WO2022153444A1 - 消費電力推定装置及びプログラム - Google Patents

消費電力推定装置及びプログラム Download PDF

Info

Publication number
WO2022153444A1
WO2022153444A1 PCT/JP2021/001068 JP2021001068W WO2022153444A1 WO 2022153444 A1 WO2022153444 A1 WO 2022153444A1 JP 2021001068 W JP2021001068 W JP 2021001068W WO 2022153444 A1 WO2022153444 A1 WO 2022153444A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
month
time
property
change
Prior art date
Application number
PCT/JP2021/001068
Other languages
English (en)
French (fr)
Inventor
利宏 妻鹿
智祐 成井
修一 村山
冬樹 佐藤
裕希 川野
晋一郎 大谷
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to PCT/JP2021/001068 priority Critical patent/WO2022153444A1/ja
Priority to JP2022574955A priority patent/JP7250227B2/ja
Publication of WO2022153444A1 publication Critical patent/WO2022153444A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a power consumption estimation device and a program, particularly to estimate power consumption during a period in which power consumption cannot be measured.
  • the power consumption of each month and each time of the next year is estimated by referring to the past of the property, for example, the power consumption for one year and the equipment operation history. is doing.
  • Patent Documents 1 and 2 For example, by utilizing the data of other properties that have past results such as power consumption for one year or more, especially the actual data of properties similar to their own property, the power consumption during the period when the power consumption could not be measured is estimated. (For example, Patent Documents 1 and 2).
  • indexes used for determining the degree of similarity for example, daily and monthly average power, area and latitude / longitude of the building, industry of the company using the building, attributes of the building such as stores, number of people in the building, etc. be. Then, by selecting more items to be specified as search conditions from these indexes, properties with a high degree of similarity can be extracted. However, if the number of property data is not sufficient and many items are specified in the search conditions, there is a possibility that other properties with high similarity cannot be extracted.
  • the present invention makes it possible to estimate the power consumption in the month when the power consumption could not be collected without lowering the estimation accuracy even when the number of other properties to be referred to when estimating the power consumption is small.
  • the purpose is to estimate the power consumption in the month when the power consumption could not be collected without lowering the estimation accuracy even when the number of other properties to be referred to when estimating the power consumption is small.
  • the power consumption estimation device is included in the collection month in which the power consumption is collected in the target property for which the power consumption is to be estimated, during the reference period in which the actual power consumption data is referred to for the power consumption estimation.
  • the time-change-like property extraction means for extracting other properties whose power consumption is similar to the target property as the time-change-like property, and in the non-collection month of the time-change-like property other than the collection month in the reference period.
  • the time-varying power consumption estimating means for estimating the time change of the power consumption on each day included in the uncollected month of the target property, and the collection month of the target property
  • the electric energy consumption of each month included in the collection month is compared.
  • the monthly change similar property extraction means for extracting other properties whose changes are similar to the target property as monthly change similar properties, and the electric energy consumption of the monthly change similar property for each month in the reference period.
  • the monthly power consumption estimating means for estimating the power consumption of the target property in the uncollected month and the power consumption of the target property estimated by the monthly power consumption estimating means in the uncollected month are used. Based on this, by correcting the power consumption at each time of each day included in the uncollected month estimated by the time-varying power consumption estimating means, at each time of each day included in the uncollected month of the target property. It has a power consumption estimation means for each month and each time to estimate the power consumption on a monthly basis.
  • the monthly change similar property extraction means changes the power consumption of the target property on each day included in the collection month instead of the change of the power consumption of each month included in the collection month.
  • the other property whose change in the power consumption of each day included in the collection month is similar to the target property can be obtained. It is extracted as a property that changes monthly.
  • each day is divided into a plurality of time zones and divided. For each time zone, the time change of the power consumption in the time zone of each day included in the collection month in the target property and the time of the power consumption in the time zone of each day included in the collection month of the other property.
  • the time change power consumption estimation means is described above.
  • Time change in each time zone The time change of the power consumption of the similar property on each day included in the uncollected month is estimated by referring to the power consumption of the target property on each day included in the uncollected month. Is.
  • the time change similar property extraction means cannot extract other properties similar to the target property even if the time change of the power consumption in each day is compared, the time of each time in the collection month of the monthly change similar property It has a power consumption ratio calculation means for calculating the ratio of the power consumption of the similar property that changes monthly to the power consumption at each time in each uncollected month as the power consumption ratio at each time in the uncollected month.
  • the time-varying power consumption estimating means multiplies the power consumption ratio of each time in the uncollected month calculated by the power consumption ratio calculating means by the power consumption of the target property at the time in the collecting month. This is to estimate the time change of power consumption on each day included in the uncollected month of the target property.
  • the program according to the present invention includes the computer in the collection month in which the power consumption is collected in the target property for which the power consumption is estimated during the reference period in which the actual power consumption data is referred to for the power consumption estimation.
  • the time-change-like property extraction means for extracting other properties whose power consumption is similar to the target property as time-change-like properties, and the non-collection months of the time-change-like property other than the collection month in the reference period.
  • the time-varying power consumption estimating means for estimating the time change of the power consumption in each day included in the uncollected month of the target property by referring to the power consumption in each day, included in the collection month of the target property. By comparing the change in the power consumption of each month with the change in the power consumption of each month included in the collection month of the other property, the change in the power consumption of each month included in the collection month Refers to the monthly change similar property extraction means for extracting other properties similar to the target property as the monthly change similar property, and the power consumption of the monthly change similar property for each month in the reference period.
  • the time based on the monthly power consumption estimating means for estimating the power consumption of the target property in the uncollected month and the power consumption of the target property in the uncollected month estimated by the monthly power consumption estimating means By correcting the power consumption at each time of each day included in the uncollected month estimated by the change power consumption estimation means, the power consumption of the target property at each time of each day included in the uncollected month is changed to a month. It is intended to function as a means for estimating power consumption for each month and time for each estimation.
  • the present invention even when the number of other properties to be referred to when estimating the power consumption is small, it is possible to estimate the power consumption in the month when the power consumption could not be collected without lowering the estimation accuracy. ..
  • FIG. FIG. 5 is a hardware configuration diagram of a computer forming the power consumption estimation device according to the first embodiment. It is a graph which shows the time change of the power consumption in one day in Embodiment 1. FIG. It is a graph which shows the monthly change of the power consumption in Embodiment 1. It is a graph which shows the power consumption of each month and each time in Embodiment 1. FIG. It is a flowchart which shows the estimation process of the power consumption in Embodiment 1. It is a block block diagram which shows the power consumption estimation apparatus in Embodiment 2. It is a flowchart which shows the estimation process of the power consumption in Embodiment 2. It is a block block diagram which shows the power consumption estimation apparatus in Embodiment 3. It is a flowchart which shows the estimation process of the power consumption in Embodiment 3.
  • FIG. 1 is a block configuration diagram showing an embodiment of a power consumption estimation device according to the present invention.
  • the power consumption estimation device 10 in the present embodiment can be realized by a conventional general-purpose hardware configuration such as a personal computer (PC).
  • PC personal computer
  • FIG. 2 is a hardware configuration diagram of a computer forming the power consumption estimation device 10 according to the present embodiment.
  • the power consumption estimation device 10 includes a CPU 1, a ROM 2, a RAM 3, a hard disk drive (HDD) 4 as a storage means, a network interface (IF) 5 provided as a communication means, and input means such as a mouse and a keyboard.
  • a user interface (UI) 6 including a display means such as a display and a display means is connected to the internal bus 7.
  • the service company that manages the equipment of the property will formulate an energy saving control plan for the next year of the property by referring to the skeleton information of each property and the actual data on power consumption. At this time, the actual data of the own property is referred to. In Japan, which has four seasons, the reference period for referring to actual data is generally at least the latest one year. In that case, it will not be possible to formulate an energy-saving control plan for properties that do not have actual data for the last year.
  • the power consumption estimation device 10 in the present embodiment is a device that complements the power consumption of a property that does not have actual data on power consumption to be referred to in the entire reference period by estimation during the period without the actual data (for example, several months).
  • the “property” is a facility that consumes electric power, and a building such as a building is a typical property.
  • the reference period of the actual data is set to the latest one year in order to estimate the power consumption for the next one year. Then, the latest one year is divided into a predetermined period to obtain the power consumption, and this predetermined period is set as a month. That is, one year is divided into 12 and the power consumption is calculated every month. In other words, the power consumption of each time or time zone consumed in the property is collected, and the collected power consumption is added up every month to calculate the power consumption of each month.
  • the month when the power consumption estimation device 10 could not collect the actual monthly power consumption data is described as " The month in which the power consumption estimation device 10 is able to collect the actual data of the monthly power consumption is referred to as a "data collection month”.
  • the reference period is the total period of the non-data collection month and the data collection month.
  • the "own property” is a property with a month for which data has not been collected. Therefore, the property is the property for which the power consumption in the month when the data is not collected is estimated. Own property is also called “target property” because it is subject to estimation of power consumption.
  • “other property” refers to a property other than its own property, but in this embodiment, it refers to a property for which there is no data uncollected month, especially within the reference period. In this way, since there is no data collection month in other properties, it is not necessary to distinguish between the data collection month and the data collection month. Therefore, when the expressions "data collection month of other properties” or “data collection month of other properties” are used in the following explanations, the “data collection month” and “data collection month” are the months of the other property. It refers to the "data collection month” and "data collection month” in the target property. For example, if the data non-collection month of the target property is March, the data non-collection month of other properties means March.
  • the data related to the power consumption used in this embodiment will be described.
  • the data showing the time change of the power consumption shown in FIG. 3 and the data showing the monthly change of the power consumption shown in FIG. 4 are included.
  • the horizontal axis is the time, which indicates the time of the day, that is, from 0:00 to 24:00.
  • the vertical axis is power consumption. Power consumption is collected at regular intervals 24 hours a day. Therefore, power consumption for 24 hours a day is collected for 28 to 31 days in one month.
  • the data showing the time change of the power consumption shown in FIG. 3 (hereinafter, simply referred to as “time change data”) is obtained by averaging the power consumption data every month. That is, the graph shown in FIG. 3 shows the time change of the averaged power consumption for January.
  • time change data may be prepared separately for working days and non-working days, which are expected to have different graph shapes of time changes in each month.
  • the time change data may be prepared separately for each day of the week. In the present embodiment, for convenience of explanation, it is assumed that one time change data corresponds to each month.
  • the horizontal axis is the reference period, and in the case of this embodiment, the reference period (1 year) is divided into monthly units. In the present embodiment, one year is from April to March, but the present invention is not limited to this, and may be, for example, from January to December.
  • the vertical axis is the amount of power consumption.
  • the power consumption of each month is calculated by adding up the power consumption of each time shown in the time change data (Fig. 3) of the month to calculate the daily power consumption, and then to the calculated daily power consumption. It can be calculated by multiplying the number of days in the month.
  • monthly change data shows the power consumption in each month in this way, and the power consumption for one year is shown by a bar graph.
  • the change in quantity is represented.
  • monthly change data is shown according to the power consumption for 12 months. That is, in the monthly change data of other properties, as shown in FIG. 4, the power consumption in each month from April to March is shown.
  • the target property there is no power consumption corresponding to the month when data is not collected. For example, when the data collection month is from January to March, the monthly change data for the target property does not include data on the power consumption of each month from April to December, which is the data non-collection month, and 1 Monthly power consumption data will be included only in March.
  • FIG. 5 is a graph showing the power consumption of each month and each time.
  • the horizontal axis is time, which indicates the time of day, that is, from 0:00 to 24:00.
  • the vertical axis is power consumption.
  • 12 graphs are shown in which the power consumption at each time is monthly, that is, corresponding to each month.
  • the graph shown in FIG. 5 includes only the graph corresponding to the data collection month. For example, if the data collection month is January to March, three graphs corresponding to each data collection month are included.
  • FIG. 5 can be said to be a graph in which the time change data shown in FIG. 3 are collectively illustrated.
  • the graph for 12 months is not obtained in Fig. 5, but in this embodiment, by referring to the power consumption data of other properties, in the month when the data of the target property is not collected.
  • Another object of the present invention is to obtain the power consumption of each month and each time shown in FIG. 5 (hereinafter referred to as "power consumption data of each month and each time"), that is, data for 12 months by estimation.
  • the power consumption data of the target property and other properties in FIG. 5 may be normalized based on the contracted power of each property. By normalizing, the power consumption on the vertical axis is unified in the range of 0 to 1, and it is possible to make it easier to select when extracting similar properties.
  • the power consumption estimation device 10 in the present embodiment includes a time change similar property extraction unit 11, a time change power consumption estimation unit 12, a monthly change similar property extraction unit 13, and a monthly change power consumption estimation unit. 14. It has a power consumption estimation unit 15 for each month and each time and a property data storage unit 16. The components not used in the description in the present embodiment are omitted from the drawings.
  • the time change similar property extraction unit 11 refers to the time change data of the target property and other properties shown in FIG. 3, and selects other properties whose power consumption time change on each day included in the data collection month is similar to that of the target property. Extract as "property with similar time change”.
  • the time change power consumption estimation unit 12 estimates the time change of the power consumption on each day included in the data uncollected month of the target property with reference to the time change data shown in FIG. That is, by generating the time change data in the month in which the data has not been collected by estimation, the time change data for 12 months is prepared for the target property.
  • the monthly change similar property extraction unit 13 refers to the monthly change data of the target property and other properties shown in FIG. 4, and the change in the power consumption of each month included in the data collection month is similar to that of the target property. Extract properties as "monthly change similar properties".
  • the monthly change power consumption estimation unit 14 refers to the power consumption of each month of the similar property with monthly change, that is, the monthly change data, and determines the power consumption of the target property in the month when the data is not collected. presume. That is, the monthly change data of the target property lacks the power consumption in the month when the data is not collected, but the monthly change power consumption estimation unit 14 shows the power consumption in the month when the data is not collected. To complement.
  • Each month / time power consumption estimation unit 15 has not collected data of the target property estimated by the monthly change power consumption estimation unit 14 Data not estimated by the time change power consumption estimation unit 12 based on the power consumption in the month.
  • the power consumption at each time of each day included in the collection month that is, the time change data in the data non-collection month
  • the power consumption at each time of each day included in the data non-collection month of the target property is monthly.
  • the power consumption of each month and each time of the target property does not include the data of the month for which data has not been collected, and the power consumption estimation unit 15 of each month and each time has 12 months as shown in FIG. Generate power consumption data for each month and each time with the same minutes.
  • the property data storage unit 16 stores property data related to all properties managed by the service company. Specifically, the following data is included for each property. That is, the property data includes identification information such as the name of the property, location information such as the location and area (Kanto, Kansai, etc.) indicated by the longitude and latitude, industry (office, convenience store, hotel, etc.), and skeleton information (building information). Property information such as heat insulation performance, presence / absence of double-glazed windows, availability of window opening / closing, etc., person information such as number of people in the building, occupancy rate, working days, working hours, etc. Attribute information such as is included. Further, the property data includes data related to power consumption shown in FIGS. 3 to 5. Further, although the data shown in FIGS.
  • power consumption data for example, measurement data by a wattmeter
  • data on power consumption for at least the last 12 months is stored, but in the case of the target property, only data on power consumption corresponding to the data collection month is stored.
  • Each component 11 to 15 in the power consumption estimation device 10 is realized by a cooperative operation of a computer forming the power consumption estimation device 10 and a program running on the CPU 1 mounted on the computer. Further, the property data storage unit 16 is realized by the HDD 4 mounted on the power consumption estimation device 10. Alternatively, the RAM 3 or an external storage means may be used via the network.
  • the program used in the present embodiment can be provided not only by communication means but also by storing it in a computer-readable recording medium such as a CD-ROM or a USB memory.
  • the programs provided by the communication means and the recording medium are installed in the computer, and various processes are realized by sequentially executing the programs by the CPU 1 of the computer.
  • step 110 when the property is designated as the estimation target, the time change similar property extraction unit 11 reads the time change data shown in FIG. 3 from the property data storage unit 16 among the property data of the property, that is, the target property. get.
  • the time change data of the target property the time change data of the data collection month can be acquired, and the time change data for 12 months is not available.
  • a plurality of months correspond to data collection months (for example, January to March).
  • the time change similar property extraction unit 11 similarly reads and acquires the time change data of another property from the property data storage unit 16. In the case of other properties, time change data for 12 months is available.
  • the time change similar property extraction unit 11 compares the acquired time change data of the target property with the time change data of each other property.
  • the contrast is the time change data corresponding to each data collection month. Specifically, for example, the time change data of January of the target property and January of other properties are compared. Similarly, the time change data of February of the target property and February of other properties are compared. Then, the error is calculated in each data collection month. The smaller the error, the more similar the time change of power consumption, but the one other property with the smallest total or average value of the error in each data collection month is similar to the target property (hereinafter, "time change"). It is extracted as "similar property"). Alternatively, other properties whose total or average value of errors in each data collection month is less than a predetermined threshold value may be extracted as time-varying similar properties.
  • the error may be calculated using existing methods such as mean absolute error (MAE) and mean absolute error percentage (MAPE).
  • step 130 the time change power consumption estimation unit 12 estimates the time change data in the extracted month when the data of the similar property is not collected as the time change data in the month when the data of the target property is not collected.
  • time-changing similar properties When extracting time-changing similar properties by comparison with the threshold value, multiple other properties may be extracted as time-changing similar properties.
  • the time change data in each data uncollected month may be calculated by averaging the time change data of the plurality of other properties extracted for each month and time. In this way, the time-varying power consumption estimation unit 12 estimates the power consumption at each time in the data-uncollected month of the target property.
  • the time change data in the data collection month of the target property the time change data generated based on the actual data of the own property is used as it is.
  • the time change data of the target property is the time change data in the data collection month (January to March) of the own property, and the data uncollected month (data uncollected month) obtained by estimation from the time change data of the property similar to the time change.
  • the time change data for 12 months will be prepared.
  • the fact that the time change data in the data collection month is similar to the target property means that the time change data in the data non-collection month is also similar to the target property, and this embodiment. Then, as described above, the time change data in the month when the data of the target property is not collected is estimated using the time change data of the property similar to the time change.
  • the time-changing similar property is extracted using only the actual power consumption data, but when extracting the time-changing similar property, the attribute information included in the property data, for example, Other properties to be compared with the target property may be narrowed down in advance by referring to the attribute information such as the working time and the type of business. Alternatively, it may be narrowed down when extracting properties similar to time change.
  • step 140 the monthly change similar property extraction unit 13 reads and acquires the monthly change data shown in FIG. 4 from the property data storage unit 16 among the property data of the target property.
  • monthly change data including the power consumption only in the data collection month (January to March) in one year (April to March) is acquired.
  • the monthly change similar property extraction unit 13 reads and acquires the monthly change data shown in FIG. 4 from the property data storage unit 16 among the property data of other properties. In the case of other properties, monthly change data with 12 months' worth of power consumption is acquired.
  • the monthly change similar property extraction unit 13 compares the monthly change data of the acquired target property with the monthly change data of each other property.
  • the comparison is the change in the power consumption of each month included in the data collection month of the target property and the change in the power consumption of each month included in the data collection month of other properties. Specifically, for example, the power consumption of the target property in January and the power consumption of other properties in January are compared. Similarly, the power consumption of the target property in February and that of other properties in February are compared. Then, the error is calculated in each data collection month.
  • other properties whose total or average value of errors in each data collection month is less than a predetermined threshold value may be extracted as monthly change similar properties.
  • the error may be calculated using existing methods such as mean absolute error (MAE) and mean absolute error percentage (MAPE).
  • step 160 the monthly change power consumption estimation unit 14 estimates the power consumption of the extracted monthly change similar property in the data non-collection month as the power consumption of the target property in the data non-collection month.
  • the power consumption in each month when the data is not collected may be calculated by averaging the power consumption of each of the extracted plurality of other properties in each month.
  • the monthly change power consumption estimation unit 14 determines the power consumption in the data non-collection month (for example, April to December) of the target property, and the power consumption in the data non-collection month of the similar property that changes monthly. It will be obtained by estimating from the amount, and together with the power consumption in the data collection month (January to March) obtained from the actual data of the own property, the power consumption for 12 months as shown in Fig. 4 Get monthly change data including.
  • the target property has a similar monthly power consumption tendency in the data collection month as the other property in the data non-collection month. Then, as described above, the power consumption in the month when the data of the target property is not collected is estimated using the data of the similar property that changes monthly.
  • the monthly change similar property is extracted using only the actual power consumption data, but when the monthly change similar property is extracted, the attribute information included in the property data is extracted. It is also possible to narrow down other properties to be compared with the target property in advance by referring to. For example, only other properties in the same area, the location of the other property indicated by the latitude and longitude information may be narrowed down in advance as a search condition, such as another property having the same skeleton information within a predetermined range from the location of the own part. Alternatively, it may be narrowed down when extracting similar properties that change monthly.
  • the attribute information used when extracting the monthly change similar property the item that affects the monthly change in power consumption is selected, while the attribute information used when extracting the time change similar property is Items that affect changes in power consumption in one day are selected. Therefore, basically different items are adopted from the attribute information used when extracting the monthly change similar property and the attribute information used when extracting the time change similar property. Of course, any item that affects the power consumption of both the day and January may be selected by both parties.
  • the data collection month is only for January. In this case, it is not possible to compare changes in power consumption every month.
  • monthly change similar properties are extracted using the power consumption of each day included in the data collection month. That is, the monthly power consumption is decomposed into the daily power consumption and compared. Specifically, the power consumption of the target property on the 1st of the current month and that of other properties on the 1st of the current month are compared. Similarly, the power consumption of the target property on the 2nd of the current month and that of other properties on the 2nd of the current month are compared. This may be repeated until the end of the month to calculate the error for each day. This makes it possible to extract similar properties that change monthly.
  • the method of subdividing the monthly power consumption by day and comparing it for about 30 days does not have to be limited to the case where there is only one data collection month, and when there are multiple data collection months. May also be applied. For example, if the data collection month is 3 months, the comparison will be for about 90 days.
  • the data in the month when the data is not collected is complemented to obtain the time change data and the monthly change data for 12 months of the target property, but the process of obtaining the time change data (steps 110 to 130).
  • the process of obtaining the monthly change data (steps 140 to 160) may be processed in the reverse order or may be processed in parallel at the same time.
  • step 170 the power consumption estimation unit 15 for each month and each time calculates the monthly power consumption for each time change data for 12 months of the target property as follows. That is, the daily power consumption is calculated by adding up the power consumption at each time included in the time change data. Since the time change data shown in FIG. 3 represents the time change of the daily power consumption averaged in the month, the calculated daily power consumption is multiplied by the number of days in the month. Calculate the monthly power consumption (hereinafter referred to as "monthly power consumption").
  • the monthly power consumption calculated as described above is logically included in the monthly change data shown in FIG. 4 complemented by the monthly change power consumption estimation unit 14 by estimation, and is the corresponding monthly power consumption. Should be equal to the quantity. However, since the properties similar to time change and the properties similar to monthly change are extracted by different methods, the same other properties are not necessarily extracted. Therefore, although the monthly power consumption and the monthly change data obtained from the time change data estimated by the time change power consumption estimation unit 12 both represent the monthly power consumption, they are actually It does not always match. Therefore, the power consumption estimation unit 15 for each month and each time corrects the power consumption as follows.
  • the ratio of the power consumption indicated by the monthly change data to the monthly power consumption obtained from the time change data is calculated.
  • the power consumption at each time indicated by the time change data in April is corrected to be a small value
  • the monthly power consumption obtained from the corrected time change data in April is the monthly change power consumption. It matches the power consumption indicated by the monthly change data for April estimated by the quantity estimation unit 14.
  • the correction using the ratio described above is performed on the time change data in the month when the data is not collected.
  • the power consumption estimation unit 15 for each month and each time can estimate the power consumption at each time of the month by correcting the power consumption at each time of each day of each month as described above. As shown in FIG. 5, it is possible to obtain the power consumption of each month and each time for which the data for 12 months are prepared for the target property by estimation. By being able to obtain the power consumption by estimation in this way, it becomes possible to estimate the power consumption of the target property in the next year.
  • the power consumption is extracted separately from a plurality of aspects, such as a property having a similar time change in power consumption and a property having a similar monthly change in power consumption. If more keywords are set as conditions to be specified when searching for similar properties, there is a possibility that similar properties cannot be extracted.
  • the similar property is searched by dividing into the time change and the monthly change of the power consumption, the conditions specified when searching for the similar property can be reduced in each case. In other words, the search conditions can be relaxed. Therefore, even if the number of other properties is small, similar properties can be more reliably extracted.
  • the latest one year is used as the reference period, and the one year is divided into 12 to obtain the power consumption every month, and the power consumption data is changed every month and the time. I tried to extract similar properties from.
  • the power consumption is not limited to each month, but may be divided into other periods such as seasons, early, middle, late, or daily.
  • the attribute information of the property such as the type of business and the location area of the property may be specified as the search condition when extracting similar properties, but as described above, basically, the power consumption Similar properties are extracted by comparing only the data.
  • the attribute value may not be set or the correct attribute value may not be set, but in this embodiment, it is affected by the setting contents of the attribute information of the property. It is possible to extract similar properties only from the power consumption data.
  • the power consumption data for example, the information indicated by the attribute values of the property such as the size of the property and the number of people, the location (cold region, etc.), and the type of industry is considered to appear in the size and change of the power consumption.
  • FIG. 7 is a block configuration diagram showing the power consumption estimation device 10 according to the present embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the power consumption estimation device 10 in the present embodiment has a configuration in which the time change similar property extraction unit 11 is provided with a similar property presence / absence determination unit 111 and a time zone-specific similar property extraction unit 112.
  • the time change similar property extraction unit 11 extracts the time change similar property by comparing the time change data of each day shown in FIG. 3 in the data collection month, but in the first embodiment, the time change similar property is It is assumed that it can be extracted. However, it may not be possible to actually extract. Therefore, in the present embodiment, the presence / absence determination unit 111 for similar properties is provided. The presence / absence determination unit 111 of the similar property determines whether or not the time-varying similar property is extracted.
  • each day (that is, one day) is divided into a plurality of time zones, and the divided time Extract properties with similar time changes for each zone.
  • each day that is, one day
  • the time zone-specific similar property extraction unit 112 determines that the time-change similar property cannot be extracted by the similar property presence / absence determination unit 111
  • each day that is, one day
  • the divided time Extract properties with similar time changes for each zone is divided into a plurality of time zones, and the divided time Extract properties with similar time changes for each zone.
  • the hardware configuration of the power consumption estimation device 10 in the present embodiment may be the same as that in the first embodiment.
  • the time change similar property extraction unit 11 changes the time by comparing the time change data corresponding to each data collection month of the target property and the other property, that is, the change in the power consumption of the entire day. Extract similar properties (steps 110, 120).
  • the presence / absence determination unit 111 of the similar property confirms whether or not the property similar to the time change can be extracted.
  • the time change data corresponding to the month in which the data has not been collected is estimated as in the first embodiment (step 130).
  • the time zone-specific property extraction unit 112 extracts a plurality of time change data for the day. It is divided into the time zones of the above, and properties with similar time changes are extracted for each divided time zone (step 122). Therefore, the similar property extraction unit 112 for each time zone determines the time change of the power consumption in the time zone of each day included in the data collection month in the target property and the data collection month of the other property for each divided time zone. Compare with the time change of power consumption in the time zone of each day included in.
  • the time zone to be divided will be explained. Since one day is 24 hours, the same time length, for example, one day may be divided into eight by three hours. Alternatively, since changes in power consumption are likely to appear in work hours, lychee times, etc., the length of the time zones may not be fixed, but may be divided according to the time zones in which the characteristics of the target property are likely to appear. For example, immediately after the start of work (6 to 9 o'clock), morning (9 to 12 o'clock), lunch break (12:00 to 13:00), afternoon (13:00 to 17:00), around regular hours (17:00 to 20:00), nighttime (20:00 to 6) It may be divided as such as when). In this way, the day does not necessarily have to be divided equally.
  • the start time of other properties may differ from the start time of the target property, but since the different other properties are not similar to the target property, they will not be extracted as time-varying similar properties in the relevant time zone. , No problem.
  • the comparison of the power consumption performed by the similar property extraction unit 112 for each time zone is different only in the time length associated with the comparison of the power consumption described in the first embodiment.
  • the time change power consumption estimation unit 12 estimates the time change data in the data uncollected month of the time change similar property in each extracted time zone as the time change data in the data uncollected month of the target property (step 131). ).
  • the time-changing similar property is not one property as in the first embodiment, the time-changing data of the time-changing similar property in each time zone is not always continuous as shown in FIG.
  • the time change power consumption estimation unit 12 appropriately determines the power consumption in each time zone, particularly the power consumption in the time zone dividing portion, so that the time change data in one day changes continuously as shown in FIG. to correct. Since the subsequent processing is the same as that of the first embodiment, the description thereof will be omitted.
  • the day is divided into a plurality of time zones. Since it is processed, it is possible to increase the possibility that properties with similar time changes can be extracted.
  • FIG. 9 is a block configuration diagram showing the power consumption estimation device 10 according to the present embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the power consumption estimation device 10 in the present embodiment has a configuration in which the time change similar property extraction unit 11 is provided with the similar property presence / absence determination unit 111. Further, a power consumption ratio calculation unit 17 is provided.
  • the time change similar property extraction unit 11 extracts the time change similar property by comparing the time change data of each day (entire 24 hours a day) shown in FIG. 3 in the data collection month. The 111 determines whether or not the time-changing similar property can be extracted, as in the second embodiment.
  • the power consumption ratio calculation unit 17 is the data of the monthly change similar property.
  • Monthly change to the power consumption of each time in the collection month Data of similar properties
  • the ratio of the power consumption of each time in each non-collection month is calculated as the power consumption ratio of each time in the non-collection month.
  • the power consumption ratio calculation unit 17 is realized by a cooperative operation of a computer forming the power consumption estimation device 10 and a program running on the CPU 1 mounted on the computer.
  • the time change data and the monthly time change data are referred to, respectively, and the processing is performed so as to estimate the power consumption data (FIG. 5) of each month and each time in the target property.
  • the time change It is characterized in that the power consumption data (Fig. 5) of each month and each time in the target property is estimated by referring only to the monthly time change data without using the data.
  • the hardware configuration of the power consumption estimation device 10 in the present embodiment may be the same as that in the first embodiment.
  • the process of obtaining the time change data of the target property (steps 110 to 130) and the process of obtaining the monthly change data (steps 140 to 160) may be processed in the reverse order. Therefore, in the present embodiment, for convenience of explanation, the processing is reversed.
  • the time change similar property extraction unit 11 determines the time change data corresponding to each data collection month of the target property and other properties, that is, the consumption of the entire day. By comparing the changes in power consumption, properties with similar time changes are extracted (steps 110 and 120). Here, the presence / absence determination unit 111 of the similar property confirms whether or not the property similar to the time change can be extracted. When a property similar to the time change can be extracted (Y in step 121), the time change data corresponding to the month in which the data has not been collected is estimated as in the first embodiment (step 130).
  • the power consumption ratio calculation unit 17 will perform monthly changes for each month and each of the similar properties.
  • the ratio of the power consumption at each time in the data collection month to the power consumption at that time in the data non-collection month is calculated (step 131).
  • the average value of the power consumption at each time in each data collection month may be used as the power consumption at each time in the data collection month.
  • the power consumption ratio calculation unit 17 calculates the power consumption ratio at each time using the following formula.
  • Power consumption ratio power consumption at each time in the month when data is not collected / power consumption at each time in the month when data is collected
  • the power consumption ratio calculation unit 17 calculates the power consumption ratio for all the times in all the data uncollected months.
  • the time change power consumption estimation unit 12 calculates the power consumption of each time in the data non-collection month by multiplying the power consumption of each time in the data collection month by the power consumption ratio of the time (step). 132). For example, by multiplying the power consumption at 10:00 in the data collection month (for example, March) of the target property by the power consumption ratio (R041000), it is 10:00 in April, which is the month when the data of the target property is not collected. Calculate the power consumption for 00 minutes. In addition, by multiplying the power consumption of the target property at 15:00 in March by the power consumption ratio (R041500), the power consumption at 15:00 in April, which is the month when the data of the target property is not collected, is calculated. do. Similarly, by multiplying the power consumption of the target property at 17:30 in March by the power consumption ratio (R081730), the power consumption at 17:30 in August, which is the month when the data of the target property is not collected, is obtained. calculate.
  • the power consumption of each time in each data collection month of the target property is estimated. In this way, it is possible to estimate the power consumption of the target property at each time for 12 months by estimating the power consumption of each time in the month when the data of the target property is not collected, thereby for 12 months.
  • the time change data shown in FIG. 3 can be obtained.
  • the monthly power consumption obtained from the time change data is included in the monthly change data shown in FIG. 4 estimated by the monthly change power consumption estimation unit 14 in step 160.
  • the power consumption estimation unit 15 for each month and each time corrects the power consumption at each time on each day of each month to obtain data for 12 months for the target property as shown in FIG. Obtain the uniform power consumption for each month and each time by estimation (step 170).
  • the power consumption data for each month and each time in the target property can be estimated only from the monthly time-changing data.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

消費電力の推定の際に参照対象とする他物件の数が少ない場合でも、推定精度を低下させることなく消費電力を収集できなかった月における消費電力を推定する。消費電力推定装置(10)は、消費電力のデータ収集月の各日における消費電力の時刻変化が対象物件と類似する時刻変化類似物件の時刻変化データを参照して対象物件のデータ未収集月の各日における消費電力の時刻変化を推定する時刻変化消費電力推定部(12)と、各データ収集月の消費電力量の変化が対象物件と類似する月毎変化類似物件の消費電力量を参照して対象物件のデータ未収集月における消費電力量を推定する月毎変化消費電力量推定部(14)と、推定した時刻変化及び月毎の消費電力量に基づき、対象物件のデータ未収集月に含まれる各日の各時刻における消費電力を推定する各月・各時刻消費電力推定部(15)と、を有する。

Description

消費電力推定装置及びプログラム
 本発明は、消費電力推定装置及びプログラム、特に消費電力を計測できなかった期間における消費電力の推定に関する。
 オフィスビルでは、年間の省エネ制御計画を立てるために、自物件の過去、例えば1年間分の消費電力や設備稼働履歴等を参考にして、今後1年間の各月・各時刻の消費電力を推定している。
 しかし、消費電力を過去数ヶ月分しか蓄積できていないビルでは、時節毎の情報がないため、今後1年間の消費電力を推定することができず、よって有効な省エネ制御計画を立案することができない。
 そこで、例えば、消費電力等の過去の実績を1年以上持つ他物件のデータ、特に自物件に類似する物件の実績データを活用することによって、消費電力を計測できなかった期間における消費電力を推定する技術が提案されている(例えば、特許文献1,2)。
特許第6275207号明細書 特開2015-2588号公報 特開2005-237187号公報 特開2012-205432号公報 国際公開第2017/217466号 特開2005-122255号公報 特開2004-320963号公報 特開2013-78201号公報
 従来においては、消費電力の推定対象とする物件に類似する他物件が存在することを前提としている。今後1年間の消費電力の推定精度を高めるためには、推定対象とする物件と相対的に類似度の高い他物件を抽出できることが望まれるが、類似度の高い他物件を抽出できるようにするためには、国内全地域、全業種の物件のデータを網羅的に保有することが望まれる。しかしながら、必ずしも網羅的に保有できるとは限らない。
 また、類似度の判定に用いる指標としては、例えば、日毎及び月毎の平均電力、建物の地域や緯度・経度、建物を利用する企業の業種、店舗等建物の属性、建物内の人数等がある。そして、検索条件として指定する項目を、これらの指標の中からより多く選択することによって類似度の高い物件を抽出することができるようになる。しかしながら、物件のデータ数が十分でない場合、検索条件に多くの項目を指定すると、類似度の高い他物件が抽出できなくなる可能性が生じてくる。
 その一方、検索条件に指定する項目数を少なくして、類似性のある物件を抽出しやすくすることも考えられる。しかしながら、そうすると相対的に類似度の低い物件のデータも参照されることになり、よって消費電力の推定精度が低下してしまう。
 本発明は、消費電力の推定の際に参照対象とする他物件の数が少ない場合でも、推定精度を低下させることなく消費電力を収集できなかった月における消費電力を推定できるようにすることを目的とする。
 本発明に係る消費電力推定装置は、消費電力の推定のために消費電力の実績データを参照する参照期間のうち、消費電力の推定対象となる対象物件において消費電力が収集された収集月に含まれる各日における消費電力の時刻変化と、前記対象物件以外の他物件の前記収集月に含まれる各日における消費電力の時刻変化と、を対比することによって、前記収集月に含まれる各日における消費電力の時刻変化が前記対象物件と類似する他物件を時刻変化類似物件として抽出する時刻変化類似物件抽出手段と、前記時刻変化類似物件の、前記参照期間における前記収集月以外の未収集月に含まれる各日における消費電力を参照して、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定する時刻変化消費電力推定手段と、前記対象物件の前記収集月に含まれる各月の消費電力量の変化と、前記他物件の前記収集月に含まれる各月の消費電力量の変化と、を対比することによって、前記収集月に含まれる各月の消費電力量の変化が前記対象物件と類似する他物件を月毎変化類似物件として抽出する月毎変化類似物件抽出手段と、前記月毎変化類似物件の、前記参照期間における各月の消費電力量を参照して、前記対象物件の前記未収集月における消費電力量を推定する月毎消費電力量推定手段と、前記月毎消費電力量推定手段が推定した前記対象物件の前記未収集月における消費電力量に基づき、前記時刻変化消費電力推定手段が推定した前記未収集月に含まれる各日の各時刻における消費電力を補正することによって、前記対象物件の前記未収集月に含まれる各日の各時刻における消費電力を月毎に推定する各月・各時刻消費電力推定手段と、を有するものである。
 また、前記月毎変化類似物件抽出手段は、前記収集月に含まれる各月の消費電力量の変化に代えて、前記対象物件の前記収集月に含まれる各日の消費電力量の変化と、前記他物件の前記収集月に含まれる各日の消費電力量の変化と、を対比することによって、前記収集月に含まれる各日の消費電力量の変化が前記対象物件と類似する他物件を月毎変化類似物件として抽出するものである。
 また、前記時刻変化類似物件抽出手段は、各日における消費電力の時刻変化を対比しても前記対象物件と類似する他物件を抽出できない場合、各日を複数の時間帯に分割し、分割した時間帯毎に、前記対象物件において前記収集月に含まれる各日の当該時間帯における消費電力の時刻変化と、前記他物件の前記収集月に含まれる各日の当該時間帯における消費電力の時刻変化と、を対比することによって、当該時間帯における消費電力の時刻変化が前記対象物件と類似する他物件を当該時間帯における時刻変化類似物件として抽出し、前記時刻変化消費電力推定手段は、前記各時間帯における時刻変化類似物件の、前記未収集月に含まれる各日における消費電力を参照して、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定するものである。
 また、前記時刻変化類似物件抽出手段が各日における消費電力の時刻変化を対比しても前記対象物件と類似する他物件を抽出できない場合、前記月毎変化類似物件の前記収集月における各時刻の消費電力に対する、前記月毎変化類似物件の前記各未収集月における各時刻の消費電力の比率を、当該未収集月における各時刻の消費電力比率として算出する消費電力比率算出手段を有し、前記時刻変化消費電力推定手段は、前記消費電力比率算出手段が算出した当該未収集月における各時刻の消費電力比率を、前記対象物件の前記収集月における当該時刻の消費電力に乗算することによって、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定するものである。
 本発明に係るプログラムは、コンピュータを、消費電力の推定のために消費電力の実績データを参照する参照期間のうち、消費電力の推定対象となる対象物件において消費電力が収集された収集月に含まれる各日における消費電力の時刻変化と、前記対象物件以外の他物件の前記収集月に含まれる各日における消費電力の時刻変化と、を対比することによって、前記収集月に含まれる各日における消費電力の時刻変化が前記対象物件と類似する他物件を時刻変化類似物件として抽出する時刻変化類似物件抽出手段、前記時刻変化類似物件の、前記参照期間における前記収集月以外の未収集月に含まれる各日における消費電力を参照して、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定する時刻変化消費電力推定手段、前記対象物件の前記収集月に含まれる各月の消費電力量の変化と、前記他物件の前記収集月に含まれる各月の消費電力量の変化と、を対比することによって、前記収集月に含まれる各月の消費電力量の変化が前記対象物件と類似する他物件を月毎変化類似物件として抽出する月毎変化類似物件抽出手段、前記月毎変化類似物件の、前記参照期間における各月の消費電力量を参照して、前記対象物件の前記未収集月における消費電力量を推定する月毎消費電力量推定手段、前記月毎消費電力量推定手段が推定した前記対象物件の前記未収集月における消費電力量に基づき、前記時刻変化消費電力推定手段が推定した前記未収集月に含まれる各日の各時刻における消費電力を補正することによって、前記対象物件の前記未収集月に含まれる各日の各時刻における消費電力を月毎に推定する各月・各時刻消費電力推定手段、として機能させるためのものである。
 本発明によれば、消費電力の推定の際に参照対象とする他物件の数が少ない場合でも、推定精度を低下させることなく消費電力を収集できなかった月における消費電力を推定することができる。
実施の形態1における消費電力推定装置を示すブロック構成図である。 実施の形態1における消費電力推定装置を形成するコンピュータのハードウェア構成図である。 実施の形態1において1日における消費電力の時刻変化を示すグラフ図である。 実施の形態1において消費電力量の月毎の変化を示すグラフ図である。 実施の形態1において各月・各時刻の消費電力を示すグラフ図である。 実施の形態1における消費電力の推定処理を示すフローチャートである。 実施の形態2における消費電力推定装置を示すブロック構成図である。 実施の形態2における消費電力の推定処理を示すフローチャートである。 実施の形態3における消費電力推定装置を示すブロック構成図である。 実施の形態3における消費電力の推定処理を示すフローチャートである。
 以下、図面に基づいて、本発明の好適な実施の形態について説明する。
 実施の形態1.
 図1は、本発明に係る消費電力推定装置の一実施の形態を示すブロック構成図である。本実施の形態における消費電力推定装置10は、パーソナルコンピュータ(PC)等の従前から存在する汎用的なハードウェア構成で実現できる。
 図2は、本実施の形態における消費電力推定装置10を形成するコンピュータのハードウェア構成図である。消費電力推定装置10は、図2に示すようにCPU1、ROM2、RAM3、記憶手段としてのハードディスクドライブ(HDD)4、通信手段として設けられたネットワークインタフェース(IF)5、マウスやキーボード等の入力手段及びディスプレイ等の表示手段を含むユーザインタフェース(UI)6を内部バス7に接続して構成される。
 物件の設備を管理するサービス会社では、各物件の躯体情報や消費電力に関する実績データを参照して、当該物件の今後1年間の省エネ制御計画を立案する。この際に、参照するのは自物件の実績データである。また、実績データを参照する参照期間として、四季のある日本においては、少なくとも直近1年間が一般的である。そうすると、直近1年間の実績データを持たない物件に対しては、省エネ制御計画を立案することができなくなる。
 本実施の形態における消費電力推定装置10は、参照期間全体において参照すべき消費電力に関する実績データのない物件の、その実績データのない期間(例えば、数ヶ月)における消費電力を推定により補完する装置である。本実施の形態において「物件」というのは、電力を消費している施設であり、例えばビル等の建物が代表的な物件である。
 以下の説明において、本実施の形態では、今後1年間の消費電力を推定するために実績データの参照期間を直近1年間とする。そして、直近1年間を所定の期間に分けて消費電力量を求めるが、この所定の期間を月とする。つまり、1年間を12分割し、月毎に消費電力量を求める。換言すると、物件において消費された各時刻又は時間帯の消費電力を収集し、収集した消費電力を月毎に合算することによって各月の消費電力量を算出する。前述したように、直近1年間において消費電力の実績データを収集できない物件も存在しうるが、以降の説明では、消費電力推定装置10が月間の消費電力の実績データを収集できなかった月を「データ未収集月」と称し、消費電力推定装置10が月間の消費電力の実績データを収集できた月を「データ収集月」と称することにする。参照期間は、データ未収集月とデータ収集月とを合わせた期間となる。
 また、本実施の形態において「自物件」というのは、データ未収集月のある物件とする。従って、自物件が、データ未収集月の消費電力の推定対象となる物件である。自物件は、消費電力の推定対象となることから「対象物件」ともいう。
 一方、「他物件」というのは、自物件以外の物件のことをいうが、本実施の形態においては、特に参照期間内にデータ未収集月のない物件のことをいう。このように、他物件にはデータ未収集月がないことから、データ未収集月とデータ収集月とを区別して説明する必要はない。従って、以降の説明で「他物件のデータ未収集月」あるいは「他物件のデータ収集月」という表現をした場合、その「データ未収集月」及び「データ収集月」は、当該他物件における月の説明ではなく対象物件における「データ未収集月」及び「データ収集月」のことをいう。例えば、対象物件のデータ未収集月が3月の場合、他物件のデータ未収集月というのは3月のことを指す。
 次に、本実施の形態において用いる消費電力に関するデータについて説明する。消費電力に関するデータとして、本実施の形態では、図3に示す消費電力の時刻変化を示すデータ及び図4に示す消費電力量の月毎変化を示すデータを含んでいる。
 まず、図3において、横軸は時刻であり、1日の時間、すなわち0時から24時までを示す。縦軸は、消費電力である。消費電力は、日々24時間、定周期的に収集されている。従って、1ヶ月の間に1日24時間分の消費電力が28~31日分収集されることになる。図3に示す消費電力の時刻変化を示すデータ(以下、単に「時刻変化データ」という)は、消費電力のデータを月毎に平均化して得られる。つまり、図3に示すグラフは、1月分の平均化した消費電力の時刻変化を表している。
 他物件の場合は、データ未収集月がないので、12ヶ月分の消費電力の時刻変化データを有する。つまり、各月に対応する時刻変化データ(12個のグラフ)を有するが、対象物件となりうる物件の場合は、データ収集月に対応する時刻変化データのみを有することになる。
 なお、本実施の形態では、前述したように消費電力の時刻変化を月毎に求めるので、データ収集月の数だけ図3に示すグラフが得られる。ただ、各月とも、時刻変化のグラフ形状が異なってくることが予想される就業日と非就業日とに分けて時刻変化データを用意してもよい。もしくは、曜日毎に分けて時刻変化データを用意してもよい。本実施の形態では、説明の便宜上、各月に1つの時刻変化データが対応するものとして説明する。
 また、図4において、横軸は参照期間であり、本実施の形態の場合、参照期間(1年間)を月単位に分割している。本実施の形態では、1年を4月から3月までとしているが、これに限る必要はなく、例えば1月から12月としてもよい。縦軸は、消費電力量である。各月の消費電力量は、当該月の時刻変化データ(図3)が示す各時刻の消費電力を合算することによって1日の消費電力量を算出し、更に算出した1日の消費電力量に当該月の日数を乗算することで算出できる。図4に示す月毎の消費電力量の変化を示すデータ(以下、単に「月毎変化データ」という)は、このように各月の消費電力量を示しており、棒グラフによって1年間の消費電力量の変化が表されている。他物件の場合は、データ未収集月がないので、12ヶ月分の消費電力量によって月毎変化データが示される。つまり、他物件における月毎変化データでは、図4に示すように4月から3月までの各月における消費電力量を表す。これに対し、対象物件の場合は、データ未収集月に対応する消費電力量はない。例えば、データ収集月が1~3月の場合、対象物件における月毎変化データには、データ未収集月である4月から12月までの間の各月の消費電力量のデータはなく、1~3月だけ月毎の消費電力量のデータが含まれることになる。
 図5は、各月・各時刻の消費電力を示すグラフ図である。図5において、横軸は、時刻であり、1日の時間、すなわち0時から24時までを示す。縦軸は、消費電力である。他物件の場合、図5に示すように、各時刻における消費電力が月毎に、つまり、各月に対応する12本のグラフが示される。これに対し、対象物件の場合、図5に示すグラフには、データ収集月に対応するグラフのみが含まれることになる。例えば、データ収集月が1~3月の場合、各データ収集月に対応する3本のグラフが含まれる。図5は、図3に示す時刻変化データをまとめて図示したグラフともいえる。
 対象物件においては、上記の通り図5において12ヶ月分のグラフが得られていないが、本実施の形態においては、他物件の消費電力データを参照することで、対象物件のデータ未収集月においても、図5に示す各月・各時刻の消費電力(以下、「各月・各時刻消費電力データ」という)、すなわち12ヶ月分のデータを推定により得るようにすることを目的とする。これにより、データ未収集月のある対象物件においても、今後1年間の消費電力を推定することができるようになる。なお、対象物件と他物件の図5の消費電力データは、各物件の契約電力を基に正規化してもよい。正規化することにより、縦軸の消費電力が0~1の範囲で統一化され、類似物件の抽出時に選択しやすくすることが可能である。
 図1に戻り、本実施の形態における消費電力推定装置10は、時刻変化類似物件抽出部11、時刻変化消費電力推定部12、月毎変化類似物件抽出部13、月毎変化消費電力量推定部14、各月・各時刻消費電力推定部15及び物件データ記憶部16を有している。なお、本実施の形態において説明に用いない構成要素については、図から省略している。
 時刻変化類似物件抽出部11は、図3に示す対象物件及び他物件の時刻変化データを参照して、データ収集月に含まれる各日における消費電力の時刻変化が対象物件と類似する他物件を「時刻変化類似物件」として抽出する。時刻変化消費電力推定部12は、図3に示す時刻変化データを参照して、対象物件のデータ未収集月に含まれる各日における消費電力の時刻変化を推定する。つまり、データ未収集月における時刻変化データを推定により生成することによって、対象物件に対し、12ヶ月分の時刻変化データを揃える。
 月毎変化類似物件抽出部13は、図4に示す対象物件及び他物件の月毎変化データを参照して、データ収集月に含まれる各月の消費電力量の変化が対象物件と類似する他物件を「月毎変化類似物件」として抽出する。月毎変化消費電力量推定部14は、月毎変化類似物件の、参照期間における各月の消費電力量、つまり月毎変化データを参照して、対象物件のデータ未収集月における消費電力量を推定する。つまり、対象物件の月毎変化データには、データ未収集月における消費電力量が欠落しているが、月毎変化消費電力量推定部14は、欠落しているデータ未収集月における消費電力量を補完する。
 各月・各時刻消費電力推定部15は、月毎変化消費電力量推定部14が推定した対象物件のデータ未収集月における消費電力量に基づき、時刻変化消費電力推定部12が推定したデータ未収集月に含まれる各日の各時刻における消費電力、すなわちデータ未収集月における時刻変化データを補正することによって、対象物件のデータ未収集月に含まれる各日の各時刻における消費電力を月毎に推定する。つまり、対象物件の各月・各時刻消費電力には、データ未収集月のデータは含まれていないところを、各月・各時刻消費電力推定部15は、図5に示すように、12ヶ月分が揃った各月・各時刻消費電力データを生成する。
 物件データ記憶部16には、サービス会社が管理対象とする全ての物件に関する物件データが記憶されている。具体的には、物件毎に以下のデータが含まれる。すなわち、物件データには、物件の名称等の識別情報、経緯度で示される所在位置及び所在する地域(関東、関西等)等の場所情報、業種(オフィス、コンビニ、ホテル等)、躯体情報(断熱性能、二重窓の有無、窓開閉の可否等)等の建物の属性情報、建物内の人数、在席率、就業日、就業時刻等の人情報など、物件及び当該物件を使用する企業等の属性情報が含まれる。更に物件データには、図3~5に示す消費電力に関するデータが含まれている。また、図3~5に示すデータは、データ処理して生成されているが、その生成に用いる消費電力データ(例えば、電力計による計測データ)を含めてもよい。他物件の場合は、少なくとも直近12ヶ月分の消費電力に関するデータが記憶されているが、対象物件の場合は、データ収集月に対応する消費電力に関するデータのみ記憶されている。
 消費電力推定装置10における各構成要素11~15は、消費電力推定装置10を形成するコンピュータと、コンピュータに搭載されたCPU1で動作するプログラムとの協調動作により実現される。また、物件データ記憶部16は、消費電力推定装置10に搭載されたHDD4にて実現される。あるいは、RAM3又は外部にある記憶手段をネットワーク経由で利用してもよい。
 また、本実施の形態で用いるプログラムは、通信手段により提供することはもちろん、CD-ROMやUSBメモリ等のコンピュータ読み取り可能な記録媒体に格納して提供することも可能である。通信手段や記録媒体から提供されたプログラムはコンピュータにインストールされ、コンピュータのCPU1がプログラムを順次実行することで各種処理が実現される。
 次に、本実施の形態における消費電力の推定処理について、図6に示すフローチャートを用いて説明する。
 ステップ110において、時刻変化類似物件抽出部11は、推定対象として物件が指定されると、その物件、すなわち対象物件の物件データのうち、図3に示す時刻変化データを物件データ記憶部16から読み出し取得する。前述したように、対象物件の時刻変化データとしては、データ収集月の時刻変化データが取得でき、12ヶ月分の時刻変化データは揃っていない。なお、ここでは、複数の月がデータ収集月(例えば、1~3月)に該当するものとして説明する。
 時刻変化類似物件抽出部11は、同様にして他物件の時刻変化データを物件データ記憶部16から読み出し取得する。他物件の場合、12ヶ月分の時刻変化データが揃っている。
 ステップ120において、時刻変化類似物件抽出部11は、取得した対象物件の時刻変化データと各他物件の時刻変化データとを対比する。対比するのは、各データ収集月に対応する時刻変化データである。具体的には、例えば対象物件の1月と他物件の1月の各時刻変化データを対比する。同様に、対象物件の2月と他物件の2月の各時刻変化データを対比する。そして、各データ収集月において誤差を算出する。誤差が小さいほど消費電力の時刻変化が類似していることになるが、各データ収集月における誤差の総和若しくは平均値が最も小さい1つの他物件を対象物件に類似する物件(以下、「時刻変化類似物件」という)として抽出する。あるいは、各データ収集月における誤差の総和若しくは平均値が所定の閾値未満となる他物件を時刻変化類似物件として抽出してもよい。誤差は、平均絶対誤差(MAE)や平均絶対誤差率(MAPE)など既存の手法を用いて算出してよい。
 ステップ130において、時刻変化消費電力推定部12は、抽出した時刻変化類似物件のデータ未収集月における時刻変化データを、対象物件のデータ未収集月における時刻変化データと推定する。
 なお、閾値との比較により時刻変化類似物件を抽出する場合、複数の他物件が時刻変化類似物件として抽出される場合もある。この場合、抽出された複数の他物件の時刻変化データを月毎時刻毎に平均化することによって、各データ未収集月における時刻変化データを算出すればよい。時刻変化消費電力推定部12は、このようにして、対象物件におけるデータ未収集月における各時刻の消費電力を推定する。なお、対象物件におけるデータ収集月における時刻変化データは、自物件の実績データに基づき生成されている時刻変化データをそのまま用いる。このようにして、対象物件の時刻変化データは、自物件のデータ収集月(1~3月)における時刻変化データに、時刻変化類似物件の時刻変化データから推定により得られたデータ未収集月(4~12月)における時刻変化データを合わせることで、12ヶ月分の時刻変化データが揃うことになる。
 本実施の形態においては、データ収集月における時刻変化データが対象物件と類似しているということは、データ未収集月における時刻変化データも対象物件と類似していると仮定し、本実施の形態では、上記の通り対象物件のデータ未収集月における時刻変化データを、時刻変化類似物件の時刻変化データを用いて推定する。
 なお、本実施の形態では、消費電力の実績データのみを用いて時刻変化類似物件を抽出するようにしたが、時刻変化類似物件を抽出する際に、物件データに含まれている属性情報、例えば就業時刻、業種等の属性情報を参照して、対象物件との比較の対象とする他物件を事前に絞り込むようにしてもよい。あるいは、時刻変化類似物件を抽出する際に絞り込むようにしてもよい。
 ステップ140において、月毎変化類似物件抽出部13は、対象物件の物件データのうち、図4に示す月毎変化データを物件データ記憶部16から読み出し取得する。対象物件の場合、1年間(4~3月)のうちデータ収集月(1~3月)のみの消費電力量を含む月毎変化データが取得される。
 月毎変化類似物件抽出部13は、同様にして他物件の物件データのうち、図4に示す月毎変化データを物件データ記憶部16から読み出し取得する。他物件の場合、12ヶ月分の消費電力量が揃っている月毎変化データが取得される。
 ステップ150において、月毎変化類似物件抽出部13は、取得した対象物件の月毎変化データと各他物件の月毎変化データとを対比する。対比するのは、対象物件のデータ収集月に含まれる各月の消費電力量の変化と、他物件のデータ収集月に含まれる各月の消費電力量の変化である。具体的には、例えば対象物件の1月と他物件の1月の各消費電力量を対比する。同様に、対象物件の2月と他物件の2月の各消費電力量を対比する。そして、各データ収集月において誤差を算出する。誤差が小さいほど消費電力量の月毎の変化が類似していることになるが、各データ収集月における誤差の総和若しくは平均値が最も小さい1つの他物件を対象物件に類似する物件(以下、「月毎変化類似物件」という)として抽出する。あるいは、各データ収集月における誤差の総和若しくは平均値が所定の閾値未満となる他物件を月毎変化類似物件として抽出してもよい。誤差は、平均絶対誤差(MAE)や平均絶対誤差率(MAPE)など既存の手法を用いて算出してよい。
 ステップ160において、月毎変化消費電力量推定部14は、抽出した月毎変化類似物件のデータ未収集月における消費電力量を、対象物件のデータ未収集月における消費電力量と推定する。
 なお、閾値との比較により月毎変化類似物件を抽出する場合、複数の他物件が月毎変化類似物件として抽出される場合もある。この場合、抽出された複数の他物件の各月の消費電力量を平均化することによって、各データ未収集月における消費電力量を算出すればよい。月毎変化消費電力量推定部14は、このようにして、対象物件のデータ未収集月(例えば、4~12月)における消費電力量を、月毎変化類似物件のデータ未収集月における消費電力量から推定されることで得ることになり、自物件の実績データから得られるデータ収集月(1~3月)における消費電力量と合わせて、図4に示すように12ヶ月分の消費電力量を含む月毎変化データを得る。
 本実施の形態では、対象物件は、データ収集月において当該月当たりの電力の消費の傾向が類似する他物件とはデータ未収集月においても月当たりの電力の消費の傾向が類似するものと仮定し、前述したように、対象物件のデータ未収集月における消費電力量を、月毎変化類似物件のデータを用いて推定する。
 なお、本実施の形態では、消費電力の実績データのみを用いて月毎変化類似物件を抽出するようにしたが、月毎変化類似物件を抽出する際に、物件データに含まれている属性情報を参照して、対象物件との比較の対象とする他物件を事前に絞り込むようにしてもよい。例えば、地域が同一の他物件のみ、経緯度情報で示される他物件の所在地が自部件の所在地から所定の範囲内、躯体情報が同一の他物件等を検索条件として事前に絞り込んでもよい。あるいは、月毎変化類似物件を抽出する際に絞り込むようにしてもよい。
 ちなみに、月毎変化類似物件を抽出する際に用いる属性情報は、月毎の消費電力量の変化に影響を与える項目が選出され、一方、時刻変化類似物件を抽出する際に用いる属性情報は、1日において消費電力の変化に影響を与える項目が選出される。従って、月毎変化類似物件を抽出する際に用いる属性情報と、時刻変化類似物件を抽出する際に用いる属性情報とは、基本的には異なる項目が採用される。もちろん、1日及び1月の双方の電力消費に影響を与える項目であれば、双方に選出されてもよい。
 ところで、データ収集月が1月分しかない場合も考えられる。この場合、月毎の消費電力量の変化を比較することができない。この場合、データ収集月に含まれる各日の消費電力量を用いて月毎変化類似物件を抽出する。すなわち、月毎の消費電力量を、各日の消費電力量に分解して対比する。具体的には、対象物件の当月1日と他物件の当月1日の各消費電力量を対比する。同様に、対象物件の当月2日と他物件の当月2日の各消費電力量を対比する。これを月末まで繰り返し行い、各日の誤差を算出すればよい。これにより、月毎変化類似物件を抽出することができる。
 この月毎の消費電力量を日毎に細分化して約30日分の対比を行う手法は、データ収集月が1月分しかない場合に限る必要はなく、複数のデータ収集月が存在する場合にも適用してよい。例えばデータ収集月が3ヶ月の場合、約90日分の対比を行うことになる。
 以上のようにして、データ未収集月におけるデータが補完されて、対象物件の12ヶ月分の時刻変化データと月毎変化データを得ることになるが、時刻変化データを得る処理(ステップ110~130)と、月毎変化データを得る処理(ステップ140~160)は、逆の順番で処理してもよいし、同時並行して処理してもよい。
 ステップ170において、各月・各時刻消費電力推定部15は、対象物件の12ヶ月分の時刻変化データ毎に、以下のようにして月間消費電力量を算出する。すなわち、時刻変化データに含まれる各時刻の消費電力を合算することによって1日の消費電力量を算出する。図3に示す時刻変化データは、当該月において平均化された1日の消費電力の時刻変化を表しているので、算出した1日の消費電力量に、当該月の日数を乗算することで当該月の消費電力量(以下、「月間消費電力量」という)を算出する。
 以上のようにして算出した月間消費電力量は、論理的には月毎変化消費電力量推定部14が推定により補完された図4に示す月毎変化データに含まれる、対応する月の消費電力量に等しくなるはずである。但し、時刻変化類似物件と月毎変化類似物件は、異なる手法にて抽出していることから、同じ他物件が抽出されているとは限らない。従って、時刻変化消費電力推定部12が推定した時刻変化データから得られた月間消費電力量と月毎変化データは、共に月毎の消費電力量を表しているのにもかかわらず、実際には一致するとは限らない。そこで、各月・各時刻消費電力推定部15は、次のようにして消費電力を補正する。
 まず、参照期間(直近1年間)に含まれる月毎に、時刻変化データから得られた月間消費電力量に対する月毎変化データが示す消費電力量の比率を算出する。比率は、(月毎変化データが示す消費電力量)/(月間消費電力量)で算出できる。例えば、4月の月間消費電力量が100kWh、4月の月毎変化データが示す消費電力量が90kWhとしたならば、4月においては、時刻変化データが示す各時刻の消費電力が100-90=10kWhだけ大きく推定されていることになる。従って、90/100=0.9という比率を、4月の時刻変化データが示す各時刻における消費電力に乗算することで補正する。これにより、4月の時刻変化データが示す各時刻における消費電力が小さい数値となるよう補正されると共に、補正後の4月の時刻変化データから得られる月間消費電力量が、月毎変化消費電力量推定部14が推定した4月の月毎変化データが示す消費電力量と一致する。以上説明した比率を用いた補正を、データ未収集月における時刻変化データに対して行う。
 各月・各時刻消費電力推定部15は、以上のようにして、各月の各日の各時刻における消費電力を補正することで、当該月の各時刻の消費電力を推定することができ、対象物件に対して、図5に示すように12ヶ月分のデータが揃った各月・各時刻消費電力を推定により得ることができる。このようにして、消費電力を推定により得ることができることによって、対象物件において今後1年間における消費電力量を推定することができるようになる。
 消費電力データを推定する際、対象物件に類似する物件の実績データを利用するために、本実施の形態と同様に類似物件を抽出することは、従前においても実施されているかもしれない。しかしながら、本実施の形態においては、消費電力の時刻変化が類似する物件及び月毎変化が類似する物件というように、消費電力に関して複数の面から別個に抽出するようにした。類似物件を検索する際に指定する条件として、より多くのキーワードを設定すると、類似物件が抽出できなくなる可能性が生じてくる。本実施の形態では、消費電力の時刻変化と月毎変化とに分割して類似物件を検索するようにしたので、それぞれにおいて類似物件を検索する際に指定する条件を少なくすることができる。換言すると、検索条件を緩くすることができる。このため、他物件数が少なくても類似物件がより確実に抽出しやすくなる。
 本実施の形態では、参照期間として直近の1年間を、そして、その1年間を12分割して月毎に消費電力量を求め、消費電力データを月毎の変化と、時刻の変化という2面から類似物件を抽出するようにした。ただ、消費電力量は、月毎に限らず、他の期間、例えば季節や、月の上旬、中旬、下旬、あるいは日毎に分割するようにしてもよい。
 また、本実施の形態では、物件の業種や所在地域等の物件の属性情報を、類似物件を抽出する際の検索条件に指定してもよいが、前述したように、基本的には消費電力データのみの対比によって類似物件を抽出するようにした。物件によっては、属性値の設定がされていなかったり、あるいは的確な属性値が設定されていなかったりする場合があるが、本実施の形態においては、物件の属性情報の設定内容の影響を受けることなく、消費電力データのみで類似物件を抽出することができる。なお、消費電力データには、例えば物件や人数の大小、所在地(寒冷地等)、業種などの物件の属性値が示す情報は、消費電力の大小や変化に表れてくると考えられる。
 実施の形態2.
 図7は、本実施の形態における消費電力推定装置10を示すブロック構成図である。実施の形態1と同じ構成要素には、同じ符号を付け、説明を適宜省略する。本実施の形態における消費電力推定装置10は、時刻変化類似物件抽出部11に、類似物件有無判定部111及び時間帯別類似物件抽出部112を持たせた構成を有している。
 時刻変化類似物件抽出部11は、データ収集月の、図3に示す各日の時刻変化データを対比することによって時刻変化類似物件を抽出するが、実施の形態1においては、時刻変化類似物件が抽出できることを前提としている。但し、実際には抽出できない場合も考えられる。そのため、本実施の形態においては、類似物件有無判定部111を設けている。類似物件有無判定部111は、時刻変化類似物件の抽出の有無を判定する。
 時間帯別類似物件抽出部112は、類似物件有無判定部111により時刻変化類似物件が抽出できないと判定された場合、各日(すなわち、1日)を複数の時間帯に分割し、分割した時間帯毎に、時刻変化類似物件を抽出する。このように、消費電力の変化を比較する時間帯を1日(すなわち、24時間)から短い時間帯とすることで、対象物件に類似する他物件が相対的に見つけやすくなる。
 本実施の形態における消費電力推定装置10のハードウェア構成は、実施の形態1と同じでよい。
 次に、本実施の形態における消費電力の推定処理について、図8に示すフローチャートを用いて説明する。なお、実施の形態1(図6)と同じ処理には、同じステップ番号を付け、説明を適宜省略する。
 時刻変化類似物件抽出部11は、実施の形態1と同様に、対象物件と他物件の各データ収集月に対応する時刻変化データ、すなわち1日全体の消費電力の変化を対比することによって時刻変化類似物件を抽出する(ステップ110,120)。ここで、類似物件有無判定部111は、時刻変化類似物件が抽出できたかどうかを確認する。時刻変化類似物件が抽出できた場合(ステップ121でY)、実施の形態1と同様にデータ未収集月に対応する時刻変化データを推定する(ステップ130)。
 一方、1日全体で時刻変化データを対比しても対象物件と類似する他物件を抽出できない場合(ステップ121でN)、時間帯別類似物件抽出部112は、1日の時刻変化データを複数の時間帯に分割し、分割した時間帯毎に、時刻変化類似物件を抽出する(ステップ122)。そのために、時間帯別類似物件抽出部112は、分割した時間帯毎に、対象物件においてデータ収集月に含まれる各日の当該時間帯における消費電力の時刻変化と、他物件の当該データ収集月に含まれる各日の当該時間帯における消費電力の時刻変化と、を対比する。これにより、当該時間帯における消費電力の時刻変化が対象物件と類似する他物件を当該時間帯における時刻変化類似物件として抽出する。前述したように、消費電力を比較する時間長が短くなることによって、消費電力の時刻変化が対象物件と類似する他物件が見つかりやすくなる。
 ここで、分割する時間帯について説明する。1日は、24時間なので、単純に同じ時間長、例えば1日を3時間ずつに8分割してもよい。あるいは、消費電力の変化は、出勤時間帯、ライチタイム等に表れやすいので、時間帯の長さを固定するのではなく、対象物件において特徴の出やすい時間帯別に分割してもよい。例えば、始業直後(6~9時)、午前(9~12時)、昼休み(12~13時)、午後(13~17時)、定時前後(17~20時)、夜間(20時~6時)などのように分割してもよい。このように、1日を必ずしも等分割しなくてもよい。他物件の始業開始時刻は、対象物件の始業開始時刻と異なる場合があるが、異なる他物件は、対象物件と類似しない物件であるため、当該時間帯の時刻変化類似物件として抽出されないことになり、何の問題もない。時間帯別類似物件抽出部112が行う消費電力の対比は、実施の形態1において説明した消費電力の対比と、帯する時間長が異なるだけである。
 続いて、時刻変化消費電力推定部12は、抽出した各時間帯における時刻変化類似物件のデータ未収集月における時刻変化データを、対象物件のデータ未収集月における時刻変化データと推定する(ステップ131)。但し、実施の形態1のように時刻変化類似物件が1物件ではないため、各時間帯における時刻変化類似物件の当該時間帯における時刻変化データが、図3に示すように連続するとは限らない。
 そこで、時刻変化消費電力推定部12は、1日における時刻変化データが図3に示すように連続して変化するように、各時間帯における消費電力、特に時間帯の区切り部分の消費電力を適宜補正する。これ以降の処理は、実施の形態1と同じなので説明を省略する。
 本実施の形態によれば、実施の形態1のように1日単位の時刻変化データを用いた場合に時刻変化類似物件が抽出できなかった場合でも、1日を複数の時間帯に分割して処理するようにしたので、時刻変化類似物件を抽出できる可能性を高くすることができる。
実施の形態3.
 図9は、本実施の形態における消費電力推定装置10を示すブロック構成図である。実施の形態1と同じ構成要素には、同じ符号を付け、説明を適宜省略する。本実施の形態における消費電力推定装置10は、時刻変化類似物件抽出部11に、類似物件有無判定部111を持たせた構成を有している。また、消費電力比率算出部17を設けている。
 時刻変化類似物件抽出部11は、データ収集月の、図3に示す各日(1日24時間全体)の時刻変化データを対比することによって時刻変化類似物件を抽出するが、類似物件有無判定部111は、実施の形態2と同様に、時刻変化類似物件が抽出できたかどうかを判定する。
 消費電力比率算出部17は、時刻変化類似物件抽出部11が各日(1日24時間全体)の時刻変化データを対比しても時刻変化類似物件が抽出できない場合、月毎変化類似物件のデータ収集月における各時刻の消費電力に対する、月毎変化類似物件のデータ各未収集月における各時刻の消費電力の比率を、当該未収集月における各時刻の消費電力比率として算出する。消費電力比率算出部17は、消費電力推定装置10を形成するコンピュータと、コンピュータに搭載されたCPU1で動作するプログラムとの協調動作により実現される。
 上記実施の形態1,2においては、時刻変化データ及び月毎時刻変化データそれぞれを参照して、対象物件における各月・各時刻消費電力データ(図5)を推定するように処理したが、本実施の形態においては、例えば1日の時刻変化データの形状が特殊で、実施の形態2のように時刻変化データを複数の時間帯に区切ったとしても時刻変化類似物件が抽出できない場合、時刻変化データを用いることなく月毎時刻変化データのみを参照して対象物件における各月・各時刻消費電力データ(図5)を推定することを特徴としている。
 本実施の形態における消費電力推定装置10のハードウェア構成は、実施の形態1と同じでよい。
 次に、本実施の形態における消費電力の推定処理について、図10に示すフローチャートを用いて説明する。なお、実施の形態2(図8)と同じ処理には、同じステップ番号を付け、説明を適宜省略する。
 前述したように、対象物件の時刻変化データを得る処理(ステップ110~130)と、月毎変化データを得る処理(ステップ140~160)は、逆の順番で処理してもよい。そこで、本実施の形態では、説明の便宜上、逆に処理することにする。
 対象物件の月毎変化データを得た後(ステップ140~160)、時刻変化類似物件抽出部11は、対象物件と他物件の各データ収集月に対応する時刻変化データ、すなわち1日全体の消費電力の変化を対比することによって時刻変化類似物件を抽出する(ステップ110,120)。ここで、類似物件有無判定部111は、時刻変化類似物件が抽出できたかどうかを確認する。時刻変化類似物件が抽出できた場合(ステップ121でY)、実施の形態1と同様にデータ未収集月に対応する時刻変化データを推定する(ステップ130)。
 一方、1日全体で時刻変化データを対比しても対象物件と類似する他物件を抽出できない場合(ステップ121でN)、消費電力比率算出部17は、月毎変化類似物件の各月・各時刻消費電力データ(図5)を参照し、データ収集月における各時刻の消費電力と、データ未収集月における当該時刻の消費電力との比率を算出する(ステップ131)。なお、月毎変化類似物件が複数存在する場合、各データ収集月における各時刻の消費電力の平均値を、データ収集月における各時刻の消費電力として用いればよい。
 消費電力比率算出部17は、次の計算式にて各時刻の消費電力比率を算出する。
 消費電力比率=データ未収集月における各時刻の消費電力/データ収集月における各時刻の消費電力
 ここでは、説明の便宜上、3月のみがデータ収集月として説明すると、月毎変化類似物件の各月・各時刻消費電力データから得られる、あるデータ未収集月のある時刻の消費電力、例えば4月の10時00分の消費電力を、同じく月毎変化類似物件の各月・各時刻消費電力データから得られるデータ収集月(3月)の10時00分の消費電力で除算することで4月の10時00分における消費電力の比率(「R041000」と表す)を算出する。また、例えば4月の15時00分の消費電力を、3月の15時00分の消費電力で除算することで4月の15時00分における消費電力の比率(「R041500」と表す)を算出する。また、例えば、データ未収集月である8月の17時30分の消費電力を、3月の17時30分の消費電力で除算することで8月の17時30分における消費電力の比率(「R081730」と表す)を算出する。
 このようにして、消費電力比率算出部17は、全てのデータ未収集月の全ての各時刻に対する消費電力比率を算出する。
 続いて、時刻変化消費電力推定部12は、データ収集月における各時刻の消費電力に、当該時刻の消費電力比率を乗算することによって、データ未収集月における各時刻の消費電力を算出する(ステップ132)。例えば、対象物件のデータ収集月(例えば、3月)における10時00分の消費電力に、消費電力比率(R041000)を乗算することによって、対象物件のデータ未収集月である4月の10時00分の消費電力を算出する。また、対象物件の3月における15時00分の消費電力に、消費電力比率(R041500)を乗算することによって、対象物件のデータ未収集月である4月の15時00分の消費電力を算出する。同様に、対象物件の3月における17時30分の消費電力に、消費電力比率(R081730)を乗算することによって、対象物件のデータ未収集月である8月の17時30分の消費電力を算出する。
 以上のようにして、対象物件の各データ未収集月における各時刻の消費電力を推定する。このようにして、対象物件のデータ未収集月における各時刻の消費電力を推定することによって対象物件の12ヶ月分の各時刻の消費電力を推定することができ、これにより、12か月分の図3に示す時刻変化データを得ることができる。
 そして、実施の形態1において説明したように、時刻変化データから得られる月間消費電力量は、ステップ160において月毎変化消費電力量推定部14が推定した図4に示す月毎変化データに含まれる、対応する月の消費電力量に等しくなるはずであるが、実際には一致するとは限らない。このため、各月・各時刻消費電力推定部15は、各月の各日の各時刻における消費電力を補正することで、対象物件に対して、図5に示すように12ヶ月分のデータが揃った各月・各時刻消費電力を推定により得る(ステップ170)。
 以上説明したように、本実施の形態によれば、時刻変化類似物件が抽出できない場合でも、月毎時刻変化データのみから、対象物件における各月・各時刻消費電力データを推定することができる。
 1 CPU、2 ROM、3 RAM、4 ハードディスクドライブ(HDD)、5 ネットワークインタフェース(IF)、6 ユーザインタフェース(UI)、7 内部バス、10 消費電力推定装置、11 時刻変化類似物件抽出部、12 時刻変化消費電力推定部、13 月毎変化類似物件抽出部、14 月毎変化消費電力量推定部、15 各月・各時刻消費電力推定部、16 物件データ記憶部、17 消費電力比率算出部、111 類似物件有無判定部、112 時間帯別類似物件抽出部。
 

Claims (5)

  1.  消費電力の推定のために消費電力の実績データを参照する参照期間のうち、消費電力の推定対象となる対象物件において消費電力が収集された収集月に含まれる各日における消費電力の時刻変化と、前記対象物件以外の他物件の前記収集月に含まれる各日における消費電力の時刻変化と、を対比することによって、前記収集月に含まれる各日における消費電力の時刻変化が前記対象物件と類似する他物件を時刻変化類似物件として抽出する時刻変化類似物件抽出手段と、
     前記時刻変化類似物件の、前記参照期間における前記収集月以外の未収集月に含まれる各日における消費電力を参照して、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定する時刻変化消費電力推定手段と、
     前記対象物件の前記収集月に含まれる各月の消費電力量の変化と、前記他物件の前記収集月に含まれる各月の消費電力量の変化と、を対比することによって、前記収集月に含まれる各月の消費電力量の変化が前記対象物件と類似する他物件を月毎変化類似物件として抽出する月毎変化類似物件抽出手段と、
     前記月毎変化類似物件の、前記参照期間における各月の消費電力量を参照して、前記対象物件の前記未収集月における消費電力量を推定する月毎消費電力量推定手段と、
     前記月毎消費電力量推定手段が推定した前記対象物件の前記未収集月における消費電力量に基づき、前記時刻変化消費電力推定手段が推定した前記未収集月に含まれる各日の各時刻における消費電力を補正することによって、前記対象物件の前記未収集月に含まれる各日の各時刻における消費電力を月毎に推定する各月・各時刻消費電力推定手段と、
     を有することを特徴とする消費電力推定装置。
  2.  前記月毎変化類似物件抽出手段は、前記収集月に含まれる各月の消費電力量の変化に代えて、前記対象物件の前記収集月に含まれる各日の消費電力量の変化と、前記他物件の前記収集月に含まれる各日の消費電力量の変化と、を対比することによって、前記収集月に含まれる各日の消費電力量の変化が前記対象物件と類似する他物件を月毎変化類似物件として抽出する、
     ことを特徴とする請求項1に記載の消費電力推定装置。
  3.  前記時刻変化類似物件抽出手段は、各日における消費電力の時刻変化を対比しても前記対象物件と類似する他物件を抽出できない場合、各日を複数の時間帯に分割し、分割した時間帯毎に、前記対象物件において前記収集月に含まれる各日の当該時間帯における消費電力の時刻変化と、前記他物件の前記収集月に含まれる各日の当該時間帯における消費電力の時刻変化と、を対比することによって、当該時間帯における消費電力の時刻変化が前記対象物件と類似する他物件を当該時間帯における時刻変化類似物件として抽出し、
     前記時刻変化消費電力推定手段は、前記各時間帯における時刻変化類似物件の、前記未収集月に含まれる各日における消費電力を参照して、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定する、
     ことを特徴とする請求項1に記載の消費電力推定装置。
  4.  前記時刻変化類似物件抽出手段が各日における消費電力の時刻変化を対比しても前記対象物件と類似する他物件を抽出できない場合、前記月毎変化類似物件の前記収集月における各時刻の消費電力に対する、前記月毎変化類似物件の前記各未収集月における各時刻の消費電力の比率を、当該未収集月における各時刻の消費電力比率として算出する消費電力比率算出手段を有し、
     前記時刻変化消費電力推定手段は、前記消費電力比率算出手段が算出した当該未収集月における各時刻の消費電力比率を、前記対象物件の前記収集月における当該時刻の消費電力に乗算することによって、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定する、
     ことを特徴とする請求項1に記載の消費電力推定装置。
  5.  コンピュータを、
     消費電力の推定のために消費電力の実績データを参照する参照期間のうち、消費電力の推定対象となる対象物件において消費電力が収集された収集月に含まれる各日における消費電力の時刻変化と、前記対象物件以外の他物件の前記収集月に含まれる各日における消費電力の時刻変化と、を対比することによって、前記収集月に含まれる各日における消費電力の時刻変化が前記対象物件と類似する他物件を時刻変化類似物件として抽出する時刻変化類似物件抽出手段、
     前記時刻変化類似物件の、前記参照期間における前記収集月以外の未収集月に含まれる各日における消費電力を参照して、前記対象物件の前記未収集月に含まれる各日における消費電力の時刻変化を推定する時刻変化消費電力推定手段、
     前記対象物件の前記収集月に含まれる各月の消費電力量の変化と、前記他物件の前記収集月に含まれる各月の消費電力量の変化と、を対比することによって、前記収集月に含まれる各月の消費電力量の変化が前記対象物件と類似する他物件を月毎変化類似物件として抽出する月毎変化類似物件抽出手段、
     前記月毎変化類似物件の、前記参照期間における各月の消費電力量を参照して、前記対象物件の前記未収集月における消費電力量を推定する月毎消費電力量推定手段、
     前記月毎消費電力量推定手段が推定した前記対象物件の前記未収集月における消費電力量に基づき、前記時刻変化消費電力推定手段が推定した前記未収集月に含まれる各日の各時刻における消費電力を補正することによって、前記対象物件の前記未収集月に含まれる各日の各時刻における消費電力を月毎に推定する各月・各時刻消費電力推定手段、
     として機能させるためのプログラム。
     
PCT/JP2021/001068 2021-01-14 2021-01-14 消費電力推定装置及びプログラム WO2022153444A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/001068 WO2022153444A1 (ja) 2021-01-14 2021-01-14 消費電力推定装置及びプログラム
JP2022574955A JP7250227B2 (ja) 2021-01-14 2021-01-14 消費電力推定装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001068 WO2022153444A1 (ja) 2021-01-14 2021-01-14 消費電力推定装置及びプログラム

Publications (1)

Publication Number Publication Date
WO2022153444A1 true WO2022153444A1 (ja) 2022-07-21

Family

ID=82448081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001068 WO2022153444A1 (ja) 2021-01-14 2021-01-14 消費電力推定装置及びプログラム

Country Status (2)

Country Link
JP (1) JP7250227B2 (ja)
WO (1) WO2022153444A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204039A (ja) * 2005-01-21 2006-08-03 Chugoku Electric Power Co Inc:The 配電系統負荷想定方法、配電系統負荷想定装置
JP2015002588A (ja) * 2013-06-14 2015-01-05 株式会社日立製作所 電力消費管理システムおよび方法
JP2018011418A (ja) * 2016-07-13 2018-01-18 三菱電機株式会社 管理装置、管理方法および管理プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204039A (ja) * 2005-01-21 2006-08-03 Chugoku Electric Power Co Inc:The 配電系統負荷想定方法、配電系統負荷想定装置
JP2015002588A (ja) * 2013-06-14 2015-01-05 株式会社日立製作所 電力消費管理システムおよび方法
JP2018011418A (ja) * 2016-07-13 2018-01-18 三菱電機株式会社 管理装置、管理方法および管理プログラム

Also Published As

Publication number Publication date
JPWO2022153444A1 (ja) 2022-07-21
JP7250227B2 (ja) 2023-03-31

Similar Documents

Publication Publication Date Title
CN110457867B (zh) 一种基于机器学习的时间序列数据填补与还原方法
Schumacher et al. Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data
Wu et al. A prediction method using the grey model GMC (1, n) combined with the grey relational analysis: a case study on Internet access population forecast
Schoonhoven et al. A robust standard deviation control chart
Ranjbar et al. Energy consumption and economic growth nexus in South Africa: Asymmetric frequency domain approach
Kim Modeling special-day effects for forecasting intraday electricity demand
Wang et al. Can GARCH-class models capture long memory in WTI crude oil markets?
CN106033424B (zh) 数据挖掘方法和装置
CN105260802B (zh) 基于修正业扩生长曲线与季节调整的月度电量预测方法
JP2016081452A (ja) 卸電力価格予測システムおよび卸電力価格予測方法
CN109307811A (zh) 一种基于大数据挖掘的用户专用变压器用电监测方法
JP5928104B2 (ja) 性能監視装置、性能監視方法、及びそのプログラム
WO2019041764A1 (zh) 团体保费评估的方法、装置、计算机设备及存储介质
Ranjan et al. Comparison of two data cleaning methods as applied to volatile time-series
Hu et al. Weighted score test based EWMA control charts for zero-inflated Poisson models
Midi et al. Robust multivariate control charts to detect small shifts in mean
WO2022153444A1 (ja) 消費電力推定装置及びプログラム
CN107704723A (zh) 一种基于斜率关联度的显著变量选择方法
Lusinyan et al. The sustainability of South African fiscal policy: an historical perspective
Visconti et al. Comprehensive analysis of conservation voltage reduction: A real case study
Kristensen Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean?
KR101238014B1 (ko) 듀얼 트리 구조를 이용하여 데이터 스트림에서 순차 패턴을 탐사하기 위한 장치 및 그 방법
Atak et al. A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors
Silva et al. UNIANO: robust and efficient anomaly consensus in time series sensitive to cross-correlated anomaly profiles
Deloux et al. Environmental information adaptive condition-based maintenance policies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919338

Country of ref document: EP

Kind code of ref document: A1