the lifespan of the transformer based on the calculated degree of polymerization, if the calculated degree of polymerization is less than or equal to a set limit life point, it may be determined that the transformer cannot be used.
  • An embodiment of the sensor module includes a first storage unit in which insulating oil used for insulation of a transformer is stored, a second storage unit which is provided separately from the first storage unit, and insulating oil not used for insulation of the transformer is stored, a specific A light emitting unit emitting light of a wavelength, a light receiving unit receiving light emitted from the light emitting unit, connecting the light emitting unit and the light receiving unit, providing a movement path of light emitted from the light emitting unit and received by the light receiving unit, and passing through the first storage unit It may include a first optical cable arranged so as to connect the light emitting unit and the light receiving unit, provide a movement path of light emitted from the light emitting unit and received to the light receiving unit, and a second optical cable arranged to pass through the second storage unit.
  • the transformer horizontal evaluation method includes the steps of providing light of a predetermined specific wavelength to the insulating oil or receiving light of a predetermined specific wavelength, the content of methanol contained in the insulating oil of the transformer using the light of a specific wavelength and calculating a degree of polymerization through the obtained methanol content, and evaluating the lifespan of the transformer based on the calculated degree of polymerization.
  • the optical characteristic includes an absorbance, a reflectance, and a refractive index.
  • the step of calculating the methanol content in the insulating oil of the transformer based on the light provided in an embodiment of the present specification includes the steps of obtaining the absorbance according to the optical characteristics of the methanol based on the light provided and the obtained and calculating the content of methanol included in the insulating oil of the transformer based on the absorbance.
  • the predetermined specific wavelength includes a wavelength band of the second slope section.
  • Equation 1 the step of calculating the degree of polymerization through the methanol content obtained in an embodiment of the present specification is calculated through Equation 1 as follows.
  • the step of evaluating the lifespan of the transformer based on the degree of polymerization calculated in an embodiment of the present specification includes determining that the transformer is unusable when the calculated degree of polymerization is less than or equal to a predetermined threshold life point.
  • the limiting life point is the polymerization degree of 400.
  • Transformer horizontal evaluation device includes a sensor module that provides light of a predetermined specific wavelength to the insulating oil or receives light of a predetermined specific wavelength, and the insulating oil of the transformer based on light of a specific wavelength It includes a methanol content analysis unit for obtaining the obtained methanol content, a polymerization degree calculating unit for calculating the degree of polymerization through the obtained methanol content, and a life evaluation unit for evaluating the lifespan of the transformer based on the calculated degree of polymerization.
  • the optical characteristic includes an absorbance, a reflectance, and a refractive index.
  • the methanol content analyzer obtains an absorbance according to the optical properties of methanol based on light of a specific wavelength, and calculates the methanol content included in the insulating oil of the transformer based on the obtained absorbance.
  • a predetermined specific wavelength includes a wavelength band of a section having an absorbance greater than or equal to a specific size while having a graph distribution at regular intervals.
  • a wavelength band of a section having an absorbance greater than or equal to a specific size while having a graph distribution at regular intervals is greater than or equal to 317 nm or greater than or equal to or less than 328 nm.
  • the degree of polymerization calculator calculates the degree of polymerization through the following [Equation 1].
  • the life evaluation unit determines that the transformer cannot be used when the calculated degree of polymerization is less than or equal to a predetermined limit life point.
  • the limiting life point is the polymerization degree of 400.
  • the transformer life evaluation apparatus can easily and precisely evaluate the life of a transformer without directly extracting methanol through the relation between the polymerization degree of methanol and insulating paper contained in insulating oil.
  • the transformer life evaluation apparatus by comparing the optical characteristics of the methanol stored in each of the first storage unit and the second storage unit with each other, the transformer can be easily stored without calculating the polymerization degree of the methanol stored in the first storage unit. It can be determined whether the limit life of
  • Transformer life evaluation method can evaluate the life of the transformer without directly extracting methanol through the relationship between the polymerization degree of methanol and insulating paper contained in insulating oil.
  • the transformer life evaluation method can accurately evaluate the life of the transformer by calculating the optical characteristics of methanol through an optical sensor using a specific wavelength as a light source.
  • the transformer life evaluation method can efficiently evaluate the lifespan of a transformer and reduce costs by using a low-cost optical sensor that is easy to install and operate.
  • FIG. 1A is a block diagram schematically illustrating a transformer life evaluation apparatus according to an embodiment.
  • FIG. 1B is a diagram schematically illustrating a sensor module provided in an apparatus for evaluating a lifespan of a transformer according to an exemplary embodiment.
  • FIG. 2 is a graph showing the absorbance of methanol with respect to the entire wavelength according to an embodiment.
  • FIG. 3 is an enlarged view of a graph of a specific wavelength region in the graph of FIG. 2 .
  • FIG. 4 is a graph showing the change in the degree of polymerization and the methanol content of the insulating oil according to the deterioration time according to an embodiment.
  • FIG. 5 is a flowchart illustrating a transformer life evaluation method according to an embodiment.
  • FIG. 6 is a block diagram of a transformer life evaluation apparatus and a transformer according to an embodiment of the present specification.
  • FIG. 7 is a graph showing the absorbance of methanol with respect to the entire wavelength in an embodiment of the present specification.
  • FIG. 8 is an enlarged view of a graph of a specific wavelength region in the graph of FIG. 7 .
  • FIG 9 is a graph showing the change in the degree of polymerization and the methanol content of the insulating oil according to the deterioration time in an embodiment of the present specification.
  • FIG. 10 is a flowchart of a transformer life evaluation method according to an embodiment of the present specification.
  • first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from other components, and unless otherwise stated, the first component may be the second component, of course.
  • FIG. 1A is a block diagram schematically illustrating an apparatus for life evaluation of a transformer 10 according to an embodiment.
  • 1B is a diagram schematically illustrating a sensor module 11 provided in an apparatus for life evaluation of a transformer 10 according to an exemplary embodiment.
  • arrows indicate the direction of light.
  • the transformer 10 is a device for stepping up or stepping down a voltage while transferring electrical energy between two or more circuits through an inductive electrical conductor.
  • the transformer 10 may be an input transformer 10 in which a coil wound around an iron core inside the transformer 10 is insulated with insulating oil.
  • the transformer 10 will be described on the assumption that it is an oil-intake transformer 10 .
  • the transformer 10 includes insulating oil and insulating paper.
  • the insulating oil may be accommodated in the transformer 10 , and the insulating paper may be provided in a state in which the coil is wrapped.
  • the insulating oil and the insulating paper are accommodated in the transformer 10 and perform an electrical insulation function in order to prevent an electric shock accident occurring from the transformer 10 .
  • the insulating paper may be, for example, cellulose insulating paper, and the insulating oil may be mineral oil, synthetic oil, poly cholrinated biphenyl (PCB), mixed oil, or alkyl benzene.
  • PCB poly cholrinated biphenyl
  • mixed oil or alkyl benzene.
  • the present invention is not limited thereto.
  • the insulation paper deteriorates as the operating years of the transformer 10 increase. Specifically, since the temperature inside the transformer 10 rises according to the operation of the transformer 10, the insulating paper is subjected to temperature stress.
  • methanol which is a secondary compound, is generated in the process of being decomposed by thermal energy, and the generated methanol is dissolved in the insulating oil inside the transformer 10 . Accordingly, as the number of years of operation of the transformer 10 increases, the content of methanol in the insulating oil of the transformer 10 is accumulated and increased.
  • the life evaluation apparatus may use the optical characteristics of methanol included in the insulating oil. That is, as the insulating paper deteriorates, the optical properties of methanol included in the insulating oil of the transformer 10, for example, the absorbance, reflectance, or refractive index of methanol change, the life evaluation device measures this to evaluate the life of the transformer 10.
  • the life evaluation apparatus may include a sensor module 11 and an operation unit 20 connected to communicate with the sensor module 11 .
  • the sensor module 11 may be provided in the transformer 10
  • the calculating unit 20 may be provided in the transformer 10 , or separately provided outside the transformer 10 .
  • the sensor module 11 may use, for example, an optical sensor, a chemical sensor, or an electrical sensor. However, since the optical sensor is less affected by the surrounding environment, the sensor module 11 will be described below on the premise that the optical sensor is used.
  • the sensor module 11 may include a first storage unit 110 , a second storage unit 120 , a light emitting unit 130 , a light receiving unit 140 , a first optical cable 150 , and a second optical cable 160 . have.
  • the first storage unit 110 may store insulating oil used for insulating the transformer 10 .
  • the first storage unit 110 may refer to the entire insulating oil storage device of the transformer 10 . Since the insulating oil actually used for insulation of the transformer 10 is stored in the first storage unit 110 , the insulating oil stored in the first storage unit 110 may include methanol, which is a material generated by deterioration of the insulating paper. This is because methanol is generated from the insulating paper due to deterioration of the insulating paper and melted into the insulating oil stored in the first storage unit 110 .
  • the methanol content of the insulating oil stored in the first storage unit 110 is obtained, the degree of polymerization of the insulating paper is obtained based on the content of methanol to determine the degree of deterioration of the insulating paper, and the lifespan of the transformer 10 can be evaluated based on this. have.
  • the second storage unit 120 is provided separately from the first storage unit 110 , and insulating oil not used for insulation of the transformer 10 may be stored. To prevent the insulating oil stored in the second storage unit 120 from mixing with the insulating oil in the first storage unit 110 , the second storage unit 120 may be provided to be sealed in a state in which insulating oil not used for insulation is stored.
  • the second storage unit 120 may be disposed in a space provided at an appropriate location inside the transformer 10 .
  • the first storage unit 110 may be accommodated in the second storage unit 120 .
  • the second storage unit 120 may contain insulating oil for comparison with the insulating oil stored in the first storage unit 110 . Accordingly, the second storage unit 120 may have a smaller volume compared to the first storage unit 110 and may be provided to store a small amount of insulating oil. Since the second storage unit 120 is separated from the first storage unit 110 , the insulating oil of the second storage unit 120 does not contain methanol generated from the insulating paper and stored in the first storage unit 110 .
  • the sensor module 11 may include a light emitting unit 130 and a light receiving unit 140 . That is, the sensor module 11 provides light to the first storage unit 110 and the second storage unit 120 through the light emitting unit 130 and receives the light provided through the light receiving unit 140 .
  • the light emitting unit 130 may emit light of a specific wavelength.
  • the specific wavelength is a wavelength band in which the optical characteristics of methanol are clearly distinguished, and may be, for example, greater than or equal to 317 nm or greater than or equal to or smaller than 328 nm.
  • the specific wavelength will be described in detail with reference to FIGS. 2 to 4 below.
  • the light receiving unit 140 may receive the light emitted from the light emitting unit 130 .
  • the light emitting unit 130 may receive the optical characteristics of the insulating oil by irradiating light of a predetermined specific wavelength to the insulating oil.
  • the light receiving unit 140 may receive the optical characteristics of methanol contained in the insulating oil stored in each of the first storage unit 110 and the second storage unit 120 .
  • the first optical cable 150 connects the light emitting unit 130 and the light receiving unit 140 , and provides a movement path of light emitted from the light emitting unit 130 and received by the light receiving unit 140 , It may be disposed to penetrate through the first storage unit 110 .
  • Light passing through the first optical cable 150 may be irradiated to methanol contained in the insulating oil stored in the first storage unit 110 . Accordingly, the light receiving unit 140 may receive the optical characteristics of methanol of the first storage unit 110 through the first optical cable 150 .
  • the second optical cable 160 connects the light emitting unit 130 and the light receiving unit 140 , and provides a movement path of light emitted from the light emitting unit 130 and received by the light receiving unit 140 , 2 It may be disposed to pass through the storage unit 120 .
  • Light passing through the second optical cable 160 may be irradiated to the insulating oil stored in the second storage unit 120 . Since methanol does not flow into the second storage unit 120 from the insulating paper, the light receiving unit 140 may receive the optical characteristics of insulating oil that does not contain methanol through the second optical cable 160 .
  • the optical properties of methanol may include the optical properties of insulating oil in a state in which methanol is not included.
  • the Methanol has different optical properties depending on the wavelength band of light.
  • the optical characteristic may include at least one of absorbance, reflectance, and refractive index.
  • the absorbance is the degree to which methanol absorbs light
  • the reflectance is the degree to which methanol reflects light
  • the refractive index is the degree to which light is bent at the interface when light passes through the methanol.
  • the optical properties of methanol that is, absorbance, reflectance, and refractive index, all have similar properties.
  • the calculating unit 20 is connected to the light receiving unit 140 , and may receive information on the optical characteristics of methanol from the light receiving unit 140 .
  • the light receiving unit 140 may transmit information on the optical characteristics of methanol contained in the insulating oil stored in each of the first storage unit 110 and the second storage unit 120 to the operation unit 20 .
  • the calculation unit 20 may include a methanol content analysis unit 21 , a polymerization degree calculation unit 22 , and a lifespan evaluation unit 23 .
  • the methanol content analyzer 21 may calculate the methanol content included in the insulating oil of the transformer 10 based on light of a specific wavelength.
  • the methanol content analysis unit 21 may calculate the methanol content included in the insulating oil of the transformer 10 based on the absorbance of methanol received from the light receiving unit 140 .
  • the methanol content analyzer 21 acquires an absorbance according to the optical characteristic of methanol based on the light provided by the sensor module 11, and methanol contained in the insulating oil of the transformer 10 based on the obtained absorbance content can be calculated.
  • Absorbance means the log value of the ratio of the emitted radiation to the transmitted radiation when light is irradiated on methanol.
  • the absorbance indicates the degree to which methanol absorbs light of a specific wavelength and is proportional to the absorbance, which is the optical characteristic of methanol. Therefore, as the amount of light absorbed by methanol increases, the absorbance increases, and as the amount of light absorbed by methanol decreases, the absorbance decreases.
  • the methanol content analyzer 21 calculates the methanol content included in the insulating oil of the transformer 10 based on the obtained absorbance.
  • the degree of polymerization calculator 22 may calculate the degree of polymerization of insulating paper provided in the transformer 10 based on the calculated methanol content.
  • the degree of polymerization refers to the quality of the insulating paper, that is, to what extent the degree of deterioration of the insulating paper has progressed. Therefore, as deterioration progresses, the degree of polymerization is lowered, and the mechanical life of the insulating paper is reduced.
  • a method of calculating the degree of polymerization will be specifically described below.
  • the life evaluation unit 23 may evaluate the lifetime of the transformer 10 based on the calculated degree of polymerization. Specifically, the life evaluation unit 23 may preset a limit life point of the transformer 10 .
  • the critical life point may be, for example, when the calculated degree of polymerization is 400. The critical life point is described in detail below.
  • the life evaluation unit 23 may compare the calculated degree of polymerization with a preset limit life point, and if the calculated degree of polymerization is less than or equal to a preset limit life point, it may be determined that the transformer 10 is unusable.
  • the life evaluation unit 23 compares the calculated degree of polymerization and a preset limit life point, and when the calculated degree of polymerization is greater than the preset limit life point, the transformer 10 according to the difference between the limit life point and the calculated polymerization degree. ) can be evaluated.
  • the operation unit 20 compares the optical characteristics of the methanol stored in each of the first storage unit 110 and the second storage unit 120 with each other, and when the difference value of the optical characteristics exceeds a set range, the transformer (10) can be judged to be unusable.
  • the calculating unit 20 receives the second optical characteristic, that is, the second optical characteristic, of the insulating oil that does not contain methanol in the second storage unit 120 . (140) can be received. Also, the operation unit 20 may receive the optical characteristic of methanol stored in the first storage unit 110 , that is, the second optical characteristic, from the light receiving unit 140 .
  • the insulating paper deteriorates and the first optical characteristic may change.
  • the second optical characteristic does not change or changes very little.
  • the calculating unit 20 may compare the first optical characteristic and the second optical characteristic, and if the difference value exceeds a set range, it may be determined that the transformer 10 cannot be used.
  • the set range for the difference value between the first optical characteristic and the second optical characteristic may be appropriately selected based on the limit lifetime point.
  • the difference between the absorbance, reflectance, or refractive index of the insulating oil at the critical life point and the absorbance, reflectance, or refractive index of the insulating oil not yet used for insulation may be set as the set value.
  • the set value may be determined based on a threshold life point already derived from a transformer 10 other than the current transformer 10 .
  • the calculating unit 20 determines that the current transformer 10 is not usable.
  • FIG. 2 is a graph showing the absorbance of methanol with respect to the entire wavelength according to an embodiment.
  • FIG. 3 is an enlarged view of a graph of a specific wavelength region in the graph of FIG. 2 .
  • the horizontal axis indicates the wavelength (nm) 200 of light and the vertical axis indicates the absorbance 210 .
  • the wavelength 200 of light is divided into different regions according to the length. Different regions of light may be divided into, for example, gamma rays, X-rays, ultraviolet rays (100 nm to 380 nm), visible rays (380 nm to 780 nm), infrared rays (780 nm to 1000 nm), ultrasonic waves, radio waves, etc., and each region have different characteristics.
  • the content of methanol may be measured in the first section 240 , the second section 242 , and the third section 244 in which no noise is generated and a slope exists.
  • the absorbance is lower, it is difficult to distinguish noise when measuring the content of methanol, so a precise technique is required, and thus a lot of cost is required.
  • the absorbance of the first section 240 is greater than that of the second section 242 and the third section 244 , it is advantageous to measure the methanol content. That is, the first section 240 has a high absorbance of 2 or more as a wavelength in the ultraviolet region, while the second section 242 and the third section 244 have a low absorbance of 1 or less as a wavelength other than the ultraviolet region. Therefore, when the methanol content analyzer 21 calculates the methanol content in the first section 240 , the measurement cost can be reduced and economic efficiency can be improved.
  • the sensor module 11 may irradiate light of a predetermined specific wavelength to the insulating oil. Specifically, referring to FIG. 3 in which the first section 240 is enlarged, the graph of the curve varies according to the content of methanol included in the insulating oil.
  • graph E means a graph of pure insulating oil in which methanol does not exist (deterioration of insulating paper has not progressed)
  • graphs A to D are graphs of insulating oil containing methanol (deterioration of insulating paper has progressed).
  • graph D may represent a methanol content of 3.35 ppm, graph C 4.4 ppm, graph B 32.7 ppm, and graph A of 135 ppm methanol, respectively.
  • first section 240 may be divided into a first slope section 331 , a second slope section 332 , and a third slope section 333 . Since each of the first inclined section 331 , the second inclined section 332 , and the third inclined section 333 has different inclinations, sections may be divided according to the inclination angles.
  • the distributions of graphs A to E are not evenly arranged, and since there is a graph deviating from the graph E, noise occurs. Therefore, it is difficult to calculate the methanol content according to the absorbance and accurately evaluate the lifespan of the transformer 10 .
  • the third slope section 333 not only has a graph distribution with irregular intervals, but also has an absorbance of 2 or less. Therefore, it is difficult to accurately measure the methanol content.
  • the second slope section 332 has an absorbance of 2 or more while having a graph distribution at regular intervals. Accordingly, in the second slope section 332 , the methanol content according to the difference in absorbance may be precisely calculated.
  • the wavelength band of the second slope section 332 may be 317 nm to 328 nm. Accordingly, a specific wavelength of light emitted from the light emitting unit 130 of the sensor module 11 may be a wavelength having a band in the range of 317 nm to 328 nm.
  • the second slope section 332 is not limited thereto, and may include all of a specific wavelength region having a characteristic of having two or more absorbances while having a graph distribution at regular intervals.
  • the methanol content analyzer 21 may calculate the methanol content by analyzing the absorbance of the second inclined section 332 .
  • FIG. 4 is a graph showing the change in the degree of polymerization and the methanol content of the insulating oil according to the deterioration time according to an embodiment.
  • the horizontal axis represents the deterioration time (h) 400
  • the vertical axis represents the polymerization degree 410
  • the circles indicated in the drawing represent the methanol content included in the insulating oil.
  • the diameter 432 of the circle when the deterioration time is 3500h is larger than the diameter 430 of the circle when the deterioration time is 1000h. That is, the methanol content included in the insulating oil is proportional to the deterioration time (400).
  • the degree of polymerization calculator 22 may calculate the degree of polymerization 410 from the methanol content through the following [Equation 1].
  • the first reference value may be any value between 56.55, which is the lower limit of the first reference value, and 73.5, which is the upper limit of the first reference value
  • the second reference value is any value between 8.5, the lower limit of the second reference value, and 11.15, the upper limit of the second reference value.
  • the degree of polymerization when the diameter of the circle is large ( 432 ) is 650 to 700 , which is greater than the degree of polymerization when the diameter of the circle is small ( 430 ) is 400 to 500 . That is, the higher the methanol content, the lower the polymerization degree.
  • the life evaluation unit 23 may evaluate the life of the insulating paper, that is, the life of the transformer 10 through the calculated degree of polymerization.
  • the life evaluation unit 23 may set a limit life point in advance.
  • the threshold life point may be, for example, a polymerization degree of 400 that the transformer 10 determines to be unusable at a minimum degree of polymerization ( 420 ). Accordingly, the life evaluation unit 23 may evaluate the lifespan of the transformer 10 based on the degree of polymerization of 400, and if the calculated degree of polymerization is 400 or less, the life of the transformer 10 has expired and it can be evaluated that it can no longer be used.
  • FIG. 5 is a flowchart illustrating a method for evaluating the life of the transformer 10 according to an embodiment.
  • the transformer 10 life evaluation method according to the embodiment may be performed using the above-described transformer 10 life evaluation apparatus.
  • the light emitting unit 130 may irradiate light of a specific wavelength to the insulating oil stored in the first storage unit 110 and the second storage unit 120 (S510). The light irradiated from the light emitting unit 130 may pass through the first storage unit 110 and the second storage unit 120 .
  • the light receiving unit 140 may receive optical characteristics of methanol stored in each of the first storage unit 110 and the second storage unit 120 .
  • the light receiving unit 140 may transmit information on the optical characteristics of methanol stored in each of the first storage unit 110 and the second storage unit 120 to the operation unit 20 (S520).
  • the operation unit 20 may compare the optical characteristics of the methanol stored in each of the first storage unit 110 and the second storage unit 120 with each other ( S530 ). In step S530 , the operation unit 20 may determine that the transformer 10 is not usable when the difference value of each of the optical characteristics exceeds a set range.
  • the calculating unit 20 may calculate the content of methanol included in the insulating oil stored in the first storage unit 110 (S540).
  • the calculating unit 20 may calculate the polymerization degree of the insulating paper provided in the transformer 10 based on the methanol content of the first storage unit 110 (S550).
  • the lifespan of the transformer 10 may be evaluated based on the degree of polymerization calculated by the calculator 20 ( S560 ).
  • step S560 when the calculated degree of polymerization is less than or equal to a set limit life point, the calculating unit 20 may determine that the transformer 10 is unavailable.
  • the set limit life point may be, for example, a case in which the calculated degree of polymerization is 400, as described above.
  • FIG. 6 is a block diagram of a transformer life evaluation apparatus and a transformer according to an embodiment of the present specification.
  • the transformer 1600 is a device that increases or decreases a voltage while transferring electrical energy between two or more circuits through an inductive electrical conductor.
  • the transformer 1600 may be an input transformer in which a coil wound around an iron core inside the transformer is insulated with insulating oil.
  • the transformer 1600 will be described on the assumption that it is an input transformer.
  • the transformer 1600 includes an insulating oil 1620 and an insulating paper 1640 .
  • the insulating oil 1620 and the insulating paper 1640 are accommodated in the transformer 1600 and perform an electrical insulation function to prevent an electric shock accident occurring from the transformer 1600 .
  • the insulating paper 1640 may be, for example, cellulose insulating paper, and the insulating oil 1620 may be mineral oil, synthetic oil, poly cholrinated biphenyl (PCB), mixed oil, or alkylbenzene.
  • PCB poly cholrinated biphenyl
  • mixed oil or alkylbenzene
  • the insulating paper 1640 deteriorates as the operating years of the transformer 1600 increase. Specifically, since the temperature inside the transformer rises according to the operation of the transformer 1600, the insulating paper 1620 is subjected to temperature stress. When the insulating paper 1620 is subjected to temperature stress, methanol, which is a secondary compound, is generated in the process of being decomposed by thermal energy, and the generated methanol is dissolved in the insulating oil 1620 inside the transformer. Accordingly, as the number of years of operation of the transformer 1600 increases, the content of methanol is accumulated in the insulating oil 1620 of the transformer 1600 and increases.
  • the transformer life evaluation apparatus 1000 is an apparatus for evaluating the lifespan of a transformer, and includes a sensor module 1100, a methanol content analysis unit 1200, a polymerization degree calculation unit 1300, and a life evaluation unit ( 1400) may be included.
  • the sensor module 1100 includes a light emitting unit and a light receiving (photometric) unit. That is, the sensor module 1100 directly provides light to the insulating oil 1620 through the light emitting unit or receives light provided from a separate light emitting device inside the transformer through a light receiving (photometric) unit.
  • the sensor module 1100 may be, for example, an optical sensor, a chemical sensor, or an electrical sensor. However, since the optical sensor is less affected by the surrounding environment, hereinafter, the sensor module 1100 will be described on the assumption that it is an optical sensor.
  • the sensor module 1100 is shown inside the transformer life evaluation device 1000, but specifically, the sensor module 1100 is disposed inside the transformer to provide light to the insulating oil 1620 or provided from a separate light emitting device. can receive light.
  • the optical characteristic means absorbance, reflectance, or refractive index.
  • the absorbance is the degree to which methanol absorbs light
  • the reflectance is the degree to which methanol reflects light
  • the refractive index is the degree to which light is bent at the interface when light passes through the methanol.
  • the optical properties of methanol that is, absorbance, reflectance, and refractive index, all have similar properties.
  • the sensor module 1100 may provide light of a predetermined specific wavelength to the insulating oil or may receive light of a predetermined specific wavelength. That is, the sensor module 1100 may generate and emit light of a predetermined specific wavelength through the light emitting unit or absorb light of a predetermined specific wavelength from light generated by a separate light emitting device through the light receiving (photometric) unit.
  • the predetermined specific wavelength is a wavelength band in which the optical properties of methanol are clearly distinguished, and may be, for example, greater than or equal to 317 nm and less than or equal to 328 nm.
  • a specific predetermined wavelength band will be described later in detail.
  • the methanol content analyzer 1200 calculates the content of methanol included in the insulating oil 1620 of the transformer 1600 based on the provided light. Specifically, the methanol content analysis unit 1200 obtains an absorbance according to the optical characteristics of methanol based on the light provided by the sensor module 1100, and calculates the methanol content included in the insulating oil of the transformer based on the obtained absorbance. .
  • Absorbance means the log value of the ratio of the emitted radiation to the transmitted radiation when light is irradiated on methanol.
  • the absorbance indicates the degree to which methanol absorbs light of a specific wavelength and is proportional to the absorbance, which is the optical characteristic of methanol. Therefore, as the amount of light absorbed by methanol increases, the absorbance increases, and as the amount of light absorbed by methanol decreases, the absorbance decreases.
  • the methanol content analysis unit 1200 calculates the methanol content included in the insulating oil of the transformer based on the obtained absorbance.
  • the degree of polymerization calculation unit 1300 calculates the degree of polymerization through the obtained methanol content.
  • the degree of polymerization refers to the health of the insulating paper 1640 , that is, to what extent the degree of deterioration of the insulating paper 1640 has progressed. Accordingly, as deterioration progresses, the degree of polymerization is lowered, and the mechanical life of the insulating paper 1640 is reduced.
  • the degree of polymerization may be calculated through [Equation 1] regarding the methanol content and the degree of polymerization of the insulating paper 1640 below.
  • the first reference value may be any value between 56.55, which is the lower limit of the first reference value, and 73.5, which is the upper limit of the first reference value
  • the second reference value is any value between 8.5, the lower limit of the second reference value, and 11.15, the upper limit of the second reference value.
  • the life evaluation unit 1400 evaluates the lifespan of the transformer 1600 based on the calculated degree of polymerization. Specifically, the life evaluation unit 1400 may preset a limit life point of the transformer 1600 .
  • the threshold life point may be 400, for example.
  • the life evaluation unit 1400 may compare the calculated degree of polymerization with a preset limit life point, and when the calculated degree of polymerization is less than or equal to a preset limit life point, it may be determined that the transformer 1600 is not usable.
  • the life evaluation unit 1400 compares the calculated degree of polymerization with a preset limit life point, and when the calculated degree of polymerization is greater than the preset limit life point, the remaining life of the transformer according to the difference between the limit life point and the calculated polymerization degree lifespan can be assessed.
  • FIG. 7 is a graph showing the absorbance of insulating oil including methanol with respect to all wavelengths in an embodiment of the present specification
  • FIG. 8 is an enlarged view of a graph of a specific wavelength region in the graph of FIG. 7 .
  • a graph will be described with reference to FIGS. 7 and 8 .
  • the horizontal axis indicates the wavelength (nm) of light (2000) and the vertical axis indicates the absorbance (2100).
  • the wavelength 2000 of light is divided into different regions according to the length. Different regions of light may be divided into, for example, gamma rays, X-rays, ultraviolet rays (100 nm to 380 nm), visible rays (380 nm to 780 nm), infrared rays (780 nm to 1000 nm), ultrasonic waves, radio waves, etc., and each region have different characteristics.
  • the content of methanol may be measured in the first section 2400 , the second section 2420 , and the third section 2440 in which no noise is generated and a slope exists.
  • the absorbance is lower, it is difficult to distinguish noise when measuring the content of methanol, so a precise technique is required, and thus a lot of cost is required.
  • the first section 2400 has higher absorbance than the second section 2420 and the third section 2440 , so it is advantageous to measure the methanol content. That is, the first section 2400 has a high absorbance of 2 or more as a wavelength in the ultraviolet region, while the second section 2420 and the third section 2440 have a low absorbance of 1 or less as a wavelength other than the ultraviolet region. Therefore, when the methanol content analyzer 1200 calculates the methanol content in the first section 2400 , the measurement cost can be reduced and economic efficiency can be improved.
  • the sensor module 1100 may provide light of a predetermined specific wavelength to the insulating oil.
  • the graph of the curve varies according to the content of methanol included in the insulating oil. That is, graph E means a graph of pure insulating oil 1620 in which methanol does not exist (deterioration of insulating paper has not progressed), and graphs A to D are graphs of insulating oil containing methanol (deterioration of insulating paper has progressed) to be.
  • graph D may represent a methanol content of 3.35 ppm, graph C 4.4 ppm, graph B 32.7 ppm, and graph A of 135 ppm methanol, respectively.
  • the first section 2400 may be divided into a first slope section 3310 , a second slope section 3320 , and a third slope section 3330 .
  • first inclined section 3310 since each of the first inclined section 3310 , the second inclined section 3320 , and the third inclined section 3330 has different inclinations, sections may be divided according to the inclination angles.
  • the distributions of graphs A to E are not evenly arranged, and since there is a graph deviating from the graph E, noise occurs. Therefore, it is difficult to calculate the methanol content according to the absorbance and accurately evaluate the lifespan of the transformer.
  • the third slope section 3330 not only has a graph distribution with irregular intervals, but also has an absorbance of 2 or less. Therefore, it is difficult to accurately measure the methanol content.
  • the second slope section 3320 has a graph distribution at regular intervals and has an absorbance of 2 or more. Accordingly, in the second slope section 3320 , the methanol content according to the difference in absorbance may be precisely calculated.
  • the wavelength band of the second slope section 3320 may be 317 nm to 328 nm. Accordingly, in an embodiment of the present specification, the predetermined specific wavelength of the sensor module 1100 may be greater than or equal to 317 nm and less than or equal to 328 nm.
  • the second slope section 3320 is not limited thereto, and may include all of a specific wavelength region having a characteristic of having two or more absorbances while having a graph distribution at regular intervals.
  • the methanol content analyzer 1200 may calculate the methanol content by analyzing the absorbance of the second slope section 3320 .
  • FIG 9 is a graph showing the change in the degree of polymerization and the methanol content of the insulating oil according to the deterioration time in an embodiment of the present specification.
  • the horizontal axis indicates the deterioration time (h) (4000)
  • the vertical axis indicates the degree of polymerization (4100)
  • the circle indicated in the diagram indicates the methanol content included in the insulating oil.
  • the deterioration time 4000 increases, the methanol content of the insulating oil 1620 according to the deterioration in the insulating paper 1640 increases, so that the diameter of the circle increases.
  • the diameter 4320 of the circle when the deterioration time is 3500h is greater than the diameter 430 of the circle when the deterioration time is 1000h. That is, the methanol content included in the insulating oil is proportional to the deterioration time (4000).
  • the degree of polymerization calculator 1300 may calculate the degree of polymerization 4100 from the methanol content through the following [Equation 1].
  • the first reference value may be any value between 56.55, which is the lower limit of the first reference value, and 73.5, which is the upper limit of the first reference value
  • the second reference value is any value between 8.5, the lower limit of the second reference value, and 11.15, the upper limit of the second reference value.
  • the degree of polymerization when the diameter of the circle is large (4320) is 650 to 700, which is greater than the degree of polymerization when the diameter of the circle is small (430) is 400 to 500. That is, the higher the methanol content, the lower the polymerization degree.
  • the life evaluation unit 150 may evaluate the life of the insulating paper, that is, the life of the transformer through the calculated degree of polymerization.
  • the life evaluation unit 150 may preset a limit life point.
  • the threshold life point may be, for example, a degree of polymerization 400 at a minimum degree of polymerization that the transformer determines to be unusable (4200). Accordingly, the life evaluation unit 150 may evaluate the lifespan of the transformer based on the degree of polymerization of 400, and if the calculated degree of polymerization is 400 or less, the life of the transformer is over and it can be evaluated that it can no longer be used.
  • FIG. 10 is a flowchart of a transformer life evaluation method according to an embodiment of the present specification.
  • the transformer life evaluation apparatus 1000 provides light of a predetermined specific wavelength to the insulating oil or receives light of a predetermined specific wavelength (S5000).
  • Methanol contained in insulating oil has optical properties including absorbance, reflectance, and refractive index, and the optical properties of methanol vary depending on the content of methanol.
  • the transformer life evaluation apparatus 1000 calculates the methanol content included in the insulating oil of the transformer based on the light provided (S5100). Specifically, the transformer life evaluation apparatus 1000 acquires an absorbance according to the optical characteristic of methanol based on the provided light, and acquires the methanol content included in the insulating oil of the transformer based on the obtained absorbance.
  • the transformer life evaluation apparatus 1000 calculates the polymerization degree through the obtained methanol content (S5200). Specifically, the degree of polymerization can be calculated through [Equation 1] with the methanol content as described above.
  • the transformer life evaluation apparatus 1000 evaluates the life of the transformer based on the calculated degree of polymerization ( S5300 ).
  • the transformer life evaluation apparatus 1000 may set a limit life point in advance, and when the calculated degree of polymerization is less than or equal to a preset limit life point, it may determine that the transformer is unusable.
  • the critical life point may be, for example, a degree of polymerization of 400.
  • the transformer life evaluation method can evaluate the lifespan of the transformer without directly extracting methanol through Equation 1 between the polymerization degree of methanol and insulating paper contained in insulating oil.
  • the transformer life evaluation method can accurately evaluate the life of the transformer by calculating the optical characteristics of methanol through an optical sensor using a specific wavelength as a light source.
  • the method for evaluating the life of a transformer can efficiently evaluate the life of a transformer and reduce costs by using an optical sensor that is inexpensive and easy to install and operate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

변압기 수명 평가 장치의 일 실시예는, 변압기의 절연에 사용되는 절연유가 저장되는 제1저장부, 제1저장부와 분리되어 구비되고, 변압기의 절연에 사용되지 않는 절연유가 저장되는 제2저장부, 특정 파장의 빛을 발광하는 발광부, 발광부에서 발광된 빛을 수광하는 수광부, 발광부와 수광부를 연결하고, 발광부로부터 발광되어 수광부로 수광되는 빛의 이동경로를 제공하고, 제1저장부를 관통하도록 배치되는 제1광케이블, 발광부와 수광부를 연결하고, 발광부로부터 발광되어 수광부로 수광되는 빛의 이동경로를 제공하고, 제2저장부를 관통하도록 배치되는 제2광케이블, 및 수광부와 연결되고, 수광부로부터 메탄올의 광특성에 대한 정보를 수신하는 연산부를 포함할 수 있다.

Description

변압기 수명 평가 장치 및 방법
본 발명은 변압기 수명 평가 장치 및 방법에 관한 것으로, 더욱 상세하게는 유입형 변압기 수명 평가 장치 및 방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
유입변압기의 수명에 관계하는 것은 절연유, 절연지 등의 절연재료로써 유입변압기의 수명은 절연지(셀룰로오스)의 기계적 수명에 따라 결정된다. 즉, 절연지가 열화됨에 따라 절연지의 기계적 강도가 감소되며 절연지의 기계적 수명 또한 감소된다. 이는 절연지의 셀룰로오스 분자들의 긴 사슬들을 절단하는 화학 반응들에 의해 셀룰로오스의 섬유 조직들이 약해지기 때문이다.
이와 같이 유입 변압기의 수명은 절연지의 건전도(중합도)에 의해 좌우되므로 열화에 의한 절연지의 강도 저하는 직접 또는 간접적으로 변압기 고장의 원인이 될 수 있다. 따라서, 절연지의 상태(중합도) 진단은 매우 중요하다.
중합도 진단 기술은 재료의 변화를 직접 검출하는 방법과 재료가 변질, 변형된 것에 의한 기하 형태의 변화 등 2차적인 변화를 검출하는 간접적인 방법 등이 있다. 다만, 어느 방법이든 설비의 운전을 중지시키지 않고 운전 중(활선, on-line) 상태에서 진단이 이루어져야 한다.
변압기 이상 진단에 사용되는 종래 기술인 유중 가스 분석(DGA;Dissolved Gas Analysis)은 유입 변압기에서 발생하는 유중 가스인 메탄 가스를 이용하여 변압기의 이상 여부를 판단한다.
그러나, 이러한 종래 기술은 변압기의 이상 여부만을 판단할 수 있을 뿐 메탄 가스의 양과 절연지의 중합도 사이의 관계가 정의되지 않아 변압기의 잔여 수명을 평가하는 목적으로는 사용되지 못한다.
또한, 실제 변압기에서 나타나는 결함 유형과 DGA로 측정되는 결과는 전력기기의 수명평가와 연결시키기 어렵기 때문에 변압기 운영자는 DGA 결과에 따라 변압기 이상 판단 시 변압기 내부를 직접 점검하여 육안으로 결합을 확인해야만 하는 문제점이 있다.
또한, 메탄가스를 분석하는 종래의 DGA방식은 유중 가스를 감지하는 유중 가스 센서의 가격이 매우 높아 경제성이 떨어지는 문제점이 있다.
본 발명의 목적은 절연유에 포함된 메탄올의 광특성을 이용한 변압기 수명 평가 장치를 제공하는 것이다.
또한 본 발명의 목적은 전술한 변압기 수명 평가 장치를 이용한 변압기 수명 평가 방법을 제공하는 것이다.
본 명세서의 목적은 절연유에 포함된 메탄올과 절연지의 중합도 사이의 관계식을 통해 메탄올을 직접 채유 하지 않고도 변압기의 수명을 평가할 수 있는 변압기 수명 평가 방법을 제공하는 것이다.
또한 본 명세서의 목적은 특정 파장을 광원으로 사용하는 광센서를 통해 메탄올의 광특성을 산출하여 변압기의 수명을 정밀하게 평가하는 변압기 수명 평가 방법을 제공하는 것이다.
또한 본 명세서의 목적은 저비용이면서도 설치와 운용이 간편한 광센서를 이용하여 변압기의 수명을 효율적으로 평가하고 비용을 절감시키는 변압기 수명 평가 방법을 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
절연유에 포함된 메탄올의 광특성을 이용한 변압기 수명 평가 장치를 개시한다.
변압기 수명 평가 장치의 일 실시예는, 변압기의 절연에 사용되는 절연유가 저장되는 제1저장부, 제1저장부와 분리되어 구비되고, 변압기의 절연에 사용되지 않는 절연유가 저장되는 제2저장부, 특정 파장의 빛을 발광하는 발광부, 발광부에서 발광된 빛을 수광하는 수광부, 발광부와 수광부를 연결하고, 발광부로부터 발광되어 수광부로 수광되는 빛의 이동경로를 제공하고, 제1저장부를 관통하도록 배치되는 제1광케이블, 발광부와 수광부를 연결하고, 발광부로부터 발광되어 수광부로 수광되는 빛의 이동경로를 제공하고, 제2저장부를 관통하도록 배치되는 제2광케이블, 및 수광부와 연결되고, 수광부로부터 메탄올의 광특성에 대한 정보를 수신하는 연산부를 포함할 수 있다.
수광부는, 제1저장부와 제2저장부 각각에 저장된 절연유에 포함되는 메탄올의 광특성에 대한 정보를 연산부로 전송할 수 있다.
광특성은 흡광율, 반사율 또는 굴절률 중 적어도 하나를 포함할 수 있다.
연산부는, 특정 파장의 빛에 기초하여 변압기의 절연유에 포함된 메탄올 함량을 산출하는 메탄올 함량 분석부, 산출된 메탄올 함량을 기초로 변압기에 구비되는 절연지의 중합도를 산출하는 중합도 산출부, 및 산출된 중합도에 기초하여 변압기의 수명을 평가하는 수명 평가부를 포함할 수 있다.
메탄올 함량 분석부는, 수광부로부터 전송받은 메탄올의 흡광도를 기초로 변압기의 절연유에 포함된 메탄올 함량을 산출할 수 있다.
특정 파장은, 317nm 내지 328nm 범위의 대역을 가지는 파장일 수 있다.
연산부는, 제1저장부와 제2저장부 각각에 저장된 메탄올의 광특성을 서로 비교하고, 각각의 광특성의 차이값이 설정된 범위를 초과하면 변압기가 사용 불가능한 것으로 판단할 수 있다.
전술한 변압기 수명 평가 장치를 이용한 변압기 수명 평가 방법을 개시한다.
변압기 수명 평가 방법의 일 실시예는, 발광부가 제1저장부와 제2저장부에 저장된 절연유에 특정 파장의 빛을 조사하는 단계, 수광부가 제1저장부와 제2저장부 각각에 저장된 메탄올의 광특성에 대한 정보를 연산부로 전송하는 단계, 및 연산부가 제1저장부와 제2저장부 각각에 저장된 메탄올의 광특성을 서로 비교하는 단계,를 포함할 수 있다.
연산부가 제1저장부와 제2저장부 각각에 저장된 메탄올의 광특성을 서로 비교하는 경우, 연산부는 각각의 광특성의 차이값이 설정된 범위를 초과하면 변압기가 사용 불가능한 것으로 판단할 수 있다.
변압기 수명 평가 방법의 일 실시예는, 연산부가 제1저장부에 저장된 절연유에 포함된 메탄올의 함량을 산출하는 단계, 연산부가 제1저장부의 메탄올 함량에 기초하여 변압기에 구비되는 절연지의 중합도를 산출하는 단계, 및 연산부가 산출된 중합도에 기초하여 변압기의 수명을 평가하는 단계를 더 포함할 수 있다.
연산부가 산출된 중합도에 기초하여 변압기의 수명을 평가하는 경우, 산출된 중합도가 설정된 한계 수명점 이하인 경우, 변압기가 사용 불가능한 것으로 판단할 수 있다.
센서 모듈의 일 실시예는, 변압기의 절연에 사용되는 절연유가 저장되는 제1저장부, 제1저장부와 분리되어 구비되고, 변압기의 절연에 사용되지 않는 절연유가 저장되는 제2저장부, 특정 파장의 빛을 발광하는 발광부, 발광부에서 발광된 빛을 수광하는 수광부, 발광부와 수광부를 연결하고, 발광부로부터 발광되어 수광부로 수광되는 빛의 이동경로를 제공하고, 제1저장부를 관통하도록 배치되는 제1광케이블, 및 발광부와 수광부를 연결하고, 발광부로부터 발광되어 수광부로 수광되는 빛의 이동경로를 제공하고, 제2저장부를 관통하도록 배치되는 제2광케이블을 포함할 수 있다.
본 명세서의 일 실시예에 따른 변압기 수평 평가 방법은 미리 정해진 특정 파장의 빛을 절연유에 제공하거나 미리 정해진 특정 파장의 빛을 수신하는 단계, 특정 파장의 빛을 이용하여 변압기의 절연유에 포함된 메탄올 함량을 획득하는 단계, 획득된 메탄올 함량을 통해 중합도를 산출하는 단계 및 산출된 중합도에 기초하여 상기 변압기의 수명을 평가하는 단계를 포함한다.
또한, 본 명세서의 일 실시예에서 광특성은 흡광율, 반사율, 굴절률을 포함한다.
또한, 본 명세서의 일 실시예에서 제공한 빛에 기초하여 상기 변압기의 절연유에 포함된 메탄올 함량을 산출하는 단계는 제공한 빛에 기초하여 상기 메탄올의 광특성에 따른 흡광도를 획득하는 단계 및 획득한 흡광도에 기초하여 상기 변압기의 절연유에 포함된 메탄올 함량을 산출하는 단계를 포함한다.
또한, 본 명세서의 일 실시예에서 미리 정해진 특정 파장은 제2 경사 구간의 파장 대역을 포함한다.
또한, 본 명세서의 일 실시예에서 획득한 메탄올 함량을 통해 중합도를 산출하는 단계는 하기와 같이 수학식 1을 통해 산출된다.
[수학식 1]
Figure PCTKR2021019662-appb-img-000001
(DP: 중합도, MeOH: 메탄올 함량, a: 제1 기준값, b: 제2 기준값)
또한, 본 명세서의 일 실시예에서 산출된 중합도에 기초하여 변압기의 수명을 평가하는 단계는 산출된 중합도가 미리 정해진 한계 수명점 이하인 경우 상기 변압기가 사용 불가능한 것으로 판단하는 단계를 포함한다.
또한, 본 명세서의 일 실시예에서 한계 수명점은 중합도가 400 이다.
본 명세서의 일 실시예에 따른 변압기 수평 평가 장치는 미리 정해진 특정 파장의 빛을 상기 절연유에 제공하거나 미리 정해진 특정 파장의 빛을 수신하는 센서 모듈, 특정 파장의 빛에 기초하여 상기 변압기의 절연유에 포함된 메탄올 함량을 획득하는 메탄올 함량 분석부, 획득된 메탄올 함량을 통해 중합도를 산출하는 중합도 산출부 및 산출된 중합도에 기초하여 상기 변압기의 수명을 평가하는 수명 평가부를 포함한다.
또한, 본 명세서의 일 실시예에서 광특성은 흡광율, 반사율, 굴절률을 포함한다.
또한, 본 명세서의 일 실시예에서 메탄올 함량 분석부는 특정 파장의 빛에 기초하여 메탄올의 광특성에 따른 흡광도를 획득하고, 획득한 흡광도에 기초하여 변압기의 절연유에 포함된 메탄올 함량을 산출한다.
또한, 본 명세서의 일 실시예에서 미리 정해진 특정 파장은 일정한 간격의 그래프 분포를 가지면서 특정 크기 이상의 흡광도를 갖는 구간의 파장 대역을 포함한다.
또한, 본 명세서의 일 실시예에서 일정한 간격의 그래프 분포를 가지면서 특정 크기 이상의 흡광도를 갖는 구간의 파장 대역은 317nm 보다 같거나 크고 328nm 보다 같거나 작다.
또한, 본 명세서의 일 실시예에서 중합도 산출부는 하기[수학식 1]을 통해 중합도를 산출한다.
[수학식 1]
Figure PCTKR2021019662-appb-img-000002
(DP: 중합도, MeOH: 메탄올 함량, a: 제1 기준값, b: 제2 기준값)
또한, 본 명세서의 일 실시예에서 수명 평가부는 산출된 중합도가 미리 정해진 한계 수명점 이하인 경우 변압기가 사용 불가능한 것으로 판단한다.
또한, 본 명세서의 일 실시예에서 한계 수명점은 중합도가 400 이다.
본 발명에 따른 변압기 수명 평가 장치는 절연유에 포함된 메탄올과 절연지의 중합도 사이의 관계식을 통해 메탄올을 직접 채유 하지 않고도 변압기의 수명을 용이하고 정밀하게 평가할 수 있다.
또한 본 발명에 따른 변압기 수명 평가 장치에서, 제1저장부와 제2저장부 각각에 저장된 메탄올의 광특성을 서로 비교함으로써, 제1저장부에 저장된 메탄올의 중합도를 산출하지 않고서도, 용이하게 변압기의 한계수명 도달여부를 판단할 수 있다.
본 명세서의 일 실시예에 따른 변압기 수명 평가 방법은 절연유에 포함된 메탄올과 절연지의 중합도 사이의 관계식을 통해 메탄올을 직접 채유 하지 않고도 변압기의 수명을 평가할 수 있다.
또한 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법은 특정 파장을 광원으로 사용하는 광센서를 통해 메탄올의 광특성을 산출하여 변압기의 수명을 정밀하게 평가할 수 있다.
또한 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법은 저비용이면서도 설치와 운용이 간편한 광센서를 이용하여 변압기의 수명을 효율적으로 평가하고 비용을 절감시킬 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1a는 일 실시예에 따른 변압기 수명 평가 장치를 개략적으로 나타낸 블록도이다.
도 1b는 일 실시예에 따른 변압기 수명 평가 장치에 구비되는 센서 모듈을 개략적으로 나타낸 도면이다.
도 2는 일 실시예에 따른 전체 파장에 대한 메탄올의 흡광도를 나타낸 그래프이다.
도 3은 도 2의 그래프에서 특정 파장 영역의 그래프를 확대한 도면이다.
도 4는 일 실시예에 따른 열화시간에 따른 중합도와 절연유의 메탄올 함량 변화를 나타낸 그래프이다.
도 5는 일 실시예에 따른 변압기 수명 평가 방법을 나타낸 순서도이다.
도 6은 본 명세서의 일 실시예에 따른 변압기 수명 평가 장치와 변압기의 블록도이다.
도 7은 본 명세서의 일 실시예에서 전체 파장에 대한 메탄올의 흡광도를 나타낸 그래프이다.
도 8은 도 7의 그래프에서 특정 파장 영역의 그래프를 확대한 도면이다.
도 9는 본 명세서의 일 실시예에서 열화시간에 따른 중합도와 절연유의 메탄올 함량 변화를 나타낸 그래프이다.
도 10은 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법의 순서도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것으로, 특별히 반대되는 기재가 없는 한, 제1 구성요소는 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에서, 특별히 반대되는 기재가 없는 한, 각 구성요소는 단수일 수도 있고 복수일 수도 있다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
명세서 전체에서, "A 및/또는 B" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, A, B 또는 A 및 B 를 의미하며, "C 내지 D" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, C 이상이고 D 이하인 것을 의미한다.
<제1실시예>
도 1a는 일 실시예에 따른 변압기(10) 수명 평가 장치를 개략적으로 나타낸 블록도이다. 도 1b는 일 실시예에 따른 변압기(10) 수명 평가 장치에 구비되는 센서 모듈(11)을 개략적으로 나타낸 도면이다. 도 1b에서 화살표는 빛의 진행방향을 나타낸다.
변압기(10)는 유도성 전기 전도체를 통해 두 개 이상의 회로 사이에서 전기 에너지를 전달하며 전압을 승압 또는 강압시키는 장치이다. 본 명세서에서 변압기(10)는 변압기(10) 내부의 철심에 감은 코일을 절연유로 절연한 유입 변압기(10)일 수 있다. 이하에서 변압기(10)는 유입 변압기(10)임을 전제하여 설명한다.
변압기(10)는 절연유 및 절연지를 포함한다. 절연유는 변압기(10) 내부에 수용되고, 절연지는 코일을 감싼 상태로 구비될 수 있다.
절연유 및 절연지는 변압기(10) 내부에 수용되며 변압기(10)로부터 발생하는 감전 사고를 방지하기 위해 전기 절연 기능을 수행한다. 절연지는 예를 들어, 셀룰로오스 절연지일 수 있고, 절연유는 광유, 합성유, PCB(Poly Cholrinated Biphenyl), 혼합유, 알킬 벤젠일 수 있다. 그러나 이에 한정되는 것은 아니다.
한편, 절연지는 변압기(10)의 운전 연수가 증가됨에 따라 열화가 발생한다. 구체적으로, 변압기(10)의 운용에 따라 변압기(10) 내부의 온도가 상승하므로 절연지는 온도 스트레스를 받게 된다.
절연지가 온도 스트레스를 받게 되면 열에너지에 의해 분해되는 과정에서 2차 화합물인 메탄올을 생성하게 되고, 생성된 메탄올은 변압기(10) 내부의 절연유에 녹아 들어간다. 따라서, 변압기(10)의 운전 연수가 많을수록 변압기(10)의 절연유에는 메탄올의 함량이 누적되어 높아진다.
실시예에 따른 수명 평가 장치는 절연유에 포함된 메탄올의 광특성을 이용할 수 있다. 즉, 절연지가 열화될수록 변압기(10)의 절연유에 포함된 메탄올의 광특성 예를 들어, 메탄올의 흡광율, 반사율 또는 굴절률이 변화하는데, 수명 평가 장치는 이를 측정하여 변압기(10)의 수명을 평가할 수 있다.
실시예에 따른 수명 평가 장치는 센서 모듈(11), 상기 센서 모듈(11)과 통신 가능하도록 연결되는 연산부(20)를 포함할 수 있다. 센서 모듈(11)은 변압기(10)에 구비될 수 있고, 연산부(20)는 변압기(10)에 구비되거나, 또는 변압기(10) 외부에 별도로 구비될 수도 있다.
센서 모듈(11)은 예를 들어 광센서, 화학적 센서 또는 전기적 센서를 이용한 것 수 있다. 그러나, 광센서는 주변환경의 영향을 적게 받는 바, 이하에서 센서 모듈(11)은 광센서를 이용한 것임을 전제로 하여 설명한다.
센서 모듈(11)은 제1저장부(110), 제2저장부(120), 발광부(130), 수광부(140), 제1광케이블(150) 및 제2광케이블(160)을 포함할 수 있다.
제1저장부(110)는 변압기(10)의 절연에 사용되는 절연유가 저장될 수 있다. 상기 제1저장부(110)는 변압기(10)의 절연유 저장장치 전체를 의미하는 것일 수 있다. 제1저장부(110)에는 실제로 변압기(10)의 절연에 사용되는 절연유가 저장되므로, 제1저장부(110)에 저장된 절연유에는 절연지가 열화되어 발생하는 물질인 메탄올이 포함될 수 있다. 메탄올은 절연지가 열화되어 상기 절연지로부터 발생하여 제1저장부(110)에 저장된 절연유로 녹아 들어가기 때문이다.
실시예에서는 제1저장부(110)에 저장된 절연유의 메탄올 함량을 구하고, 메탄올의 함량을 기초로 절연지의 중합도를 구하여 절연지의 열화정도를 판단하고, 이를 기초로 변압기(10)의 수명을 평가할 수 있다.
제2저장부(120)는 상기 제1저장부(110)와 분리되어 구비되고, 상기 변압기(10)의 절연에 사용되지 않는 절연유가 저장될 수 있다. 제2저장부(120)에 저장된 절연유가 제1저장부(110)의 절연유와 섞이지 않도록, 제2저장부(120)는 절연에 사용되지 않는 절연유가 저장된 상태에서 밀폐되도록 구비될 수 있다.
제2저장부(120)는 변압기(10) 내부에 적절한 위치에 마련된 공간에 배치될 수 있다. 예를 들어, 공간을 절약하기 위해, 제1저장부(110)는 제2저장부(120) 내부에 수용될 수 있다.
제2저장부(120)는 제1저장부(110)에 저장된 절연유와 비교를 위한 절연유가 수용될 수 있다. 따라서, 제2저장부(120)는, 제1저장부(110)와 비교하여, 작은 부피를 가지고, 적은 양의 절연유를 저장하도록 구비될 수 있다. 제2저장부(120)는 제1저장부(110)와 분리되므로, 제2저장부(120)의 절연유에는 절연지로부터 발생하여 제1저장부(110)에 저장되는 메탄올이 없다.
센서 모듈(11)은 발광부(130) 및 수광부(140)를 포함할 수 있다. 즉, 센서 모듈(11)은 발광부(130)를 통해 제1저장부(110)와 제2저장부(120)에 빛을 제공하고 수광부(140)를 통해 제공된 빛을 수신한다.
발광부(130)는 특정 파장의 빛을 발광할 수 있다. 특정 파장은 메탄올의 광특성이 명확하게 구분되는 파장 대역으로 예를 들어, 317nm 보다 같거나 크고 328nm 보다 같거나 작을 수 있다. 상기 특정 파장에 대해서는 하기에 도 2 내지 도 4를 참조하여 구체적으로 설명한다.
수광부(140)는 상기 발광부(130)에서 발광된 빛을 수광할 수 있다. 발광부(130)는 미리 정해진 특정 파장의 빛을 절연유에 조사하여, 절연유의 광특성을 수신할 수 있다. 구체적으로, 상기 수광부(140)는 상기 제1저장부(110)와 상기 제2저장부(120) 각각에 저장된 절연유에 포함되는 메탄올의 광특성을 수신할 수 있다.
제1광케이블(150)은 상기 발광부(130)와 상기 수광부(140)를 연결하고, 상기 발광부(130)로부터 발광되어 상기 수광부(140)로 수광되는 빛의 이동경로를 제공하고, 상기 제1저장부(110)를 관통하도록 배치될 수 있다.
제1광케이블(150)을 통과하는 빛은 제1저장부(110)에 저장된 절연유에 포함되는 메탄올에 조사될 수 있다. 따라서, 수광부(140)는 제1광케이블(150)을 통해 제1저장부(110)의 메탄올의 광특성을 수신할 수 있다.
제2광케이블(160)은 상기 발광부(130)와 상기 수광부(140)를 연결하고, 상기 발광부(130)로부터 발광되어 상기 수광부(140)로 수광되는 빛의 이동경로를 제공하고, 상기 제2저장부(120)를 관통하도록 배치될 수 있다.
제2광케이블(160)을 통과하는 빛은 제2저장부(120)에 저장된 절연유에 조사될 수 있다. 제2저장부(120)에는 절연지로부터 메탄올이 유입되지 않으므로, 수광부(140)는 제2광케이블(160)을 통해 메탄올이 포함되지 않은 절연유의 광특성을 수신할 수 있다. 이하의 설명에서, 메탄올의 광특성은 메탄올이 포함되지 않은 상태의 절연유의 광특성을 포함할 수 있다.
메탄올은 빛의 파장 대역에 따라서 서로 다른 광특성을 갖는다. 여기서 광특성은 흡광율, 반사율 또는 굴절률 중 적어도 하나를 포함할 수 있다. 구체적으로 흡광율은 메탄올이 빛을 흡수하는 정도이고, 반사율은 메탄올이 빛을 반사하는 정도이며 굴절률은 메탄올에 빛이 통과할 때 경계면에서 빛이 꺾이는 정도를 의미한다. 동일한 파장 대역에서 메탄올의 광특성 즉, 흡광율, 반사율, 굴절률은 모두 유사한 특성을 갖는다.
연산부(20)는 상기 수광부(140)와 연결되고, 상기 수광부(140)로부터 메탄올의 광특성에 대한 정보를 수신할 수 있다. 이때, 수광부(140)는 상기 제1저장부(110)와 상기 제2저장부(120) 각각에 저장된 절연유에 포함되는 메탄올의 광특성에 대한 정보를 상기 연산부(20)로 전송할 수 있다.
연산부(20)는 메탄올 함량 분석부(21), 중합도 산출부(22) 및 수명 평가부(23)를 포함할 수 있다.
메탄올 함량 분석부(21)는 특정 파장의 빛에 기초하여 상기 변압기(10)의 절연유에 포함된 메탄올 함량을 산출할 수 있다. 상기 메탄올 함량 분석부(21)는 상기 수광부(140)로부터 전송받은 메탄올의 흡광도를 기초로 변압기(10)의 절연유에 포함된 메탄올 함량을 산출할 수 있다.
구체적으로, 메탄올 함량 분석부(21)는 센서 모듈(11)에 의해 제공된 빛에 기초하여 메탄올의 광특성에 따른 흡광도를 획득하고, 획득한 흡광도에 기초하여 변압기(10)의 절연유에 포함된 메탄올 함량을 산출할 수 있다.
흡광도는 메탄올에 빛을 비추었을 때 투과하는 복사량에 대한 발산한 복사량 비율의 로그값을 의미한다. 다시 말해, 흡광도는 메탄올이 특정 파장의 빛을 흡수하는 정도를 나타내며 메탄올의 광특성인 흡광율에 비례한다. 따라서 메탄올이 흡수하는 빛의 양이 많을수록 흡광도는 커지고, 흡수하는 빛의 양이 적을수록 흡광도는 작아진다.
또한, 흡광도가 크면 변압기(10)의 절연유에 포함된 메탄올 함량이 많고, 흡광도가 작으면 변압기(10)의 절연유에 포함된 메탄올 함량이 적다. 이에 따라 메탄올 함량 분석부(21)는 획득한 흡광도에 기초하여 변압기(10)의 절연유에 포함된 메탄올 함량을 산출한다.
중합도 산출부(22)는 산출된 메탄올 함량을 기초로 변압기(10)에 구비되는 절연지의 중합도를 산출할 수 있다. 여기서 중합도는 절연지의 건전도 즉, 절연지의 열화 정도가 어느 정도 진행되었는지를 의미한다. 따라서, 열화가 진행될수록 중합도가 낮고, 절연지의 기계적 수명이 줄어들게 된다. 중합도를 산출하는 방법에 대해서는 하기에 구체적으로 설명한다.
수명 평가부(23)는 산출된 중합도에 기초하여 변압기(10)의 수명을 평가할 수 있다. 구체적으로 수명 평가부(23)는 변압기(10)의 한계 수명점을 미리 설정할 수 있다. 한계 수명점은 예를 들어 산출된 중합도가 400인 경우일 수 있다. 한계 수명점은 하기에 구체적으로 설명한다.
수명 평가부(23)는 산출된 중합도와 미리 설정된 한계 수명점을 비교하고, 산출된 중합도가 미리 설정된 한계 수명점 이하인 경우 변압기(10)가 사용 불가능한 것으로 판단할 수 있다.
또한, 수명 평가부(23)는 산출된 중합도와 미리 설정된 한계 수명점을 비교하고, 산출된 중합도가 미리 설정된 한계 수명점보다 큰 경우 한계 수명점과 산출된 중합도 차이 값의 크기에 따라 변압기(10)의 남은 수명을 평가할 수 있다.
연산부(20)는 상기 제1저장부(110)와 상기 제2저장부(120) 각각에 저장된 메탄올의 상기 광특성을 서로 비교하고, 각각의 상기 광특성의 차이값이 설정된 범위를 초과하면 변압기(10)가 사용 불가능한 것으로 판단할 수 있다.
이때, 제2저장부(120)에는 절연지로부터 발생하는 메탄올이 유입되지 않으므로, 연산부(20)는 제2저장부(120)에 메탄올이 포함되지 않은 절연유의 광특성 즉, 제2광특성을 수광부(140)로 수신할 수 있다. 또한, 연산부(20)는 제1저장부(110)에 저장된 메탄올의 광특성 즉, 제2광특성을 수광부(140)로부터 수신할 수 있다.
변압기(10)의 운전 연수가 증가함에 따라, 절연지가 열화되어 제1광특성은 변화할 수 있다. 그러나, 제2저장부(120)에는 절연지의 열화에 기인하여 발생하는 메탄올이 유입되지 않으므로, 제2광특성은 변화하지 않거나, 변화가 매우 적을 것이다.
따라서, 연산부(20)는 제1광특성과 제2광특성을 서로 비교하고, 그 차이값이 설정된 범위를 초과하면 변압기(10)가 사용 불가능한 것으로 판단할 수 있다. 이 때, 상기 제1광특성과 제2광특성의 차이값에 대한 설정된 범위는 한계 수명점에 기초하여 적절히 선택될 수 있다.
예를 들어, 한계 수명점에서의 절연유의 흡광율, 반사율 또는 굴절률과 아직 절연에 사용되지 않은 절연유의 흡광율, 반사율 또는 굴절률의 각각의 차이값을 설정값으로 할 수 있다. 상기 설정값은 현재의 변압기(10)가 아닌 다른 변압기(10)에서 이미 도출된 한계 수명점에 기초하여 정해질 수 있다.
이때, 제1광특성과 제2광특성의 흡광율, 반사율 또는 굴절률 중 적어도 하나의 차이값이 상기 설정값을 벗어난 경우에, 연산부(20)는 현재의 변압기(10)가 사용 불가능한 것으로 판단할 수 있다.
실시예에서, 제1저장부(110)와 제2저장부(120) 각각에 저장된 메탄올의 광특성을 서로 비교함으로써, 제1저장부(110)에 저장된 메탄올의 중합도를 산출하지 않고서도, 용이하게 변압기(10)의 한계수명 도달여부를 판단할 수 있다.
도 2는 일 실시예에 따른 전체 파장에 대한 메탄올의 흡광도를 나타낸 그래프이다. 도 3은 도 2의 그래프에서 특정 파장 영역의 그래프를 확대한 도면이다.
도 2를 참조하면 그래프에서 가로축은 빛의 파장(nm)(200)을 나타내고 세로축은 흡광도(210)를 나타낸다. 빛의 파장(200)은 길이에 따라 서로 다른 영역으로 구분된다. 빛의 서로 다른 영역은 예를 들어, 감마선, X선, 자외선(100nm 내지 380nm), 가시 광선(380nm 내지 780nm), 적외선(780nm 내지 1000nm), 초음파, 전파 등으로 구분될 수 있고, 각각의 영역은 서로 다른 특성을 갖는다.
이때, 도 2에 도시된 바와 같이 특정 구간에서는 노이즈(220, 221, 222, 223)가 발생하므로 흡광도를 측정할 수 없고, 그래프의 경사가 매우 완만한 구간(230)에서는 메탄올의 함량을 확인하기 어렵다.
결국, 노이즈가 발생하지 않고 경사가 존재하는 제1 구간(240), 제2 구간(242) 및 제3 구간(244)에서 메탄올의 함량을 측정할 수 있다. 그러나, 흡광도가 낮을수록 메탄올의 함량을 측정할 때 노이즈 구별이 어려워 정밀한 기술이 요구되고 이에 따라 많은 비용이 소요된다.
다시 도 2를 참조하면, 제1 구간(240)은 제2 구간(242) 및 제3 구간(244)보다 흡광도가 크므로 메탄올 함량의 측정이 유리하다. 즉, 제1 구간(240)은 자외선 영역의 파장으로써 2 이상의 높은 흡광도를 갖는 반면, 제2 구간(242) 및 제3 구간(244)은 자외선 영역 이외의 파장으로써 1 이하의 낮은 흡광도를 갖는다. 따라서, 메탄올 함량 분석부(21)가 제1 구간(240)에서 메탄올의 함량을 산출하는 경우 측정 비용을 절감하고 경제성을 향상시킬 수 있다.
한편, 센서 모듈(11)은 미리 정해진 특정 파장의 빛을 절연유에 조사할 수 있다. 구체적으로 제1 구간(240)을 확대한 도 3을 참조하면, 곡선의 그래프는 절연유에 포함된 메탄올의 함량에 따라 달라진다.
즉, 그래프 E는 메탄올이 존재하지 않는(절연지의 열화가 진행되지 않은) 순수한 절연유의 그래프를 의미하고, 그래프 A 내지 그래프 D는 메탄올을 포함하는(절연지의 열화가 진행된) 절연유의 그래프이다.
구체적으로 그래프 D에서 그래프 A로 갈수록 메탄올의 함량은 높다. 예를 들어, 그래프 D는 3.35ppm, 그래프 C는 4.4ppm, 그래프 B는 32.7ppm, 그래프 A는 135ppm의 메탄올의 함량을 각각 나타낼 수 있다.
또한, 메탄올 함량이 높을 수록 낮은 흡광율을 보이므로 그래프 E보다 높은 흡광도가 측정되는 경우 노이즈로 판단될 수 있다.
한편, 제1 구간(240)은 제1 경사 구간(331), 제2 경사 구간(332) 및 제3 경사 구간(333)으로 구분될 수 있다. 제1 경사 구간(331), 제2 경사 구간(332) 및 제3 경사 구간(333) 각각은 서로 다른 경사를 가지므로 경사 각도에 따라 구간이 구분될 수 있다.
여기서 제1 경사 구간(331)은 그래프 A 내지 그래프 E의 분포가 고르게 배치되지 않고, 그래프 E를 벗어난 그래프가 존재하므로 노이즈가 발생한다. 따라서, 흡광도에 따른 메탄올 함량의 산출 및 변압기(10)의 정확한 수명 평가가 어렵다.
또한, 제3 경사 구간(333)은 불규칙한 간격의 그래프 분포를 가질 뿐만 아니라 흡광도가 2 이하로 떨어진다. 따라서, 메탄올 함량의 정밀한 측정이 어렵다.
그러나, 제2 경사 구간(332)은 일정한 간격의 그래프 분포를 가지면서 2 이상의 흡광도를 갖는다. 따라서, 제2 경사 구간(332)에서는 흡광도의 차이에 따른 메탄올 함량이 정밀하게 산출될 수 있다.
제2 경사 구간(332)의 파장 대역은 317nm 내지 328nm일 수 있다. 따라서, 센서 모듈(11)의 발광부(130)에서 발광하는 빛의 특정 파장은 317nm 내지 328nm 범위의 대역을 가지는 파장일 수 있다.
그러나 제2 경사 구간(332)은 이에 한정되지 않고 일정한 간격의 그래프 분포를 가지면서 2 이상의 흡광도를 갖는 특징을 가진 특정 파장 영역 모두를 포함할 수 있다. 메탄올 함량 분석부(21)는 제2 경사 구간(332)의 흡광도를 분석하여 메탄올 함량을 산출할 수 있다.
도 4는 일 실시예에 따른 열화시간에 따른 중합도와 절연유의 메탄올 함량 변화를 나타낸 그래프이다.
도면을 참조하면, 가로축은 열화 시간(h)(400)이고 세로축은 중합도(410)를 나타내고, 도면에 표시된 원은 절연유에 포함된 메탄올 함량을 나타낸다. 열화 시간(400)이 길수록 절연지에 열화에 따른 절연유의 메탄올 함량이 늘어나므로 원의 지름은 커지게 된다.
예를 들어, 열화 시간이 3500h일 때의 원의 지름(432)은 열화 시간이 1000h일 때의 원의 지름(430)보다 크다. 즉, 절연유에 포함된 메탄올 함량은 열화 시간(400)과 비례한다.
한편, 중합도 산출부(22)는 하기의 [수학식 1]을 통해 메탄올 함량으로부터 중합도(410)를 산출할 수 있다.
[수학식 1]
Figure PCTKR2021019662-appb-img-000003
(여기서 DP: 중합도, MeOH: 메탄올 함량, a: 제1 기준값, b: 제2 기준값)
여기서 제1 기준값은 제1 기준값의 하한값인 56.55와 제1 기준값의 상한값인 73.5 사이의 임의의 값일 수 있고, 제2 기준값은 제2 기준값의 하한값인 8.5와 제2 기준값의 상한값인 11.15 사이의 임의의 값일 수 있다.
다시 도 4를 참조하면, 상기 [수학식 1]을 통해 산출된 메탄올 함량에 따른 중합도를 확인할 수 있다. 원의 지름이 클 때(432)의 중합도는 650 내지 700으로 원의 지름이 작을 때(430)의 중합도 400 내지 500 보다 크다. 즉, 메탄올 함량이 클수록 중합도는 감소한다.
다시 말해, 절연지의 열화가 진행될수록 절연유에 포함된 메탄올의 중합도가 감소하므로, 수명 평가부(23)는 산출된 중합도를 통해 절연지의 수명 즉, 변압기(10)의 수명을 평가할 수 있다.
실시예에서 수명 평가부(23)는 한계 수명점을 미리 설정할 수 있다. 한계 수명점은 변압기(10)가 사용 불가능한 것으로 판단하는 최소 중합도로 예를 들어, 중합도 400일 수 있다(420). 따라서, 수명 평가부(23)는 중합도 400을 기준으로 변압기(10)의 수명을 평가할 수 있고, 산출된 중합도가 400 이하이면 변압기(10)의 수명이 다하여 더이상 사용 불가능한 것으로 평가할 수 있다.
도 5는 일 실시예에 따른 변압기(10) 수명 평가 방법을 나타낸 순서도이다. 실시예에 따른 변압기(10) 수명 평가 방법은 전술한 변압기(10) 수명 평가 장치를 이용하여 진행될 수 있다.
상기 발광부(130)가 상기 제1저장부(110)와 상기 제2저장부(120)에 저장된 절연유에 특정 파장의 빛을 조사할 수 있다(S510). 발광부(130)에서 조사된 빛은 제1저장부(110)와 제2저장부(120)를 통과할 수 있다. 수광부(140)는 상기 제1저장부(110)와 상기 제2저장부(120) 각각에 저장된 메탄올의 광특성을 수신할 수 있다.
상기 수광부(140)가 상기 제1저장부(110)와 상기 제2저장부(120) 각각에 저장된 메탄올의 광특성에 대한 정보를 상기 연산부(20)로 전송할 수 있다(S520).
상기 연산부(20)가 상기 제1저장부(110)와 상기 제2저장부(120) 각각에 저장된 메탄올의 상기 광특성을 서로 비교할 수 있다(S530). S530단계에서, 상기 연산부(20)는 각각의 상기 광특성의 차이값이 설정된 범위를 초과하면 변압기(10)가 사용 불가능한 것으로 판단할 수 있다.
상기 연산부(20)가 상기 제1저장부(110)에 저장된 절연유에 포함된 메탄올의 함량을 산출할 수 있다(S540).
상기 연산부(20)가 상기 제1저장부(110)의 메탄올 함량에 기초하여 상기 변압기(10)에 구비되는 절연지의 중합도를 산출할 수 있다(S550).
상기 연산부(20)가 산출된 중합도에 기초하여 상기 변압기(10)의 수명을 평가할 수 있다(S560). S560단계에서, 상기 산출된 중합도가 설정된 한계 수명점 이하인 경우, 연산부(20)는 상기 변압기(10)가 사용 불가능한 것으로 판단할 수 있다. 이때, 설정된 한계 수명점은, 전술한 바와 같이, 예를 들어 산출된 중합도가 400인 경우일 수 있다.
<제2실시예>
도 6은 본 명세서의 일 실시예에 따른 변압기 수명 평가 장치와 변압기의 블록도이다.
변압기(1600)는 유도성 전기 전도체를 통해 두 개 이상의 회로 사이에서 전기 에너지를 전달하며 전압을 승압 또는 강압시키는 장치이다. 본 명세서에서 변압기(1600)는 변압기 내부의 철심에 감은 코일을 절연유로 절연한 유입 변압기일 수 있다. 이하에서 변압기(1600)는 유입 변압기임을 전제하여 설명한다.
도면을 참조하면 변압기(1600)는 절연유(1620) 및 절연지(1640)를 포함한다.
절연유(1620) 및 절연지(1640)는 변압기(1600) 내부에 수용되며 변압기(1600)로부터 발생하는 감전 사고를 방지하기 위해 전기 절연 기능을 수행한다. 절연지(1640)는 예를 들어, 셀룰로오스 절연지일 수 있고, 절연유(1620)는 광유, 합성유, PCB(Poly Cholrinated Biphenyl), 혼합유, 알킬 벤젠일 수 있다. 그러나 이에 한정되는 것은 아니다.
한편, 절연지(1640)는 변압기(1600)의 운전 연수가 증가됨에 따라 열화가 발생한다. 구체적으로, 변압기(1600)의 운용에 따라 변압기 내부의 온도가 상승하므로 절연지(1620)는 온도 스트레스를 받게 된다. 절연지(1620)가 온도 스트레스를 받게 되면 열에너지에 의해 분해되는 과정에서 2차 화합물인 메탄올을 생성하게 되고, 생성된 메탄올은 변압기 내부의 절연유(1620)에 녹아 들어간다. 따라서, 변압기(1600)의 운전 연수가 많을 수록 변압기(1600)의 절연유(1620)에는 메탄올의 함량이 누적되어 높아 진다.
본 명세서의 일 실시예에 따른 변압기 수명 평가 장치(1000)는 변압기의 수명을 평가하는 장치로써, 센서 모듈(1100), 메탄올 함량 분석부(1200), 중합도 산출부(1300) 및 수명 평가부(1400)를 포함할 수 있다.
센서 모듈(1100)은 발광부 및 수광(측광)부를 포함한다. 즉, 센서 모듈(1100)은 발광부를 통해 절연유(1620)에 빛을 직접 제공하거나 수광(측광)부를 통해 변압기 내부의 별도의 발광 소자로부터 제공된 빛을 수신한다.
센서 모듈(1100)은 예를 들어 광센서, 화학적 센서 또는 전기적 센서일 수 있다. 그러나, 광센서는 주변환경의 영향을 적게 받는 바, 이하에서 센서 모듈(1100)은 광센서임을 전제로 하여 설명한다.
도면에서 센서 모듈(1100)은 변압기 수명 평가 장치(1000) 내부에 도시되어 있으나, 구체적으로 센서 모듈(1100)은 변압기의 내부에 배치되어 절연유(1620)에 빛을 제공하거나 별도의 발광 소자로부터 제공된 빛을 수신할 수 있다.
한편, 메탄올은 빛의 파장 대역에 따라서 서로 다른 광특성을 갖는다. 여기서 광특성은 흡광율, 반사율 또는 굴절률을 의미한다. 구체적으로 흡광율은 메탄올이 빛을 흡수하는 정도이고, 반사율은 메탄올이 빛을 반사하는 정도이며 굴절률은 메탄올에 빛이 통과할 때 경계면에서 빛이 꺾이는 정도를 의미한다. 동일한 파장 대역에서 메탄올의 광특성 즉, 흡광율, 반사율, 굴절률은 모두 유사한 특성을 갖는다.
센서 모듈(1100)은 미리 정해진 특정 파장의 빛을 절연유에 제공하거나 미리 정해진 특정 파장의 빛을 수신할 수 있다. 즉, 센서 모듈(1100)은 발광부를 통해 미리 정해진 특정 파장의 빛을 생성하여 방출하거나 별도의 발광 소자에서 생성된 빛으로부터 미리 정해진 특정 파장의 빛을 수광(측광)부를 통해 흡수할 수 있다.
미리 정해진 특정 파장은 메탄올의 광특성이 명확하게 구분되는 파장 대역으로 예를 들어, 317nm 보다 같거나 크고 328nm 보다 같거나 작을 수 있다. 미리 정해진 특정 파장 대역에 대해서는 후술하여 상세히 설명한다.
메탄올 함량 분석부(1200)는 제공된 빛에 기초하여 변압기(1600)의 절연유(1620)에 포함된 메탄올의 함량을 산출한다. 구체적으로 메탄올 함량 분석부(1200)는 센서 모듈(1100)에 의해 제공된 빛에 기초하여 메탄올의 광특성에 따른 흡광도를 획득하고, 획득한 흡광도에 기초하여 변압기의 절연유에 포함된 메탄올 함량을 산출한다.
흡광도는 메탄올에 빛을 비추었을 때 투과하는 복사량에 대한 발산한 복사량 비율의 로그값을 의미한다. 다시 말해, 흡광도는 메탄올이 특정 파장의 빛을 흡수하는 정도를 나타내며 메탄올의 광특성인 흡광율에 비례한다. 따라서 메탄올이 흡수하는 빛의 양이 많을수록 흡광도는 커지고, 흡수하는 빛의 양이 적을수록 흡광도는 작아진다.
또한, 흡광도가 크면 변압기의 절연유에 포함된 메탄올 함량이 많고, 흡광도가 작으면 변압기의 절연유에 포함된 메탄올 함량이 적다. 이에 따라 메탄올 함량 분석부(1200)는 획득한 흡광도에 기초하여 변압기의 절연유에 포함된 메탄올 함량을 산출한다.
중합도 산출부(1300)는 획득한 메탄올 함량을 통해 중합도를 산출한다. 여기서 중합도는 절연지(1640)의 건전도 즉, 절연지(1640)의 열화 정도가 어느 정도 진행되었는지를 의미한다. 따라서, 열화가 진행될 수록 중합도가 낮고, 절연지(1640)의 기계적 수명이 줄어들게 된다.
구체적으로 중합도는 하기의 메탄올 함량과 절연지(1640)의 중합도에 관한 [수학식 1]을 통해 산출될 수 있다.
[수학식 1]
Figure PCTKR2021019662-appb-img-000004
(DP: 중합도, MeOH: 메탄올 함량, a: 제1 기준값, b: 제2 기준값)
여기서 제1 기준값은 제1 기준값의 하한값인 56.55와 제1 기준값의 상한값인 73.5 사이의 임의의 값일 수 있고, 제2 기준값은 제2 기준값의 하한값인 8.5와 제2 기준값의 상한값인 11.15 사이의 임의의 값일 수 있다.
수명 평가부(1400)는 산출된 중합도에 기초하여 변압기(1600)의 수명을 평가한다. 구체적으로 수명 평가부(1400)는 변압기(1600)의 한계 수명점을 미리 설정할 수 있다. 한계 수명점은 예를 들어 400일 수 있다.
수명 평가부(1400)는 산출된 중합도와 미리 설정된 한계 수명점을 비교하고, 산출된 중합도가 미리 설정된 한계 수명점 이하인 경우 변압기(1600) 가 사용 불가능한 것으로 판단할 수 있다.
또한, 수명 평가부(1400)는 산출된 중합도와 미리 설정된 한계 수명점을 비교하고, 산출된 중합도가 미리 설정된 한계 수명점보다 큰 경우 한계 수명점과 산출된 중합도 차이 값의 크기에 따라 변압기의 남은 수명을 평가할 수 있다.
도 7은 본 명세서의 일 실시예에서 전체 파장에 대한 메탄올을 포함한 절연유의 흡광도를 나타낸 그래프이고, 도 8은 도 7의 그래프에서 특정 파장 영역의 그래프를 확대한 도면이다. 이하, 도 7 및 도 8을 참조하여 그래프를 설명한다.
도 7을 참조하면 그래프에서 가로축은 빛의 파장(nm)(2000)을 나타내고 세로축은 흡광도(2100)를 나타낸다. 빛의 파장(2000)은 길이에 따라 서로 다른 영역으로 구분된다. 빛의 서로 다른 영역은 예를 들어, 감마선, X선, 자외선(100nm 내지 380nm), 가시 광선(380nm 내지 780nm), 적외선(780nm 내지 1000nm), 초음파, 전파 등으로 구분될 수 있고, 각각의 영역은 서로 다른 특성을 갖는다.
이때, 도 7에 도시된 바와 같이 특정 구간에서는 노이즈(2200, 2210, 2220, 22302230 발생하므로 흡광도를 측정할 수 없고, 그래프의 경사가 매우 완만한 구간(2300)에서는 메탄올의 함량을 확인하기 어렵다.
결국, 노이즈가 발생하지 않고 경사가 존재하는 제1 구간(2400), 제2 구간(2420) 및 제3 구간(2440)에서 메탄올의 함량을 측정할 수 있다. 그러나, 흡광도가 낮을수록 메탄올의 함량을 측정할 때 노이즈 구별이 어려워 정밀한 기술이 요구되고 이에 따라 많은 비용이 소요된다.
다시 도 7을 참조하면, 제1 구간(2400)은 제2 구간(2420) 및 제3 구간(2440)보다 흡광도가 크므로 메탄올 함량의 측정이 유리하다. 즉, 제1 구간(2400)은 자외선 영역의 파장으로써 2 이상의 높은 흡광도를 갖는 반면, 제2 구간(2420) 및 제3 구간(2440)은 자외선 영역 이외의 파장으로써 1 이하의 낮은 흡광도를 갖는다. 따라서, 메탄올 함량 분석부(1200)가 제1 구간(2400)에서 메탄올의 함량을 산출하는 경우 측정 비용을 절감하고 경제성을 향상시킬 수 있다.
한편, 센서 모듈(1100)은 미리 정해진 특정 파장의 빛을 절연유에 제공할 수 있다. 구체적으로 제1 구간(2400)을 확대한 도 8을 참조하면, 곡선의 그래프는 절연유에 포함된 메탄올의 함량에 따라 달라진다. 즉, 그래프 E는 메탄올이 존재하지 않는(절연지의 열화가 진행되지 않은) 순수한 절연유(1620)의 그래프를 의미하고, 그래프 A 내지 그래프 D는 메탄올을 포함하는(절연지의 열화가 진행된) 절연유의 그래프이다.
구체적으로 그래프 D에서 그래프 A로 갈수록 메탄올의 함량은 높다. 예를 들어, 그래프 D는 3.35ppm, 그래프 C는 4.4ppm, 그래프 B는 32.7ppm, 그래프 A는 135ppm의 메탄올의 함량을 각각 나타낼 수 있다.
또한, 메탄올 함량이 높을 수록 낮은 흡광율을 보이므로 그래프 E보다 높은 흡광도가 측정되는 경우 노이즈로 판단될 수 있다.
한편, 제1 구간(2400)은 제1 경사 구간(3310), 제2 경사 구간(3320) 및 제3 경사 구간(3330)으로 구분될 수 있다. 상게하게, 제1 경사 구간(3310), 제2 경사 구간(3320) 및 제3 경사 구간(3330) 각각은 서로 다른 경사를 가지므로 경사 각도에 따라 구간이 구분될 수 있다.
여기서 제1 경사 구간(3310)은 그래프 A 내지 그래프 E의 분포가 고르게 배치되지 않고, 그래프 E를 벗어난 그래프가 존재하므로 노이즈가 발생한다. 따라서, 흡광도에 따른 메탄올 함량의 산출 및 변압기의 정확한 수명 평가가 어렵다.
또한, 제3 경사 구간(3330)은 불규칙한 간격의 그래프 분포를 가질 뿐만 아니라 흡광도가 2 이하로 떨어진다. 따라서, 메탄올 함량의 정밀한 측정이 어렵다.
그러나, 제2 경사 구간(3320)은 일정한 간격의 그래프 분포를 가지면서 2 이상의 흡광도를 갖는다. 따라서, 제2 경사 구간(3320)에서는 흡광도의 차이에 따른 메탄올 함량이 정밀하게 산출될 수 있다.
제2 경사 구간(3320)의 파장 대역은 317nm 내지 328nm일 수 있다. 따라서, 본 명세서의 일 실시예에서 센서 모듈(1100)의 미리 정해진 특정 파장은 317nm 보다 같거나 크고 328nm보다 같거나 작을 수 있다. 그러나 제2 경사 구간(3320)은 이에 한정되지 않고 일정한 간격의 그래프 분포를 가지면서 2 이상의 흡광도를 갖는 특징을 가진 특정 파장 영역 모두를 포함할 수 있다. 메탄올 함량 분석부(1200)는 제2 경사 구간(3320)의 흡광도를 분석하여 메탄올 함량을 산출할 수 있다.
도 9는 본 명세서의 일 실시예에서 열화시간에 따른 중합도와 절연유의 메탄올 함량 변화를 나타낸 그래프이다.
도면을 참조하면, 가로축은 열화 시간(h)(4000)이고 세로축은 중합도(4100)를 나타내고, 도면에 표시된 원은 절연유에 포함된 메탄올 함량을 나타낸다. 열화 시간(4000)이 길수록 절연지(1640)에 열화에 따른 절연유(1620)의 메탄올 함량이 늘어나므로 원의 지름은 커지게 된다. 예를 들어, 열화 시간이 3500h일 때의 원의 지름(4320)은 열화 시간이 1000h일 때의 원의 지름(430)보다 크다. 즉, 절연유에 포함된 메탄올 함량은 열화 시간(4000)과 비례한다.
한편, 중합도 산출부(1300)는 하기의 [수학식 1]을 통해 메탄올 함량으로부터 중합도(4100)를 산출할 수 있다.
[수학식 1]
Figure PCTKR2021019662-appb-img-000005
(여기서 DP: 중합도, MeOH: 메탄올 함량, a: 제1 기준값, b: 제2 기준값)
여기서 제1 기준값은 제1 기준값의 하한값인 56.55와 제1 기준값의 상한값인 73.5 사이의 임의의 값일 수 있고, 제2 기준값은 제2 기준값의 하한값인 8.5와 제2 기준값의 상한값인 11.15 사이의 임의의 값일 수 있다.
다시 도 9를 참조하면, 상기 [수학식 1]을 통해 산출된 메탄올 함량에 따른 중합도를 확인할 수 있다. 원의 지름이 클 때(4320)의 중합도는 650 내지 700으로 원의 지름이 작을 때(430)의 중합도 400 내지 500 보다 크다. 즉, 메탄올 함량이 클수록 중합도는 감소한다.
다시 말해, 절연지의 열화가 진행될수록 중합도가 감소하므로 수명 평가부(150)는 산출된 중합도를 통해 절연지의 수명 즉, 변압기의 수명을 평가할 수 있다.
본 명세서의 일 실시예에서 수명 평가부(150)는 한계 수명점을 미리 설정할 수 있다. 한계 수명점은 변압기가 사용 불가능한 것으로 판단하는 최소 중합도로 예를 들어, 중합도 400일 수 있다(4200). 따라서, 수명 평가부(150)는 중합도 400을 기준으로 변압기의 수명을 평가할 수 있고, 산출된 중합도가 400 이하이면 변압기의 수명이 다하여 더이상 사용 불가능한 것으로 평가할 수 있다.
도 10은 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법의 순서도이다.
도면을 참조하면, 변압기 수명 평가 장치(1000)는 미리 정해진 특정 파장의 빛을 절연유에 제공하거나 미리 정해진 특정 파장의 빛을 수신한다(S5000). 절연유에 포함된 메탄올은 흡광율, 반사율, 굴절률을 포함하는 광특성을 가지며, 메탄올의 광특성은 메탄올의 함량에 따라 달라진다.
따라서 변압기 수명 평가 장치(1000)는 제공한 빛에 기초하여 변압기의 절연유에 포함된 메탄올 함량을 산출한다(S5100). 구체적으로 변압기 수명 평가 장치(1000)는 제공한 빛에 기초하여 메탄올의 광특성에 따른 흡광도를 획득하고, 획득한 흡광도에 기초하여 변압기의 절연유에 포함된 메탄올 함량을 획득한다.
이후, 변압기 수명 평가 장치(1000)는 획득한 메탄올 함량을 통해 중합도를 산출한다(S5200). 구체적으로 중합도는 상술한 바와 같이 메탄올 함량과의 [수학식 1]을 통해 산출될 수 있다.
중합도가 산출되면 변압기 수명 평가 장치(1000)는 산출된 중합도에 기초하여 변압기의 수명을 평가한다(S5300). 변압기 수명 평가 장치(1000)는 한계 수명점을 미리 설정할 수 있고, 산출된 중합도가 미리 정해진 한계 수명점 이하인 경우 변압기가 사용 불가능한 것으로 판단할 수 있다. 여기서 한계 수명점은 예를 들어, 중합도 400일 수 있다.
이와 같이 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법은 절연유에 포함된 메탄올과 절연지의 중합도 사이의 수학식 1을 통해 메탄올을 직접 채유 하지 않고도 변압기의 수명을 평가할 수 있다.
또한 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법은 특정 파장을 광원으로 사용하는 광센서를 통해 메탄올의 광특성을 산출하여 변압기의 수명을 정밀하게 평가할 수 있다.
또한 본 명세서의 일 실시예에 따른 변압기 수명 평가 방법은 저비용이면서도 설치와 운용이 간편한 광센서를 이용하여 변압기의 수명을 효율적으로 평가하고 비용을 절감시킬 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (20)

  1. 절연유에 포함된 메탄올의 광특성을 이용한 변압기 수명 평가 장치에 있어서,
    상기 변압기의 절연에 사용되는 절연유가 저장되는 제1저장부;
    상기 제1저장부와 분리되어 구비되고, 상기 변압기의 절연에 사용되지 않는 절연유가 저장되는 제2저장부;
    특정 파장의 빛을 발광하는 발광부;
    상기 발광부에서 발광된 빛을 수광하는 수광부;
    상기 발광부와 상기 수광부를 연결하고, 상기 발광부로부터 발광되어 상기 수광부로 수광되는 빛의 이동경로를 제공하고, 상기 제1저장부를 관통하도록 배치되는 제1광케이블;
    상기 발광부와 상기 수광부를 연결하고, 상기 발광부로부터 발광되어 상기 수광부로 수광되는 빛의 이동경로를 제공하고, 상기 제2저장부를 관통하도록 배치되는 제2광케이블; 및
    상기 수광부와 연결되고, 상기 수광부로부터 메탄올의 광특성에 대한 정보를 수신하는 연산부
    를 포함하는,
    변압기 수명 평가 장치.
  2. 제1항에 있어서,
    상기 수광부는,
    상기 제1저장부와 상기 제2저장부 각각에 저장된 절연유에 포함되는 메탄올의 광특성에 대한 정보를 상기 연산부로 전송하는,
    변압기 수명 평가 장치.
  3. 제2항에 있어서,
    상기 광특성은 흡광율, 반사율 또는 굴절률 중 적어도 하나를 포함하는,
    변압기 수명 평가 장치.
  4. 제1항에 있어서,
    상기 연산부는,
    특정 파장의 빛에 기초하여 상기 변압기의 절연유에 포함된 메탄올 함량을 산출하는 메탄올 함량 분석부;
    산출된 메탄올 함량을 기초로 상기 변압기에 구비되는 절연지의 중합도를 산출하는 중합도 산출부; 및
    산출된 중합도에 기초하여 변압기의 수명을 평가하는 수명 평가부
    를 포함하는,
    변압기 수명 평가 장치.
  5. 제4항에 있어서,
    상기 메탄올 함량 분석부는,
    상기 수광부로부터 전송받은 메탄올의 흡광도를 기초로 변압기의 절연유에 포함된 메탄올 함량을 산출하는,
    변압기 수명 평가 장치.
  6. 제1항에 있어서,
    상기 특정 파장은,
    317nm 내지 328nm 범위의 대역을 가지는 파장인,
    변압기 수명 평가 장치.
  7. 제3항에 있어서,
    상기 연산부는,
    상기 제1저장부와 상기 제2저장부 각각에 저장된 메탄올의 상기 광특성을 서로 비교하고, 각각의 상기 광특성의 차이값이 설정된 범위를 초과하면 변압기가 사용 불가능한 것으로 판단하는,
    변압기 수명 평가 장치.
  8. 제1항에 기재된 변압기 수명 평가 장치를 이용한 변압기 수명 평가 방법에 있어서,
    상기 발광부가 상기 제1저장부와 상기 제2저장부에 저장된 절연유에 특정 파장의 빛을 조사하는 단계;
    상기 수광부가 상기 제1저장부와 상기 제2저장부 각각에 저장된 메탄올의 광특성에 대한 정보를 상기 연산부로 전송하는 단계; 및
    상기 연산부가 상기 제1저장부와 상기 제2저장부 각각에 저장된 메탄올의 상기 광특성을 서로 비교하는 단계;
    를 포함하는,
    변압기 수명 평가 방법.
  9. 제8항에 있어서,
    상기 연산부가 상기 제1저장부와 상기 제2저장부 각각에 저장된 메탄올의 상기 광특성을 서로 비교하는 경우,
    상기 연산부는 각각의 상기 광특성의 차이값이 설정된 범위를 초과하면 변압기가 사용 불가능한 것으로 판단하는,
    변압기 수명 평가 방법.
  10. 제8항에 있어서,
    상기 연산부가 상기 제1저장부에 저장된 절연유에 포함된 메탄올의 함량을 산출하는 단계;
    상기 연산부가 상기 제1저장부의 메탄올 함량에 기초하여 상기 변압기에 구비되는 절연지의 중합도를 산출하는 단계; 및
    상기 연산부가 산출된 중합도에 기초하여 상기 변압기의 수명을 평가하는 단계
    를 더 포함하는,
    변압기 수명 평가 방법.
  11. 제10항에 있어서,
    상기 연산부가 산출된 중합도에 기초하여 상기 변압기의 수명을 평가하는 경우,
    상기 산출된 중합도가 설정된 한계 수명점 이하인 경우, 상기 변압기가 사용 불가능한 것으로 판단하는,
    변압기 수명 평가 방법.
  12. 절연유에 포함된 메탄올의 광특성을 이용한 변압기 수명 평가 방법에 있어서,
    미리 정해진 특정 파장의 빛을 상기 절연유에 제공하거나 미리 정해진 특정 파장의 빛을 수신하는 단계;
    상기 특정 파장의 빛을 이용하여 상기 변압기의 절연유에 포함된 메탄올 함량을 획득하는 단계;
    상기 획득된 메탄올 함량을 통해 중합도를 산출하는 단계; 및
    상기 산출된 중합도에 기초하여 상기 변압기의 수명을 평가하는 단계를 포함하는
    변압기 수명 평가 방법.
  13. 제12항에 있어서,
    상기 광특성은
    흡광율, 반사율, 굴절률을 포함하는
    변압기 수명 평가 방법.
  14. 제12항에 있어서,
    상기 특정 파장의 빛에 기초하여 상기 변압기의 절연유에 포함된 메탄올 함량을 산출하는 단계는
    상기 특정 파장의 빛에 기초하여 상기 메탄올의 광특성에 따른 흡광도를 획득하는 단계; 및
    상기 획득한 흡광도에 기초하여 상기 변압기의 절연유에 포함된 메탄올 함량을 산출하는 단계를 포함하는
    변압기 수명 평가 방법.
  15. 제12항에 있어서,
    상기 미리 정해진 특정 파장은
    일정한 간격의 그래프 분포를 가지면서 특정 크기 이상의 흡광도를 갖는 구간의 파장 대역을 포함하는
    변압기 수명 평가 방법.
  16. 제15항에 있어서,
    상기 일정한 간격의 그래프 분포를 가지면서 특정 크기 이상의 흡광도를 갖는 구간의 파장 대역은317nm 보다 같거나 크고 328nm 보다 같거나 작은변압기 수명 평가 방법.
  17. 제12항에 있어서,
    상기 획득한 메탄올 함량을 통해 중합도를 산출하는 단계는
    하기[수학식 1]을 통해 중합도를 산출하는
    변압기 수명 평가 방법.
    [수학식 1]
    Figure PCTKR2021019662-appb-img-000006
    (DP: 중합도, MeOH: 메탄올 함량, a: 제1 기준값, b: 제2 기준값)
  18. 제17항에 있어서,
    상기 제1 기준값은 제1 기준값의 하한값인 56.55와 제1 기준값의 상한값인 73.5 사이의 임의의 값이고,
    상기 제2 기준값은 제2 기준값의 하한값인 8.5와 제2 기준값의 상한값인 11.15 사이의 임의의 값인
    변압기 수명 평가 방법.
  19. 제12항에 있어서,
    상기 산출된 중합도에 기초하여 상기 변압기의 수명을 평가하는 단계는
    상기 산출된 중합도가 미리 정해진 한계 수명점 이하인 경우 상기 변압기가 사용 불가능한 것으로 판단하는 단계를 포함하는
    변압기 수명 평가 방법.
  20. 제19항에 있어서,
    상기 한계 수명점은
    상기 중합도가 400 인
    변압기 수명 평가 방법.
PCT/KR2021/019662 2021-01-15 2021-12-22 변압기 수명 평가 장치 및 방법 WO2022154304A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/272,421 US20240077415A1 (en) 2021-01-15 2021-12-22 Transformer lifetime evaluation apparatus and method
CN202180088132.2A CN116802479A (zh) 2021-01-15 2021-12-22 变压器寿命评估装置及方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0006152 2021-01-15
KR1020210006152A KR102601865B1 (ko) 2021-01-15 2021-01-15 변압기 수명 평가 방법
KR1020210042457A KR102601867B1 (ko) 2021-04-01 2021-04-01 변압기 수명 평가 장치
KR10-2021-0042457 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022154304A1 true WO2022154304A1 (ko) 2022-07-21

Family

ID=82448309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019662 WO2022154304A1 (ko) 2021-01-15 2021-12-22 변압기 수명 평가 장치 및 방법

Country Status (2)

Country Link
US (1) US20240077415A1 (ko)
WO (1) WO2022154304A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812092C1 (ru) * 2023-03-22 2024-01-22 Публичное акционерное общество энергетики и электрификации "Сахалинэнерго" (ПАО "Сахалинэнерго") Определитель степени старения внутренней изоляции силового маслонаполненного трансформатора

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060038282A (ko) * 2004-10-29 2006-05-03 한국전력공사 변압기 절연유 탁도 측정장치
KR101291213B1 (ko) * 2012-05-21 2013-07-31 한국 전기안전공사 파장변환 레이저를 이용한 절연유 분석시스템 및 그 방법
KR101681561B1 (ko) * 2015-05-22 2016-12-01 한국광기술원 변압기 절연유의 온도 및 가스 검출 장치
JP2018165648A (ja) * 2017-03-28 2018-10-25 株式会社日立製作所 変圧器の絶縁油劣化診断システム及び方法
JP6419406B1 (ja) * 2018-04-25 2018-11-07 三菱電機株式会社 油入電気機器の診断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060038282A (ko) * 2004-10-29 2006-05-03 한국전력공사 변압기 절연유 탁도 측정장치
KR101291213B1 (ko) * 2012-05-21 2013-07-31 한국 전기안전공사 파장변환 레이저를 이용한 절연유 분석시스템 및 그 방법
KR101681561B1 (ko) * 2015-05-22 2016-12-01 한국광기술원 변압기 절연유의 온도 및 가스 검출 장치
JP2018165648A (ja) * 2017-03-28 2018-10-25 株式会社日立製作所 変圧器の絶縁油劣化診断システム及び方法
JP6419406B1 (ja) * 2018-04-25 2018-11-07 三菱電機株式会社 油入電気機器の診断方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812092C1 (ru) * 2023-03-22 2024-01-22 Публичное акционерное общество энергетики и электрификации "Сахалинэнерго" (ПАО "Сахалинэнерго") Определитель степени старения внутренней изоляции силового маслонаполненного трансформатора

Also Published As

Publication number Publication date
US20240077415A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US7154279B2 (en) Partial discharge detection test link, partial discharge detection system and methods for detecting partial discharge on a power cable
AU2007216846B2 (en) Apparatus and method for identifying the presence of high conductivity or permitivity conditions in electically insulating materials
WO2017217673A1 (en) Apparatus and method for measuring dust
EP3109958A1 (en) Field control element for a high-voltage cable accessory and method of optically measuring partial discharges
WO2022119010A1 (ko) 플라즈마 공정의 모니터링 장치 및 방법, 및 이 모니터링 방법을 이용한 기판 처리 방법
WO2022045589A1 (ko) 손상된 전지 셀의 검출이 가능한 전지 시스템 및 전지 모듈 평가 방법
US20040071185A1 (en) Apparatus and system for monitoring temperature of high voltage conductors
WO2022154304A1 (ko) 변압기 수명 평가 장치 및 방법
WO2020171328A1 (ko) 진공차단기용 접점 감시 장치 및 이를 포함하는 진공차단기
CN109557135A (zh) 一种基于温度的电缆缺陷检测系统
WO2021049733A1 (ko) 진공차단기용 접점 감시 장치 및 이를 갖는 진공차단기
US20220357387A1 (en) Monitoring the state of overvoltage protection components
WO2016140542A1 (ko) 극미량 시료용 고감도 흡광셀을 포함하는 측정 장치
WO2020204397A1 (ko) 진공차단기용 접점 감시 장치 및 그에 따른 보정 방법
WO2021033892A1 (ko) 퓨란 농도의 정량 방법, 이를 이용한 변압기 열화 진단 방법 및 그 장치
WO2013176505A1 (en) Optical line monitoring device, optical line monitoring system including the optical line monitoring device, and method of controlling the optical line monitoring system
WO2020251225A1 (ko) 가공 케이블 외절연용 수지 조성물, 이로부터 제조된 가공 케이블 외절연을 포함하는 가공 케이블 및 이의 제조 방법
WO2022191581A1 (ko) 용접 품질 검사 장치 및 용접 품질 검사 방법
WO2023075349A1 (ko) 테라헤르츠파를 이용한 플라즈마 공정 모니터링 장치 및 그 모니터링 방법
Jahromi et al. Approaches to the forensic failure investigation of medium voltage polymeric cables
KR102601865B1 (ko) 변압기 수명 평가 방법
WO2021015387A1 (ko) 복수의 무선 통신장치를 구비한 원격진단 시스템 및 이를 위한 방법
WO2022203257A1 (ko) 차단기
Rouison et al. How Can Material Characterization Support Cable Aging Management?
WO2019093753A1 (ko) 스마트 안전 접속장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088132.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18272421

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919928

Country of ref document: EP

Kind code of ref document: A1