WO2022154067A1 - Terminal, base station, and wireless communication method - Google Patents

Terminal, base station, and wireless communication method Download PDF

Info

Publication number
WO2022154067A1
WO2022154067A1 PCT/JP2022/001017 JP2022001017W WO2022154067A1 WO 2022154067 A1 WO2022154067 A1 WO 2022154067A1 JP 2022001017 W JP2022001017 W JP 2022001017W WO 2022154067 A1 WO2022154067 A1 WO 2022154067A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
information
frequency domain
pdcch
monitoring
Prior art date
Application number
PCT/JP2022/001017
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 ▲高▼橋
治彦 曽我部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022154067A1 publication Critical patent/WO2022154067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This disclosure relates to terminals, base stations and wireless communication methods.
  • Non-Patent Document 1 In the Third Generation Partnership Project (3GPP), which is an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation wireless access technology (RAT), and LTE-Advanced, which is the 4th generation RAT, As a successor, Release 15 of New Radio (NR), which is a 5th generation (Fifth Generation: 5G) RAT, is specified (for example, Non-Patent Document 1).
  • Control resource set in at least a part of the bandwidth available to the terminal (for example, User Equipment (UE)
  • UE User Equipment
  • One of the purposes of the present disclosure is to provide terminals, base stations and wireless communication methods capable of appropriately controlling the monitoring of downlink control channels transmitted repeatedly.
  • the terminal includes a receiving unit that receives control resource set information related to one or more control resource sets associated with the search space, and downlink control using the search space based on the control resource set information.
  • a control unit that controls monitoring of the channel is provided, and the control unit controls monitoring of the downlink control channel that is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more control resource sets. You may.
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to the present embodiment.
  • FIG. 2 is a diagram showing an example of PDCCH monitoring in NR.
  • FIG. 3 is a diagram showing another example of PDCCH monitoring in NR.
  • FIG. 4 is a diagram showing a first example of inter-slot repetition according to the present embodiment.
  • FIG. 5 is a diagram showing a second example of inter-slot repetition according to the present embodiment.
  • FIG. 6 is a diagram showing a third example of inter-slot repetition according to the present embodiment.
  • FIG. 7 is a diagram showing a first example of in-slot repetition according to the present embodiment.
  • FIG. 8 is a diagram showing an example of a combination of inter-slot repetition and intra-slot repetition according to the present embodiment.
  • FIG. 9 is a diagram showing an example of search space information according to the present embodiment.
  • FIG. 10 is a diagram showing an example of deriving the number of repetitions according to the present embodiment.
  • FIG. 11 is a diagram showing a first determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 12 is a diagram showing a first example of CORESET information according to the present embodiment.
  • FIG. 13 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 14 is a diagram showing a second example of CORESET information according to the present embodiment.
  • FIG. 15 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 16 is a diagram showing a third example of CORESET information according to the present embodiment.
  • FIG. 17 is a diagram showing a fourth determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 18 is a diagram showing a fifth determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 19 is a diagram showing an example of search space information according to the present embodiment.
  • FIG. 20 is a diagram showing an example of PDCCH information according to the present embodiment.
  • FIG. 21 is a diagram showing an example of repeated transmission of PDCCH to which frequency hopping according to the present embodiment is applied.
  • FIG. 22 is a diagram showing an example of switching the search space group according to the present embodiment.
  • FIG. 23 is a diagram showing an example of DCI used for switching control of the search space group according to the present embodiment.
  • FIG. 24 is a diagram showing an example of the value of the search group switching field according to the present embodiment.
  • FIG. 25 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment.
  • FIG. 26 is a diagram showing an example of the functional block configuration of the terminal according to the present embodiment.
  • FIG. 27 is a diagram showing an example of the functional block configuration of the base station according to the present embodiment.
  • FIG. 28 is a diagram showing an example of the operation of PDCCH monitoring in the wireless communication system according to the present embodiment.
  • FIG. 29 is a diagram showing an example of the operation of switching the search space group in the wireless communication system according to the present embodiment.
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to the present embodiment.
  • the wireless communication system 1 may include a terminal 10, a base station 20, and a core network 30.
  • the numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • RAT RadioAccess Technology: RAT
  • 6th generation or later RATs can be used.
  • the terminal 10 is a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like.
  • the terminal 10 may be called a user device (User Equipment: UE), a mobile station (Mobile Station: MS), a terminal (User Terminal), a wireless device (Radio apparatus), a subscriber terminal, an access terminal, or the like.
  • the terminal 10 may be a mobile type or a fixed type.
  • the terminal 10 is configured to be communicable using, for example, NR as a RAT.
  • the base station 20 forms one or more cells C and communicates with the terminal 10 using the cells C.
  • the cell C may be paraphrased as a serving cell, a carrier, a component carrier (CC), or the like.
  • the base station 20 includes gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, low power node (low-power node), Central Unit (CU), Distributed Unit (DU), and gNB.
  • -DU Remote Radio Head (RRH), Integrated Access and Backhaul / Backhauling (IAB) node, etc. may be called.
  • the base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
  • the core network 30 is, for example, a core network (5G Core Network: 5GC) corresponding to NR, but is not limited to this.
  • the device on the core network 30 (hereinafter, also referred to as “core network device”) manages mobility such as paging and location registration of the terminal 10.
  • the core network device may be connected to the base station 20 via a predetermined interface (for example, S1 or NG interface).
  • the core network device is, for example, an Access and Mobility Management Function (AMF) that manages C-plane information (for example, information related to access and movement management, etc.), and a User that controls transmission of U-plane information (for example, user data).
  • AMF Access and Mobility Management Function
  • UPF Plane Function
  • the terminal 10 receives a downlink (DL) signal from the base station 20 and / or transmits an uplink signal (uplink: UL).
  • DL downlink
  • uplink uplink
  • One or more carriers may be configured in the terminal 10.
  • the bandwidth of each carrier is, for example, 5 MHz to 400 MHz.
  • One or a plurality of bandwidth portions (Bandwidth Part: BWP) may be set for one carrier.
  • BWP bandwidth portions
  • One BWP has at least a portion of the bandwidth of the carrier.
  • CORESET Control Resource Set
  • RB resource blocks
  • a physical downlink control channel (PDCCH) will be described as an example of the downlink control channel, but the downlink control channel may be a channel used for transmitting downlink control information (Downlink Control Channel: DCI).
  • DCI Downlink Control Channel
  • the name is not limited to PDCCH.
  • CORESET includes a plurality of control channel elements (ControlChannelElement: CCE).
  • 1CCE is composed of a predetermined number of resource element groups (Resource Element Group: REG).
  • REG Resource Element Group
  • 1REG may be composed of 1RB (ie, 1 symbol and 12 subcarriers) and 1CCE may be composed of 6REG (ie, 6RB).
  • the search space includes each PDCCH candidate composed of one or more CCEs in CORESET associated with the search space. Therefore, it can be said that the search space is composed of at least a part of CORESET associated with the search space.
  • the terminal 10 monitors each PDCCH candidate included in the search space and detects DCI.
  • the search space includes a common search space (CSS), which is a common search space for one or more terminals 10, and a UE-specific Search Space (USS), which is a search space unique to the terminal 10. ) And may be included.
  • the search space as described above may be provided for each AL, and a set of one or more AL search spaces may be referred to as a search space set.
  • the "search space” in the present specification may be a search space of a specific AL, or may be a search space set.
  • CORESET information Information about each CORESET (hereinafter, referred to as "CORESET information") is given to the terminal 10 from the base station 20.
  • the CORESET information may be, for example, an information item (Information Element: IE) "Control Resource Set” of the radio resource control (RRC).
  • IE may be paraphrased as a parameter.
  • the CORESET information may include, for example, at least one of the following.
  • CORESET identification information for example, RRC IE "controlResourceSetId"
  • CORESET period for example, RRC IE "duration”
  • Frequency domain resource information indicating frequency domain resources constituting CORESET
  • search space information information about each search space (hereinafter, referred to as “search space information”) is given to the terminal 10 from the base station 20.
  • the search space information may be, for example, RRC IE "Search Space”.
  • the search space information may include, for example, at least one of the following.
  • -Search space identification information for example, RRC IE "searchSpaceId"
  • CORESET identification information associated with the search space eg, RRC IE "controlResourceSetId”
  • -Cycle / offset information indicating the cycle k and offset o for monitoring PDCCH for example, RRC IE "monitoringSlotPeriodicityAndOffset"
  • the cycle k and offset o are referred to as monitoring cycle k and monitoring offset o, respectively.
  • -Monitoring period information indicating the monitoring period T of PDCCH for example, RRC IE "duration”
  • the period T is referred to as a monitoring period T.
  • search space group indicating one or more groups to which the search space is associated (hereinafter, "search space group”.
  • FIG. 2 is a diagram showing an example of PDCCH monitoring in NR.
  • FIG. 2 shows an example of PDCCH monitoring using the search space # 1 associated with CORESET # 1.
  • the monitoring cycle k is 10 slots and the monitoring period T is 4 slots. Further, it is assumed that the CORESET period for CORESET # 1 associated with the search space # 1 is 2 symbols, and the frequency domain resource for CORESET # 1 is 6n (n ⁇ 1) RB.
  • FIG. 2 is merely an example, the radio frame number n f , the slot numbers n s, f in the radio frame # n f, the number of slots N s, f in the radio frame, the monitoring cycle k, and monitoring.
  • the offset o and the like are not limited to those shown in the figure.
  • an SCS larger than 15 kHz for example, 30 kHz, 60 kHz, 120 kHz, etc.
  • the number of slots N s, f in the wireless frame increases.
  • CORESET # 1 associated with the search space # 1 is arranged in two symbols starting from symbol # 0.
  • the search space # 1 is at least a part of the CORESET # 1 associated with the search space # 1.
  • the terminal 10 monitors each PDCCH candidate in the search space # 1 by using the T slot continuous from the start slot # 0 determined as described above as a monitoring slot.
  • the terminal 10 detects the PDCCH for the terminal 10 by monitoring each PDCCH candidate in the search space # 1.
  • the detection of the PDCCH may be rephrased as the detection of DCI in a predetermined format in which a cyclic redundancy check (Cyclic Redundancy Check: CRC) is scrambled by a predetermined radio network temporary identifier (RNTI).
  • CRC Cyclic Redundancy Check
  • RNTI radio network temporary identifier
  • the DCI format is different from the DCI format used for downlink shared channel scheduling (for example, DCI format 1_X), the DCI format used for uplink shared channel scheduling (for example, DCI format 0_X), and scheduling.
  • the DCI format used in the application for example, DCI format 2_X
  • X is a positive integer.
  • FIG. 3 is a diagram showing another example of PDCCH monitoring in NR.
  • FIG. 3 shows an example of PDCCH monitoring using the search space # 2 associated with CORESET # 2.
  • FIG. 3 differs from FIG. 2 in that a single search space is set in that a plurality of search spaces are set in each slot within the monitoring period. In FIG. 3, the differences from FIG. 2 will be mainly described.
  • the CORESET period for CORESET # 2 is one symbol.
  • the bit corresponding to the symbols # 0 to # 7 is “1”. Therefore, in each slot during the monitoring period, the CORESET # 2 associated with the search space # 2 is arranged in one symbol starting from the symbols # 0 and # 7, respectively.
  • the terminal 10 monitors each PDCCH candidate in the search space # 2 of each of the symbols # 0 and # 7 in each slot within the monitoring period. In FIG. 3, the terminal 10 does not detect PDCCH in the search space # 2 of symbol # 0, but detects PDCCH in the search space # 2 of symbol # 7.
  • the terminal 10 monitors the PDCCH within the monitoring period set in the predetermined cycle. Further, one or more search spaces can be set in each slot within the monitoring period, and the terminal 10 may monitor one or more search spaces in each slot.
  • the performance is lower than the terminals for high-speed large capacity (enhanced Mobile Broadband: eMBB) and ultra-reliable and low latency Communications (URLLC) introduced in release 15 or 16. It is being considered to support functions for terminals that assume the price range.
  • the terminal is also called a Reduced capability (RedCap) terminal, a device, etc., and is used for, for example, an industrial wireless sensor, a surveillance camera (video serveilance), a wearable device, or the like. May be good.
  • RedCap terminals are expected to have higher performance than terminals for power saving and wide area communication (Low Power Wide Area: LPWA), and the carriers used by RedCap terminals are, for example, with a bandwidth of 20 MHz, 50 MHz, 100 MHz, or the like. There may be.
  • the LPWA includes, for example, Category 1, Long Term Evolution for Machine-type-communication (LTE-M) and Narrow Band IoT (NB-IoT) that operate in LTE RAT.
  • LTE-M Long Term Evolution for Machine-type-communication
  • NB-IoT Narrow Band IoT
  • the maximum bandwidth of Category 1 is 20 MHz
  • the maximum bandwidth of LTE-M is 1.4 MHz (6 RB)
  • the maximum bandwidth of NB-IoT is 180 kHz (1 RB).
  • the RedCap terminal may be used as a terminal in the middle range between those for eMBB and URLLC and those for LPWA.
  • RedCap terminal When a RedCap terminal is assumed as the terminal 10, it is considered to repeatedly transmit PDCCH in order to compensate for the decrease in coverage due to the narrowing of the carrier bandwidth. Specifically, it is assumed that the base station 20 repeatedly transmits the PDCCH in the time domain and / or the frequency domain.
  • the terminal 10 performs PDCCH reception processing (for example, demodulation, decoding, etc.) on the assumption that the PDCCH of the first transmission is transmitted in each search space set within the monitoring period of a predetermined cycle. Therefore, when the PDCCH is repeatedly transmitted, the terminal 10 may not be able to properly monitor the repeatedly transmitted PDCCH by the existing monitoring method.
  • PDCCH reception processing for example, demodulation, decoding, etc.
  • first PDCCH monitoring monitoring of PDCCH repeatedly transmitted using different time domain resources
  • second PDCCH monitoring A combination of PDCCH monitoring (hereinafter referred to as “second PDCCH monitoring”) and (3) first and second PDCCH monitoring will be described.
  • switching control control related to switching of the search space group
  • the terminal 10 repeatedly transmits the PDCCH using different time domain resources within the monitoring period T of a predetermined cycle based on the information regarding the repetition of the PDCCH included in the search space information (hereinafter referred to as “repetition information”). Control monitoring.
  • the different time domain resources may be, for example, different slots in the monitoring period T of a predetermined cycle, or different symbols in the same slot in the monitoring period T.
  • the PDCCH may be repeated between different slots within one or more monitoring periods (hereinafter referred to as “inter-slot repetition") or within the same slot during the monitoring period. It may be repeated (hereinafter referred to as “intra-slot repetition").
  • the repetition information may include information indicating the repetition number R of the PDCCH, or may include information indicating the maximum value of the repetition number R. In the latter case, the terminal 10 may determine the number of iterations R based on the maximum value and a predetermined field value in the DCI.
  • the number of repetitions R may be referred to as a repetition level or the like.
  • the repetition information may include information indicating the start slot of the repetition of PDCCH (hereinafter, referred to as “start slot information”). Further, the repetition information may include information indicating a symbol in which the PDCCH is repeated (hereinafter, referred to as “repetition symbol information”) in the case of repetition in the slot.
  • the terminal 10 may set a search space used for monitoring PDCCH transmitted by repetition between slots and / or repetition in slots.
  • the terminal 10 may detect the PDCCH by monitoring the PDCCH candidate in the set search space.
  • the search space for monitoring the PDCCH is also set repeatedly, so that the repetition of the PDCCH may be rephrased as the repetition of the search space.
  • the search space is also referred to as a “repetition search space”.
  • Inter-slot repetition may be applied to a plurality of slots within one monitoring period T of a predetermined cycle monitoring period T, or may be applied to a plurality of slots within a predetermined cycle monitoring period T. It may be applied in a plurality of slots spanning a plurality of monitoring periods T.
  • the monitoring slot # ki ( i 0, ..., R-1) in which the 1st to Rth PDCCHs are transmitted within the monitoring period T of a predetermined cycle based on the repetition number R of the PDCCH repetition.
  • the terminal 10 has a repetition start slot # k 0 , a radio frame number n f , slot numbers n s, f in the radio frame # n f, and a slot in the radio frame.
  • the repeating start slot # k 0 may be explicitly notified from the base station 20 to the terminal 10 by the start slot information.
  • the start slot # k 0 may be derived by the terminal 10 itself based on the implicit information without the explicit notification of the start slot information.
  • the terminal 10 may consider the start slot of the monitoring period T as the repeat start slot # k 0 .
  • FIG. 4 is a diagram showing a first example of inter-slot repetition according to the present embodiment.
  • the monitoring period T of the search space # 1 is set in slots # 0 to # 3 of each radio frame based on the search space information of the search space # 1. Further, based on the CORESET information of CORESET # 1 associated with the search space # 1, CORESET # 1 is arranged in symbols # 0 to 2 of each slot in the monitoring period T.
  • the search space # 1 is used as a search space for repetition.
  • the terminal 10 detects the first PDCCH by monitoring the search space # 1 in slot # k 0 , and detects the second PDCCH by monitoring the search space # 1 in slot # k 1 . If the terminal 10 succeeds in decoding the i + 1th PDCCH in the slot # ki (0 ⁇ i ⁇ R-1), the terminal 10 may stop monitoring the search space # 1 after the slot # ki + 1. , Monitoring may be continued for the number of repetitions R. Further, the terminal 10 may synthesize the i + 1th PDCCH from the first PDCCH for decoding the i + 1th PDCCH.
  • FIG. 5 is a diagram showing a second example of inter-slot repetition according to the present embodiment.
  • the preconditions of FIG. 5 are the same as those of FIG. 4, and the differences from FIG. 4 will be mainly described.
  • the terminal 10 determines the repeat start slot # k 0 based on the start slot information from the base station 20.
  • the start slot information may be, for example, the period and offset of the repeating start slot, or the offset from the start slot of the monitoring period T.
  • the start slot information is assumed to indicate an offset (here, 2) from the start slot # 0 of the monitoring period T.
  • the terminal 10 shifts the repeating start slot # k 0 to slot # 2 based on the start slot # 0 of the monitoring period T determined by the above equation (1) and the offset “2” indicated by the start slot information. decide.
  • the number of repetitions R 4
  • the slot # 3 in which the search space # 1 for the second PDCCH is provided is the final slot of the monitoring period T. Therefore, the search spaces # 1 for the third and fourth PDCCHs are provided in slots # 0 and # 1 of the next monitoring period T.
  • the terminal 10 counts up the slot numbers one by one from the repeating start slot # k 0 (here, slot # 2 of the wireless frame # 0) and monitors the monitoring slot # ki (0 ⁇ i ⁇ R ⁇ ). If 1) is determined and the monitoring slot # ki + 1 becomes a slot other than the monitoring period T (here, slot # 4 of the wireless frame # 0), the monitoring slot # ki + 1 is set to the start slot of the next monitoring period (here). Then, the slot # 0) of the wireless frame # 1 after the kt slot of the slot # 4 of the wireless frame # 0 may be determined. The terminal 10 may count up i by 1 and repeat the above process until i becomes equal to the number of repetitions R-1. In this way, the R monitoring slots # k 0 to # k R-1 may span a plurality of monitoring periods.
  • FIG. 6 is a diagram showing a third example of inter-slot repetition according to the present embodiment.
  • the monitoring period T of the search space # 2 is set in slots # 0 to # 3 of each radio frame based on the search space information of the search space # 2. Further, based on the CORESET information of CORESET # 2 associated with the search space # 2, CORESET # 2 is arranged at the symbols # 0 and # 7 of each slot in the monitoring period T.
  • the search space # 2 is used as a repeat search space.
  • the different PDCCH may be a PDCCH that transmits different DCIs.
  • the first PDCCH # 1 is mapped in the search space # 2 of the symbol # 0 of the monitoring slot # k 0
  • the first PDCCH # 1 is mapped in the search space # 2 of the symbol # 7 of the monitoring slot # k 1 .
  • PDCCH # 2 is mapped.
  • the second PDCCH # 1 is mapped in the search space # 2 of the symbol # 0 of the next monitoring slot # k 1
  • the second PDCCH is mapped in the search space # 2 of the symbol # 7 of the monitoring slot # k 1 .
  • # 2 is mapped.
  • mapping the PDCCH multiple PDCCHs can be repeated between monitoring slots.
  • In-slot repetition may be applied with different symbols in the same slot during the monitoring period T of a predetermined cycle.
  • T monitoring period
  • the base station 20 transmits repetitive symbol information indicating a symbol in which PDCCH is repeated in one slot (that is, the second and subsequent PDCCH is transmitted) to the terminal 10.
  • the terminal 10 controls monitoring of PDCCH repeatedly transmitted by a plurality of symbols in the same slot based on the monitoring symbol information and the repeating symbol information.
  • FIG. 7 is a diagram showing a first example of in-slot repetition according to the present embodiment.
  • the monitoring period T of the search space # 3 is set in slots # 0 to # 3 of each radio frame based on the search space information of the search space # 3. Further, based on the CORESET information of CORESET # 3 associated with the search space # 3, CORESET # 3 is arranged at the symbols # 0, # 4, # 8, and # 12 of each monitoring slot.
  • the search space # 3 is used as a search space for repetition.
  • the monitoring symbol information in the search space information indicates the first symbols # 0, # 4, # 8, and # 12 in which the search space # 3 is arranged.
  • the repeated symbol information in the search space information indicates the first symbols # 4 and # 12 in which the search space # 3 for monitoring the PDCCH from the second time onward is arranged.
  • the repeating symbol information is a 14-bit bitmap corresponding to each of symbols # 0 to # 13, and the bits corresponding to symbols # 4 and # 12 are “1”. Therefore, the terminal 10 assumes that the first PDCCH is mapped in the search space # 3 of the symbol # 0 and the second PDCCH is mapped in the search space # 3 of the symbol # 4.
  • Symbols # 8 and # 12 are the same as symbols # 0 and # 4.
  • the bit corresponding to the first symbol in which the second and subsequent PDCCHs can be arranged in one slot is set to "1"
  • the first symbol in which the PDCCH of the first transmission can be arranged is set to "1"
  • the bit corresponding to is set to "0", but is not limited to this.
  • the repetitive symbol information may be information that can identify whether the PDCCH of the first transmission or the PDCCH of the second and subsequent transmissions is the symbol to be arranged.
  • the bit corresponding to the symbol may be set to "0" and the bit corresponding to the first symbol in which the PDCCH of the first transmission can be placed may be set to "1".
  • inter-slot repetition and intra-slot repetition may be combined.
  • the terminal 10 may monitor one or more PDCCHs repeatedly transmitted by a plurality of symbols straddling a plurality of monitoring slots.
  • FIG. 8 is a diagram showing an example of a combination of inter-slot repetition and intra-slot repetition according to the present embodiment.
  • the repeated symbol information indicates the first symbols # 4, # 8 and # 12 in which the search space # 3 for monitoring the PDCCH from the second time onward is arranged.
  • the pattern of the symbol to which the PDCCH is transmitted from the second time onward indicated by the repeated symbol information may be repeated over a plurality of monitoring slots #ki (0 ⁇ i ⁇ R s -1). good.
  • the number R s of the monitoring slots for the PDCCH having the number of repetitions R is, for example, ceil ⁇ It may be derived by (R-1) / n ss ⁇ .
  • monitoring slots # k 0 and # k 1 are included in different monitoring periods, but it goes without saying that they may be included in the same monitoring period.
  • the repetition information may include at least one of information indicating the repetition number R of the PDCCH, information indicating the maximum value of the repetition number R, start slot information, and repetition symbol information.
  • the repeat information may be transmitted from the base station 20 to the terminal 10 using the higher layer parameter.
  • the upper layer parameter may be an RRC layer parameter (for example, RRC IE) or a medium access control (MAC) layer parameter (for example, a medium access control element (MAC CE)). May be good.
  • FIG. 9 is a diagram showing an example of search space information according to this embodiment.
  • FIG. 9 shows an example in which the RRC IE “SearchSpace” as the search space information includes the above-mentioned repeated information.
  • the repetition information information indicating the number of repetitions R (for example, RRC IE "numRepetition-r17”) and repetition symbol information (for example, RRC IE "repetitionSymbolsWithinSlot-r17") are shown.
  • the repetition number R may be, for example, any one of 1, 2, 4, 8, 16, 32, 64, 128 or 256.
  • the RRC IE "repetitionSymbolsWithinSlot-r17" as the repetitive symbol information may be a 14-bit bitmap.
  • the RRC IE "SearchSpace” may include information indicating the maximum value of the repetition number R instead of the information indicating the repetition number R of the PDCCH as the repetition information. Further, the RRC IE "Search Space" may include start slot information.
  • FIG. 10 is a diagram showing an example of deriving the number of repetitions according to the present embodiment.
  • FIG. 10 shows an example of deriving the number of repetitions R when the search space information (for example, RRC IE “SearchSpace”) includes information indicating the maximum value of the number of repetitions R of PDCCH.
  • the search space information for example, RRC IE “SearchSpace”
  • the terminal 10 may determine the number of repetitions R of the PDCCH based on the value of the predetermined field in the DCI and the above maximum value rep_max. For example, in FIG. 10, the value of the predetermined field in the DCI is associated with the parameters r1 to r4 for deriving the repetition number R. The terminal 10 determines the number of repetitions R based on the maximum value rep_max and the parameter.
  • the coverage extension range can be controlled more flexibly.
  • the repeat search space is set based on the repeat information included in the search space information, it is repeatedly transmitted using different time domain resources within the monitoring period of a predetermined cycle.
  • the monitoring of the PDCCH to be performed can be appropriately controlled.
  • Second PDCCH Monitoring In the second PDCCH monitoring, monitoring of PDCCH repeatedly transmitted in the frequency domain will be described.
  • the terminal 10 controls monitoring of PDCCH repeatedly transmitted between a plurality of frequency domain resources corresponding to one or more CORESETs.
  • the repetitive search space used for monitoring the PDCCH may be associated with a single CORESET (see 2.1 below) or multiple CORESETs (see 2.2 below). ..
  • the CORESET information regarding the CORESET may include a plurality of frequency domain resource information indicating the plurality of frequency domain resources, respectively (see 2.1.1 below), and indicates one of the plurality of frequency domain resources. It may include frequency domain resource information and frequency domain information indicating the number of repetitions of PDCCH (see 2.1.2 below), or frequency domain resource information indicating one of the plurality of frequency domain resources. It may include offset information indicating the offset (see 2.1.3 below).
  • the terminal 10 is based on a plurality of frequency domain resource information included in the CORESET information relating to a single CORESET. Determine multiple frequency domain resources for the CORESET.
  • FIG. 11 is a diagram showing a first determination example of the frequency domain resource for repetition according to the present embodiment.
  • CORESET # 1 is associated with the search space # 1 used as the repeatable search space.
  • the CORESET information for CORESET # 1 includes the frequency domain resource information 1 indicating the frequency domain resource # 0 for CORESET # 1 and the frequency domain resource information 1 indicating the frequency domain resources # 1 and # 2 for CORESET # 1, respectively. And 2 shall be included.
  • the frequency domain resource information and the frequency domain resource information 1 and 2 may be bitmaps including bits corresponding to a predetermined number of RB groups (hereinafter, referred to as “RB group”), respectively.
  • the length of the bitmap may be determined based on the number of RBs constituting the BWP and the number of RBs constituting one RB group. In FIG. 11, it is assumed that the 1RB group is composed of continuous 6RBs, but the present invention is not limited to this, and the 1RB group may be composed of one or more RBs.
  • the bits corresponding to the RB groups constituting the frequency domain resources # 0, # 1 and # 2, respectively, are set to "1" and correspond to other RB groups.
  • the bit to be used may be set to "0".
  • the frequency domain resources # 0, # 1 and # 2 for the same CORESET # 1 are each composed of different RB groups, and may not be allowed to include overlapping RB groups.
  • the terminal 10 may assume that the search space # 1 is arranged in each of the frequency domain resources # 0, # 1 and # 2 for CORESET # 1.
  • the terminal 10 uses the search space # 1 to control i + 1th PDCCH monitoring transmitted within the frequency domain resource # i (here, 0 ⁇ i ⁇ 2) using the search space # 1. You may.
  • the CORESET period of CORESET # 1 composed of different frequency domain resources # 0, # 1 and # 2 is the same, but the CORESET period is not limited to this and may be different.
  • the CORESET period of CORESET # 1 may be common to a plurality of frequency domain resources for CORESET # 1, or may be set for each frequency domain resource for CORESET # 1.
  • FIG. 12 is a diagram showing a first example of CORESET information according to the present embodiment.
  • FIG. 12 shows an example in which the RRC IE “ControlResourceSet” as the CORESET information includes a plurality of frequency domain resource information indicating a plurality of frequency domain resources for the CORESET identified by the RRC IE “controlResourceSetId”.
  • the frequency domain resources for the first transmission may be indicated by the RRC IE “frequencyDomainResources”.
  • the frequency domain resources for the second and subsequent times may be indicated by RRC IE "frequencyDomainResourcesRepetition-r17".
  • the CORESET information includes the frequency domain resource information for the first transmission (for example, RRC IE "frequencyDomainResources") and the frequency domain resource information for the second and subsequent transmissions (for example, RRC IE "frequencyDomainResourcesRepetition-r17"). It may include a list. The number of entries in the list may be, for example, equal to the number of iterations R-1. Each of the frequency domain resource information for the second and subsequent times may indicate an RB group that does not overlap with the frequency domain resource information for the first transmission.
  • RRC IE "frequencyDomainResources" and “frequencyDomainResourcesRepetition-r17” are bitmaps including bits corresponding to each RB group in the BWP and have 45 bits, but if it is information indicating frequency domain resources, , Not limited to these.
  • Second determination example of frequency domain resource for repetition the terminal 10 is based on the frequency domain resource information and the repetition number information included in the CORESET information regarding a single CORESET. To determine a plurality of frequency domain resources for the CORESET.
  • the differences from the first setting example will be mainly described.
  • FIG. 13 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment.
  • the terminal 10 assumes that frequency domain resources # 0, # 1 and # 2 equal to the number of repetitions R are continuously allocated for COSET # 1 from frequency domain resource # 0. Further, the terminal 10 assumes that the number of RBs of the frequency domain resources # 1 and # 2 is equal to the number of RBs of the frequency domain resource # 0 (here, 6 RB).
  • the terminal 10 is determined based on the RB (more specifically, the position and number of RBs) assigned to the frequency domain resource # 0 indicated by the frequency domain resource information and the repetition number R. It may be assumed that the search space # 1 is arranged in each of the frequency domain resources # 0, # 1 and # 2.
  • FIG. 14 is a diagram showing a second example of CORESET information according to the present embodiment.
  • the RRC IE “ControlResourceSet” as the CORESET information uses the RRC IE “numRepetition-r17” indicating the repetition number R of PDCCH (or CORESET) instead of the RRC IE “frequencyDomainResourcesRepetition-r17” in FIG. include.
  • the repetition number R may be set to, for example, 1, 2, 4, 8, 16 or 32.
  • the CORESET information may include the repetition number information (for example, RRC IE "numRepetition-r17") in addition to the frequency domain resource information for the initial transmission (for example, RRC IE "frequencyDomainResources"). Since the number of repetitions information has a smaller number of bits than the second and subsequent frequency domain resource information shown in FIG. 12, the second setting example reduces the overhead due to the CORESET information as compared with the first setting example. can.
  • the terminal 10 is based on the frequency domain resource information and the offset information included in the CORESET information relating to a single CORESET. , Determine multiple frequency domain resources for the CORESET.
  • the differences from the first or second setting example will be mainly described.
  • FIG. 15 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 15 is different from FIG. 13 in that the CORESET information for CORESET # 1 includes offset information indicating the offset for each of the frequency domain resources # 1 and # 2 instead of the repetition number information.
  • the offset information indicates the offsets n f1 and n f2 of the frequency domain resources # 1 and # 2 with respect to the starting RB group of the frequency domain resource # 0, respectively.
  • the value of the offset may indicate the number of RB groups to be shifted.
  • the offset n f1 2
  • the frequency domain resource # 1 is shifted from the start RB group of the frequency domain resource # 0 by 2 RB groups.
  • the shift amount indicated by the offset value may be an integral multiple of the number of RBs (for example, 6RB) constituting the 1RB group, but is not limited to this, and may be a predetermined number of RBs.
  • the frequency domain resource # 0 indicated by the frequency domain resource information and the frequency domain resources # 1 and # 2 shifted by the offsets n f1 and n f2 from the start RB group of the frequency domain resource # 0 are used for CORESET # 1. Assume to be assigned. Further, the terminal 10 assumes that the number of RBs of the frequency domain resources # 1 and # 2 is equal to the number of RBs of the frequency domain resource # 0 (here, 6 RB).
  • the offset nfi for the frequency domain resource # i (i ⁇ 1) is assumed to be an offset with respect to the start RB group of the frequency domain resource # 0, but is not limited to this.
  • the offset nfi of the frequency domain resource # i (i ⁇ 1) may be an offset of the frequency domain resource # 0 with respect to the final RB group.
  • the offset nfi of the frequency domain resource # i (i ⁇ 1) may be an offset with respect to the start RB group of the frequency domain resource # i-1.
  • the offset nfi of the frequency domain resource # i (i ⁇ 1) may be an offset of the frequency domain resource # i-1 with respect to the final RB group.
  • FIG. 16 is a diagram showing a third example of CORESET information according to the present embodiment.
  • the RRC IE “ControlResourceSet” as the CORESET information is replaced with the RRC IE “frequencyDomainResourcesRepetition-r17” in FIG. 12, which indicates the offset of each frequency domain resource for the second and subsequent repetitions.
  • -ShiftList -r17 may be included.
  • RRC IE "rbg-ShiftList-r17” is a list of RRC IE "RBG-Shift-r17” indicating the offset of each frequency domain resource
  • RRC IE "RBG-Shift-r17” is, for example, an offset value 1 to 1 to 32 may be specified.
  • the RRC IE "ControlResourceSet” may include the RRC IE "numRepetition-r17” indicating the repetition number R of the PDCCH.
  • the CORESET information includes the frequency domain resource information for the first transmission (for example, RRC IE "frequencyDomainResources") and the offset information (for example, RRC) indicating the offset of each frequency domain resource for the second and subsequent repetitions.
  • RRC frequencyDomainResources
  • IE "rbg-ShiftList-r17" may be included. Since the offset information has a smaller number of bits than the second and subsequent frequency domain resource information shown in FIG. 12, in the third setting example, the overhead due to the CORESET information can be reduced as compared with the first setting example. .. Further, since the frequency domain resource #i can be distributed and arranged in the BWP, the frequency diversity gain can be improved as compared with the second setting example.
  • the base station 20 specifies the offset nfi for each frequency domain resource #i (0 ⁇ i ⁇ R) for the second and subsequent repetitions, but the present invention is not limited to this.
  • the offset n f common to the frequency domain resource # i (0 ⁇ i ⁇ R) for the second and subsequent repetitions may be specified by the base station 20.
  • the CORESET information may include offset information indicating the common offset n f .
  • FIG. 17 is a diagram showing a fourth determination example of the frequency domain resource for repetition according to the present embodiment.
  • FIG. 17 is different from FIG. 15 in that a common offset n f is used for the frequency domain resource #i (0 ⁇ i ⁇ R) for the second and subsequent repetitions.
  • the common offset n f may be the offset of the frequency domain resource # i with respect to the starting RB group of the frequency domain resource # i-1 (i> 0).
  • the common offset n f may be the offset of the frequency domain resource # i with respect to the final RB group of the frequency domain resource # i-1 (i> 0).
  • the CORESET information includes offset information indicating an offset common to each frequency domain resource for the second and subsequent repetitions, and repetition information indicating the repetition number R of PDCCH (or CORESET). good.
  • the terminal 10 is from the frequency domain resource # 1 and the start RB group of the frequency domain resource # 1 shifted by the common offset nf from the start RB group of the frequency domain resource # 0 and the frequency domain resource # 0 indicated by the frequency domain resource information. It is assumed that the frequency domain resource # 2 shifted by the common offset n f is allocated for CORESET # 1. Further, the terminal 10 assumes that the number of RBs of the frequency domain resources # 1 and # 2 is equal to the number of RBs of the frequency domain resource # 0 (here, 6 RB).
  • PDCCH when the repeat search space is associated with a single CORESET, PDCCH can be repeated among a plurality of frequency domain resources by setting a plurality of frequency domain resources for the single CORESET. .. In this case, by changing the CORESET information, it is possible to repeat PDCCH between a plurality of frequency domain resources without changing the search space information.
  • the search space information regarding the repeatable search space may include identification information of each of the plurality of CORESETs.
  • the terminal 10 determines the frequency domain resource of each of the plurality of CORESETs based on the plurality of CORESET information of each of the plurality of CORESETs. Specifically, the frequency domain resource of each of the plurality of CORESETs is determined based on the frequency domain resource information included in each of the plurality of CORESET information.
  • FIG. 18 is a diagram showing a fifth determination example of the frequency domain resource for repetition according to the present embodiment.
  • CORESET # 1, # 2 and # 3 are associated with the search space # 1 used as the repeatable search space, and the CORESET information of each of CORESET # 1, # 2 and # 3 is the frequency. It shall include frequency domain resource information indicating region resources # 0, # 1 and # 2, respectively.
  • the frequency domain resource information is as described with reference to FIG.
  • the search space # 1 is arranged in each of the frequency domain resources # 0, # 1 and # 2 for CORESET # 1, # 2 and # 3 associated with the search space # 1. You may assume that. Further, the terminal 10 uses the frequency domain resource for CORESET # i (here, i ⁇ 1), for example, and assumes that the i-th repeated PDCCH is transmitted, and searches associated with CORESET # i. Space # 1 may be monitored.
  • CORESET # i here, i ⁇ 1
  • the CORESET periods of CORESET # 1, # 2, and # 3 associated with the repeatable search space # 1 are the same, but the CORESET period is not limited to this, and may be different. In this way, when a plurality of CORESETs are associated with the repeat search space # 1, the CORESET period, frequency domain resources, and the like can be flexibly set for each iteration.
  • FIG. 19 is a diagram showing an example of search space information according to the present embodiment.
  • FIG. 19 shows an example in which the RRC IE “SearchSpace” as the search space information includes identification information of a plurality of CORESETs associated with the repeating search space.
  • the CORESET in which the repeated search space for monitoring the PDCCH of the first transmission (first time) is arranged may be indicated by the RRC IE "controlResourceSetId”.
  • the CORESET in which the repeated search space for the second and subsequent PDCCH monitoring is arranged may be indicated by RRC IE "controlResourceSetRepetition-r17”.
  • the search space information is a list of CORESET identification information (for example, RRC IE "ControlResoruceSetId") for the second and subsequent transmissions in addition to the CORESET identification information for the first transmission (for example, RRC IE "controlResourceSetId").
  • RRC IE "controlResourceSetRepetition-r17” may be included.
  • the number of entries in the list may be, for example, equal to the number of iterations R-1.
  • the CORESET information regarding the CORESET for repetition as described above may be notified from the base station 20 to the terminal 10 in distinction from the CORESET for the initial transmission.
  • the list of the CORESET information may be included in the information regarding PDCCH (hereinafter, referred to as "PDCCH information").
  • the PDCCH information may include individual PDCCH information (hereinafter referred to as “individual PDCCH information”) in the terminal 10 and / or PDCCH information common to one or more terminals 10 (hereinafter referred to as "common PDCCH information"). ..
  • FIG. 20 is a diagram showing an example of PDCCH information according to the present embodiment.
  • RRC IE “PDCCH-Config” as individual PDCCH information and RRC IE “PDCCH-ConfigCommon” as common PDCCH information provide CORESET information and identification information of a plurality of CORESETs associated with the repeat search space. An example including is shown.
  • the RRC IE "PDCCH-Config” shown in FIG. 20 includes the RRC IE "repetitionControlResourceSetToAddModList-r17", and the RRC IE "repetitionControlResourceSetToAddModList-r17" has a repeated search space for monitoring the PDCCH for the second and subsequent times. It may be a list of RRC IE "Control Resource Set” as CORESET information. Further, the RRC IE "PDCCH-Config” may include the RRC IE "repetitionControlResourceSetToReleaseList-r17” which is a list of the RRC IE "ControlResourceSetId” as the identification information of the CORESET. Further, the RRC IE "PDCCH-ConfigCommon” shown in FIG. 20 may include the above RRC IE "repetitionControlResourceSetToAddModList-r17".
  • the individual PDCCH information and the common PDCCH information include the CORESET information (for example, RRC IE "repetitionControlResourceSetToAddModList-r17") in which the search space for repetition is arranged, so that the individual PDCCH and the terminal 10 have individual PDCCH and the terminal 10.
  • Both PDCCHs common to one or more terminals 10 can be repeatedly transmitted using a plurality of CORESETs.
  • PDCCH can be repeated among the plurality of frequency domain resources by setting a plurality of frequency domain resources corresponding to each of the plurality of CORESETs. ..
  • PDCCH can be repeated among the plurality of frequency domain resources by setting a plurality of frequency domain resources corresponding to each of the plurality of CORESETs. ..
  • the search space information and / or the PDCCH information it is possible to repeat the PDCCH between a plurality of frequency domain resources without changing the CORESET information.
  • the terminals 10 are the same between different time domain resources (for example, between slots and / or between symbols in the same slot). It is assumed that the monitoring of the PDCCH repeatedly transmitted is controlled by using the frequency domain resource, but the present invention is not limited to this.
  • the terminal 10 monitors PDCCH repeatedly transmitted between different time domain resources (for example, between slots and / or between symbols in the same slot) using different frequency domain resources. May be controlled. That is, the first PDCCH monitoring can be combined with the second PDCCH monitoring.
  • the terminal 10 monitors the PDCCH repeatedly transmitted between a plurality of frequency domain resources corresponding to one or more CORESETs in the same time domain resource within the monitoring period of a predetermined cycle. Is assumed to be controlled, but it is not limited to this.
  • the terminal 10 controls monitoring of PDCCH repeatedly transmitted between a plurality of frequency domain resources corresponding to one or more CORESETs in different time domain resources within a monitoring period of a predetermined cycle. You may. That is, the second PDCCH monitoring can be combined with the first PDCCH monitoring.
  • frequency hopping repeating PDCCH using different frequency domain resources for each time domain resource within the monitoring period of a predetermined cycle by combining the first and second PDCCH monitoring. May be called.
  • FIG. 21 is a diagram showing an example of repeated transmission of PDCCH to which frequency hopping according to the present embodiment is applied.
  • FIG. 21 shows, as an example, a combination of the slot-to-slot repetition shown in FIG. 2 and the first determination example of the frequency domain resource for repetition shown in FIG.
  • any aspect described in the first and second PDCCH monitoring may be combined.
  • different frequency domain resources # 0 and # 1 corresponding to CORESET # 1 are used between the repeat monitoring slots # 0 and # 1.
  • the first PDCCH is transmitted in the monitoring slot # 0 using the frequency domain resource # 0
  • the second PDCCH is transmitted in the monitoring slot # 1 using the frequency domain resource # 1.
  • the monitoring of the search space # 1 may be controlled.
  • the number NFR of the frequency domain resources set for the CORESET # 1 may be less than or greater than the number of repetitions R.
  • the repetition search space may be arranged in the same frequency domain resource for each predetermined number of repetitions.
  • the frequency domain resource # 0 may be used for the odd-numbered repetition
  • the frequency domain resource # 1 may be used for the even-numbered repetition.
  • the repetitive search spaces described in (1) to (3) above may be associated with one or more search space groups.
  • the search space information eg, RRC IE "SearchSpace”
  • search space group information eg, RRC IE "searchSpaceGroupIdList” indicating one or more search space groups associated with the repeating search space.
  • FIG. 22 is a diagram showing an example of switching the search space group according to the present embodiment.
  • FIG. 22 shows an example in which the terminal 10 switches the search space group used for monitoring the repeatedly transmitted PDCCH from the search space groups # 1 to # 2.
  • the monitoring cycle k 2 of the repeating search space associated with the search space group # 2 is longer than the monitoring cycle k 1 of the repeating search space associated with the search space group # 1.
  • the monitoring periods T1 and T2 of the search spaces associated with the search space groups # 1 and # 2 are the same, but the present invention is not limited to this.
  • the configuration of the search space associated with each search space group (for example, monitoring cycle k, monitoring period T, start slot of monitoring period T, number of PDCCH candidates for each aggregation level, symbols in which the search space is arranged in the monitoring slot, etc. ) Can be freely set according to the search space information for the search space.
  • the terminal 10 controls the switching of the search space group based on the value of the predetermined field in the DCI. Further, the terminal 10 controls PDCCH monitoring using the repeating search space associated with the search space group based on the value of the predetermined field in the DCI.
  • FIG. 23 is a diagram showing an example of DCI used for switching control of the search space group according to the present embodiment.
  • the DCI is a DCI format used for scheduling a downlink shared channel (for example, DCI format 1_X) or a DCI format used for scheduling an uplink shared channel (for example, DCI format 0_X). You may.
  • X is an arbitrary integer.
  • the physical downlink shared channel Physical Downlink Shared Channel: PDSCH
  • Physical Uplink Shared Channel Physical Uplink Shared Channel: PUSCH
  • the name of the channel is not limited to PDSCH and PUSCH as long as it is a channel used for transmitting user data and / or upper layer parameters.
  • the DCI format 1_X or 0_X may include a search space group switching field used for switching the search space group, a resource allocation field indicating a resource allocated to the PDSCH or PUSCH, and the like.
  • the DCI may be in a DCI format (for example, DCI format 2_X) used for other than PDSCH or PUSCH scheduling.
  • DCI format 2_X is an arbitrary integer.
  • the DCI format 2_X may include M (M ⁇ 1) search space group switching fields # 1 to # M.
  • M may be, for example, the number of cells C set in the terminal 10. It should be noted that the DCI format 2_X is not limited to that shown, and of course, a single search space group switching field may be included.
  • FIG. 24 is a diagram showing an example of the value of the search group switching field according to the present embodiment.
  • the search group switching field in FIGS. 23 and 24 may be a predetermined field in the DCI, and the name is not limited to this. Further, in FIG. 24, it is assumed that the search group switching field has 2 bits, but the present invention is not limited to this, and it may be 1 bit or more.
  • each value of the search group switching field may indicate the search space group of the switching destination.
  • the search space group of the switching destination indicated by each value of the search group switching field is set in the terminal 10 by the upper layer parameter, but the present invention is not limited to this, and the search space group may be predetermined in the specifications.
  • the terminal 10 may indicate the value of the search group switching field as information regarding the number of repetitions R of PDCCH monitored in the search space associated with the search space group indicated by the value.
  • the information regarding the repetition number R is the parameter values r1 to r4, but the information is not limited to this, and may be the repetition number R itself.
  • the terminal 10 receives information indicating the maximum value rep_max of the repetition number R.
  • the terminal 10 may determine the number of repetitions R by the maximum value rep_max and the parameter value indicated by the value of the search group switching field. Note that FIG. 24 is merely an example, and it goes without saying that the number of repetitions R associated with each value of the search group switching field may be defined in the specifications.
  • the terminal 10 uses the PDSCH based on the value of the search group switching field.
  • the number of repetitions R of PUSCH may be determined.
  • the repetition number R derived from the value of the search space group switching field of the DCI format 1_X or 0_X in FIG. 23 may be the repetition number R of PDSCH or PUSCH.
  • the repetition number R of the PDSCH or PUSCH can be derived in the same manner as the repetition number R of the PDCCH.
  • the DCI format (for example, DCI format 1_X or 0_X) used for scheduling PDSCH or PUSCH uses a predetermined field value used for deriving the repetition number R of PDSCH or PUSCH in addition to the value of the search group switching field. It may be included.
  • the terminal 10 may determine the repetition number R of PDCCH based on the value of the search space group switching field, and may determine the repetition number R of PDSCH or PUSCH based on the predetermined field value.
  • the terminal 10 uses the value of the search space group switching field in the DCI format (for example, DCI format 2_X) used for scheduling other than the PDSCH or PUSCH scheduling to derive the repetition number R of the PDSCH and / or PUSCH. May be done.
  • the value of the search space group switching field in the DCI format is used to derive the repetition number R of the PDCCH, and the other field values in the DCI format are used to derive the repetition number R of the PDSCH or PUSCH. May be good.
  • the repetition number R of PDCCH monitored in the search space associated with the search space group can be dynamically controlled. Therefore, the monitoring of the PDCCH can be appropriately controlled.
  • the number of PDSCH or PUSCH iterations scheduled by the DCI can be dynamically controlled.
  • FIG. 25 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment.
  • Each device for example, terminal 10, base station 20, CN30, etc.
  • the wireless communication system 1 includes a processor 11, a storage device 12, a communication device 13 that performs wired or wireless communication, an input device that accepts various input operations, and various types.
  • the input / output device 14 that outputs information is included.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1.
  • the processor 11 may execute various processes described in the present embodiment by reading the program from the storage device 12 and executing the program.
  • Each device in the wireless communication system 1 may be composed of one or a plurality of processors 11. In addition, each device may be called a computer.
  • the storage device 12 is composed of, for example, a memory, a storage such as an HDD (Hard Disk Drive) and / or an SSD (Solid State Drive).
  • the storage device 12 may store various information (for example, a program executed by the processor 11) necessary for executing the process by the processor 11.
  • the communication device 13 is a device that communicates via a wired and / or wireless network, and may include, for example, a network card, a communication module, a chip, an antenna, and the like. Further, the communication device 13 may include an RF (Radio Frequency) device that performs processing related to an amplifier and a radio signal, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal transmitted from the antenna A by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna and transmits it to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into a packet and a process of converting a packet into a digital baseband signal.
  • the input / output device 14 includes, for example, an input device such as a keyboard, a touch panel, a mouse and / or a microphone, and an output device such as a display and / or a speaker.
  • Each device in the wireless communication system 1 may omit a part of the hardware shown in FIG. 25, or may include hardware not shown in FIG. 25. Further, the hardware shown in FIG. 4 may be composed of one or a plurality of chips.
  • FIG. 26 is a diagram showing an example of the functional block configuration of the terminal according to the present embodiment.
  • the terminal 10 includes a receiving unit 101, a transmitting unit 102, and a control unit 103.
  • the receiving unit 101 and the transmitting unit 102 can be realized by using the communication device 13. Further, all or a part of the functions realized by the receiving unit 101 and the transmitting unit 102, and the control unit 103 can be realized by the processor 11 executing the program stored in the storage device 12.
  • the program can be stored in a storage medium.
  • the storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium).
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • the receiving unit 101 receives the downlink signal. Further, the receiving unit 101 may receive the information and / or data transmitted via the downlink signal.
  • “receiving” may include, for example, performing processing related to reception of at least one of reception, demapping, demodulation, decoding, monitoring, and measurement of a radio signal.
  • the downlink signal may include, for example, at least one of the PDCCH, PDSCH, downlink reference signal, synchronization signal, broadcast channel, and the like.
  • the downlink reference signal may include, for example, a PDCCH or a PDSCH demodulation reference signal (Demodulation Reference Signal: DMRS) or the like.
  • the receiving unit 101 receives the DCI. Specifically, the receiving unit 101 may detect the PDCCH by monitoring the search space and receive the DCI transmitted via the PDCCH. The receiving unit 101 may receive the PDSCH based on the DCI, and may receive the user data and / or the upper layer parameter transmitted via the PDSCH. Further, the receiving unit 101 may transmit a DCI including a value of a predetermined field used for switching the search space group (for example, FIG. 23).
  • the receiving unit 101 may receive search space information (for example, FIGS. 9 and 19) related to the search space associated with the control resource set (CORESET).
  • the receiving unit 101 may receive CORESET information (for example, FIGS. 12, 14, 16) relating to one or more CORESETs associated with the search space.
  • the receiving unit 101 may receive the PDCCH information (for example, FIG. 20).
  • the PDCCH information may be for each predetermined bandwidth (for example, BWP or cell C) set in the terminal 10, and the CORESET information regarding one or more CORESETs used within the predetermined bandwidth and one or more CORESET information. It may include search space information about the search space.
  • the receiving unit 101 may receive information indicating the maximum value of the number of repetitions R (for example, FIG. 24).
  • the information may be included in the search space information.
  • the receiving unit 101 may synthesize the PDCCH repeatedly transmitted and decode the DCI based on the synthesis result. Alternatively, the receiving unit 101 may decode the DCI based on each PDCCH without synthesizing the PDCCH repeatedly transmitted.
  • the transmission unit 102 transmits an uplink signal. Further, the transmission unit 102 may transmit information and / or data transmitted via an uplink signal. Here, “transmitting” may include performing processing related to transmission such as at least one of coding, modulation, mapping, and transmission of a radio signal, for example.
  • the uplink signal may include, for example, at least one of the PUSCH, uplink reference signal, and the like.
  • the uplink reference signal may include, for example, a PUSCH DMRS or the like.
  • the control unit 103 performs various controls on the terminal 10. Specifically, the control unit 103 may control the monitoring of the downlink control channel using the search space within the monitoring period T of a predetermined cycle based on the search space information and / or the CORESET information.
  • the control unit 103 controls the monitoring of the PDCCH repeatedly transmitted between different slots within the monitoring period T and / or within the same slot based on the repetition information regarding the repetition of the PDCCH included in the search space information. It may be (see (1) above).
  • the repetition information may include information indicating the repetition number R of PDCCH.
  • the control unit 103 may determine the different slots based on the number of repetitions R (for example, FIGS. 4 to 6, 8 and 9).
  • the repetition information may include information indicating the maximum value of the repetition number R of PDCCH.
  • the control unit 103 may determine the different slots based on the number of iterations R determined based on the maximum value and a predetermined field value in the DCI (eg, FIGS. 4-6, 8 and 10).
  • the repetition information may include information indicating the start slot # k 0 of the repetition of PDCCH.
  • the control unit 103 may determine the different slots based on the start slot # k 0 (eg, FIGS. 4-8).
  • the different slots may be a plurality of slots within one monitoring period T of the predetermined cycle monitoring period T (for example, FIG. 4), or a plurality of the plurality of monitoring periods T of the predetermined cycle. There may be a plurality of slots spanning the period of (for example, FIGS. 5, 6 and 8).
  • the repetitive information may include repetitive symbol information indicating a symbol in which PDCCH is repeated.
  • the control unit 103 may determine a plurality of symbols for monitoring the PDCCH in the same slot based on the repetitive symbol information and the monitoring symbol information indicating the symbol for monitoring the PDCCH (for example, FIG. 7). And 8).
  • the control unit 103 may control the monitoring of PDCCH repeatedly transmitted using the same frequency domain resource between the different slots and / or within the same slot (see (1) above). Further, the control unit 103 may control monitoring of PDCCH repeatedly transmitted using different frequency domain resources in the different slots and / or the same slot (see (3) above, for example, FIG. 21).
  • the control unit 103 may control PDCCH monitoring that is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more CORESETs (see (2) above).
  • the search space is associated with a single CORESET, and the plurality of frequency domain resources may correspond to the single CORESET (see (2.1) above).
  • the CORESET information for the single CORESET may include a plurality of frequency domain resource information indicating each of the plurality of frequency domain resources.
  • the control unit 103 may determine the plurality of frequency domain resources based on the plurality of frequency domain resource information (for example, FIGS. 11 and 12).
  • the CORESET information for the single CORESET may include the frequency domain resource information indicating one of the frequency domain resources and the repetition number information indicating the repetition number R of the PDCCH.
  • the control unit 103 may determine the plurality of frequency domain resources based on the frequency domain resource information and the repetition number information (for example, FIGS. 13 and 14).
  • the CORESET information for the single CORESET includes the frequency domain resource information indicating one of the plurality of frequency domain resources and the offset for the other frequency domain resource among the plurality of frequency domain resources. It may include the indicated offset information.
  • the control unit 103 may determine the plurality of frequency domain resources based on the frequency domain resource information and the offset information (for example, FIGS. 15 to 17).
  • the search space is associated with a plurality of CORESETs, and the plurality of frequency domain resources may correspond to the plurality of CORESETs (see (2.2) above).
  • the control unit 103 may determine the plurality of frequency domain resources based on the plurality of CORESET information related to each of the plurality of CORESETs (for example, FIGS. 18 to 20).
  • the control unit 103 may determine the monitoring period T of a predetermined cycle for monitoring the PDCCH using the search space based on the search space information. Further, the control unit 103 may determine the plurality of frequency domain resources corresponding to the same time domain resource within the monitoring period T (see (2) above). Alternatively, a plurality of frequency domain resources corresponding to different time domain resources within the monitoring period T may be determined (see (3) above, for example, FIG. 21).
  • the control unit 103 may stop the i + 2nd and subsequent PDCCH monitoring. For example, when the control unit 103 succeeds in decoding the i + 1th PDCCH in the slot # ki, the monitoring of the repeat search space provided after the slot # ki + 1 may be stopped, or the repetition number R may be stopped. Minute monitoring may be continued. Similarly, when the control unit 103 succeeds in decoding the i + 1th PDCCH in the frequency resource # i, the monitoring of the repeat search space provided after the frequency resource # i + 1 may be stopped, or the number of repetitions may be stopped. R-minute monitoring may be continued.
  • control unit 103 may control the switching of the search space group based on the value of the predetermined field in the DCI.
  • the control unit 103 may determine the number of repetitions R of the PDCCH monitored using the search space associated with the search space group based on the value of the predetermined field (see (4) above).
  • control unit 103 determines the number of repetitions R of the PDCCH to be monitored using the search space associated with the search space group after switching, based on the maximum value of the number of repetitions R of the PDCCH and the predetermined field value in the DCI. It may be done (for example, FIG. 24).
  • control unit 103 may determine the number of repetitions of the PDSCH or PUSCH scheduled by the DCI.
  • FIG. 27 is a diagram showing an example of the functional block configuration of the base station according to the present embodiment.
  • the base station 20 includes a receiving unit 201, a transmitting unit 202, and a control unit 203.
  • the receiving unit 201 and the transmitting unit 202 can be realized by using the communication device 13. Further, all or a part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing the program stored in the storage device 12.
  • the program can be stored in a storage medium.
  • the storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • the receiving unit 201 receives the upstream signal. In addition, the receiving unit 201 may receive the information and / or data transmitted via the uplink signal.
  • the transmission unit 202 transmits the downlink signal. Further, the transmission unit 202 may transmit information and / or data transmitted via the downlink signal.
  • the transmission unit 202 transmits DCI. Specifically, the transmission unit 202 may transmit DCI via PDCCH. The transmission unit 202 may transmit the PDSCH scheduled by DCI.
  • the transmission unit 202 may transmit a DCI including a value of a predetermined field used for switching the search space group (for example, FIG. 23).
  • the value of the predetermined field may indicate information about the number of iterations of the downlink control channel monitored using the search space associated with the search space group.
  • the value of the predetermined field may indicate the information regarding the number of repetitions of the downlink shared channel or the uplink shared channel scheduled by the downlink control information.
  • the transmission unit 202 may transmit search space information (for example, FIGS. 9 and 19) related to the search space associated with the control resource set (CORESET).
  • the receiving unit 101 may transmit CORESET information (for example, FIGS. 12, 14, 16) relating to one or more CORESETs associated with the search space.
  • the transmission unit 202 may transmit the PDCCH information (for example, FIG. 20).
  • the transmission unit 202 may transmit information indicating the maximum value of the number of repetitions R (for example, FIG. 24).
  • the control unit 203 performs various controls on the base station 20. Specifically, the control unit 203 may control the transmission of the downlink control channel using the search space within the monitoring period T of a predetermined cycle based on the search space information and / or the CORESET information.
  • the control unit 203 may control the repeated transmission of the PDCCH between different slots within the monitoring period T and / or within the same slot based on the repeated information regarding the repetition of the PDCCH included in the search space information ( See (1) above).
  • the repetition information may include information indicating the repetition number R of PDCCH.
  • the control unit 203 may determine the different slots based on the number of repetitions R (for example, FIGS. 4 to 6 and 9).
  • the repetition information may include information indicating the maximum value of the repetition number R of PDCCH.
  • the control unit 203 may determine the different slots based on the number of repetitions R determined based on the maximum value and the predetermined field value in the DCI (for example, FIGS. 4 to 6 and 10).
  • the repetition information may include information indicating the start slot # k 0 of the repetition of PDCCH.
  • the control unit 203 may determine the different slot based on the start slot # k 0 (for example, FIGS. 4 to 8).
  • the different slots may be a plurality of slots within one monitoring period T of the monitoring period T of the predetermined cycle (for example, FIG. 4), or a plurality of slots of the monitoring period T of the predetermined cycle. It may be a plurality of slots over a period (for example, FIGS. 5 and 6).
  • the repetitive information may include repetitive symbol information indicating a symbol in which PDCCH is repeated.
  • the control unit 203 may determine a plurality of symbols for repeatedly transmitting the PDCCH in the same slot based on the repetitive symbol information and the monitoring symbol information indicating the symbol for monitoring the PDCCH (for example, FIG. 7 and 8).
  • the control unit 203 may control repeated transmission of PDCCH using the same frequency domain resource between the different slots and / or within the same slot (see (1) above). Further, the control unit 203 may control repeated transmission of PDCCH using different frequency domain resources in the different slots and / or the same slot (see (3) above).
  • the control unit 203 may control the repeated transmission of PDCCH between a plurality of frequency domain resources corresponding to the one or more CORESETs (see (2) above).
  • the search space is associated with a single CORESET, and the plurality of frequency domain resources may correspond to the single CORESET (see (2.1) above).
  • the CORESET information for the single CORESET may include a plurality of frequency domain resource information indicating each of the plurality of frequency domain resources.
  • the control unit 203 may determine the plurality of frequency domain resources based on the plurality of frequency domain resource information (for example, FIGS. 11 and 12).
  • the CORESET information for the single CORESET may include the frequency domain resource information indicating one of the frequency domain resources and the repetition number information indicating the repetition number R of the PDCCH.
  • the control unit 203 may determine the plurality of frequency domain resources based on the frequency domain resource information and the repetition number information (for example, FIGS. 13 and 14).
  • the CORESET information for the single CORESET includes the frequency domain resource information indicating one of the plurality of frequency domain resources and the offset for the other frequency domain resource among the plurality of frequency domain resources. It may include the indicated offset information.
  • the control unit 203 may determine the plurality of frequency domain resources based on the frequency domain resource information and the offset information (for example, FIGS. 15 to 17).
  • the search space is associated with a plurality of CORESETs, and the plurality of frequency domain resources may correspond to the plurality of CORESETs (see (2.2) above).
  • the control unit 203 may determine the plurality of frequency domain resources based on the plurality of CORESET information related to each of the plurality of CORESETs (for example, FIGS. 18 to 20).
  • the control unit 203 may determine the monitoring period T of a predetermined cycle in which the PDCCH is repeatedly transmitted using the search space based on the search space information. Further, the control unit 203 may determine the plurality of frequency domain resources corresponding to the same time domain resource within the monitoring period T (see (1) above). Alternatively, a plurality of frequency domain resources corresponding to different time domain resources within the monitoring period T may be determined (see (3) above).
  • control unit 203 may control the switching of the search space group (see (4) above).
  • FIGS. 28 and 29 are merely examples, and it goes without saying that some steps may be omitted or steps (not shown) may be performed.
  • FIG. 28 is a diagram showing an example of the operation of PDCCH monitoring in the wireless communication system according to the present embodiment.
  • the terminal 10 receives one or more search space information and / or one or more CORESET information.
  • the search space information and / or the CORESET information may be included in, for example, an RRC reconstruction message, but is not limited thereto.
  • step S102 the terminal 10 sets a search space for monitoring PDCCH repeatedly transmitted within the monitoring period T of a predetermined cycle based on the search space information and / or the CORESET information.
  • step S103 the terminal 10 monitors the PDCCH repeatedly transmitted using different time domain resources and / or different frequency domain resources using the search space set in step S102 ((1) to (1) to (1) above. See 3)).
  • the wireless communication system 1 it is possible to appropriately control the monitoring of PDCCH repeatedly transmitted using different time domain resources and / or different frequency domain resources.
  • FIG. 29 is a diagram showing an example of the operation of switching the search space group in the wireless communication system according to the present embodiment. As shown in FIG. 29, in step S201, the terminal 10 receives the DCI.
  • step S202 the terminal 10 controls the switching of the search space group based on the value of the predetermined field in the DCI received in step S201. Specifically, the terminal 10 may switch the search space group used for PDCCH monitoring to the search space group indicated by the value of the predetermined field.
  • step S203 the terminal 10 determines the number of repetitions R of the PDCCH monitored in the search space associated with the search space group to be switched to in step S202 based on the value of the predetermined field in the DCI received in step S201. You may.
  • step S204 the terminal 10 monitors the PDCCH repeatedly transmitted by the number of repetitions R determined in step S203 using the search space (see (1) to (3) above).
  • the various signals, information, and parameters in the above embodiment may be signaled at any layer. That is, the various signals, information, and parameters are the signals, information, and signals of any layer such as an upper layer (for example, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.) and a lower layer (for example, physical layer). It may be replaced with a parameter. Further, the notification of the predetermined information is not limited to the explicit one, and may be implicitly (for example, by not notifying the information or by using other information).
  • NAS Non Access Stratum
  • RRC Radio Resource Control Protocol
  • MAC Medium Access Stratum
  • the notification of the predetermined information is not limited to the explicit one, and may be implicitly (for example, by not notifying the information or by using other information).
  • the names of various signals, information, parameters, IE, channels, time units, and frequency units in the above embodiments are merely examples, and may be replaced with other names.
  • the slot may have any name as long as it is a time unit having a predetermined number of symbols.
  • RB may have any name as long as it is a frequency unit having a predetermined number of subcarriers.
  • the use of the terminal 10 in the above embodiment is not limited to the examples, and any use (for example, eMBB, URLLC, Device-to-) as long as it has the same function. It may be used in Device (D2D), Vehicle-to-Everything (V2X), etc.). Further, the format of various information is not limited to the above embodiment, and bit representation (0 or 1), boolean value (Boolean: true or false), integer value, character, or the like may be appropriately changed. Further, the singular and plural in the above embodiment may be changed from each other.

Abstract

This terminal comprises: a receiving unit for receiving control resource set information pertaining to one or more control resource sets associated with a search space; and a control unit for controlling, on the basis of the control resource set information, monitoring of a downlink control channel using the search space, wherein the control unit controls monitoring of the downlink control channel, which is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more control resource sets.

Description

端末、基地局及び無線通信方法Terminals, base stations and wireless communication methods 関連出願の相互参照Cross-reference of related applications
 本出願は、2021年1月14日に出願された日本国特許出願2021-004110号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2021-004110 filed on January 14, 2021 and asserts the benefit of its priority. Incorporated herein by reference.
 本開示は、端末、基地局及び無線通信方法に関する。 This disclosure relates to terminals, base stations and wireless communication methods.
 国際標準化団体であるThird Generation Partnership Project(3GPP)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLong Term Evolution(LTE)、第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNew Radio(NR)のリリース15が仕様化されている(例えば、非特許文献1)。 In the Third Generation Partnership Project (3GPP), which is an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation wireless access technology (RAT), and LTE-Advanced, which is the 4th generation RAT, As a successor, Release 15 of New Radio (NR), which is a 5th generation (Fifth Generation: 5G) RAT, is specified (for example, Non-Patent Document 1).
 リリース15では、端末(例えば、ユーザ装置(User Equipment:UE))に利用可能な帯域の少なくとも一部に制御リソースセット(Control resource set:CORESET)を設けることで、端末に利用可能な帯域全体に渡って制御用の領域が設けられるLTEと比べた周波数利用効率の向上が図られている。 In Release 15, by providing a control resource set (CORESET) in at least a part of the bandwidth available to the terminal (for example, User Equipment (UE)), the entire bandwidth available to the terminal is covered. The frequency utilization efficiency is improved as compared with LTE in which a control area is provided.
 現在、3GPPでは、NRを用いて無線アクセスを行うInternet of Things(IoT)向けの端末を想定した機能の検討が開始されている。当該IoT向けの端末については、リリース15で導入された端末と比べて利用可能な帯域幅を狭くすることが想定される。このような狭い帯域幅に起因するカバレッジの減少を補完するため、下り制御チャネルを繰り返して送信することも検討されている。 Currently, 3GPP has begun studying functions assuming terminals for the Internet of Things (IoT) that perform wireless access using NR. Regarding the terminal for the IoT, it is expected that the available bandwidth will be narrower than that of the terminal introduced in Release 15. In order to compensate for the decrease in coverage caused by such a narrow bandwidth, repeated transmission of downlink control channels is also being considered.
 本開示は、繰り返して送信される下り制御チャネルのモニタリングを適切に制御可能な端末、基地局及び無線通信方法を提供することを目的の一つとする。 One of the purposes of the present disclosure is to provide terminals, base stations and wireless communication methods capable of appropriately controlling the monitoring of downlink control channels transmitted repeatedly.
 本開示の一態様に係る端末は、サーチスペースに関連付けられる一以上の制御リソースセットに関する制御リソースセット情報を受信する受信部と、前記制御リソースセット情報に基づいて、前記サーチスペースを用いた下り制御チャネルのモニタリングを制御する制御部と、を備え、前記制御部は、前記一以上の制御リソースセットに対応する複数の周波数領域リソース間で繰り返して送信される、前記下り制御チャネルのモニタリングを制御してもよい。 The terminal according to one aspect of the present disclosure includes a receiving unit that receives control resource set information related to one or more control resource sets associated with the search space, and downlink control using the search space based on the control resource set information. A control unit that controls monitoring of the channel is provided, and the control unit controls monitoring of the downlink control channel that is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more control resource sets. You may.
 本開示の一態様によれば、繰り返して送信される下り制御チャネルのモニタリングを適切に制御できる。 According to one aspect of the present disclosure, it is possible to appropriately control the monitoring of the downlink control channel that is repeatedly transmitted.
図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to the present embodiment. 図2は、NRにおけるPDCCHモニタリングの一例を示す図である。FIG. 2 is a diagram showing an example of PDCCH monitoring in NR. 図3は、NRにおけるPDCCHモニタリングの他の例を示す図である。FIG. 3 is a diagram showing another example of PDCCH monitoring in NR. 図4は、本実施形態に係るスロット間繰り返しの第1の例を示す図である。FIG. 4 is a diagram showing a first example of inter-slot repetition according to the present embodiment. 図5は、本実施形態に係るスロット間繰り返しの第2の例を示す図である。FIG. 5 is a diagram showing a second example of inter-slot repetition according to the present embodiment. 図6は、本実施形態に係るスロット間繰り返しの第3の例を示す図である。FIG. 6 is a diagram showing a third example of inter-slot repetition according to the present embodiment. 図7は、本実施形態に係るスロット内繰り返しの第1の例を示す図である。FIG. 7 is a diagram showing a first example of in-slot repetition according to the present embodiment. 図8は、本実施形態に係るスロット間繰り返し及びスロット内繰り返しの組み合わせの一例を示す図である。FIG. 8 is a diagram showing an example of a combination of inter-slot repetition and intra-slot repetition according to the present embodiment. 図9は、本実施形態に係るサーチスペース情報の一例を示す図である。FIG. 9 is a diagram showing an example of search space information according to the present embodiment. 図10は、本実施形態に係る繰り返し数の導出の一例を示す図である。FIG. 10 is a diagram showing an example of deriving the number of repetitions according to the present embodiment. 図11は、本実施形態に係る繰り返し用の周波数領域リソースの第1の決定例を示す図である。FIG. 11 is a diagram showing a first determination example of the frequency domain resource for repetition according to the present embodiment. 図12は、本実施形態に係るCORESET情報の第1の例を示す図である。FIG. 12 is a diagram showing a first example of CORESET information according to the present embodiment. 図13は、本実施形態に係る繰り返し用の周波数領域リソースの第2の決定例を示す図である。FIG. 13 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment. 図14は、本実施形態に係るCORESET情報の第2の例を示す図である。FIG. 14 is a diagram showing a second example of CORESET information according to the present embodiment. 図15は、本実施形態に係る繰り返し用の周波数領域リソースの第2の決定例を示す図である。FIG. 15 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment. 図16は、本実施形態に係るCORESET情報の第3の例を示す図である。FIG. 16 is a diagram showing a third example of CORESET information according to the present embodiment. 図17は、本実施形態に係る繰り返し用の周波数領域リソースの第4の決定例を示す図である。FIG. 17 is a diagram showing a fourth determination example of the frequency domain resource for repetition according to the present embodiment. 図18は、本実施形態に係る繰り返し用の周波数領域リソースの第5の決定例を示す図である。FIG. 18 is a diagram showing a fifth determination example of the frequency domain resource for repetition according to the present embodiment. 図19は、本実施形態に係るサーチスペース情報の一例を示す図である。FIG. 19 is a diagram showing an example of search space information according to the present embodiment. 図20は、本実施形態に係るPDCCH情報の一例を示す図である。FIG. 20 is a diagram showing an example of PDCCH information according to the present embodiment. 図21は、本実施形態に係る周波数ホッピングが適用されたPDCCHの繰り返し送信の一例を示す図である。FIG. 21 is a diagram showing an example of repeated transmission of PDCCH to which frequency hopping according to the present embodiment is applied. 図22は、本実施形態に係るサーチスペースグループの切り替えの一例を示す図である。FIG. 22 is a diagram showing an example of switching the search space group according to the present embodiment. 図23は、本実施形態に係るサーチスペースグループの切り替え制御に用いられるDCIの一例を示す図である。FIG. 23 is a diagram showing an example of DCI used for switching control of the search space group according to the present embodiment. 図24は、本実施形態に係るサーチグループ切り替えフィールドの値の一例を示す図である。FIG. 24 is a diagram showing an example of the value of the search group switching field according to the present embodiment. 図25は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。FIG. 25 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment. 図26は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。FIG. 26 is a diagram showing an example of the functional block configuration of the terminal according to the present embodiment. 図27は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。FIG. 27 is a diagram showing an example of the functional block configuration of the base station according to the present embodiment. 図28は、本実施形態に係る無線通信システムにおけるPDCCHモニタリングの動作の一例を示す図である。FIG. 28 is a diagram showing an example of the operation of PDCCH monitoring in the wireless communication system according to the present embodiment. 図29は、本実施形態に係る無線通信システムにおけるサーチスペースグループの切り替えの動作の一例を示す図である。FIG. 29 is a diagram showing an example of the operation of switching the search space group in the wireless communication system according to the present embodiment.
 添付図面を参照して、本開示の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。 An embodiment of the present disclosure will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals may have the same or similar configurations.
 図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。図1に示すように、無線通信システム1は、端末10と、基地局20と、コアネットワーク30と、を含んでもよい。なお、図1に示す端末10、基地局20の数は例示にすぎず、図示する数に限られない。 FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to the present embodiment. As shown in FIG. 1, the wireless communication system 1 may include a terminal 10, a base station 20, and a core network 30. The numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
 無線通信システム1の無線アクセス技術(Radio Access Technology:RAT)としては、例えば、NRが想定されるが、これに限られず、例えば、第6世代以降のRAT等、種々のRATを利用できる。 As the wireless access technology (RadioAccess Technology: RAT) of the wireless communication system 1, for example, NR is assumed, but the present invention is not limited to this, and various RATs such as 6th generation or later RATs can be used.
 端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置、テレマティクス制御ユニット(Telematics control unit:TCU)等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)、移動局(Mobile Station:MS)、端末(User Terminal)、無線装置(Radio apparatus)、加入者端末、アクセス端末等と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。端末10は、RATとして、例えば、NRを用いて通信可能に構成される。 The terminal 10 is a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like. The terminal 10 may be called a user device (User Equipment: UE), a mobile station (Mobile Station: MS), a terminal (User Terminal), a wireless device (Radio apparatus), a subscriber terminal, an access terminal, or the like. The terminal 10 may be a mobile type or a fixed type. The terminal 10 is configured to be communicable using, for example, NR as a RAT.
 基地局20は、一以上のセルCを形成し、当該セルCを用いて端末10と通信する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)等と相互に言い換えられてもよい。基地局20は、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、低電力ノード(low-power node)、Central Unit(CU)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、Integrated Access and Backhaul/Backhauling(IAB)ノード等と呼ばれてもよい。基地局20は、一つのノードに限られず、複数のノード(例えば、DU等の下位ノードとCU等の上位ノードの組み合わせ)で構成されてもよい。 The base station 20 forms one or more cells C and communicates with the terminal 10 using the cells C. The cell C may be paraphrased as a serving cell, a carrier, a component carrier (CC), or the like. The base station 20 includes gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, low power node (low-power node), Central Unit (CU), Distributed Unit (DU), and gNB. -DU, Remote Radio Head (RRH), Integrated Access and Backhaul / Backhauling (IAB) node, etc. may be called. The base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
 コアネットワーク30は、例えば、NRに対応したコアネットワーク(5G Core Network:5GC)であるが、これに限られない。コアネットワーク30上の装置(以下、「コアネットワーク装置」ともいう)は、端末10のページング、位置登録等の移動(mobility)管理を行う。コアネットワーク装置は、所定のインタフェース(例えば、S1又はNGインタフェース)を介して基地局20に接続されてもよい。 The core network 30 is, for example, a core network (5G Core Network: 5GC) corresponding to NR, but is not limited to this. The device on the core network 30 (hereinafter, also referred to as “core network device”) manages mobility such as paging and location registration of the terminal 10. The core network device may be connected to the base station 20 via a predetermined interface (for example, S1 or NG interface).
 コアネットワーク装置は、例えば、Cプレーンの情報(例えば、アクセス及び移動管理等に関する情報)を管理するAccess and Mobility Management Function(AMF)、Uプレーンの情報(例えば、ユーザデータ)の伝送制御を行うUser Plane Function(UPF)の少なくとも一つ等を含んでもよい。 The core network device is, for example, an Access and Mobility Management Function (AMF) that manages C-plane information (for example, information related to access and movement management, etc.), and a User that controls transmission of U-plane information (for example, user data). At least one of Plane Function (UPF) and the like may be included.
 無線通信システム1において、端末10は、基地局20からの下り(downlink:DL)信号の受信及び/又は上り信号(uplink:UL)の送信を行う。端末10には、一以上のキャリアが設定(configure)されてもよい。各キャリアの帯域幅は、例えば、5MHz~400MHzである。一つのキャリアには、一つ又は複数の帯域幅部分(Bandwidth Part:BWP)が設定されてもよい。一つのBWPは、キャリアの少なくとも一部の帯域幅を有する。 In the wireless communication system 1, the terminal 10 receives a downlink (DL) signal from the base station 20 and / or transmits an uplink signal (uplink: UL). One or more carriers may be configured in the terminal 10. The bandwidth of each carrier is, for example, 5 MHz to 400 MHz. One or a plurality of bandwidth portions (Bandwidth Part: BWP) may be set for one carrier. One BWP has at least a portion of the bandwidth of the carrier.
 一つのBWPには、一以上の制御リソースセット(Control Resource Set:CORESET)が設定されてもよい。CORESETは、下り制御チャネルの伝送に用いられる時間領域及び周波数領域のリソースである。例えば、CORESETは、所定数のシンボル(例えば、1~3シンボル)及び所定数のリソースブロック(Resource Block:RB)(例えば、6n(n≧1)RB)で構成される。 One or more control resource sets (Control Resource Set: CORESET) may be set in one BWP. CORESET is a time domain and frequency domain resource used for transmission of downlink control channels. For example, CORESET is composed of a predetermined number of symbols (for example, 1 to 3 symbols) and a predetermined number of resource blocks (Resource Block: RB) (for example, 6n (n ≧ 1) RB).
 以下では、下り制御チャネルの一例として、物理下り制御チャネル(Physical Downlink Control Channel:PDCCH)を説明するが、下り制御チャネルは、下り制御情報(Downlink Control Channel:DCI)の伝送に用いられるチャネルであればよく、その名称は、PDCCHに限られない。 In the following, a physical downlink control channel (PDCCH) will be described as an example of the downlink control channel, but the downlink control channel may be a channel used for transmitting downlink control information (Downlink Control Channel: DCI). The name is not limited to PDCCH.
 CORESETは、複数の制御チャネル要素(Control Channel Element:CCE)を含む。1CCEは、所定数のリソース要素グループ(Resource Element Group:REG)で構成される。例えば、1REGは、1RB(すなわち、1シンボル及び12サブキャリア)で構成され、1CCEは、6REG(すなわち、6RB)で構成されてもよい。 CORESET includes a plurality of control channel elements (ControlChannelElement: CCE). 1CCE is composed of a predetermined number of resource element groups (Resource Element Group: REG). For example, 1REG may be composed of 1RB (ie, 1 symbol and 12 subcarriers) and 1CCE may be composed of 6REG (ie, 6RB).
 PDCCHが配置される候補リソース(以下、「PDCCH候補」という)は、アグリゲーションレベル(Aggregation Level:AL)に応じた所定数のCCEで構成される。例えば、AL=1の場合、1PDCCH候補は1CCEで構成され、AL=2の場合、1PDCCH候補は2CCEで構成される。 The candidate resource in which the PDCCH is placed (hereinafter referred to as "PDCCH candidate") is composed of a predetermined number of CCEs according to the aggregation level (Aggregation Level: AL). For example, when AL = 1, the 1PDCCH candidate is composed of 1CCE, and when AL = 2, the 1PDCCH candidate is composed of 2CCE.
 サーチスペースは、当該サーチスペースに関連付けられるCORESET内の一以上のCCEで構成される各PDCCH候補を含む。よって、当該サーチスペースは、当該サーチスペースに関連付けられるCORESETの少なくとも一部で構成されるといえる。端末10は、サーチスペースに含まれる各PDCCH候補をモニタリングして、DCIを検出する。 The search space includes each PDCCH candidate composed of one or more CCEs in CORESET associated with the search space. Therefore, it can be said that the search space is composed of at least a part of CORESET associated with the search space. The terminal 10 monitors each PDCCH candidate included in the search space and detects DCI.
 ここで、モニタリングとは、サーチスペース内の各PDCCH候補を所定フォーマットに従ってDCIを復号することであり、「ブラインド復号(blind decoding)」と呼ばれる。また、サーチスペースは、一以上の端末10の共通のサーチスペースである共通サーチスペース(Common Search Space:CSS)と、端末10固有のサーチスペースであるUE固有サーチスペース(UE-specific Search Space:USS)とを含んでもよい。以上のようなサーチスペースは、AL毎に設けられてもよく、一以上のALのサーチスペースのセットがサーチスペースセットと呼ばれてもよい。本明細書における「サーチスペース」とは、特定のALのサーチスペースであってもよいし、サーチスペースセットであってもよい。 Here, monitoring is to decode each PDCCH candidate in the search space according to a predetermined format, and is called "blind decoding". The search space includes a common search space (CSS), which is a common search space for one or more terminals 10, and a UE-specific Search Space (USS), which is a search space unique to the terminal 10. ) And may be included. The search space as described above may be provided for each AL, and a set of one or more AL search spaces may be referred to as a search space set. The "search space" in the present specification may be a search space of a specific AL, or may be a search space set.
 端末10には、各CORESETに関する情報(以下、「CORESET情報」という)が基地局20から与えられる。当該CORESET情報は、例えば、無線リソース制御(Radio Resource Control:RRC)の情報項目(Information Element:IE)「ControlResourceSet」であってもよい。ここで、IEは、パラメータと言い換えられてもよい。CORESET情報は、例えば、以下の少なくとも一つを含んでもよい。
・CORESETの識別情報(例えば、RRC IE「controlResourceSetId」)
・CORESETの期間(以下、「CORESET期間」という)を示す期間情報(例えば、RRC IE「duration」)
・CORESETを構成する周波数領域リソースを示す周波数領域リソース情報(例えば、RRC IE「frequencyDomainResources」)
Information about each CORESET (hereinafter, referred to as "CORESET information") is given to the terminal 10 from the base station 20. The CORESET information may be, for example, an information item (Information Element: IE) "Control Resource Set" of the radio resource control (RRC). Here, IE may be paraphrased as a parameter. The CORESET information may include, for example, at least one of the following.
-CORESET identification information (for example, RRC IE "controlResourceSetId")
-Period information indicating the period of CORESET (hereinafter referred to as "CORESET period") (for example, RRC IE "duration")
-Frequency domain resource information indicating frequency domain resources constituting CORESET (for example, RRC IE "frequencyDomainResources")
 また、端末10には、各サーチスペースに関する情報(以下、「サーチスペース情報」という)が基地局20から与えられる。当該サーチスペース情報は、例えば、RRC IE「SearchSpace」であってもよい。サーチスペース情報は、例えば、以下の少なくとも一つを含んでもよい。
・サーチスペースの識別情報(例えば、RRC IE「searchSpaceId」)
・サーチスペースに関連付けられるCORESETの識別情報(例えば、RRC IE「controlResourceSetId」)
・PDCCHをモニタリングする周期k及びオフセットoを示す周期/オフセット情報(例えば、RRC IE「monitoringSlotPeriodicityAndOffset」)、以下、当該周期k及びオフセットoをそれぞれ、モニタリング周期k及びモニタリングオフセットoと呼ぶ。
・PDCCHのモニタリングする期間Tを示すモニタリング期間情報(例えば、RRC IE「duration」)、以下、当該期間Tをモニタリング期間Tと呼ぶ。
・スロット内においてPDCCHをモニタリングする最初のシンボルを示すモニタリングシンボル情報(例えば、RRC IE「monitoringSymbolsWithinSlot」)
・当該サーチスペースが関連付けられる一以上のグループ(以下、「サーチスペースグループ」)を示すサーチスペースグループ情報(例えば、RRC IE「searchSpaceGroupIdList」)
Further, information about each search space (hereinafter, referred to as "search space information") is given to the terminal 10 from the base station 20. The search space information may be, for example, RRC IE "Search Space". The search space information may include, for example, at least one of the following.
-Search space identification information (for example, RRC IE "searchSpaceId")
-CORESET identification information associated with the search space (eg, RRC IE "controlResourceSetId")
-Cycle / offset information indicating the cycle k and offset o for monitoring PDCCH (for example, RRC IE "monitoringSlotPeriodicityAndOffset"), hereinafter, the cycle k and offset o are referred to as monitoring cycle k and monitoring offset o, respectively.
-Monitoring period information indicating the monitoring period T of PDCCH (for example, RRC IE "duration"), hereinafter, the period T is referred to as a monitoring period T.
-Monitoring symbol information indicating the first symbol to monitor PDCCH in the slot (for example, RRC IE "monitoring SymbolsWithinSlot")
-Search space group information (for example, RRC IE "searchSpaceGroupIdList") indicating one or more groups to which the search space is associated (hereinafter, "search space group").
 端末10は、上記CORESET情報及びサーチスペース情報に基づいて、PDCCHのモニタリングを制御する。図2は、NRにおけるPDCCHモニタリングの一例を示す図である。例えば、図2では、CORESET#1に関連付けられるサーチスペース#1を用いたPDCCHモニタリングの一例が示される。 The terminal 10 controls PDCCH monitoring based on the CORESET information and the search space information. FIG. 2 is a diagram showing an example of PDCCH monitoring in NR. For example, FIG. 2 shows an example of PDCCH monitoring using the search space # 1 associated with CORESET # 1.
 図2では、例えば、モニタリング周期kは10スロットであり、モニタリング期間Tは4スロットである。また、サーチスペース#1に関連付けられるCORESET#1用のCORESET期間は2シンボルであり、CORESET#1用の周波数領域リソースは6n(n≧1)RBであるものとする。 In FIG. 2, for example, the monitoring cycle k is 10 slots and the monitoring period T is 4 slots. Further, it is assumed that the CORESET period for CORESET # 1 associated with the search space # 1 is 2 symbols, and the frequency domain resource for CORESET # 1 is 6n (n ≧ 1) RB.
 端末10は、無線フレーム番号n、当該無線フレーム#n内のスロット番号ns,f、無線フレーム内のスロット数Ns,f、モニタリング周期k、及び、モニタリングオフセットoに基づいて、モニタリング期間の開始スロットを決定する。例えば、端末10は、以下の式(1)を満たすスロット番号を有するスロット(図2では、スロット#0)をモニタリング期間の開始スロットとして決定する。
 (式1)
  (n・Ns,f+ns,f-o) mod k=0
The terminal 10 monitors based on the radio frame number n f , the slot numbers n s, f in the radio frame # n f, the number of slots N s, f in the radio frame, the monitoring cycle k, and the monitoring offset o. Determine the start slot of the period. For example, the terminal 10 determines a slot having a slot number satisfying the following equation (1) (slot # 0 in FIG. 2) as the start slot of the monitoring period.
(Equation 1)
(N f · N s, f + n s, f −o) mod k = 0
 なお、図2は、例示にすぎず、無線フレーム番号n、当該無線フレーム#n内のスロット番号ns,f、無線フレーム内のスロット数Ns,f、モニタリング周期k、及び、モニタリングオフセットo等は図示するものに限られない。例えば、図2以降では、サブキャリア間隔(Subcarrier Spacing:SCS)が15kHzである例を例示するので、無線フレーム内のスロット数Ns,f=10であるが、これに限られない。15kHzより大きいSCS(例えば、30kHz、60kHz、120kHz等)を用いる場合、無線フレーム内のスロット数Ns,fは増加する。 Note that FIG. 2 is merely an example, the radio frame number n f , the slot numbers n s, f in the radio frame # n f, the number of slots N s, f in the radio frame, the monitoring cycle k, and monitoring. The offset o and the like are not limited to those shown in the figure. For example, in FIGS. 2 and 2 onward, since an example in which the subcarrier spacing (SCS) is 15 kHz is illustrated, the number of slots in the wireless frame is N s, f = 10, but the present invention is not limited to this. When an SCS larger than 15 kHz (for example, 30 kHz, 60 kHz, 120 kHz, etc.) is used, the number of slots N s, f in the wireless frame increases.
 また、図2に示すモニタリングシンボル情報は、シンボル#0~#13それぞれに対応するビットの中で、シンボル#0に対応するビットが「1」である。このため、モニタリング期間内の各スロット(以下、「モニタリングスロット」という)には、サーチスペース#1に関連付けられたCORESET#1が、シンボル#0を開始位置として2シンボルに配置される。上記の通り、サーチスペース#1は、サーチスペース#1に関連付けられるCORESET#1の少なくとも一部である。 Further, in the monitoring symbol information shown in FIG. 2, among the bits corresponding to the symbols # 0 to # 13, the bit corresponding to the symbol # 0 is “1”. Therefore, in each slot (hereinafter, referred to as “monitoring slot”) within the monitoring period, CORESET # 1 associated with the search space # 1 is arranged in two symbols starting from symbol # 0. As mentioned above, the search space # 1 is at least a part of the CORESET # 1 associated with the search space # 1.
 端末10は、上記の通り決定された開始スロット#0から連続するTスロットをモニタリングスロットとして、サーチスペース#1内の各PDCCH候補をモニタリングする。端末10は、サーチスペース#1の各PDCCH候補のモニタリングにより、端末10に対するPDCCHを検出する。当該PDCCHの検出は、所定の無線ネットワーク一時識別子(Radio Network Temporary Identifier:RNTI)により巡回冗長検査(Cyclic Redundancy Check:CRC)がスクランブルされた、所定フォーマットのDCIの検出と言い換えられてもよい。 The terminal 10 monitors each PDCCH candidate in the search space # 1 by using the T slot continuous from the start slot # 0 determined as described above as a monitoring slot. The terminal 10 detects the PDCCH for the terminal 10 by monitoring each PDCCH candidate in the search space # 1. The detection of the PDCCH may be rephrased as the detection of DCI in a predetermined format in which a cyclic redundancy check (Cyclic Redundancy Check: CRC) is scrambled by a predetermined radio network temporary identifier (RNTI).
 なお、当該DCIのフォーマットには、下り共有チャネルのスケジューリングに用いられるDCIのフォーマット(例えば、DCIフォーマット1_X)、上り共有チャネルのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット0_X)、スケジューリングとは異なる用途で用いられるDCIのフォーマット(例えば、DCIフォーマット2_X)等が含まれてもよい。ここで、Xは正の整数である。 The DCI format is different from the DCI format used for downlink shared channel scheduling (for example, DCI format 1_X), the DCI format used for uplink shared channel scheduling (for example, DCI format 0_X), and scheduling. The DCI format used in the application (for example, DCI format 2_X) and the like may be included. Here, X is a positive integer.
 図3は、NRにおけるPDCCHモニタリングの他の例を示す図である。例えば、図3では、CORESET#2に関連付けられるサーチスペース#2を用いたPDCCHモニタリングの一例が示される。図3では、モニタリング期間内の各スロットにおいて、複数のサーチスペースが設定される点で、単一のサーチスペースが設定される図2と異なる。図3では、図2との相違点を中心に説明する。 FIG. 3 is a diagram showing another example of PDCCH monitoring in NR. For example, FIG. 3 shows an example of PDCCH monitoring using the search space # 2 associated with CORESET # 2. FIG. 3 differs from FIG. 2 in that a single search space is set in that a plurality of search spaces are set in each slot within the monitoring period. In FIG. 3, the differences from FIG. 2 will be mainly described.
 図3において、CORESET#2用のCORESET期間は1シンボルである。モニタリングシンボル情報は、シンボル#0~#13それぞれに対応するビットの中で、シンボル#0及び#7に対応するビットが「1」である。このため、モニタリング期間内の各スロットには、サーチスペース#2に関連付けられたCORESET#2が、シンボル#0、#7をそれぞれ開始位置とする1シンボルに配置される。 In FIG. 3, the CORESET period for CORESET # 2 is one symbol. In the monitoring symbol information, among the bits corresponding to the symbols # 0 to # 13, the bit corresponding to the symbols # 0 and # 7 is “1”. Therefore, in each slot during the monitoring period, the CORESET # 2 associated with the search space # 2 is arranged in one symbol starting from the symbols # 0 and # 7, respectively.
 端末10は、モニタリング期間内の各スロットにおいてシンボル#0及び#7それぞれのサーチスペース#2内の各PDCCH候補をモニタリングする。図3では、端末10は、シンボル#0のサーチスペース#2内ではPDCCHが検出されないが、シンボル#7のサーチスペース#2内でPDCCHが検出される。 The terminal 10 monitors each PDCCH candidate in the search space # 2 of each of the symbols # 0 and # 7 in each slot within the monitoring period. In FIG. 3, the terminal 10 does not detect PDCCH in the search space # 2 of symbol # 0, but detects PDCCH in the search space # 2 of symbol # 7.
 このように、NRでは、端末10は、所定周期で設定されるモニタリング期間内でPDCCHをモニタリングする。また、モニタリング期間内の各スロットには一以上のサーチスペースを設定可能であり、端末10は、各スロット内で一以上のサーチスペースをモニタリングしてもよい。 In this way, in NR, the terminal 10 monitors the PDCCH within the monitoring period set in the predetermined cycle. Further, one or more search spaces can be set in each slot within the monitoring period, and the terminal 10 may monitor one or more search spaces in each slot.
 ところで、NRのリリース17では、リリース15又は16で導入された高速大容量(enhanced Mobile Broadband:eMBB)、超高信頼低遅延(Ultra-reliable and Low Latency Communications:URLLC)向けの端末よりも低い性能や価格帯を想定した端末向けの機能をサポートすることが検討されている。当該端末は、低減能力(Reduced capability:RedCap)端末、デバイス等とも呼ばれ、例えば、産業用無線センサ(industrial wireless sensor)、監視カメラ(video serveilance)、ウエアラブルデバイス(wearable device)等に利用されてもよい。 By the way, in NR release 17, the performance is lower than the terminals for high-speed large capacity (enhanced Mobile Broadband: eMBB) and ultra-reliable and low latency Communications (URLLC) introduced in release 15 or 16. It is being considered to support functions for terminals that assume the price range. The terminal is also called a Reduced capability (RedCap) terminal, a device, etc., and is used for, for example, an industrial wireless sensor, a surveillance camera (video serveilance), a wearable device, or the like. May be good.
 RedCap端末は、省電力・広域通信(Low Power Wide Area:LPWA)向けの端末よりも高い性能を想定しており、RedCap端末が利用するキャリアは、例えば、20MHz、50MHz又は100MHz等の帯域幅であってもよい。なお、LPWAには、例えば、カテゴリ1、LTE方式のRATで動作するLong Term Evolution for Machine-type-communication(LTE-M)及びNarrow Band IoT(NB-IoT)等がある。カテゴリ1の最大帯域幅は20MHzであり、LTE-Mの最大帯域幅は1.4MHz(6RB)であり、NB-IoTの最大帯域幅は180kHz(1RB)である。このように、RedCap端末は、eMBB、URLLC向けと、LPWA向けとの間のミドルレンジの端末として使用されてもよい。 RedCap terminals are expected to have higher performance than terminals for power saving and wide area communication (Low Power Wide Area: LPWA), and the carriers used by RedCap terminals are, for example, with a bandwidth of 20 MHz, 50 MHz, 100 MHz, or the like. There may be. The LPWA includes, for example, Category 1, Long Term Evolution for Machine-type-communication (LTE-M) and Narrow Band IoT (NB-IoT) that operate in LTE RAT. The maximum bandwidth of Category 1 is 20 MHz, the maximum bandwidth of LTE-M is 1.4 MHz (6 RB), and the maximum bandwidth of NB-IoT is 180 kHz (1 RB). As described above, the RedCap terminal may be used as a terminal in the middle range between those for eMBB and URLLC and those for LPWA.
 端末10としてRedCap端末を想定する場合、キャリアの帯域幅が狭くなることによるカバレッジの減少を補完するために、PDCCHを繰り返して送信することが検討されている。具体的には、基地局20は、PDCCHを時間領域及び/又は周波数領域で繰り返して送信することが想定される。 When a RedCap terminal is assumed as the terminal 10, it is considered to repeatedly transmit PDCCH in order to compensate for the decrease in coverage due to the narrowing of the carrier bandwidth. Specifically, it is assumed that the base station 20 repeatedly transmits the PDCCH in the time domain and / or the frequency domain.
 しかしながら、端末10は、所定周期のモニタリング期間内に設定される各サーチスペースにおいて、初回送信のPDCCHが伝送されることを想定して、PDCCHの受信処理(例えば、復調、復号等)を行う。したがって、PDCCHが繰り返して送信される場合、端末10は、既存のモニタリング方法では、当該繰り返して送信されるPDCCHを適切にモニタリングできない恐れがある。 However, the terminal 10 performs PDCCH reception processing (for example, demodulation, decoding, etc.) on the assumption that the PDCCH of the first transmission is transmitted in each search space set within the monitoring period of a predetermined cycle. Therefore, when the PDCCH is repeatedly transmitted, the terminal 10 may not be able to properly monitor the repeatedly transmitted PDCCH by the existing monitoring method.
 そこで、本実施形態では、(1)異なる時間領域リソースを用いて繰り返して送信されるPDCCHのモニタリング(以下、「第1のPDCCHモニタリング」という)、(2)異なる周波数領域リソースを用いて送信されるPDCCHのモニタリング(以下、「第2のPDCCHモニタリング」という)、及び、(3)第1及び第2のPDCCHモニタリングの組み合わせについて説明する。また、本実施形態では、(4)サーチスペースグループの切り替え(switch)に関する制御(以下、「切り替え制御」という)についても説明する。 Therefore, in the present embodiment, (1) monitoring of PDCCH repeatedly transmitted using different time domain resources (hereinafter referred to as "first PDCCH monitoring"), (2) transmission using different frequency domain resources. A combination of PDCCH monitoring (hereinafter referred to as "second PDCCH monitoring") and (3) first and second PDCCH monitoring will be described. Further, in the present embodiment, (4) control related to switching of the search space group (hereinafter, referred to as “switching control”) will also be described.
 (1)第1のPDCCHモニタリング
 第1のPDCCHモニタリングでは、時間領域で繰り返して送信されるPDCCHのモニタリングについて説明する。端末10は、サーチスペース情報に含まれるPDCCHの繰り返しに関する情報(以下、「繰り返し情報」という)に基づいて、所定周期のモニタリング期間T内の異なる時間領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを制御する。
(1) First PDCCH Monitoring In the first PDCCH monitoring, monitoring of PDCCH repeatedly transmitted in the time domain will be described. The terminal 10 repeatedly transmits the PDCCH using different time domain resources within the monitoring period T of a predetermined cycle based on the information regarding the repetition of the PDCCH included in the search space information (hereinafter referred to as “repetition information”). Control monitoring.
 ここで、異なる時間領域リソースは、例えば、所定周期のモニタリング期間T内の異なるスロットであってもよいし、当該モニタリング期間T内の同一スロット内の異なるシンボルであってもよい。このように、PDCCHは、一以上のモニタリング期間内の異なるスロット間で繰り返されてもよいし(以下、「スロット間繰り返し(inter-slot repetition)」という)、モニタリング期間内の同一のスロット内で繰り返されてもよい(以下、「スロット内繰り返し(intra-slot repetition)」という)。 Here, the different time domain resources may be, for example, different slots in the monitoring period T of a predetermined cycle, or different symbols in the same slot in the monitoring period T. In this way, the PDCCH may be repeated between different slots within one or more monitoring periods (hereinafter referred to as "inter-slot repetition") or within the same slot during the monitoring period. It may be repeated (hereinafter referred to as "intra-slot repetition").
 また、繰り返し情報は、PDCCHの繰り返し数(repetition number)Rを示す情報を含んでもよいし、又は、当該繰り返し数Rの最大値を示す情報を含んでもよい。後者の場合、端末10は、当該最大値及びDCI内の所定フィールド値に基づいて、繰り返し数Rを決定してもよい。なお、繰り返し数Rは、繰り返しレベル(repetition level)等と呼ばれてもよい。 Further, the repetition information may include information indicating the repetition number R of the PDCCH, or may include information indicating the maximum value of the repetition number R. In the latter case, the terminal 10 may determine the number of iterations R based on the maximum value and a predetermined field value in the DCI. The number of repetitions R may be referred to as a repetition level or the like.
 また、繰り返し情報は、PDCCHの繰り返しの開始スロットを示す情報(以下、「開始スロット情報」という)を含んでもよい。また、繰り返し情報は、スロット内繰り返しの場合、PDCCHが繰り返されるシンボルを示す情報(以下、「繰り返しシンボル情報」という)を含んでもよい。 Further, the repetition information may include information indicating the start slot of the repetition of PDCCH (hereinafter, referred to as "start slot information"). Further, the repetition information may include information indicating a symbol in which the PDCCH is repeated (hereinafter, referred to as “repetition symbol information”) in the case of repetition in the slot.
 端末10は、以上のような繰り返し情報に基づいて、スロット間繰り返し及び/又はスロット内繰り返しにより送信されるPDCCHのモニタリングに用いられるサーチスペースを設定してもよい。端末10は、設定されたサーチスペース内のPDCCH候補をモニタリングすることで、当該PDCCHを検出してもよい。 Based on the repetition information as described above, the terminal 10 may set a search space used for monitoring PDCCH transmitted by repetition between slots and / or repetition in slots. The terminal 10 may detect the PDCCH by monitoring the PDCCH candidate in the set search space.
 このように、PDCCHが繰り返して送信される場合、当該PDCCHのモニタリング用のサーチスペースも繰り返して設定されるので、PDCCHの繰り返しは、サーチスペースの繰り返しと言い換えられてもよい。以下、当該サーチスペースを「繰り返し用サーチスペース」とも呼ぶ。 In this way, when the PDCCH is repeatedly transmitted, the search space for monitoring the PDCCH is also set repeatedly, so that the repetition of the PDCCH may be rephrased as the repetition of the search space. Hereinafter, the search space is also referred to as a “repetition search space”.
 (1.1)スロット間繰り返し
 スロット間繰り返しは、所定周期のモニタリング期間Tのうちの一つのモニタリング期間T内の複数のスロットで適用されてもよいし、又は、所定周期のモニタリング期間Tのうちの複数のモニタリング期間Tに跨る複数のスロットで適用されてもよい。
(1.1) Inter-slot repetition Inter-slot repetition may be applied to a plurality of slots within one monitoring period T of a predetermined cycle monitoring period T, or may be applied to a plurality of slots within a predetermined cycle monitoring period T. It may be applied in a plurality of slots spanning a plurality of monitoring periods T.
 スロット間繰り返しでは、PDCCHの繰り返しの繰り返し数Rに基づいて、所定周期のモニタリング期間T内で1~R回目のPDCCHが送信されるモニタリングスロット#k(i=0,…,R-1)を決定する。具体的には、端末10は、繰り返し数Rに加えて、繰り返しの開始スロット#k、無線フレーム番号n、当該無線フレーム#n内のスロット番号ns,f、無線フレーム内のスロット数Ns,f、モニタリング周期k、モニタリング区間T、及び、モニタリングオフセットoの少なくとも一つに基づいて、モニタリングスロット#k(i=0,…,R-1)を決定してもよい。例えば、端末10は、以下の式(2)を満たすスロット番号を有する、kから始まるkR-1までの連続するスロットをモニタリングスロット#k(i=0,…,R-1)として決定してもよい。
Figure JPOXMLDOC01-appb-M000001
In the inter-slot repetition, the monitoring slot # ki ( i = 0, ..., R-1) in which the 1st to Rth PDCCHs are transmitted within the monitoring period T of a predetermined cycle based on the repetition number R of the PDCCH repetition. To decide. Specifically, in addition to the repetition number R, the terminal 10 has a repetition start slot # k 0 , a radio frame number n f , slot numbers n s, f in the radio frame # n f, and a slot in the radio frame. The monitoring slot # ki ( i = 0, ..., R-1) may be determined based on at least one of the number N s, f , the monitoring cycle k, the monitoring interval T, and the monitoring offset o. For example, the terminal 10 uses a continuous slot starting from k 0 to k R-1 , which has a slot number satisfying the following equation (2), as a monitoring slot # ki ( i = 0, ..., R-1). You may decide.
Figure JPOXMLDOC01-appb-M000001
 なお、繰り返しの開始スロット#kは、上記開始スロット情報により明示的に(explicitly)基地局20から端末10に通知されてもよい。或いは、開始スロット#kは、上記開始スロット情報の明示的な通知なしに、黙示的な(implicit)情報に基づいて端末10自身で導出されてもよい。例えば、端末10は、モニタリング期間Tの開始スロットを繰り返しの開始スロット#kとみなしてもよい。 The repeating start slot # k 0 may be explicitly notified from the base station 20 to the terminal 10 by the start slot information. Alternatively, the start slot # k 0 may be derived by the terminal 10 itself based on the implicit information without the explicit notification of the start slot information. For example, the terminal 10 may consider the start slot of the monitoring period T as the repeat start slot # k 0 .
 図4は、本実施形態に係るスロット間繰り返しの第1の例を示す図である。図4では、図2で説明したように、サーチスペース#1のサーチスペース情報に基づいて、サーチスペース#1のモニタリング期間Tが各無線フレームのスロット#0~#3に設定される。また、サーチスペース#1に関連付けられるCORESET#1のCORESET情報に基づいて、CORESET#1がモニタリング期間T内の各スロットのシンボル#0から2シンボルに配置される。当該サーチスペース#1は、繰り返し用サーチスペースとして利用される。 FIG. 4 is a diagram showing a first example of inter-slot repetition according to the present embodiment. In FIG. 4, as described with reference to FIG. 2, the monitoring period T of the search space # 1 is set in slots # 0 to # 3 of each radio frame based on the search space information of the search space # 1. Further, based on the CORESET information of CORESET # 1 associated with the search space # 1, CORESET # 1 is arranged in symbols # 0 to 2 of each slot in the monitoring period T. The search space # 1 is used as a search space for repetition.
 例えば、図4では、PDCCHの繰り返し数Rは2であり、繰り返しの開始スロット#kは所定周期のモニタリング期間Tの開始スロット#0と同一である。端末10は、繰り返しの開始スロット#kから連続するRスロットで、繰り返し数RのPDCCHが送信されると想定する。図4では、R=2であるので、端末10は、スロット#k及び#kそれぞれのサーチスペース#1内に1回目及び2回目のPDCCHがマッピングされると想定して、当該スロット#k及び#kそれぞれのサーチスペース#1をモニタリングする。 For example, in FIG. 4, the repetition number R of the PDCCH is 2, and the repetition start slot # k 0 is the same as the start slot # 0 of the monitoring period T of the predetermined cycle. It is assumed that the terminal 10 is a continuous R slot from the repetition start slot # k 0 , and the PDCCH of the repetition number R is transmitted. In FIG. 4, since R = 2, the terminal 10 assumes that the first and second PDCCHs are mapped in the search spaces # 1 of the slots # k 0 and # k 1 , respectively, and the slot # Monitor the search space # 1 for each of k 0 and # k 1 .
 例えば、図4では、端末10は、スロット#kのサーチスペース#1のモニタリングにより1回目のPDCCHを検出し、スロット#kのサーチスペース#1のモニタリングにより2回目のPDCCHを検出する。端末10は、スロット#k(0≦i≦R-1)でi+1回目のPDCCHの復号に成功した場合、スロット#ki+1以降のサーチスペース#1のモニタリングを中止してもよいし、又は、繰り返し数R分モニタリングを継続してもよい。また、端末10は、i+1回目のPDCCHの復号のために、1回目のPDCCHからi+1回目のPDCCHを合成してもよい。 For example, in FIG. 4, the terminal 10 detects the first PDCCH by monitoring the search space # 1 in slot # k 0 , and detects the second PDCCH by monitoring the search space # 1 in slot # k 1 . If the terminal 10 succeeds in decoding the i + 1th PDCCH in the slot # ki (0 ≦ i ≦ R-1), the terminal 10 may stop monitoring the search space # 1 after the slot # ki + 1. , Monitoring may be continued for the number of repetitions R. Further, the terminal 10 may synthesize the i + 1th PDCCH from the first PDCCH for decoding the i + 1th PDCCH.
 図5は、本実施形態に係るスロット間繰り返しの第2の例を示す図である。図5の前提条件は、図4と同様であり、図4との相違点を中心に説明する。図5では、端末10は、基地局20からの開始スロット情報に基づいて、繰り返しの開始スロット#kを決定する。開始スロット情報は、例えば、繰り返しの開始スロットの周期及びオフセットであってもよいし、又は、モニタリング期間Tの開始スロットからのオフセットであってもよい。 FIG. 5 is a diagram showing a second example of inter-slot repetition according to the present embodiment. The preconditions of FIG. 5 are the same as those of FIG. 4, and the differences from FIG. 4 will be mainly described. In FIG. 5, the terminal 10 determines the repeat start slot # k 0 based on the start slot information from the base station 20. The start slot information may be, for example, the period and offset of the repeating start slot, or the offset from the start slot of the monitoring period T.
 例えば、図5では、開始スロット情報は、モニタリング期間Tの開始スロット#0からのオフセット(ここでは、2)を示すものとする。端末10は、上記式(1)により決定されたモニタリング期間Tの開始スロット#0と、開始スロット情報が示すオフセット「2」と、に基づいて、繰り返しの開始スロット#kをスロット#2に決定する。図5では、繰り返し数R=4であり、2回目のPDCCH用のサーチスペース#1が設けられるスロット#3はモニタリング期間Tの最終スロットである。このため、3回目及び4回目のPDCCH用のサーチスペース#1は、次のモニタリング期間Tのスロット#0及び#1に設けられる。 For example, in FIG. 5, the start slot information is assumed to indicate an offset (here, 2) from the start slot # 0 of the monitoring period T. The terminal 10 shifts the repeating start slot # k 0 to slot # 2 based on the start slot # 0 of the monitoring period T determined by the above equation (1) and the offset “2” indicated by the start slot information. decide. In FIG. 5, the number of repetitions R = 4, and the slot # 3 in which the search space # 1 for the second PDCCH is provided is the final slot of the monitoring period T. Therefore, the search spaces # 1 for the third and fourth PDCCHs are provided in slots # 0 and # 1 of the next monitoring period T.
 このように、端末10は、繰り返しの開始スロット#k(ここでは、無線フレーム#0のスロット#2)から1ずつスロット番号をカウントアップしてモニタリングスロット#k(0≦i≦R-1)を決定し、モニタリングスロット#ki+1がモニタリング期間T以外のスロット(ここでは、無線フレーム#0のスロット#4)となるなら、モニタリングスロット#ki+1を次のモニタリング期間の開始スロット(ここでは、無線フレーム#0のスロット#4のk-Tスロット後の無線フレーム#1のスロット#0)に決定してもよい。iが繰り返し数R-1と等しくなるまで、端末10は、iを1ずつカウントアップして上記処理を繰り返してもよい。このように、R個のモニタリングスロット#k~#kR-1は、複数のモニタリング期間に跨ってもよい。 In this way, the terminal 10 counts up the slot numbers one by one from the repeating start slot # k 0 (here, slot # 2 of the wireless frame # 0) and monitors the monitoring slot # ki (0 ≦ i ≦ R−). If 1) is determined and the monitoring slot # ki + 1 becomes a slot other than the monitoring period T (here, slot # 4 of the wireless frame # 0), the monitoring slot # ki + 1 is set to the start slot of the next monitoring period (here). Then, the slot # 0) of the wireless frame # 1 after the kt slot of the slot # 4 of the wireless frame # 0 may be determined. The terminal 10 may count up i by 1 and repeat the above process until i becomes equal to the number of repetitions R-1. In this way, the R monitoring slots # k 0 to # k R-1 may span a plurality of monitoring periods.
 図6は、本実施形態に係るスロット間繰り返しの第3の例を示す図である。図6では、図3で説明したように、サーチスペース#2のサーチスペース情報に基づいて、サーチスペース#2のモニタリング期間Tが各無線フレームのスロット#0~#3に設定される。また、サーチスペース#2に関連付けられるCORESET#2のCORESET情報に基づいて、CORESET#2がモニタリング期間T内の各スロットのシンボル#0及び#7に配置される。当該サーチスペース#2は、繰り返し用サーチスペースとして利用される。 FIG. 6 is a diagram showing a third example of inter-slot repetition according to the present embodiment. In FIG. 6, as described with reference to FIG. 3, the monitoring period T of the search space # 2 is set in slots # 0 to # 3 of each radio frame based on the search space information of the search space # 2. Further, based on the CORESET information of CORESET # 2 associated with the search space # 2, CORESET # 2 is arranged at the symbols # 0 and # 7 of each slot in the monitoring period T. The search space # 2 is used as a repeat search space.
 図6では、繰り返し用の各モニタリングスロット#k(i=0,…,R-1)に複数のサーチスペースが設けられる点で、図4及び5と異なる。図6に示すように、各モニタリングスロット#kの複数のサーチスペース内では、異なるPDCCHが伝送されてもよい。なお、異なるPDCCHとは、異なるDCIを伝送するPDCCHであってもよい。 FIG. 6 differs from FIGS. 4 and 5 in that a plurality of search spaces are provided in each monitoring slot #ki ( i = 0, ..., R-1) for repetition. As shown in FIG. 6, different PDCCHs may be transmitted within the plurality of search spaces of each monitoring slot # ki. The different PDCCH may be a PDCCH that transmits different DCIs.
 例えば、図6では、モニタリングスロット#kのシンボル#0のサーチスペース#2内に1回目のPDCCH#1がマッピングされ、モニタリングスロット#kのシンボル#7のサーチスペース#2内に1回目のPDCCH#2がマッピングされる。また、次のモニタリングスロット#kのシンボル#0のサーチスペース#2内に2回目のPDCCH#1がマッピングされ、モニタリングスロット#kのシンボル#7のサーチスペース#2内に2回目のPDCCH#2がマッピングされる。 For example, in FIG. 6, the first PDCCH # 1 is mapped in the search space # 2 of the symbol # 0 of the monitoring slot # k 0 , and the first PDCCH # 1 is mapped in the search space # 2 of the symbol # 7 of the monitoring slot # k 1 . PDCCH # 2 is mapped. Further, the second PDCCH # 1 is mapped in the search space # 2 of the symbol # 0 of the next monitoring slot # k 1 , and the second PDCCH is mapped in the search space # 2 of the symbol # 7 of the monitoring slot # k 1 . # 2 is mapped.
 このように、スロット間繰り返しでは、繰り返し用のR個のモニタリングスロット#k(i=0,…,R-1)の各々に複数のサーチスペースが設けられる場合、当該複数のサーチスペースに異なるPDCCHをマッピングすることにより、複数のPDCCHをモニタリングスロット間で繰り返すことができる。 As described above, in the inter-slot repetition, when a plurality of search spaces are provided in each of the R monitoring slots # ki ( i = 0, ..., R-1) for repetition, the plurality of search spaces are different. By mapping the PDCCH, multiple PDCCHs can be repeated between monitoring slots.
 (1.2)スロット内繰り返し
 スロット内繰り返しは、所定周期のモニタリング期間Tの同一スロット内の異なるシンボルで適用されてもよい。以下では、上記(1.1)との相違点を中心に説明する。
(1.2) In-slot repetition In-slot repetition may be applied with different symbols in the same slot during the monitoring period T of a predetermined cycle. In the following, the differences from the above (1.1) will be mainly described.
 スロット内繰り返し用に、基地局20は、1スロット内でPDCCHが繰り返される(すなわち、2回目以降のPDCCHが送信される)シンボルを示す繰り返しシンボル情報を端末10に送信する。端末10は、上記モニタリングシンボル情報及び繰り返しシンボル情報に基づいて、同一スロット内の複数のシンボルで繰り返して送信されるPDCCHのモニタリングを制御する。 For intra-slot repetition, the base station 20 transmits repetitive symbol information indicating a symbol in which PDCCH is repeated in one slot (that is, the second and subsequent PDCCH is transmitted) to the terminal 10. The terminal 10 controls monitoring of PDCCH repeatedly transmitted by a plurality of symbols in the same slot based on the monitoring symbol information and the repeating symbol information.
 図7は、本実施形態に係るスロット内繰り返しの第1の例を示す図である。図7では、サーチスペース#3のサーチスペース情報に基づいて、サーチスペース#3のモニタリング期間Tが各無線フレームのスロット#0~#3に設定される。また、サーチスペース#3に関連付けられるCORESET#3のCORESET情報に基づいて、CORESET#3が各モニタリングスロットのシンボル#0、#4、#8、#12に配置される。当該サーチスペース#3は、繰り返し用サーチスペースとして利用される。 FIG. 7 is a diagram showing a first example of in-slot repetition according to the present embodiment. In FIG. 7, the monitoring period T of the search space # 3 is set in slots # 0 to # 3 of each radio frame based on the search space information of the search space # 3. Further, based on the CORESET information of CORESET # 3 associated with the search space # 3, CORESET # 3 is arranged at the symbols # 0, # 4, # 8, and # 12 of each monitoring slot. The search space # 3 is used as a search space for repetition.
 図7において、上記サーチスペース情報内のモニタリングシンボル情報は、サーチスペース#3が配置される最初のシンボル#0、#4、#8、#12を示す。また、上記サーチスペース情報内の繰り返しシンボル情報は、2回目以降のPDCCHのモニタリング用のサーチスペース#3が配置される最初のシンボル#4及び#12を示す。例えば、図7では、繰り返しシンボル情報は、シンボル#0~#13それぞれに対応する14ビットのビットマップであり、シンボル#4及び#12に対応するビットが「1」である。このため、端末10は、シンボル#0のサーチスペース#3内には1回目のPDCCHがマッピングされ、シンボル#4のサーチスペース#3内には2回目のPDCCHがマッピングされると想定する。シンボル#8及び#12についてもシンボル#0及び#4と同様である。 In FIG. 7, the monitoring symbol information in the search space information indicates the first symbols # 0, # 4, # 8, and # 12 in which the search space # 3 is arranged. Further, the repeated symbol information in the search space information indicates the first symbols # 4 and # 12 in which the search space # 3 for monitoring the PDCCH from the second time onward is arranged. For example, in FIG. 7, the repeating symbol information is a 14-bit bitmap corresponding to each of symbols # 0 to # 13, and the bits corresponding to symbols # 4 and # 12 are “1”. Therefore, the terminal 10 assumes that the first PDCCH is mapped in the search space # 3 of the symbol # 0 and the second PDCCH is mapped in the search space # 3 of the symbol # 4. Symbols # 8 and # 12 are the same as symbols # 0 and # 4.
 なお、図7では、繰り返しシンボル情報は、1スロット内で2回目以降のPDCCHが配置され得る最初のシンボルに対応するビットが「1」に設定され、初回送信のPDCCHが配置され得る最初のシンボルに対応するビットは「0」に設定されるが、これに限られない。繰り返しシンボル情報は、初回送信のPDCCH又は2回目以降のPDCCHのどちらが配置されるシンボルであるかを識別できる情報であればよく、例えば、1スロット内で2回目以降のPDCCHが配置され得る最初のシンボルに対応するビットが「0」に設定され、初回送信のPDCCHが配置され得る最初のシンボルに対応するビットは「1」に設定されてもよい。 In FIG. 7, in the repeated symbol information, the bit corresponding to the first symbol in which the second and subsequent PDCCHs can be arranged in one slot is set to "1", and the first symbol in which the PDCCH of the first transmission can be arranged is set to "1". The bit corresponding to is set to "0", but is not limited to this. The repetitive symbol information may be information that can identify whether the PDCCH of the first transmission or the PDCCH of the second and subsequent transmissions is the symbol to be arranged. For example, the first PDCCH in which the second and subsequent PDCCHs can be arranged in one slot. The bit corresponding to the symbol may be set to "0" and the bit corresponding to the first symbol in which the PDCCH of the first transmission can be placed may be set to "1".
 (1.3)スロット間繰り返し及びスロット内繰り返しの組み合わせ
 以上のようなスロット間繰り返し及びスロット内繰り返しは、組み合わせられてもよい。具体的には、端末10は、複数のモニタリングスロットに跨る複数のシンボルで繰り返して送信される一以上のPDCCHをモニタリングしてもよい。
(1.3) Combination of inter-slot repetition and intra-slot repetition The above-mentioned inter-slot repetition and intra-slot repetition may be combined. Specifically, the terminal 10 may monitor one or more PDCCHs repeatedly transmitted by a plurality of symbols straddling a plurality of monitoring slots.
 図8は、本実施形態に係るスロット間繰り返し及びスロット内繰り返しの組み合わせの一例を示す図である。図8では、図7と同様に、サーチスペース#3及びCORESET#3が設定されるが、繰り返し数R=7である点で、図7と異なる。以下では、図7との相違点を中心に説明する。図8では、繰り返しシンボル情報は、2回目以降のPDCCHのモニタリング用のサーチスペース#3が配置される最初のシンボル#4、#8及び#12を示す。 FIG. 8 is a diagram showing an example of a combination of inter-slot repetition and intra-slot repetition according to the present embodiment. In FIG. 8, the search space # 3 and CORESET # 3 are set as in FIG. 7, but are different from FIG. 7 in that the number of repetitions R = 7. In the following, the differences from FIG. 7 will be mainly described. In FIG. 8, the repeated symbol information indicates the first symbols # 4, # 8 and # 12 in which the search space # 3 for monitoring the PDCCH from the second time onward is arranged.
 図8に示すように、繰り返しシンボル情報が示す2回目以降のPDCCHが送信されるシンボルのパターンは、複数のモニタリングスロット#k(0≦i≦R-1)に渡って繰り返されてもよい。ここで、繰り返し数RのPDCCH用のモニタリングスロットの数Rは、繰り返し回数Rと、1スロット内の2回目以降のPDCCHがマッピングされ得るサーチスペースの数nssに基づいて、例えば、ceil{(R-1)/nss}により導出されてもよい。図8では、繰り返し数Rが7であり、サーチスペースの数nssが3であるので、Rは、ceil{(7-1)/3}=2である。 As shown in FIG. 8, the pattern of the symbol to which the PDCCH is transmitted from the second time onward indicated by the repeated symbol information may be repeated over a plurality of monitoring slots #ki (0 ≦ i ≦ R s -1). good. Here, the number R s of the monitoring slots for the PDCCH having the number of repetitions R is, for example, ceil { It may be derived by (R-1) / n ss }. In FIG. 8, since the repetition number R is 7 and the number n ss of the search space is 3, the R s is ceil {(7-1) / 3} = 2.
 なお、図8では、モニタリングスロット#k及び#kが異なるモニタリング期間に含まれるが、同一のモニタリング期間内に含まれてもよいことは勿論である。 In FIG. 8, monitoring slots # k 0 and # k 1 are included in different monitoring periods, but it goes without saying that they may be included in the same monitoring period.
 (1.4)繰り返し情報のシグナリング
 次に、第1のPDCCHモニタリングに用いられる繰り返し情報のシグナリングについて説明する。上記の通り、繰り返し情報は、PDCCHの繰り返し数Rを示す情報、当該繰り返し数Rの最大値を示す情報、開始スロット情報及び繰り返しシンボル情報の少なくとも一つを含んでもよい。
(1.4) Signaling of repetitive information Next, signaling of repetitive information used for the first PDCCH monitoring will be described. As described above, the repetition information may include at least one of information indicating the repetition number R of the PDCCH, information indicating the maximum value of the repetition number R, start slot information, and repetition symbol information.
 繰り返し情報は、上位レイヤパラメータ(higher layer parameter)を用いて、基地局20から端末10に送信されてもよい。上位レイヤパラメータは、RRCレイヤのパラメータ(例えば、RRC IE)であってもよいし、Medium Access Control(MAC)レイヤのパラメータ(例えば、MAC制御要素(Medium Access Control Element:MAC CE))であってもよい。 The repeat information may be transmitted from the base station 20 to the terminal 10 using the higher layer parameter. The upper layer parameter may be an RRC layer parameter (for example, RRC IE) or a medium access control (MAC) layer parameter (for example, a medium access control element (MAC CE)). May be good.
 図9は、本実施形態に係るサーチスペース情報の一例を示す図である。図9では、サーチスペース情報としてのRRC IE「SearchSpace」が、上記繰り返し情報を含む一例が示される。ここでは、繰り返し情報として、繰り返し数Rを示す情報(例えば、RRC IE「numRepetition-r17」)及び繰り返しシンボル情報(例えば、RRC IE「repetitionSymbolsWithinSlot-r17」)が示される。 FIG. 9 is a diagram showing an example of search space information according to this embodiment. FIG. 9 shows an example in which the RRC IE “SearchSpace” as the search space information includes the above-mentioned repeated information. Here, as the repetition information, information indicating the number of repetitions R (for example, RRC IE "numRepetition-r17") and repetition symbol information (for example, RRC IE "repetitionSymbolsWithinSlot-r17") are shown.
 図9に示すように、繰り返し数Rは、例えば、1、2、4、8、16、32、64、128又は256のいずれかであってもよい。また、繰り返しシンボル情報としてのRRC IE「repetitionSymbolsWithinSlot-r17」は14ビットのビットマップであってもよい。 As shown in FIG. 9, the repetition number R may be, for example, any one of 1, 2, 4, 8, 16, 32, 64, 128 or 256. Further, the RRC IE "repetitionSymbolsWithinSlot-r17" as the repetitive symbol information may be a 14-bit bitmap.
 なお、図9は、一例にすぎず、RRC IE「SearchSpace」は、繰り返し情報として、PDCCHの繰り返し数Rを示す情報の代わりに、当該繰り返し数Rの最大値を示す情報を含んでもよい。また、RRC IE「SearchSpace」は、開始スロット情報を含んでもよい。 Note that FIG. 9 is only an example, and the RRC IE "SearchSpace" may include information indicating the maximum value of the repetition number R instead of the information indicating the repetition number R of the PDCCH as the repetition information. Further, the RRC IE "Search Space" may include start slot information.
 図10は、本実施形態に係る繰り返し数の導出の一例を示す図である。図10では、サーチスペース情報(例えば、RRC IE「SearchSpace」)が、PDCCHの繰り返し数Rの最大値を示す情報を含む場合における繰り返し数Rの導出の一例が示される。 FIG. 10 is a diagram showing an example of deriving the number of repetitions according to the present embodiment. FIG. 10 shows an example of deriving the number of repetitions R when the search space information (for example, RRC IE “SearchSpace”) includes information indicating the maximum value of the number of repetitions R of PDCCH.
 端末10は、DCI内の所定フィールドの値と上記最大値rep_maxとに基づいて、PDCCHの繰り返し数Rを決定してもよい。例えば、図10では、DCI内の所定フィールドの値が、繰り返し数Rを導出するためのパラメータr1~r4に関連付けられる。端末10は、上記最大値rep_maxと当該パラメータとに基づいて、繰り返し数Rを決定する。 The terminal 10 may determine the number of repetitions R of the PDCCH based on the value of the predetermined field in the DCI and the above maximum value rep_max. For example, in FIG. 10, the value of the predetermined field in the DCI is associated with the parameters r1 to r4 for deriving the repetition number R. The terminal 10 determines the number of repetitions R based on the maximum value rep_max and the parameter.
 例えば、図10において、PDCCHの繰り返し数Rの最大値rep_maxが8である場合、DCI内の所定フィールドの値が「00」であれば、繰り返し数R=rep_max/8=1である。同様に、DCI内の所定フィールドの値が「01」、「10」又は「11」であれば、繰り返し数R=2、4又は8である。 For example, in FIG. 10, when the maximum value rep_max of the repetition number R of PDCCH is 8, and the value of the predetermined field in DCI is “00”, the repetition number R = rep_max / 8 = 1. Similarly, if the value of the predetermined field in the DCI is "01", "10" or "11", the number of repetitions R = 2, 4 or 8.
 図10に示すように、DCIに基づいてPDCCHの繰り返し数Rを動的に(dynamic)に指定することにより、カバレッジ拡張範囲をより柔軟に制御できる。 As shown in FIG. 10, by dynamically specifying the repetition number R of PDCCH based on DCI, the coverage extension range can be controlled more flexibly.
 以上のように、第1のPDCCHモニタリングでは、サーチスペース情報に含まれる繰り返し情報に基づいて繰り返し用サーチスペースが設定されるので、所定周期のモニタリング期間内の異なる時間領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを適切に制御できる。 As described above, in the first PDCCH monitoring, since the repeat search space is set based on the repeat information included in the search space information, it is repeatedly transmitted using different time domain resources within the monitoring period of a predetermined cycle. The monitoring of the PDCCH to be performed can be appropriately controlled.
 (2)第2のPDCCHモニタリング
 第2のPDCCHモニタリングでは、周波数領域で繰り返して送信されるPDCCHのモニタリングについて説明する。端末10は、一以上のCORESETに対応する複数の周波数領域リソース間で繰り返して送信されるPDCCHのモニタリングを制御する。
(2) Second PDCCH Monitoring In the second PDCCH monitoring, monitoring of PDCCH repeatedly transmitted in the frequency domain will be described. The terminal 10 controls monitoring of PDCCH repeatedly transmitted between a plurality of frequency domain resources corresponding to one or more CORESETs.
 当該PDCCHのモニタリングに用いられる繰り返し用サーチスペースは、単一のCORESETに関連付けられてもよいし(下記2.1参照)、又は、複数のCORESETに関連付けられてもよい(下記2.2参照)。 The repetitive search space used for monitoring the PDCCH may be associated with a single CORESET (see 2.1 below) or multiple CORESETs (see 2.2 below). ..
 (2.1)単一のCORESETに関連付けられる繰り返し用サーチスペース
 繰り返し用サーチスペースが単一のCORESETに関連付けられる場合、PDCCHが繰り返して送信される複数の周波数領域リソースは、当該単一のCORESETに対応してもよい。
(2.1) Repeated search space associated with a single CORESET When a repeating search space is associated with a single CORESET, multiple frequency domain resources to which the PDCCH is repeatedly transmitted are in the single CORESET. It may correspond.
 当該CORESETに関するCORESET情報は、当該複数の周波数領域リソースをそれぞれ示す複数の周波数領域リソース情報を含んでもよいし(下記2.1.1参照)、当該複数の周波数領域リソースのうちの一つを示す周波数領域リソース情報とPDCCHの繰り返し数を示す繰り返し数情報とを含んでもよいし(下記2.1.2参照)、又は、当該複数の周波数領域リソースのうちの一つを示す周波数領域リソース情報とオフセットを示すオフセット情報を含んでもよい(下記2.1.3参照)。 The CORESET information regarding the CORESET may include a plurality of frequency domain resource information indicating the plurality of frequency domain resources, respectively (see 2.1.1 below), and indicates one of the plurality of frequency domain resources. It may include frequency domain resource information and frequency domain information indicating the number of repetitions of PDCCH (see 2.1.2 below), or frequency domain resource information indicating one of the plurality of frequency domain resources. It may include offset information indicating the offset (see 2.1.3 below).
 (2.1.1)繰り返し用の周波数領域リソースの第1の決定例
 第1の決定例では、端末10は、単一のCORESETに関するCORESET情報に含まれる複数の周波数領域リソース情報に基づいて、当該CORESET用の複数の周波数領域リソースを決定する。
(2.1.1) First Determination Example of Frequency Domain Resource for Repetition In the first determination example, the terminal 10 is based on a plurality of frequency domain resource information included in the CORESET information relating to a single CORESET. Determine multiple frequency domain resources for the CORESET.
 図11は、本実施形態に係る繰り返し用の周波数領域リソースの第1の決定例を示す図である。例えば、図11では、繰り返し用サーチスペースとして利用されるサーチスペース#1にCORESET#1が関連付けられる。CORESET#1用のCORESET情報は、CORESET#1用の周波数領域リソース#0を示す周波数領域リソース情報に加えて、CORESET#1用の周波数領域リソース#1及び#2をそれぞれ示す周波数領域リソース情報1及び2を含むものとする。 FIG. 11 is a diagram showing a first determination example of the frequency domain resource for repetition according to the present embodiment. For example, in FIG. 11, CORESET # 1 is associated with the search space # 1 used as the repeatable search space. The CORESET information for CORESET # 1 includes the frequency domain resource information 1 indicating the frequency domain resource # 0 for CORESET # 1 and the frequency domain resource information 1 indicating the frequency domain resources # 1 and # 2 for CORESET # 1, respectively. And 2 shall be included.
 周波数領域リソース情報、周波数領域リソース情報1及び2は、それぞれ、所定数のRBのグループ(以下、「RBグループ」という)に対応するビットを含むビットマップであってもよい。当該ビットマップの長さは、BWPを構成するRB数と1RBグループを構成するRB数とに基づいて決定されてもよい。図11では、1RBグループは連続する6RBで構成されるものとするが、これに限られず、1RBグループは1以上のRBで構成されればよい。 The frequency domain resource information and the frequency domain resource information 1 and 2 may be bitmaps including bits corresponding to a predetermined number of RB groups (hereinafter, referred to as “RB group”), respectively. The length of the bitmap may be determined based on the number of RBs constituting the BWP and the number of RBs constituting one RB group. In FIG. 11, it is assumed that the 1RB group is composed of continuous 6RBs, but the present invention is not limited to this, and the 1RB group may be composed of one or more RBs.
 周波数領域リソース情報、周波数領域リソース情報1及び2は、それぞれ、周波数領域リソース#0、#1及び#2を構成するRBグループに対応するビットが「1」にセットされ、他のRBグループに対応するビットが「0」にセットされてもよい。なお、同一のCORESET#1用の周波数領域リソース#0、#1及び#2は、それぞれ、異なるRBグループで構成され、重複するRBグループを含むことを許容されなくともよい。 In the frequency domain resource information and the frequency domain resource information 1 and 2, the bits corresponding to the RB groups constituting the frequency domain resources # 0, # 1 and # 2, respectively, are set to "1" and correspond to other RB groups. The bit to be used may be set to "0". The frequency domain resources # 0, # 1 and # 2 for the same CORESET # 1 are each composed of different RB groups, and may not be allowed to include overlapping RB groups.
 図11に示すように、端末10は、CORESET#1用の周波数領域リソース#0、#1及び#2のそれぞれにサーチスペース#1が配置されると想定してもよい。端末10は、当該サーチスペース#1を用いて、周波数領域リソース#i(ここでは、0≦i≦2)内で送信されるi+1回目のPDCCHのモニタリングを当該サーチスペース#1を用いて制御してもよい。 As shown in FIG. 11, the terminal 10 may assume that the search space # 1 is arranged in each of the frequency domain resources # 0, # 1 and # 2 for CORESET # 1. The terminal 10 uses the search space # 1 to control i + 1th PDCCH monitoring transmitted within the frequency domain resource # i (here, 0 ≦ i ≦ 2) using the search space # 1. You may.
 なお、図11では、異なる周波数領域リソース#0、#1及び#2で構成されるCORESET#1のCORESET期間は同一であるものとするが、これに限られず、異なってもよい。このように、CORESET#1のCORESET期間は、当該CORESET#1用の複数の周波数領域リソースに共通であってもよいし、又は、CORESET#1用の周波数領域リソース毎に設定されてもよい。 Note that in FIG. 11, it is assumed that the CORESET period of CORESET # 1 composed of different frequency domain resources # 0, # 1 and # 2 is the same, but the CORESET period is not limited to this and may be different. As described above, the CORESET period of CORESET # 1 may be common to a plurality of frequency domain resources for CORESET # 1, or may be set for each frequency domain resource for CORESET # 1.
 図12は、本実施形態に係るCORESET情報の第1の例を示す図である。例えば、図12では、CORESET情報としてのRRC IE「ControlResourceSet」が、RRC IE「controlResourceSetId」で識別されるCORESET用の複数の周波数領域リソースをそれぞれ示す複数の周波数領域リソース情報を含む一例が示される。 FIG. 12 is a diagram showing a first example of CORESET information according to the present embodiment. For example, FIG. 12 shows an example in which the RRC IE “ControlResourceSet” as the CORESET information includes a plurality of frequency domain resource information indicating a plurality of frequency domain resources for the CORESET identified by the RRC IE “controlResourceSetId”.
 例えば、図12に示されるRRC IE「ControlResourceSet」では、初回送信(1回目)用の周波数領域リソースが、RRC IE「frequencyDomainResources」によって示されてもよい。一方、2回目以降用の周波数領域リソースは、RRC IE「frequencyDomainResourcesRepetition-r17」によって示されてもよい。 For example, in the RRC IE "ControlResourceSet" shown in FIG. 12, the frequency domain resources for the first transmission (first time) may be indicated by the RRC IE "frequencyDomainResources". On the other hand, the frequency domain resources for the second and subsequent times may be indicated by RRC IE "frequencyDomainResourcesRepetition-r17".
 このように、CORESET情報は、初回送信用の周波数領域リソース情報(例えば、RRC IE「frequencyDomainResources」)に加えて、2回目以降用の周波数領域リソース情報(例えば、RRC IE「frequencyDomainResourcesRepetition-r17」)のリストを含んでもよい。当該リスト内のエントリーの数は、例えば、繰り返し数R-1と等しくてもよい。2回目以降用の周波数領域リソース情報の各々は、初回送信用の周波数領域リソース情報と重複しないRBグループを示してもよい。 In this way, the CORESET information includes the frequency domain resource information for the first transmission (for example, RRC IE "frequencyDomainResources") and the frequency domain resource information for the second and subsequent transmissions (for example, RRC IE "frequencyDomainResourcesRepetition-r17"). It may include a list. The number of entries in the list may be, for example, equal to the number of iterations R-1. Each of the frequency domain resource information for the second and subsequent times may indicate an RB group that does not overlap with the frequency domain resource information for the first transmission.
 なお、図12では、RRC IE「frequencyDomainResources」及び「frequencyDomainResourcesRepetition-r17」は、BWP内の各RBグループに対応するビットを含むビットマップであり45ビットを有するが、周波数領域リソースを示す情報であれば、これらに限られない。 In FIG. 12, RRC IE "frequencyDomainResources" and "frequencyDomainResourcesRepetition-r17" are bitmaps including bits corresponding to each RB group in the BWP and have 45 bits, but if it is information indicating frequency domain resources, , Not limited to these.
 (2.1.2)繰り返し用の周波数領域リソースの第2の決定例
 第2の決定例では、端末10は、単一のCORESETに関するCORESET情報に含まれる周波数領域リソース情報及び繰り返し数情報に基づいて、当該CORESET用の複数の周波数領域リソースを決定する。第2の設定例では、第1の設定例との相違点を中心に説明する。
(2.1.2) Second determination example of frequency domain resource for repetition In the second determination example, the terminal 10 is based on the frequency domain resource information and the repetition number information included in the CORESET information regarding a single CORESET. To determine a plurality of frequency domain resources for the CORESET. In the second setting example, the differences from the first setting example will be mainly described.
 図13は、本実施形態に係る繰り返し用の周波数領域リソースの第2の決定例を示す図である。図13では、CORESET#1用のCORESET情報は、CORESET#1用の周波数領域リソース#1及び#2をそれぞれ示す複数の周波数領域リソース情報1及び2の代わりに、PDCCHの繰り返し数R(ここでは、R=3)を示す繰り返し数情報と、を含む点で、図11と異なる。 FIG. 13 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment. In FIG. 13, the CORESET information for CORESET # 1 is the repetition number R of PDCCH (here, the number R of PDCCH is replaced with the plurality of frequency domain resource information 1 and 2 indicating the frequency domain resources # 1 and # 2 for CORESET # 1, respectively. , R = 3), which is different from FIG. 11 in that it includes the repetition number information.
 図13に示すように、端末10は、繰り返し数Rと等しい周波数領域リソース#0、#1及び#2が、周波数領域リソース#0から連続してCORESET#1用に割り当てられると想定する。また、端末10は、周波数領域リソース#1及び#2のRB数が周波数領域リソース#0のRB数(ここでは、6RB)と等しいと想定する。 As shown in FIG. 13, the terminal 10 assumes that frequency domain resources # 0, # 1 and # 2 equal to the number of repetitions R are continuously allocated for COSET # 1 from frequency domain resource # 0. Further, the terminal 10 assumes that the number of RBs of the frequency domain resources # 1 and # 2 is equal to the number of RBs of the frequency domain resource # 0 (here, 6 RB).
 端末10は、以上のように、周波数領域リソース情報が示す周波数領域リソース#0に割り当てられたRB(より具体的には、RBの位置及び数)と、繰り返し数Rとに基づいて決定された周波数領域リソース#0、#1及び#2のそれぞれにサーチスペース#1が配置されると想定してもよい。 As described above, the terminal 10 is determined based on the RB (more specifically, the position and number of RBs) assigned to the frequency domain resource # 0 indicated by the frequency domain resource information and the repetition number R. It may be assumed that the search space # 1 is arranged in each of the frequency domain resources # 0, # 1 and # 2.
 図14は、本実施形態に係るCORESET情報の第2の例を示す図である。例えば、図14では、CORESET情報としてのRRC IE「ControlResourceSet」は、図12のRRC IE「frequencyDomainResourcesRepetition-r17」の代わりに、PDCCH(又はCORESET)の繰り返し数Rを示すRRC IE「numRepetition-r17」を含む。図14に示すように、繰り返し数Rは、例えば、1、2、4、8、16又は32のいずれかに設定可能であってもよい。 FIG. 14 is a diagram showing a second example of CORESET information according to the present embodiment. For example, in FIG. 14, the RRC IE “ControlResourceSet” as the CORESET information uses the RRC IE “numRepetition-r17” indicating the repetition number R of PDCCH (or CORESET) instead of the RRC IE “frequencyDomainResourcesRepetition-r17” in FIG. include. As shown in FIG. 14, the repetition number R may be set to, for example, 1, 2, 4, 8, 16 or 32.
 このように、CORESET情報は、初回送信用の周波数領域リソース情報(例えば、RRC IE「frequencyDomainResources」)に加えて、繰り返し数情報(例えば、RRC IE「numRepetition-r17」)を含んでもよい。繰り返し数情報は、図12に示す2回目以降の各周波数領域リソース情報と比べてビット数が少ないため、第2の設定例では、第1の設定例と比較して、CORESET情報によるオーバヘッドを削減できる。 As described above, the CORESET information may include the repetition number information (for example, RRC IE "numRepetition-r17") in addition to the frequency domain resource information for the initial transmission (for example, RRC IE "frequencyDomainResources"). Since the number of repetitions information has a smaller number of bits than the second and subsequent frequency domain resource information shown in FIG. 12, the second setting example reduces the overhead due to the CORESET information as compared with the first setting example. can.
 (2.1.3)繰り返し用の周波数領域リソースの第3の決定例
 第3の決定例では、端末10は、単一のCORESETに関するCORESET情報に含まれる周波数領域リソース情報及びオフセット情報に基づいて、当該CORESET用の複数の周波数領域リソースを決定する。第3の設定例では、第1又は第2の設定例との相違点を中心に説明する。
(2.1.3) Third determination example of frequency domain resource for repetition In the third determination example, the terminal 10 is based on the frequency domain resource information and the offset information included in the CORESET information relating to a single CORESET. , Determine multiple frequency domain resources for the CORESET. In the third setting example, the differences from the first or second setting example will be mainly described.
 図15は、本実施形態に係る繰り返し用の周波数領域リソースの第2の決定例を示す図である。図15では、CORESET#1用のCORESET情報は、繰り返し数情報の代わりに、周波数領域リソース#1及び#2それぞれ用のオフセットを示すオフセット情報を含む点で、図13と異なる。 FIG. 15 is a diagram showing a second determination example of the frequency domain resource for repetition according to the present embodiment. FIG. 15 is different from FIG. 13 in that the CORESET information for CORESET # 1 includes offset information indicating the offset for each of the frequency domain resources # 1 and # 2 instead of the repetition number information.
 例えば、図15では、オフセット情報は、周波数領域リソース#0の開始RBグループに対する周波数領域リソース#1及び#2それぞれのオフセットnf1及びnf2を示す。当該オフセットの値は、シフトされるRBグループの数を示してもよい。図15では、オフセットnf1=2であり、周波数領域リソース#1は周波数領域リソース#0の開始RBグループから2RBグループだけシフトされる。このように、オフセットの値が示すシフト量は、1RBグループを構成するRB数(例えば、6RB)の整数倍であってもよいが、これに限られず、所定数のRBであればよい。 For example, in FIG. 15, the offset information indicates the offsets n f1 and n f2 of the frequency domain resources # 1 and # 2 with respect to the starting RB group of the frequency domain resource # 0, respectively. The value of the offset may indicate the number of RB groups to be shifted. In FIG. 15, the offset n f1 = 2, and the frequency domain resource # 1 is shifted from the start RB group of the frequency domain resource # 0 by 2 RB groups. As described above, the shift amount indicated by the offset value may be an integral multiple of the number of RBs (for example, 6RB) constituting the 1RB group, but is not limited to this, and may be a predetermined number of RBs.
 端末10は、周波数領域リソース情報が示す周波数領域リソース#0、周波数領域リソース#0の開始RBグループからオフセットnf1及びnf2だけシフトさせた周波数領域リソース#1及び#2がCORESET#1用に割り当てられると想定する。また、端末10は、周波数領域リソース#1及び#2のRB数が周波数領域リソース#0のRB数(ここでは、6RB)と等しいと想定する。 In the terminal 10, the frequency domain resource # 0 indicated by the frequency domain resource information and the frequency domain resources # 1 and # 2 shifted by the offsets n f1 and n f2 from the start RB group of the frequency domain resource # 0 are used for CORESET # 1. Assume to be assigned. Further, the terminal 10 assumes that the number of RBs of the frequency domain resources # 1 and # 2 is equal to the number of RBs of the frequency domain resource # 0 (here, 6 RB).
 なお、図15では、周波数領域リソース#i(i≧1)用のオフセットnfiは、周波数領域リソース#0の開始RBグループに対するオフセットであるものとするが、これに限られない。周波数領域リソース#i(i≧1)のオフセットnfiは、周波数領域リソース#0の最終RBグループに対するオフセットであってもよい。 In FIG. 15, the offset nfi for the frequency domain resource # i (i ≧ 1) is assumed to be an offset with respect to the start RB group of the frequency domain resource # 0, but is not limited to this. The offset nfi of the frequency domain resource # i (i ≧ 1) may be an offset of the frequency domain resource # 0 with respect to the final RB group.
 また、周波数領域リソース#i(i≧1)のオフセットnfiは、周波数領域リソース#i-1の開始RBグループに対するオフセットであってもよい。或いは、周波数領域リソース#i(i≧1)のオフセットnfiは、周波数領域リソース#i-1の最終RBグループに対するオフセットであってもよい。 Further, the offset nfi of the frequency domain resource # i (i ≧ 1) may be an offset with respect to the start RB group of the frequency domain resource # i-1. Alternatively, the offset nfi of the frequency domain resource # i (i ≧ 1) may be an offset of the frequency domain resource # i-1 with respect to the final RB group.
 図16は、本実施形態に係るCORESET情報の第3の例を示す図である。例えば、図16では、CORESET情報としてのRRC IE「ControlResourceSet」は、図12のRRC IE「frequencyDomainResourcesRepetition-r17」の代わりに、2回目以降の繰り返し用の各周波数領域リソースのオフセットを示すRRC IE「rbg-ShiftList-r17」を含んでもよい。RRC IE「rbg-ShiftList-r17」は、各周波数領域リソースのオフセットを示すRRC IE「RBG-Shift-r17」のリストであり、RRC IE「RBG-Shift-r17」は、例えば、オフセット値1~32を指定可能であってもよい。また、RRC IE「ControlResourceSet」は、PDCCHの繰り返し数Rを示すRRC IE「numRepetition-r17」を含んでもよい。 FIG. 16 is a diagram showing a third example of CORESET information according to the present embodiment. For example, in FIG. 16, the RRC IE “ControlResourceSet” as the CORESET information is replaced with the RRC IE “frequencyDomainResourcesRepetition-r17” in FIG. 12, which indicates the offset of each frequency domain resource for the second and subsequent repetitions. -ShiftList -r17 "may be included. RRC IE "rbg-ShiftList-r17" is a list of RRC IE "RBG-Shift-r17" indicating the offset of each frequency domain resource, and RRC IE "RBG-Shift-r17" is, for example, an offset value 1 to 1 to 32 may be specified. Further, the RRC IE "ControlResourceSet" may include the RRC IE "numRepetition-r17" indicating the repetition number R of the PDCCH.
 このように、CORESET情報は、初回送信用の周波数領域リソース情報(例えば、RRC IE「frequencyDomainResources」)に加えて、2回目以降の繰り返し用の各周波数領域リソースのオフセットを示すオフセット情報(例えば、RRC IE「rbg-ShiftList-r17」)を含んでもよい。オフセット情報は、図12に示す2回目以降の各周波数領域リソース情報と比べてビット数が少ないため、第3の設定例では、第1の設定例と比較して、CORESET情報によるオーバヘッドを削減できる。また、周波数領域リソース#iをBWP内で分散させて配置できるので、第2の設定例と比べて、周波数ダイバーシチゲインを向上できる。 As described above, the CORESET information includes the frequency domain resource information for the first transmission (for example, RRC IE "frequencyDomainResources") and the offset information (for example, RRC) indicating the offset of each frequency domain resource for the second and subsequent repetitions. IE "rbg-ShiftList-r17") may be included. Since the offset information has a smaller number of bits than the second and subsequent frequency domain resource information shown in FIG. 12, in the third setting example, the overhead due to the CORESET information can be reduced as compared with the first setting example. .. Further, since the frequency domain resource #i can be distributed and arranged in the BWP, the frequency diversity gain can be improved as compared with the second setting example.
 なお、上記では、2回目以降の繰り返し用の周波数領域リソース#i(0<i<R)毎のオフセットnfiを基地局20が指定するものとしたが、これに限られない。2回目以降の繰り返し用の周波数領域リソース#i(0<i<R)に共通のオフセットnが基地局20によって指定されてもよい。上記CORESET情報は、当該共通のオフセットnを示すオフセット情報を含んでもよい。 In the above, the base station 20 specifies the offset nfi for each frequency domain resource #i (0 <i <R) for the second and subsequent repetitions, but the present invention is not limited to this. The offset n f common to the frequency domain resource # i (0 <i <R) for the second and subsequent repetitions may be specified by the base station 20. The CORESET information may include offset information indicating the common offset n f .
 図17は、本実施形態に係る繰り返し用の周波数領域リソースの第4の決定例を示す図である。図17では、2回目以降の繰り返し用の周波数領域リソース#i(0<i<R)に共通のオフセットnを用いる点で、図15と異なる。図17に示すように、当該共通のオフセットnは、周波数領域リソース#i-1(i>0)の開始RBグループに対する周波数領域リソース#iのオフセットであってもよい。なお、図示しないが、当該共通のオフセットnは、周波数領域リソース#i-1(i>0)の最終RBグループに対する周波数領域リソース#iのオフセットであってもよい。 FIG. 17 is a diagram showing a fourth determination example of the frequency domain resource for repetition according to the present embodiment. FIG. 17 is different from FIG. 15 in that a common offset n f is used for the frequency domain resource #i (0 <i <R) for the second and subsequent repetitions. As shown in FIG. 17, the common offset n f may be the offset of the frequency domain resource # i with respect to the starting RB group of the frequency domain resource # i-1 (i> 0). Although not shown, the common offset n f may be the offset of the frequency domain resource # i with respect to the final RB group of the frequency domain resource # i-1 (i> 0).
 図17に示すように、CORESET情報は、2回目以降の繰り返し用の各周波数領域リソースに共通のオフセットを示すオフセット情報と、PDCCH(又はCORESET)の繰り返し数Rを示す繰り返し情報と、を含んでもよい。端末10は、周波数領域リソース情報が示す周波数領域リソース#0、周波数領域リソース#0の開始RBグループから共通オフセットnだけシフトさせた周波数領域リソース#1、周波数領域リソース#1の開始RBグループから共通オフセットnだけシフトさせた周波数領域リソース#2がCORESET#1用に割り当てられると想定する。また、端末10は、周波数領域リソース#1及び#2のRB数が周波数領域リソース#0のRB数(ここでは、6RB)と等しいと想定する。 As shown in FIG. 17, the CORESET information includes offset information indicating an offset common to each frequency domain resource for the second and subsequent repetitions, and repetition information indicating the repetition number R of PDCCH (or CORESET). good. The terminal 10 is from the frequency domain resource # 1 and the start RB group of the frequency domain resource # 1 shifted by the common offset nf from the start RB group of the frequency domain resource # 0 and the frequency domain resource # 0 indicated by the frequency domain resource information. It is assumed that the frequency domain resource # 2 shifted by the common offset n f is allocated for CORESET # 1. Further, the terminal 10 assumes that the number of RBs of the frequency domain resources # 1 and # 2 is equal to the number of RBs of the frequency domain resource # 0 (here, 6 RB).
 以上のように、繰り返し用サーチスペースが単一のCORESETに関連付けられる場合、当該単一のCORESET用に複数の周波数領域リソースを設定することで、複数の周波数領域リソース間でPDCCHを繰り返すことができる。この場合、上記CORESET情報の変更により、上記サーチスペース情報を変更せずとも、複数の周波数領域リソース間でのPDCCHの繰り返しを実現できる。 As described above, when the repeat search space is associated with a single CORESET, PDCCH can be repeated among a plurality of frequency domain resources by setting a plurality of frequency domain resources for the single CORESET. .. In this case, by changing the CORESET information, it is possible to repeat PDCCH between a plurality of frequency domain resources without changing the search space information.
 (2.2)複数のCORESETに関連付けられる繰り返し用サーチスペース
 繰り返し用サーチスペースが複数のCORESETに関連付けられる場合、PDCCHが繰り返して送信される複数の周波数領域リソースは、当該複数のCORESETのそれぞれに対応してもよい。当該繰り返し用サーチスペースに関するサーチスペース情報は、当該複数のCORESETそれぞれの識別情報を含んでもよい。
(2.2) Repeated search space associated with a plurality of CORESETs When a repeated search space is associated with a plurality of CORESETs, the plurality of frequency domain resources to which the PDCCH is repeatedly transmitted correspond to each of the plurality of CORESETs. You may. The search space information regarding the repeatable search space may include identification information of each of the plurality of CORESETs.
 端末10は、上記複数のCORESETそれぞれの複数のCORESET情報に基づいて、当該複数のCORESETそれぞれの周波数領域リソースを決定する。具体的には、複数のCORESET情報の各々に含まれる周波数領域リソース情報に基づいて、当該複数のCORESETの各々の周波数領域リソースを決定する。 The terminal 10 determines the frequency domain resource of each of the plurality of CORESETs based on the plurality of CORESET information of each of the plurality of CORESETs. Specifically, the frequency domain resource of each of the plurality of CORESETs is determined based on the frequency domain resource information included in each of the plurality of CORESET information.
 図18は、本実施形態に係る繰り返し用の周波数領域リソースの第5の決定例を示す図である。例えば、図18では、繰り返し用サーチスペースとして利用されるサーチスペース#1にCORESET#1、#2及び#3が関連付けられており、CORESET#1、#2及び#3それぞれのCORESET情報は、周波数領域リソース#0、#1及び#2をそれぞれ示す周波数領域リソース情報を含むものとする。各周波数領域リソース情報は、図11で説明した通りである。 FIG. 18 is a diagram showing a fifth determination example of the frequency domain resource for repetition according to the present embodiment. For example, in FIG. 18, CORESET # 1, # 2 and # 3 are associated with the search space # 1 used as the repeatable search space, and the CORESET information of each of CORESET # 1, # 2 and # 3 is the frequency. It shall include frequency domain resource information indicating region resources # 0, # 1 and # 2, respectively. The frequency domain resource information is as described with reference to FIG.
 図18に示すように、端末10は、サーチスペース#1に関連付けられるCORESET#1、#2及び#3用の周波数領域リソース#0、#1及び#2のそれぞれにサーチスペース#1が配置されると想定してもよい。また、端末10は、例えば、CORESET#i(ここでは、i≧1)用の周波数領域リソースを用いて、i回目の繰り返しのPDCCHが送信されると想定して、CORESET#iに関連付けられるサーチスペース#1をモニタリングしてもよい。 As shown in FIG. 18, in the terminal 10, the search space # 1 is arranged in each of the frequency domain resources # 0, # 1 and # 2 for CORESET # 1, # 2 and # 3 associated with the search space # 1. You may assume that. Further, the terminal 10 uses the frequency domain resource for CORESET # i (here, i ≧ 1), for example, and assumes that the i-th repeated PDCCH is transmitted, and searches associated with CORESET # i. Space # 1 may be monitored.
 なお、図18では、繰り返し用サーチスペース#1に関連付けられるCORESET#1、#2及び#3のCORESET期間は同一であるものとするが、これに限られず、異なってもよい。このように、繰り返し用サーチスペース#1に複数のCORESETを関連付ける場合、CORESET期間、周波数領域リソース等を繰り返し毎に柔軟に設定できる。 Note that in FIG. 18, it is assumed that the CORESET periods of CORESET # 1, # 2, and # 3 associated with the repeatable search space # 1 are the same, but the CORESET period is not limited to this, and may be different. In this way, when a plurality of CORESETs are associated with the repeat search space # 1, the CORESET period, frequency domain resources, and the like can be flexibly set for each iteration.
 図19は、本実施形態に係るサーチスペース情報の一例を示す図である。例えば、図19では、サーチスペース情報としてのRRC IE「SearchSpace」が、繰り返し用サーチスペースに関連付けられる複数のCORESETの識別情報を含む一例が示される。 FIG. 19 is a diagram showing an example of search space information according to the present embodiment. For example, FIG. 19 shows an example in which the RRC IE “SearchSpace” as the search space information includes identification information of a plurality of CORESETs associated with the repeating search space.
 例えば、図19に示されるRRC IE「SearchSpace」では、初回送信(1回目)のPDCCHのモニタリング用の繰り返しサーチスペースが配置されるCORESETは、RRC IE「controlResourceSetId」によって示されてもよい。一方、2回目以降のPDCCHのモニタリング用の繰り返しサーチスペースが配置されるCORESETは、RRC IE「controlResourceSetRepetition-r17」によって示されてもよい。 For example, in the RRC IE "Search Space" shown in FIG. 19, the CORESET in which the repeated search space for monitoring the PDCCH of the first transmission (first time) is arranged may be indicated by the RRC IE "controlResourceSetId". On the other hand, the CORESET in which the repeated search space for the second and subsequent PDCCH monitoring is arranged may be indicated by RRC IE "controlResourceSetRepetition-r17".
 このように、サーチスペース情報は、初回送信用のCORESETの識別情報(例えば、RRC IE「controlResourceSetId」)に加えて、2回目以降用のCORESETの識別情報(例えば、RRC IE「ControlResoruceSetId」)のリスト(例えば、RRC IE「controlResourceSetRepetition-r17」)を含んでもよい。当該リスト内のエントリーの数は、例えば、繰り返し数R-1と等しくてもよい。 In this way, the search space information is a list of CORESET identification information (for example, RRC IE "ControlResoruceSetId") for the second and subsequent transmissions in addition to the CORESET identification information for the first transmission (for example, RRC IE "controlResourceSetId"). (For example, RRC IE "controlResourceSetRepetition-r17") may be included. The number of entries in the list may be, for example, equal to the number of iterations R-1.
 以上のような繰り返し用のCORESETに関するCORESET情報は、初回送信用のCORESETと区別して、基地局20から端末10に通知されてもよい。具体的には、当該CORESET情報のリストは、PDCCHに関する情報(以下、「PDCCH情報」という)に含まれてもよい。PDCCH情報は、端末10に個別のPDCCH情報(以下、「個別PDCCH情報」という)、及び/又は、一以上の端末10に共通のPDCCH情報(以下、「共通PDCCH情報」という)を含んでもよい。 The CORESET information regarding the CORESET for repetition as described above may be notified from the base station 20 to the terminal 10 in distinction from the CORESET for the initial transmission. Specifically, the list of the CORESET information may be included in the information regarding PDCCH (hereinafter, referred to as "PDCCH information"). The PDCCH information may include individual PDCCH information (hereinafter referred to as "individual PDCCH information") in the terminal 10 and / or PDCCH information common to one or more terminals 10 (hereinafter referred to as "common PDCCH information"). ..
 図20は、本実施形態に係るPDCCH情報の一例を示す図である。図20では、個別PDCCH情報としてのRRC IE「PDCCH-Config」、及び、共通PDCCH情報としてのRRC IE「PDCCH-ConfigCommon」が、繰り返し用サーチスペースに関連付けられる複数のCORESETのCORESET情報及び識別情報を含む一例が示される。 FIG. 20 is a diagram showing an example of PDCCH information according to the present embodiment. In FIG. 20, RRC IE “PDCCH-Config” as individual PDCCH information and RRC IE “PDCCH-ConfigCommon” as common PDCCH information provide CORESET information and identification information of a plurality of CORESETs associated with the repeat search space. An example including is shown.
 例えば、図20に示されるRRC IE「PDCCH-Config」は、RRC IE「repetitionControlResourceSetToAddModList-r17」を含み、RRC IE「repetitionControlResourceSetToAddModList-r17」は、2回目以降のPDCCHのモニタリング用の繰り返しサーチスペースが配置されるCORESETのCORESET情報としてのRRC IE「ControlResourceSet」のリストであってもよい。また、RRC IE「PDCCH-Config」は、当該CORESETの識別情報としてのRRC IE「ControlResourceSetId」のリストであるRRC IE「repetitionControlResourceSetToReleaseList-r17」を含んでもよい。また、図20に示されるRRC IE「PDCCH-ConfigCommon」は、上記RRC IE「repetitionControlResourceSetToAddModList-r17」を含んでもよい。 For example, the RRC IE "PDCCH-Config" shown in FIG. 20 includes the RRC IE "repetitionControlResourceSetToAddModList-r17", and the RRC IE "repetitionControlResourceSetToAddModList-r17" has a repeated search space for monitoring the PDCCH for the second and subsequent times. It may be a list of RRC IE "Control Resource Set" as CORESET information. Further, the RRC IE "PDCCH-Config" may include the RRC IE "repetitionControlResourceSetToReleaseList-r17" which is a list of the RRC IE "ControlResourceSetId" as the identification information of the CORESET. Further, the RRC IE "PDCCH-ConfigCommon" shown in FIG. 20 may include the above RRC IE "repetitionControlResourceSetToAddModList-r17".
 このように、個別PDCCH情報及び共通PDCCH情報が、繰り返し用サーチスペースが配置されるCORESETのCORESET情報(例えば、RRC IE「repetitionControlResourceSetToAddModList-r17」)を含むことにより、端末10に個別のPDCCH、及び、一以上の端末10に共通のPDCCHの双方を複数のCORESETを用いて繰り返して伝送できる。 In this way, the individual PDCCH information and the common PDCCH information include the CORESET information (for example, RRC IE "repetitionControlResourceSetToAddModList-r17") in which the search space for repetition is arranged, so that the individual PDCCH and the terminal 10 have individual PDCCH and the terminal 10. Both PDCCHs common to one or more terminals 10 can be repeatedly transmitted using a plurality of CORESETs.
 以上のように、繰り返し用サーチスペースが複数のCORESETに関連付けられる場合、当該複数のCORESETそれぞれに対応する複数の周波数領域リソースを設定することで、複数の周波数領域リソース間でPDCCHを繰り返すことができる。この場合、上記サーチスペース情報及び/又はPDCCH情報の変更により、上記CORESET情報を変更せずとも、複数の周波数領域リソース間でのPDCCHの繰り返しを実現できる。 As described above, when the repeat search space is associated with a plurality of CORESETs, PDCCH can be repeated among the plurality of frequency domain resources by setting a plurality of frequency domain resources corresponding to each of the plurality of CORESETs. .. In this case, by changing the search space information and / or the PDCCH information, it is possible to repeat the PDCCH between a plurality of frequency domain resources without changing the CORESET information.
 (3)第1及び第2のPDCCHモニタリングの組み合わせ
 上記第1のPDCCHモニタリングでは、端末10は、異なる時間領域リソース間(例えば、スロット間及び/又は同一のスロット内のシンボル間)で、同一の周波数領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを制御する場合を想定したが、これに限られない。
(3) Combination of 1st and 2nd PDCCH Monitoring In the 1st PDCCH monitoring, the terminals 10 are the same between different time domain resources (for example, between slots and / or between symbols in the same slot). It is assumed that the monitoring of the PDCCH repeatedly transmitted is controlled by using the frequency domain resource, but the present invention is not limited to this.
 上記第1のPDCCHモニタリングでは、端末10は、異なる時間領域リソース間(例えば、スロット間及び/又は同一のスロット内のシンボル間)で、異なる周波数領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを制御してもよい。すなわち、第1のPDCCHモニタリングは、第2のPDCCHモニタリングと組み合わせることができる。 In the first PDCCH monitoring, the terminal 10 monitors PDCCH repeatedly transmitted between different time domain resources (for example, between slots and / or between symbols in the same slot) using different frequency domain resources. May be controlled. That is, the first PDCCH monitoring can be combined with the second PDCCH monitoring.
 また、上記第2のPDCCHモニタリングでは、端末10は、所定周期のモニタリング期間内の同一の時間領域リソースにおいて、一以上のCORESETに対応する複数の周波数領域リソース間で繰り返して送信されるPDCCHのモニタリングを制御する場合を想定したが、これに限られない。 Further, in the second PDCCH monitoring, the terminal 10 monitors the PDCCH repeatedly transmitted between a plurality of frequency domain resources corresponding to one or more CORESETs in the same time domain resource within the monitoring period of a predetermined cycle. Is assumed to be controlled, but it is not limited to this.
 上記第2のPDCCHモニタリングでは、端末10は、所定周期のモニタリング期間内の異なる時間領域リソースにおいて、一以上のCORESETに対応する複数の周波数領域リソース間で繰り返して送信されるPDCCHのモニタリングを制御してもよい。すなわち、第2のPDCCHモニタリングは、第1のPDCCHモニタリングと組み合わせることができる。 In the second PDCCH monitoring, the terminal 10 controls monitoring of PDCCH repeatedly transmitted between a plurality of frequency domain resources corresponding to one or more CORESETs in different time domain resources within a monitoring period of a predetermined cycle. You may. That is, the second PDCCH monitoring can be combined with the first PDCCH monitoring.
 このように、第1及び第2のPDCCHモニタリングの組み合わせにより、所定周期のモニタリング期間内の時間領域リソース毎に異なる周波数領域リソースを用いてPDCCHを繰り返すことは、「周波数ホッピング(frequency hopping)」と呼ばれてもよい。 In this way, repeating PDCCH using different frequency domain resources for each time domain resource within the monitoring period of a predetermined cycle by combining the first and second PDCCH monitoring is called "frequency hopping". May be called.
 図21は、本実施形態に係る周波数ホッピングが適用されたPDCCHの繰り返し送信の一例を示す図である。例えば、図21では、一例として、図2に示すスロット間繰り返しと、図11に示す繰り返し用の周波数領域リソースの第1の決定例と、の組み合わせが示される。なお、図示しないが、第1及び第2のPDCCHモニタリングで説明したどのような態様が組み合わせられてもよいことは勿論である。 FIG. 21 is a diagram showing an example of repeated transmission of PDCCH to which frequency hopping according to the present embodiment is applied. For example, FIG. 21 shows, as an example, a combination of the slot-to-slot repetition shown in FIG. 2 and the first determination example of the frequency domain resource for repetition shown in FIG. Although not shown, it goes without saying that any aspect described in the first and second PDCCH monitoring may be combined.
 図21に示すように、繰り返し用のモニタリングスロット#0及び#1間では、CORESET#1に対応する異なる周波数領域リソース#0及び#1が使用される。端末10は、モニタリングスロット#0では周波数領域リソース#0を用いて1回目のPDCCHが送信されるのに対して、モニタリングスロット#1では周波数領域リソース#1を用いて2回目のPDCCHが送信されると想定し、サーチスペース#1のモニタリングを制御してもよい。 As shown in FIG. 21, different frequency domain resources # 0 and # 1 corresponding to CORESET # 1 are used between the repeat monitoring slots # 0 and # 1. In the terminal 10, the first PDCCH is transmitted in the monitoring slot # 0 using the frequency domain resource # 0, whereas the second PDCCH is transmitted in the monitoring slot # 1 using the frequency domain resource # 1. Assuming that, the monitoring of the search space # 1 may be controlled.
 なお、図21では、繰り返し用サーチスペース#1に関連付けられるCORESET#1用に、PDCCHの繰り返し数R(例えば、図21では、R=2)と等しい数の周波数領域リソース#0及び#1が設定されるものとするが、これに限られない。当該CORESET#1用に設定される周波数領域リソースの数NFRは、繰り返し数Rよりも少なくてもよいし、大きくてもよい。繰り返し数R>周波数領域リソースの数NFRである場合、所定数の繰り返し毎に同一の周波数領域リソースに繰り返し用サーチスペースが配置されてもよい。例えば、奇数回目の繰り返しには周波数領域リソース#0が使用され、偶数回目の繰り返しには周波数領域リソース#1が使用されてもよい。 In FIG. 21, frequency domain resources # 0 and # 1 having a number equal to the repetition number R of PDCCH (for example, R = 2 in FIG. 21) are provided for COSET # 1 associated with the repetition search space # 1. It shall be set, but it is not limited to this. The number NFR of the frequency domain resources set for the CORESET # 1 may be less than or greater than the number of repetitions R. When the number of repetitions R> the number of frequency domain resources NFR , the repetition search space may be arranged in the same frequency domain resource for each predetermined number of repetitions. For example, the frequency domain resource # 0 may be used for the odd-numbered repetition, and the frequency domain resource # 1 may be used for the even-numbered repetition.
 (4)サーチスペースグループの切り替え制御
 次に、サーチスペースグループの切り替え制御について説明する。本実施形態において、上記(1)~(3)で説明した繰り返し用サーチスペースは、一以上のサーチスペースグループに関連付けられてもよい。例えば、サーチスペース情報(例えば、RRC IE「SearchSpace」)は、当該繰り返し用サーチスペースが関連付けられる一以上のサーチスペースグループを示すサーチスペースグループ情報(例えば、RRC IE「searchSpaceGroupIdList」)を含んでもよい。
(4) Search space group switching control Next, search space group switching control will be described. In the present embodiment, the repetitive search spaces described in (1) to (3) above may be associated with one or more search space groups. For example, the search space information (eg, RRC IE "SearchSpace") may include search space group information (eg, RRC IE "searchSpaceGroupIdList") indicating one or more search space groups associated with the repeating search space.
 端末10は、DCIの所定フィールドの値に基づいて、サーチスペースグループの切り替えを制御する。図22は、本実施形態に係るサーチスペースグループの切り替えの一例を示す図である。図22では、端末10が、繰り返して送信されるPDCCHのモニタリングに用いるサーチスペースグループを、サーチスペースグループ#1から#2に切り替える一例が示される。 The terminal 10 controls the switching of the search space group based on the value of the predetermined field of DCI. FIG. 22 is a diagram showing an example of switching the search space group according to the present embodiment. FIG. 22 shows an example in which the terminal 10 switches the search space group used for monitoring the repeatedly transmitted PDCCH from the search space groups # 1 to # 2.
 例えば、図22では、サーチスペースグループ#2に関連付けられる繰り返し用サーチスペースのモニタリング周期kは、サーチスペースグループ#1に関連付けられる繰り返し用サーチスペースのモニタリング周期kよりも長い。なお、図22では、サーチスペースグループ#1及び#2にそれぞれ関連付けられるサーチスペースのモニタリング期間T及びTは同一であるものとするが、これに限られない。各サーチスペースグループに関連付けられるサーチスペースの構成(例えば、モニタリング周期k、モニタリング期間T、モニタリング期間Tの開始スロット、アグリゲーションレベル毎のPDCCH候補の数、モニタリングスロット内でサーチスペースが配置されるシンボル等)は、当該サーチスペース用のサーチスペース情報によって自由に設定可能である。 For example, in FIG. 22, the monitoring cycle k 2 of the repeating search space associated with the search space group # 2 is longer than the monitoring cycle k 1 of the repeating search space associated with the search space group # 1. In FIG. 22, it is assumed that the monitoring periods T1 and T2 of the search spaces associated with the search space groups # 1 and # 2 , respectively, are the same, but the present invention is not limited to this. The configuration of the search space associated with each search space group (for example, monitoring cycle k, monitoring period T, start slot of monitoring period T, number of PDCCH candidates for each aggregation level, symbols in which the search space is arranged in the monitoring slot, etc. ) Can be freely set according to the search space information for the search space.
 図22では、端末10は、DCI内の所定フィールドの値に基づいて、サーチスペースグループの切り替えを制御する。また、端末10は、当該DCI内の所定フィールドの値に基づいて、当該サーチスペースグループに関連付けられる繰り返し用サーチスペースを用いたPDCCHのモニタリングを制御する。 In FIG. 22, the terminal 10 controls the switching of the search space group based on the value of the predetermined field in the DCI. Further, the terminal 10 controls PDCCH monitoring using the repeating search space associated with the search space group based on the value of the predetermined field in the DCI.
 図23は、本実施形態に係るサーチスペースグループの切り替え制御に用いられるDCIの一例を示す図である。図23に示すように、当該DCIは、下り共有チャネルのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット1_X)、又は、上り共有チャネルのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット0_X)であってもよい。ここで、Xは、任意の整数である。 FIG. 23 is a diagram showing an example of DCI used for switching control of the search space group according to the present embodiment. As shown in FIG. 23, the DCI is a DCI format used for scheduling a downlink shared channel (for example, DCI format 1_X) or a DCI format used for scheduling an uplink shared channel (for example, DCI format 0_X). You may. Here, X is an arbitrary integer.
 以下では、下り共有チャネル及び上り共有チャネルの一例として、物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH)及び物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH)を説明するが、下り共有チャネル及び上り共有チャネルの名称は、ユーザデータ及び/又は上位レイヤパラメータの伝送に用いられるチャネルであれば、その名称は、PDSCH及びPUSCHに限られない。 In the following, as an example of the downlink shared channel and the uplink shared channel, the physical downlink shared channel (Physical Downlink Shared Channel: PDSCH) and the physical uplink shared channel (Physical Uplink Shared Channel: PUSCH) will be described, but the downlink shared channel and the uplink shared channel will be described. The name of the channel is not limited to PDSCH and PUSCH as long as it is a channel used for transmitting user data and / or upper layer parameters.
 図23に示すように、DCIフォーマット1_X又は0_Xは、サーチスペースグループの切り替えに用いられるサーチスペースグループ切り替えフィールド、及び、PDSCH又はPUSCHに割り当てられるリソースを示すリソース割り当てフィールド等を含んでもよい。 As shown in FIG. 23, the DCI format 1_X or 0_X may include a search space group switching field used for switching the search space group, a resource allocation field indicating a resource allocated to the PDSCH or PUSCH, and the like.
 或いは、図23に示すように、上記DCIは、PDSCH又はPUSCHのスケジューリング以外に用いられるDCIフォーマット(例えば、DCIフォーマット2_X)であってもよい。ここで、Xは、任意の整数である。図23に示すように、DCIフォーマット2_Xは、M(M≧1)個のサーチスペースグループ切り替えフィールド#1~#Mを含んでもよい。ここで、Mは、例えば、端末10に設定されるセルCの数であってもよい。なお、DCIフォーマット2_Xは、図示するものに限られず、単一のサーチスペースグループ切り替えフィールドを含んでもよいことは勿論である。 Alternatively, as shown in FIG. 23, the DCI may be in a DCI format (for example, DCI format 2_X) used for other than PDSCH or PUSCH scheduling. Here, X is an arbitrary integer. As shown in FIG. 23, the DCI format 2_X may include M (M ≧ 1) search space group switching fields # 1 to # M. Here, M may be, for example, the number of cells C set in the terminal 10. It should be noted that the DCI format 2_X is not limited to that shown, and of course, a single search space group switching field may be included.
 図24は、本実施形態に係るサーチグループ切り替えフィールドの値の一例を示す図である。なお、図23及び24におけるサーチグループ切り替えフィールドは、DCI内の所定フィールドであればよく、名称は、これに限られない。また、図24では、サーチグループ切り替えフィールドが2ビットであるものとするが、これに限られず、1ビット以上であればよい。 FIG. 24 is a diagram showing an example of the value of the search group switching field according to the present embodiment. The search group switching field in FIGS. 23 and 24 may be a predetermined field in the DCI, and the name is not limited to this. Further, in FIG. 24, it is assumed that the search group switching field has 2 bits, but the present invention is not limited to this, and it may be 1 bit or more.
 図24に示すように、サーチグループ切り替えフィールドの各値は、切り替え先のサーチスペースグループを示してもよい。図24では、サーチグループ切り替えフィールドの各値が示す切り替え先のサーチスペースグループは、上位レイヤパラメータによって端末10に設定されるものとするが、これに限られず、予め仕様で定められてもよい。 As shown in FIG. 24, each value of the search group switching field may indicate the search space group of the switching destination. In FIG. 24, the search space group of the switching destination indicated by each value of the search group switching field is set in the terminal 10 by the upper layer parameter, but the present invention is not limited to this, and the search space group may be predetermined in the specifications.
 また、端末10は、サーチグループ切り替えフィールドの値は、当該値が示すサーチスペースグループに関連付けられるサーチスペースでモニタリングされるPDCCHの繰り返し数Rに関する情報を示してもよい。例えば、図24では、当該繰り返し数Rに関する情報は、パラメータ値r1~r4であるが、これに限られず、繰り返し数Rそのものであってもよい。端末10は、当該DCIとは別に、当該繰り返し数Rの最大値rep_maxを示す情報を受信する。 Further, the terminal 10 may indicate the value of the search group switching field as information regarding the number of repetitions R of PDCCH monitored in the search space associated with the search space group indicated by the value. For example, in FIG. 24, the information regarding the repetition number R is the parameter values r1 to r4, but the information is not limited to this, and may be the repetition number R itself. In addition to the DCI, the terminal 10 receives information indicating the maximum value rep_max of the repetition number R.
 図24に示すように、端末10は、当該最大値rep_maxと、上記サーチグループ切り替えフィールドの値が示すパラメータ値とによって、繰り返し数Rを決定してもよい。なお、図24は例示にすぎず、サーチグループ切り替えフィールドの各値に関連付けられる繰り返し数Rが仕様に定められてもよいことは勿論である。 As shown in FIG. 24, the terminal 10 may determine the number of repetitions R by the maximum value rep_max and the parameter value indicated by the value of the search group switching field. Note that FIG. 24 is merely an example, and it goes without saying that the number of repetitions R associated with each value of the search group switching field may be defined in the specifications.
 また、上記サーチグループ切り替えフィールドを含むDCIがPDSCH又はPUSCHのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット1_X又は0_X)である場合、端末10は、当該サーチグループ切り替えフィールドの値に基づいて、PDSCH又はPUSCHの繰り返し数Rを決定してもよい。このように、図23のDCIフォーマット1_X又は0_Xのサーチスペースグループ切り替えフィールドの値によって導出される繰り返し数Rは、PDSCH又はPUSCHの繰り返し数Rであってもよい。なお、当該PDSCH又はPUSCHの繰り返し数Rは、上記PDCCHの繰り返し数Rと同様に導出できる。 Further, when the DCI including the search group switching field is in the DCI format (for example, DCI format 1_X or 0_X) used for scheduling the PDSCH or PUSCH, the terminal 10 uses the PDSCH based on the value of the search group switching field. Alternatively, the number of repetitions R of PUSCH may be determined. As described above, the repetition number R derived from the value of the search space group switching field of the DCI format 1_X or 0_X in FIG. 23 may be the repetition number R of PDSCH or PUSCH. The repetition number R of the PDSCH or PUSCH can be derived in the same manner as the repetition number R of the PDCCH.
 また、PDSCH又はPUSCHのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット1_X又は0_X)は、上記サーチグループ切り替えフィールドの値とは別に、PDSCH又はPUSCHの繰り返し数Rの導出に用いられる所定フィールド値を含んでもよい。この場合、端末10は、当該サーチスペースグループ切り替えフィールドの値に基づいて、PDCCHの繰り返し数Rを決定し、当該所定フィールド値に基づいて、PDSCH又はPUSCHの繰り返し数Rを決定してもよい。 Further, the DCI format (for example, DCI format 1_X or 0_X) used for scheduling PDSCH or PUSCH uses a predetermined field value used for deriving the repetition number R of PDSCH or PUSCH in addition to the value of the search group switching field. It may be included. In this case, the terminal 10 may determine the repetition number R of PDCCH based on the value of the search space group switching field, and may determine the repetition number R of PDSCH or PUSCH based on the predetermined field value.
 また、端末10は、上記PDSCH又はPUSCHのスケジューリング以外に用いられるDCIフォーマット(例えば、DCIフォーマット2_X)内のサーチスペースグループ切り替えフィールドの値は、上記PDSCH及び/又はPUSCHの繰り返し数Rの導出に用いられてもよい。或いは、当該DCIフォーマット内のサーチスペースグループ切り替えフィールドの値は、PDCCHの繰り返し数Rの導出に用いられ、当該DCIフォーマット内の他のフィールド値がPDSCH又はPUSCHの繰り返し数Rの導出に用いられてもよい。 Further, the terminal 10 uses the value of the search space group switching field in the DCI format (for example, DCI format 2_X) used for scheduling other than the PDSCH or PUSCH scheduling to derive the repetition number R of the PDSCH and / or PUSCH. May be done. Alternatively, the value of the search space group switching field in the DCI format is used to derive the repetition number R of the PDCCH, and the other field values in the DCI format are used to derive the repetition number R of the PDSCH or PUSCH. May be good.
 以上のように、サーチスペースグループがDCIを用いて動的に切り替えられる場合に、当該サーチスペースグループに関連付けられるサーチスペースでモニタリングされるPDCCHの繰り返し数Rを動的に制御できる。よって、当該PDCCHのモニタリングを適切に制御できる。また、当該DCIによりスケジューリングされるPDSCH又はPUSCHの繰り返し数も動的に制御できる。 As described above, when the search space group is dynamically switched using DCI, the repetition number R of PDCCH monitored in the search space associated with the search space group can be dynamically controlled. Therefore, the monitoring of the PDCCH can be appropriately controlled. In addition, the number of PDSCH or PUSCH iterations scheduled by the DCI can be dynamically controlled.
 (無線通信システムの構成)
 次に、以上のような無線通信システム1の各装置の構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
(Configuration of wireless communication system)
Next, the configuration of each device of the wireless communication system 1 as described above will be described. It should be noted that the following configurations are for showing the configurations necessary for the description of the present embodiment, and do not exclude that each device includes functional blocks other than those shown in the drawings.
 <ハードウェア構成>
 図25は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、端末10、基地局20、CN30など)は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。
<Hardware configuration>
FIG. 25 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment. Each device (for example, terminal 10, base station 20, CN30, etc.) in the wireless communication system 1 includes a processor 11, a storage device 12, a communication device 13 that performs wired or wireless communication, an input device that accepts various input operations, and various types. The input / output device 14 that outputs information is included.
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ11は、プログラムを記憶装置12から読み出して実行することで、本実施形態で説明する各種の処理を実行してもよい。無線通信システム1内の各装置は、1又は複数のプロセッサ11により構成されていてもよい。また、当該各装置は、コンピュータと呼ばれてもよい。 The processor 11 is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1. The processor 11 may execute various processes described in the present embodiment by reading the program from the storage device 12 and executing the program. Each device in the wireless communication system 1 may be composed of one or a plurality of processors 11. In addition, each device may be called a computer.
 記憶装置12は、例えば、メモリ、HDD(Hard Disk Drive)及び/又はSSD(Solid State Drive)等のストレージから構成される。記憶装置12は、プロセッサ11による処理の実行に必要な各種情報(例えば、プロセッサ11によって実行されるプログラム等)を記憶してもよい。 The storage device 12 is composed of, for example, a memory, a storage such as an HDD (Hard Disk Drive) and / or an SSD (Solid State Drive). The storage device 12 may store various information (for example, a program executed by the processor 11) necessary for executing the process by the processor 11.
 通信装置13は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュール、チップ、アンテナ等を含んでもよい。また、通信装置13には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 13 is a device that communicates via a wired and / or wireless network, and may include, for example, a network card, a communication module, a chip, an antenna, and the like. Further, the communication device 13 may include an RF (Radio Frequency) device that performs processing related to an amplifier and a radio signal, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をパケットに変換する処理、及び、パケットをデジタルベースバンド信号に変換する処理を行う。 The RF device generates a radio signal transmitted from the antenna A by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna and transmits it to the BB device. The BB apparatus performs a process of converting a digital baseband signal into a packet and a process of converting a packet into a digital baseband signal.
 入出力装置14は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等の入力装置と、例えば、ディスプレイ及び/又はスピーカ等の出力装置とを含む。 The input / output device 14 includes, for example, an input device such as a keyboard, a touch panel, a mouse and / or a microphone, and an output device such as a display and / or a speaker.
 以上説明したハードウェア構成は一例に過ぎない。無線通信システム1内の各装置は、図25に記載したハードウェアの一部が省略されていてもよいし、図25に記載されていないハードウェアを備えていてもよい。また、図4に示すハードウェアが1又は複数のチップにより構成されていてもよい。 The hardware configuration explained above is just an example. Each device in the wireless communication system 1 may omit a part of the hardware shown in FIG. 25, or may include hardware not shown in FIG. 25. Further, the hardware shown in FIG. 4 may be composed of one or a plurality of chips.
 <機能ブロック構成>
 ≪端末≫
 図26は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。図26に示すように、端末10は、受信部101と、送信部102と、制御部103と、を備える。
<Functional block configuration>
≪Terminal≫
FIG. 26 is a diagram showing an example of the functional block configuration of the terminal according to the present embodiment. As shown in FIG. 26, the terminal 10 includes a receiving unit 101, a transmitting unit 102, and a control unit 103.
 なお、受信部101と送信部102とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部101と送信部102とが実現する機能の全部又は一部と、制御部103とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 Note that all or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized by using the communication device 13. Further, all or a part of the functions realized by the receiving unit 101 and the transmitting unit 102, and the control unit 103 can be realized by the processor 11 executing the program stored in the storage device 12. In addition, the program can be stored in a storage medium. The storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium). The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 受信部101は、下り信号を受信する。また、受信部101は、下り信号を介して伝送された情報及び/又はデータを受信してもよい。ここで、「受信する」とは、例えば、無線信号の受信、デマッピング、復調、復号、モニタリング、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。 The receiving unit 101 receives the downlink signal. Further, the receiving unit 101 may receive the information and / or data transmitted via the downlink signal. Here, "receiving" may include, for example, performing processing related to reception of at least one of reception, demapping, demodulation, decoding, monitoring, and measurement of a radio signal.
 下り信号は、例えば、上記PDCCH、PDSCH、下り参照信号、同期信号、報知チャネル等の少なくとも一つを含んでもよい。下り参照信号は、例えば、PDCCH又はPDSCHの復調用参照信号(Demodulation Reference Signal:DMRS)等を含んでもよい。 The downlink signal may include, for example, at least one of the PDCCH, PDSCH, downlink reference signal, synchronization signal, broadcast channel, and the like. The downlink reference signal may include, for example, a PDCCH or a PDSCH demodulation reference signal (Demodulation Reference Signal: DMRS) or the like.
 また、受信部101は、DCIを受信する。具体的には、受信部101は、サーチスペースのモニタリングによりPDCCHを検出し、当該PDCCHを介して伝送されるDCIを受信してもよい。受信部101は、DCIに基づいてPDSCHを受信し、PDSCHを介して伝送されるユーザデータ及び/又は上位レイヤパラメータを受信してもよい。また、受信部101は、サーチスペースグループの切り替えに用いられる所定フィールドの値を含むDCIを送信してもよい(例えば、図23)。 Also, the receiving unit 101 receives the DCI. Specifically, the receiving unit 101 may detect the PDCCH by monitoring the search space and receive the DCI transmitted via the PDCCH. The receiving unit 101 may receive the PDSCH based on the DCI, and may receive the user data and / or the upper layer parameter transmitted via the PDSCH. Further, the receiving unit 101 may transmit a DCI including a value of a predetermined field used for switching the search space group (for example, FIG. 23).
 受信部101は、制御リソースセット(CORESET)に関連付けられるサーチスペースに関するサーチスペース情報(例えば、図9、19)を受信してもよい。また、受信部101は、サーチスペースに関連付けられる一以上のCORESETに関するCORESET情報(例えば、図12、14、16)を受信してもよい。 The receiving unit 101 may receive search space information (for example, FIGS. 9 and 19) related to the search space associated with the control resource set (CORESET). In addition, the receiving unit 101 may receive CORESET information (for example, FIGS. 12, 14, 16) relating to one or more CORESETs associated with the search space.
 また、受信部101は、上記PDCCH情報(例えば、図20)を受信してもよい。PDCCH情報は、端末10に設定される所定帯域幅(例えば、BWP又はセルC)毎であってもよく、当該所定帯域幅内で利用される一以上のCORESETに関するCORESET情報、及び、一以上のサーチスペースに関するサーチスペース情報を含んでもよい。 Further, the receiving unit 101 may receive the PDCCH information (for example, FIG. 20). The PDCCH information may be for each predetermined bandwidth (for example, BWP or cell C) set in the terminal 10, and the CORESET information regarding one or more CORESETs used within the predetermined bandwidth and one or more CORESET information. It may include search space information about the search space.
 また、受信部101は、繰り返し数Rの最大値を示す情報を受信してもよい(例えば、図24)。当該情報は、上記サーチスペース情報に含まれてもよい。 Further, the receiving unit 101 may receive information indicating the maximum value of the number of repetitions R (for example, FIG. 24). The information may be included in the search space information.
 また、受信部101は、繰り返して送信されるPDCCHを合成して、合成結果に基づいてDCIを復号してもよい。又は、受信部101は、繰り返して送信されるPDCCHを合成せずに、各PDCCHに基づいてDCIを復号してもよい。 Further, the receiving unit 101 may synthesize the PDCCH repeatedly transmitted and decode the DCI based on the synthesis result. Alternatively, the receiving unit 101 may decode the DCI based on each PDCCH without synthesizing the PDCCH repeatedly transmitted.
 送信部102は、上り信号を送信する。また、送信部102は、上り信号を介して伝送される情報及び/又はデータを送信してもよい。ここで、「送信する」とは、例えば、符号化、変調、マッピング、無線信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。上り信号は、例えば、上記PUSCH、上り参照信号等の少なくとも一つを含んでもよい。上り参照信号は、例えば、PUSCHのDMRS等を含んでもよい。 The transmission unit 102 transmits an uplink signal. Further, the transmission unit 102 may transmit information and / or data transmitted via an uplink signal. Here, "transmitting" may include performing processing related to transmission such as at least one of coding, modulation, mapping, and transmission of a radio signal, for example. The uplink signal may include, for example, at least one of the PUSCH, uplink reference signal, and the like. The uplink reference signal may include, for example, a PUSCH DMRS or the like.
 制御部103は、端末10における各種制御を行う。具体的には、制御部103は、上記サーチスペース情報及び/又は上記CORESET情報に基づいて、所定周期のモニタリング期間T内におけるサーチスペースを用いた下り制御チャネルのモニタリングを制御してもよい。 The control unit 103 performs various controls on the terminal 10. Specifically, the control unit 103 may control the monitoring of the downlink control channel using the search space within the monitoring period T of a predetermined cycle based on the search space information and / or the CORESET information.
 制御部103は、上記サーチスペース情報に含まれるPDCCHの繰り返しに関する繰り返し情報に基づいて、モニタリング期間T内の異なるスロット間及び/又は同一のスロット内で繰り返して送信されるPDCCHのモニタリングを制御してもよい(上記(1)参照)。 The control unit 103 controls the monitoring of the PDCCH repeatedly transmitted between different slots within the monitoring period T and / or within the same slot based on the repetition information regarding the repetition of the PDCCH included in the search space information. It may be (see (1) above).
 ここで、上記繰り返し情報は、PDCCHの繰り返し数Rを示す情報を含んでもよい。制御部103は、当該繰り返し数Rに基づいて、上記異なるスロットを決定してもよい(例えば、図4~6、8及び9)。 Here, the repetition information may include information indicating the repetition number R of PDCCH. The control unit 103 may determine the different slots based on the number of repetitions R (for example, FIGS. 4 to 6, 8 and 9).
 また、上記繰り返し情報は、PDCCHの繰り返し数Rの最大値を示す情報を含んでもよい。制御部103は、当該最大値及びDCI内の所定フィールド値に基づいて決定される繰り返し数Rに基づいて、上記異なるスロットを決定してもよい(例えば、図4~6、8及び10)。 Further, the repetition information may include information indicating the maximum value of the repetition number R of PDCCH. The control unit 103 may determine the different slots based on the number of iterations R determined based on the maximum value and a predetermined field value in the DCI (eg, FIGS. 4-6, 8 and 10).
 また、上記繰り返し情報は、PDCCHの繰り返しの開始スロット#kを示す情報を含んでもよい。制御部103は、開始スロット#kに基づいて、前記異なるスロットを決定してもよい(例えば、図4~8)。 Further, the repetition information may include information indicating the start slot # k 0 of the repetition of PDCCH. The control unit 103 may determine the different slots based on the start slot # k 0 (eg, FIGS. 4-8).
 なお、上記異なるスロットは、所定周期のモニタリング期間Tのうちの1モニタリング期間T内の複数のスロットであってもよいし(例えば、図4)、又は、所定周期のモニタリング期間Tのうちの複数の期間に跨る複数のスロットであってもよい(例えば、図5、6及び8)。 The different slots may be a plurality of slots within one monitoring period T of the predetermined cycle monitoring period T (for example, FIG. 4), or a plurality of the plurality of monitoring periods T of the predetermined cycle. There may be a plurality of slots spanning the period of (for example, FIGS. 5, 6 and 8).
 また、上記繰り返し情報は、PDCCHが繰り返されるシンボルを示す繰り返しシンボル情報を含んでもよい。制御部103は、繰り返しシンボル情報と、PDCCHをモニタリングするシンボルを示すモニタリングシンボル情報と、に基づいて、上記同一のスロット内でPDCCHをモニタリングする複数のシンボルを決定してもよい(例えば、図7及び8)。 Further, the repetitive information may include repetitive symbol information indicating a symbol in which PDCCH is repeated. The control unit 103 may determine a plurality of symbols for monitoring the PDCCH in the same slot based on the repetitive symbol information and the monitoring symbol information indicating the symbol for monitoring the PDCCH (for example, FIG. 7). And 8).
 制御部103は、上記異なるスロット間及び/又は上記同一のスロット内で、同一の周波数領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを制御してもよい(上記(1)参照)。また、制御部103は、上記異なるスロット及び/又は前記同一のスロット内で、異なる周波数領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを制御してもよい(上記(3)参照、例えば、図21)。 The control unit 103 may control the monitoring of PDCCH repeatedly transmitted using the same frequency domain resource between the different slots and / or within the same slot (see (1) above). Further, the control unit 103 may control monitoring of PDCCH repeatedly transmitted using different frequency domain resources in the different slots and / or the same slot (see (3) above, for example, FIG. 21).
 制御部103は、上記一以上のCORESETに対応する複数の周波数領域リソース間で繰り返して送信される、PDCCHのモニタリングを制御してもよい(上記(2)参照)。 The control unit 103 may control PDCCH monitoring that is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more CORESETs (see (2) above).
 ここで、サーチスペースは単一のCORESETに関連付けられ、上記複数の周波数領域リソースは、当該単一のCORESETに対応してもよい(上記(2.1)参照)。 Here, the search space is associated with a single CORESET, and the plurality of frequency domain resources may correspond to the single CORESET (see (2.1) above).
 当該単一のCORESET用のCORESET情報は、上記複数の周波数領域リソースをそれぞれ示す複数の周波数領域リソース情報を含んでもよい。制御部103は、上記複数の周波数領域リソース情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図11及び12)。 The CORESET information for the single CORESET may include a plurality of frequency domain resource information indicating each of the plurality of frequency domain resources. The control unit 103 may determine the plurality of frequency domain resources based on the plurality of frequency domain resource information (for example, FIGS. 11 and 12).
 また、当該単一のCORESET用のCORESET情報は、上記周波数領域リソースのうちの一つを示す周波数領域リソース情報と、PDCCHルの繰り返し数Rを示す繰り返し数情報を含んでもよい。制御部103は、周波数領域リソース情報及び繰り返し数情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図13及び14)。 Further, the CORESET information for the single CORESET may include the frequency domain resource information indicating one of the frequency domain resources and the repetition number information indicating the repetition number R of the PDCCH. The control unit 103 may determine the plurality of frequency domain resources based on the frequency domain resource information and the repetition number information (for example, FIGS. 13 and 14).
 また、当該単一のCORESET用のCORESET情報は、上記複数の周波数領域リソースのうちの一つを示す周波数領域リソース情報と、前記複数の周波数領域リソースのうちの他の周波数領域リソース用のオフセットを示すオフセット情報と、を含んでもよい。制御部103は、周波数領域リソース情報及びオフセット情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図15~17)。 Further, the CORESET information for the single CORESET includes the frequency domain resource information indicating one of the plurality of frequency domain resources and the offset for the other frequency domain resource among the plurality of frequency domain resources. It may include the indicated offset information. The control unit 103 may determine the plurality of frequency domain resources based on the frequency domain resource information and the offset information (for example, FIGS. 15 to 17).
 また、サーチスペースは複数のCORESETに関連付けられ、上記複数の周波数領域リソースは、当該複数のCORESETにそれぞれ対応してもよい(上記(2.2)参照)。 Further, the search space is associated with a plurality of CORESETs, and the plurality of frequency domain resources may correspond to the plurality of CORESETs (see (2.2) above).
 制御部103は、当該複数のCORESETそれぞれに関する複数のCORESET情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図18~20)。 The control unit 103 may determine the plurality of frequency domain resources based on the plurality of CORESET information related to each of the plurality of CORESETs (for example, FIGS. 18 to 20).
 制御部103は、上記サーチスペース情報に基づいてサーチスペースを用いてPDCCHのモニタリングする所定周期のモニタリング期間Tを決定してもよい。また、制御部103は、当該モニタリング期間T内の同一の時間領域リソースに対応する上記複数の周波数領域リソースを決定してもよい(上記(2)参照)。又は、当該モニタリング期間T内の異なる時間領域リソースに対応する複数の周波数領域リソースを決定してもよい(上記(3)参照、例えば、図21)。 The control unit 103 may determine the monitoring period T of a predetermined cycle for monitoring the PDCCH using the search space based on the search space information. Further, the control unit 103 may determine the plurality of frequency domain resources corresponding to the same time domain resource within the monitoring period T (see (2) above). Alternatively, a plurality of frequency domain resources corresponding to different time domain resources within the monitoring period T may be determined (see (3) above, for example, FIG. 21).
 また、制御部103は、受信部101がi+1(0≦i<R-1)回目のPDCCHの復号に成功した場合、i+2回目以降のPDCCHのモニタリングを中止してもよい。例えば、制御部103は、スロット#kにおけるi+1回目のPDCCHの復号に成功した場合、スロット#ki+1以降に設けられる繰り返し用サーチスペースのモニタリングを中止してもよいし、又は、繰り返し数R分モニタリングを継続してもよい。同様に、制御部103は、周波数リソース#iにおけるi+1回目のPDCCHの復号に成功した場合、周波数リソース#i+1以降に設けられる繰り返し用サーチスペースのモニタリングを中止してもよいし、又は、繰り返し数R分モニタリングを継続してもよい。 Further, when the receiving unit 101 succeeds in decoding the i + 1 (0 ≦ i <R-1) PDCCH, the control unit 103 may stop the i + 2nd and subsequent PDCCH monitoring. For example, when the control unit 103 succeeds in decoding the i + 1th PDCCH in the slot # ki, the monitoring of the repeat search space provided after the slot # ki + 1 may be stopped, or the repetition number R may be stopped. Minute monitoring may be continued. Similarly, when the control unit 103 succeeds in decoding the i + 1th PDCCH in the frequency resource # i, the monitoring of the repeat search space provided after the frequency resource # i + 1 may be stopped, or the number of repetitions may be stopped. R-minute monitoring may be continued.
 また、制御部103は、DCI内の所定フィールドの値に基づいて、サーチスペースグループの切り替えを制御してもよい。制御部103は、当該所定フィールドの値に基づいて、当該サーチスペースグループに関連付けられるサーチスペースを用いてモニタリングされるPDCCHの繰り返し数Rを決定してもよい(上記(4)参照)。 Further, the control unit 103 may control the switching of the search space group based on the value of the predetermined field in the DCI. The control unit 103 may determine the number of repetitions R of the PDCCH monitored using the search space associated with the search space group based on the value of the predetermined field (see (4) above).
 また、制御部103は、PDCCHの繰り返し数Rの最大値及びDCI内の所定フィールド値に基づいて、切り替え後のサーチスペースグループに関連付けられるサーチスペースを用いてモニタリングされるPDCCHの繰り返し数Rを決定してもよい(例えば、図24)。 Further, the control unit 103 determines the number of repetitions R of the PDCCH to be monitored using the search space associated with the search space group after switching, based on the maximum value of the number of repetitions R of the PDCCH and the predetermined field value in the DCI. It may be done (for example, FIG. 24).
 また、制御部103は、DCI内の所定フィールドの値に基づいて、サーチスペースグループの切り替えを制御する場合、当該DCIによりスケジューリングされるPDSCH又はPUSCHの繰り返し数を決定してもよい。 Further, when the control unit 103 controls the switching of the search space group based on the value of the predetermined field in the DCI, the control unit 103 may determine the number of repetitions of the PDSCH or PUSCH scheduled by the DCI.
 ≪基地局≫
 図27は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。図27に示すように、基地局20は、受信部201と、送信部202と、制御部203と、を備える。
≪Base station≫
FIG. 27 is a diagram showing an example of the functional block configuration of the base station according to the present embodiment. As shown in FIG. 27, the base station 20 includes a receiving unit 201, a transmitting unit 202, and a control unit 203.
 なお、受信部201と送信部202とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部201と送信部202とが実現する機能の全部又は一部と、制御部203とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 Note that all or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized by using the communication device 13. Further, all or a part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing the program stored in the storage device 12. In addition, the program can be stored in a storage medium. The storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer. The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 受信部201は、上記上り信号を受信する。また、受信部201は、上記上り信号を介して伝送された情報及び/又はデータを受信してもよい。 The receiving unit 201 receives the upstream signal. In addition, the receiving unit 201 may receive the information and / or data transmitted via the uplink signal.
 送信部202は、上記下り信号を送信する。また、送信部202は、上記下り信号を介して伝送される情報及び/又はデータを送信してもよい。 The transmission unit 202 transmits the downlink signal. Further, the transmission unit 202 may transmit information and / or data transmitted via the downlink signal.
 また、送信部202は、DCIを送信する。具体的には、送信部202は、PDCCHを介してDCIを送信してもよい。送信部202は、DCIによりスケジューリングされるPDSCHを送信してもよい。 Further, the transmission unit 202 transmits DCI. Specifically, the transmission unit 202 may transmit DCI via PDCCH. The transmission unit 202 may transmit the PDSCH scheduled by DCI.
 また、送信部202は、サーチスペースグループの切り替えに用いられる所定フィールドの値を含むDCIを送信してもよい(例えば、図23)。当該所定フィールドの値は、前記サーチスペースグループに関連付けられるサーチスペースを用いてモニタリングされる下り制御チャネルの繰り返し数に関する情報を示してもよい。当該所定フィールドの値は、前記下り制御情報によりスケジューリングされる下り共有チャネル又は上り共有チャネルの繰り返し数に関する情報を示してもよい。 Further, the transmission unit 202 may transmit a DCI including a value of a predetermined field used for switching the search space group (for example, FIG. 23). The value of the predetermined field may indicate information about the number of iterations of the downlink control channel monitored using the search space associated with the search space group. The value of the predetermined field may indicate the information regarding the number of repetitions of the downlink shared channel or the uplink shared channel scheduled by the downlink control information.
 送信部202は、制御リソースセット(CORESET)に関連付けられるサーチスペースに関するサーチスペース情報(例えば、図9、19)を送信してもよい。また、受信部101は、サーチスペースに関連付けられる一以上のCORESETに関するCORESET情報(例えば、図12、14、16)を送信してもよい。また、送信部202は、上記PDCCH情報(例えば、図20)を送信してもよい。また、送信部202は、繰り返し数Rの最大値を示す情報を送信してもよい(例えば、図24)。 The transmission unit 202 may transmit search space information (for example, FIGS. 9 and 19) related to the search space associated with the control resource set (CORESET). In addition, the receiving unit 101 may transmit CORESET information (for example, FIGS. 12, 14, 16) relating to one or more CORESETs associated with the search space. Further, the transmission unit 202 may transmit the PDCCH information (for example, FIG. 20). Further, the transmission unit 202 may transmit information indicating the maximum value of the number of repetitions R (for example, FIG. 24).
 制御部203は、基地局20における各種制御を行う。具体的には、制御部203は、上記サーチスペース情報及び/又は上記CORESET情報に基づいて、所定周期のモニタリング期間T内におけるサーチスペースを用いた下り制御チャネルの送信を制御してもよい。 The control unit 203 performs various controls on the base station 20. Specifically, the control unit 203 may control the transmission of the downlink control channel using the search space within the monitoring period T of a predetermined cycle based on the search space information and / or the CORESET information.
 制御部203は、上記サーチスペース情報に含まれるPDCCHの繰り返しに関する繰り返し情報に基づいて、モニタリング期間T内の異なるスロット間及び/又は同一のスロット内でのPDCCHの繰り返し送信を制御してもよい(上記(1)参照)。 The control unit 203 may control the repeated transmission of the PDCCH between different slots within the monitoring period T and / or within the same slot based on the repeated information regarding the repetition of the PDCCH included in the search space information ( See (1) above).
 ここで、上記繰り返し情報は、PDCCHの繰り返し数Rを示す情報を含んでもよい。制御部203は、当該繰り返し数Rに基づいて、上記異なるスロットを決定してもよい(例えば、図4~6及び9)。 Here, the repetition information may include information indicating the repetition number R of PDCCH. The control unit 203 may determine the different slots based on the number of repetitions R (for example, FIGS. 4 to 6 and 9).
 また、上記繰り返し情報は、PDCCHの繰り返し数Rの最大値を示す情報を含んでもよい。制御部203は、当該最大値及びDCI内の所定フィールド値に基づいて決定される繰り返し数Rに基づいて、上記異なるスロットを決定してもよい(例えば、図4~6及び10)。 Further, the repetition information may include information indicating the maximum value of the repetition number R of PDCCH. The control unit 203 may determine the different slots based on the number of repetitions R determined based on the maximum value and the predetermined field value in the DCI (for example, FIGS. 4 to 6 and 10).
 また、上記繰り返し情報は、PDCCHの繰り返しの開始スロット#kを示す情報を含んでもよい。制御部203は、開始スロット#kに基づいて、前記異なるスロットを決定してもよい(例えば、図4~8)。 Further, the repetition information may include information indicating the start slot # k 0 of the repetition of PDCCH. The control unit 203 may determine the different slot based on the start slot # k 0 (for example, FIGS. 4 to 8).
 なお、上記異なるスロットは、所定周期のモニタリング期間Tのうちの1モニタリング期間T内の複数のスロットであってもよい(例えば、図4)、又は、所定周期のモニタリング期間Tのうちの複数の期間に跨る複数のスロットであってもよい(例えば、図5及び6)。 The different slots may be a plurality of slots within one monitoring period T of the monitoring period T of the predetermined cycle (for example, FIG. 4), or a plurality of slots of the monitoring period T of the predetermined cycle. It may be a plurality of slots over a period (for example, FIGS. 5 and 6).
 また、上記繰り返し情報は、PDCCHが繰り返されるシンボルを示す繰り返しシンボル情報を含んでもよい。制御部203は、繰り返しシンボル情報と、PDCCHをモニタリングするシンボルを示すモニタリングシンボル情報と、に基づいて、上記同一のスロット内でPDCCHを繰り返し送信する複数のシンボルを決定してもよい(例えば、図7及び8)。 Further, the repetitive information may include repetitive symbol information indicating a symbol in which PDCCH is repeated. The control unit 203 may determine a plurality of symbols for repeatedly transmitting the PDCCH in the same slot based on the repetitive symbol information and the monitoring symbol information indicating the symbol for monitoring the PDCCH (for example, FIG. 7 and 8).
 制御部203は、上記異なるスロット間及び/又は上記同一のスロット内で、同一の周波数領域リソースを用いたPDCCHの繰り返し送信を制御してもよい(上記(1)参照)。また、制御部203は、上記異なるスロット及び/又は前記同一のスロット内で、異なる周波数領域リソースを用いたPDCCHの繰り返し送信を制御してもよい(上記(3)参照)。 The control unit 203 may control repeated transmission of PDCCH using the same frequency domain resource between the different slots and / or within the same slot (see (1) above). Further, the control unit 203 may control repeated transmission of PDCCH using different frequency domain resources in the different slots and / or the same slot (see (3) above).
 制御部203は、上記一以上のCORESETに対応する複数の周波数領域リソース間でのPDCCHの繰り返し送信を制御してもよい(上記(2)参照)。 The control unit 203 may control the repeated transmission of PDCCH between a plurality of frequency domain resources corresponding to the one or more CORESETs (see (2) above).
 ここで、サーチスペースは単一のCORESETに関連付けられ、上記複数の周波数領域リソースは、当該単一のCORESETに対応してもよい(上記(2.1)参照)。 Here, the search space is associated with a single CORESET, and the plurality of frequency domain resources may correspond to the single CORESET (see (2.1) above).
 当該単一のCORESET用のCORESET情報は、上記複数の周波数領域リソースをそれぞれ示す複数の周波数領域リソース情報を含んでもよい。制御部203は、上記複数の周波数領域リソース情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図11及び12)。 The CORESET information for the single CORESET may include a plurality of frequency domain resource information indicating each of the plurality of frequency domain resources. The control unit 203 may determine the plurality of frequency domain resources based on the plurality of frequency domain resource information (for example, FIGS. 11 and 12).
 また、当該単一のCORESET用のCORESET情報は、上記周波数領域リソースのうちの一つを示す周波数領域リソース情報と、PDCCHルの繰り返し数Rを示す繰り返し数情報を含んでもよい。制御部203は、周波数領域リソース情報及び繰り返し数情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図13及び14)。 Further, the CORESET information for the single CORESET may include the frequency domain resource information indicating one of the frequency domain resources and the repetition number information indicating the repetition number R of the PDCCH. The control unit 203 may determine the plurality of frequency domain resources based on the frequency domain resource information and the repetition number information (for example, FIGS. 13 and 14).
 また、当該単一のCORESET用のCORESET情報は、上記複数の周波数領域リソースのうちの一つを示す周波数領域リソース情報と、前記複数の周波数領域リソースのうちの他の周波数領域リソース用のオフセットを示すオフセット情報と、を含んでもよい。制御部203は、周波数領域リソース情報及びオフセット情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図15~17)。 Further, the CORESET information for the single CORESET includes the frequency domain resource information indicating one of the plurality of frequency domain resources and the offset for the other frequency domain resource among the plurality of frequency domain resources. It may include the indicated offset information. The control unit 203 may determine the plurality of frequency domain resources based on the frequency domain resource information and the offset information (for example, FIGS. 15 to 17).
 また、サーチスペースは複数のCORESETに関連付けられ、上記複数の周波数領域リソースは、当該複数のCORESETにそれぞれ対応してもよい(上記(2.2)参照)。 Further, the search space is associated with a plurality of CORESETs, and the plurality of frequency domain resources may correspond to the plurality of CORESETs (see (2.2) above).
 制御部203は、当該複数のCORESETそれぞれに関する複数のCORESET情報に基づいて、上記複数の周波数領域リソースを決定してもよい(例えば、図18~20)。 The control unit 203 may determine the plurality of frequency domain resources based on the plurality of CORESET information related to each of the plurality of CORESETs (for example, FIGS. 18 to 20).
 制御部203は、上記サーチスペース情報に基づいてサーチスペースを用いてPDCCHを繰り返して送信する所定周期のモニタリング期間Tを決定してもよい。また、制御部203は、当該モニタリング期間T内の同一の時間領域リソースに対応する上記複数の周波数領域リソースを決定してもよい(上記(1)参照)。又は、当該モニタリング期間T内の異なる時間領域リソースに対応する複数の周波数領域リソースを決定してもよい(上記(3)参照)。 The control unit 203 may determine the monitoring period T of a predetermined cycle in which the PDCCH is repeatedly transmitted using the search space based on the search space information. Further, the control unit 203 may determine the plurality of frequency domain resources corresponding to the same time domain resource within the monitoring period T (see (1) above). Alternatively, a plurality of frequency domain resources corresponding to different time domain resources within the monitoring period T may be determined (see (3) above).
 また、制御部203は、サーチスペースグループの切り替えを制御してもよい(上記(4)参照)。 Further, the control unit 203 may control the switching of the search space group (see (4) above).
 (無線通信システムの動作)
 次に、以上のように構成される無線通信システム1の動作について説明する。なお、図28及び29は、例示にすぎず、一部のステップが省略されてもよいし、不図示のステップが実施されてもよいことは勿論である。
(Operation of wireless communication system)
Next, the operation of the wireless communication system 1 configured as described above will be described. It should be noted that FIGS. 28 and 29 are merely examples, and it goes without saying that some steps may be omitted or steps (not shown) may be performed.
 図28は、本実施形態に係る無線通信システムにおけるPDCCHモニタリングの動作の一例を示す図である。図28に示すように、ステップS101において、端末10は、一以上のサーチスペース情報及び/又は一以上のCORESET情報を受信する。当該サーチスペース情報及び/又は当該CORESET情報は、例えば、RRC再構成メッセージに含まれてもよいが、これに限られない。 FIG. 28 is a diagram showing an example of the operation of PDCCH monitoring in the wireless communication system according to the present embodiment. As shown in FIG. 28, in step S101, the terminal 10 receives one or more search space information and / or one or more CORESET information. The search space information and / or the CORESET information may be included in, for example, an RRC reconstruction message, but is not limited thereto.
 ステップS102において、端末10は、当該サーチスペース情報及び/又は当該CORESET情報に基づいて、所定周期のモニタリング期間T内に、繰り返して送信されるPDCCHをモニタリングするためのサーチスペースを設定する。 In step S102, the terminal 10 sets a search space for monitoring PDCCH repeatedly transmitted within the monitoring period T of a predetermined cycle based on the search space information and / or the CORESET information.
 ステップS103において、端末10は、異なる時間領域リソース及び/又は異なる周波数領域リソースを用いて繰り返して送信されるPDCCHを、ステップS102で設定されたサーチスペースを用いてモニタリングする(上記(1)~(3)参照)。 In step S103, the terminal 10 monitors the PDCCH repeatedly transmitted using different time domain resources and / or different frequency domain resources using the search space set in step S102 ((1) to (1) to (1) above. See 3)).
 以上のように、本実施形態に係る無線通信システム1によれば、異なる時間領域リソース及び/又は異なる周波数領域リソースを用いて繰り返して送信されるPDCCHのモニタリングを適切に制御できる。 As described above, according to the wireless communication system 1 according to the present embodiment, it is possible to appropriately control the monitoring of PDCCH repeatedly transmitted using different time domain resources and / or different frequency domain resources.
 図29は、本実施形態に係る無線通信システムにおけるサーチスペースグループの切り替えの動作の一例を示す図である。図29に示すように、ステップS201において、端末10は、DCIを受信する。 FIG. 29 is a diagram showing an example of the operation of switching the search space group in the wireless communication system according to the present embodiment. As shown in FIG. 29, in step S201, the terminal 10 receives the DCI.
 ステップS202において、端末10は、ステップS201で受信されたDCI内の所定フィールドの値に基づいて、サーチスペースグループの切り替えを制御する。具体的には、端末10は、PDCCHのモニタリングに用いるサーチスペースグループを、当該所定フィールドの値が示すサーチスペースグループに切り替えてもよい。 In step S202, the terminal 10 controls the switching of the search space group based on the value of the predetermined field in the DCI received in step S201. Specifically, the terminal 10 may switch the search space group used for PDCCH monitoring to the search space group indicated by the value of the predetermined field.
 ステップS203において、端末10は、ステップS201で受信されたDCI内の所定フィールドの値に基づいて、ステップS202における切り替え先のサーチスペースグループに関連付けられるサーチスペースでモニタリングされるPDCCHの繰り返し数Rを決定してもよい。 In step S203, the terminal 10 determines the number of repetitions R of the PDCCH monitored in the search space associated with the search space group to be switched to in step S202 based on the value of the predetermined field in the DCI received in step S201. You may.
 ステップS204において、端末10は、ステップS203において決定された繰り返し数Rだけ繰り返して送信されるPDCCHを、当該サーチスペースを用いてモニタリングする(上記(1)~(3)参照)。 In step S204, the terminal 10 monitors the PDCCH repeatedly transmitted by the number of repetitions R determined in step S203 using the search space (see (1) to (3) above).
 (その他の実施形態)
 上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、Non Access Stratum(NAS)レイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。
(Other embodiments)
The various signals, information, and parameters in the above embodiment may be signaled at any layer. That is, the various signals, information, and parameters are the signals, information, and signals of any layer such as an upper layer (for example, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.) and a lower layer (for example, physical layer). It may be replaced with a parameter. Further, the notification of the predetermined information is not limited to the explicit one, and may be implicitly (for example, by not notifying the information or by using other information).
 また、上記実施形態における各種の信号、情報、パラメータ、IE、チャネル、時間単位及び周波数単位の名称は、例示にすぎず、他の名称に置き換えられてもよい。例えば、スロットは、所定数のシンボルを有する時間単位であれば、どのような名称であってもよい。また、RBは、所定数のサブキャリアを有する周波数単位であれば、どのような名称であってもよい。 Further, the names of various signals, information, parameters, IE, channels, time units, and frequency units in the above embodiments are merely examples, and may be replaced with other names. For example, the slot may have any name as long as it is a time unit having a predetermined number of symbols. Further, RB may have any name as long as it is a frequency unit having a predetermined number of subcarriers.
 また、上記実施形態における端末10の用途(例えば、RedCap、IoT向け等)は、例示するものに限られず、同様の機能を有する限り、どのような用途(例えば、eMBB、URLLC、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)等)で利用されてもよい。また、各種情報の形式は、上記実施形態に限られず、ビット表現(0又は1)、真偽値(Boolean:true又はfalse)、整数値、文字等適宜変更されてもよい。また、上記実施形態における単数、複数は相互に変更されてもよい。 The use of the terminal 10 in the above embodiment (for example, for RedCap, IoT, etc.) is not limited to the examples, and any use (for example, eMBB, URLLC, Device-to-) as long as it has the same function. It may be used in Device (D2D), Vehicle-to-Everything (V2X), etc.). Further, the format of various information is not limited to the above embodiment, and bit representation (0 or 1), boolean value (Boolean: true or false), integer value, character, or the like may be appropriately changed. Further, the singular and plural in the above embodiment may be changed from each other.
 以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、インデックス、条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、上記実施形態で説明した少なくとも一部の構成を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating the understanding of the present disclosure, and are not for limiting and interpreting the present disclosure. The flowchart, sequence, each element included in the embodiment, its arrangement, index, condition, and the like described in the embodiment are not limited to those exemplified, and can be changed as appropriate. Further, it is possible to partially replace or combine at least a part of the configurations described in the above-described embodiment.

Claims (10)

  1.  サーチスペースに関連付けられる一以上の制御リソースセットに関する制御リソースセット情報を受信する受信部と、
     前記制御リソースセット情報に基づいて、前記サーチスペースを用いた下り制御チャネルのモニタリングを制御する制御部と、を備え、
     前記制御部は、前記一以上の制御リソースセットに対応する複数の周波数領域リソース間で繰り返して送信される、前記下り制御チャネルのモニタリングを制御する、
     端末。
    A receiver that receives control resource set information about one or more control resource sets associated with a search space.
    A control unit that controls monitoring of the downlink control channel using the search space based on the control resource set information is provided.
    The control unit controls monitoring of the downlink control channel, which is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more control resource sets.
    Terminal.
  2.  前記サーチスペースは、単一の制御リソースセットに関連付けられ、前記複数の周波数領域リソースは、前記単一の制御リソースセットに対応する、
     請求項1に記載の端末。
    The search space is associated with a single control resource set, and the plurality of frequency domain resources correspond to the single control resource set.
    The terminal according to claim 1.
  3.  前記制御リソースセット情報は、前記複数の周波数領域リソースをそれぞれ示す複数の周波数領域リソース情報を含み、
     前記制御部は、前記複数の周波数領域リソース情報に基づいて、前記複数の周波数領域リソースを決定する、
     請求項2に記載の端末。
    The control resource set information includes a plurality of frequency domain resource information indicating each of the plurality of frequency domain resources.
    The control unit determines the plurality of frequency domain resources based on the plurality of frequency domain resource information.
    The terminal according to claim 2.
  4.  前記制御リソースセット情報は、前記複数の周波数領域リソースのうちの一つを示す周波数領域リソース情報と、前記下り制御チャネルの繰り返し数を示す繰り返し数情報と、を含み、
     前記制御部は、前記周波数領域リソース情報及び繰り返し数情報に基づいて、前記複数の周波数領域リソースを決定する、
     請求項2に記載の端末。
    The control resource set information includes frequency domain resource information indicating one of the plurality of frequency domain resources and repetition number information indicating the number of repetitions of the downlink control channel.
    The control unit determines the plurality of frequency domain resources based on the frequency domain resource information and the repetition number information.
    The terminal according to claim 2.
  5.  前記制御リソースセット情報は、前記複数の周波数領域リソースのうちの一つを示す周波数領域リソース情報と、前記複数の周波数領域リソースのうちの他の周波数領域リソース用のオフセットを示すオフセット情報と、を含み、
     前記制御部は、前記周波数領域リソース情報及びオフセット情報に基づいて、前記複数の周波数領域リソースを決定する、
     請求項2に記載の端末。
    The control resource set information includes frequency domain resource information indicating one of the plurality of frequency domain resources and offset information indicating an offset for another frequency domain resource among the plurality of frequency domain resources. Including
    The control unit determines the plurality of frequency domain resources based on the frequency domain resource information and the offset information.
    The terminal according to claim 2.
  6.  前記サーチスペースは、複数の制御リソースセットに関連付けられ、前記複数の周波数領域リソースは、前記複数の制御リソースセットにそれぞれ対応し、
     前記制御リソースセット情報は、前記複数の制御リソースセットそれぞれに関する複数の制御リソースセット情報であり、
     前記制御部は、前記複数の制御リソースセット情報に基づいて、前記複数の周波数領域リソースを決定する、
     請求項1に記載の端末。
    The search space is associated with a plurality of control resource sets, and the plurality of frequency domain resources correspond to the plurality of control resource sets, respectively.
    The control resource set information is a plurality of control resource set information for each of the plurality of control resource sets.
    The control unit determines the plurality of frequency domain resources based on the plurality of control resource set information.
    The terminal according to claim 1.
  7.  前記受信部は、前記サーチスペースに関するサーチスペース情報を受信し、
     前記制御部は、前記サーチスペース情報に基づいて前記サーチスペースを用いて下り制御チャネルのモニタリングする所定周期の期間を決定し、前記期間内の同一の時間領域リソースに対応する前記複数の周波数領域リソースを決定する
     請求項1から請求項6のいずれかに記載の端末。
    The receiving unit receives the search space information regarding the search space, and receives the search space information.
    Based on the search space information, the control unit determines a period of a predetermined cycle for monitoring the downlink control channel using the search space, and the plurality of frequency domain resources corresponding to the same time domain resource within the period. The terminal according to any one of claims 1 to 6.
  8.  前記受信部は、前記サーチスペースに関するサーチスペース情報を受信し、
     前記制御部は、前記サーチスペース情報に基づいて前記サーチスペースを用いて下り制御チャネルのモニタリングする所定周期の期間を決定し、前記期間内の異なる時間領域リソースに対応する複数の周波数領域リソースを決定する、
     請求項1から請求項6のいずれかに記載の端末。
    The receiving unit receives the search space information regarding the search space, and receives the search space information.
    Based on the search space information, the control unit determines a period of a predetermined cycle for monitoring the downlink control channel using the search space, and determines a plurality of frequency domain resources corresponding to different time domain resources within the period. do,
    The terminal according to any one of claims 1 to 6.
  9.  サーチスペースに関連付けられる一以上の制御リソースセットに関する制御リソースセット情報を送信する送信部と、
     前記制御リソースセット情報に基づいて、前記サーチスペースを用いた下り制御チャネルの送信を制御する制御部と、を備え、
     前記制御部は、前記一以上の制御リソースセットに対応する複数の周波数領域リソース間での前記下り制御チャネルの繰り返し送信を制御する、
     基地局。
    A transmitter that sends control resource set information about one or more control resource sets associated with a search space.
    A control unit that controls transmission of a downlink control channel using the search space based on the control resource set information is provided.
    The control unit controls repeated transmission of the downlink control channel between a plurality of frequency domain resources corresponding to the one or more control resource sets.
    base station.
  10.  サーチスペースに関連付けられる一以上の制御リソースセットに関する制御リソースセット情報を受信する工程と、
     前記制御リソースセット情報に基づいて、前記サーチスペースを用いた下り制御チャネルのモニタリングを制御する工程と、を備え、
     前記制御する工程において、前記一以上の制御リソースセットに対応する複数の周波数領域リソース間で繰り返して送信される、前記下り制御チャネルのモニタリングを制御する、
     端末の無線通信方法。
    The process of receiving control resource set information for one or more control resource sets associated with a search space, and
    A step of controlling monitoring of a downlink control channel using the search space based on the control resource set information is provided.
    In the control step, the monitoring of the downlink control channel, which is repeatedly transmitted between a plurality of frequency domain resources corresponding to the one or more control resource sets, is controlled.
    Wireless communication method of the terminal.
PCT/JP2022/001017 2021-01-14 2022-01-14 Terminal, base station, and wireless communication method WO2022154067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004110 2021-01-14
JP2021004110A JP2022108899A (en) 2021-01-14 2021-01-14 Terminal, base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022154067A1 true WO2022154067A1 (en) 2022-07-21

Family

ID=82448513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001017 WO2022154067A1 (en) 2021-01-14 2022-01-14 Terminal, base station, and wireless communication method

Country Status (2)

Country Link
JP (1) JP2022108899A (en)
WO (1) WO2022154067A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198249A1 (en) * 2018-04-13 2019-10-17 株式会社Nttドコモ User equipment and radio base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198249A1 (en) * 2018-04-13 2019-10-17 株式会社Nttドコモ User equipment and radio base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Discussion on the PDCCH repetition for NR URLLC", 3GPP DRAFT; R1-1811401_DISCUSSION ON THE PDCCH REPETITION FOR NR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518805 *

Also Published As

Publication number Publication date
JP2022108899A (en) 2022-07-27

Similar Documents

Publication Publication Date Title
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
US10869304B2 (en) Downlink control information sending method, downlink control information detection method, and device
US20200068610A1 (en) Resource scheduling method, network device, and communications device
CN108633007B (en) Method, equipment and system for transmitting control information
KR20190027314A (en) Method for transmitting and receiving system information in communication system
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
US11139854B2 (en) Method for spread spectrum communication, user equipment and base station
JP2023500369A (en) PDCCH monitoring method and device, storage medium and terminal
CN109792710A (en) A kind of method for transmitting signals, equipment and system
WO2018137700A1 (en) Communication method, device, and system
US20230379825A1 (en) Terminal, base station, and wireless communication method
CN114731580B (en) Method and device for detecting Physical Downlink Control Channel (PDCCH)
CN116326045A (en) Information feedback method and device
CN111385880B (en) Method and device for determining time domain resources
WO2022154067A1 (en) Terminal, base station, and wireless communication method
WO2022154065A1 (en) Terminal, base station, and wireless communication method
WO2022154066A1 (en) Terminal, base station, and wireless communication method
US11696217B2 (en) Method, network device and terminal device for remaining minimum system information
JP2021517427A (en) Resource scheduling method, data transmission method and its equipment, communication system
CN112753257B (en) Method performed by user equipment, base station, user equipment and base station
TW201927044A (en) Method in UE of wireless communication system, method in wireless base station of wireless communication system and UE
CN110958095A (en) Communication method and device
WO2022154100A1 (en) Terminal, base station, and wireless communication method
JP7441808B2 (en) Base station and wireless communication method
CN115918211A (en) Data transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739472

Country of ref document: EP

Kind code of ref document: A1