WO2022154097A1 - Organic material liquid dehydration method - Google Patents

Organic material liquid dehydration method Download PDF

Info

Publication number
WO2022154097A1
WO2022154097A1 PCT/JP2022/001207 JP2022001207W WO2022154097A1 WO 2022154097 A1 WO2022154097 A1 WO 2022154097A1 JP 2022001207 W JP2022001207 W JP 2022001207W WO 2022154097 A1 WO2022154097 A1 WO 2022154097A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
liquid
mass
material liquid
organic
Prior art date
Application number
PCT/JP2022/001207
Other languages
French (fr)
Japanese (ja)
Inventor
剛裕 大崎
雄治 片山
諒一 高田
慶太郎 鈴村
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP22739502.7A priority Critical patent/EP4279166A1/en
Priority to JP2022575654A priority patent/JP7481508B2/en
Priority to CN202280009540.9A priority patent/CN116710191A/en
Publication of WO2022154097A1 publication Critical patent/WO2022154097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0024Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2643Crystallisation

Definitions

  • the present invention relates to a method for dehydrating an organic raw material liquid. More specifically, the present invention relates to a method of dehydrating water from a raw material liquid containing an organic solvent, a small amount of water, and a solute by a forward osmosis method.
  • a dehydration step that removes water contained in the organic liquid.
  • a water-free reaction in which the desired reaction does not proceed in the presence of water, in order to recrystallize the solute to obtain crystals of the desired shape, size or purity.
  • water produced as a by-product during the equilibrium reaction may be removed from the reaction system to improve the yield of the target product.
  • an azeotropic evaporation method in which water and the added organic solvent are removed by adding an organic solvent for forming an azeotropic mixture with water to the raw material liquid and heating the raw material liquid, and water are used.
  • a method of adding a desiccant that selectively adsorbs to a raw material solution is known.
  • the azeotropic evaporation method has problems such as the quality of the components in the raw material liquid changing due to heating.
  • the solute in the raw material liquid is also adsorbed and that it takes time to remove the added desiccant from the raw material liquid before the next step.
  • the scale of the dehydration process is increased, there is a problem that it is difficult to obtain the reproducibility of dehydration.
  • a forward osmosis (FO: Forward Osmosis) method in which the solvent in the raw material liquid is separated by utilizing the difference in osmotic pressure.
  • the forward osmosis method the raw material liquid and the inductive liquid having a higher osmotic pressure than the raw material liquid are brought into contact with each other through a forward osmosis (FO) membrane, and the solvent is transferred from the raw material liquid to the inductive liquid to move the raw material liquid.
  • FO forward osmosis
  • Is a method of concentrating When the solvent is water, the aqueous solution can be dehydrated and concentrated using the forward osmosis method.
  • the forward osmosis method does not require heating and pressurization. Therefore, it is expected that the forward osmosis method can prevent the decomposition or alteration of the solute and can process the solution while maintaining the quality of the solute.
  • Patent Document 1 describes a method of dehydrating an aqueous alcohol solution by a forward osmosis method.
  • Patent Document 2 describes a system for treating a solution containing an organic compound using a forward osmosis membrane using a polyketone as a membrane material, and a method for removing water from a hydrous substance using this system. ing.
  • one aspect of the present invention provides a method for dehydrating the raw material liquid without decomposing or deteriorating the solute contained in the raw material liquid which is an organic solution containing a small amount of water.
  • a method for dehydrating a raw material liquid containing a first organic solvent, water and a first solute A dehydration step of bringing the raw material liquid and an induced organic liquid containing a second organic solvent into contact with each other via a forward osmosis membrane to obtain a dehydrated raw material liquid dehydrated to a water content of less than 1% by mass is included.
  • the initial water content of the raw material liquid in the dehydration step is 1% by mass or more and less than 30% by mass, and the initial water content of the induced organic liquid is smaller than the initial water content of the raw material liquid.
  • the forward osmosis membrane is a composite membrane composed of a separation active layer and a microporous support membrane.
  • the difference ⁇ HSP of the solubility parameter between the induced organic liquid and the separated active layer is ⁇ HSP ⁇ 16 (MPa) 0.5
  • the saturated water content of the induced organic liquid is 0.5% by mass or more.
  • the solubility parameter of the derived organic liquid is 13 (MPa) 0.5 ⁇ ⁇ d ⁇ 20 (MPa) 0.5 , 2 (MPa) 0.5 ⁇ ⁇ p ⁇ 18 (MPa) 0.5 , 2 (MPa) 0.5 ⁇ ⁇ H ⁇ 28 ( MPa) 0.5 , The method according to the above aspect 1 or 2.
  • the induced organic liquid further contains a second solute and / or a desiccant. The method according to any one of the above aspects 1 to 3.
  • the dehydration step is executed in a dehydration apparatus including a raw material liquid system for circulating the raw material liquid and an induction liquid system for circulating the induction organic liquid.
  • the raw material liquid system and the induction liquid system are configured to suppress the movement of the first organic solvent and the second organic solvent to the outside of the system due to vaporization.
  • the second organic solvent is tetrahydrofuran, 2-methyl tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, toluene, cyclopentyl methyl ether, t-butyl methyl ether, acetonitrile, etc.
  • an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the raw material liquid whose volume has been reduced by dehydration and concentration.
  • the first solute in the dehydration raw material liquid is subjected to a water-free reaction in which the first solute is chemically reacted with other reagents under anhydrous conditions.
  • the method further comprises a crystallization step of purifying the first solute by crystallization.
  • the method further comprises a liquid separation step of extracting an organic layer from the liquid containing the first solute before the dehydration step.
  • the organic layer is used as the raw material liquid.
  • the method further comprises a regeneration step.
  • the regeneration step is a step of removing water transferred from the raw material liquid to the derived organic liquid from the derived organic liquid.
  • a desiccant or a dehydrating reagent is added to the induced organic liquid.
  • the induced organic liquid is dehydrated by azeotropic distillation or membrane treatment.
  • the method further comprises a crude dehydration step prior to the dehydration step.
  • the crude raw material solution and the induced aqueous solution containing the third solute are brought into contact with each other via a forward osmosis membrane to dehydrate the raw material solution to a moisture content of 1% by mass or more and less than 30% by mass.
  • the process of getting The method according to any one of the above aspects 1 to 13.
  • the crude dehydration step is executed in a dehydration apparatus including a raw material liquid system for circulating the crude raw material liquid and an induction liquid system for circulating the inductive aqueous solution.
  • the raw material liquid system is configured to suppress the movement of the first organic solvent to the outside of the system due to vaporization.
  • a raw material liquid which is an organic solution containing a small amount of water and a solute can be dehydrated under non-heating conditions without decomposing or deteriorating the solute.
  • the method according to one aspect of the present invention is suitably applicable to, for example, dehydrating an organic solution containing a solute in the production of a medicine.
  • FIG. 1 is a conceptual diagram showing an example of a dehydrator
  • FIG. 2 is a sectional view showing an example of a forward osmosis membrane module
  • FIGS. 3 and 4 are for explaining the procedure of the method of the present embodiment. It is a flowchart.
  • the method of the present embodiment is a method for dehydrating the raw material liquid 4 containing the first organic solvent, water and the first solute.
  • the raw material liquid 4 and the induced organic liquid 5 containing the second organic solvent are brought into contact with each other via the forward osmosis membrane 23, and the dehydrated raw material liquid is dehydrated to a moisture content of less than 1% by mass.
  • the dehydration step S103 is included.
  • the raw material liquid 4 may be, for example, an organic layer extracted from the liquid containing the first solute in the liquid separation step S101 executed before the dehydration step S103.
  • the method of the present embodiment may further include a regeneration step S104, which is a step of removing the water transferred from the raw material liquid 4 to the induction organic liquid 5 from the induction organic liquid 5.
  • the induced organic liquid 5 from which water has been removed in the regeneration step S104 is reused in the dehydration step S103 and used for dehydration of the raw material liquid 4.
  • the dehydration step S103 may be carried out before the water-free reaction step S106 in which the first solute and other reagents are chemically reacted under anhydrous conditions. Further, the method of the present embodiment may further include a crystallization step S105 for purifying the first solute by crystallization. The crystallization step S105 may be carried out before the dehydration step S103, or may be carried out after the dehydration step S103 instead of the water-reactive reaction step S106. Further, the dehydration step S103 may be performed on the reaction solution of the equilibrium reaction. The equilibrium reaction may be a batch type (batch method) or a flow type (continuous method).
  • the method of the present embodiment may further include a crude dehydration step S102 before the dehydration step S103.
  • the crude dehydration step S102 the crude raw material liquid and the inductive aqueous solution containing the third solute are brought into contact with each other via the forward osmosis membrane 23, so that the water content is 1% by mass or more and less than 30% by mass.
  • This is a step of obtaining the dehydrated raw material liquid 4 of the present embodiment.
  • the crude raw material liquid is, for example, an organic layer extracted in the liquid separation step S101 executed before the crude dehydration step S102.
  • the dehydrating device 1 is composed of a raw material liquid system 12 and an induction liquid system 13 that come into contact with each other via the forward osmosis membrane module 20. Hereinafter, each component will be described.
  • the forward osmosis membrane module 20 fills a tubular housing 30 with a hollow fiber membrane bundle composed of a plurality of hollow fiber-shaped forward osmosis membranes 23, and an adhesive is applied to both ends of the hollow fiber membrane bundle. It has a structure fixed to the housing 30 by the fixing portions 24 and 25.
  • the housing 30 is provided with shell-side conduits 21 and 22 on its side surfaces and headers 26 and 27 at both ends.
  • the adhesive fixing portions 24 and 25 are solidified so as not to block the hollow portions of the hollow fibers, respectively.
  • the headers 26 and 27 have core-side conduits 28 and 29 that communicate with the hollow portion inside the hollow thread-shaped forward osmosis membrane 23 and do not communicate with the outside of the forward osmosis membrane 23, respectively.
  • the core-side conduits 28 and 29 allow the liquid to be introduced into the forward osmosis membrane 23 and the introduced liquid to be taken out from the inside of the forward osmosis membrane 23.
  • the shell-side conduits 21 and 22 communicate with the outside of the forward osmosis membrane 23 and not with the inside of the forward osmosis membrane 23, respectively.
  • the shell-side conduits 21 and 22 allow the liquid to be introduced to the outside of the forward osmosis membrane 23 and the introduced liquid to be taken out from the outside of the forward osmosis membrane 23.
  • the raw material liquid system 12 includes a raw material liquid tank 2, raw material liquid feeding pipes 6 and 7, and a raw material liquid feeding pump 8.
  • the raw material liquid tank 2 is filled with the raw material liquid 4, and the raw material liquid 4 circulates in the raw material liquid system 12. Specifically, the raw material liquid 4 passes through the raw material liquid feeding pipe 6 by the raw material liquid feeding pump 8 and enters the forward osmosis membrane module 20 from the core side conduit 28. Then, the raw material liquid 4 passes through the inside of the forward osmosis membrane 23, is discharged from the core side conduit 29, passes through the raw material liquid feeding pipe 7, and returns to the raw material liquid tank 2.
  • the inductive liquid system 13 includes an inductive liquid tank 3, inductive liquid feed pipes 9 and 10, and an inductive liquid feed pump 11.
  • the induction liquid tank 3 is filled with the induction organic liquid 5, and the induction organic liquid 5 circulates in the induction liquid system 13.
  • the inductive liquid 5 passes through the inductive liquid feed pipe 9 by the inductive liquid feed pump 11, and enters the forward osmosis membrane module 20 from the shell-side conduit 21.
  • the induction organic liquid 5 passes through the outside of the forward osmosis membrane 23, is discharged from the shell-side conduit 22, and returns to the induction liquid tank 3 through the induction liquid delivery pipe 10.
  • the raw material liquid 4 and the inductive organic liquid 5 are in contact with each other through the wall of the hollow thread-like forward osmosis membrane 23, but they are not directly mixed with each other. Then, when the raw material liquid 4 and the inductive organic liquid 5 come into contact with each other through the wall of the forward osmosis membrane 23, the water in the raw material liquid 4 moves to the inductive organic liquid 5 through the forward osmosis membrane 23, and the raw material The liquid 4 is dehydrated.
  • the flow directions of the raw material liquid 4 and the induced organic liquid 5 in the forward osmosis membrane module 20 may be parallel flow in the same direction through the wall of the forward osmosis membrane 23, and are opposite to each other through the wall of the forward osmosis membrane 23. It may be a countercurrent that is the direction of.
  • the raw material liquid system 12 and the inductive liquid system 13 are preferably configured so as to suppress the movement of the first and second organic solvents to the outside of the system due to vaporization. Specifically, it is configured so that gas does not leak to the outside from each component of the raw material liquid system 12 and the induction liquid system 13, preferably the raw material liquid tank 2 and the induction liquid tank 3.
  • the raw material liquid tank 2 and the induction liquid tank 3 may be made into tanks with lids, or a condenser for condensing the vaporized organic solvent and returning it to the tank may be installed.
  • a safety valve and / or a back pressure valve may be incorporated in the raw material liquid system 12 and the induction liquid system 13 so that the internal pressures thereof can be adjusted.
  • the forward osmosis membrane 23 a membrane having the property of a semipermeable membrane through which water can pass can be used without limitation.
  • the forward osmosis membrane 23 is preferably a composite type membrane having a separation active layer on the support layer (support membrane) from the viewpoint of ensuring high membrane strength.
  • the support membrane may be a flat membrane or a hollow fiber membrane. When the support membrane is a flat membrane, it may have a separation active layer on one side or both sides of the support membrane. When the support film is a hollow fiber membrane, a separation active layer may be provided on the outer surface or inner surface of the hollow fiber membrane, or both surfaces.
  • the normal osmotic membrane module 20 can be, for example, a pleated type module, a spiral type module, etc. when the normal permeable membrane is a flat membrane, and for example, when the normal permeable membrane is a hollow fiber membrane, for example. It can be a hollow fiber membrane module or the like in which a bundle of the hollow fiber membranes is filled in a cylinder.
  • the forward osmosis membrane module 20 is preferably a module in which a bundle of forward osmosis membranes 23, which is a hollow fiber membrane, is filled in a cylinder.
  • the support film is preferably a microporous hollow fiber support film.
  • the microporous hollow fiber support membrane has fine pores having a pore diameter of preferably 0.001 ⁇ m or more and 2 ⁇ m or less, more preferably 0.001 ⁇ m or more and 0.2 ⁇ m or less on the inner surface thereof.
  • a material used for an ultrafiltration membrane, a microfiltration membrane, or the like may be utilized.
  • the material of the hollow thread support film is, for example, polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, cellulosic polymer, polybenzoimidazole, polyketone, polyamide, polyimide, polyether ether ketone. , And these crosslinked bodies and the like, and preferably contains at least one selected from these, and / or one selected from these is the main component (that is, the component having the highest content).
  • the material of the hollow fiber support membrane contains at least one selected from polysulfone, polyethersulfone, polyketone, polyamide, polyimide, and a crosslinked product thereof, and / or one selected from these is the main component. Is more preferable, and more preferably polyketone.
  • the separation active layer contains and / or is selected from at least one polymer selected from, for example, polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, polyamide, polyimide, cellulose acetate and the like.
  • a thin film layer containing only one type as a main component is preferably used. These polymers may or may not be crosslinked.
  • the separation active layer is a crosslinked polymer, the degree of crosslinking may be arbitrary.
  • the separation active layer is preferably a layer of polyamide, and one or more selected from non-crosslinked polyamide and crosslinked polyamide is used. good.
  • the polyamide constituting the separation active layer can be formed, for example, by interfacial polymerization of a polyfunctional aromatic acid halide and a polyfunctional aromatic amine.
  • a polyfunctional aromatic acid halide is an aromatic acid halide compound having two or more acid halide groups in one molecule.
  • Examples thereof include dicarboxylic acid halide, benzenedisulfonic acid halide and the like, and one of these or a mixture of two or more thereof can be used.
  • trimesic acid chloride alone, a mixture of trimesic acid chloride and isophthalic acid chloride, or a mixture of trimesic acid chloride and terephthalic acid chloride is particularly preferably used.
  • the polyfunctional aromatic amine is an aromatic amino compound having two or more amino groups in one molecule.
  • the raw material liquid 4 is an organic solution containing a first organic solvent, water and a first solute.
  • the initial water content of the raw material liquid 4 in the dehydration step S103 is 1% by mass or more and less than 30% by mass, preferably 1% by mass or more and less than 20% by mass, and more preferably 1% by mass or more and 15% by mass. It is less than% by mass.
  • the "initial moisture content” is the raw material liquid 4 or the induced organic liquid at the time when the raw material liquid 4 is prepared in the raw material liquid tank 2 or the induction organic liquid 5 is prepared in the induction liquid tank 3. It refers to the water content of 5, and is the same in the following. The method for measuring the water content will be described later.
  • the first organic solvent may be an ether (for example, cyclic ether), an ester, a hydrocarbon, a nitrogen-containing compound, a sulfur-containing compound, a halogen compound, a ketone, or the like, and specifically, tetrahydrofuran, 2-methyl tetrahydrofuran, acetic acid or the like.
  • ether for example, cyclic ether
  • ester for example, an ester, a hydrocarbon, a nitrogen-containing compound, a sulfur-containing compound, a halogen compound, a ketone, or the like, and specifically, tetrahydrofuran, 2-methyl tetrahydrofuran, acetic acid or the like.
  • the first organic solvent is preferably at least one selected from the group consisting of tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, cyclopentyl methyl ether, and t-butyl methyl ether, more preferably.
  • At least one species are preferably at least one selected from the group consisting of tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, cyclopentyl
  • the first solute may be a substance that does not pass through the forward osmosis membrane 23, and is not limited to a specific type.
  • the method of this embodiment is used in the manufacture of a pharmaceutical in one embodiment.
  • the first solute is, for example, a raw material used in the pharmaceutical industry or the like (for example, amino acids such as phenylalanine, sugars such as sucrose, natural products such as alkaloids isolated from nature such as quinine, compounds called building blocks, etc.).
  • the solute may be a solid, a liquid, or a mixture of a plurality of substances.
  • the first organic solvent and the first solute are selected so as to be different substances.
  • the molecular weight of the first solute is preferably 100 or more and 30,000 from the viewpoint of preventing the first solute from penetrating the forward osmosis membrane 23 and preventing the first solute from adhering to the forward osmosis membrane 23.
  • it is more preferably 150 or more and 10000 or less, and further preferably 200 or more and 1000 or less.
  • the molecular weight is a number average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography, and when it is not a polymer, it refers to a value based on the atomic weight.
  • the concentration of the solute is not limited to a specific value, and may be appropriately selected within a range soluble in the first organic solvent.
  • 0.1% by mass or more and 60% by mass or less preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 40% by mass or less, based on the total mass of the raw material liquid 4. It may be: By setting the concentration of the first solute to a predetermined value or higher, the amount of the solute that can be processed at one time in the dehydrator 1 can be increased and the treatment efficiency can be improved.
  • the raw material liquid 4 can be circulated in the dehydrator 1 without precipitating the solute.
  • the derived organic liquid 5 contains a second organic solvent.
  • the second organic solvent is an organic liquid that does not permeate the forward osmosis membrane 23. Since the inducing organic liquid 5 is not an aqueous solution but an organic liquid containing a second organic solvent that does not permeate the forward osmosis film 23, it is possible to prevent the diffusion of water from the inductive organic liquid 5 to the raw material liquid 4, and a small amount of water can be prevented. The raw material liquid 4 containing water can be effectively dehydrated.
  • the difference ⁇ HSP between the inducible organic solution 5 and the separable active layer of the forward osmosis membrane 23 is preferably ⁇ HSP ⁇ 16 (MPa) 0.5 .
  • MPa MPa
  • the ⁇ HSP is more preferably 15 (MPa) 0.5 or less, or 14 (MPa) 0.5 or less, or 13 (MPa) 0.5 or less.
  • ⁇ HSP is small, but from the viewpoint of convenience when selecting the combination of the induced organic liquid and the separation active layer, in one embodiment, 5 (MPa) 0.5 or more, or 6 (MPa) 0.5 or more, or 7 ( MPa) 0.5 or more.
  • the solubility parameter of the present disclosure is the Hansen solubility parameter (HSP). Based on the dispersion term ⁇ d, polar term ⁇ p, and hydrogen bond term ⁇ H of HSP, the solubility parameter difference ⁇ HSP between two substances can be calculated by the following formula.
  • the chemical structure of the polymer constituting the separation active layer is converted into a monomer by the procedure shown below, and the HSP of the monomer is converted into a Hansen SP & QSPR model which is an add-on of the commercially available software Winmostar 9.4.11.
  • This value can be regarded as the HSP of the isolation active layer.
  • the repeating unit of the polymer is taken out, the bonding portion between the repeating units is replaced with a methyl group, and then the HSP of the monomer is calculated. do.
  • the repeating unit is taken out, and all the functional groups that may remain unreacted without being crosslinked except at the end of the polymer are replaced with hydrogen groups to form a linear structure.
  • the HSP of the monomer is calculated after replacing the bonding portion between the repeating units after the conversion with a methyl group. The specific procedure will be described later.
  • the HSP value of the entire induced organic liquid is obtained from the HSP of each of the n kinds of liquid components (components 1, 2, ... N) contained in the induced organic liquid and the volume fraction in the induced organic liquid. Can be determined. Specifically, the calculation is performed according to the following formula. The solid component contained in the induced organic liquid is not considered in the calculation of the HSP value.
  • V1, V2, ... Vn is the volume fraction of each of the components 1, 2, ... n. ⁇ d1, ⁇ d2, ... ⁇ dn is the dispersion term of each HSP of the components 1, 2, ... N. ⁇ p1, ⁇ p2, ... ⁇ pn is the polar term of each HSP of the components 1, 2, ... N. ⁇ H1, ⁇ H2, ... ⁇ Hn are hydrogen bond terms of each HSP of the components 1, 2, ... n. )
  • the HSP value of each liquid component of the induced organic liquid can be calculated using the Hansen SP & QSPR model, which is an add-on of the commercially available software Winmostar 9.4.11.
  • the solubility parameter (HSP) value of the separation active layer is preferably 15 (MPa) 0.5 or more, 16 (MPa) 0.5 or more, or 17 (MPa) 0.5 or more, and preferably 40 (MPa) 0.5 or less. Or 39 (MPa) 0.5 or less, or 38 (MPa) 0.5 or less.
  • the solubility parameter (HSP) value of the derived organic liquid is preferably 13 (MPa) 0.5 or more, or 14 (MPa) 0.5 or more, or 15 (MPa) 0.5 or more, and preferably 39 (MPa) 0.5 or less. Or 38 (MPa) 0.5 or less, or 37 (MPa) 0.5 or less.
  • ⁇ d is preferably 15 (MPa) 0.5 or more, or 16 (MPa) 0.5 or more, or 17 (MPa) 0.5 or more, preferably 26 (MPa) 0.5 or less, or 25.
  • (MPa) 0.5 or less, or 24 (MPa) 0.5 or less, and ⁇ p is preferably 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 or more, or 4 (MPa) 0.5 or more, preferably 26 ( MPa) 0.5 or less, or 25 (MPa) 0.5 or less, or 24 (MPa) 0.5 or less, and ⁇ H is preferably 1 (MPa) 0.5 or more, or 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 .
  • the above is preferably 20 (MPa) 0.5 or less, 19 (MPa) 0.5 or less, or 18 (MPa) 0.5 or less.
  • ⁇ d is preferably 13 (MPa) 0.5 or more, or 14 (MPa) 0.5 or more, or 15 (MPa) 0.5 or more, preferably 20 (MPa) 0.5 or less, or 19.
  • (MPa) 0.5 or less, or 18 (MPa) 0.5 or less, and ⁇ p is preferably 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 or more, or 4 (MPa) 0.5 or more, preferably 18 ( MPa) 0.5 or less, or 17 (MPa) 0.5 or less, or 16 (MPa) 0.5 or less, and ⁇ H is preferably 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 or more, or 4 (MPa) 0.5 .
  • the above is preferably 28 (MPa) 0.5 or less, 27 (MPa) 0.5 or less, or 26 (MPa) 0.5 or less.
  • the saturated water content of the induced organic liquid is preferably 0.5% by mass or more, 1.0% by mass or more, or 2.0% by mass or more. It is considered that when the induced organic liquid satisfies this condition, water can be suitably transferred from the raw material liquid to the induced organic liquid.
  • the saturated water content is preferably 100% (that is, optionally mixed with water), but from the viewpoint of dehydration efficiency, for example, even if it is 99% by mass or less, 98% by mass or less, or 97% by mass or less. good.
  • the saturated water content of the induced organic liquid can be determined by the following procedure. Water and the induced organic liquid are mixed in equal amounts using a separatory funnel in terms of weight. If it is not divided into two layers, an aqueous layer and an organic layer, the induced organic liquid is considered to be miscible with water at an arbitrary ratio. When separated into two layers, the liquid is then separated, and the water content of the obtained organic layer is regarded as the saturated water content. The method for measuring the water content will be described later.
  • the saturated water content of the induced organic liquid is unknown and the induced organic liquid contains a solvent that is arbitrarily mixed with water, water is added little by little to the induced organic liquid, and the amount of water added just before the two phases are formed. From (g) and the amount of the derived organic liquid used (g), the water content obtained by the following formula is defined as the saturated water content.
  • the dehydration efficiency can be calculated based on the following formula based on the water content of the raw material liquid (FS) and the amount of the raw material liquid (FS). For the t minutes below, it is preferable to select about one-eighth to one-fourth of the total operating time. From the dehydration efficiency at the initial stage of operation, the degree of dehydration after the end of operation can be estimated.
  • the dehydration efficiency is modified as follows.
  • the solute precipitation is confirmed, the operation is stopped and the total weight (A) of the raw material liquid is measured. Then, the water content of the supernatant is measured. This water content is taken as the water content of the raw material liquid (FS) after t minutes. Further, the precipitated solute is filtered off, and the precipitated weight (B) is measured. The weight of (A)-(B) is defined as the amount of raw material liquid (FS) after t minutes.
  • the second organic solvent may be ether (for example, cyclic ether), ester, hydrocarbon, nitrogen-containing compound, sulfur-containing compound, halogen compound, ketone, alcohols and the like, and specifically, tetrahydrofuran and 2-methyl.
  • ether for example, cyclic ether
  • ester hydrocarbon
  • nitrogen-containing compound sulfur-containing compound
  • halogen compound halogen compound
  • ketone ketone
  • alcohols and the like specifically, tetrahydrofuran and 2-methyl.
  • Tetrahydrofuran methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, toluene, cyclopentyl methyl ether, t-butyl methyl ether, acetonitrile, dimethylacetamide, N-methylpyrrolidone, hexafluoroisopropyl alcohol, acetate, acetone , Anisole, benzene, chlorobenzene, carbon tetrachloride, chloroform, cumene, cyclohexane, 1,2-dichloroethane, 1,2-dichloroethane, dichloromethane, 1,2-dimethoxyethane, N, N-dimethylformamide, dimethylsulfoxide, 1 , 4-dioxane, ethyl ether, ethyl formate, formamide, formate, hept
  • the second organic solvent is preferably at least one selected from the group consisting of tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, cyclopentyl methyl ether, and t-butyl methyl ether, more preferably.
  • the first organic solvent and the second organic solvent may be the same or different from each other.
  • the initial water content of the induced organic liquid 5 in the dehydration step S103 is smaller than the initial water content of the raw material liquid 4.
  • the initial water content of the induced organic liquid 5 is measured in a state where these are added.
  • a portion other than the desiccant specifically, a supernatant portion is sampled to measure the water content.
  • the induction organic liquid 5 contains a dehydration reagent as the second solute
  • the state before the addition of the dehydration reagent that is, the liquid lacking the dehydration reagent among the constituents of the induction organic liquid (in one embodiment, the second organic solvent).
  • the difference between the initial water content (mass%) of the induced organic liquid 5 and the initial water content (mass%) of the raw material liquid 4 in the dehydration step S103 is 0.5% by mass or more, or 0. It may be 7% by mass or more, or 1% by mass or more, and in one embodiment, it may be 20% by mass or less, 15% by mass or less, or 10% by mass or less.
  • the induction organic liquid 5 may further contain a second solute and / or a desiccant.
  • the second solute is a substance that is soluble in or completely mixed with the second organic solvent and does not permeate the forward osmosis membrane.
  • the second solute may be at least partially dissolved in or completely mixed with the second organic solvent at a concentration in the derived organic liquid 5.
  • the desiccant removes water by physically adsorbing water in the solution, or takes in water as water of crystallization and removes water.
  • the desiccant may be a substance soluble or insoluble in the induced organic liquid 5.
  • the desiccant is, in one embodiment, a substance that remains solid in the induced organic liquid 5 at 20 ° C.
  • the water that has permeated the forward osmosis membrane 23 from the raw material liquid 4 can be removed from the induced organic liquid 5, and the raw material liquid 4 can be dehydrated more efficiently.
  • the second solute include: monoalcohols having a branch of 3 carbon atoms such as 2-propanol, 2-butanol, 2-methyl-2-propanol, and monoalcohols having 4 or more carbon atoms; toluene and the like.
  • Non-polar solvent Polymers such as polyethylene glycol and polypropylene glycol; Dehydration reagents such as orthoester, sodium, calcium hydride, diphosphorus pentoxide; Organic acids such as paratoluenesulfonic acid and pyridinium paratoluenesulfonate; One or more selected.
  • the dehydrating reagent removes water by chemically reacting with water in the solution, and is distinguished from the above-mentioned desiccant which does not involve a chemical reaction at the time of dehydration.
  • the orthoester may be, for example, trimethyl orthoformate, triethyl orthoformate or the like.
  • the second organic solvent and the second solute are selected so as to be different substances.
  • the second solute is preferably selected from: orthoester dehydration reagents such as trimethyl orthogitate, triethyl orthogeate; and compounds having a toluene structure such as toluene, paratoluenesulfonic acid, pyridinium paratoluenesulfonate; One or more, more preferably one or more selected from trimethyl orthogeate, triethyl orthogeate, paratoluenesulfonic acid, and pyridinium paratoluenesulfonate, still more preferably triethyl orthogeate and It is paratoluene sulfonic acid or pyridinium paratoluene sulfonic acid.
  • orthoester dehydration reagents such as trimethyl orthogitate, triethyl orthogeate
  • compounds having a toluene structure such as toluene, paratoluenesulfonic acid, pyridinium para
  • the osmotic pressure of the induced organic liquid 5 can be increased and the dehydration effect of the raw material liquid 4 can be enhanced by containing the second solute in the induced organic liquid 5.
  • a compound having a hydrophobic structure such as a toluene structure may have a good effect of increasing the osmotic pressure of the induced organic liquid 5 due to the contribution of the hydrophobic structure.
  • the concentration of the second solute contained in the derived organic liquid 5 may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more in one embodiment, and 60% by mass in one aspect. % Or less, or 50% by mass or less, or 40% by mass or less, or 30% by mass or less, or 20% by mass or less, or 10% by mass or less.
  • the concentration of the polymer such as polyethylene glycol and polypropylene glycol contained in the derived organic liquid 5 is preferably 0.1% by mass or more and 60% by mass or less, more preferably 60% by mass or less, based on the total mass of the induced organic liquid 5. It is 0.5% by mass or more and 50% by mass or less.
  • the concentration of the polymer By setting the concentration of the polymer to a predetermined value or higher, the osmotic pressure of the induced organic liquid 5 can be further increased, and by setting the concentration to a predetermined value or lower, the induced organic liquid 5 is suitable for circulating in the dehydrator 1.
  • the viscosity can be adjusted.
  • the concentration of the ortho ester-based dehydration reagent contained in the derived organic liquid 5 is preferably 1% by mass or more and 60% by mass or less, and more preferably 5% by mass or more and 40% by mass, based on the total mass of the induced organic liquid 5. It is less than mass%.
  • the amount of the organic acid contained in the derived organic liquid 5 may be a catalytic amount, preferably 0.01% by mass or more and 10% by mass or less with respect to the total mass of the induced organic liquid 5, and more preferably. It is 0.1% by mass or more and 5% by mass or less.
  • the desiccant examples include porous materials such as silica gel and molecular sieve, and hydrate-forming compounds such as sodium sulfate and magnesium sulfate, which are generally used for dehydration of organic solvents.
  • the desiccant is preferably one or more selected from the group consisting of molecular sieves and magnesium sulfate, and more preferably molecular sieves.
  • the amount of the desiccant contained in the derived organic liquid 5 is preferably 1% by mass or more and 60% by mass or less, and more preferably 5% by mass or more and 50% by mass or less, based on the total mass of the induced organic liquid 5. Is.
  • the amount of the desiccant By setting the amount of the desiccant to a predetermined value or more, the water transferred from the raw material liquid 4 to the induction organic liquid 5 can be satisfactorily removed, and by setting the amount to a predetermined value or less, the water inside the induction liquid tank 3 can be satisfactorily removed. The pressure loss can be reduced.
  • an organic solution containing the first solute, which is a product of a certain chemical reaction is extracted by a liquid separation operation. Since the organic solution extracted by the liquid separation operation contains water, it is dehydrated in the crude dehydration step S102 and the dehydration step S103.
  • the water content of the organic solution is 1% by mass or more and less than 30% by mass, preferably 1% by mass or more and less than 20% by mass, more preferably 1% by mass or more and less than 15% by mass, the crude dehydration step S102 is omitted and dehydration is performed.
  • Step S103 may be executed.
  • the crude raw material solution which is the organic solution extracted in the liquid separation step S101, and the inductive aqueous solution containing the third solute are brought into contact with each other via the forward osmosis membrane 23 to obtain water content.
  • the time of the dehydration step S103 can be shortened by dehydrating to a certain extent using an aqueous inductive aqueous solution that is harder to vaporize than an organic solvent and can be easily handled.
  • the third solute may be, for example, one or more selected from the group consisting of halides, nitrates, sulfates, acetates, ureas, alcohols, glycols, polymers, and sugars.
  • halides nitrates, sulfates, acetates, ureas, alcohols, glycols, polymers, and sugars.
  • Propylene glycol polyethylene glycol, and one or more selected from the group consisting of polypropylene glycol.
  • the crude dehydration step S102 is executed in the dehydration apparatus 1 including the raw material liquid system 12 for circulating the crude raw material liquid and the induction liquid system 13 for circulating the inductive aqueous solution.
  • the raw material liquid system 12 is configured to suppress the movement of the first organic solvent to the outside of the system due to vaporization. By preventing the volatilization of the first organic solvent, it is possible to prevent an increase in the water content of the raw material liquid 4.
  • an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the crude raw material liquid whose volume has been reduced by dehydration and concentration.
  • the water content of the organic liquid may be 0.4% by mass or less or 0.3% by mass or less, and from the viewpoint of availability of the organic liquid, 0.001% by mass or more or 0.01% by mass or more. , Or 0.1% by mass or more.
  • a raw material liquid 4 which is an organic solution roughly dehydrated in the crude dehydration step S102 and a second organic solvent are contained, and an induced organic having a water content smaller than that of the raw material liquid 4 is provided.
  • Prepare liquid 5 Then, the raw material liquid 4 and the induced organic liquid 5 are brought into contact with each other via the forward osmosis membrane 23 to obtain a dehydrated raw material liquid dehydrated to a water content of less than 1% by mass.
  • the dehydration method of the present embodiment can shorten the time required for dehydration as compared with the conventional dehydration method in which the organic solution extracted by liquid separation is concentrated by azeotrope, and the first solute is decomposed by heating or Deterioration can be prevented.
  • the water content of the dehydration raw material solution is preferably 0.95% by mass or less, or 0.9% by mass or less, or 0.85% by mass or less, or 0.8% by mass or less, or 0.75% by mass or less. Or 0.7% by mass or less. It is preferable that the water content of the dehydration raw material liquid is low, but from the viewpoint of process efficiency, in one embodiment, 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, or 0.2. It may be mass% or more, 0.3 mass% or more, or 0.4 mass% or more.
  • the dehydration step S103 is executed in the dehydration apparatus 1 including the raw material liquid system 12 that circulates the raw material liquid 4 and the induction liquid system 13 that circulates the induction organic liquid 5.
  • the raw material liquid system 12 and the inductive liquid system 13 are configured to suppress the movement of the first and second organic solvents to the outside of the system due to vaporization. As a result, volatilization of the first and second organic solvents can be prevented, and an increase in the water content of the raw material liquid 4 and the induced organic liquid 5 can be prevented.
  • an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the raw material liquid 4 whose volume has been reduced by dehydration and concentration.
  • the water content of the organic liquid may be 0.4% by mass or less or 0.3% by mass or less, and from the viewpoint of availability of the organic liquid, 0.001% by mass or more or 0.01% by mass or more. , Or 0.1% by mass or more.
  • the water transferred from the raw material liquid 4 to the inductive organic liquid 5 is removed from the inductive organic liquid 5 in order to obtain the inductive organic liquid 5 that can be reused in the dehydration step S103.
  • the dehydration step S103 may be executed again using the induced organic liquid 5 treated in the regeneration step S104. As a result, dehydration can be performed while maintaining a state in which the osmotic pressure of the induced organic liquid 5 is higher than that of the raw material liquid 4, and the final water content of the dehydrated raw material liquid can be made smaller.
  • the induced organic liquid 5 is preferably dehydrated by azeotropic distillation or membrane treatment.
  • the azeotropic distillation may be vacuum distillation or the like.
  • the membrane treatment may be a method of removing water from the induced organic liquid 5 by evaporating it using an osmotic vaporized membrane that selectively permeates water.
  • a desiccant or a dehydrating reagent is added to the inducing organic liquid 5.
  • the desiccant and dehydration reagent the above-mentioned substances are preferably used.
  • the crystallization step S105 or the water-reactive reaction step S106 is executed.
  • the first solute is separated by crystallization from the dehydration raw material liquid obtained in the dehydration step S103 and purified. Crystallization may be carried out by methods commonly used by those skilled in the art. Preferably, in order to prevent alteration of the first solute due to heating or pressure manipulation, a method of cooling the dehydration raw material solution or a method of adding a solvent in which the first solute is poorly soluble is added to the dehydration raw material solution.
  • the other reagent is added to the dehydration raw material solution obtained in the dehydration step S103, and the chemical reaction is allowed to proceed under anhydrous conditions.
  • the chemical reaction in the water-inhibited reaction step S106 is a water-inhibited reaction in which the progress of the desired reaction is inhibited in the presence of water.
  • the other reagent may be, for example, an organometallic reagent such as a Grignard reagent or butyllithium.
  • wet crystals which are the first solute containing water, are separated from the aqueous solution containing the first solute, which is the product of a certain chemical reaction.
  • the obtained wet crystals are dissolved in the first organic solvent to obtain a crude raw material liquid and a raw material liquid 4 to be dehydrated in the crude dehydration step S102 and the dehydration step S103.
  • the rough dehydration step S102 may be omitted.
  • the dehydration method of the present embodiment can shorten the time required for dehydration as compared with the conventional dehydration method in which wet crystals are heated under reduced pressure and dried, and the decomposition or alteration of the first solute by heating can be performed. Can be prevented.
  • the crude dehydration step S102, the dehydration step S103, the regeneration step S104, and the water-reactive reaction step S106 in FIG. 4 may be the same as those in the first embodiment, and therefore the description is not repeated.
  • a wet hollow fiber spinning machine equipped with a double spinner is filled with the above-mentioned spinning stock solution, and a 25% by mass methanol aqueous solution is charged from the inside of the double spinning spout, and the above spinning stock solution is filled with 40% by mass methanol from the outside. It was extruded into a coagulation tank filled with an aqueous solution, and a hollow fiber membrane was formed by phase separation.
  • the obtained hollow fiber membrane was cut to a length of 70 cm, bundled, and washed with water.
  • the hollow fiber membrane bundle after washing with water was subjected to solvent substitution with acetone, solvent substitution with hexane, and then drying at 50 ° C.
  • the polyketone hollow fiber membrane thus obtained had an outer diameter of 0.8 mm, an inner diameter of 0.5 mm, a void ratio of 78%, and a maximum pore diameter of the membrane wall of 130 nm.
  • the hollow fiber membrane bundle composed of the 80 polyketone hollow fiber membranes is housed in a cylindrical module housing (cylindrical case) having a diameter of 2 cm and a length of 10 cm, and both ends of the hollow fiber membrane bundle are fixed with an adhesive.
  • a polyketone hollow fiber support membrane module To prepare a polyketone hollow fiber support membrane module.
  • interfacial polymerization was carried out on the inner surface of each hollow fiber membrane as follows. 20.216 g of m-phenylenediamine and 1.52 g of sodium lauryl sulfate were placed in a 1 L container, and 991 g of pure water was further added and dissolved to prepare a first solution to be used for interfacial polymerization. In another 1 L container, 0.6 g of trimesic acid chloride was placed, and 300 g of n-hexane was added and dissolved to prepare a second solution used for interfacial polymerization.
  • the hollow fiber support membrane module 41 in which the inside (core side) of the hollow fiber support membrane is filled with the first solution has a second solution from the second solution storage tank 44 at the entrance on the core side.
  • the liquid feeding pipe 45 is connected, and the second solution liquid feeding pump 46 for pumping the second solution is connected in the middle.
  • the second solution drainage pipe 48 from the second solution drainage tank 47 is connected to the outlet on the core side, and the core side pressure adjustment that controls the pressure inside the hollow fiber of the hollow fiber support membrane module 41 from the tank.
  • the device 42 is connected.
  • FIG. 5 shows the core side (inside of the hollow fiber) of the hollow fiber support membrane module 41 filled with the first solution, allowed to stand for 5 minutes, then drained, and the inside of the hollow fiber is wet with the first solution. It was attached to the device shown in.
  • the core side pressure was set to normal pressure by the core side pressure adjusting device 42, and the shell side pressure was set to a reduced pressure of 10 kPa as an absolute pressure by the shell side pressure adjusting device 43 (core side pressure> shell side pressure).
  • the second solution was fed to the core side at a flow rate of 40 cc / min for 3 minutes by the second solution feed pump 46 while maintaining this pressure, and interfacial polymerization was performed.
  • the polymerization temperature was 25 ° C.
  • the hollow fiber support membrane module was removed from the apparatus and allowed to stand in a constant temperature bath set at 50 ° C. for 5 minutes to vaporize and remove n-hexane. Further, a forward osmosis membrane module was produced by washing both the shell side and the core side with pure water.
  • the separation active layer has a structure in which a part of the trimesic acid chloride-derived portion is crosslinked and a part is not crosslinked (that is, hydrolyzed). Have.
  • the monomer structure represented by is obtained.
  • the HSP of the second organic solvent of the derived organic liquid was also calculated using the Hansen SP & QSPR model, which is an add-on of the commercially available software Winmostar 9.4.11, in the same manner as described above. The results are summarized in Table 1.
  • the dehydration efficiency was determined based on the water content of the raw material liquid (FS) and the amount of the raw material liquid (FS) based on the following formula. In addition, t was set to 30 (minutes).
  • dehydration efficiency (%) was evaluated according to the following criteria. A: 40% or more B: 30% or more and less than 40% C: less than 30%
  • Example 1 This example was carried out at room temperature (23 ° C.) using the dehydrator shown in FIG.
  • the raw material solution 200 mL of an isopropyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 2.0% by mass.
  • the induction organic solution 400 mL of an isopropyl acetate solution containing 10% by mass of triethyl orthoformate as a second solute and a catalytic amount of pyridinium paratoluenesulfonate (PPTS) was used. The initial moisture content of the derived organic solution was less than 0.01% by mass.
  • PPTS pyridinium paratoluenesulfonate
  • the raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the raw material liquid was circulated at a flow rate of 40 mL / min and the induced organic liquid was circulated at 340 mL / min, respectively, and brought into contact with each other through a forward osmosis membrane. After operating the dehydrator for 4 hours, the water content of the recovered dehydration raw material was 0.6% by mass.
  • Example 2 As the raw material liquid, 200 mL of an ethyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 3.0% by mass. As the induction organic solution, 400 mL of an ethyl acetate solution containing 10% by mass of triethyl orthoformate as a second solute and a catalytic amount of paratoluenesulfonic acid was used. The initial moisture content of the derived organic solution was less than 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus under the same conditions as in Example 1, the water content of the dehydrated raw material liquid recovered was 0.7% by mass.
  • Example 3 As the raw material liquid, 200 mL of a tetrahydrofuran (THF) solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 9.0% by mass. As the induction solution, 400 mL of a tetrahydrofuran solution containing 10% by mass of triethyl orthoformate as a second solute and a catalytic amount of pyridinium paratoluenesulfonate (PPTS) was used. The initial moisture content of the derived organic solution was less than 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator under the same conditions as in Example 1, the water content of the dehydrated raw material recovered was 0.8% by mass.
  • THF tetrahydrofuran
  • Example 4 As the raw material liquid, 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine as the first solute was used. The initial water content of the raw material liquid was 9.0% by mass. As the inducing solution, 400 mL of a tetrahydrofuran solution containing 10% by mass of toluene as a second solute and about 100 g of molecular sieve as a desiccant was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus under the same conditions as in Example 1, the water content of the dehydrated raw material liquid recovered was 0.9% by mass.
  • Example 5 As the raw material liquid, 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 3.0% by mass. As the induction organic liquid, 2000 mL of tetrahydrofuran, which is a second organic solvent, was used. The initial water content of the induced organic liquid was 0.1% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 7 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.9% by mass.
  • Example 6 As the raw material solution, 200 mL of an isopropyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 2.0% by mass. As the inducing organic liquid, 600 mL of isopropyl acetate containing about 100 g of molecular sieve, which is a desiccant, was used. The initial water content of the derived organic liquid was 0.01% by mass. In this embodiment, the dehydration operation was performed without covering the raw material liquid tank and the induction liquid tank. After operating the dehydrator for 5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.8% by mass.
  • Comparative Example 1 An aqueous solution was used as the inducing solution instead of an organic solution.
  • the raw material liquid 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 9.0% by mass.
  • the induction liquid 400 mL of an aqueous solution containing 20% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization. After operating the dehydrator for 1.5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 7.2% by mass. Although the water content of the raw material liquid decreased, it could not be less than 1% by mass.
  • Comparative Example 2 An aqueous solution was used as the inducing solution, as in Comparative Example 1.
  • As the raw material liquid 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 1.3% by mass.
  • As the induction liquid 400 mL of an aqueous solution containing 20% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was measured and found to be 4.8% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
  • Comparative Example 3 An aqueous solution was used as the inducing solution, as in Comparative Example 1.
  • As the raw material liquid 200 mL of an ethyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 2.1% by mass.
  • As the induction liquid 400 mL of an aqueous solution containing 20% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was measured and found to be 2.4% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
  • Comparative Example 4 An aqueous solution was used as the inducing solution, as in Comparative Example 1.
  • the first organic solvent methanol that permeates the forward osmosis membrane was selected.
  • the raw material liquid 1000 mL of a methanol solution containing 1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 10.2% by mass.
  • As the inducing solution 1600 mL of an aqueous solution containing 10% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was measured and found to be 38.5% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
  • Comparative Example 5 methanol permeating the forward osmosis membrane was selected as the first organic solvent and the second organic solvent.
  • the raw material liquid 900 mL of a methanol solution containing 1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 9.4% by mass.
  • the inducing organic liquid 1400 mL of a methanol solution containing 10% by mass of magnesium chloride, which is a second solute, was used. The initial water content of the induced organic liquid was 0.13% by mass.
  • the raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 3.5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 3.0% by mass. Although the water content of the raw material liquid decreased, it could not be less than 1% by mass.
  • Comparative Example 6 the induced organic liquid was tested under the condition that the initial water content was higher than that of the raw material liquid.
  • the raw material liquid 200 mL of a t-butyl methyl ether solution containing 5% by mass of octaacetylsucrose, which is the first solute, was used.
  • the initial water content of the raw material liquid was 1.3% by mass.
  • the inducing solution 600 mL of an isopropyl acetate solution containing 10% by mass of toluene, which is the second solute, was used.
  • the initial water content of the induced organic liquid was 1.5% by mass.
  • the raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was measured and found to be 1.4% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
  • Example 7 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing organic liquid, 400 g of tetrahydrofuran was used. The initial water content of the induced organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.4% by mass. The dehydration efficiency determined from the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes was 33% (evaluation B).
  • Example 8 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing organic liquid, 400 g of ethyl acetate was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.4% by mass. The dehydration efficiency was 42% (evaluation A) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 9 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing organic liquid, 400 g of methanol was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydrating raw material liquid was 0.5% by mass. The dehydration efficiency was 23% (evaluation C) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 10 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the derived organic liquid, 400 g of a solution in which tetrahydrofuran and cyclohexane were mixed in a volume ratio of 1: 3 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydrating raw material liquid was 0.9% by mass.
  • the dehydration efficiency was 27% (evaluation C) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 11 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution in which tetrahydrofuran and cyclohexane were mixed at a volume ratio of 1: 1 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was 0.8% by mass.
  • the dehydration efficiency was 39% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 12 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing solution, 400 g of a solution in which tetrahydrofuran and N-methylpyrrolidone were mixed in a volume ratio of 1: 1 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was 0.4% by mass.
  • the dehydration efficiency was 32% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 13 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution in which tetrahydrofuran and dichloromethane were mixed in a volume ratio of 1: 1 was used. The initial water content of the induced organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was 0.5% by mass.
  • the dehydration efficiency was 41% (evaluation A) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 14 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution in which tetrahydrofuran and dichloromethane were mixed in a volume ratio of 1: 3 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was 0.8% by mass.
  • the dehydration efficiency was 38% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
  • Example 15 As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution prepared by mixing tetrahydrofuran and dichloromethane in a volume ratio of 1: 9 was used. The initial water content of the induced organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization.
  • the water content of the recovered dehydration raw material was 0.9% by mass.
  • the dehydration efficiency was 37% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.

Abstract

Provided is a method for processing a material liquid, which is an organic solution containing a small amount of water, using forward osmosis under a non-heated condition to obtain a dehydrated material liquid without causing degradation or change in quality of a solute. This method is for dehydrating a material liquid containing a first organic solvent, water, and a first solute, and comprises a dehydration step for bring the material liquid and an induction organic liquid containing a second organic solvent into contact with each other through a forward osmosis membrane to obtain a dehydrated material liquid that has the moisture content thereof reduced to less than 1 mass% through dehydration. In one mode, the initial moisture content of the material liquid in the dehydration step is not less than 1 mass% but less than 30 mass%, and the initial moisture content of the induction organic liquid is less than the initial moisture content of the material liquid.

Description

有機原料液の脱水方法Dehydration method of organic raw material liquid
 本発明は、有機原料液の脱水方法に関する。詳しくは、正浸透法により、有機溶媒、少量の水、及び、溶質を含む原料液から水を脱水する方法に関する。 The present invention relates to a method for dehydrating an organic raw material liquid. More specifically, the present invention relates to a method of dehydrating water from a raw material liquid containing an organic solvent, a small amount of water, and a solute by a forward osmosis method.
 種々の化学プロセスにおいて、有機液中に含まれる水を除く脱水工程が存在する。例えば、水の存在下では所望の反応が進行しない禁水反応と呼ばれる化学反応の前に原料液から脱水する場合、溶質を再結晶して所望の形状、大きさ又は純度の結晶を得るために有機溶液中の水分量を調整する場合、平衡反応中に副生する水を反応系外に除き、目的生成物の収率を向上させる場合等がある。 In various chemical processes, there is a dehydration step that removes water contained in the organic liquid. For example, when dehydrating from a raw material solution before a chemical reaction called a water-free reaction in which the desired reaction does not proceed in the presence of water, in order to recrystallize the solute to obtain crystals of the desired shape, size or purity. When adjusting the amount of water in the organic solution, water produced as a by-product during the equilibrium reaction may be removed from the reaction system to improve the yield of the target product.
 一般的な脱水方法として、水と共沸混合物を作る有機溶媒を原料液に添加し、原料液を加熱することで、水と添加した有機溶媒とを除去する共沸蒸発法、及び、水を選択的に吸着する乾燥剤を原料液に添加する方法が知られている。 As a general dehydration method, an azeotropic evaporation method in which water and the added organic solvent are removed by adding an organic solvent for forming an azeotropic mixture with water to the raw material liquid and heating the raw material liquid, and water are used. A method of adding a desiccant that selectively adsorbs to a raw material solution is known.
 しかし、共沸蒸発法では、加熱によって原料液中の成分の品質が変化する等の問題がある。乾燥剤を原料液に添加する方法では、原料液中の溶質も吸着されること、及び、添加した乾燥剤を次工程の前に原料液から除去する手間が生じることが懸念される。また、脱水工程のスケールを大きくした場合に、脱水の再現性を得るのが難しい等の問題もある。 However, the azeotropic evaporation method has problems such as the quality of the components in the raw material liquid changing due to heating. In the method of adding the desiccant to the raw material liquid, there is a concern that the solute in the raw material liquid is also adsorbed and that it takes time to remove the added desiccant from the raw material liquid before the next step. Further, when the scale of the dehydration process is increased, there is a problem that it is difficult to obtain the reproducibility of dehydration.
 そこで、他の有用な脱水方法として、浸透圧の違いを利用して原料液中の溶媒を分離する正浸透(FO:Forward Osmosis)法が知られている。正浸透法は、原料液と、原料液よりも浸透圧の高い誘導液とを、正浸透(FO)膜を介して接触させ、原料液から誘導液へと溶媒を移動させることにより、原料液を濃縮する方法である。溶媒が水の場合には、正浸透法を用いて水溶液を脱水及び濃縮できる。正浸透法は、加熱及び加圧を必要としない。したがって、正浸透法は、溶質の分解又は変質を防ぐことができ、溶質の品質を保持したまま溶液を処理することができると期待される。 Therefore, as another useful dehydration method, a forward osmosis (FO: Forward Osmosis) method is known in which the solvent in the raw material liquid is separated by utilizing the difference in osmotic pressure. In the forward osmosis method, the raw material liquid and the inductive liquid having a higher osmotic pressure than the raw material liquid are brought into contact with each other through a forward osmosis (FO) membrane, and the solvent is transferred from the raw material liquid to the inductive liquid to move the raw material liquid. Is a method of concentrating. When the solvent is water, the aqueous solution can be dehydrated and concentrated using the forward osmosis method. The forward osmosis method does not require heating and pressurization. Therefore, it is expected that the forward osmosis method can prevent the decomposition or alteration of the solute and can process the solution while maintaining the quality of the solute.
 例えば特許文献1には、正浸透法によりアルコール水溶液を脱水する方法が記載されている。また、特許文献2には、ポリケトンを膜素材として使用した正浸透膜を使用し、有機化合物を含む溶液を処理するシステム、及び、このシステムを用いて含水物から水を除去する方法が記載されている。 For example, Patent Document 1 describes a method of dehydrating an aqueous alcohol solution by a forward osmosis method. Further, Patent Document 2 describes a system for treating a solution containing an organic compound using a forward osmosis membrane using a polyketone as a membrane material, and a method for removing water from a hydrous substance using this system. ing.
国際公開第2010/080208号International Publication No. 2010/080208 国際公開第2016/024573号International Publication No. 2016/024573
 しかしながら、特許文献1及び特許文献2に記載される技術では、有機溶液中に少量含まれる水を除去することは実現できていない。本発明の一態様は、上記事情に鑑み、少量の水を含む有機溶液である原料液に含まれる溶質を分解又は変質させることなく、当該原料液を脱水する方法を提供する。 However, the techniques described in Patent Document 1 and Patent Document 2 have not been able to remove a small amount of water contained in the organic solution. In view of the above circumstances, one aspect of the present invention provides a method for dehydrating the raw material liquid without decomposing or deteriorating the solute contained in the raw material liquid which is an organic solution containing a small amount of water.
 すなわち、本発明を実施する形態の一例は以下に示すとおりである。
[1] 第一の有機溶媒、水及び第一の溶質を含む原料液から脱水をするための方法であって、
 前記原料液と、第二の有機溶媒を含む誘導有機液とを、正浸透膜を介して接触させ、水分率が1質量%未満に脱水された脱水原料液を得る脱水工程を含み、
 ここで前記脱水工程における前記原料液の当初の水分率は、1質量%以上30質量%未満であり、前記誘導有機液の当初の水分率は、前記原料液の当初の水分率よりも小さい、方法。
[2] 前記正浸透膜が、分離活性層と微細孔性支持膜とで構成される複合膜であり、
 前記誘導有機液と前記分離活性層との溶解度パラメータの差ΔHSPが、ΔHSP<16(MPa)0.5であり、かつ
 前記誘導有機液の飽和含水量が0.5質量%以上である、
 上記態様1に記載の方法。
[3] 前記誘導有機液の溶解度パラメータが、13(MPa)0.5≦δd≦20(MPa)0.5、2(MPa)0.5≦δp≦18(MPa)0.5、2(MPa)0.5≦δH≦28(MPa)0.5である、
 上記態様1又は2に記載の方法。
[4] 前記誘導有機液が、第二の溶質及び/又は乾燥剤をさらに含む、
 上記態様1~3のいずれかに記載の方法。
[5] 前記脱水工程が、前記原料液を循環させる原料液系、及び、前記誘導有機液を循環させる誘導液系を備える脱水装置において実行され、
 前記原料液系及び前記誘導液系は、前記第一の有機溶媒及び前記第二の有機溶媒の気化による系外への移動を抑制するように構成される、
 上記態様1~4のいずれかに記載の方法。
[6] 前記第二の有機溶媒は、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、トルエン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、アセトニトリル、ジメチルアセトアミド、N-メチルピロリドン、ヘキサフルオロイソプロピルアルコール、酢酸、アセトン、アニソール、ベンゼン、クロロベンゼン、四塩化炭素、クロロホルム、クメン、シクロヘキサン、1,2―ジクロロエタン、1,2-ジクロロエテン、ジクロロメタン、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、1,4-ジオキサン、エチルエーテル、ギ酸エチル、ホルムアミド、ギ酸、ヘプタン、ヘキサン、メチルブチルケトン、メチルシクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、ペンタン、ニトロメタン、ピリジン、スルホラン、テトラリン、1,1,1-トリクロロエタン、1,1,2-トリクロロエテン、及びキシレンからなる群から選択される少なくとも1種である、
 上記態様1~5のいずれかに記載の方法。
[7] 前記脱水工程において、前記第一の有機溶媒を含み、かつ、水分率が0.5質量%以下の有機液が、脱水及び濃縮によって減容した前記原料液に補充される、
 上記態様1~6のいずれかに記載の方法。
[8] 前記脱水原料液中の第一の溶質が、無水条件下において前記第一の溶質と他の試薬との化学反応を行う禁水反応に供される、
 上記態様1~7のいずれかに記載の方法。
[9] 前記方法が、前記第一の溶質を晶析によって精製する晶析工程をさらに含む、
 上記態様1~8のいずれかに記載の方法。
[10] 前記方法が、前記脱水工程の前に、前記第一の溶質を含む液から有機層を抽出する分液工程をさらに含み、
 前記有機層を前記原料液として用いる、
 上記態様1~9のいずれかに記載の方法。
[11] 前記方法が、再生工程をさらに含み、
 前記再生工程は、前記原料液から前記誘導有機液へ移動した水を前記誘導有機液から除去する工程である、
 上記態様1~10のいずれかに記載の方法。
[12] 前記再生工程において、乾燥剤又は脱水試薬が、前記誘導有機液中に添加される、
 上記態様11に記載の方法。
[13] 前記再生工程において、前記誘導有機液は、共沸蒸留又は膜処理によって脱水される、
 上記態様11又は12に記載の方法。
[14] 前記方法が、前記脱水工程の前に粗脱水工程をさらに含み、
 前記粗脱水工程は、粗原料液と、第三の溶質を含む誘導水溶液とを、正浸透膜を介して接触させて、水分率が1質量%以上30質量%未満に脱水された原料液を得る工程である、
 上記態様1~13のいずれかに記載の方法。
[15] 前記粗脱水工程が、前記粗原料液を循環させる原料液系、及び、前記誘導水溶液を循環させる誘導液系を備える脱水装置において実行され、
 前記原料液系は、前記第一の有機溶媒の気化による系外への移動を抑制するように構成される、
 上記態様14に記載の方法。
[16] 前記粗脱水工程において、前記第一の有機溶媒を含み、かつ、水分率が0.5質量%以下の有機液が、脱水及び濃縮によって減容した前記粗原料液に補充される、
 上記態様14又は15に記載の方法。
[17] 前記方法が、医薬の製造において用いられる、上記態様1~16のいずれかに記載の方法。
That is, an example of the embodiment of the present invention is as shown below.
[1] A method for dehydrating a raw material liquid containing a first organic solvent, water and a first solute.
A dehydration step of bringing the raw material liquid and an induced organic liquid containing a second organic solvent into contact with each other via a forward osmosis membrane to obtain a dehydrated raw material liquid dehydrated to a water content of less than 1% by mass is included.
Here, the initial water content of the raw material liquid in the dehydration step is 1% by mass or more and less than 30% by mass, and the initial water content of the induced organic liquid is smaller than the initial water content of the raw material liquid. Method.
[2] The forward osmosis membrane is a composite membrane composed of a separation active layer and a microporous support membrane.
The difference ΔHSP of the solubility parameter between the induced organic liquid and the separated active layer is ΔHSP <16 (MPa) 0.5 , and the saturated water content of the induced organic liquid is 0.5% by mass or more.
The method according to the above aspect 1.
[3] The solubility parameter of the derived organic liquid is 13 (MPa) 0.5 ≤ δd ≤ 20 (MPa) 0.5 , 2 (MPa) 0.5 ≤ δp ≤ 18 (MPa) 0.5 , 2 (MPa) 0.5 ≤ δH ≤ 28 ( MPa) 0.5 ,
The method according to the above aspect 1 or 2.
[4] The induced organic liquid further contains a second solute and / or a desiccant.
The method according to any one of the above aspects 1 to 3.
[5] The dehydration step is executed in a dehydration apparatus including a raw material liquid system for circulating the raw material liquid and an induction liquid system for circulating the induction organic liquid.
The raw material liquid system and the induction liquid system are configured to suppress the movement of the first organic solvent and the second organic solvent to the outside of the system due to vaporization.
The method according to any one of the above aspects 1 to 4.
[6] The second organic solvent is tetrahydrofuran, 2-methyl tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, toluene, cyclopentyl methyl ether, t-butyl methyl ether, acetonitrile, etc. Dimethylacetamide, N-methylpyrrolidone, hexafluoroisopropyl alcohol, acetic acid, acetone, anisole, benzene, chlorobenzene, carbon tetrachloride, chloroform, cumene, cyclohexane, 1,2-dichloroethane, 1,2-dichloroethane, dichloromethane, 1, 2-Dimethoxyethane, N, N-dimethylformamide, dimethylsulfoxide, 1,4-dioxane, ethyl ether, ethyl formate, formamide, formate, formic acid, heptane, hexane, methylbutylketone, methylcyclohexane, methylethylketone, methylisobutylketone, pentane, At least one selected from the group consisting of nitromethane, pyridine, sulfolane, tetralin, 1,1,1-trichloroethane, 1,1,2-trichloroethane, and xylene.
The method according to any one of the above aspects 1 to 5.
[7] In the dehydration step, an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the raw material liquid whose volume has been reduced by dehydration and concentration.
The method according to any one of the above aspects 1 to 6.
[8] The first solute in the dehydration raw material liquid is subjected to a water-free reaction in which the first solute is chemically reacted with other reagents under anhydrous conditions.
The method according to any one of the above aspects 1 to 7.
[9] The method further comprises a crystallization step of purifying the first solute by crystallization.
The method according to any one of the above aspects 1 to 8.
[10] The method further comprises a liquid separation step of extracting an organic layer from the liquid containing the first solute before the dehydration step.
The organic layer is used as the raw material liquid.
The method according to any one of the above aspects 1 to 9.
[11] The method further comprises a regeneration step.
The regeneration step is a step of removing water transferred from the raw material liquid to the derived organic liquid from the derived organic liquid.
The method according to any one of the above aspects 1 to 10.
[12] In the regeneration step, a desiccant or a dehydrating reagent is added to the induced organic liquid.
The method according to the above aspect 11.
[13] In the regeneration step, the induced organic liquid is dehydrated by azeotropic distillation or membrane treatment.
The method according to the above aspect 11 or 12.
[14] The method further comprises a crude dehydration step prior to the dehydration step.
In the crude dehydration step, the crude raw material solution and the induced aqueous solution containing the third solute are brought into contact with each other via a forward osmosis membrane to dehydrate the raw material solution to a moisture content of 1% by mass or more and less than 30% by mass. The process of getting
The method according to any one of the above aspects 1 to 13.
[15] The crude dehydration step is executed in a dehydration apparatus including a raw material liquid system for circulating the crude raw material liquid and an induction liquid system for circulating the inductive aqueous solution.
The raw material liquid system is configured to suppress the movement of the first organic solvent to the outside of the system due to vaporization.
The method according to aspect 14 above.
[16] In the crude dehydration step, an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the crude raw material liquid whose volume has been reduced by dehydration and concentration.
The method according to the above aspect 14 or 15.
[17] The method according to any one of the above aspects 1 to 16, wherein the method is used in the production of a pharmaceutical product.
 本発明の一態様に係る方法によれば、少量の水及び溶質を含む有機溶液である原料液を、溶質を分解又は変質させることなく、非加熱条件下で脱水することが可能になる。本発明の一態様に係る方法は、例えば、医薬の製造において溶質を含む有機溶液を脱水するために、好適に適用可能である。 According to the method according to one aspect of the present invention, a raw material liquid which is an organic solution containing a small amount of water and a solute can be dehydrated under non-heating conditions without decomposing or deteriorating the solute. The method according to one aspect of the present invention is suitably applicable to, for example, dehydrating an organic solution containing a solute in the production of a medicine.
本発明に係る方法に用いられる脱水装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the dehydration apparatus used in the method which concerns on this invention. 本発明に係る方法に用いられる正浸透膜モジュールの一例を示す断面図である。It is sectional drawing which shows an example of the forward osmosis membrane module used in the method which concerns on this invention. 本発明に係る方法の第一の実施形態を表すフローチャートである。It is a flowchart which shows the 1st Embodiment of the method which concerns on this invention. 本発明に係る方法の第二の実施形態を表すフローチャートである。It is a flowchart which shows the 2nd Embodiment of the method which concerns on this invention. 正浸透膜モジュールを作製するための装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for manufacturing a forward osmosis membrane module.
 以下、本発明を実施するための例示の形態(以下、本実施形態ともいう。)を、非限定的な例である図面を用いて詳細に説明する。以下の実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。 Hereinafter, an exemplary embodiment for carrying out the present invention (hereinafter, also referred to as the present embodiment) will be described in detail with reference to drawings which are non-limiting examples. The various features shown in the following embodiments can be combined with each other.
≪有機原料液の脱水方法の概要≫
 図1は、脱水装置の一例を示す概念図であり、図2は、正浸透膜モジュールの一例を示す断面図であり、図3及び4は、本実施形態の方法の手順を説明するためのフローチャートである。図1~4を参照し、本実施形態の方法は、第一の有機溶媒、水及び第一の溶質を含む原料液4から脱水をするための方法である。本実施形態の方法は、原料液4と、第二の有機溶媒を含む誘導有機液5とを、正浸透膜23を介して接触させ、水分率が1質量%未満に脱水された脱水原料液を得る脱水工程S103を含むことを特徴とする。原料液4は、例えば、脱水工程S103の前に実行される分液工程S101において、第一の溶質を含む液から抽出された有機層であってよい。
≪Outline of dehydration method of organic raw material liquid≫
FIG. 1 is a conceptual diagram showing an example of a dehydrator, FIG. 2 is a sectional view showing an example of a forward osmosis membrane module, and FIGS. 3 and 4 are for explaining the procedure of the method of the present embodiment. It is a flowchart. With reference to FIGS. 1 to 4, the method of the present embodiment is a method for dehydrating the raw material liquid 4 containing the first organic solvent, water and the first solute. In the method of the present embodiment, the raw material liquid 4 and the induced organic liquid 5 containing the second organic solvent are brought into contact with each other via the forward osmosis membrane 23, and the dehydrated raw material liquid is dehydrated to a moisture content of less than 1% by mass. The dehydration step S103 is included. The raw material liquid 4 may be, for example, an organic layer extracted from the liquid containing the first solute in the liquid separation step S101 executed before the dehydration step S103.
 本実施形態の方法は、原料液4から誘導有機液5へ移動した水を誘導有機液5から除去する工程である、再生工程S104をさらに含んでもよい。再生工程S104において水が除去された誘導有機液5は、脱水工程S103において再利用され、原料液4の脱水に用いられる。 The method of the present embodiment may further include a regeneration step S104, which is a step of removing the water transferred from the raw material liquid 4 to the induction organic liquid 5 from the induction organic liquid 5. The induced organic liquid 5 from which water has been removed in the regeneration step S104 is reused in the dehydration step S103 and used for dehydration of the raw material liquid 4.
 脱水工程S103は、無水条件下において第一の溶質と他の試薬との化学反応を行う禁水反応工程S106の前に実行されてもよい。また、本実施形態の方法は、前記第一の溶質を晶析によって精製する晶析工程S105をさらに含んでもよい。晶析工程S105は、脱水工程S103の前に実行されてもよく、脱水工程S103の後に禁水反応工程S106の代わりに実行されてもよい。また脱水工程S103は、平衡反応の反応液に対して実行されてもよい。平衡反応はバッチ式(回分方式)であっても、フロー式(連続方式)であってもよい。 The dehydration step S103 may be carried out before the water-free reaction step S106 in which the first solute and other reagents are chemically reacted under anhydrous conditions. Further, the method of the present embodiment may further include a crystallization step S105 for purifying the first solute by crystallization. The crystallization step S105 may be carried out before the dehydration step S103, or may be carried out after the dehydration step S103 instead of the water-reactive reaction step S106. Further, the dehydration step S103 may be performed on the reaction solution of the equilibrium reaction. The equilibrium reaction may be a batch type (batch method) or a flow type (continuous method).
 本実施形態の方法は、脱水工程S103の前に粗脱水工程S102をさらに含んでもよい。具体的には、粗脱水工程S102は、粗原料液と、第三の溶質を含む誘導水溶液とを、正浸透膜23を介して接触させて、水分率が1質量%以上30質量%未満に脱水された、本実施形態の原料液4を得る工程である。粗原料液は、例えば、粗脱水工程S102の前に実行される分液工程S101において抽出された有機層である。 The method of the present embodiment may further include a crude dehydration step S102 before the dehydration step S103. Specifically, in the crude dehydration step S102, the crude raw material liquid and the inductive aqueous solution containing the third solute are brought into contact with each other via the forward osmosis membrane 23, so that the water content is 1% by mass or more and less than 30% by mass. This is a step of obtaining the dehydrated raw material liquid 4 of the present embodiment. The crude raw material liquid is, for example, an organic layer extracted in the liquid separation step S101 executed before the crude dehydration step S102.
≪脱水装置1の構成≫
 図1~4を参照し、脱水工程S103を実行する脱水装置1の構成の一例を説明する。脱水装置1は、正浸透膜モジュール20を介して接触する、原料液系12及び誘導液系13によって構成される。以下、各構成要素について説明する。
<< Configuration of dehydrator 1 >>
An example of the configuration of the dehydration apparatus 1 for executing the dehydration step S103 will be described with reference to FIGS. 1 to 4. The dehydrating device 1 is composed of a raw material liquid system 12 and an induction liquid system 13 that come into contact with each other via the forward osmosis membrane module 20. Hereinafter, each component will be described.
<正浸透膜モジュール20>
 図1及び2を参照し、正浸透膜モジュール20は、筒状のハウジング30に複数の中空糸状の正浸透膜23から成る中空糸膜束を充填し、該中空糸膜束の両端を接着剤固定部24,25でハウジング30に固定した構造を有する。ハウジング30は、その側面にシェル側導管21,22を備え、両端にヘッダー26,27を備える。ここで接着剤固定部24,25は、それぞれ、中空糸の中空部を閉塞しないように固化されている。
<Forward osmosis membrane module 20>
With reference to FIGS. 1 and 2, the forward osmosis membrane module 20 fills a tubular housing 30 with a hollow fiber membrane bundle composed of a plurality of hollow fiber-shaped forward osmosis membranes 23, and an adhesive is applied to both ends of the hollow fiber membrane bundle. It has a structure fixed to the housing 30 by the fixing portions 24 and 25. The housing 30 is provided with shell- side conduits 21 and 22 on its side surfaces and headers 26 and 27 at both ends. Here, the adhesive fixing portions 24 and 25 are solidified so as not to block the hollow portions of the hollow fibers, respectively.
 ヘッダー26,27は、それぞれ、中空糸状の正浸透膜23の内側である中空部に連通し且つ正浸透膜23の外側には連通しない、コア側導管28,29を有する。コア側導管28,29により、正浸透膜23の内側に液を導入すること、及び、導入した液を正浸透膜23の内側から取り出すことができる。シェル側導管21,22は、それぞれ、正浸透膜23の外側に連通し、正浸透膜23の内側には連通していない。シェル側導管21,22により、正浸透膜23の外側に液を導入すること、及び、導入した液を正浸透膜23の外側から取り出すことができる。 The headers 26 and 27 have core-side conduits 28 and 29 that communicate with the hollow portion inside the hollow thread-shaped forward osmosis membrane 23 and do not communicate with the outside of the forward osmosis membrane 23, respectively. The core-side conduits 28 and 29 allow the liquid to be introduced into the forward osmosis membrane 23 and the introduced liquid to be taken out from the inside of the forward osmosis membrane 23. The shell- side conduits 21 and 22 communicate with the outside of the forward osmosis membrane 23 and not with the inside of the forward osmosis membrane 23, respectively. The shell- side conduits 21 and 22 allow the liquid to be introduced to the outside of the forward osmosis membrane 23 and the introduced liquid to be taken out from the outside of the forward osmosis membrane 23.
<原料液系12>
 図1に示すように、原料液系12は、原料液タンク2、原料液送液配管6,7、及び、原料液送液ポンプ8を備える。原料液タンク2には、原料液4が充填され、原料液4は、原料液系12内で循環している。具体的には、原料液4は、原料液送液ポンプ8により原料液送液配管6を通り、コア側導管28から正浸透膜モジュール20に入る。そして、原料液4は、正浸透膜23の内側を通過した後コア側導管29から排出され、原料液送液配管7を通って原料液タンク2に戻る。
<Raw material liquid system 12>
As shown in FIG. 1, the raw material liquid system 12 includes a raw material liquid tank 2, raw material liquid feeding pipes 6 and 7, and a raw material liquid feeding pump 8. The raw material liquid tank 2 is filled with the raw material liquid 4, and the raw material liquid 4 circulates in the raw material liquid system 12. Specifically, the raw material liquid 4 passes through the raw material liquid feeding pipe 6 by the raw material liquid feeding pump 8 and enters the forward osmosis membrane module 20 from the core side conduit 28. Then, the raw material liquid 4 passes through the inside of the forward osmosis membrane 23, is discharged from the core side conduit 29, passes through the raw material liquid feeding pipe 7, and returns to the raw material liquid tank 2.
<誘導液系13>
 誘導液系13は、誘導液タンク3、誘導液送液配管9,10、及び、誘導液送液ポンプ11を備える。誘導液タンク3には、誘導有機液5が充填され、誘導有機液5は、誘導液系13内で循環している。具体的には、誘導有機液5は、誘導液送液ポンプ11により誘導液送液配管9を通り、シェル側導管21から正浸透膜モジュール20に入る。そして、誘導有機液5は、正浸透膜23の外側を通過した後シェル側導管22から排出され、誘導液送液配管10を通って誘導液タンク3に戻る。
<Induction liquid system 13>
The inductive liquid system 13 includes an inductive liquid tank 3, inductive liquid feed pipes 9 and 10, and an inductive liquid feed pump 11. The induction liquid tank 3 is filled with the induction organic liquid 5, and the induction organic liquid 5 circulates in the induction liquid system 13. Specifically, the inductive liquid 5 passes through the inductive liquid feed pipe 9 by the inductive liquid feed pump 11, and enters the forward osmosis membrane module 20 from the shell-side conduit 21. Then, the induction organic liquid 5 passes through the outside of the forward osmosis membrane 23, is discharged from the shell-side conduit 22, and returns to the induction liquid tank 3 through the induction liquid delivery pipe 10.
 ここで原料液4と誘導有機液5とは、中空糸状の正浸透膜23の壁を介して接するが、両者が直接混じり合うことはない。そして、原料液4と誘導有機液5とが正浸透膜23の壁を介して接したときに、原料液4中の水が正浸透膜23を通って誘導有機液5に移動して、原料液4が脱水される。正浸透膜モジュール20における原料液4及び誘導有機液5の流動方向は、正浸透膜23の壁を介して同じ向きである並流であってもよく、正浸透膜23の壁を介して反対の向きである向流であってもよい。 Here, the raw material liquid 4 and the inductive organic liquid 5 are in contact with each other through the wall of the hollow thread-like forward osmosis membrane 23, but they are not directly mixed with each other. Then, when the raw material liquid 4 and the inductive organic liquid 5 come into contact with each other through the wall of the forward osmosis membrane 23, the water in the raw material liquid 4 moves to the inductive organic liquid 5 through the forward osmosis membrane 23, and the raw material The liquid 4 is dehydrated. The flow directions of the raw material liquid 4 and the induced organic liquid 5 in the forward osmosis membrane module 20 may be parallel flow in the same direction through the wall of the forward osmosis membrane 23, and are opposite to each other through the wall of the forward osmosis membrane 23. It may be a countercurrent that is the direction of.
 原料液系12及び誘導液系13は、第一及び第二の有機溶媒の気化による系外への移動を抑制するように構成されることが好ましい。具体的には、原料液系12及び誘導液系13の各構成要素、好ましくは原料液タンク2及び誘導液タンク3から気体が外へ漏れないように構成される。例えば、原料液タンク2及び誘導液タンク3を蓋つきのタンクにする、気化した有機溶媒を凝縮してタンクに戻すためのコンデンサを設置する等の方法でよい。なお、原料液系12及び誘導液系13には、それぞれの内圧を調整できるよう、安全弁及び/又は背圧弁が組み込まれてもよい。第一及び第二の有機溶媒の揮発を防ぐことで、原料液4及び誘導有機液5の水分率上昇を防ぐことができ、効率的に脱水を行うことができる。 The raw material liquid system 12 and the inductive liquid system 13 are preferably configured so as to suppress the movement of the first and second organic solvents to the outside of the system due to vaporization. Specifically, it is configured so that gas does not leak to the outside from each component of the raw material liquid system 12 and the induction liquid system 13, preferably the raw material liquid tank 2 and the induction liquid tank 3. For example, the raw material liquid tank 2 and the induction liquid tank 3 may be made into tanks with lids, or a condenser for condensing the vaporized organic solvent and returning it to the tank may be installed. A safety valve and / or a back pressure valve may be incorporated in the raw material liquid system 12 and the induction liquid system 13 so that the internal pressures thereof can be adjusted. By preventing the volatilization of the first and second organic solvents, it is possible to prevent an increase in the water content of the raw material liquid 4 and the induced organic liquid 5, and it is possible to efficiently dehydrate.
<正浸透膜23>
 正浸透膜23としては、水を通過させる半透膜の性質を有する膜を制限なく使用可能である。正浸透膜23は、高い膜強度を確保する観点から、支持層(支持膜)上に分離活性層を有する複合型の膜であることが好ましい。支持膜は、平膜であっても中空糸膜であってもよい。支持膜が平膜である場合、支持膜の片面又は両面に分離活性層を有してよい。支持膜が中空糸膜である場合、中空糸膜の外表面若しくは内表面、又はこれらの双方の面上に分離活性層を有してよい。
<Forward osmosis membrane 23>
As the forward osmosis membrane 23, a membrane having the property of a semipermeable membrane through which water can pass can be used without limitation. The forward osmosis membrane 23 is preferably a composite type membrane having a separation active layer on the support layer (support membrane) from the viewpoint of ensuring high membrane strength. The support membrane may be a flat membrane or a hollow fiber membrane. When the support membrane is a flat membrane, it may have a separation active layer on one side or both sides of the support membrane. When the support film is a hollow fiber membrane, a separation active layer may be provided on the outer surface or inner surface of the hollow fiber membrane, or both surfaces.
 正浸透膜23は、前述したようにモジュール化することが便利である。正浸透膜モジュール20は、正浸透膜が平膜である場合には、例えば、プリーツ型モジュール、スパイラル型モジュール等であることができ、正浸透膜が中空糸膜である場合には、例えば、該中空糸膜の束を円筒内に充填した中空糸膜モジュール等であることができる。ここで正浸透膜モジュール20は、中空糸膜である正浸透膜23の束を円筒内に充填したモジュールであることが好ましい。 It is convenient to modularize the forward osmosis membrane 23 as described above. The normal osmotic membrane module 20 can be, for example, a pleated type module, a spiral type module, etc. when the normal permeable membrane is a flat membrane, and for example, when the normal permeable membrane is a hollow fiber membrane, for example. It can be a hollow fiber membrane module or the like in which a bundle of the hollow fiber membranes is filled in a cylinder. Here, the forward osmosis membrane module 20 is preferably a module in which a bundle of forward osmosis membranes 23, which is a hollow fiber membrane, is filled in a cylinder.
 支持膜は、微細孔性中空糸支持膜であることが好ましい。微細孔性中空糸支持膜は、その内表面に、孔径が好ましくは0.001μm以上2μm以下、より好ましくは0.001μm以上0.2μm以下の微細孔を有する。微細孔性中空糸支持膜の素材としては、限外ろ過膜、精密ろ過膜等に用いられる素材を活用してもよい。中空糸支持膜の素材は、具体的には例えば、ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、セルロース系高分子、ポリベンゾイミダゾール、ポリケトン、ポリアミド、ポリイミド、ポリエーテルエーテルケトン、及び、これらの架橋体等が挙げられ、これらから選ばれる少なくとも1種を含み、及び/又はこれらから選ばれる1種が主成分(すなわち含有率が最も多い成分)であることが好ましい。中空糸支持膜の素材は、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリアミド、ポリイミド、及び、これらの架橋体から選ばれる少なくとも1種を含み、及び/又はこれらから選ばれる1種が主成分であることがより好ましく、さらに好ましくは、ポリケトンである。 The support film is preferably a microporous hollow fiber support film. The microporous hollow fiber support membrane has fine pores having a pore diameter of preferably 0.001 μm or more and 2 μm or less, more preferably 0.001 μm or more and 0.2 μm or less on the inner surface thereof. As the material of the microporous hollow fiber support membrane, a material used for an ultrafiltration membrane, a microfiltration membrane, or the like may be utilized. Specifically, the material of the hollow thread support film is, for example, polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, cellulosic polymer, polybenzoimidazole, polyketone, polyamide, polyimide, polyether ether ketone. , And these crosslinked bodies and the like, and preferably contains at least one selected from these, and / or one selected from these is the main component (that is, the component having the highest content). The material of the hollow fiber support membrane contains at least one selected from polysulfone, polyethersulfone, polyketone, polyamide, polyimide, and a crosslinked product thereof, and / or one selected from these is the main component. Is more preferable, and more preferably polyketone.
 分離活性層としては、例えば、ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリアミド、ポリイミド、酢酸セルロース等から選ばれる少なくとも1種のポリマーを含み、及び/又はこれらから選ばれる1種が主成分である薄膜層が好適に用いられる。これらのポリマーは、架橋されていてもよいし、架橋されていなくてもよい。分離活性層が架橋ポリマーの場合、架橋の程度は任意であってよい。原料液4の脱水効率、支持層上への形成の容易性等を考慮すると、分離活性層は、好ましくはポリアミドの層であり、非架橋ポリアミド及び架橋ポリアミドから選択される1種以上を用いてよい。分離活性層を構成するポリアミドは、例えば、多官能性芳香族酸ハライドと多官能性芳香族アミンとの界面重合により形成されることができる。 The separation active layer contains and / or is selected from at least one polymer selected from, for example, polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, polyamide, polyimide, cellulose acetate and the like. A thin film layer containing only one type as a main component is preferably used. These polymers may or may not be crosslinked. When the separation active layer is a crosslinked polymer, the degree of crosslinking may be arbitrary. Considering the dehydration efficiency of the raw material liquid 4, the ease of formation on the support layer, and the like, the separation active layer is preferably a layer of polyamide, and one or more selected from non-crosslinked polyamide and crosslinked polyamide is used. good. The polyamide constituting the separation active layer can be formed, for example, by interfacial polymerization of a polyfunctional aromatic acid halide and a polyfunctional aromatic amine.
 多官能性芳香族酸ハライドとは、一分子中に2個以上の酸ハライド基を有する芳香族酸ハライド化合物である。具体的には、例えば、トリメシン酸ハライド、トリメリット酸ハライド、フタル酸ハライド、イソフタル酸ハライド、テレフタル酸ハライド、ピロメリット酸ハライド、ベンゾフェノンテトラカルボン酸ハライド、ビフェニルジカルボン酸ハライド、ナフタレンジカルボン酸ハライド、ピリジンジカルボン酸ハライド、ベンゼンジスルホン酸ハライド等を挙げることができ、これらのうちの1種、又は2種以上の混合物を用いることができる。本発明においては、特にトリメシン酸クロリド単独、又はトリメシン酸クロリドとイソフタル酸クロリドとの混合物、又はトリメシン酸クロリドとテレフタル酸クロリドとの混合物が好ましく用いられる。 A polyfunctional aromatic acid halide is an aromatic acid halide compound having two or more acid halide groups in one molecule. Specifically, for example, trimesic acid halide, trimellitic acid halide, phthalic acid halide, isophthalic acid halide, terephthalic acid halide, pyromellitic acid halide, benzophenonetetracarboxylic acid halide, biphenyldicarboxylic acid halide, naphthalenedicarboxylic acid halide, pyridine. Examples thereof include dicarboxylic acid halide, benzenedisulfonic acid halide and the like, and one of these or a mixture of two or more thereof can be used. In the present invention, trimesic acid chloride alone, a mixture of trimesic acid chloride and isophthalic acid chloride, or a mixture of trimesic acid chloride and terephthalic acid chloride is particularly preferably used.
 多官能性芳香族アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミノ化合物である。具体的には、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルアミン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、1,3,5,-トリアミノベンゼン、1,5-ジアミノナフタレン等を挙げることができ、これらのうちの1種、又は2種以上の混合物を用いることができる。本実施形態においては、特に、m-フェニレンジアミン及びp-フェニレンジアミンから選ばれる1種以上が好適に用いられる。 The polyfunctional aromatic amine is an aromatic amino compound having two or more amino groups in one molecule. Specifically, for example, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3 , 3'-diaminodiphenylamine, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 1,3,5-tri Aminobenzene, 1,5-diaminonaphthalene and the like can be mentioned, and one or a mixture of two or more of these can be used. In this embodiment, in particular, one or more selected from m-phenylenediamine and p-phenylenediamine are preferably used.
<原料液4>
 原料液4は、第一の有機溶媒、水及び第一の溶質を含む有機溶液である。ここで脱水工程S103における原料液4の当初の水分率は、1質量%以上30質量%未満であり、好ましくは、1質量%以上20質量%未満であり、より好ましくは、1質量%以上15質量%未満である。ここで「当初の水分率」とは、原料液4を原料液タンク2内に準備する時点、又は、誘導有機液5を誘導液タンク3内に準備する時点における、原料液4又は誘導有機液5の水分率のことを指し、以下において同様である。水分率の測定方法は後述する。
<Raw material liquid 4>
The raw material liquid 4 is an organic solution containing a first organic solvent, water and a first solute. Here, the initial water content of the raw material liquid 4 in the dehydration step S103 is 1% by mass or more and less than 30% by mass, preferably 1% by mass or more and less than 20% by mass, and more preferably 1% by mass or more and 15% by mass. It is less than% by mass. Here, the "initial moisture content" is the raw material liquid 4 or the induced organic liquid at the time when the raw material liquid 4 is prepared in the raw material liquid tank 2 or the induction organic liquid 5 is prepared in the induction liquid tank 3. It refers to the water content of 5, and is the same in the following. The method for measuring the water content will be described later.
 第一の有機溶媒は、エーテル(例えば環状エーテル)、エステル、炭化水素、含窒素化合物、含硫黄化合物、ハロゲン化合物、ケトン等であってよく、具体的には、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、トルエン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、アセトニトリル、ジメチルアセトアミド、N-メチルピロリドン、ヘキサフルオロイソプロピルアルコール、酢酸、アセトン、アニソール、ベンゼン、クロロベンゼン、四塩化炭素、クロロホルム、クメン、シクロヘキサン、1,2―ジクロロエタン、1,2-ジクロロエテン、ジクロロメタン、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、1,4-ジオキサン、エチルエーテル、ギ酸エチル、ホルムアミド、ギ酸、ヘプタン、ヘキサン、メチルブチルケトン、メチルシクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、ペンタン、ニトロメタン、ピリジン、スルホラン、テトラリン、1,1,1-トリクロロエタン、1,1,2-トリクロロエテン、キシレンからなる群から選択される少なくとも1種である。第一の有機溶媒は、好ましくは、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸エチル、酢酸イソプロピル、トルエン、シクロペンチルメチルエーテル、及びt-ブチルメチルエーテルからなる群から選択される少なくとも1種であり、より好ましくは、テトラヒドロフラン、酢酸エチル、酢酸イソプロピル、トルエン、及びt-ブチルメチルエーテルからなる群から選択される少なくとも1種であり、さらに好ましくは、テトラヒドロフラン、酢酸エチル、及び酢酸イソプロピルからなる群から選択される少なくとも1種である。 The first organic solvent may be an ether (for example, cyclic ether), an ester, a hydrocarbon, a nitrogen-containing compound, a sulfur-containing compound, a halogen compound, a ketone, or the like, and specifically, tetrahydrofuran, 2-methyl tetrahydrofuran, acetic acid or the like. Methyl, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, toluene, cyclopentyl methyl ether, t-butyl methyl ether, acetonitrile, dimethylacetamide, N-methylpyrrolidone, hexafluoroisopropyl alcohol, acetic acid, acetone, anisole, Benzene, chlorobenzene, carbon tetrachloride, chloroform, cumene, cyclohexane, 1,2-dichloroethane, 1,2-dichloroethane, dichloromethane, 1,2-dimethoxyethane, N, N-dimethylformamide, dimethylsulfoxide, 1,4- Dioxane, ethyl ether, ethyl formate, formamide, formate, heptane, hexane, methylbutylketone, methylcyclohexane, methylethylketone, methylisobutylketone, pentane, nitromethane, pyridine, sulfolane, tetraline, 1,1,1-trichloroethane, 1,1 , 2-Trichloroether, at least one selected from the group consisting of xylene. The first organic solvent is preferably at least one selected from the group consisting of tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, cyclopentyl methyl ether, and t-butyl methyl ether, more preferably. Is at least one selected from the group consisting of tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, and t-butyl methyl ether, and more preferably selected from the group consisting of tetrahydrofuran, ethyl acetate, and isopropyl acetate. At least one species.
 第一の溶質は、正浸透膜23を通過しない物質であればよく、特定の種類に限定されない。本実施形態の方法は、一態様において医薬の製造において用いられる。第一の溶質は、例えば、医薬産業等に用いられる原料(例えば、フェニルアラニン等のアミノ酸、ショ糖等の糖類、キニーネ等の天然から単離されるアルカロイド等の天然物、ビルディングブロックと呼ばれる化合物等)、中間化合物(例えば、オクタアセチルショ糖等の原料から化学合成又は修飾される化合物等)、又は最終化合物(例えば、原薬)(例えば、低分子医薬品、ペプチド又は核酸等の中分子医薬品、タンパク質等の高分子医薬品、ワクチン、抗生物質等)である。溶質は、固体であっても液体であってもよく、複数の物質の混合物であってもよい。なお、第一の有機溶媒と第一の溶質は、異なる物質となるように選択される。 The first solute may be a substance that does not pass through the forward osmosis membrane 23, and is not limited to a specific type. The method of this embodiment is used in the manufacture of a pharmaceutical in one embodiment. The first solute is, for example, a raw material used in the pharmaceutical industry or the like (for example, amino acids such as phenylalanine, sugars such as sucrose, natural products such as alkaloids isolated from nature such as quinine, compounds called building blocks, etc.). , Intermediate compounds (eg, compounds chemically synthesized or modified from raw materials such as octaacetylsucrose), or final compounds (eg, drug substance) (eg, small molecule drugs, medium molecule drugs such as peptides or nucleic acids, proteins Such as high-molecular-weight drugs, vaccines, antibiotics, etc.). The solute may be a solid, a liquid, or a mixture of a plurality of substances. The first organic solvent and the first solute are selected so as to be different substances.
 第一の溶質の分子量は、第一の溶質が正浸透膜23を透過するのを防ぎ、かつ、第一の溶質が正浸透膜23に付着するのを防ぐ観点から、好ましくは、100以上30000以下、より好ましくは、150以上10000以下、さらに好ましくは、200以上1000以下である。なお上記分子量とは、有価物が重合体である場合には、ゲルパーミエーションクロマトグラフィーで測定したポリエチレンオキシド換算での数平均分子量であり、重合体でない場合には原子量に基づく値を指す。溶質の濃度は、特定の値に限定されず、第一の有機溶媒に可溶な範囲で適宜選択されてよい。具体的には、例えば、原料液4の総質量に対して0.1質量%以上60質量%以下、好ましくは、1質量%以上50質量%以下、さらに好ましくは、5質量%以上40質量%以下であってよい。第一の溶質の濃度を所定以上とすることで、脱水装置1内で一度に処理可能な溶質の量を増やし、処理の効率を高めることができ、濃度を所定以下とすることで、第一の溶質を析出させることなく原料液4を脱水装置1内で循環することができる。 The molecular weight of the first solute is preferably 100 or more and 30,000 from the viewpoint of preventing the first solute from penetrating the forward osmosis membrane 23 and preventing the first solute from adhering to the forward osmosis membrane 23. Hereinafter, it is more preferably 150 or more and 10000 or less, and further preferably 200 or more and 1000 or less. When the valuable resource is a polymer, the molecular weight is a number average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography, and when it is not a polymer, it refers to a value based on the atomic weight. The concentration of the solute is not limited to a specific value, and may be appropriately selected within a range soluble in the first organic solvent. Specifically, for example, 0.1% by mass or more and 60% by mass or less, preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 40% by mass or less, based on the total mass of the raw material liquid 4. It may be: By setting the concentration of the first solute to a predetermined value or higher, the amount of the solute that can be processed at one time in the dehydrator 1 can be increased and the treatment efficiency can be improved. The raw material liquid 4 can be circulated in the dehydrator 1 without precipitating the solute.
<誘導有機液5>
 誘導有機液5は、第二の有機溶媒を含む。ここで第二の有機溶媒は、正浸透膜23を透過しない有機液である。誘導有機液5が水溶液ではなく、正浸透膜23を透過しない第二の有機溶媒を含む有機液であることで、誘導有機液5から原料液4への水の拡散を防ぐことができ、少量の水を含む原料液4の脱水を効果的に行うことができる。
<Induced organic liquid 5>
The derived organic liquid 5 contains a second organic solvent. Here, the second organic solvent is an organic liquid that does not permeate the forward osmosis membrane 23. Since the inducing organic liquid 5 is not an aqueous solution but an organic liquid containing a second organic solvent that does not permeate the forward osmosis film 23, it is possible to prevent the diffusion of water from the inductive organic liquid 5 to the raw material liquid 4, and a small amount of water can be prevented. The raw material liquid 4 containing water can be effectively dehydrated.
 誘導有機液5と、正浸透膜23の分離活性層との溶解度パラメータの差ΔHSPは、ΔHSP<16(MPa)0.5であることが好ましい。誘導有機液と分離活性層とが、この条件を満たすとき、分離活性層が適度に膨潤し、水の透過経路が増加することで、好適に脱水することができると考えられる。ΔHSPは、より好ましくは、15(MPa)0.5以下、又は14(MPa)0.5以下、又は13(MPa)0.5以下である。ΔHSPは小さいことが好ましいが、誘導有機液と分離活性層との組合せを選択する際の便宜の観点から、一態様において、5(MPa)0.5以上、又は6(MPa)0.5以上、又は7(MPa)0.5以上であってよい。 The difference ΔHSP between the inducible organic solution 5 and the separable active layer of the forward osmosis membrane 23 is preferably ΔHSP <16 (MPa) 0.5 . When the inducing organic liquid and the separation active layer satisfy this condition, it is considered that dehydration can be suitably performed by appropriately swelling the separation active layer and increasing the permeation path of water. The ΔHSP is more preferably 15 (MPa) 0.5 or less, or 14 (MPa) 0.5 or less, or 13 (MPa) 0.5 or less. It is preferable that ΔHSP is small, but from the viewpoint of convenience when selecting the combination of the induced organic liquid and the separation active layer, in one embodiment, 5 (MPa) 0.5 or more, or 6 (MPa) 0.5 or more, or 7 ( MPa) 0.5 or more.
 本開示の溶解度パラメータは、Hansen溶解度パラメータ(HSP)である。HSPの分散項δd、極性項δp、及び水素結合項δHに基づき、2物質間の溶解度パラメータ差ΔHSPは以下の式で計算できる。
Figure JPOXMLDOC01-appb-M000001
The solubility parameter of the present disclosure is the Hansen solubility parameter (HSP). Based on the dispersion term δd, polar term δp, and hydrogen bond term δH of HSP, the solubility parameter difference ΔHSP between two substances can be calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
 分離活性層のHSP値について、分離活性層を構成するポリマーの化学構造を以下に示す手順でモノマーに変換し、モノマーのHSPを市販のソフトウェアWinmostar9.4.11のアドオンであるHansen SP & QSPRモデルを使用して計算し、この値を分離活性層のHSPとみなすことができる。例えば、ポリマーが直鎖構造であり、分岐鎖を有しない非架橋ポリマーの場合には、ポリマーの繰り返し単位を取り出し、繰り返し単位同士の結合部分をメチル基に置き換えた上で、モノマーのHSPを算出する。一方、ポリマーが分岐鎖を有する架橋ポリマーの場合には、繰り返し単位を取り出し、ポリマー末端以外で架橋せずに未反応のまま残る可能性があった官能基をすべて水素基に置き換えて直鎖構造のポリマー及び繰り返し単位に変換した後、変換後の繰り返し単位同士の結合部分をメチル基に置き換えた上で、モノマーのHSPを算出する。具体的な手順については後述する。 Regarding the HSP value of the separation active layer, the chemical structure of the polymer constituting the separation active layer is converted into a monomer by the procedure shown below, and the HSP of the monomer is converted into a Hansen SP & QSPR model which is an add-on of the commercially available software Winmostar 9.4.11. This value can be regarded as the HSP of the isolation active layer. For example, in the case of a non-crosslinked polymer having a linear structure and no branched chain, the repeating unit of the polymer is taken out, the bonding portion between the repeating units is replaced with a methyl group, and then the HSP of the monomer is calculated. do. On the other hand, in the case of a crosslinked polymer having a branched chain, the repeating unit is taken out, and all the functional groups that may remain unreacted without being crosslinked except at the end of the polymer are replaced with hydrogen groups to form a linear structure. After conversion to the polymer and the repeating unit of the above, the HSP of the monomer is calculated after replacing the bonding portion between the repeating units after the conversion with a methyl group. The specific procedure will be described later.
 誘導有機液のHSP値について、誘導有機液に含まれるn種の液体成分(成分1,2,…n)の各々のHSP及び誘導有機液中の体積分率から、誘導有機液全体のHSP値を決定することができる。具体的には、以下の式のとおりに計算する。誘導有機液に含まれる固体成分については、HSP値の計算においては考慮しない。 Regarding the HSP value of the induced organic liquid, the HSP value of the entire induced organic liquid is obtained from the HSP of each of the n kinds of liquid components ( components 1, 2, ... N) contained in the induced organic liquid and the volume fraction in the induced organic liquid. Can be determined. Specifically, the calculation is performed according to the following formula. The solid component contained in the induced organic liquid is not considered in the calculation of the HSP value.
Figure JPOXMLDOC01-appb-M000002
(式中、
 V1,V2,…Vnは、成分1,2,…nの各々の体積分率であり、
 δd1,δd2,…δdnは、成分1,2,…nの各々のHSPの分散項であり、
 δp1,δp2,…δpnは、成分1,2,…nの各々のHSPの極性項であり、
 δH1,δH2,…δHnは、成分1,2,…nの各々のHSPの水素結合項である。)
Figure JPOXMLDOC01-appb-M000002
(During the ceremony
V1, V2, ... Vn is the volume fraction of each of the components 1, 2, ... n.
δd1, δd2, ... δdn is the dispersion term of each HSP of the components 1, 2, ... N.
δp1, δp2, ... δpn is the polar term of each HSP of the components 1, 2, ... N.
δH1, δH2, ... δHn are hydrogen bond terms of each HSP of the components 1, 2, ... n. )
 誘導有機液の各液体成分のHSP値は、市販のソフトウェアWinmostar9.4.11ののアドオンであるHansen SP & QSPRモデルを使用して計算することができる。 The HSP value of each liquid component of the induced organic liquid can be calculated using the Hansen SP & QSPR model, which is an add-on of the commercially available software Winmostar 9.4.11.
 分離活性層の溶解度パラメータ(HSP)値は、好ましくは、15(MPa)0.5以上、又は16(MPa)0.5以上、又は17(MPa)0.5以上であり、好ましくは、40(MPa)0.5以下、又は39(MPa)0.5以下、又は38(MPa)0.5以下である。 The solubility parameter (HSP) value of the separation active layer is preferably 15 (MPa) 0.5 or more, 16 (MPa) 0.5 or more, or 17 (MPa) 0.5 or more, and preferably 40 (MPa) 0.5 or less. Or 39 (MPa) 0.5 or less, or 38 (MPa) 0.5 or less.
 誘導有機液の溶解度パラメータ(HSP)値は、好ましくは、13(MPa)0.5以上、又は14(MPa)0.5以上、又は15(MPa)0.5以上であり、好ましくは、39(MPa)0.5以下、又は38(MPa)0.5以下、又は37(MPa)0.5以下である。 The solubility parameter (HSP) value of the derived organic liquid is preferably 13 (MPa) 0.5 or more, or 14 (MPa) 0.5 or more, or 15 (MPa) 0.5 or more, and preferably 39 (MPa) 0.5 or less. Or 38 (MPa) 0.5 or less, or 37 (MPa) 0.5 or less.
 分離活性層の溶解度パラメータにおいては、δdが、好ましくは、15(MPa)0.5以上、又は16(MPa)0.5以上、又は17(MPa)0.5以上、好ましくは、26(MPa)0.5以下、又は25(MPa)0.5以下、又は24(MPa)0.5以下であり、δpが、好ましくは、2(MPa)0.5以上、又は3(MPa)0.5以上、又は4(MPa)0.5以上、好ましくは、26(MPa)0.5以下、又は25(MPa)0.5以下、又は24(MPa)0.5以下であり、δHが、好ましくは、1(MPa)0.5以上、又は2(MPa)0.5以上、又は3(MPa)0.5以上、好ましくは、20(MPa)0.5以下、又は19(MPa)0.5以下、又は18(MPa)0.5以下である。 In the solubility parameter of the separation active layer, δd is preferably 15 (MPa) 0.5 or more, or 16 (MPa) 0.5 or more, or 17 (MPa) 0.5 or more, preferably 26 (MPa) 0.5 or less, or 25. (MPa) 0.5 or less, or 24 (MPa) 0.5 or less, and δp is preferably 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 or more, or 4 (MPa) 0.5 or more, preferably 26 ( MPa) 0.5 or less, or 25 (MPa) 0.5 or less, or 24 (MPa) 0.5 or less, and δH is preferably 1 (MPa) 0.5 or more, or 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 . The above is preferably 20 (MPa) 0.5 or less, 19 (MPa) 0.5 or less, or 18 (MPa) 0.5 or less.
 誘導有機液の溶解度パラメータにおいては、δdが、好ましくは、13(MPa)0.5以上、又は14(MPa)0.5以上、又は15(MPa)0.5以上、好ましくは、20(MPa)0.5以下、又は19(MPa)0.5以下、又は18(MPa)0.5以下であり、δpが、好ましくは、2(MPa)0.5以上、又は3(MPa)0.5以上、又は4(MPa)0.5以上、好ましくは、18(MPa)0.5以下、又は17(MPa)0.5以下、又は16(MPa)0.5以下であり、δHが、好ましくは、2(MPa)0.5以上、又は3(MPa)0.5以上、又は4(MPa)0.5以上、好ましくは、28(MPa)0.5以下、又は27(MPa)0.5以下、又は26(MPa)0.5以下である。 In the solubility parameter of the induced organic solution, δd is preferably 13 (MPa) 0.5 or more, or 14 (MPa) 0.5 or more, or 15 (MPa) 0.5 or more, preferably 20 (MPa) 0.5 or less, or 19. (MPa) 0.5 or less, or 18 (MPa) 0.5 or less, and δp is preferably 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 or more, or 4 (MPa) 0.5 or more, preferably 18 ( MPa) 0.5 or less, or 17 (MPa) 0.5 or less, or 16 (MPa) 0.5 or less, and δH is preferably 2 (MPa) 0.5 or more, or 3 (MPa) 0.5 or more, or 4 (MPa) 0.5 . The above is preferably 28 (MPa) 0.5 or less, 27 (MPa) 0.5 or less, or 26 (MPa) 0.5 or less.
 誘導有機液は、飽和含水量が、好ましくは、0.5質量%以上、又は1.0質量%以上、又は2.0質量%以上である。誘導有機液がこの条件を満たすことで、好適に原料液から誘導有機液へ水が移動することができると考えられる。飽和含水量は、好適には100%(すなわち水と任意に混和)であるが、脱水効率の観点から、例えば、99質量%以下、又は98質量%以下、又は97質量%以下であってもよい。 The saturated water content of the induced organic liquid is preferably 0.5% by mass or more, 1.0% by mass or more, or 2.0% by mass or more. It is considered that when the induced organic liquid satisfies this condition, water can be suitably transferred from the raw material liquid to the induced organic liquid. The saturated water content is preferably 100% (that is, optionally mixed with water), but from the viewpoint of dehydration efficiency, for example, even if it is 99% by mass or less, 98% by mass or less, or 97% by mass or less. good.
 誘導有機液の飽和含水量は、以下の手順で求めることができる。水と誘導有機液とを重量換算にして同量ずつ分液漏斗を使用して混合する。水層、有機層の2層に分かれなかった場合、その誘導有機液は水と任意の割合で混和すると考える。2層に分離した場合、その後分液し、得られた有機層の水分率を飽和含水量とみなす。水分率の測定方法は後述する。 The saturated water content of the induced organic liquid can be determined by the following procedure. Water and the induced organic liquid are mixed in equal amounts using a separatory funnel in terms of weight. If it is not divided into two layers, an aqueous layer and an organic layer, the induced organic liquid is considered to be miscible with water at an arbitrary ratio. When separated into two layers, the liquid is then separated, and the water content of the obtained organic layer is regarded as the saturated water content. The method for measuring the water content will be described later.
 誘導有機液の飽和含水量が未知で、誘導有機液に水と任意に混和する溶媒が含まれる場合、誘導有機液に水を少しずつ加えていき、2相になる直前までに加えた水分量(g)と誘導有機液の使用量(g)から、以下の計算式で求められる水分率を飽和含水量とする。
Figure JPOXMLDOC01-appb-M000003
If the saturated water content of the induced organic liquid is unknown and the induced organic liquid contains a solvent that is arbitrarily mixed with water, water is added little by little to the induced organic liquid, and the amount of water added just before the two phases are formed. From (g) and the amount of the derived organic liquid used (g), the water content obtained by the following formula is defined as the saturated water content.
Figure JPOXMLDOC01-appb-M000003
 脱水効率は、原料液(FS)水分率及び原料液(FS)量に基づき、以下の式に基づいて算出できる。なお下記のt分は総運転時間の8分の1から4分の1程度を選択すると良い。運転初期の脱水効率から、運転終了後の脱水の程度を推測することができる。
Figure JPOXMLDOC01-appb-M000004
The dehydration efficiency can be calculated based on the following formula based on the water content of the raw material liquid (FS) and the amount of the raw material liquid (FS). For the t minutes below, it is preferable to select about one-eighth to one-fourth of the total operating time. From the dehydration efficiency at the initial stage of operation, the degree of dehydration after the end of operation can be estimated.
Figure JPOXMLDOC01-appb-M000004
 例えば運転中に第一の溶質及び/又は第二の溶質が析出した場合、脱水効率は以下のように修正して考える。溶質の析出を確認した段階で運転を止め、原料液の総重量(A)を測定する。その後、上澄み液の水分率を測定する。この水分率をt分後の原料液(FS)水分率とする。また析出した溶質を濾別し、析出した重量(B)を測定する。(A)-(B)の重量をt分後の原料液(FS)量とする。 For example, when the first solute and / or the second solute is precipitated during operation, the dehydration efficiency is modified as follows. When the solute precipitation is confirmed, the operation is stopped and the total weight (A) of the raw material liquid is measured. Then, the water content of the supernatant is measured. This water content is taken as the water content of the raw material liquid (FS) after t minutes. Further, the precipitated solute is filtered off, and the precipitated weight (B) is measured. The weight of (A)-(B) is defined as the amount of raw material liquid (FS) after t minutes.
 第二の有機溶媒は、エーテル(例えば環状エーテル)、エステル、炭化水素、含窒素化合物、含硫黄化合物、ハロゲン化合物、ケトン、アルコール類等であってよく、具体的には、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、トルエン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、アセトニトリル、ジメチルアセトアミド、N-メチルピロリドン、ヘキサフルオロイソプロピルアルコール、酢酸、アセトン、アニソール、ベンゼン、クロロベンゼン、四塩化炭素、クロロホルム、クメン、シクロヘキサン、1,2―ジクロロエタン、1,2-ジクロロエテン、ジクロロメタン、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、1,4-ジオキサン、エチルエーテル、ギ酸エチル、ホルムアミド、ギ酸、ヘプタン、ヘキサン、メチルブチルケトン、メチルシクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、ペンタン、ニトロメタン、ピリジン、スルホラン、テトラリン、1,1,1-トリクロロエタン、1,1,2-トリクロロエテン、キシレン、メタノール、エタノール、及びイソプロピルアルコールからなる群から選択される少なくとも1種である。第二の有機溶媒は、好ましくは、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸エチル、酢酸イソプロピル、トルエン、シクロペンチルメチルエーテル、及びt-ブチルメチルエーテルからなる群から選択される少なくとも1種であり、より好ましくは、テトラヒドロフラン、酢酸エチル、酢酸イソプロピル、トルエン、及びt-ブチルメチルエーテルからなる群から選択される少なくとも1種であり、さらに好ましくは、テトラヒドロフラン、酢酸エチル、及び酢酸イソプロピルからなる群から選択される少なくとも1種である。
 第一の有機溶媒と第二の有機溶媒とは、互いに同種でも異種でもよい。
The second organic solvent may be ether (for example, cyclic ether), ester, hydrocarbon, nitrogen-containing compound, sulfur-containing compound, halogen compound, ketone, alcohols and the like, and specifically, tetrahydrofuran and 2-methyl. Tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, toluene, cyclopentyl methyl ether, t-butyl methyl ether, acetonitrile, dimethylacetamide, N-methylpyrrolidone, hexafluoroisopropyl alcohol, acetate, acetone , Anisole, benzene, chlorobenzene, carbon tetrachloride, chloroform, cumene, cyclohexane, 1,2-dichloroethane, 1,2-dichloroethane, dichloromethane, 1,2-dimethoxyethane, N, N-dimethylformamide, dimethylsulfoxide, 1 , 4-dioxane, ethyl ether, ethyl formate, formamide, formate, heptane, hexane, methylbutylketone, methylcyclohexane, methylethylketone, methylisobutylketone, pentane, nitromethane, pyridine, sulfolane, tetraline, 1,1,1-trichloroethane, At least one selected from the group consisting of 1,1,2-trichloroethane, xylene, methanol, ethanol, and isopropyl alcohol. The second organic solvent is preferably at least one selected from the group consisting of tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, cyclopentyl methyl ether, and t-butyl methyl ether, more preferably. Is at least one selected from the group consisting of tetrahydrofuran, ethyl acetate, isopropyl acetate, toluene, and t-butyl methyl ether, and more preferably selected from the group consisting of tetrahydrofuran, ethyl acetate, and isopropyl acetate. At least one species.
The first organic solvent and the second organic solvent may be the same or different from each other.
 脱水工程S103における誘導有機液5の当初の水分率は、原料液4の当初の水分率よりも小さい。ここで、誘導有機液5の当初の水分率は、誘導有機液5が第二の溶質及び/又は乾燥剤を含む場合には、これらが添加された状態で測定される。なお、乾燥剤を含む誘導有機液5においては、乾燥剤以外の部分(具体的には上澄み部分)をサンプリングして水分率を測定する。但し、誘導有機液5が第二の溶質として脱水試薬を含む場合には、脱水試薬添加前の状態、すなわち誘導有機液の構成成分のうち脱水試薬を欠く液(一態様において第二の有機溶媒)の水分率を誘導有機液5の水分率とみなす。正浸透膜は水を透過する半透膜であるため、水分子の多い原料液4側から水分子の少ない誘導有機液5側へ、拡散現象によって水が移動することが考えられる。これにより、有機溶液である原料液4中に少量含まれる水を除くことができる。脱水工程S103における誘導有機液5の当初の水分率(質量%)と、原料液4の当初の水分率(質量%)との差は、一態様において、0.5質量%以上、又は0.7質量%以上、又は1質量%以上であってよく、一態様において、20質量%以下、又は15質量%以下、又は10質量%以下であってよい。 The initial water content of the induced organic liquid 5 in the dehydration step S103 is smaller than the initial water content of the raw material liquid 4. Here, when the derived organic liquid 5 contains a second solute and / or a desiccant, the initial water content of the induced organic liquid 5 is measured in a state where these are added. In the induced organic liquid 5 containing a desiccant, a portion other than the desiccant (specifically, a supernatant portion) is sampled to measure the water content. However, when the induction organic liquid 5 contains a dehydration reagent as the second solute, the state before the addition of the dehydration reagent, that is, the liquid lacking the dehydration reagent among the constituents of the induction organic liquid (in one embodiment, the second organic solvent). ) Is regarded as the water content of the induced organic liquid 5. Since the forward osmosis membrane is a semipermeable membrane that allows water to permeate, it is conceivable that water moves from the raw material liquid 4 side having many water molecules to the induced organic liquid 5 side having few water molecules due to the diffusion phenomenon. Thereby, a small amount of water contained in the raw material liquid 4 which is an organic solution can be removed. In one embodiment, the difference between the initial water content (mass%) of the induced organic liquid 5 and the initial water content (mass%) of the raw material liquid 4 in the dehydration step S103 is 0.5% by mass or more, or 0. It may be 7% by mass or more, or 1% by mass or more, and in one embodiment, it may be 20% by mass or less, 15% by mass or less, or 10% by mass or less.
 誘導有機液5は、第二の溶質及び/又は乾燥剤をさらに含んでも良い。第二の溶質は、第二の有機溶媒に溶解し、又は、第二の有機溶媒と完全に混じり合い、かつ、正浸透膜を透過しない物質である。第二の溶質は、誘導有機液5中での濃度において、その少なくとも一部が、第二の有機溶媒に溶解又はこれと完全に混じり合っていればよい。一方、乾燥剤は、溶液中の水を物理吸着することにより、水を除去するもの、又は、水を結晶水として取り込み、水を除去するものである。乾燥剤は、誘導有機液5に可溶な物質及び不溶な物質であってよい。乾燥剤は、一態様において、第二の有機溶媒を含む20℃の誘導有機液5中で固体状態を保っている物質であり、より典型的には第二の有機溶媒に溶解しない物質である。乾燥剤により、原料液4から正浸透膜23を透過してきた水を誘導有機液5から除去することができ、原料液4をより効率よく脱水することができる。 The induction organic liquid 5 may further contain a second solute and / or a desiccant. The second solute is a substance that is soluble in or completely mixed with the second organic solvent and does not permeate the forward osmosis membrane. The second solute may be at least partially dissolved in or completely mixed with the second organic solvent at a concentration in the derived organic liquid 5. On the other hand, the desiccant removes water by physically adsorbing water in the solution, or takes in water as water of crystallization and removes water. The desiccant may be a substance soluble or insoluble in the induced organic liquid 5. The desiccant is, in one embodiment, a substance that remains solid in the induced organic liquid 5 at 20 ° C. containing the second organic solvent, and more typically a substance that is insoluble in the second organic solvent. .. With the desiccant, the water that has permeated the forward osmosis membrane 23 from the raw material liquid 4 can be removed from the induced organic liquid 5, and the raw material liquid 4 can be dehydrated more efficiently.
 第二の溶質は、具体的には例えば:2-プロパノール、2-ブタノール、2-メチル-2-プロパノール等の、炭素数3の分岐を有するモノアルコール及び炭素数4以上のモノアルコール;トルエン等の非極性溶媒;ポリエチレングリコール、ポリプロピレングリコール等の重合体;オルトエステル、ナトリウム、水素化カルシウム、五酸化二リン等の脱水試薬;パラトルエンスルホン酸、パラトルエンスルホン酸ピリジニウム等の有機酸;等から選ばれる1種又は複数種である。ここで脱水試薬とは、溶液中の水と化学反応することにより、水を除去するものであり、脱水時に化学反応を伴わない前述の乾燥剤とは区別される。オルトエステルは、例えば、オルトギ酸トリメチル、オルトギ酸トリエチル等であってよい。なお、第二の有機溶媒と第二の溶質は、異なる物質となるように選択される。 Specific examples of the second solute include: monoalcohols having a branch of 3 carbon atoms such as 2-propanol, 2-butanol, 2-methyl-2-propanol, and monoalcohols having 4 or more carbon atoms; toluene and the like. Non-polar solvent; Polymers such as polyethylene glycol and polypropylene glycol; Dehydration reagents such as orthoester, sodium, calcium hydride, diphosphorus pentoxide; Organic acids such as paratoluenesulfonic acid and pyridinium paratoluenesulfonate; One or more selected. Here, the dehydrating reagent removes water by chemically reacting with water in the solution, and is distinguished from the above-mentioned desiccant which does not involve a chemical reaction at the time of dehydration. The orthoester may be, for example, trimethyl orthoformate, triethyl orthoformate or the like. The second organic solvent and the second solute are selected so as to be different substances.
 第二の溶質は、好ましくは:オルトギ酸トリメチル、オルトギ酸トリエチル等のオルトエステル系脱水試薬;並びに、トルエン、パラトルエンスルホン酸、パラトルエンスルホン酸ピリジニウム等の、トルエン構造を有する化合物;から選ばれる1種又は複数種であり、より好ましくは、オルトギ酸トリメチル、オルトギ酸トリエチル、パラトルエンスルホン酸、及びパラトルエンスルホン酸ピリジニウムから選ばれる1種又は複数種であり、さらに好ましくは、オルトギ酸トリエチル及びパラトルエンスルホン酸であり、又は、パラトルエンスルホン酸ピリジニウムである。誘導有機液5が第二の溶質を含むことにより、誘導有機液5の浸透圧をより大きくし、原料液4の脱水効果を高めることができると考えられる。トルエン構造等の疎水性構造を有する化合物は、当該疎水性構造の寄与により、誘導有機液5の浸透圧を高める効果が良好であり得る。 The second solute is preferably selected from: orthoester dehydration reagents such as trimethyl orthogitate, triethyl orthogeate; and compounds having a toluene structure such as toluene, paratoluenesulfonic acid, pyridinium paratoluenesulfonate; One or more, more preferably one or more selected from trimethyl orthogeate, triethyl orthogeate, paratoluenesulfonic acid, and pyridinium paratoluenesulfonate, still more preferably triethyl orthogeate and It is paratoluene sulfonic acid or pyridinium paratoluene sulfonic acid. It is considered that the osmotic pressure of the induced organic liquid 5 can be increased and the dehydration effect of the raw material liquid 4 can be enhanced by containing the second solute in the induced organic liquid 5. A compound having a hydrophobic structure such as a toluene structure may have a good effect of increasing the osmotic pressure of the induced organic liquid 5 due to the contribution of the hydrophobic structure.
 誘導有機液5に含まれる第二の溶質の濃度は、一態様において、0.01質量%以上、又は0.1質量%以上、又は1質量%以上であってよく、一態様において、60質量%以下、又は50質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下、又は10質量%以下であってよい。誘導有機液5に含まれる、ポリエチレングリコール、ポリプロピレングリコール等の重合体の濃度は、誘導有機液5の総質量に対して、好ましくは0.1質量%以上60質量%以下であり、より好ましくは0.5質量%以上50質量%以下である。重合体の濃度を所定以上とすることで、誘導有機液5の浸透圧をより高めることができ、濃度を所定以下とすることで、誘導有機液5を脱水装置1内で循環させるために適切な粘度とすることができる。誘導有機液5に含まれるオルトエステル系脱水試薬の濃度は、誘導有機液5の総質量に対して、好ましくは、1質量%以上60質量%以下であり、より好ましくは、5質量%以上40質量%以下である。オルトエステル系脱水試薬の濃度を所定以上とすることで、原料液4から誘導有機液5に移動した水を良好に除去することができ、濃度を所定以下とすることで、脱水試薬の反応熱による正浸透膜23の劣化を防ぐことができる。誘導有機液5に含まれる有機酸の量は、触媒量であってよく、好ましくは、誘導有機液5の総質量に対して0.01質量%以上10質量%以下であり、より好ましくは、0.1質量%以上5質量%以下である。 The concentration of the second solute contained in the derived organic liquid 5 may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more in one embodiment, and 60% by mass in one aspect. % Or less, or 50% by mass or less, or 40% by mass or less, or 30% by mass or less, or 20% by mass or less, or 10% by mass or less. The concentration of the polymer such as polyethylene glycol and polypropylene glycol contained in the derived organic liquid 5 is preferably 0.1% by mass or more and 60% by mass or less, more preferably 60% by mass or less, based on the total mass of the induced organic liquid 5. It is 0.5% by mass or more and 50% by mass or less. By setting the concentration of the polymer to a predetermined value or higher, the osmotic pressure of the induced organic liquid 5 can be further increased, and by setting the concentration to a predetermined value or lower, the induced organic liquid 5 is suitable for circulating in the dehydrator 1. The viscosity can be adjusted. The concentration of the ortho ester-based dehydration reagent contained in the derived organic liquid 5 is preferably 1% by mass or more and 60% by mass or less, and more preferably 5% by mass or more and 40% by mass, based on the total mass of the induced organic liquid 5. It is less than mass%. By setting the concentration of the ortho ester-based dehydrating reagent to a predetermined value or higher, the water transferred from the raw material liquid 4 to the induced organic liquid 5 can be satisfactorily removed, and by setting the concentration to a predetermined value or lower, the reaction heat of the dehydrating reagent can be satisfactorily removed. It is possible to prevent deterioration of the forward osmosis film 23 due to the above. The amount of the organic acid contained in the derived organic liquid 5 may be a catalytic amount, preferably 0.01% by mass or more and 10% by mass or less with respect to the total mass of the induced organic liquid 5, and more preferably. It is 0.1% by mass or more and 5% by mass or less.
 乾燥剤としては、例えば、シリカゲル、モレキュラーシーブ等の多孔質材料、硫酸ナトリウム、硫酸マグネシウム等の水和物形成性化合物等、一般的に有機溶媒の脱水に使用されるものが挙げられる。乾燥剤は、好ましくは、モレキュラーシーブ及び硫酸マグネシウムからなる群から選択される1種以上であり、より好ましくは、モレキュラーシーブである。誘導有機液5に含まれる乾燥剤の量は、誘導有機液5の総質量に対して、好ましくは、1質量%以上60質量%以下であり、より好ましくは、5質量%以上50質量%以下である。乾燥剤の量を所定以上とすることで、原料液4から誘導有機液5に移動した水を良好に除去することができ、量を所定以下とすることで、誘導液タンク3の内部での圧力損失を小さくすることができる。 Examples of the desiccant include porous materials such as silica gel and molecular sieve, and hydrate-forming compounds such as sodium sulfate and magnesium sulfate, which are generally used for dehydration of organic solvents. The desiccant is preferably one or more selected from the group consisting of molecular sieves and magnesium sulfate, and more preferably molecular sieves. The amount of the desiccant contained in the derived organic liquid 5 is preferably 1% by mass or more and 60% by mass or less, and more preferably 5% by mass or more and 50% by mass or less, based on the total mass of the induced organic liquid 5. Is. By setting the amount of the desiccant to a predetermined value or more, the water transferred from the raw material liquid 4 to the induction organic liquid 5 can be satisfactorily removed, and by setting the amount to a predetermined value or less, the water inside the induction liquid tank 3 can be satisfactorily removed. The pressure loss can be reduced.
≪第一の実施形態に係る方法≫
 図3を参照し、第一の実施形態に係る方法について説明する。この方法は、例えば医薬の製造において、水分を含んだ有機層を分液によって抽出し、所望の水分量に脱水した後に晶析又は禁水反応を行う、という手順を想定したものである。
<< Method according to the first embodiment >>
The method according to the first embodiment will be described with reference to FIG. This method assumes, for example, in the production of pharmaceuticals, a procedure in which an organic layer containing water is extracted by liquid separation, dehydrated to a desired amount of water, and then crystallized or a water-free reaction is carried out.
 図3中の分液工程S101では、ある化学反応の生成物である第一の溶質を含む有機溶液を分液操作によって抽出する。分液操作によって抽出された有機溶液は、水を含有しているため、粗脱水工程S102及び脱水工程S103において脱水される。有機溶液の水分率が1質量%以上30質量%未満、好ましくは1質量%以上20質量%未満、より好ましくは1質量%以上15質量%未満である場合、粗脱水工程S102を省略して脱水工程S103を実行してよい。 In the liquid separation step S101 in FIG. 3, an organic solution containing the first solute, which is a product of a certain chemical reaction, is extracted by a liquid separation operation. Since the organic solution extracted by the liquid separation operation contains water, it is dehydrated in the crude dehydration step S102 and the dehydration step S103. When the water content of the organic solution is 1% by mass or more and less than 30% by mass, preferably 1% by mass or more and less than 20% by mass, more preferably 1% by mass or more and less than 15% by mass, the crude dehydration step S102 is omitted and dehydration is performed. Step S103 may be executed.
 図3中の粗脱水工程S102では、分液工程S101において抽出された有機溶液である粗原料液と、第三の溶質を含む誘導水溶液とを、正浸透膜23を介して接触させて、水分率が1質量%以上30質量%未満に脱水された原料液4を得る。有機溶媒と比較して気化しづらく、簡便に扱うことができる水系の誘導水溶液を用いてある程度まで脱水することで、脱水工程S103の時間を短縮することができる。 In the crude dehydration step S102 in FIG. 3, the crude raw material solution, which is the organic solution extracted in the liquid separation step S101, and the inductive aqueous solution containing the third solute are brought into contact with each other via the forward osmosis membrane 23 to obtain water content. A raw material solution 4 dehydrated to a ratio of 1% by mass or more and less than 30% by mass is obtained. The time of the dehydration step S103 can be shortened by dehydrating to a certain extent using an aqueous inductive aqueous solution that is harder to vaporize than an organic solvent and can be easily handled.
 ここで第三の溶質は、例えば、ハロゲン化物、硝酸塩、硫酸塩、酢酸塩、尿素、アルコール、グリコール、重合体、及び糖からなる群から選択される1種以上であってよい。具体的には例えば、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化アンモニウム、硝酸カリウム、硝酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、酢酸ナトリウム、酢酸カリウム、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、及びポリプロピレングリコールからなる群から選択される1種以上であってよい。 Here, the third solute may be, for example, one or more selected from the group consisting of halides, nitrates, sulfates, acetates, ureas, alcohols, glycols, polymers, and sugars. Specifically, for example, sodium chloride, potassium chloride, magnesium chloride, ammonium chloride, potassium nitrate, ammonium nitrate, sodium sulfate, magnesium sulfate, ammonium sulfate, sodium acetate, potassium acetate, methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol. , Propylene glycol, polyethylene glycol, and one or more selected from the group consisting of polypropylene glycol.
 粗脱水工程S102は、粗原料液を循環させる原料液系12、及び、誘導水溶液を循環させる誘導液系13を備える脱水装置1において実行される。ここで好ましくは、原料液系12は、第一の有機溶媒の気化による系外への移動を抑制するように構成される。第一の有機溶媒の揮発を防ぐことで、原料液4の水分率上昇を防ぐことができる。 The crude dehydration step S102 is executed in the dehydration apparatus 1 including the raw material liquid system 12 for circulating the crude raw material liquid and the induction liquid system 13 for circulating the inductive aqueous solution. Here, preferably, the raw material liquid system 12 is configured to suppress the movement of the first organic solvent to the outside of the system due to vaporization. By preventing the volatilization of the first organic solvent, it is possible to prevent an increase in the water content of the raw material liquid 4.
 好ましくは、粗脱水工程S102において、第一の有機溶媒を含み、かつ、水分率が0.5質量%以下の有機液が、脱水及び濃縮によって減容した粗原料液に補充される。減容した原料液4に有機液を補充することで、さらに原料液4の水分率を小さくすることができる。上記有機液の水分率は、0.4質量%以下、又は0.3質量%以下であってよく、有機液の入手容易性の観点から0.001質量%以上、又は0.01質量%以上、又は0.1質量%以上であってもよい。 Preferably, in the crude dehydration step S102, an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the crude raw material liquid whose volume has been reduced by dehydration and concentration. By replenishing the reduced volume of the raw material liquid 4 with the organic liquid, the water content of the raw material liquid 4 can be further reduced. The water content of the organic liquid may be 0.4% by mass or less or 0.3% by mass or less, and from the viewpoint of availability of the organic liquid, 0.001% by mass or more or 0.01% by mass or more. , Or 0.1% by mass or more.
 図3中の脱水工程S103では、まず、粗脱水工程S102で粗脱水された有機溶液である原料液4、及び、第二の有機溶媒を含み、原料液4よりも小さい水分率を有する誘導有機液5を準備する。そして、原料液4と誘導有機液5とを、正浸透膜23を介して接触させ、水分率が1質量%未満に脱水された脱水原料液を得る。本実施形態の脱水方法は、分液によって抽出した有機溶液を共沸によって濃縮する従前の脱水方法と比較して、脱水に要する時間を短縮することができ、加熱による第一の溶質の分解又は変質を防ぐことができる。脱水原料液の水分率は、好ましくは、0.95質量%以下、又は0.9質量%以下、又は0.85質量%以下、又は0.8質量%以下、又は0.75質量%以下、又は0.7質量%以下である。脱水原料液の水分率は低い方が好ましいが、プロセス効率の観点から、一態様において、0.01質量%以上、又は0.05質量%以上、又は0.1質量%以上、又は0.2質量%以上、又は0.3質量%以上、又は0.4質量%以上であってよい。 In the dehydration step S103 in FIG. 3, first, a raw material liquid 4 which is an organic solution roughly dehydrated in the crude dehydration step S102 and a second organic solvent are contained, and an induced organic having a water content smaller than that of the raw material liquid 4 is provided. Prepare liquid 5. Then, the raw material liquid 4 and the induced organic liquid 5 are brought into contact with each other via the forward osmosis membrane 23 to obtain a dehydrated raw material liquid dehydrated to a water content of less than 1% by mass. The dehydration method of the present embodiment can shorten the time required for dehydration as compared with the conventional dehydration method in which the organic solution extracted by liquid separation is concentrated by azeotrope, and the first solute is decomposed by heating or Deterioration can be prevented. The water content of the dehydration raw material solution is preferably 0.95% by mass or less, or 0.9% by mass or less, or 0.85% by mass or less, or 0.8% by mass or less, or 0.75% by mass or less. Or 0.7% by mass or less. It is preferable that the water content of the dehydration raw material liquid is low, but from the viewpoint of process efficiency, in one embodiment, 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, or 0.2. It may be mass% or more, 0.3 mass% or more, or 0.4 mass% or more.
 脱水工程S103は、原料液4を循環させる原料液系12、及び、誘導有機液5を循環させる誘導液系13を備える脱水装置1において実行される。ここで好ましくは、原料液系12及び誘導液系13は、第一及び第二の有機溶媒の気化による系外への移動を抑制するように構成される。これにより、第一及び第二の有機溶媒の揮発を防ぎ、原料液4及び誘導有機液5の水分率上昇を防ぐことができる。 The dehydration step S103 is executed in the dehydration apparatus 1 including the raw material liquid system 12 that circulates the raw material liquid 4 and the induction liquid system 13 that circulates the induction organic liquid 5. Here, preferably, the raw material liquid system 12 and the inductive liquid system 13 are configured to suppress the movement of the first and second organic solvents to the outside of the system due to vaporization. As a result, volatilization of the first and second organic solvents can be prevented, and an increase in the water content of the raw material liquid 4 and the induced organic liquid 5 can be prevented.
 好ましくは、脱水工程S103において、第一の有機溶媒を含み、かつ、水分率が0.5質量%以下の有機液が、脱水及び濃縮によって減容した原料液4に補充される。減容した原料液4に有機液を補充することで、さらに原料液4の水分率を小さくすることができる。上記有機液の水分率は、0.4質量%以下、又は0.3質量%以下であってよく、有機液の入手容易性の観点から0.001質量%以上、又は0.01質量%以上、又は0.1質量%以上であってもよい。 Preferably, in the dehydration step S103, an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the raw material liquid 4 whose volume has been reduced by dehydration and concentration. By replenishing the reduced volume of the raw material liquid 4 with the organic liquid, the water content of the raw material liquid 4 can be further reduced. The water content of the organic liquid may be 0.4% by mass or less or 0.3% by mass or less, and from the viewpoint of availability of the organic liquid, 0.001% by mass or more or 0.01% by mass or more. , Or 0.1% by mass or more.
 図3中の再生工程S104では、脱水工程S103で再度使用可能な誘導有機液5を得るために、原料液4から誘導有機液5へ移動した水が、誘導有機液5から除去される。再生工程S104の後、再生工程S104で処理された誘導有機液5を用い、再度脱水工程S103を実行してもよい。これにより、原料液4よりも誘導有機液5の浸透圧が高い状態を維持しながら脱水を行うことができ、脱水原料液の最終的な水分率をより小さくすることができる。 In the regeneration step S104 in FIG. 3, the water transferred from the raw material liquid 4 to the inductive organic liquid 5 is removed from the inductive organic liquid 5 in order to obtain the inductive organic liquid 5 that can be reused in the dehydration step S103. After the regeneration step S104, the dehydration step S103 may be executed again using the induced organic liquid 5 treated in the regeneration step S104. As a result, dehydration can be performed while maintaining a state in which the osmotic pressure of the induced organic liquid 5 is higher than that of the raw material liquid 4, and the final water content of the dehydrated raw material liquid can be made smaller.
 再生工程S104において、誘導有機液5は、共沸蒸留又は膜処理によって脱水されることが好ましい。ここで共沸蒸留は、減圧蒸留等であってよい。ここで膜処理とは、水を選択的に浸透させる浸透気化膜を用い、誘導有機液5から水を蒸発させて除く方法等であってよい。より好ましくは、再生工程S104において、乾燥剤又は脱水試薬が、誘導有機液5中に添加される。乾燥剤及び脱水試薬は、前述の物質が好適に用いられる。 In the regeneration step S104, the induced organic liquid 5 is preferably dehydrated by azeotropic distillation or membrane treatment. Here, the azeotropic distillation may be vacuum distillation or the like. Here, the membrane treatment may be a method of removing water from the induced organic liquid 5 by evaporating it using an osmotic vaporized membrane that selectively permeates water. More preferably, in the regeneration step S104, a desiccant or a dehydrating reagent is added to the inducing organic liquid 5. As the desiccant and dehydration reagent, the above-mentioned substances are preferably used.
 次に、晶析工程S105又は禁水反応工程S106が実行される。図3中の晶析工程S105では、脱水工程S103で得られた脱水原料液から、第一の溶質を結晶化によって分離し、精製する。結晶化は、本技術分野の当業者にとって一般的に用いられる方法で行われてよい。好ましくは、加温又は圧力操作による第一の溶質の変質を防ぐため、脱水原料液を冷却させる方法、又は第一の溶質が難溶である溶媒を脱水原料液に添加する方法が用いられる。 Next, the crystallization step S105 or the water-reactive reaction step S106 is executed. In the crystallization step S105 in FIG. 3, the first solute is separated by crystallization from the dehydration raw material liquid obtained in the dehydration step S103 and purified. Crystallization may be carried out by methods commonly used by those skilled in the art. Preferably, in order to prevent alteration of the first solute due to heating or pressure manipulation, a method of cooling the dehydration raw material solution or a method of adding a solvent in which the first solute is poorly soluble is added to the dehydration raw material solution.
 図3中の禁水反応工程S106では、脱水工程S103で得られた脱水原料液に他の試薬を添加して、無水条件下で化学反応を進行させる。禁水反応工程S106における化学反応は、水の存在下では所望の反応の進行が阻害される禁水反応である。ここで他の試薬とは、例えば、グリニャール試薬、ブチルリチウム等の有機金属試薬であってよい。 In the water-free reaction step S106 in FIG. 3, another reagent is added to the dehydration raw material solution obtained in the dehydration step S103, and the chemical reaction is allowed to proceed under anhydrous conditions. The chemical reaction in the water-inhibited reaction step S106 is a water-inhibited reaction in which the progress of the desired reaction is inhibited in the presence of water. Here, the other reagent may be, for example, an organometallic reagent such as a Grignard reagent or butyllithium.
≪第二の実施形態に係る方法≫
 図4を参照し、第二の実施形態に係る方法として、医薬の製造において、水溶液から溶質を晶析後、得られる湿結晶を有機溶媒に溶解させ、脱水した後に禁水反応を行う手順を想定した方法について説明する。
<< Method according to the second embodiment >>
As a method according to the second embodiment with reference to FIG. 4, a procedure in which a solute is crystallized from an aqueous solution, the obtained wet crystal is dissolved in an organic solvent, dehydrated, and then a water-free reaction is carried out in the production of a pharmaceutical product. The assumed method will be explained.
 図4中の晶析工程S105では、ある化学反応の生成物である第一の溶質を含む水溶液から、水を含む第一の溶質である湿結晶を分離する。得られた湿結晶を第一の有機溶媒に溶解させ、粗脱水工程S102及び脱水工程S103において脱水させる粗原料液及び原料液4を得る。なお粗脱水工程S102は省略してもよい。本実施形態の脱水方法は、湿結晶を減圧下において加熱し、乾燥させる従前の脱水方法と比較して、脱水に要する時間を短縮することができ、加熱による第一の溶質の分解又は変質を防ぐことができる。 In the crystallization step S105 in FIG. 4, wet crystals, which are the first solute containing water, are separated from the aqueous solution containing the first solute, which is the product of a certain chemical reaction. The obtained wet crystals are dissolved in the first organic solvent to obtain a crude raw material liquid and a raw material liquid 4 to be dehydrated in the crude dehydration step S102 and the dehydration step S103. The rough dehydration step S102 may be omitted. The dehydration method of the present embodiment can shorten the time required for dehydration as compared with the conventional dehydration method in which wet crystals are heated under reduced pressure and dried, and the decomposition or alteration of the first solute by heating can be performed. Can be prevented.
 図4中の粗脱水工程S102、脱水工程S103、再生工程S104及び禁水反応工程S106は、第一の実施形態と同様であってよく、したがって説明を繰り返さない。 The crude dehydration step S102, the dehydration step S103, the regeneration step S104, and the water-reactive reaction step S106 in FIG. 4 may be the same as those in the first embodiment, and therefore the description is not repeated.
 以下、実施例に基づいて本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to Examples.
≪実験方法≫
(正浸透膜モジュールの作製)
 エチレンと一酸化炭素とが完全交互共重合した極限粘度2.2dL/gのポリケトンを、ポリマー濃度が15質量%となるように65質量%レゾルシン水溶液に添加し、80℃において2時間攪拌溶解し、脱泡を行って、均一透明な紡糸原液を得た。二重紡口を装備した湿式中空糸紡糸機に上記の紡糸原液を充填し、二重紡口の内側から25質量%のメタノール水溶液を、外側から上記の紡糸原液を、それぞれ、40質量%メタノール水溶液を満たした凝固槽中に押し出して、相分離により中空糸膜を形成した。
≪Experimental method≫
(Preparation of forward osmosis membrane module)
A polyketone having an extreme viscosity of 2.2 dL / g, in which ethylene and carbon monoxide were completely alternately copolymerized, was added to a 65% by mass resorcin aqueous solution so that the polymer concentration was 15% by mass, and dissolved by stirring at 80 ° C. for 2 hours. , Defoaming was performed to obtain a uniform and transparent undiluted spinning solution. A wet hollow fiber spinning machine equipped with a double spinner is filled with the above-mentioned spinning stock solution, and a 25% by mass methanol aqueous solution is charged from the inside of the double spinning spout, and the above spinning stock solution is filled with 40% by mass methanol from the outside. It was extruded into a coagulation tank filled with an aqueous solution, and a hollow fiber membrane was formed by phase separation.
 得られた中空糸膜を、長さ70cmに切断して束ね、水洗した。水洗後の中空糸膜束を、アセトンで溶媒置換し、さらにヘキサンで溶媒置換した後、50℃において乾燥を行った。このようにして得られたポリケトン中空糸膜の外径は0.8mm、内径は0.5mm、空隙率は78%であり、膜壁の最大孔径は130nmであった。上記ポリケトン中空糸膜80本から成る中空糸膜束を、2cm径、10cm長の円筒状のモジュールハウジング(筒状ケース)内に収納し、中空糸膜束の両端部を接着剤で固定することにより、ポリケトン中空糸支持膜モジュールを作製した。 The obtained hollow fiber membrane was cut to a length of 70 cm, bundled, and washed with water. The hollow fiber membrane bundle after washing with water was subjected to solvent substitution with acetone, solvent substitution with hexane, and then drying at 50 ° C. The polyketone hollow fiber membrane thus obtained had an outer diameter of 0.8 mm, an inner diameter of 0.5 mm, a void ratio of 78%, and a maximum pore diameter of the membrane wall of 130 nm. The hollow fiber membrane bundle composed of the 80 polyketone hollow fiber membranes is housed in a cylindrical module housing (cylindrical case) having a diameter of 2 cm and a length of 10 cm, and both ends of the hollow fiber membrane bundle are fixed with an adhesive. To prepare a polyketone hollow fiber support membrane module.
 得られたポリケトン中空糸支持膜モジュールを用い、各中空糸膜の内側表面上において、下記のとおりに界面重合を実施した。1L容器に、m-フェニレンジアミン20.216g及びラウリル硫酸ナトリウム1.52gを入れ、さらに純水991gを加えて溶解させ、界面重合に用いる第1溶液を調製した。別の1L容器に、トリメシン酸クロリド0.6gを入れ、n-ヘキサン300gを加えて溶解させ、界面重合に用いる第2溶液を調製した。 Using the obtained polyketone hollow fiber support membrane module, interfacial polymerization was carried out on the inner surface of each hollow fiber membrane as follows. 20.216 g of m-phenylenediamine and 1.52 g of sodium lauryl sulfate were placed in a 1 L container, and 991 g of pure water was further added and dissolved to prepare a first solution to be used for interfacial polymerization. In another 1 L container, 0.6 g of trimesic acid chloride was placed, and 300 g of n-hexane was added and dissolved to prepare a second solution used for interfacial polymerization.
 界面重合による分離活性層の形成方法について図5を参照して説明する。図5に示す装置において、中空糸支持膜の内側(コア側)に第1溶液を充填させた中空糸支持膜モジュール41には、コア側の入り口に第2溶液貯蔵タンク44からの第2溶液送液配管45が繋ぎ込まれ、途中に第2溶液を圧送する第2溶液送液ポンプ46が繋がれている。コア側の出口には第2溶液排液タンク47からの第2溶液排液配管48が繋ぎ込まれ、該タンクからは中空糸支持膜モジュール41の中空糸内側の圧力を制御するコア側圧力調整装置42が繋ぎ込まれている。中空糸支持膜モジュール41のシェル側の下部導管にはエンドキャップ49がはめ込まれ、上部導管にはシェル圧を制御するシェル側圧力調整装置43が繋ぎ込まれている。中空糸支持膜モジュール41のコア側(中空糸の内側)に第1溶液を充填し、5分静置した後に液を抜いて、中空糸の内側が第1溶液で濡れた状態で、図5に示す装置に装着した。コア側圧力調整装置42によりコア側圧力を常圧に設定し、シェル側圧力調整装置43によりシェル側圧力を、絶対圧として10kPaの減圧に設定した(コア側圧力>シェル側圧力)。この状態で2分間静置した後、この圧力を維持したまま、第2溶液送液ポンプ46により第2溶液をコア側に40cc/分の流量で3分送液し、界面重合を行った。重合温度は25℃とした。 The method of forming the separation active layer by interfacial polymerization will be described with reference to FIG. In the apparatus shown in FIG. 5, the hollow fiber support membrane module 41 in which the inside (core side) of the hollow fiber support membrane is filled with the first solution has a second solution from the second solution storage tank 44 at the entrance on the core side. The liquid feeding pipe 45 is connected, and the second solution liquid feeding pump 46 for pumping the second solution is connected in the middle. The second solution drainage pipe 48 from the second solution drainage tank 47 is connected to the outlet on the core side, and the core side pressure adjustment that controls the pressure inside the hollow fiber of the hollow fiber support membrane module 41 from the tank. The device 42 is connected. An end cap 49 is fitted in the lower conduit on the shell side of the hollow fiber support membrane module 41, and a shell-side pressure adjusting device 43 for controlling the shell pressure is connected to the upper conduit. FIG. 5 shows the core side (inside of the hollow fiber) of the hollow fiber support membrane module 41 filled with the first solution, allowed to stand for 5 minutes, then drained, and the inside of the hollow fiber is wet with the first solution. It was attached to the device shown in. The core side pressure was set to normal pressure by the core side pressure adjusting device 42, and the shell side pressure was set to a reduced pressure of 10 kPa as an absolute pressure by the shell side pressure adjusting device 43 (core side pressure> shell side pressure). After allowing to stand for 2 minutes in this state, the second solution was fed to the core side at a flow rate of 40 cc / min for 3 minutes by the second solution feed pump 46 while maintaining this pressure, and interfacial polymerization was performed. The polymerization temperature was 25 ° C.
 次いで、中空糸支持膜モジュールを装置から外して、50℃に設定した恒温槽内に5分静置させ、n-ヘキサンを気化させて除去した。さらに、シェル側及びコア側の双方を純水によって洗浄することにより、正浸透膜モジュールを作製した。 Next, the hollow fiber support membrane module was removed from the apparatus and allowed to stand in a constant temperature bath set at 50 ° C. for 5 minutes to vaporize and remove n-hexane. Further, a forward osmosis membrane module was produced by washing both the shell side and the core side with pure water.
(HSPの算出)
 分離活性層のHSPは、以下のようにモデル化して計算した。一般的に、この方法で界面重合して得られる分離活性層の繰り返し単位は、下記式(1):
(Calculation of HSP)
The HSP of the isolated active layer was modeled and calculated as follows. Generally, the repeating unit of the separation active layer obtained by interfacial polymerization by this method is the following formula (1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、x及びyはそれぞれ独立に1以上の整数である。)
で表される。
(In the formula, x and y are each independently an integer of 1 or more.)
It is represented by.
 上記式(1)で表されるように、分離活性層は、トリメシン酸クロライド由来部分のうち、一部が架橋しており且つ一部が架橋されていない(すなわち加水分解されている)構造を有する。 As represented by the above formula (1), the separation active layer has a structure in which a part of the trimesic acid chloride-derived portion is crosslinked and a part is not crosslinked (that is, hydrolyzed). Have.
 上記ポリマー構造において、まず、ポリマー末端以外で架橋せずに未反応のまま残る可能性があった官能基(すなわち加水分解されうる構造部分、すなわち加水分解されている構造部分及び繰り返し単位において分岐鎖を形成している構造部分)をすべて水素基に置換する。これにより、下記式(2): In the above polymer structure, first, a functional group that may remain unreacted without cross-linking other than at the end of the polymer (that is, a hydrolyzable structural portion, that is, a hydrolyzed structural moiety and a branched chain at a repeating unit. All the structural parts forming the above are replaced with hydrogen groups. As a result, the following equation (2):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表される構造が得られる。次いで、上記ポリマー構造において、繰り返し単位の化学結合に関わる部分をメチル基に置換する。これにより、下記式(3): The structure represented by is obtained. Next, in the above polymer structure, the portion related to the chemical bond of the repeating unit is replaced with a methyl group. As a result, the following equation (3):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
で表されるモノマー構造が得られる。
 上記のモデル化によって得たモノマー構造のHSPを、市販のソフトウェアWinmostar9.4.11のアドオンであるHansen SP & QSPRモデルを使用して計算したところ、δd=20.5(MPa)0.5、δp=11.47(MPa)0.5、δH=7.22(MPa)0.5であり、HSPは、24.58(MPa)0.5であった。
 また、誘導有機液の第二の有機溶媒のHSPも、上記と同様、市販のソフトウェアWinmostar9.4.11のアドオンであるHansen SP & QSPRモデルを使用して計算した。
 結果を表1に纏める。
The monomer structure represented by is obtained.
The HSP of the monomer structure obtained by the above modeling was calculated using the Hansen SP & QSPR model, which is an add-on of the commercially available software Winmostar 9.4.11. As a result, δd = 20.5 (MPa) 0.5 , δp = 11.47 (MPa) 0.5 , δH = 7.22 (MPa) 0.5 , and HSP was 24.58 (MPa) 0.5 .
The HSP of the second organic solvent of the derived organic liquid was also calculated using the Hansen SP & QSPR model, which is an add-on of the commercially available software Winmostar 9.4.11, in the same manner as described above.
The results are summarized in Table 1.
(水分率の測定)
 1mLのシリンジで原料液、粗原料液、又は誘導有機液約0.5mLを取り、カールフィッシャー水分測定装置(形式CA-200、(株)三菱化学アナリテック製)に約0.1mL注入し、水分率を測定した。なお、誘導有機液中に乾燥剤としてモレキュラーシーブを含む実施例4及び実施例6では、上澄みの誘導有機液のみをサンプリングした。
(Measurement of water content)
Take about 0.5 mL of the raw material solution, crude raw material solution, or inductive organic solution with a 1 mL syringe, and inject about 0.1 mL into the Karl Fischer Moisture Measuring Device (type CA-200, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The water content was measured. In Examples 4 and 6 in which the molecular sieve was contained as a desiccant in the induced organic liquid, only the supernatant induced organic liquid was sampled.
 第二の溶質が脱水試薬である実施例1~実施例3では、カールフィッシャー反応と脱水反応が競合してしまうため、脱水試薬が添加される前の第二の有機溶媒の水分率を誘導有機液の水分率とみなした。実施例1~実施例3における「水分率は0.01質量%未満」という記載は、脱水試薬を含まない第二の有機溶媒の水分率が0.01質量%であり、その後脱水試薬の添加によってさらに水分率が低下したと推測されることを意味する。 In Examples 1 to 3 in which the second solute is a dehydration reagent, the Karl Fischer reaction and the dehydration reaction compete with each other. Therefore, the water content of the second organic solvent before the addition of the dehydration reagent is induced. It was regarded as the water content of the liquid. The description "moisture content is less than 0.01% by mass" in Examples 1 to 3 means that the water content of the second organic solvent containing no dehydration reagent is 0.01% by mass, and then the dehydration reagent is added. This means that it is presumed that the water content was further reduced.
(脱水効率)
 脱水効率は、原料液(FS)水分率及び原料液(FS)量に基づき、以下の式に基づいて求めた。なおtは30(分)とした。
Figure JPOXMLDOC01-appb-M000008
(Dehydration efficiency)
The dehydration efficiency was determined based on the water content of the raw material liquid (FS) and the amount of the raw material liquid (FS) based on the following formula. In addition, t was set to 30 (minutes).
Figure JPOXMLDOC01-appb-M000008
 脱水効率(%)の値を、以下の基準で評価した。
A:40%以上
B:30%以上40%未満
C:30%未満
The value of dehydration efficiency (%) was evaluated according to the following criteria.
A: 40% or more B: 30% or more and less than 40% C: less than 30%
≪実施例1≫
 本実施例は、図1に示した脱水装置を用いて、室温(23℃)にて行った。原料液としては、第一の溶質であるオクタアセチルショ糖10質量%を含有する酢酸イソプロピル溶液を200mL使用した。原料液の当初の水分率は、2.0質量%であった。誘導有機液としては、第二の溶質であるオルトギ酸トリエチル10質量%及びパラトルエンスルホン酸ピリジニウム(PPTS)触媒量を含有する、酢酸イソプロピル溶液を400mL使用した。誘導有機液の当初の水分率は、0.01質量%未満であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。原料液を流速40mL/分で、誘導有機液を340mL/分でそれぞれ循環させ、正浸透膜を介して接触させた。脱水装置を4時間稼働させた後、回収した脱水原料液の水分率は0.6質量%であった。
<< Example 1 >>
This example was carried out at room temperature (23 ° C.) using the dehydrator shown in FIG. As the raw material solution, 200 mL of an isopropyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 2.0% by mass. As the induction organic solution, 400 mL of an isopropyl acetate solution containing 10% by mass of triethyl orthoformate as a second solute and a catalytic amount of pyridinium paratoluenesulfonate (PPTS) was used. The initial moisture content of the derived organic solution was less than 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. The raw material liquid was circulated at a flow rate of 40 mL / min and the induced organic liquid was circulated at 340 mL / min, respectively, and brought into contact with each other through a forward osmosis membrane. After operating the dehydrator for 4 hours, the water content of the recovered dehydration raw material was 0.6% by mass.
≪実施例2≫
 原料液としては、第一の溶質であるオクタアセチルショ糖10質量%を含有する酢酸エチル溶液を200mL使用した。原料液の当初の水分率は、3.0質量%であった。誘導有機液としては、第二の溶質であるオルトギ酸トリエチル10質量%及びパラトルエンスルホン酸触媒量を含有する、酢酸エチル溶液を400mL使用した。誘導有機液の当初の水分率は、0.01質量%未満であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を稼働させた後、回収した脱水原料液の水分率は0.7質量%であった。
<< Example 2 >>
As the raw material liquid, 200 mL of an ethyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 3.0% by mass. As the induction organic solution, 400 mL of an ethyl acetate solution containing 10% by mass of triethyl orthoformate as a second solute and a catalytic amount of paratoluenesulfonic acid was used. The initial moisture content of the derived organic solution was less than 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus under the same conditions as in Example 1, the water content of the dehydrated raw material liquid recovered was 0.7% by mass.
≪実施例3≫
 原料液としては、第一の溶質であるキニーネ10質量%を含有するテトラヒドロフラン(THF)溶液を200mL使用した。原料液の当初の水分率は、9.0質量%であった。誘導溶液としては、第二の溶質であるオルトギ酸トリエチル10質量%及びパラトルエンスルホン酸ピリジニウム(PPTS)触媒量を含有するテトラヒドロフラン溶液を400mL使用した。誘導有機液の当初の水分率は、0.01質量%未満であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を稼働させた後、回収した脱水原料液の水分率は0.8質量%であった。
<< Example 3 >>
As the raw material liquid, 200 mL of a tetrahydrofuran (THF) solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 9.0% by mass. As the induction solution, 400 mL of a tetrahydrofuran solution containing 10% by mass of triethyl orthoformate as a second solute and a catalytic amount of pyridinium paratoluenesulfonate (PPTS) was used. The initial moisture content of the derived organic solution was less than 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator under the same conditions as in Example 1, the water content of the dehydrated raw material recovered was 0.8% by mass.
≪実施例4≫
 原料液としては、第一の溶質であるとしてキニーネ10質量%を含有するテトラヒドロフラン溶液を200mL使用した。原料液の当初の水分率は、9.0質量%であった。誘導溶液としては、第二の溶質であるトルエン10質量%、及び、乾燥剤であるモレキュラーシーブ約100gを含有するテトラヒドロフラン溶液を400mL使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を稼働させた後、回収した脱水原料液の水分率は0.9質量%であった。
<< Example 4 >>
As the raw material liquid, 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine as the first solute was used. The initial water content of the raw material liquid was 9.0% by mass. As the inducing solution, 400 mL of a tetrahydrofuran solution containing 10% by mass of toluene as a second solute and about 100 g of molecular sieve as a desiccant was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus under the same conditions as in Example 1, the water content of the dehydrated raw material liquid recovered was 0.9% by mass.
≪実施例5≫
 原料液としては、第一の溶質であるキニーネ10質量%を含有するテトラヒドロフラン溶液を200mL使用した。原料液の当初の水分率は、3.0質量%であった。誘導有機液としては、第二の有機溶媒であるテトラヒドロフランを2000mL使用した。誘導有機液の当初の水分率は、0.1質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を7時間稼働させた後、回収した脱水原料液の水分率は0.9質量%であった。
<< Example 5 >>
As the raw material liquid, 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 3.0% by mass. As the induction organic liquid, 2000 mL of tetrahydrofuran, which is a second organic solvent, was used. The initial water content of the induced organic liquid was 0.1% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 7 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.9% by mass.
≪実施例6≫
 原料液としては、第一の溶質であるオクタアセチルショ糖10質量%を含有する酢酸イソプロピル溶液を200mL使用した。原料液の当初の水分率は、2.0質量%であった。誘導有機液としては、乾燥剤であるモレキュラーシーブ約100gを含有する酢酸イソプロピルを600mL使用した。誘導有機液の当初の水分率は、0.01質量%であった。本実施例では、原料液タンク及び誘導液タンクに蓋をしない状態で、脱水操作を行った。実施例1と同様の条件で脱水装置を5時間稼働させた後、回収した脱水原料液の水分率は0.8質量%であった。
<< Example 6 >>
As the raw material solution, 200 mL of an isopropyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 2.0% by mass. As the inducing organic liquid, 600 mL of isopropyl acetate containing about 100 g of molecular sieve, which is a desiccant, was used. The initial water content of the derived organic liquid was 0.01% by mass. In this embodiment, the dehydration operation was performed without covering the raw material liquid tank and the induction liquid tank. After operating the dehydrator for 5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.8% by mass.
≪比較例1≫
 比較例1は、誘導液として有機液ではなく水溶液を使用した。原料液としては、第一の溶質であるキニーネ10質量%を含有するテトラヒドロフラン溶液を200mL使用した。原料液の当初の水分率は、9.0質量%であった。誘導液としては、第二の溶質である塩化マグネシウム20質量%を含有する水溶液を400mL使用した。溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を1.5時間稼働させた後、回収した脱水原料液の水分率を測定した所、7.2質量%であった。原料液の水分率は低下したものの、1質量%未満にはできなかった。
<< Comparative Example 1 >>
In Comparative Example 1, an aqueous solution was used as the inducing solution instead of an organic solution. As the raw material liquid, 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 9.0% by mass. As the induction liquid, 400 mL of an aqueous solution containing 20% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization. After operating the dehydrator for 1.5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 7.2% by mass. Although the water content of the raw material liquid decreased, it could not be less than 1% by mass.
≪比較例2≫
 比較例2は、比較例1と同様に、誘導液として水溶液を使用した。原料液としては、第一の溶質であるキニーネ10質量%を含有するテトラヒドロフラン溶液を200mL使用した。原料液の当初の水分率は、1.3質量%であった。誘導液としては、第二の溶質である塩化マグネシウム20質量%を含有する水溶液を400mL使用した。溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を1.5時間稼働させた後、回収した脱水原料液の水分率を測定した所、4.8質量%であった。原料液の水分率が上昇するという結果となり、原料液の脱水はできなかった。
<< Comparative Example 2 >>
In Comparative Example 2, an aqueous solution was used as the inducing solution, as in Comparative Example 1. As the raw material liquid, 200 mL of a tetrahydrofuran solution containing 10% by mass of quinine, which is the first solute, was used. The initial water content of the raw material liquid was 1.3% by mass. As the induction liquid, 400 mL of an aqueous solution containing 20% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization. After operating the dehydrator for 1.5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 4.8% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
≪比較例3≫
 比較例3は、比較例1と同様に、誘導液として水溶液を使用した。原料液としては、第一の溶質であるオクタアセチルショ糖10質量%を含有する酢酸エチル溶液を200mL使用した。原料液の当初の水分率は、2.1質量%であった。誘導液としては、第二の溶質である塩化マグネシウム20質量%を含有する水溶液を400mL使用した。溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を1.5時間稼働させた後、回収した脱水原料液の水分率を測定した所、2.4質量%であった。原料液の水分率が上昇するという結果となり、原料液の脱水はできなかった。
<< Comparative Example 3 >>
In Comparative Example 3, an aqueous solution was used as the inducing solution, as in Comparative Example 1. As the raw material liquid, 200 mL of an ethyl acetate solution containing 10% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 2.1% by mass. As the induction liquid, 400 mL of an aqueous solution containing 20% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization. After operating the dehydrator for 1.5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 2.4% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
≪比較例4≫
 比較例4では、比較例1と同様に、誘導液として水溶液を使用した。また、第一の有機溶媒には、正浸透膜を透過するメタノールを選択した。原料液としては、第一の溶質であるオクタアセチルショ糖1質量%を含有するメタノール溶液を1000mL使用した。原料液の当初の水分率は、10.2質量%であった。誘導液としては、第二の溶質である塩化マグネシウム10質量%を含有する水溶液を1600mL使用した。溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を7時間稼働させた後、回収した脱水原料液の水分率を測定した所、38.5質量%であった。原料液の水分率が上昇するという結果となり、原料液の脱水はできなかった。
<< Comparative Example 4 >>
In Comparative Example 4, an aqueous solution was used as the inducing solution, as in Comparative Example 1. As the first organic solvent, methanol that permeates the forward osmosis membrane was selected. As the raw material liquid, 1000 mL of a methanol solution containing 1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 10.2% by mass. As the inducing solution, 1600 mL of an aqueous solution containing 10% by mass of magnesium chloride, which is the second solute, was used. The raw material liquid tank and the induction liquid tank were covered so that the solvent did not move out of the tank due to vaporization. After operating the dehydrator for 7 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 38.5% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
≪比較例5≫
 比較例5では、第一の有機溶媒及び第二の有機溶媒に、正浸透膜を透過するメタノールを選択した。原料液としては、第一の溶質であるオクタアセチルショ糖1質量%を含有するメタノール溶液を900mL使用した。原料液の当初の水分率は、9.4質量%であった。誘導有機液としては、第二の溶質である塩化マグネシウム10質量%を含有するメタノール溶液を1400mL使用した。誘導有機液の当初の水分率は、0.13質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を3.5時間稼働させた後、回収した脱水原料液の水分率を測定した所、3.0質量%であった。原料液の水分率は低下したものの、1質量%未満にはできなかった。
<< Comparative Example 5 >>
In Comparative Example 5, methanol permeating the forward osmosis membrane was selected as the first organic solvent and the second organic solvent. As the raw material liquid, 900 mL of a methanol solution containing 1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 9.4% by mass. As the inducing organic liquid, 1400 mL of a methanol solution containing 10% by mass of magnesium chloride, which is a second solute, was used. The initial water content of the induced organic liquid was 0.13% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 3.5 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 3.0% by mass. Although the water content of the raw material liquid decreased, it could not be less than 1% by mass.
≪比較例6≫
 比較例6は、原料液より誘導有機液の方が、当初の水分率が高い条件で実験した。原料液としては、第一の溶質であるオクタアセチルショ糖5質量%を含有するt-ブチルメチルエーテル溶液を200mL使用した。原料液の当初の水分率は、1.3質量%であった。誘導液としては、第二の溶質であるトルエン10質量%を含有する酢酸イソプロピル溶液を600mL使用した。誘導有機液の当初の水分率は、1.5質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を1時間稼働させた後、回収した脱水原料液の水分率を測定した所、1.4質量%であった。原料液の水分率が上昇するという結果となり、原料液の脱水はできなかった。
<< Comparative Example 6 >>
In Comparative Example 6, the induced organic liquid was tested under the condition that the initial water content was higher than that of the raw material liquid. As the raw material liquid, 200 mL of a t-butyl methyl ether solution containing 5% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.3% by mass. As the inducing solution, 600 mL of an isopropyl acetate solution containing 10% by mass of toluene, which is the second solute, was used. The initial water content of the induced organic liquid was 1.5% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 1 hour under the same conditions as in Example 1, the water content of the recovered dehydration raw material was measured and found to be 1.4% by mass. As a result, the water content of the raw material liquid increased, and the raw material liquid could not be dehydrated.
≪実施例7≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導有機液としては、テトラヒドロフランを400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.4質量%であった。また、0分後及び30分後に測定した原料液の水分率及び重量から求めた脱水効率は、33%(評価B)であった。
<< Example 7 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing organic liquid, 400 g of tetrahydrofuran was used. The initial water content of the induced organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.4% by mass. The dehydration efficiency determined from the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes was 33% (evaluation B).
≪実施例8≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導有機液としては、酢酸エチルを400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.4質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は42%(評価A)であった。
<< Example 8 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing organic liquid, 400 g of ethyl acetate was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.4% by mass. The dehydration efficiency was 42% (evaluation A) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例9≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導有機液としては、メタノールを400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.5質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は23%(評価C)であった。
<< Example 9 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing organic liquid, 400 g of methanol was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydrating raw material liquid was 0.5% by mass. The dehydration efficiency was 23% (evaluation C) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例10≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導有機液としては、テトラヒドロフランとシクロヘキサンを体積比で1:3に混ぜた溶液を400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.9質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は27%(評価C)であった。
<< Example 10 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the derived organic liquid, 400 g of a solution in which tetrahydrofuran and cyclohexane were mixed in a volume ratio of 1: 3 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrating apparatus for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydrating raw material liquid was 0.9% by mass. The dehydration efficiency was 27% (evaluation C) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例11≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導溶液としては、テトラヒドロフランとシクロヘキサンを体積比で1:1に混ぜた溶液を400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.8質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は39%(評価B)であった。
<< Example 11 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution in which tetrahydrofuran and cyclohexane were mixed at a volume ratio of 1: 1 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.8% by mass. The dehydration efficiency was 39% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例12≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導溶液としては、テトラヒドロフランとN-メチルピロリドンを体積比で1:1に混ぜた溶液を400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.4質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は32%(評価B)であった。
<< Example 12 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the inducing solution, 400 g of a solution in which tetrahydrofuran and N-methylpyrrolidone were mixed in a volume ratio of 1: 1 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.4% by mass. The dehydration efficiency was 32% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例13≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導溶液としては、テトラヒドロフランとジクロロメタンを体積比で1:1に混ぜた溶液を400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.5質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は41%(評価A)であった。
<< Example 13 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution in which tetrahydrofuran and dichloromethane were mixed in a volume ratio of 1: 1 was used. The initial water content of the induced organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.5% by mass. The dehydration efficiency was 41% (evaluation A) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例14≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導溶液としては、テトラヒドロフランとジクロロメタンを体積比で1:3に混ぜた溶液を400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.8質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は38%(評価B)であった。
<< Example 14 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution in which tetrahydrofuran and dichloromethane were mixed in a volume ratio of 1: 3 was used. The initial water content of the derived organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.8% by mass. The dehydration efficiency was 38% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
≪実施例15≫
 原料液としては、第一の溶質であるオクタアセチルショ糖0.1質量%を含有するテトラヒドロフラン溶液を200g使用した。原料液の当初の水分率は、1.1質量%であった。誘導溶液としては、テトラヒドロフランとジクロロメタンを体積比で1:9に混ぜた溶液を400g使用した。誘導有機液の当初の水分率は、0.01質量%であった。有機溶媒が気化によってタンク外へ移動しないように、原料液タンク及び誘導液タンクに蓋をした。実施例1と同様の条件で脱水装置を2時間稼働させた後、回収した脱水原料液の水分率は0.9質量%であった。また、0分後及び30分後に測定した原料液の水分率、重量から、脱水効率は37%(評価B)であった。
<< Example 15 >>
As the raw material liquid, 200 g of a tetrahydrofuran solution containing 0.1% by mass of octaacetylsucrose, which is the first solute, was used. The initial water content of the raw material liquid was 1.1% by mass. As the induction solution, 400 g of a solution prepared by mixing tetrahydrofuran and dichloromethane in a volume ratio of 1: 9 was used. The initial water content of the induced organic liquid was 0.01% by mass. The raw material liquid tank and the induction liquid tank were covered so that the organic solvent did not move out of the tank due to vaporization. After operating the dehydrator for 2 hours under the same conditions as in Example 1, the water content of the recovered dehydration raw material was 0.9% by mass. The dehydration efficiency was 37% (evaluation B) based on the water content and weight of the raw material liquid measured after 0 minutes and 30 minutes.
 以上の実施例及び比較例の結果を、表2及び3に示した。 The results of the above Examples and Comparative Examples are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 1  脱水装置
 2  原料液タンク
 3  誘導液タンク
 4  原料液
 5  誘導有機液
 6、7  原料液送液配管
 8  原料液送液ポンプ
 9、10  誘導液送液配管
 11  誘導液送液ポンプ
 12  原料液系
 13  誘導液系
 20  正浸透膜モジュール
 21、22  シェル側導管
 23  正浸透膜
 24、25  接着剤固定部
 26、27  ヘッダー
 28、29  コア側導管
 30  ハウジング
 41  中空糸支持膜モジュール
 42  コア側圧力調整装置
 43  シェル側圧力調整装置
 44 第2溶液貯蔵タンク
 45 第2溶液送液配管
 46 第2溶液送液ポンプ
 47 第2溶液排液タンク
 48 第2溶液排液配管
 49 エンドキャップ
 S101  分液工程
 S102  粗脱水工程
 S103  脱水工程
 S104  再生工程
 S105  晶析工程
 S106  禁水反応工程
1 Dehydration device 2 Raw material liquid tank 3 Inductive liquid tank 4 Raw material liquid 5 Inductive organic liquid 6, 7 Raw material liquid feed pipe 8 Raw material liquid feed pump 9, 10 Inductive liquid feed pipe 11 Inductive liquid feed pump 12 Raw material liquid system 13 Induction liquid system 20 Positive osmotic membrane module 21, 22 Shell side conduit 23 Positive permeable membrane 24, 25 Adhesive fixing part 26, 27 Header 28, 29 Core side conduit 30 Housing 41 Hollow thread support film module 42 Core side pressure regulator 43 Shell side pressure regulator 44 Second solution storage tank 45 Second solution liquid feed pipe 46 Second solution liquid feed pump 47 Second solution liquid drain tank 48 Second solution drain pipe 49 End cap S101 Liquid separation process S102 Coarse dehydration Step S103 Dehydration step S104 Regeneration step S105 Crystallization step S106 Water-free reaction step

Claims (17)

  1.  第一の有機溶媒、水及び第一の溶質を含む原料液から脱水をするための方法であって、
     前記原料液と、第二の有機溶媒を含む誘導有機液とを、正浸透膜を介して接触させ、水分率が1質量%未満に脱水された脱水原料液を得る脱水工程を含み、
     ここで前記脱水工程における前記原料液の当初の水分率は、1質量%以上30質量%未満であり、前記誘導有機液の当初の水分率は、前記原料液の当初の水分率よりも小さい、方法。
    A method for dehydrating a raw material solution containing a first organic solvent, water and a first solute.
    A dehydration step of bringing the raw material liquid and an induced organic liquid containing a second organic solvent into contact with each other via a forward osmosis membrane to obtain a dehydrated raw material liquid dehydrated to a water content of less than 1% by mass is included.
    Here, the initial water content of the raw material liquid in the dehydration step is 1% by mass or more and less than 30% by mass, and the initial water content of the induced organic liquid is smaller than the initial water content of the raw material liquid. Method.
  2.  前記正浸透膜が、分離活性層と微細孔性支持膜とで構成される複合膜であり、
     前記誘導有機液と前記分離活性層との溶解度パラメータの差ΔHSPが、ΔHSP<16(MPa)0.5であり、かつ
     前記誘導有機液の飽和含水量が0.5質量%以上である、
     請求項1に記載の方法。
    The forward osmosis membrane is a composite membrane composed of a separation active layer and a microporous support membrane.
    The difference ΔHSP of the solubility parameter between the induced organic liquid and the separated active layer is ΔHSP <16 (MPa) 0.5 , and the saturated water content of the induced organic liquid is 0.5% by mass or more.
    The method according to claim 1.
  3.  前記誘導有機液の溶解度パラメータが、13(MPa)0.5≦δd≦20(MPa)0.5、2(MPa)0.5≦δp≦18(MPa)0.5、2(MPa)0.5≦δH≦28(MPa)0.5である、
     請求項1又は2に記載の方法。
    The solubility parameter of the derived organic liquid is 13 (MPa) 0.5 ≤ δd ≤ 20 (MPa) 0.5 , 2 (MPa) 0.5 ≤ δp ≤ 18 (MPa) 0.5 , 2 (MPa) 0.5 ≤ δH ≤ 28 (MPa) 0.5 . Is,
    The method according to claim 1 or 2.
  4.  前記誘導有機液が、第二の溶質及び/又は乾燥剤をさらに含む、
     請求項1~3のいずれか一項に記載の方法。
    The derived organic liquid further comprises a second solute and / or desiccant.
    The method according to any one of claims 1 to 3.
  5.  前記脱水工程が、前記原料液を循環させる原料液系、及び、前記誘導有機液を循環させる誘導液系を備える脱水装置において実行され、
     前記原料液系及び前記誘導液系は、前記第一の有機溶媒及び前記第二の有機溶媒の気化による系外への移動を抑制するように構成される、
     請求項1~4のいずれか一項に記載の方法。
    The dehydration step is performed in a dehydrating apparatus including a raw material liquid system for circulating the raw material liquid and an induction liquid system for circulating the inductive organic liquid.
    The raw material liquid system and the induction liquid system are configured to suppress the movement of the first organic solvent and the second organic solvent to the outside of the system due to vaporization.
    The method according to any one of claims 1 to 4.
  6.  前記第二の有機溶媒は、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、トルエン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、アセトニトリル、ジメチルアセトアミド、N-メチルピロリドン、ヘキサフルオロイソプロピルアルコール、酢酸、アセトン、アニソール、ベンゼン、クロロベンゼン、四塩化炭素、クロロホルム、クメン、シクロヘキサン、1,2―ジクロロエタン、1,2-ジクロロエテン、ジクロロメタン、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、1,4-ジオキサン、エチルエーテル、ギ酸エチル、ホルムアミド、ギ酸、ヘプタン、ヘキサン、メチルブチルケトン、メチルシクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、ペンタン、ニトロメタン、ピリジン、スルホラン、テトラリン、1,1,1-トリクロロエタン、1,1,2-トリクロロエテン、及びキシレンからなる群から選択される少なくとも1種である、
     請求項1~5のいずれか一項に記載の方法。
    The second organic solvent is tetrahydrofuran, 2-methyl tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, toluene, cyclopentyl methyl ether, t-butyl methyl ether, acetonitrile, dimethylacetamide, N-methylpyrrolidone, hexafluoroisopropyl alcohol, acetic acid, acetone, anisole, benzene, chlorobenzene, carbon tetrachloride, chloroform, cumene, cyclohexane, 1,2-dichloroethane, 1,2-dichloroethane, dichloromethane, 1,2-dimethoxy Ethan, N, N-dimethylformamide, dimethylsulfoxide, 1,4-dioxane, ethyl ether, ethyl formate, formamide, formate, heptane, hexane, methylbutylketone, methylcyclohexane, methylethylketone, methylisobutylketone, pentane, nitromethane, pyridine , Sulfolane, tetralin, 1,1,1-trichloroethane, 1,1,2-trichloroethane, and xylene, at least one selected from the group.
    The method according to any one of claims 1 to 5.
  7.  前記脱水工程において、前記第一の有機溶媒を含み、かつ、水分率が0.5質量%以下の有機液が、脱水及び濃縮によって減容した前記原料液に補充される、
     請求項1~6のいずれか一項に記載の方法。
    In the dehydration step, an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the raw material liquid whose volume has been reduced by dehydration and concentration.
    The method according to any one of claims 1 to 6.
  8.  前記脱水原料液中の第一の溶質が、無水条件下において前記第一の溶質と他の試薬との化学反応を行う禁水反応に供される、
     請求項1~7のいずれか一項に記載の方法。
    The first solute in the dehydration raw material liquid is subjected to a water-free reaction in which the first solute is chemically reacted with other reagents under anhydrous conditions.
    The method according to any one of claims 1 to 7.
  9.  前記方法が、前記第一の溶質を晶析によって精製する晶析工程をさらに含む、
     請求項1~8のいずれか一項に記載の方法。
    The method further comprises a crystallization step of purifying the first solute by crystallization.
    The method according to any one of claims 1 to 8.
  10.  前記方法が、前記脱水工程の前に、前記第一の溶質を含む液から有機層を抽出する分液工程をさらに含み、
     前記有機層を前記原料液として用いる、
     請求項1~9のいずれか一項に記載の方法。
    The method further comprises a liquid separation step of extracting the organic layer from the liquid containing the first solute prior to the dehydration step.
    The organic layer is used as the raw material liquid.
    The method according to any one of claims 1 to 9.
  11.  前記方法が、再生工程をさらに含み、
     前記再生工程は、前記原料液から前記誘導有機液へ移動した水を前記誘導有機液から除去する工程である、
     請求項1~10のいずれか一項に記載の方法。
    The method further comprises a regeneration step.
    The regeneration step is a step of removing water transferred from the raw material liquid to the derived organic liquid from the derived organic liquid.
    The method according to any one of claims 1 to 10.
  12.  前記再生工程において、乾燥剤又は脱水試薬が、前記誘導有機液中に添加される、
     請求項11に記載の方法。
    In the regeneration step, a desiccant or a dehydrating reagent is added to the induced organic liquid.
    11. The method of claim 11.
  13.  前記再生工程において、前記誘導有機液は、共沸蒸留又は膜処理によって脱水される、
     請求項11又は12に記載の方法。
    In the regeneration step, the induced organic liquid is dehydrated by azeotropic distillation or membrane treatment.
    The method according to claim 11 or 12.
  14.  前記方法が、前記脱水工程の前に粗脱水工程をさらに含み、
     前記粗脱水工程は、粗原料液と、第三の溶質を含む誘導水溶液とを、正浸透膜を介して接触させて、水分率が1質量%以上30質量%未満に脱水された原料液を得る工程である、
     請求項1~13のいずれか一項に記載の方法。
    The method further comprises a crude dehydration step prior to the dehydration step.
    In the crude dehydration step, the crude raw material solution and the induced aqueous solution containing the third solute are brought into contact with each other via a forward osmosis membrane to dehydrate the raw material solution to a moisture content of 1% by mass or more and less than 30% by mass. The process of getting
    The method according to any one of claims 1 to 13.
  15.  前記粗脱水工程が、前記粗原料液を循環させる原料液系、及び、前記誘導水溶液を循環させる誘導液系を備える脱水装置において実行され、
     前記原料液系は、前記第一の有機溶媒の気化による系外への移動を抑制するように構成される、
     請求項14に記載の方法。
    The crude dehydration step is performed in a dehydrator including a raw material liquid system for circulating the crude raw material liquid and an induction liquid system for circulating the inductive aqueous solution.
    The raw material liquid system is configured to suppress the movement of the first organic solvent to the outside of the system due to vaporization.
    14. The method of claim 14.
  16.  前記粗脱水工程において、前記第一の有機溶媒を含み、かつ、水分率が0.5質量%以下の有機液が、脱水及び濃縮によって減容した前記粗原料液に補充される、
     請求項14又は15に記載の方法。
    In the crude dehydration step, an organic liquid containing the first organic solvent and having a water content of 0.5% by mass or less is replenished with the crude raw material liquid whose volume has been reduced by dehydration and concentration.
    The method of claim 14 or 15.
  17.  前記方法が、医薬の製造において用いられる、請求項1~16のいずれか一項に記載の方法。 The method according to any one of claims 1 to 16, wherein the method is used in the manufacture of a pharmaceutical product.
PCT/JP2022/001207 2021-01-15 2022-01-14 Organic material liquid dehydration method WO2022154097A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22739502.7A EP4279166A1 (en) 2021-01-15 2022-01-14 Organic material liquid dehydration method
JP2022575654A JP7481508B2 (en) 2021-01-15 2022-01-14 Method for dehydrating organic raw material liquid
CN202280009540.9A CN116710191A (en) 2021-01-15 2022-01-14 Method for dehydrating organic raw material liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-005211 2021-01-15
JP2021005211 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022154097A1 true WO2022154097A1 (en) 2022-07-21

Family

ID=82448469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001207 WO2022154097A1 (en) 2021-01-15 2022-01-14 Organic material liquid dehydration method

Country Status (4)

Country Link
EP (1) EP4279166A1 (en)
JP (1) JP7481508B2 (en)
CN (1) CN116710191A (en)
WO (1) WO2022154097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136214A1 (en) * 2022-01-14 2023-07-20 旭化成株式会社 Concentration method and concentration system for raw material liquid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119096A (en) * 1978-03-06 1979-09-14 Yamasa Shoyu Co Ltd Production of strong alcoholic drink
JP2012512740A (en) * 2008-12-18 2012-06-07 シェブロン ユー.エス.エー. インコーポレイテッド Process and system for dehydrating organic aqueous solutions
JP2016155078A (en) * 2015-02-24 2016-09-01 旭化成株式会社 Forward osmosis treatment system
JP2019187380A (en) * 2018-04-27 2019-10-31 旭化成株式会社 Edible oil dehydration method
WO2020050282A1 (en) * 2018-09-03 2020-03-12 旭化成株式会社 Feedstock solution flow concentration system
WO2020241865A1 (en) * 2019-05-31 2020-12-03 旭化成株式会社 Raw material liquid concentration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119096A (en) * 1978-03-06 1979-09-14 Yamasa Shoyu Co Ltd Production of strong alcoholic drink
JP2012512740A (en) * 2008-12-18 2012-06-07 シェブロン ユー.エス.エー. インコーポレイテッド Process and system for dehydrating organic aqueous solutions
JP2016155078A (en) * 2015-02-24 2016-09-01 旭化成株式会社 Forward osmosis treatment system
JP2019187380A (en) * 2018-04-27 2019-10-31 旭化成株式会社 Edible oil dehydration method
WO2020050282A1 (en) * 2018-09-03 2020-03-12 旭化成株式会社 Feedstock solution flow concentration system
WO2020241865A1 (en) * 2019-05-31 2020-12-03 旭化成株式会社 Raw material liquid concentration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136214A1 (en) * 2022-01-14 2023-07-20 旭化成株式会社 Concentration method and concentration system for raw material liquid

Also Published As

Publication number Publication date
CN116710191A (en) 2023-09-05
JPWO2022154097A1 (en) 2022-07-21
JP7481508B2 (en) 2024-05-10
EP4279166A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
Zhang et al. Dehydration of caprolactam–water mixtures through cross-linked PVA composite pervaporation membranes
BRPI0919647B1 (en) process for preparing acrolein, acrylic acid and a polymer
Zheng et al. Molecularly imprinted cellulose membranes for pervaporation separation of xylene isomers
WO2022154097A1 (en) Organic material liquid dehydration method
Zhu et al. Study of pervaporation for dehydration of caprolactam through blend NaAlg–poly (vinyl pyrrolidone) membranes on PAN supports
US20210008506A1 (en) Hybrid materials for organic solvent nanofiltration and pervaporation membranes
US4992176A (en) Dehydration of organic oxygenates
JP2743346B2 (en) Water-organic solution dehydration method
RU2414953C1 (en) Method of producing composite membranes with fullerene-containing polymer selective layer
RU2502681C2 (en) Method of purifying water flow supplied from reaction fishcer-tropsch
KR101161711B1 (en) Method of producing forward osmosis membranes based on acetylated alkyl cellulose
JP6282585B2 (en) Semipermeable membrane and method for producing the same, concentration difference power generation method using semipermeable membrane
GB2174619A (en) Composite separation membranes
JPH0234329B2 (en)
US5192445A (en) Membrane suitable for the dehydration of organic oxygenates
US5032278A (en) Process for dehydration of organic oxygenates
WO2021200785A1 (en) Method for producing purified acetic acid
JPH02730A (en) Production of ester
EP0496496B1 (en) Membrane dehydration process
US5085778A (en) Process for dehydration of organic oxygenates
JPH03118A (en) Membrane for concentrating aqueous solution of volatile organic liquid and its production
Jusoh et al. Modifications on Polymeric Membranes for Isopropanol Dehydration Using Pervaporation: A Review
JP6271405B2 (en) Dehydration method using zeolite membrane
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
Jusoh et al. Investigating Thin-Film Composite Membranes Prepared by Interaction between Trimesoyl Chloride with M-Phenylenediamine and Piperazine on Nylon 66 and Performance in Isopropanol Dehydration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575654

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009540.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18272304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739502

Country of ref document: EP

Effective date: 20230816