WO2022153915A1 - Bone conduction device - Google Patents

Bone conduction device Download PDF

Info

Publication number
WO2022153915A1
WO2022153915A1 PCT/JP2022/000197 JP2022000197W WO2022153915A1 WO 2022153915 A1 WO2022153915 A1 WO 2022153915A1 JP 2022000197 W JP2022000197 W JP 2022000197W WO 2022153915 A1 WO2022153915 A1 WO 2022153915A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
coil
bone conduction
magnet unit
case
Prior art date
Application number
PCT/JP2022/000197
Other languages
French (fr)
Japanese (ja)
Inventor
端明 謝
敏夫 中島
Original Assignee
BoCo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BoCo株式会社 filed Critical BoCo株式会社
Priority to JP2022500882A priority Critical patent/JP7382677B2/en
Publication of WO2022153915A1 publication Critical patent/WO2022153915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R13/00Transducers having an acoustic diaphragm of magnetisable material directly co-acting with electromagnet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details

Definitions

  • the present invention relates to a bone conduction device such as a bone conduction speaker and a bone conduction pickup.
  • listening devices such as headphones and earphones
  • listening devices include those using air conduction and those using bone conduction.
  • the sound source input as an electric signal is converted into the vibration of the air and transmitted to the eardrum to vibrate, and the vibration of the eardrum passes through the middle ear behind the ear and the sound information is sent to the brain. It uses a mechanism that is transmitted and recognized.
  • a hearing device using bone conduction converts an acoustic signal input as an electric signal into mechanical vibration, applies the vibration to the bone from an appropriate position, transmits the vibration to the bone, and transmits the vibration to the bone. Sound is recognized by conduction sound. Unlike headphones and earphones, this bone conduction hearing device does not need to be inserted into the ear canal and enters the ear without blocking the surrounding sound, so it is safe to wear. Is. In addition, since the vibration of the eardrum is not used, even a person with deafness can recognize the sound, and its use in hearing aids and the like is being promoted.
  • FIG. 4 is a schematic view showing a cross section of a general bone conduction speaker 101.
  • the yoke 109 is housed inside the case 111 whose upper surface is open, and the magnet 103 is housed inside the yoke 109. Further, coils 105 are arranged around the magnet 103 at intervals, and a vibrating member 107 is joined to the upper portion of the coil 105.
  • the vibrating member 107 is integrated with the coil 105 and vibrates with respect to the case 111 (for example, Patent Document 1).
  • the force generated in the axial direction of the coil 105 is proportional to the magnitude of the magnetic flux density penetrating the coil 105. Therefore, a stronger magnetic field is required to generate a larger force. However, there is a limit to the magnetic field generated from one magnet 103. Therefore, a method of increasing the magnetic flux density penetrating the coil more efficiently is desired.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a bone conduction device capable of efficiently generating vibration.
  • the present invention relates to a magnet unit, a coil arranged around the magnet unit, a case for accommodating the magnet unit and the coil, and the case.
  • a vibrating plate that is fixed and oscillated in the axial direction of the coil is provided, and the magnet unit includes a first magnet, a second magnet, the first magnet, and the second magnet.
  • a first yoke, which is arranged between magnets, is provided, and the first magnet and the second magnet are arranged apart from each other so that they have the same polarity facing each other, and are arranged via the vibrating plate.
  • the bone conduction device is characterized in that the coil and the magnet unit are relatively viable.
  • the first magnet and the second magnet are arranged apart from each other with the first yoke interposed therebetween so that the same polarities face each other, and the coil is arranged around the first yoke.
  • the magnetic flux density penetrating the coil can be increased as compared with the bone conduction speaker in which only one magnet is arranged.
  • vibration is efficiently generated. Can be made to.
  • the magnet unit is fixed to the case, the coil is connected to the diaphragm, a part of the coil is arranged on the outer periphery of the magnet unit, and the diaphragm and the coil are attached to the case. It may be vibrable.
  • the coil may be fixed to the case, the magnet unit may be joined to the diaphragm, and the diaphragm and the magnet unit may vibrate with respect to the case.
  • another magnet unit is arranged on the outer periphery of the coil at a position corresponding to the magnet unit, and the other magnet unit includes a third magnet arranged around the first magnet and the second magnet. It has a fourth magnet arranged around the magnet and a second yoke arranged between the third magnet and the fourth magnet, and has the third magnet and the fourth magnet.
  • the magnets have the opposite polarities to the first magnet and the second magnet, and may be spaced apart from each other so that they have the same polarity but face each other.
  • the magnetic flux density penetrating the coil can be further increased as compared with the bone conduction speaker in which the first magnet and the second magnet are arranged.
  • the figure which shows the cross section of the bone conduction device 1 The figure which shows the cross section of the bone conduction device 1a. The figure which shows the cross section of the bone conduction device 1b. The figure which shows the cross section of the bone conduction speaker 101.
  • FIG. 1 is a schematic view showing a cross section of the bone conduction device 1 according to the first embodiment of the present invention.
  • the bone conduction device 1 mainly includes a magnet unit 2, a coil 7, a case 9, a diaphragm 11, and the like.
  • the bone conduction device can also be used as the bone conduction pickup (mic).
  • the magnet unit 2 includes a magnet 3 which is a first magnet, a magnet 5 which is a second magnet, a yoke 13 which is a first yoke, and the like.
  • the magnet 3 and the magnet 5 are arranged apart from each other so that they have the same polarity and face each other.
  • the north poles are arranged so as to face each other.
  • the magnets 3 and 5 have, for example, a disk shape having substantially the same shape (having substantially the same magnetic force).
  • a yoke 13 is arranged between the magnet 3 and the magnet 5. That is, the magnet 3 and the magnet 5 are integrated by the yoke 13.
  • the yoke 13 has, for example, a ring shape, and is composed of at least an outer diameter equal to or larger than the outer diameter of the magnets 3 and 5.
  • Case 9 has a substantially cylindrical shape, for example, and one side is open.
  • the magnet unit 2, the coil 7, and the like are housed inside the case 9.
  • the diaphragm 11 is fixed to the opening surface of the case 9.
  • the coil 7 is arranged apart from the magnet unit 2 so as to cover at least a part around the magnet unit 2.
  • the diaphragm 11 can be elastically deformed and can vibrate in the axial direction of the coil 7.
  • the magnet unit 2 is fixed to the surface of the case 9 facing the diaphragm 11 (the side opposite to the opening surface).
  • a yoke 15 is connected to the diaphragm 11, and a coil 7 is connected to the yoke 15. That is, the coil 7 and the yoke 15 can vibrate with respect to the case 9.
  • the yoke 15 is formed, for example, in a cylindrical shape in which one is closed and the other is open.
  • the closed side of the yoke 15 is joined to the diaphragm 11.
  • the coil 7 is connected near the edge of the yoke 15 on the opening side, and the yoke 15 is arranged so as to cover the magnet 3 from above on the opening side.
  • the yoke 15 is made of a material (iron or the like) having a high magnetic permeability that allows magnetic flux to easily pass through, and exhibits a yoke function (formation of a magnetic circuit) and also functions as a mounting member for the coil 7 and the diaphragm 11. If the function as a mounting member for the coil 7 and the diaphragm 11 is sufficient without considering the yoke function, the same shape is formed by using a material having a low magnetic permeability such as aluminum instead of the yoke 15. It may be used as a coil mounting member.
  • a magnetic field is formed by the magnet unit 2 so as to penetrate the coil 7 as shown by an arrow. More specifically, assuming the magnetic field lines going from the N pole to the S pole, the N poles face each other, so the magnetic force lines generated from the N poles go outward (coil 7 side) so as to repel each other. Is formed. Then, the magnetic field lines pass through the coil 7 and further toward the respective S poles.
  • the magnetic field lines emitted from the N pole are not affected by other magnetic fields, so they form a certain extent of spread.
  • the spread of the magnetic field lines can be suppressed from each other, and the magnetic field lines can be rapidly formed in the direction of the coil 7. Therefore, the magnetic flux density penetrating the coil 7 can be increased.
  • the magnet unit 2 in which the magnet 3 and the magnet 5 are arranged so that the magnets 3 and the magnet 5 have the same polarity facing each other with the yoke 13 interposed therebetween is used, it is compared with the case where only one magnet is arranged. Therefore, the magnetic flux density penetrating the coil 7 can be increased. Therefore, vibration can be efficiently generated as compared with the case where one magnet having the same size as the magnet unit 2 is used.
  • FIG. 2 is a view showing a cross section of the bone conduction device 1a according to the second embodiment of the present invention.
  • the bone conduction device 1a is mainly different from the bone conduction device 1 of the first embodiment in that it further includes another magnet unit 16.
  • the magnet unit 16 is arranged on the outer circumference of the coil 7 at a position corresponding to the magnet unit 2.
  • the magnet unit 16 includes a magnet 17 which is a third magnet, a magnet 19 which is a fourth magnet, a yoke 21 which is a second yoke, and the like.
  • the magnets 17 and 19 have, for example, a ring shape having substantially the same shape (having substantially the same magnetic force).
  • the magnet 3 and the magnet 17 have substantially the same thickness. Further, the magnet 5 and the magnet 19 have substantially the same thickness. Further, the yoke 13 and the yoke 21 have substantially the same thickness. Therefore, the magnet 17 is arranged on the outer circumference of the magnet 3, the magnet 19 is arranged on the outer circumference of the magnet 5, and the yoke 21 is arranged on the outer circumference of the yoke 13.
  • the magnet 17 and the magnet 19 are arranged in directions having opposite polarities with respect to the magnet 3 and the magnet 5, respectively, and are separated from each other so that the same polarities face each other.
  • the magnet 3 and the magnet 5 are arranged so that the N poles face each other
  • the magnet 17 and the magnet 19 are arranged so that the S poles face each other.
  • a yoke 21 is arranged between the magnet 17 and the magnet 19. That is, the magnet 17 and the magnet 19 are integrated by the yoke 21.
  • the magnets 17, 19 and the yoke 21 are each substantially ring-shaped, and the magnet unit 2, the coil 7 and the yoke 15 are arranged inside the ring shape at a distance from the magnet unit 16.
  • the magnet unit 16 is fixed to the case 9 together with the magnet unit 2.
  • a magnetic field penetrating the coil 7 is formed by the magnet unit 2 and the magnet unit 16 as shown by arrows. At this time, as described above, by arranging the pair of magnets 3 and 5 having the same poles facing each other, the spread of the magnetic field lines can be suppressed from each other.
  • magnets 17 and 19 are arranged on the outer circumference of the magnets 3 and 5, and the north poles of the magnets 3 and 5 and the south poles of the magnets 17 and 19 are arranged so as to be adjacent to each other. Therefore, the magnetic field lines emitted from the north poles of the magnets 3 and 5 are formed toward the south poles of the magnets 17 and 19. Further, the magnetic field lines emitted from the north poles of the magnets 17 and 19 are formed toward the south poles of the magnets 3 and 5, respectively. By doing so, the magnetic field lines can be formed more rapidly in the direction of the coil 7 as compared with the case where only the magnet unit 2 is used. Therefore, the magnetic flux density penetrating the coil 7 can be further increased.
  • the same effect as that of the first embodiment can be obtained.
  • the magnet 17 and the magnet 19 have the opposite polarities to the magnet 3 and the magnet 5.
  • a magnet unit 16 is used which is arranged with the yoke 21 sandwiched so that the same polarities face each other. In this way, by adding the magnet unit 16, the magnetic flux density penetrating the coil 7 can be increased as compared with the case where only the magnet unit 2 is used, so that vibration can be generated more efficiently. ..
  • FIG. 3 is a view showing a cross section of the bone conduction device 1b according to the third embodiment of the present invention.
  • the bone conduction device 1b is mainly different from the bone conduction device 1a of the second embodiment in that the magnet unit 2 and the magnet unit 16 are joined to the diaphragm 11.
  • the coil 7 is fixed to the case 9. Further, the magnet unit 2 and the magnet unit 16 are integrated by a plate 23, and the plate 23 is joined to the diaphragm 11 via a fixing member 27.
  • the plate 25 is arranged on the surface of the magnet unit 2 and the magnet unit 16 opposite to the plate 23.
  • the plates 23 and 25 are arranged so as to sandwich the magnet unit 2 and the magnet unit 16, and also function as a yoke for forming a magnetic circuit.
  • the magnet unit 16 has a substantially ring shape as a whole, and the magnet unit 2 is arranged inside the magnet unit 16. Further, the coil 7 is arranged apart from each other between the magnet unit 2 and the magnet unit 16.
  • the bone conduction device 1b Similar to the bone conduction device 1a, the bone conduction device 1b also generates a force in the axial direction of the coil 7 according to Fleming's left-hand rule when a signal current is applied to the coil 7. Therefore, the coil 7 side and the magnet unit 2 and the magnet unit 16 side vibrate relatively. That is, the magnet units 2 and 16 and the diaphragm 11 vibrate with respect to the case 9.
  • the same effect as that of the second embodiment can be obtained. That is, as in the second embodiment, by adding the magnet unit 16, the magnetic flux density penetrating the coil 7 can be increased and vibration can be efficiently generated as compared with the case where only the magnet unit 2 is used. can.
  • the frequency characteristics were evaluated using a conventional product using one magnet (see FIG. 4) and an example in which magnets were arranged facing each other (see FIG. 3).
  • the frequency band showing a predetermined SN ratio was about 100 Hz to 20 kHz in the conventional product, whereas in the embodiment, the frequency showing the same SN ratio.
  • the band became about 40 Hz to 20 kHz, and the characteristics were particularly improved in the low frequency region.
  • the vibration gain of (see FIG. 3) increased by about 10 dB.
  • the polarity of the magnet may be opposite to the illustrated example.
  • other members may be added as appropriate as long as the effects of the present invention can be obtained.
  • the bone conduction device of the present invention can be used as a bone conduction pickup (microphone).
  • the operating principle of a general bone conduction device as a speaker application is that the coil is placed in a magnetic field generated from a magnet, the coil is vibrated by the Lorentz force generated by passing an electric current through the coil, and the vibration is transmitted through the bone. It is recognized as a transmitted sound to the auditory nerve.
  • the operating principle of the bone conduction device as a pickup is that the coil is placed in the magnetic field generated from the magnet, the coil and the magnet are vibrated, and the magnetic field applied to the coil changes to generate electromotive force by electromagnetic induction. Is generated.
  • vibration it was discovered that sufficient electromotive force can be obtained for vibration of 20 Hz to 20 KHz.
  • the bone conduction device according to the present invention can be used not only as a speaker function but also as a pickup function (microphone function).
  • this bone conduction device as a pickup function (microphone function) will be described in detail below.
  • the magnetic fields generated from the magnets 3, 5, 17, 19, and 103 of FIGS. 1, 2, and 3 are induced by the yokes 13, 15, 21, and 109 and are applied to the coils 7, 105.
  • the magnetic field applied to the coil changes and an electromotive force is generated by electromagnetic induction.
  • the magnet 3 and the yoke 13 are fixed to the case 9, and the coil 7 is fixed to the diaphragm.
  • the coil 7 is fixed to the case 9, and the magnet 3 and the yoke 13 are fixed to the diaphragm 11. Comparing the total weight of the coil 8 and the case 9 with the total weight of the magnet 3 and the yoke 13, the magnet 3 and the yoke 13 are made of metal and are heavy, so that the moment of inertia is large.
  • the pickup performance differs depending on whether the heavier side is contacted or the lighter side is contacted.

Abstract

A bone conduction device 1 comprises mainly a magnet unit 2, a coil 7, a case 9, a vibrating plate 11, and the like. The bone conduction device 1 is provided with the magnet unit 2, the coil 7 which is disposed around the magnet unit 2, the case 9 which houses the magnet unit 2 and the coil 7, and the vibrating plate 11 which is fixed to the case 9 and which is disposed so as to be able to vibrate in the axial direction of the coil 9. In the magnet unit 2, a first magnet 3 and a second magnet 5 are disposed separately and such that identical polarities face each other, and a first yoke 13 is disposed between the magnet 3 and the magnet 5.

Description

骨伝導デバイスBone conduction device
 本発明は、骨伝導スピーカ及び骨伝導ピックアップ等の骨伝導デバイスに関するものである。 The present invention relates to a bone conduction device such as a bone conduction speaker and a bone conduction pickup.
 従来より、音楽や会話を聴く手段として、ヘッドホンやイヤホンなどのような装置(以下、聴音装置という。)が広く使用されてきている。このような聴音装置としては、空気伝導を利用したものと骨伝導を利用したものとがある。空気伝導を利用したものは、電気信号として入力された音源を空気の振動に変換して鼓膜に伝えて振動させ、鼓膜の振動が耳の奥の中耳を通って、脳に音の情報が伝達され認識される仕組みを利用している。 Conventionally, devices such as headphones and earphones (hereinafter referred to as listening devices) have been widely used as a means of listening to music and conversation. Such listening devices include those using air conduction and those using bone conduction. In the case of using air conduction, the sound source input as an electric signal is converted into the vibration of the air and transmitted to the eardrum to vibrate, and the vibration of the eardrum passes through the middle ear behind the ear and the sound information is sent to the brain. It uses a mechanism that is transmitted and recognized.
 一方、骨伝導を利用した聴音装置は、電気信号として入力された音響信号を機械的な振動に変換し、その振動を適切な位置から骨に与えて骨に振動を伝え、その振動により伝わる骨伝導音で音を認識させるものである。この骨伝導を利用した聴音装置は、ヘッドホンやイヤホンのように耳孔に挿入して使用する必要がなく、耳には周囲の音が遮蔽されることなく入ってくるので、装着していても安全である。また、鼓膜の振動を利用しないことから、難聴の人でも音を認識することができ、補聴器等への利用も進められている。 On the other hand, a hearing device using bone conduction converts an acoustic signal input as an electric signal into mechanical vibration, applies the vibration to the bone from an appropriate position, transmits the vibration to the bone, and transmits the vibration to the bone. Sound is recognized by conduction sound. Unlike headphones and earphones, this bone conduction hearing device does not need to be inserted into the ear canal and enters the ear without blocking the surrounding sound, so it is safe to wear. Is. In addition, since the vibration of the eardrum is not used, even a person with deafness can recognize the sound, and its use in hearing aids and the like is being promoted.
 図4は、一般的な骨伝導スピーカ101の断面を示す概略図である。図4に示す骨伝導スピーカ101は、上面が開放されたケース111の内部にヨーク109が収容され、ヨーク109の内部に磁石103が収容される。また、磁石103の周囲には、間隔をあけてコイル105が配置され、コイル105の上部に振動部材107が接合されている。 FIG. 4 is a schematic view showing a cross section of a general bone conduction speaker 101. In the bone conduction speaker 101 shown in FIG. 4, the yoke 109 is housed inside the case 111 whose upper surface is open, and the magnet 103 is housed inside the yoke 109. Further, coils 105 are arranged around the magnet 103 at intervals, and a vibrating member 107 is joined to the upper portion of the coil 105.
 骨伝導スピーカ101では、コイル105に信号電流が印加されると、コイル105の周囲の磁石103から発生する磁界中で発生するローレンツ力によりコイル105の軸方向に力が加わり、ケース111に対してコイル105等が振動する。この際、振動部材107はコイル105と一体となって、ケース111に対して振動する(例えば特許文献1)。 In the bone conduction speaker 101, when a signal current is applied to the coil 105, a Lorentz force generated in a magnetic field generated from a magnet 103 around the coil 105 applies a force in the axial direction of the coil 105 to the case 111. The coil 105 and the like vibrate. At this time, the vibrating member 107 is integrated with the coil 105 and vibrates with respect to the case 111 (for example, Patent Document 1).
特許第4655889号公報Japanese Patent No. 4655889
 コイル105の軸方向に発生する力は、コイル105を貫通する磁束密度の大きさに比例する。このため、より大きな力を発生させるためには、より強力な磁界が必要となる。しかしながら、1つの磁石103から発生する磁界には限界がある。このため、より効率よくコイルを貫通する磁束密度を大きくする方法が望まれる。 The force generated in the axial direction of the coil 105 is proportional to the magnitude of the magnetic flux density penetrating the coil 105. Therefore, a stronger magnetic field is required to generate a larger force. However, there is a limit to the magnetic field generated from one magnet 103. Therefore, a method of increasing the magnetic flux density penetrating the coil more efficiently is desired.
 本発明は、前述した問題点に鑑みてなされたものであり、効率よく振動を発生させることが可能な骨伝導デバイスを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a bone conduction device capable of efficiently generating vibration.
 前述した目的を達成するために本発明は、骨伝導デバイスであって、磁石ユニットと、前記磁石ユニットの周囲に配置されるコイルと、前記磁石ユニット及び前記コイルを収容するケースと、前記ケースに固定され、前記コイルの軸方向に振動可能に配置される振動板と、を具備し、前記磁石ユニットは、第1の磁石と、第2の磁石と、前記第1の磁石と前記第2の磁石との間に配置される第1のヨークと、を具備し、前記第1の磁石と前記第2の磁石は、互いに同一極性が対向するように離隔して配置され、前記振動板を介して、前記コイルと前記磁石ユニットとが相対的に振動可能であることを特徴とする骨伝導デバイスである。 In order to achieve the above-mentioned object, the present invention relates to a magnet unit, a coil arranged around the magnet unit, a case for accommodating the magnet unit and the coil, and the case. A vibrating plate that is fixed and oscillated in the axial direction of the coil is provided, and the magnet unit includes a first magnet, a second magnet, the first magnet, and the second magnet. A first yoke, which is arranged between magnets, is provided, and the first magnet and the second magnet are arranged apart from each other so that they have the same polarity facing each other, and are arranged via the vibrating plate. The bone conduction device is characterized in that the coil and the magnet unit are relatively viable.
 本発明の骨伝導デバイスでは、第1の磁石と第2の磁石とを互いに同一極性が対向するように第1のヨークを挟んで離隔して配置し、その周囲にコイルを配置する。これにより、磁石を1つだけ配置した骨伝導スピーカと比較して、コイルを貫通する磁束密度を大きくすることができ、例えば、骨伝導デバイスを骨伝導スピーカとして使用した際に効率よく振動を発生させることができる。 In the bone conduction device of the present invention, the first magnet and the second magnet are arranged apart from each other with the first yoke interposed therebetween so that the same polarities face each other, and the coil is arranged around the first yoke. As a result, the magnetic flux density penetrating the coil can be increased as compared with the bone conduction speaker in which only one magnet is arranged. For example, when the bone conduction device is used as the bone conduction speaker, vibration is efficiently generated. Can be made to.
 前記磁石ユニットは、前記ケースに固定され、前記振動板には、前記コイルが接続され、前記コイルの一部が前記磁石ユニットの外周に配置され、前記振動板と前記コイルが、前記ケースに対して振動可能であってもよい。 The magnet unit is fixed to the case, the coil is connected to the diaphragm, a part of the coil is arranged on the outer periphery of the magnet unit, and the diaphragm and the coil are attached to the case. It may be vibrable.
 または、前記コイルは、前記ケースに固定され、前記振動板には、前記磁石ユニットが接合され、前記振動板と前記磁石ユニットが、前記ケースに対して振動可能であってもよい。 Alternatively, the coil may be fixed to the case, the magnet unit may be joined to the diaphragm, and the diaphragm and the magnet unit may vibrate with respect to the case.
 ケースに固定される部材と振動板に接続される部材とを部材の質量等に応じて決定することで、振動板に適切な振動を発生させることができる。 By determining the member fixed to the case and the member connected to the diaphragm according to the mass of the member, it is possible to generate appropriate vibration in the diaphragm.
 前記磁石ユニットに対応する位置の前記コイルの外周に、さらに他の磁石ユニットが配置され、前記他の磁石ユニットは、前記第1の磁石の周囲に配置される第3の磁石と、前記第2の磁石の周囲に配置される第4の磁石と、前記第3の磁石と前記第4の磁石の間に配置される第2のヨークと、を有し、前記第3の磁石と前記第4の磁石は、前記第1の磁石と前記第2の磁石とは逆の極性であって、互いに同一極性が対向するように離隔して配置されてもよい。 Further, another magnet unit is arranged on the outer periphery of the coil at a position corresponding to the magnet unit, and the other magnet unit includes a third magnet arranged around the first magnet and the second magnet. It has a fourth magnet arranged around the magnet and a second yoke arranged between the third magnet and the fourth magnet, and has the third magnet and the fourth magnet. The magnets have the opposite polarities to the first magnet and the second magnet, and may be spaced apart from each other so that they have the same polarity but face each other.
 これにより、第1の磁石と第2の磁石とを配置した骨伝導スピーカと比較して、コイルを貫通する磁束密度をさらに大きくすることができる。 As a result, the magnetic flux density penetrating the coil can be further increased as compared with the bone conduction speaker in which the first magnet and the second magnet are arranged.
 本発明によれば、効率よく振動を発生させることができる骨伝導デバイスを提供できる。 According to the present invention, it is possible to provide a bone conduction device capable of efficiently generating vibration.
骨伝導デバイス1の断面を示す図。The figure which shows the cross section of the bone conduction device 1. 骨伝導デバイス1aの断面を示す図。The figure which shows the cross section of the bone conduction device 1a. 骨伝導デバイス1bの断面を示す図。The figure which shows the cross section of the bone conduction device 1b. 骨伝導スピーカ101の断面を示す図。The figure which shows the cross section of the bone conduction speaker 101.
 以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施形態]
 図1は本発明の第1の実施形態に係る骨伝導デバイス1の断面を示す概略図である。骨伝導デバイス1は、主に、磁石ユニット2、コイル7、ケース9、振動板11等からなる。なお、以下の説明では骨伝導デバイスを骨伝導スピーカとして使用する場合について説明するが、本発明では、骨伝導デバイスを骨伝導ピックアップ(マイク)としても使用することが可能である。
[First Embodiment]
FIG. 1 is a schematic view showing a cross section of the bone conduction device 1 according to the first embodiment of the present invention. The bone conduction device 1 mainly includes a magnet unit 2, a coil 7, a case 9, a diaphragm 11, and the like. In the following description, the case where the bone conduction device is used as the bone conduction speaker will be described, but in the present invention, the bone conduction device can also be used as the bone conduction pickup (mic).
 磁石ユニット2は、第1の磁石である磁石3、第2の磁石である磁石5、及び第1のヨークであるヨーク13等からなる。磁石3と磁石5は互いに同一極性が対向するように離隔して配置される。例えば、図示した例ではN極同士が対向するように配置される。なお、磁石3、5は、例えば略同一形状の(略同一の磁力を有する)円盤状である。 The magnet unit 2 includes a magnet 3 which is a first magnet, a magnet 5 which is a second magnet, a yoke 13 which is a first yoke, and the like. The magnet 3 and the magnet 5 are arranged apart from each other so that they have the same polarity and face each other. For example, in the illustrated example, the north poles are arranged so as to face each other. The magnets 3 and 5 have, for example, a disk shape having substantially the same shape (having substantially the same magnetic force).
 磁石3と磁石5との間には、ヨーク13が配置される。すなわち、磁石3と磁石5は、ヨーク13によって一体化する。ヨーク13は、例えばリング状であり、少なくとも、磁石3、5の外径以上の外径で構成される。 A yoke 13 is arranged between the magnet 3 and the magnet 5. That is, the magnet 3 and the magnet 5 are integrated by the yoke 13. The yoke 13 has, for example, a ring shape, and is composed of at least an outer diameter equal to or larger than the outer diameter of the magnets 3 and 5.
 ケース9は、例えば略円筒形であり、一面が開口する。ケース9の内部には、磁石ユニット2及びコイル7等が収容される。ケース9の開口面には、振動板11が固定される。コイル7は、磁石ユニット2の周囲の少なくとも一部を覆うように、磁石ユニット2から離隔して配置される。振動板11は、弾性変形が可能であり、コイル7の軸方向に振動可能である。 Case 9 has a substantially cylindrical shape, for example, and one side is open. The magnet unit 2, the coil 7, and the like are housed inside the case 9. The diaphragm 11 is fixed to the opening surface of the case 9. The coil 7 is arranged apart from the magnet unit 2 so as to cover at least a part around the magnet unit 2. The diaphragm 11 can be elastically deformed and can vibrate in the axial direction of the coil 7.
 磁石ユニット2は、ケース9の振動板11と対向する面(開口面とは逆側)に固定される。振動板11には、ヨーク15が接続され、ヨーク15にはコイル7が接続される。すなわち、コイル7およびヨーク15は、ケース9に対して振動可能である。ヨーク15は、例えば、一方が塞がれ、他方が開口する筒状に形成される。ヨーク15の塞がれた側は振動板11と接合される。また、ヨーク15の開口部側の縁部近傍にコイル7が接続され、ヨーク15は、開口部側で磁石3を上方から覆うように配置される。ヨーク15は、磁束を通しやすい透磁率の大きい材質(鉄等)で構成され、ヨーク機能(磁気回路の形成)を発揮するとともに、コイル7と振動板11との取付け部材としても機能する。なお、ヨーク機能を考慮せず、コイル7と振動板11との取付け部材としての機能のみでよい場合には、ヨーク15に代えて、アルミニウムなどの透磁率が低い材質で形成した、同様の形状のコイル取付け部材としてもよい。 The magnet unit 2 is fixed to the surface of the case 9 facing the diaphragm 11 (the side opposite to the opening surface). A yoke 15 is connected to the diaphragm 11, and a coil 7 is connected to the yoke 15. That is, the coil 7 and the yoke 15 can vibrate with respect to the case 9. The yoke 15 is formed, for example, in a cylindrical shape in which one is closed and the other is open. The closed side of the yoke 15 is joined to the diaphragm 11. Further, the coil 7 is connected near the edge of the yoke 15 on the opening side, and the yoke 15 is arranged so as to cover the magnet 3 from above on the opening side. The yoke 15 is made of a material (iron or the like) having a high magnetic permeability that allows magnetic flux to easily pass through, and exhibits a yoke function (formation of a magnetic circuit) and also functions as a mounting member for the coil 7 and the diaphragm 11. If the function as a mounting member for the coil 7 and the diaphragm 11 is sufficient without considering the yoke function, the same shape is formed by using a material having a low magnetic permeability such as aluminum instead of the yoke 15. It may be used as a coil mounting member.
 骨伝導デバイス1では、磁石ユニット2により矢印に示すように、コイル7を貫通するような磁場が形成されている。より詳細には、N極からS極に向かう磁力線を想定すると、N極同士が対向するため、N極から発生する磁力線は、互いいに反発するように、外方(コイル7側)に向かって形成される。そして、磁力線は、コイル7を貫通し、さらにそれぞれのS極側に向かう。 In the bone conduction device 1, a magnetic field is formed by the magnet unit 2 so as to penetrate the coil 7 as shown by an arrow. More specifically, assuming the magnetic field lines going from the N pole to the S pole, the N poles face each other, so the magnetic force lines generated from the N poles go outward (coil 7 side) so as to repel each other. Is formed. Then, the magnetic field lines pass through the coil 7 and further toward the respective S poles.
 従来のように、1つの磁石のみでは、N極から出た磁力線は、他の磁場に影響されないため、ある程度の広がりを形成する。しかし、一対の磁石の同極同士を対向させて配置することで、互いに磁力線の広がりを抑制して、磁力線を急激にコイル7方向に向けて形成することができる。このため、コイル7を貫通する磁束密度を大きくすることができる。 As in the past, with only one magnet, the magnetic field lines emitted from the N pole are not affected by other magnetic fields, so they form a certain extent of spread. However, by arranging the same poles of the pair of magnets facing each other, the spread of the magnetic field lines can be suppressed from each other, and the magnetic field lines can be rapidly formed in the direction of the coil 7. Therefore, the magnetic flux density penetrating the coil 7 can be increased.
 この状態でコイル7に信号電流が印加されると、磁石ユニット2から発生する磁界よるローレンツ力によりコイル7の軸方向に力が生じる。このため、振動板11を介して、コイル7側と磁石ユニット2側が相対的に振動する。すなわち、ケース9に対してヨーク15および振動板11が振動する。 When a signal current is applied to the coil 7 in this state, a force is generated in the axial direction of the coil 7 due to the Lorentz force generated by the magnetic field generated from the magnet unit 2. Therefore, the coil 7 side and the magnet unit 2 side vibrate relatively via the diaphragm 11. That is, the yoke 15 and the diaphragm 11 vibrate with respect to the case 9.
 第1の実施形態によれば、磁石3と磁石5とを互いに同一極性が対向するようにヨーク13を挟んで配置した磁石ユニット2が用いられるため、磁石を1つだけ配置した場合と比較して、コイル7を貫通する磁束密度が大きくすることができる。このため、磁石ユニット2と同じサイズの一つの磁石を用いた場合と比較して、効率よく振動を発生させることができる。 According to the first embodiment, since the magnet unit 2 in which the magnet 3 and the magnet 5 are arranged so that the magnets 3 and the magnet 5 have the same polarity facing each other with the yoke 13 interposed therebetween is used, it is compared with the case where only one magnet is arranged. Therefore, the magnetic flux density penetrating the coil 7 can be increased. Therefore, vibration can be efficiently generated as compared with the case where one magnet having the same size as the magnet unit 2 is used.
 以下、本発明の別の例について、第2、第3の実施形態として説明する。各実施形態は、これまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Hereinafter, another example of the present invention will be described as the second and third embodiments. Each embodiment will be described in terms of differences from the embodiments described so far, and the same configurations will be omitted with reference to the same reference numerals in the drawings and the like. In addition, the configurations described in each embodiment, including the first embodiment, can be combined as needed.
[第2の実施形態]
 図2は本発明の第2の実施形態に係る骨伝導デバイス1aの断面を示す図である。骨伝導デバイス1aは、他の磁石ユニット16をさらに備える点で第1の実施形態の骨伝導デバイス1と主に異なる。
[Second Embodiment]
FIG. 2 is a view showing a cross section of the bone conduction device 1a according to the second embodiment of the present invention. The bone conduction device 1a is mainly different from the bone conduction device 1 of the first embodiment in that it further includes another magnet unit 16.
 磁石ユニット16は、磁石ユニット2に対応する位置のコイル7の外周に配置される。磁石ユニット16は、第3の磁石である磁石17、第4の磁石である磁石19、及び第2のヨークであるヨーク21等からなる。なお、磁石17、19は、例えば略同一形状の(略同一の磁力を有する)リング状である。 The magnet unit 16 is arranged on the outer circumference of the coil 7 at a position corresponding to the magnet unit 2. The magnet unit 16 includes a magnet 17 which is a third magnet, a magnet 19 which is a fourth magnet, a yoke 21 which is a second yoke, and the like. The magnets 17 and 19 have, for example, a ring shape having substantially the same shape (having substantially the same magnetic force).
 磁石3と磁石17とは略同一の厚みである。また、磁石5と磁石19とは略同一の厚みである。また、ヨーク13とヨーク21とは略同一の厚みである。このため、磁石17は磁石3の外周に配置され、磁石19は磁石5の外周に配置され、ヨーク21は、ヨーク13の外周に配置される。 The magnet 3 and the magnet 17 have substantially the same thickness. Further, the magnet 5 and the magnet 19 have substantially the same thickness. Further, the yoke 13 and the yoke 21 have substantially the same thickness. Therefore, the magnet 17 is arranged on the outer circumference of the magnet 3, the magnet 19 is arranged on the outer circumference of the magnet 5, and the yoke 21 is arranged on the outer circumference of the yoke 13.
 磁石17と磁石19は、それぞれ磁石3と磁石5に対して逆の極性となる向きに配置され、互いに同一極性が対向するように離隔して配置される。例えば、図示した例では、磁石3と磁石5とが、N極同士が対向するように配置され、磁石17と磁石19とが、S極同士が対向するように配置される。 The magnet 17 and the magnet 19 are arranged in directions having opposite polarities with respect to the magnet 3 and the magnet 5, respectively, and are separated from each other so that the same polarities face each other. For example, in the illustrated example, the magnet 3 and the magnet 5 are arranged so that the N poles face each other, and the magnet 17 and the magnet 19 are arranged so that the S poles face each other.
 磁石17と磁石19との間にはヨーク21が配置される。すなわち、磁石17と磁石19とは、ヨーク21によって一体化する。磁石17、19及びヨーク21は、それぞれ略リング状であって、リング形状の内部に、磁石ユニット16と離隔して、磁石ユニット2、コイル7及びヨーク15が配置される。なお、磁石ユニット16は、磁石ユニット2とともに、ケース9に固定される。 A yoke 21 is arranged between the magnet 17 and the magnet 19. That is, the magnet 17 and the magnet 19 are integrated by the yoke 21. The magnets 17, 19 and the yoke 21 are each substantially ring-shaped, and the magnet unit 2, the coil 7 and the yoke 15 are arranged inside the ring shape at a distance from the magnet unit 16. The magnet unit 16 is fixed to the case 9 together with the magnet unit 2.
 骨伝導デバイス1aでは、磁石ユニット2及び磁石ユニット16により矢印に示すように、コイル7を貫通する磁場が形成されている。この際、前述したように、一対の磁石3、5の同極同士を対向させて配置することで、互いに磁力線の広がりを抑制することができる。 In the bone conduction device 1a, a magnetic field penetrating the coil 7 is formed by the magnet unit 2 and the magnet unit 16 as shown by arrows. At this time, as described above, by arranging the pair of magnets 3 and 5 having the same poles facing each other, the spread of the magnetic field lines can be suppressed from each other.
 また、磁石3、5の外周には、磁石17、19が配置され、磁石3、5のN極と磁石17、19のS極とが隣り合うように配置される。このため、磁石3、5のN極から出た磁力線は、磁石17、19のS極に向かって形成される。また、磁石17、19のN極から出た磁力線は、それぞれ磁石3、5のS極に向かって形成される。このようにすることで、磁石ユニット2のみの場合と比較して、磁力線をより急激にコイル7方向に向けて形成することができる。このため、コイル7を貫通する磁束密度をより大きくすることができる。 Further, magnets 17 and 19 are arranged on the outer circumference of the magnets 3 and 5, and the north poles of the magnets 3 and 5 and the south poles of the magnets 17 and 19 are arranged so as to be adjacent to each other. Therefore, the magnetic field lines emitted from the north poles of the magnets 3 and 5 are formed toward the south poles of the magnets 17 and 19. Further, the magnetic field lines emitted from the north poles of the magnets 17 and 19 are formed toward the south poles of the magnets 3 and 5, respectively. By doing so, the magnetic field lines can be formed more rapidly in the direction of the coil 7 as compared with the case where only the magnet unit 2 is used. Therefore, the magnetic flux density penetrating the coil 7 can be further increased.
 この状態で、コイル7に信号電流が印加されると、磁石ユニット2および磁石ユニット16から発生する磁界よるローレンツ力によりコイル7の軸方向に力が生じる。このため、コイル7側と磁石ユニット2及び磁石ユニット16側が相対的に振動する。すなわち、ケース9に対してヨーク15および振動板11が振動する。 In this state, when a signal current is applied to the coil 7, a force is generated in the axial direction of the coil 7 due to the Lorentz force generated by the magnetic fields generated from the magnet unit 2 and the magnet unit 16. Therefore, the coil 7 side and the magnet unit 2 and the magnet unit 16 side vibrate relatively. That is, the yoke 15 and the diaphragm 11 vibrate with respect to the case 9.
 第2の実施形態によれば、第1の実施形態と同様の効果を得ることができる。また、磁石3と磁石5とを互いに同一極性が対向するようにヨーク13を挟んで配置した磁石ユニット2に加えて、磁石17と磁石19とを磁石3と磁石5とは逆の極性であって互いに同一極性が対向するようにヨーク21を挟んで配置した磁石ユニット16が用いられる。このように、磁石ユニット16を加えることにより、磁石ユニット2のみを用いる場合と比較して、コイル7を貫通する磁束密度をより大きくすることができるため、より効率よく振動を発生させることができる。 According to the second embodiment, the same effect as that of the first embodiment can be obtained. Further, in addition to the magnet unit 2 in which the magnet 3 and the magnet 5 are arranged so as to have the same polarity facing each other with the yoke 13 interposed therebetween, the magnet 17 and the magnet 19 have the opposite polarities to the magnet 3 and the magnet 5. A magnet unit 16 is used which is arranged with the yoke 21 sandwiched so that the same polarities face each other. In this way, by adding the magnet unit 16, the magnetic flux density penetrating the coil 7 can be increased as compared with the case where only the magnet unit 2 is used, so that vibration can be generated more efficiently. ..
[第3の実施形態]
 図3は本発明の第3の実施形態に係る骨伝導デバイス1bの断面を示す図である。骨伝導デバイス1bは、磁石ユニット2及び磁石ユニット16が振動板11に接合される点で第2の実施形態の骨伝導デバイス1aと主に異なる。
[Third Embodiment]
FIG. 3 is a view showing a cross section of the bone conduction device 1b according to the third embodiment of the present invention. The bone conduction device 1b is mainly different from the bone conduction device 1a of the second embodiment in that the magnet unit 2 and the magnet unit 16 are joined to the diaphragm 11.
 骨伝導デバイス1bでは、コイル7がケース9に固定される。また、磁石ユニット2と磁石ユニット16とはプレート23で一体化され、プレート23が固定部材27を介して振動板11に接合される。磁石ユニット2と磁石ユニット16のそれぞれのプレート23と逆の面にはプレート25が配置される。プレート23、25は、磁石ユニット2と磁石ユニット16を挟み込むように配置され、磁気回路を形成するヨークとしても機能する。 In the bone conduction device 1b, the coil 7 is fixed to the case 9. Further, the magnet unit 2 and the magnet unit 16 are integrated by a plate 23, and the plate 23 is joined to the diaphragm 11 via a fixing member 27. The plate 25 is arranged on the surface of the magnet unit 2 and the magnet unit 16 opposite to the plate 23. The plates 23 and 25 are arranged so as to sandwich the magnet unit 2 and the magnet unit 16, and also function as a yoke for forming a magnetic circuit.
 前述したように、磁石ユニット16は、全体が略リング状であり、磁石ユニット2は、磁石ユニット16の内側に配置される。また、コイル7は、磁石ユニット2と磁石ユニット16の間に離隔して配置される。 As described above, the magnet unit 16 has a substantially ring shape as a whole, and the magnet unit 2 is arranged inside the magnet unit 16. Further, the coil 7 is arranged apart from each other between the magnet unit 2 and the magnet unit 16.
 骨伝導デバイス1bも、骨伝導デバイス1aと同様に、コイル7に信号電流が印加されると、フレミングの左手の法則に従ってコイル7の軸方向に力が生じる。このため、コイル7側と磁石ユニット2及び磁石ユニット16側が相対的に振動する。すなわち、ケース9に対して磁石ユニット2、16および振動板11が振動する。 Similar to the bone conduction device 1a, the bone conduction device 1b also generates a force in the axial direction of the coil 7 according to Fleming's left-hand rule when a signal current is applied to the coil 7. Therefore, the coil 7 side and the magnet unit 2 and the magnet unit 16 side vibrate relatively. That is, the magnet units 2 and 16 and the diaphragm 11 vibrate with respect to the case 9.
 第3の実施形態によれば、第2の実施形態と同様の効果をえることができる。すなわち、第2の実施形態と同様に、磁石ユニット16を加えることにより、磁石ユニット2のみを用いる場合と比較して、コイル7を貫通する磁束密度を大きくし、効率よく振動を発生させることができる。 According to the third embodiment, the same effect as that of the second embodiment can be obtained. That is, as in the second embodiment, by adding the magnet unit 16, the magnetic flux density penetrating the coil 7 can be increased and vibration can be efficiently generated as compared with the case where only the magnet unit 2 is used. can.
 磁石を一つ用いた従来品(図4参照)と、磁石を対向配置させた実施例(図3参照)とを用いて、周波数特性を評価した。20Hz~20kHzにおいて、スイープ正弦波による周波数特性を測定したところ、従来品は、所定のSN比を示す周波数帯が約100Hz~20kHzであったのに対し、実施例では、同じSN比を示す周波数帯が約40Hz~20kHzとなり、特に低周波領域での特性が向上した。更に、磁石を一つ用いた従来品(図4参照)と、磁石を対向配置させた実施例(図3参照)とを用いて振動強度を測定した結果、磁石を対向配置させた実施例(図3参照)の振動ゲインが約10dBの上昇が確認された。 The frequency characteristics were evaluated using a conventional product using one magnet (see FIG. 4) and an example in which magnets were arranged facing each other (see FIG. 3). When the frequency characteristics of the sweep sine wave were measured at 20 Hz to 20 kHz, the frequency band showing a predetermined SN ratio was about 100 Hz to 20 kHz in the conventional product, whereas in the embodiment, the frequency showing the same SN ratio. The band became about 40 Hz to 20 kHz, and the characteristics were particularly improved in the low frequency region. Further, as a result of measuring the vibration intensity using a conventional product using one magnet (see FIG. 4) and an example in which the magnets are arranged facing each other (see FIG. 3), an example in which the magnets are arranged facing each other (see FIG. 3). It was confirmed that the vibration gain of (see FIG. 3) increased by about 10 dB.
 以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.
 例えば、磁石の極性は図示した例と逆であってもよい。また、本発明の効果が得られる限り、他の部材を適宜追加してもよい。 For example, the polarity of the magnet may be opposite to the illustrated example. In addition, other members may be added as appropriate as long as the effects of the present invention can be obtained.
 また、前述したように、本発明の骨伝導デバイスは、骨伝導ピックアップ(マイク)として使用することが可能である。一般的な骨伝導デバイスのスピーカ用途としての動作原理は、磁石から発生する磁界中にコイルを配置し、コイルに電流を流すことにより発生するローレンツ力でコイルを振動させ、その振動を骨を介して聴覚神経に伝え音として認識するものである。 Further, as described above, the bone conduction device of the present invention can be used as a bone conduction pickup (microphone). The operating principle of a general bone conduction device as a speaker application is that the coil is placed in a magnetic field generated from a magnet, the coil is vibrated by the Lorentz force generated by passing an electric current through the coil, and the vibration is transmitted through the bone. It is recognized as a transmitted sound to the auditory nerve.
 一方、骨伝導デバイスのピックアップ(マイク)用途としての動作原理は、磁石から発生する磁界中にコイルを配置し、コイルおよび磁石を振動させ、コイルに加わる磁界が変化することで電磁誘導による起電力を発生させるものである。本発明による骨伝導デバイスに振動を加えた結果、20Hz~20KHzの振動に対して十分な起電力が得られることを発見した。この結果、本発明による骨伝導デバイスはスピーカ機能にとどまらずピックアップ機能(マイク機能)としても使用可能である。 On the other hand, the operating principle of the bone conduction device as a pickup (microphone) is that the coil is placed in the magnetic field generated from the magnet, the coil and the magnet are vibrated, and the magnetic field applied to the coil changes to generate electromotive force by electromagnetic induction. Is generated. As a result of applying vibration to the bone conduction device according to the present invention, it was discovered that sufficient electromotive force can be obtained for vibration of 20 Hz to 20 KHz. As a result, the bone conduction device according to the present invention can be used not only as a speaker function but also as a pickup function (microphone function).
 以下、本骨伝導デバイスのピックアップ機能(マイク機能)としての動作について詳細する。図1、図2および図3の磁石3、5、17、19、103から発生させた磁界はヨーク13、15、21、109により誘導され、コイル7、105に加わっている。ケース9および振動板11に振動を加えることにより、コイルに加わる磁界が変化し電磁誘導により起電力が発生する。 The operation of this bone conduction device as a pickup function (microphone function) will be described in detail below. The magnetic fields generated from the magnets 3, 5, 17, 19, and 103 of FIGS. 1, 2, and 3 are induced by the yokes 13, 15, 21, and 109 and are applied to the coils 7, 105. By applying vibration to the case 9 and the diaphragm 11, the magnetic field applied to the coil changes and an electromotive force is generated by electromagnetic induction.
 ピックアップ機能(マイク機能)用途の場合、振動板11側あるいはケース9側のどちらを振動面に当てるかが重要である。図1、図2は、ケース9に磁石3とヨーク13が固定されており、振動板にコイル7が固定されている。一方、図3では、ケース9にコイル7が固定され、振動板11に磁石3とヨーク13が固定されている。コイル8とケース9の合計重量と、磁石3とヨーク13の合計重量を比較すると、磁石3とヨーク13は金属であり重いため慣性モーメントが大きくなる。振動面に接触する場合、重量が重い方を接触させるか、軽い側を接触させるかでピックアップ性能が異なる。 In the case of pickup function (microphone function) application, it is important whether the diaphragm 11 side or the case 9 side is applied to the vibrating surface. In FIGS. 1 and 2, the magnet 3 and the yoke 13 are fixed to the case 9, and the coil 7 is fixed to the diaphragm. On the other hand, in FIG. 3, the coil 7 is fixed to the case 9, and the magnet 3 and the yoke 13 are fixed to the diaphragm 11. Comparing the total weight of the coil 8 and the case 9 with the total weight of the magnet 3 and the yoke 13, the magnet 3 and the yoke 13 are made of metal and are heavy, so that the moment of inertia is large. When contacting the vibrating surface, the pickup performance differs depending on whether the heavier side is contacted or the lighter side is contacted.
 測定の結果、図3の骨伝導デバイス1bを用い、振動板11側を振動面に接触した場合は、1KHz以下の低周波側を優位にピックアップし、ケース9側を振動面に接触した場合は1KHzから20KHzの高周波側を優位にピックアップすることが判明した。これは、ケース9側を振動面に接触した場合、ケース9側の慣性モーメントが振動板11側に比べ小さいため、高周波の振動に追従しやすいことによる。 As a result of the measurement, when the bone conduction device 1b of FIG. 3 was used and the diaphragm 11 side was in contact with the vibrating surface, the low frequency side of 1 KHz or less was picked up predominantly, and the case 9 side was in contact with the vibrating surface. It was found that the high frequency side from 1 KHz to 20 KHz was picked up predominantly. This is because when the case 9 side comes into contact with the vibrating surface, the moment of inertia on the case 9 side is smaller than that on the diaphragm 11 side, so that it is easy to follow high-frequency vibration.
 以上の結果から、ピックアップする振動周波数により骨伝導デバイスの接触面を変えることでより有効なピックアップが可能である。図1、図2の場合も同様にケース9側と振動板11側の慣性モーメントの違いを利用して、骨伝導デバイスの接触側を変えることで、より有効なピックアップが可能となる。 From the above results, more effective pickup is possible by changing the contact surface of the bone conduction device according to the vibration frequency to be picked up. Similarly, in the cases of FIGS. 1 and 2, more effective pickup is possible by changing the contact side of the bone conduction device by utilizing the difference in the moment of inertia between the case 9 side and the diaphragm 11 side.
 1、1a、1b………骨伝導デバイス
 2、16………磁石ユニット
 3、5、17、19、103………磁石
 7、105………コイル
 9、111………ケース
 11………振動板
 13、15、21、109………ヨーク
 23、25………プレート
 27………固定部材
 101………骨伝導スピーカ
 107………振動部材
 
1, 1a, 1b ……… Bone conduction device 2, 16 ……… Magnet unit 3, 5, 17, 19, 103 ……… Magnet 7, 105 ……… Coil 9, 111 ……… Case 11 ……… Diaphragm 13, 15, 21, 109 ……… Yoke 23, 25 ……… Plate 27 ……… Fixing member 101 ………… Bone conduction speaker 107 ……… Vibration member

Claims (4)

  1.  骨伝導デバイスであって、
     磁石ユニットと、
     前記磁石ユニットの周囲に配置されるコイルと、
     前記磁石ユニット及び前記コイルを収容するケースと、
     前記ケースに固定され、前記コイルの軸方向に振動可能に配置される振動板と、
     を具備し、
     前記磁石ユニットは、第1の磁石と、第2の磁石と、前記第1の磁石と前記第2の磁石との間に配置される第1のヨークと、を具備し、
     前記第1の磁石と前記第2の磁石は、互いに同一極性が対向するように離隔して配置され、
     前記振動板を介して、前記コイルと前記磁石ユニットとが相対的に振動可能であることを特徴とする骨伝導デバイス。
    Bone conduction device
    With the magnet unit
    A coil arranged around the magnet unit and
    A case for accommodating the magnet unit and the coil,
    A diaphragm fixed to the case and oscillated in the axial direction of the coil,
    Equipped with
    The magnet unit includes a first magnet, a second magnet, and a first yoke arranged between the first magnet and the second magnet.
    The first magnet and the second magnet are separated from each other so that they have the same polarity and face each other.
    A bone conduction device characterized in that the coil and the magnet unit can vibrate relatively via the diaphragm.
  2.  前記磁石ユニットは、前記ケースに固定され、
     前記振動板には、前記コイルが接続され、前記コイルの一部が前記磁石ユニットの外周に配置され、
     前記振動板と前記コイルが、前記ケースに対して振動可能であることを特徴とする請求項1記載の骨伝導デバイス。
    The magnet unit is fixed to the case and
    The coil is connected to the diaphragm, and a part of the coil is arranged on the outer periphery of the magnet unit.
    The bone conduction device according to claim 1, wherein the diaphragm and the coil can vibrate with respect to the case.
  3.  前記コイルは、前記ケースに固定され、
     前記振動板には、前記磁石ユニットが接合され、
     前記振動板と前記磁石ユニットが、前記ケースに対して振動可能であることを特徴とする請求項1記載の骨伝導デバイス。
    The coil is fixed to the case and
    The magnet unit is joined to the diaphragm, and the magnet unit is bonded to the diaphragm.
    The bone conduction device according to claim 1, wherein the diaphragm and the magnet unit can vibrate with respect to the case.
  4.  前記磁石ユニットに対応する位置の前記コイルの外周に、さらに他の磁石ユニットが配置され、
     前記他の磁石ユニットは、前記第1の磁石の周囲に配置される第3の磁石と、前記第2の磁石の周囲に配置される第4の磁石と、前記第3の磁石と前記第4の磁石の間に配置される第2のヨークと、を有し、
     前記第3の磁石と前記第4の磁石は、前記第1の磁石と前記第2の磁石とは逆の極性であって、互いに同一極性が対向するように離隔して配置されることを特徴とする請求項1記載の骨伝導デバイス。
     
    Further, another magnet unit is arranged on the outer circumference of the coil at a position corresponding to the magnet unit.
    The other magnet unit includes a third magnet arranged around the first magnet, a fourth magnet arranged around the second magnet, the third magnet, and the fourth magnet. Has a second yoke, which is placed between the magnets of
    The third magnet and the fourth magnet have opposite polarities to the first magnet and the second magnet, and are separated from each other so that the same polarities face each other. The bone conduction device according to claim 1.
PCT/JP2022/000197 2021-01-18 2022-01-06 Bone conduction device WO2022153915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500882A JP7382677B2 (en) 2021-01-18 2022-01-06 bone conduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021005559 2021-01-18
JP2021-005559 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022153915A1 true WO2022153915A1 (en) 2022-07-21

Family

ID=82446272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000197 WO2022153915A1 (en) 2021-01-18 2022-01-06 Bone conduction device

Country Status (2)

Country Link
JP (1) JP7382677B2 (en)
WO (1) WO2022153915A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128894U (en) * 1985-01-11 1986-08-12
KR20090082999A (en) * 2008-01-29 2009-08-03 김성호 Bone conduction speaker of double frame and double magnet structures
WO2019134162A1 (en) * 2018-01-08 2019-07-11 深圳市韶音科技有限公司 Bone conduction loudspeaker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358296A (en) 1999-06-16 2000-12-26 Sony Corp Speaker and speaker device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128894U (en) * 1985-01-11 1986-08-12
KR20090082999A (en) * 2008-01-29 2009-08-03 김성호 Bone conduction speaker of double frame and double magnet structures
WO2019134162A1 (en) * 2018-01-08 2019-07-11 深圳市韶音科技有限公司 Bone conduction loudspeaker

Also Published As

Publication number Publication date
JPWO2022153915A1 (en) 2022-07-21
JP7382677B2 (en) 2023-11-17

Similar Documents

Publication Publication Date Title
EP2869593B1 (en) Earphone device
JP3963173B2 (en) Speaker
JP5886126B2 (en) Earphone and listening device using it
JP7385626B2 (en) transducer placement
CN107615780B (en) Piezoelectric sounding body and electroacoustic conversion device
JP6286151B2 (en) Loudspeaker driver with dual electromagnetic assembly
WO2021063112A1 (en) Bone conduction loudspeaker, bone conduction headphones and bone conduction hearing aid
JP4385981B2 (en) Electrodynamic speaker
KR101843127B1 (en) Panel excitation type speaker
JP2008270879A (en) Receiver
JP2008092460A (en) Bone conduction speaker
JP2011119913A (en) Hybrid type speaker unit and hybrid type speaker
US20180213318A1 (en) Hybrid transducer
JP3045032B2 (en) headphone
WO2022153915A1 (en) Bone conduction device
JP2012109851A (en) Speaker
WO2023097747A1 (en) Common magnetic field vibration bone sound conduction loudspeaker, earphone, and common magnetic field vibration bone sound conduction implementation method
KR101775427B1 (en) Speaker Unit
JP5855561B2 (en) Speaker device
JP2000184482A (en) Loudspeaker and loudspeaker device
US2494918A (en) Inductively energized electro-dynamic loud-speaker
JP2005260306A (en) Dynamic microphone
JP2020014069A (en) Speaker curved diaphragm
JP7473241B2 (en) Bone conduction device
US20240098422A1 (en) Bone conduction loudspeaker

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022500882

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739324

Country of ref document: EP

Kind code of ref document: A1