WO2022154108A1 - Heat transfer suppression sheet for battery pack, and battery pack - Google Patents

Heat transfer suppression sheet for battery pack, and battery pack Download PDF

Info

Publication number
WO2022154108A1
WO2022154108A1 PCT/JP2022/001241 JP2022001241W WO2022154108A1 WO 2022154108 A1 WO2022154108 A1 WO 2022154108A1 JP 2022001241 W JP2022001241 W JP 2022001241W WO 2022154108 A1 WO2022154108 A1 WO 2022154108A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
insulating material
heat insulating
assembled battery
sheet
Prior art date
Application number
PCT/JP2022/001241
Other languages
French (fr)
Japanese (ja)
Inventor
寿 安藤
直己 高橋
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to US18/272,300 priority Critical patent/US20240072322A1/en
Priority to EP22739513.4A priority patent/EP4280348A1/en
Priority to CN202280009867.6A priority patent/CN116806386A/en
Publication of WO2022154108A1 publication Critical patent/WO2022154108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to, for example, a heat transfer suppression sheet for an assembled battery that is suitably used for an assembled battery that is a power source for an electric motor that drives an electric vehicle or a hybrid vehicle, and an assembled battery that uses the heat transfer suppression sheet for the assembled battery. ..
  • This electric vehicle or hybrid vehicle is equipped with an assembled battery in which a plurality of battery cells are connected in series or in parallel to serve as a power source for a driving electric motor.
  • Lithium-ion secondary batteries which have higher capacity and higher output than lead storage batteries and nickel-hydrogen batteries, are mainly used for these battery cells, but due to internal short circuits and overcharging of the batteries.
  • a thermal runaway occurs in one battery cell (that is, in the case of "abnormality"), heat is propagated to another adjacent battery cell, which may cause a thermal runaway of another battery cell.
  • Patent Document 1 discloses a power storage device that can realize effective heat insulation between a plurality of power storage elements such as a lithium ion secondary battery.
  • the first plate material and the second plate material are arranged between the first power storage element and the second power storage element that are adjacent to each other.
  • a low thermal conductivity layer which is a layer of a substance having a lower thermal conductivity than the first plate material and the second plate material, is formed between the first plate material and the second plate material.
  • the radiant heat from the first power storage element to the second power storage element or the radiant heat from the second power storage element to the first power storage element is the first plate material and the second. It is blocked by the plate material. Further, the transfer of heat from one of these two plates to the other is suppressed by the low thermal conductive layer.
  • the power storage device is provided only with a heat insulating layer between the first power storage element and the second power storage element, it is not possible to effectively cool the battery cell that generates heat during the charge / discharge cycle. rice field.
  • Patent Document 2 proposes an endothermic sheet for an assembled battery that can cool each battery cell during normal use while suppressing heat propagation between the battery cells at the time of abnormality.
  • the endothermic sheet described in Patent Document 2 contains two or more substances having different dehydration temperatures. Then, at least one of the above two or more kinds of substances is configured to be dehydratable during normal use of the battery cell, and the other at least one kind is configured to be dehydratable at the time of abnormality of the battery cell. There is.
  • the temperature of the battery cell surface is predetermined in order to fully exhibit the charge / discharge performance of the battery cell. It is necessary to maintain the value or less (for example, 150 ° C. or less). Further, it is necessary to effectively cool the battery cell when an abnormal situation occurs in which the temperature of the battery cell becomes, for example, 200 ° C. or higher.
  • the heat transfer suppressing means capable of maintaining the temperature of the surface of the battery cell during normal use and effectively cooling at the time of an abnormal temperature of high temperature has recently been required to be further improved.
  • the present invention has been made in view of the above problems, and is used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and is usually used while suppressing heat propagation between the battery cells at the time of abnormality. It is an object of the present invention to provide a heat transfer suppression sheet for an assembled battery and an assembled battery capable of cooling each battery cell during use.
  • a heat transfer suppression sheet for an assembled battery used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and interposed between the battery cells.
  • a heat insulating material containing at least one of inorganic particles and inorganic fibers, and With a covering material that covers at least a part of the heat insulating material, A closed gap is formed between the heat insulating material and the covering material.
  • the coating material is a heat transfer suppressing sheet for an assembled battery, which is configured to form a communication port that communicates the void portion with the outside of the coating material at a temperature of 60 ° C. or higher.
  • the coating material is made of a metal plate, and the metal plates are bonded to each other by an adhesive that melts at a temperature of 60 ° C. or higher, according to any one of [1] to [3].
  • Heat transfer suppression sheet for assembled batteries is made of a metal plate, and the metal plates are bonded to each other by an adhesive that melts at a temperature of 60 ° C. or higher, according to any one of [1] to [3].
  • the adhesive is applied to the plurality of regions in different coating amounts so that the adhesive gradually melts in the plurality of regions as the temperature rises, [3], [5] and [6].
  • the heat transfer suppression sheet for an assembled battery according to any one of the above.
  • the heat transfer suppression sheet for an assembled battery of the present invention is a heat transfer suppressing sheet used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and is a gap portion sealed between a heat insulating material and a coating material. Is formed. Therefore, during normal use of the assembled battery, the moisture evaporated from the heat insulating material can be retained in the gap portion, and the battery cell can be effectively cooled by utilizing the heat of vaporization at this time. Further, in the event of an abnormality in the assembled battery, a communication port for communicating the gap portion and the outside of the covering material is formed, so that the heated steam is discharged to the outside through the communication port. Therefore, heat propagation between the battery cells can be suppressed.
  • each battery cell can be cooled during normal use, and heat between the battery cells can be cooled during abnormal conditions. It is possible to suppress the propagation of heat and prevent the chain of thermal runaway.
  • FIG. 1 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing a heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an assembled battery to which the heat transfer suppressing sheet for an assembled battery according to the first embodiment of the present invention is applied.
  • FIG. 4 is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention at the time of abnormality.
  • FIG. 1 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing a heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional
  • FIG. 5 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fourth embodiment of the present invention.
  • FIG. 8A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fifth embodiment of the present invention.
  • FIG. 8B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the fifth embodiment of the present invention at the time of abnormality.
  • FIG. 9A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a sixth embodiment of the present invention.
  • FIG. 9B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the sixth embodiment of the present invention at the time of abnormality.
  • FIG. 10 is a plan view schematically showing another example of the heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first to sixth embodiments of the present invention.
  • FIG. 11 is a plan view schematically showing still another example of the heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first to sixth embodiments of the present invention.
  • FIG. 12 is a plan view schematically showing a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures.
  • FIG. 13 is a plan view schematically showing another example of a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures.
  • FIG. 14 is a plan view schematically showing still another example of the heat transfer suppression sheet for an assembled battery using two kinds of adhesives having different melting temperatures.
  • the present inventors can cool each battery cell in normal use in which relatively low temperature heat is generated while suppressing heat propagation between the battery cells in an abnormal state in which high temperature heat is generated.
  • the present inventors have formed a closed gap between the heat insulating material and the covering material, and at a temperature of 60 ° C. or higher, the gap and the outside of the covering material are separated from each other. It has been found that the above-mentioned problems can be solved by forming a communication port for communication.
  • the presence of the closed gap allows the moisture evaporated from the heat insulating material to stay in the gap, and the heat of vaporization during evaporation is utilized. By doing so, the battery cell can be effectively cooled. Further, in an abnormal situation where the temperature of the battery cell becomes high, a communication port for communicating the gap and the outside of the coating material is formed, and the heated steam is discharged to the outside through the communication port. It is possible to suppress heat propagation between battery cells.
  • Heat transfer suppression sheet for assembled batteries Hereinafter, the heat transfer suppression sheet for the assembled battery according to the present embodiment will be described in order from the first embodiment to the sixth embodiment. After that, other examples of the heat insulating material according to the present embodiment, and the heat insulating material, the covering material, and the like constituting the heat transfer suppression sheet for the assembled battery according to the present embodiment will be described. Further, a method for manufacturing a heat transfer suppression sheet for an assembled battery according to the present embodiment will be described.
  • FIG. 1 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to the first embodiment.
  • FIG. 2 is a plan view schematically showing a heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first embodiment.
  • the heat transfer suppressing sheet 10 for an assembled battery may be simply referred to as a heat transfer suppressing sheet 10.
  • the heat transfer suppressing sheet 10 for an assembled battery according to the present embodiment includes a heat insulating material 11 and a covering material 12 that covers the front surface 11a and the back surface 11b that are the main surfaces of the heat insulating material 11. In the present embodiment, the covering material 12 does not cover the end face 11c of the heat insulating material 11.
  • the front surface 11a and the back surface 11b of the heat insulating material 11 refer to the surfaces facing the battery cells when the heat transfer suppressing sheet 10 and the battery cells are laminated, and the end surface 11c refers to heat.
  • the heat insulating material 11 contains, for example, inorganic particles containing water of crystallization or adsorbed water and inorganic fibers, and the water of crystallization or adsorbed water has a property of releasing water by heating.
  • a plurality of recesses 13a are regularly formed on the surface 11a of the heat insulating material 11, and the region where the recesses 13a are not formed substantially constitutes the convex portion 13b. is doing.
  • the recess 13a is, for example, rectangular in a plan view, and as shown in FIG. 2, a recess whose longitudinal direction is parallel to one side of the heat insulating material 11 and a recess whose longitudinal direction is orthogonal to one side of the heat insulating material 11 Are arranged alternately.
  • the covering material 12 is, for example, a polymer film that melts at a temperature of 60 ° C. or higher, and the convex portion 13b of the heat insulating material 11 and the covering material 12 are adhered with an adhesive (not shown).
  • an adhesive composed of an organic substance or an inorganic substance is used, and this adhesive has a property of melting at 60 ° C. or higher. Since the region where the recess 13a is formed is not in contact with the covering material 12, as a result, a gap portion 14 is formed between the heat insulating material 11 and the covering material 12. Since the convex portion 13b located around the gap portion 14 and the covering material 12 are adhered to each other, the gap portion 14 is always in a sealed state at a temperature of less than 60 ° C.
  • FIG. 3 is a cross-sectional view schematically showing an assembled battery to which the heat transfer suppressing sheet for the assembled battery according to the first embodiment is applied.
  • the assembled battery 100 has a battery case 30, a plurality of battery cells 20 housed inside the battery case 30, and a heat transfer suppressing sheet 10 interposed between the battery cells 20.
  • the plurality of battery cells 20 are connected in series or in parallel by a bus bar or the like (not shown).
  • a lithium ion secondary battery is preferably used, but the battery cell 20 is not particularly limited to this, and can be applied to other secondary batteries.
  • the heat transfer suppressing sheet 10 configured in this way is heat-insulated when the temperature rises in a relatively low temperature range from normal temperature (about 20 ° C.) to about 150 ° C., which is the temperature range of the battery cell 20 during normal use. Heat also propagates to the material 11.
  • the heat insulating material 11 contains inorganic particles containing water of crystallization or adsorbed water, and since the water of crystallization or adsorbed water is a material that releases water by heating, the heat insulating material 11 is heated. Evaporates water from the inorganic particles. Then, a part of the evaporated water stays in the void portion 14, and the other part is released from the end face 11c of the heat transfer suppressing sheet 10. At this time, since the heat insulating material 11 is deprived of the heat of vaporization and cooled, the heat transfer suppressing sheet 10 can effectively cool the battery cell 20.
  • FIG. 4 is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the first embodiment at the time of abnormality.
  • the front surface 11a of the heat insulating material 11 represents a state in which a part of the covering material 12 is melted
  • the back surface 11b is a state in which the adhesive for adhering the covering material 12 and the heat insulating material 11 is melted due to an increase in temperature.
  • an abnormality for example, when the temperature of the battery cell 20 rises to, for example, 200 ° C. or higher, the covering material 12 melts and a communication port 15 for communicating the gap 14 and the outside is formed. ..
  • a communication port 15 that connects the gap portion 14 and the outside of the heat transfer suppressing sheet 10 is formed.
  • the communication port 15 When the communication port 15 is formed in this way, the steam that evaporates from the inorganic particles and stays in the voids 14 and becomes high in temperature is released to the outside of the heat transfer suppression sheet 10 through the communication port 15. .. Therefore, even when the battery cells 20 cause thermal runaway, heat propagation between the battery cells 20 can be effectively suppressed.
  • Both the polymer film and the adhesive used in this embodiment have the property of melting at an arbitrary temperature of 60 ° C. or higher. That is, in the temperature range lower than the melting temperature of the polymer film and the adhesive to be used, the void portion 14 is always in a sealed state. Since the polymer film and the adhesive have various melting temperatures depending on the type thereof, a polymer film or an adhesive having a desired melting temperature in the range of 60 ° C. or higher can be selected, if necessary.
  • the temperature at which the communication port for communicating the gap 14 and the outside of the covering material 12 is formed is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher.
  • the upper limit of the temperature at which the communication port for communicating the gap portion 14 and the outside of the covering material 12 is formed is not particularly specified, but is preferably 500 ° C. or lower, more preferably 350 ° C. or lower, and 300. It is more preferably ° C. or lower, and particularly preferably 250 ° C. or lower.
  • FIG. 5 is a cross-sectional view schematically showing the heat transfer suppression sheet for an assembled battery according to the second embodiment.
  • FIGS. 5 to 9B showing the following second to sixth embodiments, the same or equivalent parts as those in the first embodiment are designated by the same reference numerals in the drawings, and the description thereof is omitted or simplified. do.
  • the heat transfer suppressing sheets according to the second to sixth embodiments can be used. Is applied to the assembled battery 100, and its effect and the like will be described.
  • the heat transfer suppressing sheet 40 for an assembled battery according to the second embodiment has a heat insulating material 11 and a covering material 12 that covers the front surface 11a, the back surface 11b, and the end surface 11c, which are the main surfaces of the heat insulating material 11.
  • the concave portion 13a and the convex portion 13b are also formed on the end surface 11c of the heat insulating material 11. That is, a covering material 12 formed in a bag shape with an adhesive or the like (not shown) covers the entire surface of the heat insulating material 11, and the heat insulating material 11 is completely sealed by the covering material 12.
  • the same effect as that of the first embodiment can be obtained at the time of normal use.
  • the heat insulating material 11 is completely covered with the covering material 12, when the heat insulating material 11 is heated during normal use and water evaporates from the inorganic particles, all the evaporated material 11 is evaporated. Moisture stays in the void 14 and is not released to the outside from the heat transfer suppressing sheet 40. However, since the water evaporates, the heat insulating material 11 is deprived of the heat of vaporization and cooled, and the heat transfer suppressing sheet 10 can effectively cool the battery cell 20.
  • the heat transfer suppression sheet 40 for the assembled battery according to the second embodiment since the evaporated water is not released to the outside, most of the evaporated water is absorbed into the heat insulating material 11 again when the use of the assembled battery is stopped. Therefore, according to the heat transfer suppression sheet 40 for the assembled battery according to the second embodiment, the effect of cooling the battery cell 20 can be maintained for a long period of time.
  • the adhesive adhering the covering materials 12 to each other melts, or the covering material 12 melts, so that between the gap portion 14 and the outside as in the case shown in FIG. Since the communication port 15 is formed, the same effect as that of the first embodiment can be obtained.
  • FIG. 6 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a third embodiment.
  • the heat transfer suppressing sheet 50 for an assembled battery according to the third embodiment has a heat insulating material 51 and a covering material 52 that covers the front surface 51a and the back surface 51b of the heat insulating material 51.
  • the covering material 52 does not cover the end face 51c of the heat insulating material 51.
  • the surface of the heat insulating material 51 is flat, and no concave portion or convex portion is formed.
  • the covering material 52 is made of a film, and the surface thereof is subjected to uneven processing, and concave portions 53a and convex portions 53b are formed on the surface facing the heat insulating material 51.
  • the convex portion 53b of the covering material 52 and the heat insulating material 51 are adhered to each other with an adhesive (not shown), and a closed gap portion 14 is formed between the concave portion 53a and the heat insulating material 51. ..
  • the same effect as that of the first embodiment can be obtained during normal use and abnormal times.
  • the covering material 52 shown in the third embodiment to form a heat transfer suppressing sheet so as to cover the entire surface of the heat insulating material 51, the battery cell 20 can be formed in the same manner as in the second embodiment.
  • the cooling effect can be maintained for a long period of time.
  • FIG. 7 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fourth embodiment.
  • the heat transfer suppressing sheet 60 for an assembled battery according to the fourth embodiment has a heat insulating material 11 and a covering material 52 that covers the entire surface of the heat insulating material 11.
  • the heat insulating material 11 is formed with a concave portion 13a and a convex portion 13b.
  • the covering material also has a concave portion 53a recessed in a direction away from the heat insulating material 11 and a convex portion 53b having a shape protruding toward the heat insulating material 11 on the surface facing the heat insulating material 11.
  • the convex portion 53b of the covering material 52 and the convex portion 13b of the heat insulating material 11 are adhered to each other with an adhesive (not shown), and the concave portion 53a of the covering material 52 and the concave portion 13a of the heat insulating material 11 are bonded to each other.
  • a closed gap 14 is formed.
  • the same effect as that of the second embodiment can be obtained during normal use and abnormal times. Further, since the gap portion 14 is formed by the recess 13a and the recess 53a, the volume of the gap portion 14 is increased as compared with the heat transfer suppression sheet for the assembled battery according to the second and third embodiments. Therefore, the moisture easily evaporates from the heat insulating material 11, and the effect of cooling the battery cell 20 in normal use can be further improved.
  • the covering material 52 is configured to cover up to the end face 11c of the heat insulating material 11, but the end face 11c of the heat insulating material 11 may be released as in the first embodiment.
  • the end face 11c By releasing the end face 11c, a part of the evaporated water is released to the outside during normal use, so that the water in the heat insulating material 11 is more easily evaporated, and the cooling effect by the heat of vaporization can be enhanced. ..
  • a communication port 15 that communicates between the gap portion 14 and the outside of the heat transfer suppressing sheet 60 is formed. Therefore, the effect of cooling the battery cell 20 can be obtained.
  • FIG. 8A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fifth embodiment.
  • FIG. 8B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the fifth embodiment at the time of abnormality.
  • the heat transfer suppressing sheet 70 for an assembled battery according to the fifth embodiment has a heat insulating material 11 and a covering material 72 that covers the front surface 11a and the back surface 11b of the heat insulating material 11.
  • a covering material (metal plate) 72 made of a metal is used as the covering material.
  • the convex portion 13b of the heat insulating material 11 and the metal covering material 72 are adhered to each other with an adhesive (not shown), and a closed gap is formed between the concave portion 13a of the heat insulating material 11 and the covering material 72.
  • the portion 14 is formed.
  • the same effect as that of the first embodiment can be obtained in normal use.
  • the adhesive that adheres the convex portion 13b of the heat insulating material 11 and the covering material 72 is melted, and the covering material 72 is peeled off from the heat insulating material 11. Therefore, since the communication port 15 that communicates the gap portion 14 with the outside of the heat transfer suppressing sheet 70 is formed, the battery cell 20 can be effectively cooled.
  • FIG. 9A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a sixth embodiment.
  • FIG. 9B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the sixth embodiment at the time of abnormality.
  • the heat transfer suppressing sheet 80 for an assembled battery according to the sixth embodiment not only the front surface 11a and the back surface 11b of the heat insulating material 11 but also the end surface 11c is covered with a metal covering material (metal plate) 82.
  • all the surfaces of the front surface 11a, the back surface 11b, and the end faces 11c in the four directions of the heat insulating material 11 are covered with the plurality of covering materials 82, and the covering materials are also bonded to each other with an adhesive (not shown). There is.
  • the front surface 11a, the back surface 11b, and the end surface 11c of the heat insulating material 11 are covered with a plurality of covering materials 82, and the covering materials 82 are bonded to each other with an adhesive.
  • the heat insulating material 11 is sandwiched between one metal sheet folded in half, and in the vicinity of the end surface 11c, a metal sheet covering the front surface 11a side of the heat insulating material 11 and a metal sheet covering the back surface 11b side. It is possible to use one in which the area in contact with is adhered with an adhesive. Even with such a configuration, the same effect as that of the sixth embodiment can be obtained.
  • the heat transfer suppression sheets for assembled batteries according to the first to sixth embodiments have been described above in order. Subsequently, another example of the heat insulating material used for the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments will be shown.
  • FIG. 10 is a plan view schematically showing another example of the heat insulating material used for the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments.
  • the example in which the heat insulating material 11 shown in FIG. 2 is used is given, but the shape of the heat insulating material is not particularly limited.
  • a plurality of recesses 13a are regularly formed on the surface 21a of the heat insulating material 21, and the region where the recesses 13a are not formed substantially constitutes the convex portion 13b. ..
  • the recesses 13a are, for example, rectangular in a plan view, and all the recesses 13a are arranged so that their longitudinal directions are parallel to one side of the heat insulating material 21.
  • the heat insulating material 21 configured in this way can also be applied to the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments, and has the same effect as that of the first to sixth embodiments. Can be obtained.
  • FIG. 11 is a plan view schematically showing still another example of the heat insulating material used for the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments.
  • the heat insulating material 11 shown in FIG. 2 and the heat insulating material 21 shown in FIG. 10 have a structure in which all the recesses 13a are sealed by the covering material, but the present invention is not limited to this.
  • a plurality of recesses 13a are regularly formed on the surface 31a of the heat insulating material 31, and the region where the recesses 13a are not formed substantially constitutes the convex portion 13b. ..
  • the recess 13c formed in the vicinity of the end surface 31c of the heat insulating material 31 reaches the end surface 31c of the heat insulating material 31.
  • the recess 13c formed in the vicinity of the end face 31c of the heat insulating material 31 does not form a closed gap portion.
  • a closed gap is formed between a part of the recess 13a and the covering material 12, the same effect as that of the first to sixth embodiments can be obtained.
  • the thicknesses of the heat insulating material, the coating material, the adhesive, and the heat transfer suppressing sheet constituting the heat transfer suppressing sheet for the assembled battery according to the present embodiment will be described in detail.
  • the heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the present embodiment contains at least one of inorganic particles and inorganic fibers.
  • the inorganic particles are preferably an inorganic hydrate or a water-containing porous body.
  • the inorganic hydrate receives heat from the battery cell 20 and thermally decomposes when the temperature reaches the thermal decomposition start temperature or higher, and releases its own water of crystallization to cool the battery cell 20.
  • the water of crystallization is discharged, it becomes a porous body, and an effective heat insulating effect can be obtained by the innumerable air holes.
  • the inorganic particles a single inorganic particle may be used, or two or more kinds of inorganic hydrate particles may be used in combination. Since the thermal decomposition start temperature of the inorganic hydrate differs depending on the type, the battery cell 20 can be cooled in multiple stages by using two or more types of inorganic hydrate particles in combination.
  • the inorganic hydrate examples include aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), and zinc hydroxide (Zn (OH)). ) 2 ), iron hydroxide (Fe (OH) 2 ), manganese hydroxide (Mn (OH) 2 ), zirconium hydroxide (Zr (OH) 2 ), gallium hydroxide (Ga (OH) 3 ), etc. Be done. Moreover, as a fibrous inorganic hydrate, fibrous calcium silicate hydrate and the like can be mentioned.
  • hydrous porous body examples include zeolite, kaolinite, montmorillonite, acidic white clay, diatomaceous earth, sepiolite, wet silica, dry silica, airgel, mica, vermiculite and the like.
  • examples of the inorganic fiber include alumina fiber, silica fiber, alumina silicate fiber, rock wool, magnesium silicate fiber, alkaline earth silicate fiber, glass fiber, zirconia fiber, potassium titanate fiber and the like.
  • magnesium silicate fiber can be suitably used as a material that releases water by heating.
  • a single inorganic fiber may be used, or two or more kinds of inorganic fibers may be used in combination.
  • an organic fiber, an organic binder, or the like can be added to the heat insulating material, if necessary. All of these are useful for the purpose of reinforcing the heat insulating material and improving the moldability.
  • the inorganic particles and inorganic fibers contained in the heat insulating material do not necessarily have to contain a material that releases moisture by heating. Since a small amount of water is inevitably contained in the production of the heat insulating material, when the temperature of the battery cell 20 rises during normal use and abnormal times, the water contained in the heat insulating material evaporates, resulting in the battery cell. The effect of cooling 20 can be obtained.
  • the heat insulating material may contain at least one of inorganic particles and inorganic fibers, but the content of the inorganic particles is 20% by mass or more and 80% by mass or less with respect to the total mass of the heat transfer suppressing sheet.
  • the content of the inorganic fiber is preferably 5% by mass or more and 70% by mass or less. With such a content, the shape-retaining property, the pressing force resistance, and the wind pressure resistance can be improved by the inorganic fiber, and the holding ability of the inorganic particles can be ensured.
  • the heat transfer suppressing sheet according to the present embodiment can be blended with organic fibers, organic binders and the like, if necessary. All of these are useful for the purpose of reinforcing the heat transfer suppressing sheet and improving the moldability.
  • a polymer film or a metal film can be used as the covering material.
  • Polymer films include polyimide, polycarbonate, PET, p-phenylene sulfide, polyetherimide, crosslinked polyethylene, flame-retardant chloroprene rubber, polyvinyldenfluorolide, hard vinyl chloride, polyvinyl terephthalate, PTFE, PFA, FEP, ETFE, Examples thereof include hard PCV, flame-retardant PET, polystyrene, polyether sulfone, polyamideimide, polyvinylonitrile, polyethylene, polypropylene, polyamide and the like.
  • the covering material is configured so that a communication port for communicating the void portion and the outside of the covering material is formed at a temperature of 60 ° C. or higher.
  • the form in which the communication port is formed includes a form in which the polymer film used as the coating material is melted, or a form in which the adhesive that adheres the coating materials to each other or the coating material and the heat insulating material is melted. Can be mentioned.
  • the polymer film may be melted at an arbitrary temperature of 60 ° C. or higher. Since the melting point of the polymer film is 60 ° C. to 600 ° C., the coating material (polymer film) can always seal the voids at a temperature of less than 60 ° C., and any of 60 ° C. or higher.
  • a communication port can be formed by temperature.
  • the melting temperature of the polymer film is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and more preferably 100 ° C. or higher. Is even more preferable.
  • the melting temperature of the polymer film is preferably 500 ° C. or lower, more preferably 350 ° C. or lower, further preferably 300 ° C. or lower, and particularly preferably 250 ° C. or lower.
  • Examples of the metal film include aluminum foil, stainless steel foil, and copper foil.
  • a method of sealing the gap formed between the heat insulating material and the covering material a method of adhering the heat insulating material and the covering material or a method of adhering the covering materials to each other can be applied.
  • the adhesive for adhering the heat insulating material and the covering material include those made of urethane, polyethylene, polypropylene, polystyrene, nylon, polyester, vinyl chloride, vinylon, acrylic resin, silicone and the like.
  • the above-mentioned adhesive can also be applied as an adhesive for adhering coating materials to each other.
  • the melting temperature of the adhesive that adheres the coating materials to each other or the coating material and the heat insulating material is 60 ° C. or higher. All you need is. That is, if the adhesive melts at a temperature of 60 ° C. or higher, the covering material can always seal the voids at a temperature of less than 60 ° C., and at any temperature of 60 ° C. or higher, the gaps and the covering material can be sealed. It is possible to form a communication port that communicates with the outside of the.
  • the melting temperature of the adhesive is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 100 ° C. or higher.
  • the melting temperature of the adhesive is preferably 500 ° C. or lower, more preferably 350 ° C. or lower, further preferably 300 ° C. or lower, and particularly preferably 250 ° C. or lower.
  • a method of sealing the gap formed between the heat insulating material and the covering material a method of covering the entire heat insulating material with the covering material can also be applied.
  • Examples of the method of covering the entire heat insulating material with a covering material include laminating (dry laminating, thermal laminating), pouch laminating, vacuum packing, vacuum laminating, shrink wrapping, caramel wrapping and the like.
  • FIGS. 12 to 14 are modifications of the heat transfer suppression sheet 10 for an assembled battery according to the first embodiment shown in FIGS. 1 and 2.
  • FIG. 12 is a plan view schematically showing a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures.
  • an adhesive 16b is used in the peripheral edge portion near the end face in the region of the convex portion 13b of the heat insulating material 11, and is inside the peripheral edge portion.
  • Adhesive 16a is used in the area.
  • the adhesive 16a and the adhesive 16b have different melting temperatures, and specifically, the adhesive 16b is designed so that the melting temperature is higher than the melting temperature of the adhesive 16a. Further, the melting temperature of the coating material is designed to be higher than the melting temperature of the adhesive 16b.
  • the heat transfer suppressing sheet 110 configured in this way, as a first step, at a temperature lower than the melting temperature of the adhesive 16a, the gap between each recess 13a and the covering material is sealed. Therefore, when the heat insulating material 11 is heated and water evaporates from the inorganic particles, all the evaporated water stays in the voids and is not released to the outside from the heat transfer suppressing sheet 110, but the heat insulating material evaporates due to the evaporation of water. The material 11 is deprived of the heat of evaporation and cooled.
  • the heat transfer suppressing sheet 110 can effectively cool the battery cell.
  • FIG. 13 is a plan view schematically showing another example of a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures.
  • the heat transfer suppressing sheet 120 similarly to the heat transfer suppressing sheet 110 shown in FIG. 12, adhesion having a higher melting temperature to the peripheral edge portion of the region of the convex portion 13b of the heat insulating material 11 Agent 16b is used.
  • the adhesive 16a having a lower melting temperature which is the same as the inner region, is used only for a part of the peripheral portion.
  • the heat transfer suppressing sheet 120 configured in this way, as a first step, at a temperature lower than the melting temperature of the adhesive 16a, the gap between the recess 13a and the covering material 12 is sealed. Therefore, similarly to the heat transfer suppressing sheet 110 shown in FIG. 12, moisture evaporates from the heat insulating material 11 toward the voids, and the heat insulating material 11 is deprived of heat of vaporization and cooled.
  • the region adhered by the adhesive 16a is separated, so that the moisture easily evaporates from the heat insulating material 11. Become. Further, since the adhesive 16a having a low melting temperature is used only in a part of the peripheral edge portion, this region serves as a communication port for communicating the gap portion and the outside of the heat transfer suppressing sheet 110. Therefore, as shown by the arrows in FIG. 13, the high-temperature steam is released from the communication port, so that heat propagation between the battery cells can be effectively suppressed.
  • the adhesive 16a having the same melting temperature as the inner region is used only for a part of the peripheral portion, the position where the high-temperature steam (moisture) is released can be easily determined. Can be controlled. Therefore, it is possible to suppress water exposure to a predetermined component in the assembled battery.
  • FIG. 14 is a plan view schematically showing still another example of the heat transfer suppression sheet for an assembled battery using two kinds of adhesives having different melting temperatures.
  • the heat transfer suppressing sheet 130 similarly to the heat transfer suppressing sheet 120 shown in FIG. 13, an adhesive having a high melting temperature is formed on the peripheral edge of the region of the convex portion 13b of the heat insulating material 11. 16b is used.
  • the adhesive 16a having a low melting temperature is used only for a part of the peripheral edge portion, and this region serves as a communication port at a high temperature.
  • the adhesive 16c having the same melting temperature as the adhesive 16b is used in a region separated from the peripheral edge portion at a predetermined interval.
  • the adhesive 16a having a partially low melting temperature is used on the opposite side of the region serving as the communication port.
  • the heat transfer suppressing sheet 130 configured in this way, in the first stage, similarly to the heat transfer suppressing sheet 120 shown in FIG. 13, water evaporates from the heat insulating material 11 toward the voids, and the heat insulating material 11 is vaporized. It is deprived of heat and cooled. Then, as a second step, when the adhesive 16a is melted, a moisture release path is formed as shown by an arrow in FIG. As a result, the high-temperature steam moves according to the discharge path and is discharged to the outside through the communication port, so that the cooling effect can be further improved.
  • the adhesive 16a, the adhesive 16b, and the adhesive 16c may all have different melting temperatures, and the region in which each adhesive is used can be arbitrarily determined according to the purpose.
  • the heat transfer suppressing sheets 110, 120, and 130 shown in FIGS. 12 to 14 are designed so that the adhesive is gradually melted in a plurality of regions as the temperature of the battery cell rises. Therefore, it is possible to adjust the timing at which the vapor staying in the void is released, provide a vapor discharge port at an arbitrary position, or provide an arbitrary discharge path.
  • the adhesive may be designed to be melted stepwise in a plurality of regions as the temperature rises, and other than the method of using adhesives having different melting temperatures.
  • a method such as applying an adhesive to a plurality of regions with different coating amounts can be used.
  • FIGS. 12 to 14 in the heat transfer suppressing sheet in which the coating material is adhered to the front surface side and the back surface side of the heat insulating material 11, the adhesive for adhering the heat insulating material 11 and the coating material is gradually melted.
  • the melting temperature of the adhesive for adhering the covering materials to each other is set high, and the heat insulating material 11 and the covering material are adhered to each other.
  • the melting temperature of the adhesive By setting the melting temperature of the adhesive to be low, the same effect as that of the heat transfer suppressing sheet 110 can be obtained.
  • the thickness of the heat transfer suppressing sheet is not particularly limited, but is preferably in the range of 0.05 to 6 mm. If the thickness of the heat transfer suppressing sheet is less than 0.05 mm, sufficient mechanical strength cannot be imparted to the heat transfer suppressing sheet. On the other hand, if the thickness of the heat transfer suppressing sheet exceeds 6 mm, the molding of the heat transfer suppressing sheet itself may become difficult.
  • the heat insulating material used for the heat transfer suppressing sheet according to the present embodiment can be produced, for example, by molding a material containing at least one of inorganic particles and inorganic fibers by a dry molding method or a wet molding method.
  • a dry molding method for example, a press molding method (dry press molding method) and an extrusion molding method (dry extrusion molding method) can be used.
  • inorganic particles, inorganic fibers, and if necessary, organic fibers, organic binders, and the like are charged into a mixer such as a V-type mixer at a predetermined ratio. Then, after the materials charged in the mixer are sufficiently mixed, the mixture is charged into a predetermined mold and press-molded to obtain a heat insulating material. During press molding, it may be heated if necessary.
  • the heat insulating material having concave portions and convex portions can be formed, for example, by a method of pressing using a mold having irregularities at the time of press molding.
  • the press pressure during press molding is preferably in the range of 0.98 MPa or more and 9.80 MPa or less. If the press pressure is less than 0.98 MPa, the strength of the obtained heat insulating material cannot be ensured and may collapse. On the other hand, if the press pressure exceeds 9.80 MPa, the workability may be lowered due to excessive compression, or the bulk density may be increased, so that the solid heat transfer may be increased and the heat insulating property may be lowered.
  • EVA ethylene-vinyl acetate copolymer
  • a paste is prepared by adding water to inorganic particles and fibers, and if necessary, organic fibers and organic binders as binders, and kneading them with a kneader. Then, the obtained paste is extruded from a slit-shaped nozzle using an extrusion molding machine and further dried to obtain a heat insulating material.
  • the dry extrusion method it is preferable to use methyl cellulose, water-soluble cellulose ether or the like as the organic binder, but it is particularly limited as long as it is an organic binder generally used when the dry extrusion method is used. Can be used without.
  • a method for producing a heat insulating material having concave portions and convex portions by a dry extrusion molding method for example, a method such as cutting the surface of a sheet after extruding from a slit-shaped nozzle and before drying into a desired uneven shape is used. Can be mentioned.
  • the wet molding method an inorganic particle and an inorganic fiber, and if necessary, an organic binder as a binder are mixed in water and stirred with a stirrer to prepare a mixed solution. Then, the obtained mixed liquid is poured into a molding machine having a mesh for filtration formed on the bottom surface, and the mixed liquid is dehydrated through the mesh to prepare a wet sheet. Then, by heating and pressurizing the obtained wet sheet, a heat insulating material can be obtained. Before the heating and pressurizing steps, the wet sheet may be ventilated with hot air to dry the sheet, but this aeration-drying treatment is not performed and the wet sheet is heated and dried.
  • an acrylic emulsion using polyvinyl alcohol (PVA) can be selected as the organic binder.
  • PVA polyvinyl alcohol
  • a method for producing a heat insulating material having concave portions and convex portions by a wet molding method for example, a method of press molding a wet sheet using a mold having irregularities before heating and pressurization can be mentioned. can.
  • Manufacturing method of covering material As a method for producing a coating material having concave portions and convex portions, the general-purpose polymer film produced to a desired thickness or a metal film can be used, and a mold having irregularities is used for pressing. A method of molding can be mentioned.
  • the heat transfer suppressing sheet according to the present embodiment can be produced, for example, by applying an adhesive to the heat insulating material or the covering material obtained as described above and adhering the heat insulating material and the covering material. .. Further, as a method of covering the entire heat insulating material with a covering material, for example, the heat insulating material is sandwiched between two covering materials cut larger than the surface of the heat insulating material or between the folded covering materials to insulate. A method of bonding the coating materials to each other by thermocompression bonding or an adhesive around the material can be mentioned.
  • the assembled battery according to the present embodiment is an assembled battery in which a plurality of battery cells are connected in series or in parallel, and a heat transfer suppression sheet for the assembled battery according to the present embodiment is interposed between the battery cells.
  • the assembled battery 100 is a battery cell 100 in which a plurality of battery cells 20 are arranged side by side, connected in series or in parallel, and housed in a battery case 30. A heat transfer suppressing sheet 10 is interposed between them.
  • each battery cell 20 can be cooled during normal use. Further, even when one of the plurality of battery cells 20 becomes hot due to thermal runaway and expands or ignites, the presence of the heat transfer suppressing sheet 10 according to the present embodiment causes the battery. Heat transfer between cells 20 can be suppressed. Therefore, the chain of thermal runaway can be prevented, and the adverse effect on the battery cell 20 can be minimized.

Abstract

A heat transfer suppression sheet for a battery pack which is used for a battery pack including a plurality of battery cells that are connected in series or in parallel, and which enables the respective battery cells to be cooled during normal use while suppressing heat propagation between the respective battery cells in abnormal time, and a battery pack. A heat transfer suppression sheet for a battery pack (10) is used for a battery pack including the plurality of battery cells that are connected in series or in parallel, and is interposed between the battery cells. The heat transfer suppression sheet for a battery pack (10) has a heat insulating material (11) containing at least one of an inorganic particle and an inorganic fiber, and a covering material (12) covering at least part of the heat insulating material (11). Sealed space parts (14) are formed between the heat insulating material (11) and the covering material (12). The covering material (12) is configured so that a communicating hole via which the space parts (14) and the outside of the covering material (12) communicate with each other is formed at a temperature of 60°C or higher.

Description

組電池用熱伝達抑制シート及び組電池Heat transfer suppression sheet for assembled batteries and assembled batteries
 本発明は、例えば、電気自動車又はハイブリッド車などを駆動する電動モータの電源となる組電池に好適に用いられる組電池用熱伝達抑制シート及び該組電池用熱伝達抑制シートを用いた組電池に関する。 The present invention relates to, for example, a heat transfer suppression sheet for an assembled battery that is suitably used for an assembled battery that is a power source for an electric motor that drives an electric vehicle or a hybrid vehicle, and an assembled battery that uses the heat transfer suppression sheet for the assembled battery. ..
 近年、環境保護の観点から電動モータで駆動する電気自動車又はハイブリッド車などの開発が盛んに進められている。この電気自動車又はハイブリッド車などには、駆動用電動モータの電源となるための、複数の電池セルが直列又は並列に接続された組電池が搭載されている。 In recent years, from the viewpoint of environmental protection, the development of electric vehicles or hybrid vehicles driven by electric motors has been actively promoted. This electric vehicle or hybrid vehicle is equipped with an assembled battery in which a plurality of battery cells are connected in series or in parallel to serve as a power source for a driving electric motor.
 この電池セルには、鉛蓄電池やニッケル水素電池などに比べて、高容量かつ高出力が可能なリチウムイオン二次電池が主に用いられているが、電池の内部短絡や過充電などが原因で1つの電池セルに熱暴走が生じた場合(すなわち「異常時」の場合)、隣接する他の電池セルへ熱の伝播が起こることで、他の電池セルの熱暴走を引き起こすおそれがある。 Lithium-ion secondary batteries, which have higher capacity and higher output than lead storage batteries and nickel-hydrogen batteries, are mainly used for these battery cells, but due to internal short circuits and overcharging of the batteries. When a thermal runaway occurs in one battery cell (that is, in the case of "abnormality"), heat is propagated to another adjacent battery cell, which may cause a thermal runaway of another battery cell.
 例えば、特許文献1には、リチウムイオン二次電池のような複数の蓄電素子間において、効果的な断熱を実現することができる蓄電装置が開示されている。上記特許文献1に記載の蓄電装置は、互いに隣り合う第一蓄電素子と第二蓄電素子との間に、第一板材及び第二板材が配置されたものである。また、第一板材と第二板材との間には、これら第一板材及び第二板材よりも熱伝導率が低い物質の層である低熱伝導層が形成されている。 For example, Patent Document 1 discloses a power storage device that can realize effective heat insulation between a plurality of power storage elements such as a lithium ion secondary battery. In the power storage device described in Patent Document 1, the first plate material and the second plate material are arranged between the first power storage element and the second power storage element that are adjacent to each other. Further, a low thermal conductivity layer, which is a layer of a substance having a lower thermal conductivity than the first plate material and the second plate material, is formed between the first plate material and the second plate material.
 このように構成された特許文献1に係る蓄電装置において、第一蓄電素子から第二蓄電素子に向かう輻射熱、又は、第二蓄電素子から第一蓄電素子に向かう輻射熱は、第一板材及び第二板材によって遮断される。また、これら2枚の板材の一方から他方への熱の移動は、低熱伝導層によって抑制される。 In the power storage device according to Patent Document 1 configured in this way, the radiant heat from the first power storage element to the second power storage element or the radiant heat from the second power storage element to the first power storage element is the first plate material and the second. It is blocked by the plate material. Further, the transfer of heat from one of these two plates to the other is suppressed by the low thermal conductive layer.
 しかし、上記蓄電装置は、第一蓄電素子と第二蓄電素子との間に断熱層が設けられているのみであるため、充放電サイクル時に発熱する電池セルを効果的に冷却することができなかった。 However, since the power storage device is provided only with a heat insulating layer between the first power storage element and the second power storage element, it is not possible to effectively cool the battery cell that generates heat during the charge / discharge cycle. rice field.
 そこで、特許文献2には、異常時における各電池セル間の熱の伝播を抑制しつつ、通常使用時における各電池セルを冷却することができる、組電池用吸熱シートが提案されている。上記特許文献2に記載の吸熱シートは、脱水温度が異なる物質を2種以上含有するものである。そして、上記2種以上の物質のうち、少なくとも1種は、電池セルの通常使用時において脱水可能であり、他の少なくとも1種は、電池セルの異常時において脱水可能となるように構成されている。 Therefore, Patent Document 2 proposes an endothermic sheet for an assembled battery that can cool each battery cell during normal use while suppressing heat propagation between the battery cells at the time of abnormality. The endothermic sheet described in Patent Document 2 contains two or more substances having different dehydration temperatures. Then, at least one of the above two or more kinds of substances is configured to be dehydratable during normal use of the battery cell, and the other at least one kind is configured to be dehydratable at the time of abnormality of the battery cell. There is.
日本国特開2015-211013号公報Japanese Patent Application Laid-Open No. 2015-210113 日本国特開2019-175806号公報Japanese Patent Application Laid-Open No. 2019-175806
 ところで、組電池化した電池セルに対し充放電サイクルを行う場合(すなわち「通常使用時」の場合)において、電池セルの充放電性能を十分に発揮させるためには、電池セル表面の温度を所定値以下(例えば、150℃以下)に維持する必要がある。
 また、電池セルが、例えば200℃以上の温度となるような異常事態が発生した場合に、電池セルを効果的に冷却する必要がある。
 このように、通常使用時に電池セル表面の温度を維持するとともに、高温となる異常時に効果的に冷却することができる熱伝達抑制手段については、近時、更なる改良が要求されている。
By the way, in the case of performing a charge / discharge cycle on a battery cell assembled into an assembled battery (that is, in the case of "normal use"), the temperature of the battery cell surface is predetermined in order to fully exhibit the charge / discharge performance of the battery cell. It is necessary to maintain the value or less (for example, 150 ° C. or less).
Further, it is necessary to effectively cool the battery cell when an abnormal situation occurs in which the temperature of the battery cell becomes, for example, 200 ° C. or higher.
As described above, the heat transfer suppressing means capable of maintaining the temperature of the surface of the battery cell during normal use and effectively cooling at the time of an abnormal temperature of high temperature has recently been required to be further improved.
 本発明は、上記課題に鑑みてなされたものであり、複数の電池セルが直列又は並列に接続される組電池に使用され、異常時における各電池セル間の熱の伝播を抑制しつつ、通常使用時における各電池セルを冷却することができる、組電池用熱伝達抑制シート及び組電池を提供することを目的とする。 The present invention has been made in view of the above problems, and is used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and is usually used while suppressing heat propagation between the battery cells at the time of abnormality. It is an object of the present invention to provide a heat transfer suppression sheet for an assembled battery and an assembled battery capable of cooling each battery cell during use.
 本発明の上記目的は、組電池用熱伝達抑制シートに係る下記[1]の構成により達成される。 The above object of the present invention is achieved by the configuration of the following [1] relating to the heat transfer suppression sheet for an assembled battery.
[1] 複数の電池セルが直列又は並列に接続される組電池に使用され、前記電池セル間に介在される組電池用熱伝達抑制シートであって、
 無機粒子及び無機繊維の少なくとも一方を含有する断熱材と、
 前記断熱材の少なくとも一部を被覆する被覆材と、を有し、
 前記断熱材と前記被覆材との間に、密閉された空隙部が形成されており、
 前記被覆材は、60℃以上の温度で前記空隙部と前記被覆材の外部とを連通する連通口が形成されるように構成される、組電池用熱伝達抑制シート。
[1] A heat transfer suppression sheet for an assembled battery used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and interposed between the battery cells.
A heat insulating material containing at least one of inorganic particles and inorganic fibers, and
With a covering material that covers at least a part of the heat insulating material,
A closed gap is formed between the heat insulating material and the covering material.
The coating material is a heat transfer suppressing sheet for an assembled battery, which is configured to form a communication port that communicates the void portion with the outside of the coating material at a temperature of 60 ° C. or higher.
 また、組電池用熱伝達抑制シートに係る本発明の好ましい実施形態は、以下の[2]~[8]に関する。 Further, preferred embodiments of the present invention relating to the heat transfer suppression sheet for assembled batteries relate to the following [2] to [8].
[2] 前記断熱材に含有される前記無機粒子及び前記無機繊維の少なくとも一方は、加熱により水分を放出する材料を含む、[1]に記載の組電池用熱伝達抑制シート。 [2] The heat transfer suppressing sheet for an assembled battery according to [1], wherein at least one of the inorganic particles and the inorganic fibers contained in the heat insulating material contains a material that releases moisture by heating.
[3] 前記断熱材と前記被覆材とは、60℃以上の温度で溶融する接着剤により接着されている、[1]又は[2]に記載の組電池用熱伝達抑制シート。 [3] The heat transfer suppressing sheet for an assembled battery according to [1] or [2], wherein the heat insulating material and the covering material are adhered with an adhesive that melts at a temperature of 60 ° C. or higher.
[4] 前記被覆材は、60℃以上の温度で溶融する高分子フィルムから構成される、[1]~[3]のいずれか1つに記載の組電池用熱伝達抑制シート。 [4] The heat transfer suppressing sheet for an assembled battery according to any one of [1] to [3], wherein the coating material is composed of a polymer film that melts at a temperature of 60 ° C. or higher.
[5] 前記被覆材は、金属板から構成され、前記断熱材と前記被覆材とが、60℃以上の温度で溶融する接着剤により接着されている、[1]~[3]のいずれか1つに記載の組電池用熱伝達抑制シート。 [5] Any of [1] to [3], wherein the covering material is composed of a metal plate, and the heat insulating material and the covering material are adhered with an adhesive that melts at a temperature of 60 ° C. or higher. The heat transfer suppression sheet for an assembled battery according to one.
[6] 前記被覆材は、金属板から構成され、前記金属板同士が、60℃以上の温度で溶融する接着剤により接着されている、[1]~[3]のいずれか1つに記載の組電池用熱伝達抑制シート。 [6] The coating material is made of a metal plate, and the metal plates are bonded to each other by an adhesive that melts at a temperature of 60 ° C. or higher, according to any one of [1] to [3]. Heat transfer suppression sheet for assembled batteries.
[7] 前記接着剤として、温度の上昇により複数の領域で段階的に溶融するように、前記複数の領域に、互いに異なる溶融温度を有する複数の接着剤が使用される、[3]、[5]及び[6]のいずれか1つに記載の組電池用熱伝達抑制シート。 [7] As the adhesive, a plurality of adhesives having different melting temperatures are used in the plurality of regions so that the adhesive gradually melts in a plurality of regions as the temperature rises. [3], [ The heat transfer suppression sheet for an assembled battery according to any one of 5] and [6].
[8] 前記接着剤は、温度の上昇により複数の領域で段階的に溶融するように、前記複数の領域に、互いに異なる塗布量で塗布される、[3]、[5]及び[6]のいずれか1つに記載の組電池用熱伝達抑制シート。 [8] The adhesive is applied to the plurality of regions in different coating amounts so that the adhesive gradually melts in the plurality of regions as the temperature rises, [3], [5] and [6]. The heat transfer suppression sheet for an assembled battery according to any one of the above.
 また、本発明の上記目的は、組電池に係る下記[9]の構成により達成される。 Further, the above object of the present invention is achieved by the configuration of the following [9] relating to the assembled battery.
[9] 複数の電池セルが直列又は並列に接続される組電池であって、[1]~[8]のいずれか1つに記載の組電池用熱伝達抑制シートが前記電池セル間に介在される組電池。 [9] An assembled battery in which a plurality of battery cells are connected in series or in parallel, and the heat transfer suppressing sheet for the assembled battery according to any one of [1] to [8] is interposed between the battery cells. Assembled battery to be used.
 本発明の組電池用熱伝達抑制シートは、複数の電池セルが直列又は並列に接続された組電池に使用される熱伝達抑制シートにおいて、断熱材と被覆材との間に密閉された空隙部が形成されている。したがって、組電池の通常使用時に、断熱材から蒸発した水分を空隙部に滞留させることができ、このときの気化熱を利用することにより、電池セルを効果的に冷却することができる。
 また、組電池の異常時に、空隙部と被覆材の外部とを連通する連通口が形成されるため、熱せられた蒸気が連通口を介して外部に放出される。したがって、各電池セル間の熱の伝播を抑制することができる。
The heat transfer suppression sheet for an assembled battery of the present invention is a heat transfer suppressing sheet used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and is a gap portion sealed between a heat insulating material and a coating material. Is formed. Therefore, during normal use of the assembled battery, the moisture evaporated from the heat insulating material can be retained in the gap portion, and the battery cell can be effectively cooled by utilizing the heat of vaporization at this time.
Further, in the event of an abnormality in the assembled battery, a communication port for communicating the gap portion and the outside of the covering material is formed, so that the heated steam is discharged to the outside through the communication port. Therefore, heat propagation between the battery cells can be suppressed.
 本発明の組電池は、上記熱伝達抑制シートを複数の電池セル間に介在させているため、通常使用時において、各電池セルを冷却することができるとともに、異常時において、電池セル間の熱の伝播を抑制することができ、熱暴走の連鎖を阻止することができる。 In the assembled battery of the present invention, since the heat transfer suppressing sheet is interposed between the plurality of battery cells, each battery cell can be cooled during normal use, and heat between the battery cells can be cooled during abnormal conditions. It is possible to suppress the propagation of heat and prevent the chain of thermal runaway.
図1は、本発明の第1の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材を模式的に示す平面図である。FIG. 2 is a plan view schematically showing a heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る組電池用熱伝達抑制シートを適用した組電池を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an assembled battery to which the heat transfer suppressing sheet for an assembled battery according to the first embodiment of the present invention is applied. 図4は、本発明の第1の実施形態に係る組電池用熱伝達抑制シートの異常時の様子を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention at the time of abnormality. 図5は、本発明の第2の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a second embodiment of the present invention. 図6は、本発明の第3の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a third embodiment of the present invention. 図7は、本発明の第4の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fourth embodiment of the present invention. 図8Aは、本発明の第5の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。FIG. 8A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fifth embodiment of the present invention. 図8Bは、本発明の第5の実施形態に係る組電池用熱伝達抑制シートの異常時の様子を模式的に示す断面図である。FIG. 8B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the fifth embodiment of the present invention at the time of abnormality. 図9Aは、本発明の第6の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。FIG. 9A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a sixth embodiment of the present invention. 図9Bは、本発明の第6の実施形態に係る組電池用熱伝達抑制シートの異常時の様子を模式的に示す断面図である。FIG. 9B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the sixth embodiment of the present invention at the time of abnormality. 図10は、本発明の第1~第6の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材の他の例を模式的に示す平面図である。FIG. 10 is a plan view schematically showing another example of the heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first to sixth embodiments of the present invention. 図11は、本発明の第1~第6の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材のさらに他の例を模式的に示す平面図である。FIG. 11 is a plan view schematically showing still another example of the heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first to sixth embodiments of the present invention. 図12は、互いに異なる溶融温度を有する2種類の接着剤を使用した組電池用熱伝達抑制シートを模式的に示す平面図である。FIG. 12 is a plan view schematically showing a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures. 図13は、互いに異なる溶融温度を有する2種類の接着剤を使用した組電池用熱伝達抑制シートの他の例を模式的に示す平面図である。FIG. 13 is a plan view schematically showing another example of a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures. 図14は、互いに異なる溶融温度を有する2種類の接着剤を使用した組電池用熱伝達抑制シートのさらに他の例を模式的に示す平面図である。FIG. 14 is a plan view schematically showing still another example of the heat transfer suppression sheet for an assembled battery using two kinds of adhesives having different melting temperatures.
 本発明者らは、高温の熱が発生する異常時における各電池セル間の熱の伝播を抑制しつつ、比較的低温の熱が発生する通常使用時における各電池セルを冷却することができる、組電池用熱伝達抑制シートを提供するため、鋭意検討を行った。 The present inventors can cool each battery cell in normal use in which relatively low temperature heat is generated while suppressing heat propagation between the battery cells in an abnormal state in which high temperature heat is generated. In order to provide a heat transfer suppression sheet for assembled batteries, we conducted a diligent study.
 その結果、本発明者らは、通常使用時においては、断熱材と被覆材との間に密閉された空隙部が形成されており、60℃以上の温度で空隙部と被覆材の外部とを連通する連通口が形成されるように構成されることにより、上記課題を解決できることを見出した。 As a result, in normal use, the present inventors have formed a closed gap between the heat insulating material and the covering material, and at a temperature of 60 ° C. or higher, the gap and the outside of the covering material are separated from each other. It has been found that the above-mentioned problems can be solved by forming a communication port for communication.
 すなわち、電池セルの温度が比較的低い通常使用時においては、密閉された空隙部が存在することにより、断熱材から蒸発した水分を空隙部に滞留させることができ、蒸発時の気化熱を利用することにより、電池セルを効果的に冷却することができる。
 また、電池セルの温度が高温となる異常時においては、空隙部と被覆材の外部とを連通する連通口が形成され、熱せられた蒸気が連通口を介して外部に放出されるため、各電池セル間の熱の伝播を抑制することができる。
That is, in normal use when the temperature of the battery cell is relatively low, the presence of the closed gap allows the moisture evaporated from the heat insulating material to stay in the gap, and the heat of vaporization during evaporation is utilized. By doing so, the battery cell can be effectively cooled.
Further, in an abnormal situation where the temperature of the battery cell becomes high, a communication port for communicating the gap and the outside of the coating material is formed, and the heated steam is discharged to the outside through the communication port. It is possible to suppress heat propagation between battery cells.
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、本発明は、以下で説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 なお、以下において「~」とは、その下限の値以上、その上限の値以下であることを意味する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
In the following, "to" means that the value is equal to or greater than the lower limit value and equal to or less than the upper limit value.
[1.組電池用熱伝達抑制シート]
 以下、本実施形態に係る組電池用熱伝達抑制シートについて、第1の実施形態から第6の実施形態まで順に説明する。その後、本実施形態に係る断熱材の他の例や、本実施形態に係る組電池用熱伝達抑制シートを構成する断熱材、被覆材等について説明する。さらに、本実施形態に係る組電池用熱伝達抑制シートの製造方法について説明する。
[1. Heat transfer suppression sheet for assembled batteries]
Hereinafter, the heat transfer suppression sheet for the assembled battery according to the present embodiment will be described in order from the first embodiment to the sixth embodiment. After that, other examples of the heat insulating material according to the present embodiment, and the heat insulating material, the covering material, and the like constituting the heat transfer suppression sheet for the assembled battery according to the present embodiment will be described. Further, a method for manufacturing a heat transfer suppression sheet for an assembled battery according to the present embodiment will be described.
<第1の実施形態>
 図1は、第1の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。また、図2は、第1の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材を模式的に示す平面図である。以下、組電池用熱伝達抑制シート10を、単に熱伝達抑制シート10ということがある。
 本実施形態に係る組電池用熱伝達抑制シート10は、断熱材11と、断熱材11の主面となる表面11a及び裏面11bを被覆する被覆材12と、を有する。本実施形態において被覆材12は、断熱材11の端面11cを被覆していない。なお、断熱材11の表面11a及び裏面11bとは、後述するように、熱伝達抑制シート10と電池セルとが積層された場合において、電池セルに対向する面をいい、端面11cとは、熱伝達抑制シート10の厚さ方向に平行な4面をいう。
<First Embodiment>
FIG. 1 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to the first embodiment. Further, FIG. 2 is a plan view schematically showing a heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the first embodiment. Hereinafter, the heat transfer suppressing sheet 10 for an assembled battery may be simply referred to as a heat transfer suppressing sheet 10.
The heat transfer suppressing sheet 10 for an assembled battery according to the present embodiment includes a heat insulating material 11 and a covering material 12 that covers the front surface 11a and the back surface 11b that are the main surfaces of the heat insulating material 11. In the present embodiment, the covering material 12 does not cover the end face 11c of the heat insulating material 11. As will be described later, the front surface 11a and the back surface 11b of the heat insulating material 11 refer to the surfaces facing the battery cells when the heat transfer suppressing sheet 10 and the battery cells are laminated, and the end surface 11c refers to heat. Four surfaces parallel to the thickness direction of the transmission suppression sheet 10.
 断熱材11は、例えば、結晶水又は吸着水を含む無機粒子と無機繊維とを含有し、結晶水又は吸着水は、加熱により水分を放出する性質を有する。図1及び図2に示すように、断熱材11の表面11aには、複数の凹部13aが規則的に形成されており、凹部13aが形成されていない領域は、実質的に凸部13bを構成している。
 凹部13aは、例えば平面視で長方形であり、図2に示すように、長手方向が断熱材11の一辺に平行である凹部と、長手方向が断熱材11の一辺に直交する方向である凹部とが、交互に配列されている。
The heat insulating material 11 contains, for example, inorganic particles containing water of crystallization or adsorbed water and inorganic fibers, and the water of crystallization or adsorbed water has a property of releasing water by heating. As shown in FIGS. 1 and 2, a plurality of recesses 13a are regularly formed on the surface 11a of the heat insulating material 11, and the region where the recesses 13a are not formed substantially constitutes the convex portion 13b. is doing.
The recess 13a is, for example, rectangular in a plan view, and as shown in FIG. 2, a recess whose longitudinal direction is parallel to one side of the heat insulating material 11 and a recess whose longitudinal direction is orthogonal to one side of the heat insulating material 11 Are arranged alternately.
 また、被覆材12は、例えば60℃以上の温度で溶融する高分子フィルムであり、断熱材11の凸部13bと被覆材12とは、不図示の接着剤で接着されている。本実施形態においては、有機物質又は無機物質からなる接着剤を用いており、この接着剤は60℃以上で溶融する性質を有する。
 なお、凹部13aが形成されている領域は、被覆材12と接触していないため、結果として断熱材11と被覆材12との間に空隙部14が形成されている。そして、空隙部14の周囲に位置する凸部13bと被覆材12とが接着されていることにより、空隙部14は、60℃未満の温度では、必ず密閉された状態となっている。
Further, the covering material 12 is, for example, a polymer film that melts at a temperature of 60 ° C. or higher, and the convex portion 13b of the heat insulating material 11 and the covering material 12 are adhered with an adhesive (not shown). In the present embodiment, an adhesive composed of an organic substance or an inorganic substance is used, and this adhesive has a property of melting at 60 ° C. or higher.
Since the region where the recess 13a is formed is not in contact with the covering material 12, as a result, a gap portion 14 is formed between the heat insulating material 11 and the covering material 12. Since the convex portion 13b located around the gap portion 14 and the covering material 12 are adhered to each other, the gap portion 14 is always in a sealed state at a temperature of less than 60 ° C.
 図3は、第1の実施形態に係る組電池用熱伝達抑制シートを適用した組電池を模式的に示す断面図である。組電池100は、電池ケース30と、電池ケース30の内部に格納された複数の電池セル20と、これらの電池セル20間に介在された熱伝達抑制シート10と、を有する。複数の電池セル20同士は、不図示のバスバー等により、直列又は並列に接続されている。
 なお、電池セル20は、例えば、リチウムイオン二次電池が好適に用いられるが、特にこれに限定されず、その他の二次電池にも適用され得る。
FIG. 3 is a cross-sectional view schematically showing an assembled battery to which the heat transfer suppressing sheet for the assembled battery according to the first embodiment is applied. The assembled battery 100 has a battery case 30, a plurality of battery cells 20 housed inside the battery case 30, and a heat transfer suppressing sheet 10 interposed between the battery cells 20. The plurality of battery cells 20 are connected in series or in parallel by a bus bar or the like (not shown).
As the battery cell 20, for example, a lithium ion secondary battery is preferably used, but the battery cell 20 is not particularly limited to this, and can be applied to other secondary batteries.
 このように構成された熱伝達抑制シート10においては、通常使用時における電池セル20の温度範囲である、常温(20℃程度)から150℃程度までの比較的低温領域で温度が上昇すると、断熱材11にも熱が伝播する。本実施形態において、断熱材11は、結晶水又は吸着水を含む無機粒子を含有しており、結晶水又は吸着水は加熱により水分を放出する材料であるため、断熱材11が加熱されることにより、無機粒子から水分が蒸発する。そして、蒸発した水分のうち、一部は空隙部14に滞留し、他の一部は、熱伝達抑制シート10の端面11cから放出される。このとき、断熱材11は気化熱を奪われて冷却されるため、熱伝達抑制シート10が電池セル20を効果的に冷却することができる。 The heat transfer suppressing sheet 10 configured in this way is heat-insulated when the temperature rises in a relatively low temperature range from normal temperature (about 20 ° C.) to about 150 ° C., which is the temperature range of the battery cell 20 during normal use. Heat also propagates to the material 11. In the present embodiment, the heat insulating material 11 contains inorganic particles containing water of crystallization or adsorbed water, and since the water of crystallization or adsorbed water is a material that releases water by heating, the heat insulating material 11 is heated. Evaporates water from the inorganic particles. Then, a part of the evaporated water stays in the void portion 14, and the other part is released from the end face 11c of the heat transfer suppressing sheet 10. At this time, since the heat insulating material 11 is deprived of the heat of vaporization and cooled, the heat transfer suppressing sheet 10 can effectively cool the battery cell 20.
 なお、電池セル20が効果的に冷却された後、組電池100の使用(すなわち、充放電)が停止された場合には、空隙部14に滞留していた水蒸気は冷却されて水滴となり、時間の経過に伴って断熱材11内に吸収される。そして、次回使用時に、再度、断熱材11中の水分が蒸発することにより、断熱材11は気化熱を奪われて、電池セル20を冷却するというサイクルを繰り返す。 When the use (that is, charging / discharging) of the assembled battery 100 is stopped after the battery cell 20 is effectively cooled, the water vapor staying in the gap 14 is cooled to become water droplets, which is time-consuming. Is absorbed into the heat insulating material 11 with the progress of. Then, at the next use, the moisture in the heat insulating material 11 evaporates again, so that the heat insulating material 11 is deprived of the heat of vaporization and repeats the cycle of cooling the battery cell 20.
 図4は、第1の実施形態に係る組電池用熱伝達抑制シートの異常時の様子を模式的に示す断面図である。なお、断熱材11の表面11aでは、被覆材12の一部が溶融した状態を表し、裏面11bでは、温度の上昇により、被覆材12と、断熱材11とを接着する接着剤が溶融した状態を表す。
 図4に示すように、異常時、例えば、電池セル20の温度が、例えば200℃以上に上昇すると、被覆材12は溶融し、空隙部14と外部とを連通する連通口15が形成される。また、高温でも溶融しない被覆材12を用いた場合であっても、接着剤が溶融すると、空隙部14と熱伝達抑制シート10の外部とを連通する連通口15が形成される。
FIG. 4 is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the first embodiment at the time of abnormality. The front surface 11a of the heat insulating material 11 represents a state in which a part of the covering material 12 is melted, and the back surface 11b is a state in which the adhesive for adhering the covering material 12 and the heat insulating material 11 is melted due to an increase in temperature. Represents.
As shown in FIG. 4, when an abnormality occurs, for example, when the temperature of the battery cell 20 rises to, for example, 200 ° C. or higher, the covering material 12 melts and a communication port 15 for communicating the gap 14 and the outside is formed. .. Further, even when the coating material 12 that does not melt even at a high temperature is used, when the adhesive melts, a communication port 15 that connects the gap portion 14 and the outside of the heat transfer suppressing sheet 10 is formed.
 このように、連通口15が形成されると、無機粒子から蒸発し、空隙部14に滞留して高温となった蒸気は、連通口15を介して熱伝達抑制シート10の外部に放出される。したがって、電池セル20が熱暴走を引き起こした場合においても、各電池セル20間の熱の伝播を効果的に抑制することができる。 When the communication port 15 is formed in this way, the steam that evaporates from the inorganic particles and stays in the voids 14 and becomes high in temperature is released to the outside of the heat transfer suppression sheet 10 through the communication port 15. .. Therefore, even when the battery cells 20 cause thermal runaway, heat propagation between the battery cells 20 can be effectively suppressed.
 本実施形態において使用した高分子フィルム及び接着剤は、いずれも60℃以上の任意の温度で溶融する性質を有するものである。すなわち、使用する高分子フィルム及び接着剤の溶融温度未満の温度領域では、上記空隙部14は必ず密閉された状態となっている。高分子フィルム及び接着剤は、その種類によって種々の溶融温度を有するため、必要に応じて、60℃以上の範囲で所望の溶融温度を有する高分子フィルム又は接着剤を選択することができる。 Both the polymer film and the adhesive used in this embodiment have the property of melting at an arbitrary temperature of 60 ° C. or higher. That is, in the temperature range lower than the melting temperature of the polymer film and the adhesive to be used, the void portion 14 is always in a sealed state. Since the polymer film and the adhesive have various melting temperatures depending on the type thereof, a polymer film or an adhesive having a desired melting temperature in the range of 60 ° C. or higher can be selected, if necessary.
 なお、空隙部14と被覆材12の外部とを連通する連通口が形成される温度は、80℃以上であることが好ましく、100℃以上であることがより好ましい。
 一方、空隙部14と被覆材12の外部とを連通する連通口が形成される温度の上限は特に規定しないが、500℃以下であることが好ましく、350℃以下であることがより好ましく、300℃以下であることがさらに好ましく、250℃以下であることが特に好ましい。
The temperature at which the communication port for communicating the gap 14 and the outside of the covering material 12 is formed is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher.
On the other hand, the upper limit of the temperature at which the communication port for communicating the gap portion 14 and the outside of the covering material 12 is formed is not particularly specified, but is preferably 500 ° C. or lower, more preferably 350 ° C. or lower, and 300. It is more preferably ° C. or lower, and particularly preferably 250 ° C. or lower.
<第2の実施形態>
 図5は、第2の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。
 なお、以下の第2~第6の実施形態を示す図5~図9Bにおいて、上記第1の実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略又は簡略化する。また、以下に示す実施形態は、全て、図3に示す組電池100に記載の熱伝達抑制シート10に代えて使用することができるため、第2~第6の実施形態に係る熱伝達抑制シートを組電池100に適用したものとして、その効果等を説明する。
<Second embodiment>
FIG. 5 is a cross-sectional view schematically showing the heat transfer suppression sheet for an assembled battery according to the second embodiment.
In FIGS. 5 to 9B showing the following second to sixth embodiments, the same or equivalent parts as those in the first embodiment are designated by the same reference numerals in the drawings, and the description thereof is omitted or simplified. do. Further, since all of the embodiments shown below can be used in place of the heat transfer suppressing sheet 10 described in the assembled battery 100 shown in FIG. 3, the heat transfer suppressing sheets according to the second to sixth embodiments can be used. Is applied to the assembled battery 100, and its effect and the like will be described.
 第2の実施形態に係る組電池用熱伝達抑制シート40は、断熱材11と、断熱材11の主面となる表面11a、裏面11b及び端面11cを被覆する被覆材12とを有する。本実施形態においては、断熱材11の端面11cにも凹部13a及び凸部13bが形成されている。すなわち、不図示の接着剤等で袋状に形成された被覆材12が、断熱材11の全面を被覆しており、断熱材11は被覆材12によって完全に密閉されている。 The heat transfer suppressing sheet 40 for an assembled battery according to the second embodiment has a heat insulating material 11 and a covering material 12 that covers the front surface 11a, the back surface 11b, and the end surface 11c, which are the main surfaces of the heat insulating material 11. In the present embodiment, the concave portion 13a and the convex portion 13b are also formed on the end surface 11c of the heat insulating material 11. That is, a covering material 12 formed in a bag shape with an adhesive or the like (not shown) covers the entire surface of the heat insulating material 11, and the heat insulating material 11 is completely sealed by the covering material 12.
 このように構成された熱伝達抑制シート40においても、通常使用時に、上記第1の実施形態と同様の効果を得ることができる。なお、第2の実施形態では、被覆材12によって断熱材11を完全に被覆しているため、通常使用時において断熱材11が加熱され、無機粒子から水分が蒸発した場合に、蒸発した全ての水分は空隙部14に滞留し、熱伝達抑制シート40から外部には放出されない。ただし、水分は蒸発するため、断熱材11は気化熱を奪われて冷却され、熱伝達抑制シート10が電池セル20を効果的に冷却することができる。 Even in the heat transfer suppressing sheet 40 configured in this way, the same effect as that of the first embodiment can be obtained at the time of normal use. In the second embodiment, since the heat insulating material 11 is completely covered with the covering material 12, when the heat insulating material 11 is heated during normal use and water evaporates from the inorganic particles, all the evaporated material 11 is evaporated. Moisture stays in the void 14 and is not released to the outside from the heat transfer suppressing sheet 40. However, since the water evaporates, the heat insulating material 11 is deprived of the heat of vaporization and cooled, and the heat transfer suppressing sheet 10 can effectively cool the battery cell 20.
 また、第2の実施形態においては、蒸発した水分が外部に放出されないため、組電池の使用が停止された場合に、蒸発したほとんどの水分は、再度、断熱材11内に吸収される。したがって、第2の実施形態に係る組電池用熱伝達抑制シート40によれば、電池セル20を冷却する効果を長期間維持することができる。 Further, in the second embodiment, since the evaporated water is not released to the outside, most of the evaporated water is absorbed into the heat insulating material 11 again when the use of the assembled battery is stopped. Therefore, according to the heat transfer suppression sheet 40 for the assembled battery according to the second embodiment, the effect of cooling the battery cell 20 can be maintained for a long period of time.
 さらに、異常時においては、被覆材12同士を接着している接着剤が溶融したり、被覆材12が溶融することにより、図4に示す場合と同様に、空隙部14と外部との間に連通口15が形成されるため、第1の実施形態と同様の効果を得ることができる。 Further, in an abnormal situation, the adhesive adhering the covering materials 12 to each other melts, or the covering material 12 melts, so that between the gap portion 14 and the outside as in the case shown in FIG. Since the communication port 15 is formed, the same effect as that of the first embodiment can be obtained.
<第3の実施形態>
 図6は、第3の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。
 第3の実施形態に係る組電池用熱伝達抑制シート50は、断熱材51と、断熱材51の表面51a及び裏面51bを被覆する被覆材52とを有する。本実施形態においては、第1の実施形態と同様に、被覆材52は、断熱材51の端面51cを被覆していない。
<Third embodiment>
FIG. 6 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a third embodiment.
The heat transfer suppressing sheet 50 for an assembled battery according to the third embodiment has a heat insulating material 51 and a covering material 52 that covers the front surface 51a and the back surface 51b of the heat insulating material 51. In the present embodiment, as in the first embodiment, the covering material 52 does not cover the end face 51c of the heat insulating material 51.
 第3の実施形態において、断熱材51の表面は平坦であり、凹部及び凸部は形成されていない。一方、被覆材52はフィルムを材料としており、その表面に凹凸加工が施され、断熱材51に対向する表面に凹部53a及び凸部53bが形成されている。そして、被覆材52の凸部53bと断熱材51とは、不図示の接着剤で接着されており、凹部53aと断熱材51との間には、密閉された空隙部14が形成されている。 In the third embodiment, the surface of the heat insulating material 51 is flat, and no concave portion or convex portion is formed. On the other hand, the covering material 52 is made of a film, and the surface thereof is subjected to uneven processing, and concave portions 53a and convex portions 53b are formed on the surface facing the heat insulating material 51. The convex portion 53b of the covering material 52 and the heat insulating material 51 are adhered to each other with an adhesive (not shown), and a closed gap portion 14 is formed between the concave portion 53a and the heat insulating material 51. ..
 このように構成された熱伝達抑制シート50においても、通常使用時及び異常時において、上記第1の実施形態と同様の効果を得ることができる。なお、第3の実施形態で示す被覆材52を用いて、断熱材51の全面を被覆するように熱伝達抑制シートを構成することにより、上記第2の実施形態と同様に、電池セル20を冷却する効果を長期間維持することができる。 Even with the heat transfer suppressing sheet 50 configured in this way, the same effect as that of the first embodiment can be obtained during normal use and abnormal times. By using the covering material 52 shown in the third embodiment to form a heat transfer suppressing sheet so as to cover the entire surface of the heat insulating material 51, the battery cell 20 can be formed in the same manner as in the second embodiment. The cooling effect can be maintained for a long period of time.
<第4の実施形態>
 図7は、第4の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。
 第4の実施形態に係る組電池用熱伝達抑制シート60は、断熱材11と、断熱材11の全面を被覆する被覆材52とを有する。本実施形態において、断熱材11には凹部13a及び凸部13bが形成されている。また、被覆材にも、断熱材11に対向する表面に、断熱材11から離隔する方向に凹む凹部53aと、断熱材11に向かって突出する形状の凸部53bとが形成されている。そして、被覆材52の凸部53bと断熱材11の凸部13bとは、不図示の接着剤で接着されており、被覆材52の凹部53aと断熱材11の凹部13aとの間には、密閉された空隙部14が形成されている。
<Fourth Embodiment>
FIG. 7 is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fourth embodiment.
The heat transfer suppressing sheet 60 for an assembled battery according to the fourth embodiment has a heat insulating material 11 and a covering material 52 that covers the entire surface of the heat insulating material 11. In the present embodiment, the heat insulating material 11 is formed with a concave portion 13a and a convex portion 13b. Further, the covering material also has a concave portion 53a recessed in a direction away from the heat insulating material 11 and a convex portion 53b having a shape protruding toward the heat insulating material 11 on the surface facing the heat insulating material 11. The convex portion 53b of the covering material 52 and the convex portion 13b of the heat insulating material 11 are adhered to each other with an adhesive (not shown), and the concave portion 53a of the covering material 52 and the concave portion 13a of the heat insulating material 11 are bonded to each other. A closed gap 14 is formed.
 このように構成された熱伝達抑制シート60においても、通常使用時及び異常時において、上記第2の実施形態と同様の効果を得ることができる。また、凹部13aと凹部53aとにより空隙部14を構成するため、第2や第3の実施形態に係る組電池用熱伝達抑制シートに比べ、空隙部14の体積が増加する。したがって、断熱材11から水分が蒸発しやすくなり、通常使用時において、電池セル20を冷却する効果をより一層向上させることができる。 Even with the heat transfer suppressing sheet 60 configured in this way, the same effect as that of the second embodiment can be obtained during normal use and abnormal times. Further, since the gap portion 14 is formed by the recess 13a and the recess 53a, the volume of the gap portion 14 is increased as compared with the heat transfer suppression sheet for the assembled battery according to the second and third embodiments. Therefore, the moisture easily evaporates from the heat insulating material 11, and the effect of cooling the battery cell 20 in normal use can be further improved.
 なお、第4の実施形態では、被覆材52は断熱材11の端面11cまで覆う構成としているが、上記第1の実施形態と同様に、断熱材11の端面11cは解放されていてもよい。端面11cを解放させることにより、通常使用時において、蒸発した水分の一部が外部に放出されるため、断熱材11内の水分がより蒸発しやすくなり、気化熱による冷却効果を高めることができる。
 また、異常時において、高温で溶融しない被覆材52を用いた場合であっても、接着剤が溶融すると、空隙部14と熱伝達抑制シート60の外部とを連通する連通口15が形成されるため、電池セル20を冷却する効果を得ることができる。
In the fourth embodiment, the covering material 52 is configured to cover up to the end face 11c of the heat insulating material 11, but the end face 11c of the heat insulating material 11 may be released as in the first embodiment. By releasing the end face 11c, a part of the evaporated water is released to the outside during normal use, so that the water in the heat insulating material 11 is more easily evaporated, and the cooling effect by the heat of vaporization can be enhanced. ..
Further, even when the coating material 52 that does not melt at a high temperature is used at the time of abnormality, when the adhesive melts, a communication port 15 that communicates between the gap portion 14 and the outside of the heat transfer suppressing sheet 60 is formed. Therefore, the effect of cooling the battery cell 20 can be obtained.
<第5の実施形態>
 図8Aは、第5の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。また、図8Bは、第5の実施形態に係る組電池用熱伝達抑制シートの異常時の様子を模式的に示す断面図である。
 第5の実施形態に係る組電池用熱伝達抑制シート70は、断熱材11と、断熱材11の表面11a及び裏面11bを被覆する被覆材72とを有する。本実施形態においては、第1の実施形態の場合と異なり、被覆材として、金属を材料とした被覆材(金属板)72を用いている。そして、断熱材11の凸部13bと金属製の被覆材72とは、不図示の接着剤で接着されており、断熱材11の凹部13aと被覆材72との間には、密閉された空隙部14が形成されている。
<Fifth Embodiment>
FIG. 8A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a fifth embodiment. Further, FIG. 8B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the fifth embodiment at the time of abnormality.
The heat transfer suppressing sheet 70 for an assembled battery according to the fifth embodiment has a heat insulating material 11 and a covering material 72 that covers the front surface 11a and the back surface 11b of the heat insulating material 11. In the present embodiment, unlike the case of the first embodiment, a covering material (metal plate) 72 made of a metal is used as the covering material. The convex portion 13b of the heat insulating material 11 and the metal covering material 72 are adhered to each other with an adhesive (not shown), and a closed gap is formed between the concave portion 13a of the heat insulating material 11 and the covering material 72. The portion 14 is formed.
 このように構成された熱伝達抑制シート70においても、通常使用時において、上記第1の実施形態と同様の効果を得ることができる。
 また、図8Bに示すように、異常時においては、断熱材11の凸部13bと被覆材72とを接着していた接着剤が溶融し、断熱材11から被覆材72が剥離する。したがって、空隙部14と熱伝達抑制シート70の外部とを連通する連通口15が形成されるため、電池セル20を効果的に冷却することができる。
Even in the heat transfer suppressing sheet 70 configured in this way, the same effect as that of the first embodiment can be obtained in normal use.
Further, as shown in FIG. 8B, in an abnormal situation, the adhesive that adheres the convex portion 13b of the heat insulating material 11 and the covering material 72 is melted, and the covering material 72 is peeled off from the heat insulating material 11. Therefore, since the communication port 15 that communicates the gap portion 14 with the outside of the heat transfer suppressing sheet 70 is formed, the battery cell 20 can be effectively cooled.
<第6の実施形態>
 図9Aは、第6の実施形態に係る組電池用熱伝達抑制シートを模式的に示す断面図である。また、図9Bは、第6の実施形態に係る組電池用熱伝達抑制シートの異常時の様子を模式的に示す断面図である。
 第6の実施形態に係る組電池用熱伝達抑制シート80は、断熱材11の表面11a及び裏面11bのみでなく、端面11cも金属製の被覆材(金属板)82で被覆されている。すなわち、本実施形態においては、断熱材11の表面11a、裏面11b及び4方向の端面11cの全ての面が複数の被覆材82で被覆され、被覆材同士も不図示の接着剤で接着されている。
<Sixth Embodiment>
FIG. 9A is a cross-sectional view schematically showing a heat transfer suppression sheet for an assembled battery according to a sixth embodiment. Further, FIG. 9B is a cross-sectional view schematically showing a state of the heat transfer suppression sheet for an assembled battery according to the sixth embodiment at the time of abnormality.
In the heat transfer suppressing sheet 80 for an assembled battery according to the sixth embodiment, not only the front surface 11a and the back surface 11b of the heat insulating material 11 but also the end surface 11c is covered with a metal covering material (metal plate) 82. That is, in the present embodiment, all the surfaces of the front surface 11a, the back surface 11b, and the end faces 11c in the four directions of the heat insulating material 11 are covered with the plurality of covering materials 82, and the covering materials are also bonded to each other with an adhesive (not shown). There is.
 このように構成された熱伝達抑制シート80においても、通常使用時において、上記第2の実施形態と同様の効果を得ることができる。
 また、図9Bに示すように、異常時においては、断熱材11の凸部13bと被覆材82とを接着していた接着剤が溶融して、断熱材11と被覆材82とが離隔される。これと同時に、被覆材82同士を接着していた接着剤も溶融し、各被覆材82が分離する。これにより、空隙部14と熱伝達抑制シート80の外部とを連通する連通口15が形成され、電池セル20を効果的に冷却することができる。
Even in the heat transfer suppressing sheet 80 configured in this way, the same effect as that of the second embodiment can be obtained in normal use.
Further, as shown in FIG. 9B, in an abnormal situation, the adhesive that adheres the convex portion 13b of the heat insulating material 11 and the covering material 82 is melted, and the heat insulating material 11 and the covering material 82 are separated from each other. .. At the same time, the adhesive that adheres the coating materials 82 to each other is also melted, and each coating material 82 is separated. As a result, a communication port 15 that communicates the gap portion 14 with the outside of the heat transfer suppressing sheet 80 is formed, and the battery cell 20 can be effectively cooled.
 なお、上記第6の実施形態においては、断熱材11の表面11a、裏面11b及び端面11cを複数の被覆材82で被覆し、被覆材82同士を接着剤で接着したが、本発明は、1枚の金属製シートを利用するものでもよい。例えば、半分に折り畳まれた1枚の金属製シートの間に断熱材11を挟み、端面11cの近傍において、断熱材11の表面11a側を覆う金属製シートと、裏面11b側を覆う金属製シートとが接触する領域を接着剤で接着したものを使用することができる。このような構成であっても、上記第6の実施形態と同様の効果を得ることができる。 In the sixth embodiment, the front surface 11a, the back surface 11b, and the end surface 11c of the heat insulating material 11 are covered with a plurality of covering materials 82, and the covering materials 82 are bonded to each other with an adhesive. It may use one metal sheet. For example, the heat insulating material 11 is sandwiched between one metal sheet folded in half, and in the vicinity of the end surface 11c, a metal sheet covering the front surface 11a side of the heat insulating material 11 and a metal sheet covering the back surface 11b side. It is possible to use one in which the area in contact with is adhered with an adhesive. Even with such a configuration, the same effect as that of the sixth embodiment can be obtained.
 以上、第1~第6の実施形態に係る組電池用熱伝達抑制シートについて順に説明した。続いて、第1~第6の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材の他の例を示す。 The heat transfer suppression sheets for assembled batteries according to the first to sixth embodiments have been described above in order. Subsequently, another example of the heat insulating material used for the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments will be shown.
<断熱材の他の例>
 図10は、第1~第6の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材の他の例を模式的に示す平面図である。なお、上記第1~第6の実施形態においては、図2に示す断熱材11を使用した例を挙げたが、断熱材の形状は特に限定されない。
 図10に示すように、断熱材21の表面21aには、複数の凹部13aが規則的に形成されており、凹部13aが形成されていない領域は、実質的に凸部13bを構成している。
 本実施形態において凹部13aは、例えば平面視で長方形であり、全ての凹部13aは、その長手方向が断熱材21の一辺に平行となるように配列されている。
 このように構成された断熱材21についても、上記第1~第6の実施形態に係る組電池用熱伝達抑制シートに適用することができ、上記第1~第6の実施形態と同様の効果を得ることができる。
<Other examples of insulation>
FIG. 10 is a plan view schematically showing another example of the heat insulating material used for the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments. In the first to sixth embodiments, the example in which the heat insulating material 11 shown in FIG. 2 is used is given, but the shape of the heat insulating material is not particularly limited.
As shown in FIG. 10, a plurality of recesses 13a are regularly formed on the surface 21a of the heat insulating material 21, and the region where the recesses 13a are not formed substantially constitutes the convex portion 13b. ..
In the present embodiment, the recesses 13a are, for example, rectangular in a plan view, and all the recesses 13a are arranged so that their longitudinal directions are parallel to one side of the heat insulating material 21.
The heat insulating material 21 configured in this way can also be applied to the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments, and has the same effect as that of the first to sixth embodiments. Can be obtained.
<断熱材のさらに他の例>
 図11は、第1~第6の実施形態に係る組電池用熱伝達抑制シートに使用される断熱材のさらに他の例を模式的に示す平面図である。
 図2に示す断熱材11及び図10に示す断熱材21においては、全ての凹部13aが被覆材により密閉される構造となっていたが、本発明はこれに限定されない。
 図11に示すように、断熱材31の表面31aには、複数の凹部13aが規則的に形成されており、凹部13aが形成されていない領域は、実質的に凸部13bを構成している。ただし、断熱材31の端面31cの近傍に形成された凹部13cは、断熱材31の端面31cまで到達している。
<Another example of insulation>
FIG. 11 is a plan view schematically showing still another example of the heat insulating material used for the heat transfer suppressing sheet for the assembled battery according to the first to sixth embodiments.
The heat insulating material 11 shown in FIG. 2 and the heat insulating material 21 shown in FIG. 10 have a structure in which all the recesses 13a are sealed by the covering material, but the present invention is not limited to this.
As shown in FIG. 11, a plurality of recesses 13a are regularly formed on the surface 31a of the heat insulating material 31, and the region where the recesses 13a are not formed substantially constitutes the convex portion 13b. .. However, the recess 13c formed in the vicinity of the end surface 31c of the heat insulating material 31 reaches the end surface 31c of the heat insulating material 31.
 例えば、第1の実施形態における断熱材11を、上記断熱材31に代えた場合に、断熱材31の端面31cの近傍に形成された凹部13cは、密閉された空隙部を構成しない。しかし、一部の凹部13aと被覆材12との間には、密閉された空隙部が構成されるため、上記第1~第6の実施形態と同様の効果を得ることができる。 For example, when the heat insulating material 11 in the first embodiment is replaced with the heat insulating material 31, the recess 13c formed in the vicinity of the end face 31c of the heat insulating material 31 does not form a closed gap portion. However, since a closed gap is formed between a part of the recess 13a and the covering material 12, the same effect as that of the first to sixth embodiments can be obtained.
 次に、本実施形態に係る組電池用熱伝達抑制シートを構成する断熱材、被覆材、接着剤及び熱伝達抑制シートの厚さについて、詳細に説明する。 Next, the thicknesses of the heat insulating material, the coating material, the adhesive, and the heat transfer suppressing sheet constituting the heat transfer suppressing sheet for the assembled battery according to the present embodiment will be described in detail.
<断熱材>
 本実施形態に係る組電池用熱伝達抑制シートに用いられる断熱材は、無機粒子及び無機繊維の少なくとも一方を含有する。
 無機粒子としては、無機水和物又は含水多孔質体であることが好ましい。無機水和物は、電池セル20からの熱を受け、熱分解開始温度以上になると熱分解し、自身が持つ結晶水を放出することにより、電池セル20を冷却する。また、結晶水を放出した後は多孔質体となり、無数の空気孔により、効果的な断熱作用を得ることができる。
 また、無機粒子として、単一の無機粒子を使用してもよいし、2種以上の無機水和物粒子を組み合わせて使用してもよい。無機水和物は種類により熱分解開始温度が異なるため、2種以上の無機水和物粒子を併用することにより、電池セル20を多段に冷却することができる。
<Insulation material>
The heat insulating material used for the heat transfer suppressing sheet for an assembled battery according to the present embodiment contains at least one of inorganic particles and inorganic fibers.
The inorganic particles are preferably an inorganic hydrate or a water-containing porous body. The inorganic hydrate receives heat from the battery cell 20 and thermally decomposes when the temperature reaches the thermal decomposition start temperature or higher, and releases its own water of crystallization to cool the battery cell 20. In addition, after the water of crystallization is discharged, it becomes a porous body, and an effective heat insulating effect can be obtained by the innumerable air holes.
Further, as the inorganic particles, a single inorganic particle may be used, or two or more kinds of inorganic hydrate particles may be used in combination. Since the thermal decomposition start temperature of the inorganic hydrate differs depending on the type, the battery cell 20 can be cooled in multiple stages by using two or more types of inorganic hydrate particles in combination.
 無機水和物の具体例としては、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))、水酸化亜鉛(Zn(OH))、水酸化鉄(Fe(OH))、水酸化マンガン(Mn(OH))、水酸化ジルコニウム(Zr(OH))、水酸化ガリウム(Ga(OH))等が挙げられる。
 また、繊維状の無機水和物として、繊維状ケイ酸カルシウム水和物等が挙げられる。
Specific examples of the inorganic hydrate include aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), and zinc hydroxide (Zn (OH)). ) 2 ), iron hydroxide (Fe (OH) 2 ), manganese hydroxide (Mn (OH) 2 ), zirconium hydroxide (Zr (OH) 2 ), gallium hydroxide (Ga (OH) 3 ), etc. Be done.
Moreover, as a fibrous inorganic hydrate, fibrous calcium silicate hydrate and the like can be mentioned.
 含水多孔質体の具体例としては、ゼオライト、カオリナイト、モンモリロナイト、酸性白土、珪藻土、セピオライト、湿式シリカ、乾式シリカ、エアロゲル、マイカ、バーミキュライト等が挙げられる。 Specific examples of the hydrous porous body include zeolite, kaolinite, montmorillonite, acidic white clay, diatomaceous earth, sepiolite, wet silica, dry silica, airgel, mica, vermiculite and the like.
 さらに、無機繊維としては、アルミナ繊維、シリカ繊維、アルミナシリケート繊維、ロックウール、マグネシウムシリケート繊維、アルカリアースシリケート繊維、ガラス繊維、ジルコニア繊維、チタン酸カリウム繊維等が挙げられる。これらの無機繊維のうち、マグネシウムシリケート繊維は、加熱により水分を放出する材料として、好適に使用することができる。
 なお、無機繊維についても、単一の無機繊維を使用してもよいし、2種以上の無機繊維を組み合わせて使用してもよい。
Further, examples of the inorganic fiber include alumina fiber, silica fiber, alumina silicate fiber, rock wool, magnesium silicate fiber, alkaline earth silicate fiber, glass fiber, zirconia fiber, potassium titanate fiber and the like. Among these inorganic fibers, magnesium silicate fiber can be suitably used as a material that releases water by heating.
As for the inorganic fibers, a single inorganic fiber may be used, or two or more kinds of inorganic fibers may be used in combination.
 断熱材には、上記無機粒子及び無機繊維の他に、必要に応じて、有機繊維や有機バインダ等を配合することができる。これらは、いずれも断熱材の補強や成形性の向上を目的とする上で有用である。 In addition to the above-mentioned inorganic particles and inorganic fibers, an organic fiber, an organic binder, or the like can be added to the heat insulating material, if necessary. All of these are useful for the purpose of reinforcing the heat insulating material and improving the moldability.
 なお、断熱材に含有される無機粒子及び無機繊維は、必ずしも加熱により水分を放出する材料を含むものである必要はない。断熱材の製造時には、必然的に若干量の水分が含まれるため、通常使用時及び異常時に、電池セル20の温度が上昇した場合に、断熱材に含まれる水分が蒸発することにより、電池セル20を冷却する効果を得ることができる。 The inorganic particles and inorganic fibers contained in the heat insulating material do not necessarily have to contain a material that releases moisture by heating. Since a small amount of water is inevitably contained in the production of the heat insulating material, when the temperature of the battery cell 20 rises during normal use and abnormal times, the water contained in the heat insulating material evaporates, resulting in the battery cell. The effect of cooling 20 can be obtained.
 本実施形態において、断熱材は無機粒子及び無機繊維の少なくとも一方を含有すればよいが、熱伝達抑制シートの全質量に対して、無機粒子の含有量は、20質量%以上80質量%以下であることが好ましく、無機繊維の含有量は、5質量%以上70質量%以下であることが好ましい。このような含有量にすることにより、無機繊維によって、保形性、押圧力耐性及び抗風圧性を向上させることができるとともに、無機粒子の保持能力を確保することができる。 In the present embodiment, the heat insulating material may contain at least one of inorganic particles and inorganic fibers, but the content of the inorganic particles is 20% by mass or more and 80% by mass or less with respect to the total mass of the heat transfer suppressing sheet. The content of the inorganic fiber is preferably 5% by mass or more and 70% by mass or less. With such a content, the shape-retaining property, the pressing force resistance, and the wind pressure resistance can be improved by the inorganic fiber, and the holding ability of the inorganic particles can be ensured.
 本実施形態に係る熱伝達抑制シートには、必要に応じて、有機繊維や有機バインダ等を配合することができる。これらはいずれも熱伝達抑制シートの補強や成形性の向上を目的とする上で有用である。 The heat transfer suppressing sheet according to the present embodiment can be blended with organic fibers, organic binders and the like, if necessary. All of these are useful for the purpose of reinforcing the heat transfer suppressing sheet and improving the moldability.
<被覆材>
 被覆材としては、高分子フィルム、又は金属製のフィルム(金属板)を使用することができる。
 高分子フィルムとしては、ポリイミド、ポリカーボネート、PET、p-フェニレンスルフィド、ポリエーテルイミド、架橋ポリエチレン、難燃クロロプレンゴム、ポリビニルデンフロライド、硬質塩化ビニル、ポリブチレンテレフタレート、PTFE、PFA、FEP、ETFE、硬質PCV、難燃性PET、ポリスチレン、ポリエーテルサルホン、ポリアミドイミド、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリアミド等が挙げられる。
<Coating material>
As the covering material, a polymer film or a metal film (metal plate) can be used.
Polymer films include polyimide, polycarbonate, PET, p-phenylene sulfide, polyetherimide, crosslinked polyethylene, flame-retardant chloroprene rubber, polyvinyldenfluorolide, hard vinyl chloride, polyvinyl terephthalate, PTFE, PFA, FEP, ETFE, Examples thereof include hard PCV, flame-retardant PET, polystyrene, polyether sulfone, polyamideimide, polyvinylonitrile, polyethylene, polypropylene, polyamide and the like.
 本発明において、被覆材は、60℃以上の温度で空隙部と被覆材の外部とを連通する連通口が形成されるように構成される。上述のとおり、連通口が形成される形態としては、被覆材として使用した高分子フィルムが溶融する形態、又は被覆材同士もしくは被覆材と断熱材とを接着している接着剤が溶融する形態が挙げられる。
 60℃以上の温度で空隙部と被覆材の外部とを連通する連通口が形成されるには、例えば、高分子フィルムが、60℃以上の任意の温度で溶融すればよい。上記高分子フィルムの融点は、60℃~600℃であるため、被覆材(高分子フィルム)は、60℃未満の温度で空隙部を必ず密閉することができるとともに、60℃以上のいずれかの温度で連通口を形成することができる。
In the present invention, the covering material is configured so that a communication port for communicating the void portion and the outside of the covering material is formed at a temperature of 60 ° C. or higher. As described above, the form in which the communication port is formed includes a form in which the polymer film used as the coating material is melted, or a form in which the adhesive that adheres the coating materials to each other or the coating material and the heat insulating material is melted. Can be mentioned.
In order to form a communication port that communicates the void portion with the outside of the coating material at a temperature of 60 ° C. or higher, for example, the polymer film may be melted at an arbitrary temperature of 60 ° C. or higher. Since the melting point of the polymer film is 60 ° C. to 600 ° C., the coating material (polymer film) can always seal the voids at a temperature of less than 60 ° C., and any of 60 ° C. or higher. A communication port can be formed by temperature.
 なお、本実施形態において、被覆材として高分子フィルムを用いる場合に、高分子フィルムの溶融温度は、60℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。
 一方、高分子フィルムの溶融温度は、500℃以下であることが好ましく、350℃以下であることがより好ましく、300℃以下であることがさらに好ましく、250℃以下であることが特に好ましい。
In the present embodiment, when a polymer film is used as a coating material, the melting temperature of the polymer film is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and more preferably 100 ° C. or higher. Is even more preferable.
On the other hand, the melting temperature of the polymer film is preferably 500 ° C. or lower, more preferably 350 ° C. or lower, further preferably 300 ° C. or lower, and particularly preferably 250 ° C. or lower.
 また、金属製のフィルムとしては、アルミ箔、ステンレス箔、銅箔等が挙げられる。 Examples of the metal film include aluminum foil, stainless steel foil, and copper foil.
<接着剤>
 本実施形態においては、断熱材と被覆材との間に形成された空隙部を密閉する方法として、断熱材と被覆材とを接着する方法、又は被覆材同士を接着する方法を適用することができる。
 断熱材と被覆材とを接着する接着剤としては、ウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、ポリエステル、塩化ビニル、ビニロン、アクリル樹脂、シリコーン等を原料とするものが挙げられる。
 なお、上記接着剤は、被覆材同士を接着する接着剤として、適用することもできる。
<Adhesive>
In the present embodiment, as a method of sealing the gap formed between the heat insulating material and the covering material, a method of adhering the heat insulating material and the covering material or a method of adhering the covering materials to each other can be applied. can.
Examples of the adhesive for adhering the heat insulating material and the covering material include those made of urethane, polyethylene, polypropylene, polystyrene, nylon, polyester, vinyl chloride, vinylon, acrylic resin, silicone and the like.
The above-mentioned adhesive can also be applied as an adhesive for adhering coating materials to each other.
 本実施形態において、60℃以上の温度で溶融しない被覆材を用いた場合であっても、例えば、被覆材同士又は被覆材と断熱材とを接着する接着剤の溶融温度が、60℃以上であればよい。すなわち、60℃以上の温度で接着剤が溶融すれば、被覆材は60℃未満の温度で空隙部を必ず密閉することができるとともに、60℃以上のいずれかの温度で、空隙部と被覆材の外部とを連通する連通口を形成することができる。 In the present embodiment, even when a coating material that does not melt at a temperature of 60 ° C. or higher is used, for example, the melting temperature of the adhesive that adheres the coating materials to each other or the coating material and the heat insulating material is 60 ° C. or higher. All you need is. That is, if the adhesive melts at a temperature of 60 ° C. or higher, the covering material can always seal the voids at a temperature of less than 60 ° C., and at any temperature of 60 ° C. or higher, the gaps and the covering material can be sealed. It is possible to form a communication port that communicates with the outside of the.
 この場合に、接着剤の溶融温度は、60℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。
 一方、接着剤の溶融温度は、500℃以下であることが好ましく、350℃以下であることがより好ましく、300℃以下であることがさらに好ましく、250℃以下であることが特に好ましい。
In this case, the melting temperature of the adhesive is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 100 ° C. or higher.
On the other hand, the melting temperature of the adhesive is preferably 500 ° C. or lower, more preferably 350 ° C. or lower, further preferably 300 ° C. or lower, and particularly preferably 250 ° C. or lower.
 また、断熱材と被覆材との間に形成された空隙部を密閉する方法として、断熱材全体を被覆材により被覆する方法を適用することもできる。
 断熱材全体を被覆材により被覆する方法としては、ラミネート(ドライラミネート、サーマルラミネート)、パウチラミネート、真空パック、真空ラミネート、シュリンク包装、キャラメル包装等が挙げられる。
Further, as a method of sealing the gap formed between the heat insulating material and the covering material, a method of covering the entire heat insulating material with the covering material can also be applied.
Examples of the method of covering the entire heat insulating material with a covering material include laminating (dry laminating, thermal laminating), pouch laminating, vacuum packing, vacuum laminating, shrink wrapping, caramel wrapping and the like.
 なお、断熱材と被覆材、又は被覆材同士を接着する接着剤として、温度の上昇により複数の領域で段階的に溶融するように、互いに異なる溶融温度を有する複数の接着剤を使用してもよい。複数の接着剤を使用する例について、図面を参照して以下に説明する。なお、下記図12~図14に示す例は、図1及び図2に示す第1の実施形態に係る組電池用熱伝達抑制シート10の変形例である。 It should be noted that even if a plurality of adhesives having different melting temperatures are used as the adhesive for adhering the heat insulating material and the covering material or the covering materials to each other so as to gradually melt in a plurality of regions as the temperature rises. good. An example of using a plurality of adhesives will be described below with reference to the drawings. The examples shown in FIGS. 12 to 14 below are modifications of the heat transfer suppression sheet 10 for an assembled battery according to the first embodiment shown in FIGS. 1 and 2.
 図12は、互いに異なる溶融温度を有する2種類の接着剤を使用した組電池用熱伝達抑制シートを模式的に示す平面図である。
 図12に示すように、組電池用熱伝達抑制シート110において、断熱材11の凸部13bの領域のうち、端面近傍の周縁部には接着剤16bが使用され、この周縁部よりも内側の領域には接着剤16aが使用されている。接着剤16aと接着剤16bとは、互いに異なる溶融温度を有し、具体的には、接着剤16bの溶融温度が、接着剤16aの溶融温度よりも高くなるように設計されている。また、被覆材の溶融温度は、接着剤16bの溶融温度よりも高くなるように設計されている。
FIG. 12 is a plan view schematically showing a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures.
As shown in FIG. 12, in the heat transfer suppressing sheet 110 for an assembled battery, an adhesive 16b is used in the peripheral edge portion near the end face in the region of the convex portion 13b of the heat insulating material 11, and is inside the peripheral edge portion. Adhesive 16a is used in the area. The adhesive 16a and the adhesive 16b have different melting temperatures, and specifically, the adhesive 16b is designed so that the melting temperature is higher than the melting temperature of the adhesive 16a. Further, the melting temperature of the coating material is designed to be higher than the melting temperature of the adhesive 16b.
 このように構成された熱伝達抑制シート110においては、第1段階として、接着剤16aの溶融温度未満の温度では、各凹部13aと被覆材との間の空隙部は密閉されている。したがって、断熱材11が加熱され、無機粒子から水分が蒸発した場合に、蒸発した全ての水分は空隙部に滞留し、熱伝達抑制シート110から外部には放出されないが、水分の蒸発により、断熱材11は気化熱を奪われて冷却される。 In the heat transfer suppressing sheet 110 configured in this way, as a first step, at a temperature lower than the melting temperature of the adhesive 16a, the gap between each recess 13a and the covering material is sealed. Therefore, when the heat insulating material 11 is heated and water evaporates from the inorganic particles, all the evaporated water stays in the voids and is not released to the outside from the heat transfer suppressing sheet 110, but the heat insulating material evaporates due to the evaporation of water. The material 11 is deprived of the heat of evaporation and cooled.
 その後、第2段階として、さらに電池セルの温度が上昇し、接着剤16aの溶融温度以上、接着剤16bの溶融温度未満になると、接着剤16aにより接着されていた領域が離隔され、空隙部の体積が増加するため、断熱材11から水分が蒸発しやすくなる。また、加熱された蒸気は、一定の位置に滞留せず、第1段階よりも広い領域を移動することができるため、熱伝達抑制シート110が電池セルを効果的に冷却することができる。 After that, as a second step, when the temperature of the battery cell further rises and becomes equal to or higher than the melting temperature of the adhesive 16a and lower than the melting temperature of the adhesive 16b, the region adhered by the adhesive 16a is separated and the gap portion is separated. Since the volume increases, moisture easily evaporates from the heat insulating material 11. Further, since the heated steam does not stay at a fixed position and can move in a wider area than in the first stage, the heat transfer suppressing sheet 110 can effectively cool the battery cell.
 さらにその後、第3段階として、電池セルの温度が接着剤16bの溶融温度以上になると、接着剤16bにより接着されていた領域が離隔され、空隙部と熱伝達抑制シート110の外部とを連通する連通口が形成される。その結果、接着剤16bの領域よりも内側に滞留していた高温の蒸気は一度に放出される。したがって、電池セルが熱暴走を引き起こした場合においても、電池セル間の熱の伝播を効果的に抑制することができる。 After that, as a third step, when the temperature of the battery cell becomes equal to or higher than the melting temperature of the adhesive 16b, the region adhered by the adhesive 16b is separated, and the gap portion and the outside of the heat transfer suppressing sheet 110 are communicated with each other. A communication port is formed. As a result, the high-temperature steam retained inside the region of the adhesive 16b is released all at once. Therefore, even when the battery cell causes thermal runaway, heat propagation between the battery cells can be effectively suppressed.
 図13は、互いに異なる溶融温度を有する2種類の接着剤を使用した組電池用熱伝達抑制シートの他の例を模式的に示す平面図である。
 図13に示すように、熱伝達抑制シート120においては、図12に示す熱伝達抑制シート110と同様に、断熱材11の凸部13bの領域のうち、周縁部に、溶融温度がより高い接着剤16bが使用されている。但し、周縁部の一部分のみに、内側の領域と同一の、溶融温度がより低い接着剤16aが使用されている。
FIG. 13 is a plan view schematically showing another example of a heat transfer suppression sheet for an assembled battery using two types of adhesives having different melting temperatures.
As shown in FIG. 13, in the heat transfer suppressing sheet 120, similarly to the heat transfer suppressing sheet 110 shown in FIG. 12, adhesion having a higher melting temperature to the peripheral edge portion of the region of the convex portion 13b of the heat insulating material 11 Agent 16b is used. However, the adhesive 16a having a lower melting temperature, which is the same as the inner region, is used only for a part of the peripheral portion.
 このように構成された熱伝達抑制シート120においては、第1段階として、接着剤16aの溶融温度未満の温度では、凹部13aと被覆材12との間の空隙部は密閉されている。したがって、図12に示す熱伝達抑制シート110と同様に、断熱材11から空隙部に向けて水分が蒸発し、断熱材11は気化熱を奪われて冷却される。 In the heat transfer suppressing sheet 120 configured in this way, as a first step, at a temperature lower than the melting temperature of the adhesive 16a, the gap between the recess 13a and the covering material 12 is sealed. Therefore, similarly to the heat transfer suppressing sheet 110 shown in FIG. 12, moisture evaporates from the heat insulating material 11 toward the voids, and the heat insulating material 11 is deprived of heat of vaporization and cooled.
 その後、第2段階として、さらに電池セルの温度が上昇し、接着剤16aの溶融温度以上になると、接着剤16aにより接着されていた領域が離隔されるため、断熱材11から水分が蒸発しやすくなる。また、周縁部の一部分のみに、溶融温度が低い接着剤16aが使用されているため、この領域が空隙部と熱伝達抑制シート110の外部とを連通する連通口となる。したがって、図13中に矢印で示すように、高温の蒸気は連通口から放出されるため、電池セル間の熱の伝播を効果的に抑制することができる。 After that, as a second step, when the temperature of the battery cell rises further and becomes equal to or higher than the melting temperature of the adhesive 16a, the region adhered by the adhesive 16a is separated, so that the moisture easily evaporates from the heat insulating material 11. Become. Further, since the adhesive 16a having a low melting temperature is used only in a part of the peripheral edge portion, this region serves as a communication port for communicating the gap portion and the outside of the heat transfer suppressing sheet 110. Therefore, as shown by the arrows in FIG. 13, the high-temperature steam is released from the communication port, so that heat propagation between the battery cells can be effectively suppressed.
 なお、図13に示すように、周縁部の一部分のみに、内側の領域と同一の溶融温度がより低い接着剤16aが使用されていると、高温の蒸気(水分)が放出される位置を容易にコントロールすることができる。したがって、組電池内において、所定の部品への被水を抑制することができる。 As shown in FIG. 13, if the adhesive 16a having the same melting temperature as the inner region is used only for a part of the peripheral portion, the position where the high-temperature steam (moisture) is released can be easily determined. Can be controlled. Therefore, it is possible to suppress water exposure to a predetermined component in the assembled battery.
 図14は、互いに異なる溶融温度を有する2種類の接着剤を使用した組電池用熱伝達抑制シートのさらに他の例を模式的に示す平面図である。
 図14に示すように、熱伝達抑制シート130においては、図13に示す熱伝達抑制シート120と同様に、断熱材11の凸部13bの領域のうち、周縁部に、溶融温度が高い接着剤16bが使用されている。但し、周縁部の一部分のみに、溶融温度が低い接着剤16aが使用されており、この領域が高温時に連通口となる。また、接着剤16bが使用されている領域よりも内側において、周縁部に対して所定の間隔で離隔した領域に、接着剤16bと同一の溶融温度を有する接着剤16cが使用されている。なお、接着剤16cが使用されている領域についても、上記連通口となる領域の対辺側に、部分的に低い溶融温度を有する接着剤16aが使用されている。
FIG. 14 is a plan view schematically showing still another example of the heat transfer suppression sheet for an assembled battery using two kinds of adhesives having different melting temperatures.
As shown in FIG. 14, in the heat transfer suppressing sheet 130, similarly to the heat transfer suppressing sheet 120 shown in FIG. 13, an adhesive having a high melting temperature is formed on the peripheral edge of the region of the convex portion 13b of the heat insulating material 11. 16b is used. However, the adhesive 16a having a low melting temperature is used only for a part of the peripheral edge portion, and this region serves as a communication port at a high temperature. Further, inside the region where the adhesive 16b is used, the adhesive 16c having the same melting temperature as the adhesive 16b is used in a region separated from the peripheral edge portion at a predetermined interval. As for the region where the adhesive 16c is used, the adhesive 16a having a partially low melting temperature is used on the opposite side of the region serving as the communication port.
 このように構成された熱伝達抑制シート130において、第1段階は上記図13に示す熱伝達抑制シート120と同様に、断熱材11から空隙部に向けて水分が蒸発し、断熱材11は気化熱を奪われて冷却される。
 その後、第2段階として、接着剤16aが溶融すると、図14中に矢印で示すように、水分の放出経路が形成される。その結果、高温の蒸気は放出経路にしたがって移動し、連通口を介して外部に放出されるため、より一層冷却効果を向上させることができる。
 なお、接着剤16a、接着剤16b及び接着剤16cは、全て異なる溶融温度を有するものであってもよく、各接着剤を使用する領域についても、目的に応じて任意に決定することができる。
In the heat transfer suppressing sheet 130 configured in this way, in the first stage, similarly to the heat transfer suppressing sheet 120 shown in FIG. 13, water evaporates from the heat insulating material 11 toward the voids, and the heat insulating material 11 is vaporized. It is deprived of heat and cooled.
Then, as a second step, when the adhesive 16a is melted, a moisture release path is formed as shown by an arrow in FIG. As a result, the high-temperature steam moves according to the discharge path and is discharged to the outside through the communication port, so that the cooling effect can be further improved.
The adhesive 16a, the adhesive 16b, and the adhesive 16c may all have different melting temperatures, and the region in which each adhesive is used can be arbitrarily determined according to the purpose.
 上述のとおり、図12~図14に示す熱伝達抑制シート110、120、130は、電池セルの温度の上昇によって、複数の領域で接着剤が段階的に溶融するように設計されている。
したがって、空隙部に滞留した蒸気が放出するタイミングを調整したり、任意の位置に蒸気の放出口を設けたり、任意の放出経路を設けることが可能となる。
As described above, the heat transfer suppressing sheets 110, 120, and 130 shown in FIGS. 12 to 14 are designed so that the adhesive is gradually melted in a plurality of regions as the temperature of the battery cell rises.
Therefore, it is possible to adjust the timing at which the vapor staying in the void is released, provide a vapor discharge port at an arbitrary position, or provide an arbitrary discharge path.
 なお、上記のような効果を得るためには、温度の上昇により複数の領域で接着剤が段階的に溶融するように設計すればよく、互いに異なる溶融温度を有する接着剤を使用する方法の他に、複数の領域に互いに異なる塗布量で接着剤を塗布する等の方法を用いることができる。
 また、図12~図14では、断熱材11の表面側及び裏面側に被覆材が接着されている熱伝達抑制シートにおいて、断熱材11と被覆材とを接着する接着剤が段階的に溶融する場合について説明したが、本発明はこのような場合に限定されない。例えば、断熱材11が被覆材によって完全に被覆されている構成であっても、接着剤の溶融温度又は塗布量を領域によって調整する方法を適用することができる。具体的には、断熱材11の端面近傍において、被覆材同士が接着されている場合には、被覆材同士を接着する接着剤の溶融温度を高く設定し、断熱材11と被覆材とを接着する接着剤の溶融温度を低く設定することにより、熱伝達抑制シート110と同様の効果を得ることができる。
In order to obtain the above effects, the adhesive may be designed to be melted stepwise in a plurality of regions as the temperature rises, and other than the method of using adhesives having different melting temperatures. In addition, a method such as applying an adhesive to a plurality of regions with different coating amounts can be used.
Further, in FIGS. 12 to 14, in the heat transfer suppressing sheet in which the coating material is adhered to the front surface side and the back surface side of the heat insulating material 11, the adhesive for adhering the heat insulating material 11 and the coating material is gradually melted. Although the case has been described, the present invention is not limited to such a case. For example, even if the heat insulating material 11 is completely covered with a covering material, a method of adjusting the melting temperature or the coating amount of the adhesive depending on the region can be applied. Specifically, when the covering materials are adhered to each other in the vicinity of the end face of the heat insulating material 11, the melting temperature of the adhesive for adhering the covering materials to each other is set high, and the heat insulating material 11 and the covering material are adhered to each other. By setting the melting temperature of the adhesive to be low, the same effect as that of the heat transfer suppressing sheet 110 can be obtained.
<熱伝達抑制シートの厚さ>
 本実施形態において、熱伝達抑制シートの厚さは特に限定されないが、0.05~6mmの範囲にあることが好ましい。熱伝達抑制シートの厚さが0.05mm未満であると、充分な機械的強度を熱伝達抑制シートに付与することができない。一方、熱伝達抑制シートの厚さが6mmを超えると、熱伝達抑制シートの成形自体が困難となるおそれがある。
<Thickness of heat transfer suppression sheet>
In the present embodiment, the thickness of the heat transfer suppressing sheet is not particularly limited, but is preferably in the range of 0.05 to 6 mm. If the thickness of the heat transfer suppressing sheet is less than 0.05 mm, sufficient mechanical strength cannot be imparted to the heat transfer suppressing sheet. On the other hand, if the thickness of the heat transfer suppressing sheet exceeds 6 mm, the molding of the heat transfer suppressing sheet itself may become difficult.
 続いて、本実施形態に係る組電池用熱伝達抑制シートの製造方法について説明する。 Subsequently, a method for manufacturing the heat transfer suppression sheet for the assembled battery according to the present embodiment will be described.
<熱伝達抑制シートの製造方法>
 本実施形態に係る熱伝達抑制シートに用いられる断熱材は、例えば、無機粒子及び無機繊維の少なくとも一方を含む材料を、乾式成形法又は湿式成形法により型成形して製造することができる。乾式成形法については、例えばプレス成形法(乾式プレス成形法)及び押出成形法(乾式押出成形法)を使用することができる。
<Manufacturing method of heat transfer suppression sheet>
The heat insulating material used for the heat transfer suppressing sheet according to the present embodiment can be produced, for example, by molding a material containing at least one of inorganic particles and inorganic fibers by a dry molding method or a wet molding method. As the dry molding method, for example, a press molding method (dry press molding method) and an extrusion molding method (dry extrusion molding method) can be used.
(乾式プレス成形法を用いた断熱材の製造方法)
 乾式プレス成形法では、無機粒子及び無機繊維、ならびに必要に応じて有機繊維、有機バインダ等を所定の割合でV型混合機等の混合機に投入する。そして、混合機に投入された材料を充分に混合した後、この混合物を所定の型内に投入し、プレス成形することにより、断熱材を得ることができる。プレス成形時に、必要に応じて加熱してもよい。
 凹部及び凸部を有する断熱材は、例えば、プレス成形時に、凹凸を有する型を用いて押圧する方法により形成することができる。
(Manufacturing method of heat insulating material using dry press molding method)
In the dry press molding method, inorganic particles, inorganic fibers, and if necessary, organic fibers, organic binders, and the like are charged into a mixer such as a V-type mixer at a predetermined ratio. Then, after the materials charged in the mixer are sufficiently mixed, the mixture is charged into a predetermined mold and press-molded to obtain a heat insulating material. During press molding, it may be heated if necessary.
The heat insulating material having concave portions and convex portions can be formed, for example, by a method of pressing using a mold having irregularities at the time of press molding.
 なお、プレス成形時のプレス圧は、0.98MPa以上9.80MPa以下の範囲であることが好ましい。プレス圧が0.98MPa未満であると、得られる断熱材の強度を確保することができずに、崩れてしまうおそれがある。一方、プレス圧が9.80MPaを超えると、過度の圧縮によって加工性が低下したり、かさ密度が高くなるため固体伝熱が増加し、断熱性が低下するおそれがある。 The press pressure during press molding is preferably in the range of 0.98 MPa or more and 9.80 MPa or less. If the press pressure is less than 0.98 MPa, the strength of the obtained heat insulating material cannot be ensured and may collapse. On the other hand, if the press pressure exceeds 9.80 MPa, the workability may be lowered due to excessive compression, or the bulk density may be increased, so that the solid heat transfer may be increased and the heat insulating property may be lowered.
 また、乾式プレス成形法を用いる場合には、有機バインダとしてエチレン・酢酸ビニル共重合体(EVA:Ethylene-Vinylacetate copolymer)を使用することが好ましいが、乾式プレス成形法を用いる場合に一般的に使用される有機バインダであれば、特に限定されずに使用することができる。 When the dry press molding method is used, it is preferable to use an ethylene-vinyl acetate copolymer (EVA) as the organic binder, but it is generally used when the dry press molding method is used. Any organic binder can be used without particular limitation.
(乾式押出成形法を用いた断熱材の製造方法)
 乾式押出成形法では、無機粒子及び無機繊維、ならびに必要に応じて結合材である有機繊維及び有機バインダ等に水を加え、混練機で混練することにより、ペーストを調製する。その後、得られたペーストを、押出成形機を用いてスリット状のノズルから押出し、更に乾燥させることにより、断熱材を得ることができる。乾式押出成形法を用いる場合には、有機バインダとしてメチルセルロース及び水溶性セルロースエーテル等を使用することが好ましいが、乾式押出成形法を用いる場合に一般的に使用される有機バインダであれば、特に限定されずに使用することができる。
 なお、凹部及び凸部を有する断熱材を乾式押出成形法により製造する方法としては、例えば、スリット状のノズルから押し出した後の乾燥前のシートの表面を所望の凹凸形状に切削する等の方法を挙げることができる。
(Manufacturing method of heat insulating material using dry extrusion molding method)
In the dry extrusion molding method, a paste is prepared by adding water to inorganic particles and fibers, and if necessary, organic fibers and organic binders as binders, and kneading them with a kneader. Then, the obtained paste is extruded from a slit-shaped nozzle using an extrusion molding machine and further dried to obtain a heat insulating material. When the dry extrusion method is used, it is preferable to use methyl cellulose, water-soluble cellulose ether or the like as the organic binder, but it is particularly limited as long as it is an organic binder generally used when the dry extrusion method is used. Can be used without.
As a method for producing a heat insulating material having concave portions and convex portions by a dry extrusion molding method, for example, a method such as cutting the surface of a sheet after extruding from a slit-shaped nozzle and before drying into a desired uneven shape is used. Can be mentioned.
(湿式成形法を用いた断熱材の製造方法)
 湿式成形法では、無機粒子及び無機繊維、ならびに必要に応じて結合材である有機バインダを水中で混合し、撹拌機で撹拌することにより、混合液を調製する。その後、得られた混合液を、底面に濾過用のメッシュが形成された成形器に流し込み、メッシュを介して混合液を脱水することにより、湿潤シートを作製する。その後、得られた湿潤シートを加熱するとともに加圧することにより、断熱材を得ることができる。
 なお、加熱及び加圧工程の前に、湿潤シートに熱風を通気させて、シートを乾燥する通気乾燥処理を実施してもよいが、この通気乾燥処理を実施せず、湿潤した状態で加熱及び加圧してもよい。
 また、湿式成形法を用いる場合には、有機バインダとして、ポリビニルアルコール(PVA:PolyVinyl Alcohol)を用いたアクリルエマルジョンを選択することができる。
 凹部及び凸部を有する断熱材を湿式成形法により製造する方法としては、例えば、加熱及び加圧の前に、湿潤シートに対して、凹凸を有する型を用いてプレス成形する方法を挙げることができる。
(Manufacturing method of heat insulating material using wet molding method)
In the wet molding method, an inorganic particle and an inorganic fiber, and if necessary, an organic binder as a binder are mixed in water and stirred with a stirrer to prepare a mixed solution. Then, the obtained mixed liquid is poured into a molding machine having a mesh for filtration formed on the bottom surface, and the mixed liquid is dehydrated through the mesh to prepare a wet sheet. Then, by heating and pressurizing the obtained wet sheet, a heat insulating material can be obtained.
Before the heating and pressurizing steps, the wet sheet may be ventilated with hot air to dry the sheet, but this aeration-drying treatment is not performed and the wet sheet is heated and dried. You may pressurize.
When the wet molding method is used, an acrylic emulsion using polyvinyl alcohol (PVA) can be selected as the organic binder.
As a method for producing a heat insulating material having concave portions and convex portions by a wet molding method, for example, a method of press molding a wet sheet using a mold having irregularities before heating and pressurization can be mentioned. can.
(被覆材の製造方法)
 凹部及び凸部を有する被覆材を製造する方法としては、所望の厚さに製造された汎用の上記高分子フィルム、又は金属製のフィルムを使用することができ、凹凸を有する型を用いてプレス成形する方法を挙げることができる。
(Manufacturing method of covering material)
As a method for producing a coating material having concave portions and convex portions, the general-purpose polymer film produced to a desired thickness or a metal film can be used, and a mold having irregularities is used for pressing. A method of molding can be mentioned.
(熱伝達抑制シートの製造方法)
 本実施形態に係る熱伝達抑制シートは、例えば、上記のようにして得られた断熱材又は被覆材に接着剤を塗布し、断熱材と被覆材とを接着することにより、製造することができる。
 また、断熱材全体を被覆材により被覆する方法としては、例えば、断熱材の表面よりも大きく切断された2枚の被覆材の間、又は折り畳まれた被覆材の間に断熱材を挟み、断熱材の周囲において、被覆材同士を熱圧着又は接着剤により接着する方法を挙げることができる。
(Manufacturing method of heat transfer suppression sheet)
The heat transfer suppressing sheet according to the present embodiment can be produced, for example, by applying an adhesive to the heat insulating material or the covering material obtained as described above and adhering the heat insulating material and the covering material. ..
Further, as a method of covering the entire heat insulating material with a covering material, for example, the heat insulating material is sandwiched between two covering materials cut larger than the surface of the heat insulating material or between the folded covering materials to insulate. A method of bonding the coating materials to each other by thermocompression bonding or an adhesive around the material can be mentioned.
[2.組電池]
 本実施形態に係る組電池は、複数の電池セルが直列又は並列に接続される組電池であって、本実施形態に係る組電池用熱伝達抑制シートが、電池セル間に介在されたものである。具体的には、例えば、図3に示すように、組電池100は、複数個の電池セル20を並設し、直列又は並列に接続して電池ケース30に収容したものであり、電池セル20間に、熱伝達抑制シート10が介在されている。
[2. Batteries]
The assembled battery according to the present embodiment is an assembled battery in which a plurality of battery cells are connected in series or in parallel, and a heat transfer suppression sheet for the assembled battery according to the present embodiment is interposed between the battery cells. be. Specifically, for example, as shown in FIG. 3, the assembled battery 100 is a battery cell 100 in which a plurality of battery cells 20 are arranged side by side, connected in series or in parallel, and housed in a battery case 30. A heat transfer suppressing sheet 10 is interposed between them.
 このような組電池100では、各電池セル20間に、熱伝達抑制シート10が介在されているため、通常使用時において、各電池セル20を冷却することができる。
 また、複数の電池セル20のうち、一つの電池セルが熱暴走して高温になり、膨張したり発火したりした場合でも、本実施形態に係る熱伝達抑制シート10が存在することにより、電池セル20間の熱の伝播を抑制することができる。したがって、熱暴走の連鎖を阻止することができ、電池セル20への悪影響を最小限に抑えることができる。
In such an assembled battery 100, since the heat transfer suppressing sheet 10 is interposed between the battery cells 20, each battery cell 20 can be cooled during normal use.
Further, even when one of the plurality of battery cells 20 becomes hot due to thermal runaway and expands or ignites, the presence of the heat transfer suppressing sheet 10 according to the present embodiment causes the battery. Heat transfer between cells 20 can be suppressed. Therefore, the chain of thermal runaway can be prevented, and the adverse effect on the battery cell 20 can be minimized.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2021年1月18日出願の日本特許出願(特願2021-006044)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application filed on January 18, 2021 (Japanese Patent Application No. 2021-006044), the contents of which are incorporated herein by reference.
10,40,50,60,70,80,110,120,130 組電池用熱伝達抑制シート
11,21,31,51 断熱材
12,52,72,82 被覆材
13a,13c,53a 凹部
13b,53b 凸部
14  空隙部
15  連通口
20  電池セル
30  電池ケース
100 組電池
10, 40, 50, 60, 70, 80, 110, 120, 130 Heat transfer suppression sheet for batteries 11,21,31,51 Insulation material 12, 52, 72, 82 Coating material 13a, 13c, 53a Recess 13b, 53b Convex part 14 Void part 15 Communication port 20 Battery cell 30 Battery case 100 sets Battery

Claims (9)

  1.  複数の電池セルが直列又は並列に接続される組電池に使用され、前記電池セル間に介在される組電池用熱伝達抑制シートであって、
     無機粒子及び無機繊維の少なくとも一方を含有する断熱材と、
     前記断熱材の少なくとも一部を被覆する被覆材と、を有し、
     前記断熱材と前記被覆材との間に、密閉された空隙部が形成されており、
     前記被覆材は、60℃以上の温度で前記空隙部と前記被覆材の外部とを連通する連通口が形成されるように構成される、組電池用熱伝達抑制シート。
    A heat transfer suppression sheet for an assembled battery used for an assembled battery in which a plurality of battery cells are connected in series or in parallel, and interposed between the battery cells.
    A heat insulating material containing at least one of inorganic particles and inorganic fibers, and
    With a covering material that covers at least a part of the heat insulating material,
    A closed gap is formed between the heat insulating material and the covering material.
    The coating material is a heat transfer suppressing sheet for an assembled battery, which is configured to form a communication port that communicates the void portion with the outside of the coating material at a temperature of 60 ° C. or higher.
  2.  前記断熱材に含有される前記無機粒子及び前記無機繊維の少なくとも一方は、加熱により水分を放出する材料を含む、請求項1に記載の組電池用熱伝達抑制シート。 The heat transfer suppression sheet for an assembled battery according to claim 1, wherein at least one of the inorganic particles and the inorganic fibers contained in the heat insulating material contains a material that releases moisture by heating.
  3.  前記断熱材と前記被覆材とは、60℃以上の温度で溶融する接着剤により接着されている、請求項1又は2に記載の組電池用熱伝達抑制シート。 The heat transfer suppressing sheet for an assembled battery according to claim 1 or 2, wherein the heat insulating material and the covering material are adhered with an adhesive that melts at a temperature of 60 ° C. or higher.
  4.  前記被覆材は、60℃以上の温度で溶融する高分子フィルムから構成される、請求項1~3のいずれか1項に記載の組電池用熱伝達抑制シート。 The heat transfer suppression sheet for an assembled battery according to any one of claims 1 to 3, wherein the coating material is composed of a polymer film that melts at a temperature of 60 ° C. or higher.
  5.  前記被覆材は、金属板から構成され、前記断熱材と前記被覆材とが、60℃以上の温度で溶融する接着剤により接着されている、請求項1~3のいずれか1項に記載の組電池用熱伝達抑制シート。 The invention according to any one of claims 1 to 3, wherein the coating material is composed of a metal plate, and the heat insulating material and the coating material are adhered to each other by an adhesive that melts at a temperature of 60 ° C. or higher. Heat transfer suppression sheet for assembled batteries.
  6.  前記被覆材は、金属板から構成され、前記金属板同士が、60℃以上の温度で溶融する接着剤により接着されている、請求項1~3のいずれか1項に記載の組電池用熱伝達抑制シート。 The heat for an assembled battery according to any one of claims 1 to 3, wherein the covering material is made of a metal plate, and the metal plates are bonded to each other by an adhesive that melts at a temperature of 60 ° C. or higher. Transmission suppression sheet.
  7.  前記接着剤として、温度の上昇により複数の領域で段階的に溶融するように、前記複数の領域に、互いに異なる溶融温度を有する複数の接着剤が使用される、請求項3、5及び6のいずれか1項に記載の組電池用熱伝達抑制シート。 The adhesives of claims 3, 5 and 6, wherein a plurality of adhesives having different melting temperatures are used in the plurality of regions so that the adhesives are gradually melted in a plurality of regions as the temperature rises. The heat transfer suppression sheet for an assembled battery according to any one of the items.
  8.  前記接着剤は、温度の上昇により複数の領域で段階的に溶融するように、前記複数の領域に、互いに異なる塗布量で塗布される、請求項3、5及び6のいずれか1項に記載の組電池用熱伝達抑制シート。 The one according to any one of claims 3, 5 and 6, wherein the adhesive is applied to the plurality of regions in different coating amounts so that the adhesive gradually melts in the plurality of regions as the temperature rises. Heat transfer suppression sheet for assembled batteries.
  9.  複数の電池セルが直列又は並列に接続される組電池であって、請求項1~8のいずれか1項に記載の組電池用熱伝達抑制シートが前記電池セル間に介在される、組電池。 An assembled battery in which a plurality of battery cells are connected in series or in parallel, wherein a heat transfer suppressing sheet for the assembled battery according to any one of claims 1 to 8 is interposed between the battery cells. ..
PCT/JP2022/001241 2021-01-18 2022-01-14 Heat transfer suppression sheet for battery pack, and battery pack WO2022154108A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/272,300 US20240072322A1 (en) 2021-01-18 2022-01-14 Heat transfer suppression sheet for battery pack, and battery pack
EP22739513.4A EP4280348A1 (en) 2021-01-18 2022-01-14 Heat transfer suppression sheet for battery pack, and battery pack
CN202280009867.6A CN116806386A (en) 2021-01-18 2022-01-14 Heat transfer suppressing sheet for battery pack and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-006044 2021-01-18
JP2021006044A JP7203870B2 (en) 2021-01-18 2021-01-18 Heat transfer suppression sheet for assembled battery and assembled battery

Publications (1)

Publication Number Publication Date
WO2022154108A1 true WO2022154108A1 (en) 2022-07-21

Family

ID=82448164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001241 WO2022154108A1 (en) 2021-01-18 2022-01-14 Heat transfer suppression sheet for battery pack, and battery pack

Country Status (5)

Country Link
US (1) US20240072322A1 (en)
EP (1) EP4280348A1 (en)
JP (2) JP7203870B2 (en)
CN (1) CN116806386A (en)
WO (1) WO2022154108A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211013A (en) 2014-04-30 2015-11-24 株式会社Gsユアサ Power storage device
JP2019083150A (en) * 2017-10-31 2019-05-30 イビデン株式会社 Heat insulating sheet for battery pack and battery pack
JP2019175806A (en) 2018-03-29 2019-10-10 イビデン株式会社 Heat absorbing sheet for battery pack, and battery pack
JP2019204636A (en) * 2018-05-22 2019-11-28 イビデン株式会社 Heat transmission suppression sheet for battery pack and battery pack
WO2020111042A1 (en) * 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 Electric power storage module
JP2021006044A (en) 2015-01-20 2021-01-21 アイジーエム バイオサイエンシズ インコーポレイテッド Tumor necrosis factor (tnf) superfamily receptor-binding molecules and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211013A (en) 2014-04-30 2015-11-24 株式会社Gsユアサ Power storage device
JP2021006044A (en) 2015-01-20 2021-01-21 アイジーエム バイオサイエンシズ インコーポレイテッド Tumor necrosis factor (tnf) superfamily receptor-binding molecules and uses thereof
JP2019083150A (en) * 2017-10-31 2019-05-30 イビデン株式会社 Heat insulating sheet for battery pack and battery pack
JP2019175806A (en) 2018-03-29 2019-10-10 イビデン株式会社 Heat absorbing sheet for battery pack, and battery pack
JP2019204636A (en) * 2018-05-22 2019-11-28 イビデン株式会社 Heat transmission suppression sheet for battery pack and battery pack
WO2020111042A1 (en) * 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 Electric power storage module

Also Published As

Publication number Publication date
JP2023024887A (en) 2023-02-17
JP2022110559A (en) 2022-07-29
CN116806386A (en) 2023-09-26
US20240072322A1 (en) 2024-02-29
EP4280348A1 (en) 2023-11-22
JP7203870B2 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
US20220158273A1 (en) Thermal management system and device
JP7235562B2 (en) Heat transfer suppression sheet, heat transfer suppression sheet for assembled battery, and assembled battery
JPWO2019031457A1 (en) Power storage module and power storage element
JP7453162B2 (en) Heat transfer suppression sheet for assembled batteries and assembled batteries
JP2021512453A (en) Battery module
US20220123407A1 (en) Battery module
WO2022154108A1 (en) Heat transfer suppression sheet for battery pack, and battery pack
WO2022154107A1 (en) Heat transfer suppression sheet for battery pack, and battery pack
WO2022154106A1 (en) Heat transfer suppression sheet for battery pack, and battery pack
JP7453163B2 (en) Heat transfer suppression sheet for assembled batteries and assembled batteries
JP7332333B2 (en) Heat transfer suppression sheet and assembled battery
CN113707973A (en) Battery module for delaying internal heat diffusion and preparation method and application thereof
TW202042425A (en) Partition member and battery assembly
JP7436582B1 (en) Heat transfer suppression sheet and assembled battery
KR20210096723A (en) Flame retardant composite pad and method for manufacturing the same, secondary battery module and secondary battery pack including the same
JP7477591B1 (en) Heat transfer suppression sheet and battery pack
JP7364722B2 (en) Method for manufacturing heat transfer suppressing sheet, heat transfer suppressing sheet and assembled battery
JP7364742B1 (en) Heat transfer suppression sheet and assembled battery
WO2023229046A1 (en) Heat transfer suppression sheet and battery pack
JP7414888B2 (en) Heat transfer suppression sheet and assembled battery
WO2023229042A1 (en) Heat transfer suppression sheet and battery pack
JP2023174131A (en) Heat transmission suppression sheet and battery pack
TW202319232A (en) Materials, systems, and methods for mitigation of electrical energy storage thermal events

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009867.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18272300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739513

Country of ref document: EP

Effective date: 20230818