WO2022153443A1 - Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device - Google Patents

Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device Download PDF

Info

Publication number
WO2022153443A1
WO2022153443A1 PCT/JP2021/001067 JP2021001067W WO2022153443A1 WO 2022153443 A1 WO2022153443 A1 WO 2022153443A1 JP 2021001067 W JP2021001067 W JP 2021001067W WO 2022153443 A1 WO2022153443 A1 WO 2022153443A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
quantum dot
light emitting
polar solvent
quantum dots
Prior art date
Application number
PCT/JP2021/001067
Other languages
French (fr)
Japanese (ja)
Inventor
裕真 矢口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2021/001067 priority Critical patent/WO2022153443A1/en
Publication of WO2022153443A1 publication Critical patent/WO2022153443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present invention relates to a quantum dot dispersion system and a method for manufacturing the same.
  • Patent Document 1 discloses a technique for covalently bonding a surface-modified portion of phosphor particles and a polymer derived from an ionic liquid in order to improve the dispersibility of the phosphor particles.
  • the method for producing a quantum dot dispersion system comprises (1) a first liquid containing a quantum dot and a non-polar solvent, and (2) the quantum dots. From a stirring step of stirring a ligand containing a cation or an anion, an ionic liquid, and a second liquid containing a non-aqueous polar solvent, and a third liquid obtained by the stirring step.
  • the non-aqueous polar solvent comprises a coordinator containing the quantum dots, the ligand and the ionic liquid, and a take-out step of taking out a fourth liquid containing the non-aqueous polar solvent. It contains at least one of an alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether.
  • the quantum dot dispersion system according to the uniformity of the present invention is at least one of a quantum dot, a coordinator capable of coordinating the quantum dot, and a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether. It is provided with a non-aqueous polar solvent containing, and the content of water is 0% by volume or more and 0.1% by volume or less with respect to the total volume.
  • the light emitting device includes at least one of a light emitting layer and a wavelength conversion layer for converting the wavelength of light emitted from the light source as an optical layer, and the above one or more.
  • the first optical layer among the optical layers is a non-optical layer containing at least one of a quantum dot, a coordinator capable of coordinating the quantum dot, and a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether. It is provided with an aqueous polar solvent, and the content of water is 0% by volume or more and 0.1% by volume or less with respect to the total volume of the first optical layer.
  • FIG. It is a process sectional view which shows the method of manufacturing the quantum dot dispersion system which concerns on Embodiment 1.
  • FIG. It is the schematic sectional drawing which shows the light emitting device which concerns on Embodiment 1.
  • FIG. It is a schematic enlarged view which shows the quantum dot which concerns on Embodiment 1.
  • FIG. It is a schematic enlarged view which shows the vicinity of the outer surface of the quantum dot which concerns on Embodiment 1.
  • FIG. It is the schematic which shows the example of the coordination structure which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the method of manufacturing the light emitting layer which concerns on Embodiment 1.
  • It is a schematic diagram for demonstrating the mechanism of recoordination to a quantum dot of the coordination structure which concerns on Embodiment 1.
  • FIG. It is a schematic enlarged view which shows the vicinity of the outer surface of the quantum dot which concerns on Embodiment 2. It is the schematic which shows the example of the coordination structure which concerns on Embodiment 2. It is a flowchart which shows the method of manufacturing the light emitting layer which concerns on Embodiment 3. It is a process sectional view which shows the method of manufacturing the quantum dot dispersion system which concerns on Embodiment 3. FIG. It is another process sectional view which shows the method of manufacturing the quantum dot dispersion system which concerns on Embodiment 3.
  • FIG. It is a schematic enlarged view which shows the vicinity of the outer surface of the quantum dot which concerns on Embodiment 4.
  • FIG. It is a flowchart which shows the method of manufacturing the light emitting layer which concerns on Embodiment 4. It is the schematic sectional drawing which shows the light emitting device which concerns on Embodiment 5.
  • FIG. 2 is a schematic cross-sectional view of the light emitting device 1 according to the present embodiment.
  • the light emitting device 1 according to the present embodiment includes a light emitting element 2 and an array substrate 3.
  • the light emitting device 1 has a structure in which each layer of the light emitting element 2 is laminated on an array substrate 3 on which a TFT (Thin Film Transistor) (not shown) is formed.
  • TFT Thin Film Transistor
  • the light emitting element 2 includes a hole transport layer 6, a light emitting layer 8 as an optical layer, an electron transport layer 10, and a cathode 12 on the anode 4 in this order from the lower layer.
  • the anode 4 of the light emitting element 2 formed on the upper layer of the array substrate 3 is electrically connected to the TFT of the array substrate 3.
  • the light emitting element may have a cathode on the upper layer of the array substrate.
  • the light emitting device may include an electron transport layer, a light emitting layer as an optical layer, a hole transport layer, and an anode on the cathode in this order.
  • the anode 4 and the cathode 12 contain a conductive material and are electrically connected to the hole transport layer 6 and the electron transport layer 10, respectively.
  • Either one of the anode 4 and the cathode 12 is a transparent electrode.
  • the transparent electrode for example, ITO, IZO, ZnO, AZO, BZO, FTO or the like is used, and a film may be formed by a sputtering method or the like.
  • the anode 4 or the cathode 12 may contain a metal material, and as the metal material, Al, Cu, Au, Ag or Mg having high reflectance of visible light or an alloy thereof is preferable. ..
  • the hole transport layer 6 is a layer that transports holes from the anode 4 to the light emitting layer 8.
  • an organic or inorganic material conventionally used in a light emitting device containing quantum dots, an organic EL light emitting device, or the like can be used.
  • a conductive compound such as CBP, PPV, PEDOT-PSS, TFB, or PVK can be used.
  • an inorganic material of the hole transport layer 6 a metal oxide such as molybdenum oxide, NiO, Cr 2O 3 , MgO, MgZnO, LaNiO 3 , or WO 3 can be used.
  • a material having a large electron affinity and an ionization potential is suitable.
  • the electron transport layer 10 is a layer that transports electrons from the cathode 12 to the light emitting layer 8.
  • the material of the electron transport layer 10 in addition to TiO 2 , an organic or inorganic material conventionally used in a light emitting device containing quantum dots, an organic EL light emitting device, or the like can be used.
  • an organic material of the electron transport layer 10 a conductive compound such as Alq3, BCP or t-Bu-PBD can be used.
  • As the inorganic material of the electron transport layer 10 a metal oxide such as ZnO, ZAO, ITO, IGZO or electride can be used.
  • a material having a small electron affinity is suitable.
  • the hole transport layer 6 and the electron transport layer 10 can be formed by a vacuum vapor deposition method, a sputtering method, a coating forming method using a colloidal solution, or the like using the above-mentioned materials.
  • the light emitting device 2 may include a hole injection layer between the anode 4 and the hole transport layer 6, and may include an electron injection layer between the cathode 12 and the electron transport layer 10. May be good.
  • the light emitting element 2 may include an intermediate layer between the hole transport layer 6 and the light emitting layer 8, or between the electron transport layer 10 and the light emitting layer 8.
  • the hole injection layer, the electron injection layer, and the intermediate layer may all be formed by the same method as the hole transport layer 6 or the electron transport layer 10.
  • the light emitting layer 8 is a layer containing a plurality of quantum dot structures 14 including quantum dots (semiconductor nanoparticles).
  • the quantum dot structure 14 included in the light emitting layer 8 according to the present embodiment will be described with reference to FIG.
  • FIG. 3 is a schematic cross-sectional view of the quantum dot structure 14, and is an enlarged view showing the region A of FIG.
  • the quantum dot structure 14 includes the quantum dots 16, the surface modification portion 18, and the non-aqueous polar solvent 20.
  • the quantum dot 16 may be, for example, a quantum dot having a core / shell structure including a core and a shell formed around the core. In this case, the recombination of electrons and holes injected into the quantum dots 16 occurs mainly in the core. In addition, the shell has a function of suppressing the occurrence of core defects or dangling bonds, and reducing the recombination of carriers through the deactivation process.
  • the material of the quantum dot 16 may include a core material of the quantum dot having a conventionally known core / shell and a material used for the shell material.
  • the quantum dot 16 may be, for example, a semi-Cd-based conductor nanoparticle having CdSe in the core and ZnS in the shell.
  • the quantum dots 16 may be, for example, semi-Cd-based conductor nanoparticles having CdSe in the core and ZnSe in the shell.
  • the quantum dot 16 may have CdSe / CdS, InP / ZnS, ZnSe / ZnS, CIGS / ZnS, or the like as a core / shell structure.
  • the shell of the quantum dots 16 may be formed of a plurality of layers including a plurality of materials different from each other.
  • the core of the quantum dot 16 is a luminescent material that has a valence band level and a conduction band level, and emits light by recombination of holes in the valence band level and electrons in the conduction band level. Since the light emitted from the quantum dots 16 has a narrow spectrum due to the quantum confinement effect, it is possible to obtain light emission with a relatively deep chromaticity.
  • the particle size of the quantum dots 16 is about 1 to 100 nm.
  • the wavelength of light emitted from the quantum dots 16 can be controlled by the particle size.
  • the wavelength of light emitted from the quantum dots 16 can be controlled by controlling the particle size of the core. Therefore, by controlling the particle size of the core of the quantum dot 16, the wavelength of the light emitted by the light emitting device 1 can be controlled.
  • the quantum dot structure 14 in the light emitting layer 8 does not need to be regularly arranged as shown in FIG. 2, and the quantum dot structure 14 may be randomly included in the light emitting layer 8.
  • the film thickness of the light emitting layer 8 may be about 1 nm to 100 nm.
  • the light emitting device 1 includes, but is not limited to, one light emitting element 2 including a light emitting layer 8 provided with one type of quantum dots 16.
  • the light emitting device 1 may include a plurality of types of quantum dots 16 having different light emitting colors from each other in the light emitting layer 8.
  • the light emitting device 1 may have a plurality of light emitting elements 2 each having quantum dots 16 having different light emitting colors.
  • the light emitting device 1 may have a plurality of pixels having a plurality of sub pixels, and may be provided with the above-mentioned light emitting element 2 one by one for each of the sub pixels.
  • the light emitting elements 2 included in the sub-pixels included in the same pixel may have different light emitting colors.
  • the light emitting device 1 may individually drive the light emitting element 2 provided in each sub-pixel. In this case, the light emitting device 1 can configure a display device having a plurality of pixels.
  • a plurality of surface modification portions 18 are formed on the outermost surface 16S of each quantum dot 16 to modify the quantum dots 16.
  • the surface modification unit 18 may modify the outer surface of the shell of the quantum dot 16.
  • the detailed structure of the surface modification portion 18 will be described later.
  • the surface modification portion 18 is shown as a straight line in FIG. 3, the surface modification portion 18 does not necessarily have a linear structure and may have a bent structure.
  • the surface modification portion 18 has a function of suppressing the occurrence of defects in the quantum dots 16 or dangling bonds. In addition, the surface modification portion 18 reduces the aggregation of the quantum dots 16, protects the quantum dots 16 from the surrounding environment, imparts electrical stability to the surface of the quantum dots 16, or dissolves the quantum dots 16 in a solvent. It has the effect of improving sex or dispersibility.
  • the non-aqueous polar solvent 20 is held in the vicinity of the outermost surface 16S of the quantum dots 16.
  • the non-aqueous polar solvent 20 is held on the outermost surface 16S side of the quantum dots 16 between the plurality of non-volatile surface modification portions 18 located around the quantum dots 16. Specific examples of the non-aqueous polar solvent 20 will be described later.
  • FIG. 4 is a schematic enlarged view showing the vicinity of the outermost surface 16S of the quantum dot 16, and is an enlarged view showing the region B of FIG.
  • the surface modification portion 18 contains at least a ligand 22.
  • the ligand 22 contains a coordination functional group 24, a carbon chain 26, and a cation portion 28.
  • the coordination functional group 24 is a functional group that can be coordinated to the outermost surface 16S of the quantum dot 16.
  • the coordination functional group 24 contains a functional group capable of forming a coordination bond with the outermost surface 16S of the quantum dot 16. Therefore, in the present embodiment, the surface modification portion 18 is formed by the coordination of the ligand 22 to the quantum dot 16 via the coordination bond between the coordination functional group 24 and the outermost surface 16S of the quantum dot 16. Modifies the quantum dot 16.
  • the carbon chain 26 is formed between the coordination functional group 24 and the cation portion 28, and bonds with both the coordination functional group 24 and the cation portion 28.
  • the cation portion 28 is a moiety containing a cation formed at the end of the carbon chain 26 opposite to the coordination functional group 24.
  • the surface modification portion 18 further includes an ionic liquid 30.
  • the ionic liquid 30 is a salt that exhibits liquid properties at room temperature and contains an anion portion 32 containing an anion and a cation portion 34 containing a cation.
  • the ionic liquid 30 binds to the ligand 22 by forming an ionic bond with the cation portion 28 of the ligand 22 by the anion portion 32. Therefore, the surface modification portion 18 includes the ligand 22 and the ionic liquid 30, and becomes a coordinator capable of coordinating with the quantum dots 16.
  • the ligand 22 may be, for example, 2-diethylaminoethanethiol hydrochloride represented by the following chemical formula.
  • the ligand 22 contains a sulfur atom in the coordination functional group 24 and a quaternary ammonium ion in the cation portion 28.
  • the ionic liquid 30 may be 2- (methacryloyloxy) -ethyltrimethylammonium bis (trifluoromethanesulfonyl) imide.
  • the anion portion 32 of the ionic liquid 30 becomes, for example, a bis (trifluoromethanesulfonyl) imide shown in the following chemical formula, and the anion 32A of the anion portion 32 shown in FIG. 5 and the cation portion 28 of the ligand 22 Form an ionic bond.
  • the cation portion 34 of the ionic liquid 30 is, for example, 2- (methacryloyloxy) -ethyltrimethylammonium represented by the following chemical formula.
  • the ligand 22 may have a structure represented by the following chemical formula (1).
  • A represents the coordination functional group 24 and is selected from a thiol group, a carboxyl group, a phosphono group, or an amino group.
  • R1, R2, and R3 are each selected from an H atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group.
  • n1 is a natural number representing the number of carbon atoms in the carbon chain 26 of the ligand 22, and is 1 or more and 3 or less. The range of n1 corresponds to the range in which the ligand 22 is soluble in a polar solvent.
  • the anion portion 32 of the ionic liquid 30 contains bis (trifluoromethanesulfonyl) imide, thiosalicylic acid, tetrafluoroborate, hexafluorophosphate, dibutyl phosphate, acetic acid, disyanamide, nitrate, hydrogen sulfate, octyl sulfate, and methanesulfon.
  • bis (trifluoromethanesulfonyl) imide thiosalicylic acid, tetrafluoroborate, hexafluorophosphate, dibutyl phosphate, acetic acid, disyanamide, nitrate, hydrogen sulfate, octyl sulfate, and methanesulfon.
  • the cation portion 34 of the ionic liquid 30 contains at least one species from the group consisting of aliphatic quaternary ammonium ions, imidazolium ions, pyridinium ions, phosphonium ions, pyrrolidinium ions, piperidinium ions, and sulfonium ions.
  • the non-aqueous polar solvent 20 is held in the vicinity of the outermost surface 16S of the quantum dots 16 and between a plurality of surface modification portions 18 that modify the quantum dots 16.
  • the entire ligand 22 coordinated to the quantum dot 16 is located in the non-aqueous polar solvent 20 held in the vicinity of the outermost surface 16S of the quantum dot 16.
  • the light emitting device 1 may be manufactured by forming an array substrate 3 and forming each layer of a light emitting element 2 on the array substrate 3 in order from the anode 4.
  • the layers other than the light emitting layer 8 may be formed by the method described with reference to FIG.
  • the method of forming the light emitting layer 8 according to the present embodiment will be described with reference to FIG.
  • the light emitting layer 8 is formed by applying the dispersion system of the quantum dots 16 obtained by stirring the first liquid and the second liquid onto the hole transport layer 6.
  • the first liquid and the second liquid will be described with reference to FIG. 1, which is a process cross-sectional view for explaining the stirring step of stirring the first liquid and the second liquid. It will be explained together with.
  • step S2 the generation of the first liquid (step S2) and the generation of the second liquid (step S4) are executed.
  • step S6 the first liquid and the second liquid are stirred in the container 36 shown in FIG. 1 (step S6), and the stirring step is executed.
  • step S6A of FIG. 1 the state immediately before starting the stirring of the first liquid 38 and the second liquid 40 injected into the container 36 in step S6 is shown.
  • the first liquid 38 is a solution in which a plurality of quantum dots 16 in which a plurality of ligands 44 are coordinated are dispersed in a non-polar solvent 42.
  • the non-polar solvent 42 is not particularly limited as long as it is a non-polar solvent in which the quantum dots 16 are soluble, and may be, for example, a non-polar organic solvent containing octane.
  • the ligand 44 is not particularly limited as long as it has a coordination functional group 46 for coordinating to the quantum dot 16 and is soluble in the non-polar solvent 42. Specifically, the ligand 44 may be dodecanethiol, oleic acid, oleylamine, or the like.
  • the first liquid 38 may be produced by dispersing the quantum dots 16 and the ligand 44 in a non-polar solvent 42 and stirring them appropriately.
  • the first liquid 38 shown in FIG. 1 shows only a part of the ligand 44 coordinated to the quantum dot 16.
  • the ligand 44 is shown so as to be biasedly coordinated to a part of the outer peripheral surface of the quantum dot 16, but the ligand 44 is not limited to this, and the ligand 44 is formed on the outer peripheral surface of the quantum dot 16. Coordination may be performed substantially uniformly over the entire surface.
  • the second liquid 40 is a solution in which the ligand 22 and the ionic liquid 30 are dispersed in the non-aqueous polar solvent 20.
  • the second liquid 40 may further contain counter ion 48, which is an anion that ionically bonds with the cation of the cation portion 28 of the ligand 22, in the non-aqueous polar solvent 20.
  • the second liquid 40 may be produced by mixing a solution in which the ligand 22 is dispersed in the non-aqueous polar solvent 20 and a solution in which the ionic liquid 30 is dispersed in the non-aqueous polar solvent 20.
  • the first liquid 38 and the second liquid 40 are separated in the container 36. Further, for example, when the specific gravity of the second liquid 40 is lighter than the specific gravity of the first liquid 38, the second liquid 40 is located at the upper part in the container 36 than the first liquid 38.
  • the cation of the cation portion 28 of the ligand 22 and the anion of the anion portion 32 of the ionic liquid 30 are ionic bonded to form a surface modification portion. 18 is formed. Further, by stirring the first liquid 38 and the second liquid 40, the ligand coordinated to the quantum dot 16 becomes an equilibrium state between the ligand 22 and the ligand 44.
  • the concentration of the surface modification portion 18 becomes excessive as compared with the concentration of the quantum dots 16.
  • the first liquid 38 contains an excess amount of the ligand 22 and the ionic liquid 30. Therefore, when the first liquid 38 and the second liquid 40 are sufficiently stirred, the ligand coordinated to the quantum dot 16 is replaced from the ligand 44 to the ligand 22.
  • Step S6B of FIG. 1 shows the state in the container 36 after the first liquid 38 and the second liquid 40 are sufficiently stirred and then allowed to stand for a sufficient time.
  • the third liquid 50 shown in step S6B of FIG. 1 is generated.
  • the third liquid 50 includes the fourth liquid 52 and the fifth liquid 54.
  • the fourth liquid 52 is a solution in which the quantum dots 16 modified by the surface modification portion 18 are dispersed in the non-aqueous polar solvent 20. Since the ligand 22 and the ionic liquid 30 both have ions, they have relatively strong polarities. Therefore, the surface modification portion 18 containing the ligand 22 and the ionic liquid 30 is more soluble in the non-aqueous polar solvent 20 than in the non-polar solvent 42.
  • the quantum dots 16 modified by the surface modification portion 18 are more soluble in the non-aqueous polar solvent 20 than in the non-polar solvent 42, as compared with the quantum dots 16 to which the ligand 44 is coordinated. Therefore, when the first liquid 38 and the second liquid 40 are sufficiently stirred, the quantum dot 16 is a ligand in which the coordinating ligand is bound from the ligand 44 to the ionic liquid 30. With the replacement with 22, the non-polar solvent 42 moves to the non-aqueous polar solvent 20. Therefore, the fourth liquid 52 is a solution in which the quantum dots 16 modified by the surface modification portion 18 are dispersed in the non-aqueous polar solvent 20.
  • the fourth liquid 52 shown in FIG. 1 Similar to the ligand 44 in the first liquid 38 shown in FIG. 1, in the fourth liquid 52 shown in FIG. 1, only a part of the surface modification portion 18 that modifies the quantum dots 16 is shown. Along with this, the surface modification portion 18 is shown so as to be biased to a part of the outer peripheral surface of the quantum dot 16, but the surface modification portion 18 is not limited to this, and the surface modification portion 18 is the entire outer surface surface of the quantum dot 16. On the other hand, the positions may be substantially uniform.
  • the fifth liquid 54 becomes a solution in which the ligand 44 is dispersed in the non-polar solvent 42.
  • the non-polar solvent 42 and the non-aqueous polar solvent 20 have different polarities from each other, when the third liquid 50 is sufficiently allowed to stand, as shown in step S6B of FIG.
  • the liquid 52 and the fifth liquid 54 are separated. Further, for example, when the specific gravity of the fifth liquid 54 is lighter than the specific gravity of the fourth liquid 52, the fifth liquid 54 is located at the upper part in the container 36 than the fourth liquid 52.
  • quantum dots have the characteristic of photoexcited light emission, which is excited by absorbing light of a specific wavelength and emits light by the excitation. Therefore, by irradiating the third liquid 50 with an electromagnetic wave such as ultraviolet rays and causing the quantum dots 16 contained in the fourth liquid 52 to emit light, which of the two layers contained in the third liquid 50 is the fourth liquid 52? It is possible to judge.
  • the fourth liquid 52 is extracted from the third liquid 50 (step S8), and the extraction step is executed.
  • the fourth liquid 52 and the fifth liquid 54 are separated. Therefore, it is possible to extract the fourth liquid 52 from the third liquid 50 by centrifuging the third liquid 50.
  • the fourth liquid 52 in which the quantum dots 16 modified by the surface modification portion 18 are dispersed in the non-aqueous polar solvent 20 is generated as the quantum dot dispersion system.
  • the fourth liquid 52 may contain the counter ions 48 contained in the second liquid 40.
  • ⁇ Formation of light emitting layer> In the process of forming the light emitting layer 8 according to the present embodiment, the formation of the array substrate 3, the anode 4, and the hole transport layer 6 of the light emitting device 1 has been completed by the extraction step. In the step of forming the light emitting layer 8, following the take-out step, the fourth liquid 52 is applied onto the hole transport layer 6 and the fourth liquid 52 is dried (step S10).
  • the fourth liquid 52 For the application of the fourth liquid 52, various methods such as an inkjet method for applying a dispersion system of quantum dots can be adopted.
  • the drying of the fourth liquid 52 is carried out to such an extent that the non-aqueous polar solvent 20 contained in the fourth liquid 52 remains in the vicinity of the outermost surface 16S of each quantum dot 16.
  • the non-aqueous polar solvent 20 is retained between the non-volatile surface modifying portions 18 that modify each quantum dot 16, so that the quantum dots 16
  • the non-aqueous polar solvent 20 held in the vicinity of the outermost surface 16S does not volatilize.
  • Drying of the fourth liquid 52 may be carried out, for example, by allowing the laminate coated with the fourth liquid 52 to stand at a temperature of 60 ° C. or higher and 150 ° C. or lower for about 10 to 30 minutes.
  • the fourth liquid 52 is preferably dried in an environment of 100 ° C. for about 10 minutes.
  • the drying of the fourth liquid 52 may be carried out by allowing the laminate coated with the fourth liquid 52 to stand at room temperature.
  • the light emitting layer 8 may contain counter ions 48 contained in the fourth liquid 52. After that, by forming the electron transport layer 10 and the cathode 12 in this order on the light emitting layer 8, the light emitting element 2 is formed, and the manufacturing process of the light emitting device 1 is completed.
  • the non-aqueous polar solvent 20 may be any polar solvent in which the ligand 22 and the ionic liquid 30 can be dissolved.
  • the fourth liquid 52 according to the present embodiment is a quantum dot dispersion system in which quantum dots 16 modified by the surface modification portion 18 are dispersed in a non-aqueous polar solvent 20.
  • the non-aqueous polar solvent 20 may be any polar solvent in which the quantum dots 16 modified by the surface modification portion 18 can be dissolved.
  • the non-aqueous polar solvent 20 at least one of a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether can be adopted.
  • examples of materials that can be used as the non-aqueous polar solvent 20 include ethanol, propanol, and butanol as lower alcohols.
  • examples of the lower glycol include ethylene glycol.
  • examples of the lower glycol ester include propylene glycol monomethyl ether acetate (PMA).
  • examples of the lower glycol ether include propylene glycol 1-monomethyl ether 2-acetylate (PGMEA), propylene glycol monomethyl ether (PM), and ethylene glycol monomethyl ether.
  • lower means that the number of carbon atoms in one molecule is 2 or more and 8 or less.
  • the non-aqueous polar solvent 20 is a lower alcohol, in other words, when the number of carbon atoms in one molecule is 2 or more and 8 or less, the non-aqueous polar solvent 20 is a non-polar solvent 42. It has a sufficiently high polarity in comparison.
  • the boiling point of the non-aqueous polar solvent 20 may be 100 ° C. or higher. As a result, it is possible to reduce the volatilization of the non-aqueous polar solvent 20 held in the vicinity of the outermost surface 16S of the quantum dots 16 due to the heat generated by driving the light emitting element 2.
  • the boiling point of the non-aqueous polar solvent 20 may be 200 ° C. or lower.
  • the temperature of heating and drying of the quantum dot dispersion system should be up to about 150 ° C. in order to reduce deterioration of the quantum dots. May be restricted.
  • the boiling point of the non-aqueous polar solvent 20 is 200 ° C. or lower, the formation of the layer containing the quantum dots by heating and drying the quantum dot dispersion system containing the non-aqueous polar solvent 20 is performed by heating up to about 150 ° C. realizable.
  • the viscosity of the non-aqueous polar solvent 20 may be 0.5 mPa ⁇ s or more. As a result, a sufficient amount of the non-aqueous polar solvent 20 is retained in the vicinity of the outermost surface 16S of the quantum dots 16. Further, the viscosity of the non-aqueous polar solvent 20 may be 20 mPa ⁇ s or less. As a result, it becomes easier to apply the solution in which the quantum dots 16 are dispersed in the non-aqueous polar solvent 20, and the layer containing the quantum dots 16 can be formed more uniformly.
  • the fourth liquid 52 which is the quantum dot dispersion system according to the present embodiment, contains the quantum dots 16 and the surface modification portion 18 containing the ligand 22 and the ionic liquid 30 in the non-aqueous polar solvent 20. Further, in the process of producing the fourth liquid 52, there is no process of directly exposing the quantum dots 16 to water. Therefore, it is possible to generate the fourth liquid 52, which is a quantum dot dispersion system including the surface modification portion 18, while reducing the deterioration of the quantum dots 16 due to moisture. Since the light emitting element 2 including the light emitting layer 8 formed from the fourth liquid 52 contains the quantum dots 16 with reduced deterioration, the luminous efficiency of the light emitting element 2 is improved.
  • the solution containing the quantum dots 16 can be appropriately dehydrated. Specifically, for example, by dehydrating a solution containing 1 ml of a solvent containing quantum dots 16, the amount of water contained in the solution can be reduced to 1 ⁇ l or less.
  • the water content of the fourth liquid 52 can be set to 0% by volume or more and 0.1% by volume or less with respect to the total volume.
  • the fourth liquid 52 can sufficiently reduce the deterioration of the dispersed quantum dots 16. Therefore, the water content of the light emitting layer 8 formed from the fourth liquid 52 is also 0% by volume or more and 0.1% by volume or less with respect to the total volume.
  • the quantum dot 16 holds the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S. Therefore, even when the moisture approaches the quantum dots 16, the outermost surface 16S of the quantum dots 16 is protected by the non-aqueous polar solvent 20. Therefore, the quantum dots 16 can reduce deterioration due to moisture even in the light emitting layer 8.
  • FIG. 7 is another schematic enlarged view showing the same position as in FIG.
  • the coordination bond between the coordination functional group 24 of the surface modification portion 18 modified by the quantum dot 16 and the outermost surface 16S of the quantum dot 16 is a bond between the coordination functional group 24 and the carbon chain 26, or a quantum dot. It is a weak bond as compared with the bond between 16 molecules. Therefore, even after being formed as the light emitting layer 8, as shown in FIG. 7, the coordination bond between the coordination functional group 24 and the outermost surface 16S is broken, and the ligand 22 is the quantum dot 16. May be temporarily withdrawn from.
  • the quantum dot 16 holds the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S, and in particular, the ligand 22 is located inside the non-aqueous polar solvent 20. Therefore, even if the coordination bond between the coordination functional group 24 and the outermost surface 16S is temporarily broken, the ligand 22 does not immediately separate from the quantum dot 16 and is in the vicinity of the quantum dot 16. Stay in.
  • the coordination between the coordination functional group 24 and the outermost surface 16S may be realized again while the ligand 22 remains in the vicinity of the quantum dot 16. Therefore, by holding the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S of the quantum dots 16, it is possible to reduce the complete detachment of the ligand 22 from the quantum dots 16, and thus the surface modification portion 18 It is possible to reduce the complete separation from the quantum dot 16.
  • the quantum dot dispersion system according to the embodiment is generated according to the method for generating the quantum dot dispersion system according to the present embodiment, and the light emitting layer 8 and the light emitting element 2 provided with the light emitting layer 8 are generated from the quantum dot dispersion system.
  • the quantum dot dispersion system according to this embodiment was generated by the same method as the method for producing the fourth liquid 52 according to this embodiment.
  • the light emitting layer 8 according to the present embodiment was formed by the same method as the method for forming the light emitting layer 8 according to the present embodiment.
  • step S2 the quantum dots 16 were dispersed in the non-polar solvent 42 so that the concentration of the quantum dots 16 was 20 mg / ml, and 200 ⁇ l of the first liquid 38 was produced.
  • octane was used as the non-polar solvent 42
  • quantum dots containing CdS having a core particle size of 2 nm were used as the quantum dots 16.
  • step S4 first, 200 ⁇ l of a solution in which the ionic liquid 30 was dispersed in the non-aqueous polar solvent 20 was produced so that the concentration of the ionic liquid 30 was 300 mg / ml.
  • a solution of the aprotic 22 was produced in an amount of 500 ⁇ l.
  • the second liquid 40 was produced by mixing the solution of the ionic liquid 30 and the solution of the ligand 22.
  • PGMEA is added to the non-aqueous protic solvent 20
  • 2- (methacryloyloxy) -ethyltrimethylammonium bis (trifluoromethanesulfonyl) imide is added to the ionic liquid 30
  • 2-diethylaminoethanethiol hydrochloride is added to the ligand 22.
  • step S6 the above-mentioned first liquid 38 and second liquid 40 were stirred at room temperature for 3 hours to generate a third liquid 50.
  • step S8 according to this embodiment the third liquid 50 was extracted from the third liquid 52 by centrifuging the third liquid 50 at a rotation speed of 4000 rpm for 10 minutes.
  • the fourth liquid 52 which is the quantum dot dispersion system according to the present embodiment, was generated.
  • step S10 a laminate having the array substrate 3, the anode 4, and the hole transport layer 6 formed was prepared.
  • the fourth liquid 52 was applied onto the hole transport layer 6 of the laminate and dried at room temperature to obtain a light emitting layer 8. Then, the light emitting device 1 was manufactured through the formation of the electron transport layer 10 and the cathode 12 on the light emitting layer 8.
  • the quantum dot dispersion system according to some comparative examples was manufactured, and the light emitting layer and the light emitting device were manufactured from the quantum dots.
  • the quantum dot dispersion system according to Comparative Example 1 was a solution in which the quantum dots used in the examples were dispersed in octane.
  • the quantum dot dispersion system according to Comparative Example 2 was an aqueous quantum dot solution in which the quantum dots used in Examples and Comparative Example 1 were dispersed in water.
  • the ionic liquid obtained by stirring the quantum dot dispersion system according to Comparative Example 2 and the solution in which the ionic liquid is dispersed in PGMEA at room temperature for 3 hours is coordinated.
  • a PGMEA solution in which the resulting quantum dots were dispersed was prepared.
  • the light emitting device according to each comparative example was manufactured by the same method as the light emitting device 1 according to the embodiment using the quantum dot dispersion system according to each comparative example.
  • the fluorescence quantum yield of the quantum dots contained in the quantum dot dispersion system according to Comparative Example 1 was about 40%.
  • the ionic liquid is not coordinated with the quantum dots included in the quantum dot dispersion system according to Comparative Example 1. Therefore, the quantum dots included in the quantum dot dispersion system according to Comparative Example 1 are more likely to agglomerate than the quantum dots to which the ionic liquid is coordinated, which may cause a decrease in the reliability of the quantum dots. be.
  • the fluorescence quantum yield of the quantum dots included in the quantum dot dispersion system according to Comparative Example 2 is about 1%
  • the fluorescence quantum yield of the quantum dots included in the quantum dot dispersion system according to Comparative Example 3 is less than 1%. I found out.
  • Comparative Example 2 and Comparative Example 3 since the quantum dots are exposed to water in the step of replacing the ligands coordinated with the quantum dots with ionic liquids, the outermost surface of the quantum dots is deteriorated by the water, and the quantum dots are deteriorated.
  • the quantum dot dispersion system according to Comparative Example 3 has improved reliability of the quantum dots after film formation as compared with the quantum dot dispersion system according to Comparative Example 1, but the fluorescence quantum yield of the quantum dots is significantly reduced. do. Therefore, in the light emitting device including the light emitting layer formed from the quantum dot dispersion system according to Comparative Example 3, the external quantum efficiency may be significantly lowered.
  • the fluorescence quantum yield of the quantum dots 16 contained in the fourth liquid 52 which is the quantum dot dispersion system according to the example, was maintained at about 18%.
  • the deterioration of the outermost surface 16S of the quantum dots 16 is reduced, and the fluorescence quantum yield of the quantum dots 16 is reduced. It is presumed that the decrease in the rate has decreased.
  • the quantum dot 16 included in the fourth liquid 52 which is the quantum dot dispersion system according to the embodiment, includes the quantum dot 16 in which the ionic liquid 30 is coordinated and maintains a relatively high fluorescence quantum yield. Therefore, in the light emitting layer 8 formed from the fourth liquid 52 according to the embodiment, the aggregation of the quantum dots 16 is reduced, and the decrease in the luminous efficiency of the quantum dots 16 is reduced. Therefore, the light emitting device 1 provided with the light emitting layer 8 according to the embodiment further improves the light emitting efficiency and prolongs the life.
  • FIG. 8 is a schematic enlarged view showing the vicinity of the outermost surface 16S of the quantum dot 16 according to the present embodiment, and is an enlarged view showing a position corresponding to FIG.
  • each member having the same function is given the same name and reference numeral, and the same description will not be repeated unless there is a difference in configuration.
  • the light emitting device 1 according to the present embodiment has the same configuration as the light emitting device 1 according to the previous embodiment, except that the configuration of the surface modification portion 18 is different.
  • the ligand 22 contained in the surface modification portion 18 is the same as the ligand 22 according to the previous embodiment except that the anion portion 56 is included instead of the cation portion 28. It has the same configuration.
  • the anion portion 56 is a portion of the carbon chain 26 containing an anion formed at the end opposite to the coordination functional group 24. Therefore, in the ionic liquid 30, the cation portion 34 is bonded to the ligand 22 by forming an ionic bond with the anion portion 56 of the ligand 22. Except for the above points, the surface modification unit 18 according to the present embodiment has the same configuration as the surface modification unit 18 according to the previous embodiment.
  • the ligand 22 may be, for example, thioglycolic acid represented by the following chemical formula.
  • the ligand 22 contains a sulfur atom in the coordination functional group 24 and a carboxylate anion in the anion portion 56.
  • the material of the ionic liquid 30 may be appropriately changed according to the polarity of the ions possessed by the ligand 22.
  • the ionic liquid 30 may be 1-benzyl-3-methylimidazolium tetrafluoroboric acid.
  • the cation portion 34 of the ionic liquid 30 is, for example, 1-benzyl-3-methylimidazolium represented by the following chemical formula, and the cation 34C of the cation portion 34 shown in FIG. 5 is the anion of the ligand 22. It forms an ionic bond with part 56.
  • anion portion 32 of the ionic liquid 30 is, for example, tetrafluoroboric acid represented by the following chemical formula.
  • the ligand 22 may have a structure represented by the following chemical formula (2).
  • B represents the coordination functional group 24 and is selected from a thiol group, a carboxyl group, a phosphono group, or an amino group.
  • n2 is a natural number representing the number of carbon atoms in the carbon chain 26 of the ligand 22, and is 1 or more and 3 or less. The range of n2 corresponds to the range in which the ligand 22 is soluble in a polar solvent.
  • the light emitting device 1 according to the present embodiment can be manufactured by the same method as the light emitting device 1 according to the previous embodiment.
  • the light emitting layer 8 according to the present embodiment can be formed by the same method as the light emitting layer 8 according to the previous embodiment, except for the solute material of the second liquid 40 generated in step S4.
  • the ligand 22 having the anion portion 56 is dispersed in the second liquid 40.
  • the second liquid 40 may contain a counter ion, which is a cation that ionically bonds with the anion of the anion portion 56 of the ligand 22.
  • the light emitting element 2 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the luminous efficiency of the light emitting element 2 is improved.
  • the ligand 22 in the present embodiment has changed the polarity of the ion. Therefore, the surface modification portion 18 according to each of the previous embodiment and the present embodiment can select the ligand 22 containing more appropriate ions depending on the type of the ionic liquid 30 contained.
  • the light emitting device 1 according to the present embodiment has the same configuration as the light emitting device 1 according to any of the above-described embodiments.
  • the method for manufacturing the light emitting device 1 according to the present embodiment is the method for producing the light emitting device 1 according to any one of the above-described embodiments, except for the method for producing the fourth liquid 52, which is a quantum dot dispersion system used for forming the light emitting layer 8. It can be manufactured by the same method as the manufacturing method.
  • a method of forming the light emitting layer 8 of the light emitting device 1 according to the present embodiment will be described with reference to FIG. In this embodiment, as will be described in detail later, prior to the generation of the dispersion system of the quantum dots 16.
  • the sixth liquid and the seventh liquid are stirred to carry out the generation of the eighth liquid used for the generation of the dispersion system of the quantum dots 16.
  • FIG. 11 is a process cross-sectional view for explaining the stirring step of stirring the sixth liquid and the seventh liquid, the sixth liquid and the seventh liquid It will be explained together with the explanation of.
  • step S12 the generation of the sixth liquid (step S12) and the generation of the seventh liquid (step S14) are executed.
  • the sixth liquid and the seventh liquid are stirred in the container 36 shown in FIG. 11 (step S16), and the stirring step is executed.
  • step S16A of FIG. 11 the state immediately before starting the stirring of the sixth liquid 58 and the seventh liquid 60 injected into the container 36 in step S16 is shown.
  • the sixth liquid 58 is an aqueous solution in which a plurality of ligands 22 are dispersed in water 62.
  • the ligand 22 may have, for example, the same configuration as the ligand 22 according to the first embodiment.
  • the sixth liquid 58 may further contain counter ion 48, which is an anion that ionically bonds with the cation of the cation portion 28 of the ligand 22, in water 62.
  • the sixth liquid 58 may be a 500 ⁇ l aqueous solution containing 200 mg / ml of 2-diethylaminoethanethiol hydrochloride as the ligand 22.
  • the seventh liquid 60 is a solution in which the ionic liquid 30 is dispersed in the non-aqueous polar solvent 20 as shown in step S16A of FIG.
  • the non-aqueous polar solvent 20 and the ionic liquid 30 may each have the same configuration as the non-aqueous polar solvent 20 and the ionic liquid 30 according to any of the above-described embodiments.
  • the seventh solution 60 contains 300 mg / ml of 2- (methacryloyloxy) -ethyltrimethylammonium bis (trifluoromethanesulfonyl) imide, which is an ionic liquid 30, in PGMEA, which is a non-aqueous polar solvent 20. It may be a 500 ⁇ l solution.
  • the sixth liquid 58 and the seventh liquid 60 are separated in the container 36. Further, for example, when the specific gravity of the 7th liquid 60 is lighter than that of the 6th liquid 58, the 7th liquid 60 is located at the upper part in the container 36 than the 6th liquid 58.
  • Stirring of the sixth liquid 58 and the seventh liquid 60 may be performed, for example, at room temperature for 1.5 hours.
  • the sixth liquid 58 and the seventh liquid 60 are stirred, the cation of the cation portion 28 of the ligand 22 and the anion of the anion portion 32 of the ionic liquid 30 are ionic bonded to form a surface modification portion. 18 is formed.
  • Step S16B of FIG. 11 shows the state in the container 36 after the sixth liquid 58 and the seventh liquid 60 are sufficiently stirred and then allowed to stand for a sufficient time.
  • the eighth liquid 64 shown in step S6B of FIG. 11 is produced.
  • the eighth liquid 64 contains the ninth liquid 66 and the tenth liquid 68.
  • the ligand 22 may dissolve better in water 62 than in the non-aqueous polar solvent 20.
  • 2-diethylaminoethanethiol hydrochloride is more soluble in water than non-aqueous polar solvents such as PGMEA.
  • a solution using water 62 as a solvent may obtain a solution having a higher concentration of the ligand 22 as compared with the non-aqueous polar solvent 20.
  • the surface modification portion 18 formed by combining the ligand 22 and the ionic liquid 30 is compared with the water 62. In some cases, it dissolves better in the non-aqueous polar solvent 20. In this case, when the sixth liquid 58 and the seventh liquid 60 are stirred and the surface modification portion 18 is formed, more surface modification portions 18 are present in the non-aqueous polar solvent 20 as compared with the water 62. Will be done.
  • the ninth liquid 66 containing the non-aqueous polar solvent 20 as a solvent is more water.
  • the surface modification portion 18 having a higher concentration is dispersed than that of the tenth liquid 68 containing 62 as a solvent. From the above, the ninth liquid 66 in which the surface modification portion 18 is dispersed is generated in the non-aqueous polar solvent 20.
  • the ninth liquid 66 is extracted from the eighth liquid 64 (step S18).
  • the ninth liquid 66 can be extracted by centrifuging the eighth liquid 64.
  • the first liquid 38 is generated by the completion of step S18.
  • the first liquid 38 may have the same configuration as the first liquid 38 according to the first embodiment, and the first liquid 38 may be generated by the same method as step S2 according to the first embodiment.
  • Step S20A of FIG. 12 shows a state immediately before starting stirring of the first liquid 38 and the ninth liquid 66.
  • step S6 is whether the solution to be agitated with the first liquid 38 is the second liquid 40 or the ninth liquid 66. be.
  • the only difference between the second liquid 40 and the ninth liquid 66 is whether or not the ligand 22 dissolved in the non-aqueous polar solvent 20 and the ionic liquid 30 have already formed the surface modification portion 18. Is.
  • Step S20B of FIG. 12 shows the state in the container 36 after the first liquid 38 and the ninth liquid 66 are sufficiently stirred and then allowed to stand for a sufficient time. From the above circumstances, by stirring the first liquid 38 and the ninth liquid 66, as shown in step S20B of FIG. 12, a solution having the same configuration as the third liquid 50 according to the first embodiment can be obtained. Therefore, in step S20, the fourth liquid 52, which is the quantum dot dispersion system according to the present embodiment, is generated.
  • the light emitting layer 8 according to the present embodiment is formed by sequentially executing the same steps as step S8 and step S10 according to the first embodiment.
  • the light emitting element 2 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the luminous efficiency of the light emitting element 2 is improved. do.
  • the ligand 22 is previously dispersed in water 62 and then combined with the ionic liquid 30 dispersed in the non-aqueous polar solvent 20. Therefore, there is a step of producing the ninth liquid 66 in which the ligand 22 is dispersed.
  • the ligand 22 and the ionic liquid 30 are more reliably bonded to form the surface modification portion 18, so that the surface modification portion 18 can modify the quantum dots 16 more efficiently.
  • the concentration of the ligand 22 in the sixth liquid 58 is higher than the concentration of the ligand 22 in the second liquid 40 described above. Can also be increased. As a result, the concentration of the ligand 22 in the ninth liquid 66 can be increased, and thus the concentration of the surface modification portion 18 in the fourth liquid 52 can be increased.
  • the quantum dots 16 are directly exposed only to the non-aqueous polar solvent 20 or the non-polar solvent 42, and are exposed to water 62. There is no. Therefore, in the present embodiment, it is possible to reduce the deterioration of the quantum dots 16 contained in the fourth liquid 52 while increasing the concentration of the surface modification portion 18 in the fourth liquid 52.
  • FIG. 13 is a schematic enlarged view showing the vicinity of the outermost surface 16S of the quantum dot 16 according to the present embodiment, and is an enlarged view showing the position corresponding to FIG.
  • the light emitting device 1 according to the present embodiment has the same configuration as the light emitting device 1 according to the first embodiment, except that the configuration of the surface modifying portion 18 is different.
  • the surface modification portion 18 has the same configuration as the surface modification portion 18 according to the first embodiment, except that the polymer 70 is included instead of the ionic liquid 30.
  • the polymer 70 is formed by polymerizing a plurality of surface modification portions 18 coordinated to the same quantum dot 16.
  • the polymer 70 is a polymer formed by polymerizing a plurality of ionic liquids 30 according to each of the above-described embodiments between the anion portions 32 and the cation portions 34.
  • the polymer 70 is produced by performing heat treatment or ultraviolet irradiation on an ionic liquid 30 in which the anion portion 32 or the cation portion 34 has a polymerizable functional group to generate a polymerization reaction.
  • the polymer 70 includes a plurality of anion portions 32 and a plurality of cation portions 34.
  • the anion of each anion portion 32 of the polymer 70 is bonded to the cation of the cation portion 28 of the ligand 22, thereby forming the surface modification portion 18. There is.
  • the polymer 70 is generated from the ionic liquid 30 in which the cation portion 34 has a polymerizable functional group.
  • the cation portion 34 may contain 2- (methacryloyloxy) -ethyltrimethylammonium as described above.
  • the cation portion 34 may have a metachloro group as a polymerizable functional group.
  • the cation portion 34 of the polymer 70 has a structure represented by the following chemical formula by polymerizing the cation portions 34 with each other.
  • n3 is a natural number and indicates the degree of polymerization of the cation portion 34 of the polymer 70.
  • steps S2 to S8 are executed by the same method as the manufacturing method of the light emitting device 1 according to the first embodiment.
  • the polymerization initiator is added to the fourth liquid 52 following the formation of the fourth liquid 52 (step S22).
  • the polymerization initiator added to the fourth liquid 52 may be appropriately selected from conventionally known polymerization initiators according to the type of the polymerizable functional group of the ionic liquid 30 contained in the fourth liquid 52.
  • the fourth liquid 52 to which the polymerization initiator is added is applied onto, for example, the hole transport layer 6 (step S24).
  • the coating of the fourth liquid 52 in the present embodiment may be carried out by the same method as the coating of the fourth liquid 52 in each of the above-described embodiments.
  • the coated fourth liquid 52 is subjected to a treatment such as heat treatment or ultraviolet irradiation to polymerize the polymerizable functional groups contained in the ionic liquid 30 of the fourth liquid 52 (step S26).
  • a treatment such as heat treatment or ultraviolet irradiation to polymerize the polymerizable functional groups contained in the ionic liquid 30 of the fourth liquid 52 (step S26).
  • the treatment performed for the polymerization of the polymerizable functional groups of the ionic liquid 30 or the conditions of the treatment are appropriate depending on the type of the ionic liquid 30 or the type of the polymerizable functional groups contained in the ionic liquid 30. May be selected.
  • the ionic liquids 30 of the surface modification portion 18 coordinated to the quantum dots 16 are polymerized to form the polymer 70. Therefore, in the vicinity of the outermost surface 16S of the quantum dot 16, the quantum dot structure 14 in which the polymer 70 is coordinated via the ligand 22 is formed, and the light emitting layer 8 is formed.
  • the light emitting element 2 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the luminous efficiency of the light emitting element 2 is improved. do.
  • the surface modification portion 18 coordinated to the quantum dots 16 includes a polymer 70 derived from the ionic liquid 30. Therefore, even when the coordination bond between a certain quantum dot 16 and one of the plurality of ligands 22 included in the one surface modification portion 18 is broken, the quantum dot 16 and the other The probability that a coordinate bond with at least one of the ligands 22 of the above is maintained is improved. Therefore, it is possible to reduce that the surface modification portion 18 is completely separated from the quantum dots 16, the dispersibility of the quantum dots 16 can be further improved, and the aggregation of the quantum dots 16 can be reduced more efficiently.
  • FIG. 15 is a schematic cross-sectional view of the light emitting device 72 according to the present embodiment.
  • the light emitting device 72 according to the present embodiment includes a light source unit 74, a wavelength conversion layer 76 as an optical layer, and a light intensity control unit 78 in this order.
  • the light source unit 74 includes a light source that emits light to the wavelength conversion layer 76, which will be described later.
  • the light source unit 74 may include a conventionally known light source including, for example, a blue light LED backlight, an ultraviolet light source, or the like.
  • the light source unit 74 may be a light emitting element 2 including the light emitting layer 8 according to each of the above-described embodiments.
  • the wavelength conversion layer 76 is an optical layer including a plurality of quantum dot structures 14 according to any of the above-described embodiments.
  • the quantum dots 16 of the quantum dot structure 14 included in the wavelength conversion layer 76 absorb the light of a specific wavelength among the light emitted from the light source unit 74, so that the valence electrons of the semiconductor material in the quantum dots 16 are present. Banded electrons are excited to the conductive band. When the electron level returns from the conductive band to the valence band, light having a wavelength corresponding to the bandgap energy is emitted from the quantum dots 16. In order to obtain light emission from the quantum dots 16 by the above mechanism, it is necessary to irradiate the quantum dots 16 with light having an energy equal to or higher than the band gap energy of the semiconductor material in the quantum dots 16.
  • the wavelength conversion layer 76 absorbs at least a part of the light emitted from the light source unit 74 and irradiates the light having a specific wavelength longer than the light.
  • the wavelength conversion layer 76 can be regarded as an optical layer that converts the wavelength of the irradiated light into a longer wavelength. Since the light from the light source unit 74 is converted into the light from the quantum dots 16 of the wavelength conversion layer 76, the light emitting device 1 can emit light having a narrow half-value width of the wavelength spectrum and a deep chromaticity.
  • the light intensity control unit 78 has a mechanism for controlling the intensity of light emitted from the wavelength conversion layer 76 toward the outside of the light emitting device 72.
  • the light intensity control unit 78 is provided with an anode 80, a liquid crystal layer 82, and a cathode 84 stacked in this order from the wavelength conversion layer 76 side.
  • the light intensity control unit 78 changes the arrangement of the liquid crystals included in the liquid crystal layer 82 by changing the potential difference between the anode 80 and the cathode 84, and changes the transmittance of light from the wavelength conversion layer 76.
  • the light intensity control unit 78 can control the intensity of the light emitted from the wavelength conversion layer 76 to the outside of the light emitting device 72.
  • the wavelength conversion layer 76 of the light emitting device 72 according to the present embodiment is coated with a solution containing the quantum dot structure 14 on the light source unit 74 by the same method as the method for forming the light emitting layer 8 according to each of the above-described embodiments. , Can be formed by drying.
  • the light source unit 74 and the light intensity control unit 78 can be manufactured by a conventionally known manufacturing method.
  • the wavelength conversion layer 76 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the wavelength conversion of the wavelength conversion layer 76 is performed. Efficiency improves.
  • the light emitting device 72 may have a plurality of pixels having a plurality of sub-pixels, and each sub-pixel includes one laminated body 86 including a wavelength conversion layer 76 and a light intensity control unit 78. You may be.
  • the wavelength conversion layers 76 included in the sub-pixels included in the same pixel may emit different wavelengths of light.
  • the light emitting device 72 may individually drive the light intensity control unit 78 provided in each sub-pixel. In this case, the light emitting device 72 can form a display device having a plurality of pixels.
  • the light emitting device 72 has a light intensity control unit 78, and controls the light emission intensity from the light emitting device 72 by controlling the intensity of the light transmitted through the light intensity control unit 78. explained.
  • the present invention is not limited to this, and the light emitting device 72 does not necessarily have to include the light intensity control unit 78.
  • a blue LED capable of controlling the light intensity for each sub-pixel may be formed in the light source unit 74.
  • a blue light emitting element formed for each sub-pixel is formed in the light source unit 74, and the light from the blue light emitting element may be individually controlled.
  • the intensity of the light from the light source unit 74 for each sub-pixel the intensity of the light emitted to the wavelength conversion layer 76 and the intensity of the light emitted from the wavelength conversion layer 76 can be determined for each sub-pixel. Can be controlled to.
  • the light emitting device 1 and the light emitting device 72 include a single light emitting layer 8 or a wavelength conversion layer 76.
  • the light emitting device according to each of the above-described embodiments includes a single optical layer.
  • the light emitting device according to each of the above-described embodiments is not limited to this, and may include, for example, a plurality of optical layers. In this case, at least one of the plurality of optical layers, the first optical layer, may have the same configuration as the light emitting layer 8 or the wavelength conversion layer 76 according to each of the above-described embodiments.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

This method for manufacturing a quantum dot dispersion includes a stirring step and a retrieval step. In the stirring step, a first liquid (38) and a second liquid (40) are stirred. The first liquid includes quantum dots (16) and a non-polar solvent (42). The second liquid includes ligands (22) that can be coordinated to the quantum dots and that include cations or anions, an ion liquid (30), and a non-aqueous polar solvent (20). In the retrieval step, a fourth liquid (52) is retrieved, the fourth liquid including quantum dots from a third liquid (50) obtained in the stirring step, a coordination compound that includes the ligands and the ion liquid, and the non-aqueous polar solvent. The non-aqueous polar solvent includes at least one from among lower alcohols, lower glycols, lower glycol esters, and lower glycol ethers.

Description

量子ドット分散系の製造方法、量子ドット分散系、発光装置Quantum dot dispersion system manufacturing method, quantum dot dispersion system, light emitting device
 本発明は、量子ドット分散系およびその製造方法に関する。 The present invention relates to a quantum dot dispersion system and a method for manufacturing the same.
 特許文献1は、蛍光体粒子の分散性向上のため、蛍光体粒子の表面修飾部と、イオン液体に由来する重合体とを共有結合させる技術を開示する。 Patent Document 1 discloses a technique for covalently bonding a surface-modified portion of phosphor particles and a polymer derived from an ionic liquid in order to improve the dispersibility of the phosphor particles.
日本国特開2018-137281号Japanese Patent Application Laid-Open No. 2018-137281
 特許文献1が開示する方法においては、蛍光体粒子を水に曝す必要があるため、蛍光体粒子の表面の劣化が生じる場合がある。 In the method disclosed in Patent Document 1, since it is necessary to expose the phosphor particles to water, the surface of the fluorescent particles may be deteriorated.
 上記課題を解決するために、本発明の一様態に係る量子ドット分散系の製造方法は、(1)量子ドットおよび非極性溶媒を含んでいる第1液と、(2)前記量子ドットに配位可能かつカチオンまたはアニオンを含んでいる配位子、イオン液体、ならびに非水系極性溶媒を含んでいる第2液と、を撹拌する撹拌工程と、前記撹拌工程によって得られた第3液から、前記量子ドット、前記配位子と前記イオン液体とを含む配位体、および前記非水系極性溶媒を含んでいる第4液を取り出す取出工程とを含んでおり、前記非水系極性溶媒は、低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを含んでいる。 In order to solve the above problems, the method for producing a quantum dot dispersion system according to the uniformity of the present invention comprises (1) a first liquid containing a quantum dot and a non-polar solvent, and (2) the quantum dots. From a stirring step of stirring a ligand containing a cation or an anion, an ionic liquid, and a second liquid containing a non-aqueous polar solvent, and a third liquid obtained by the stirring step. The non-aqueous polar solvent comprises a coordinator containing the quantum dots, the ligand and the ionic liquid, and a take-out step of taking out a fourth liquid containing the non-aqueous polar solvent. It contains at least one of an alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether.
 また、本発明の一様態に係る量子ドット分散系は、量子ドットと、前記量子ドットに配位可能な配位体と、低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを含んでいる非水系極性溶媒とを備えており、全体積に対して、水の含有量が0体積%以上0.1体積%以下である。 Further, the quantum dot dispersion system according to the uniformity of the present invention is at least one of a quantum dot, a coordinator capable of coordinating the quantum dot, and a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether. It is provided with a non-aqueous polar solvent containing, and the content of water is 0% by volume or more and 0.1% by volume or less with respect to the total volume.
 また、本発明の一様態に係る発光装置は、発光層と、光源から出射された光の波長を変換する波長変換層との少なくとも一方を、光学層として1以上備えており、前記1以上の光学層のうち第1光学層は、量子ドットと、前記量子ドットに配位可能な配位体と、低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを含んでいる非水系極性溶媒とを備えており、前記第1光学層の全体積に対して、水の含有量が0体積%以上0.1体積%以下である。 Further, the light emitting device according to the uniform state of the present invention includes at least one of a light emitting layer and a wavelength conversion layer for converting the wavelength of light emitted from the light source as an optical layer, and the above one or more. The first optical layer among the optical layers is a non-optical layer containing at least one of a quantum dot, a coordinator capable of coordinating the quantum dot, and a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether. It is provided with an aqueous polar solvent, and the content of water is 0% by volume or more and 0.1% by volume or less with respect to the total volume of the first optical layer.
 量子ドットに水が触れることなく、配位体が配位した量子ドットを含む分散系、および当該分散系から形成される発光装置を製造することができ、量子ドットの劣化を低減できる。 It is possible to manufacture a dispersion system containing the quantum dots coordinated by the coordinator and a light emitting device formed from the dispersion system without the contact of water with the quantum dots, and it is possible to reduce the deterioration of the quantum dots.
実施形態1に係る量子ドット分散系を製造する方法を示す工程断面図である。It is a process sectional view which shows the method of manufacturing the quantum dot dispersion system which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置を示す概略断面図である。It is the schematic sectional drawing which shows the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る量子ドットを示す概略拡大図である。It is a schematic enlarged view which shows the quantum dot which concerns on Embodiment 1. FIG. 実施形態1に係る量子ドットの外表面近傍について示す概略拡大図である。It is a schematic enlarged view which shows the vicinity of the outer surface of the quantum dot which concerns on Embodiment 1. FIG. 実施形態1に係る配位構造体の例を示す概略図である。It is the schematic which shows the example of the coordination structure which concerns on Embodiment 1. FIG. 実施形態1に係る発光層を製造する方法を示すフローチャートである。It is a flowchart which shows the method of manufacturing the light emitting layer which concerns on Embodiment 1. 実施形態1に係る配位構造体の、量子ドットへの再配位の機構を説明するための概略図である。It is a schematic diagram for demonstrating the mechanism of recoordination to a quantum dot of the coordination structure which concerns on Embodiment 1. FIG. 実施形態2に係る量子ドットの外表面近傍について示す概略拡大図である。It is a schematic enlarged view which shows the vicinity of the outer surface of the quantum dot which concerns on Embodiment 2. 実施形態2に係る配位構造体の例を示す概略図である。It is the schematic which shows the example of the coordination structure which concerns on Embodiment 2. 実施形態3に係る発光層を製造する方法を示すフローチャートである。It is a flowchart which shows the method of manufacturing the light emitting layer which concerns on Embodiment 3. 実施形態3に係る量子ドット分散系を製造する方法を示す工程断面図である。It is a process sectional view which shows the method of manufacturing the quantum dot dispersion system which concerns on Embodiment 3. FIG. 実施形態3に係る量子ドット分散系を製造する方法を示す他の工程断面図である。It is another process sectional view which shows the method of manufacturing the quantum dot dispersion system which concerns on Embodiment 3. FIG. 実施形態4に係る量子ドットの外表面近傍について示す概略拡大図である。It is a schematic enlarged view which shows the vicinity of the outer surface of the quantum dot which concerns on Embodiment 4. FIG. 実施形態4に係る発光層を製造する方法を示すフローチャートである。It is a flowchart which shows the method of manufacturing the light emitting layer which concerns on Embodiment 4. 実施形態5に係る発光装置を示す概略断面図である。It is the schematic sectional drawing which shows the light emitting device which concerns on Embodiment 5.
 〔実施形態1〕
 <発光装置の概要>
 図2は、本実施形態に係る発光装置1の概略断面図である。図2に示すように、本実施形態に係る発光装置1は、発光素子2とアレイ基板3とを備える。発光装置1は、図示しないTFT(Thin Film Transistor)が形成されたアレイ基板3上に、発光素子2の各層が積層された構造を備える。なお、本明細書においては、発光装置1の発光素子2からアレイ基板3への方向を「下方向」、当該下方向と反対方向を「上方向」として記載する。
[Embodiment 1]
<Overview of light emitting device>
FIG. 2 is a schematic cross-sectional view of the light emitting device 1 according to the present embodiment. As shown in FIG. 2, the light emitting device 1 according to the present embodiment includes a light emitting element 2 and an array substrate 3. The light emitting device 1 has a structure in which each layer of the light emitting element 2 is laminated on an array substrate 3 on which a TFT (Thin Film Transistor) (not shown) is formed. In this specification, the direction from the light emitting element 2 of the light emitting device 1 to the array substrate 3 is described as "downward", and the direction opposite to the downward direction is described as "upward".
 発光素子2は、陽極4上に、正孔輸送層6と、光学層としての発光層8と、電子輸送層10と、陰極12とを、下層からこの順に備える。アレイ基板3の上層に形成された発光素子2の陽極4は、アレイ基板3のTFTと電気的に接続されている。 The light emitting element 2 includes a hole transport layer 6, a light emitting layer 8 as an optical layer, an electron transport layer 10, and a cathode 12 on the anode 4 in this order from the lower layer. The anode 4 of the light emitting element 2 formed on the upper layer of the array substrate 3 is electrically connected to the TFT of the array substrate 3.
 他の実施形態に係る発光素子は、アレイ基板の上層に陰極を備えていてもよい。この場合、当該陰極上に、電子輸送層と、光学層としての発光層と、正孔輸送層と、陽極とを、この順に備える発光素子であってもよい。 The light emitting element according to another embodiment may have a cathode on the upper layer of the array substrate. In this case, the light emitting device may include an electron transport layer, a light emitting layer as an optical layer, a hole transport layer, and an anode on the cathode in this order.
 <発光素子の概要>
 以下、発光素子2の各層の構成について、より詳細に説明する。
<Outline of light emitting element>
Hereinafter, the configuration of each layer of the light emitting element 2 will be described in more detail.
 陽極4および陰極12は導電性材料を含み、それぞれ、正孔輸送層6および電子輸送層10と電気的に接続されている。 The anode 4 and the cathode 12 contain a conductive material and are electrically connected to the hole transport layer 6 and the electron transport layer 10, respectively.
 陽極4と陰極12との何れか一方は、透明電極である。透明電極としては、例えば、ITO、IZO、ZnO、AZO、BZOまたはFTO等が用いられ、スパッタ法等によって成膜されてもよい。また、陽極4または陰極12のいずれか一方は金属材料を含んでいてもよく、金属材料としては、可視光の反射率の高いAl、Cu、Au、AgまたはMgの単独またはこれらの合金が好ましい。 Either one of the anode 4 and the cathode 12 is a transparent electrode. As the transparent electrode, for example, ITO, IZO, ZnO, AZO, BZO, FTO or the like is used, and a film may be formed by a sputtering method or the like. Further, either the anode 4 or the cathode 12 may contain a metal material, and as the metal material, Al, Cu, Au, Ag or Mg having high reflectance of visible light or an alloy thereof is preferable. ..
 正孔輸送層6は、陽極4からの正孔を発光層8へと輸送する層である。正孔輸送層6の材料には、量子ドットを含む発光素子、あるいは、有機EL発光素子等において、従来から採用されている、有機または無機の材料を使用することができる。正孔輸送層6の有機材料としては、CBP、PPV、PEDOT-PSS、TFB、またはPVK等の導電性化合物が使用できる。正孔輸送層6の無機材料としては、モリブデン酸化物、NiO、Cr、MgO、MgZnO、LaNiO、またはWO等の金属酸化物を使用できる。特に、正孔輸送層6の材料としては、電子親和力およびイオン化ポテンシャルが大きい材料が好適である。 The hole transport layer 6 is a layer that transports holes from the anode 4 to the light emitting layer 8. As the material of the hole transport layer 6, an organic or inorganic material conventionally used in a light emitting device containing quantum dots, an organic EL light emitting device, or the like can be used. As the organic material of the hole transport layer 6, a conductive compound such as CBP, PPV, PEDOT-PSS, TFB, or PVK can be used. As the inorganic material of the hole transport layer 6, a metal oxide such as molybdenum oxide, NiO, Cr 2O 3 , MgO, MgZnO, LaNiO 3 , or WO 3 can be used. In particular, as the material of the hole transport layer 6, a material having a large electron affinity and an ionization potential is suitable.
 電子輸送層10は、陰極12からの電子を発光層8へと輸送する層である。電子輸送層10の材料には、TiOの他、量子ドットを含む発光素子、あるいは、有機EL発光素子等において、従来から採用されている、有機または無機の材料を使用することができる。電子輸送層10の有機材料としては、Alq3、BCPまたはt-Bu-PBD等の、導電性化合物が使用できる。電子輸送層10の無機材料としては、ZnO、ZAO、ITO、IGZOまたはエレクトライド等の金属酸化物を使用できる。特に、電子輸送層10の材料としては、電子親和力が小さい材料が好適である。 The electron transport layer 10 is a layer that transports electrons from the cathode 12 to the light emitting layer 8. As the material of the electron transport layer 10, in addition to TiO 2 , an organic or inorganic material conventionally used in a light emitting device containing quantum dots, an organic EL light emitting device, or the like can be used. As the organic material of the electron transport layer 10, a conductive compound such as Alq3, BCP or t-Bu-PBD can be used. As the inorganic material of the electron transport layer 10, a metal oxide such as ZnO, ZAO, ITO, IGZO or electride can be used. In particular, as the material of the electron transport layer 10, a material having a small electron affinity is suitable.
 本実施形態において、正孔輸送層6および電子輸送層10は、上述した材料を使用した、真空蒸着法、スパッタ法、またはコロイド溶液を用いた塗布形成法等により形成できる。また、発光素子2は、陽極4と正孔輸送層6との間に、正孔注入層を備えていてもよく、陰極12と電子輸送層10との間に、電子注入層を備えていてもよい。さらに、発光素子2は、正孔輸送層6と発光層8との間、あるいは、電子輸送層10と発光層8との間に、中間層を備えていてもよい。これらの正孔注入層、電子注入層、および中間層は、何れも、正孔輸送層6、または電子輸送層10と同一の手法によって形成してもよい。 In the present embodiment, the hole transport layer 6 and the electron transport layer 10 can be formed by a vacuum vapor deposition method, a sputtering method, a coating forming method using a colloidal solution, or the like using the above-mentioned materials. Further, the light emitting device 2 may include a hole injection layer between the anode 4 and the hole transport layer 6, and may include an electron injection layer between the cathode 12 and the electron transport layer 10. May be good. Further, the light emitting element 2 may include an intermediate layer between the hole transport layer 6 and the light emitting layer 8, or between the electron transport layer 10 and the light emitting layer 8. The hole injection layer, the electron injection layer, and the intermediate layer may all be formed by the same method as the hole transport layer 6 or the electron transport layer 10.
 <発光層および量子ドット>
 発光層8は、量子ドット(半導体ナノ粒子)を含む量子ドット構造体14を複数含む層である。本実施形態に係る発光層8が備える量子ドット構造体14について、図3を参照して説明する。図3は、量子ドット構造体14の概略断面図であり、図2の領域Aについて示す拡大図である。本実施形態において、量子ドット構造体14は、図3に示すように、いずれも、量子ドット16と、表面修飾部18と、非水系極性溶媒20とを含む。
<Light emitting layer and quantum dots>
The light emitting layer 8 is a layer containing a plurality of quantum dot structures 14 including quantum dots (semiconductor nanoparticles). The quantum dot structure 14 included in the light emitting layer 8 according to the present embodiment will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view of the quantum dot structure 14, and is an enlarged view showing the region A of FIG. In the present embodiment, as shown in FIG. 3, the quantum dot structure 14 includes the quantum dots 16, the surface modification portion 18, and the non-aqueous polar solvent 20.
 量子ドット16は、例えば、コアと、該コアの周囲に形成されたシェルとを備えた、コア/シェル構造の量子ドットであってもよい。この場合、量子ドット16に注入された電子および正孔の再結合は、主にコアにおいて生じる。また、シェルは、コアの欠陥またはダングリングボンド等の発生を抑制し、失活過程を経るキャリアの再結合を低減する機能を有する。量子ドット16の材料は、従来公知のコア/シェルを有する量子ドットのコア材およびシェル材に使用される材料を含んでいてもよい。 The quantum dot 16 may be, for example, a quantum dot having a core / shell structure including a core and a shell formed around the core. In this case, the recombination of electrons and holes injected into the quantum dots 16 occurs mainly in the core. In addition, the shell has a function of suppressing the occurrence of core defects or dangling bonds, and reducing the recombination of carriers through the deactivation process. The material of the quantum dot 16 may include a core material of the quantum dot having a conventionally known core / shell and a material used for the shell material.
 例えば、本実施形態において、量子ドット16は、例えば、コアにCdSe、シェルにZnSを備えた、半Cd系導体ナノ粒子であってもよい。あるいは、量子ドット16は、例えば、コアにCdSe、シェルにZnSeを備えた、半Cd系導体ナノ粒子であってもよい。 For example, in the present embodiment, the quantum dot 16 may be, for example, a semi-Cd-based conductor nanoparticle having CdSe in the core and ZnS in the shell. Alternatively, the quantum dots 16 may be, for example, semi-Cd-based conductor nanoparticles having CdSe in the core and ZnSe in the shell.
 この他、量子ドット16は、CdSe/CdS、InP/ZnS、ZnSe/ZnSまたはCIGS/ZnS等を、コア/シェル構造として有していてもよい。なお、量子ドット16のシェルは互いに異なる複数の材料を含む、複数の層から形成されていてもよい。 In addition, the quantum dot 16 may have CdSe / CdS, InP / ZnS, ZnSe / ZnS, CIGS / ZnS, or the like as a core / shell structure. The shell of the quantum dots 16 may be formed of a plurality of layers including a plurality of materials different from each other.
 量子ドット16のコアは、価電子帯準位と伝導帯準位とを有し、価電子帯準位の正孔と伝導帯準位の電子との再結合によって発光する発光材料である。量子ドット16からの発光は、量子閉じ込め効果により狭いスペクトルを有するため、比較的深い色度の発光を得ることが可能である。 The core of the quantum dot 16 is a luminescent material that has a valence band level and a conduction band level, and emits light by recombination of holes in the valence band level and electrons in the conduction band level. Since the light emitted from the quantum dots 16 has a narrow spectrum due to the quantum confinement effect, it is possible to obtain light emission with a relatively deep chromaticity.
 量子ドット16の粒径は1~100nm程度である。量子ドット16からの発光の波長は、粒径によって制御することができる。特に、量子ドット16がコア/シェル構造を備える場合、コアの粒径を制御することにより、量子ドット16からの発光の波長を制御できる。このため、量子ドット16のコアの粒径を制御することにより、発光装置1が発する光の波長を制御できる。 The particle size of the quantum dots 16 is about 1 to 100 nm. The wavelength of light emitted from the quantum dots 16 can be controlled by the particle size. In particular, when the quantum dots 16 have a core / shell structure, the wavelength of light emitted from the quantum dots 16 can be controlled by controlling the particle size of the core. Therefore, by controlling the particle size of the core of the quantum dot 16, the wavelength of the light emitted by the light emitting device 1 can be controlled.
 ここで、発光層8における量子ドット構造体14は、図2に示すように、規則正しく配置されている必要はなく、量子ドット構造体14は、無秩序に発光層8に含まれていてもよい。なお、発光層8の膜厚は、1nm~100nm程度であってもよい。 Here, the quantum dot structure 14 in the light emitting layer 8 does not need to be regularly arranged as shown in FIG. 2, and the quantum dot structure 14 may be randomly included in the light emitting layer 8. The film thickness of the light emitting layer 8 may be about 1 nm to 100 nm.
 なお、本実施形態に係る発光装置1は、1種の量子ドット16を備えた発光層8を含む発光素子2を1つ含むが、これに限られない。例えば、発光装置1は、発光層8に、互いに発光色が異なる複数種の量子ドット16を備えていてもよい。この場合、発光装置1は、互いに発光色が異なる量子ドット16をそれぞれ備えた複数の発光素子2を有していてもよい。 The light emitting device 1 according to the present embodiment includes, but is not limited to, one light emitting element 2 including a light emitting layer 8 provided with one type of quantum dots 16. For example, the light emitting device 1 may include a plurality of types of quantum dots 16 having different light emitting colors from each other in the light emitting layer 8. In this case, the light emitting device 1 may have a plurality of light emitting elements 2 each having quantum dots 16 having different light emitting colors.
 また、発光装置1は、複数のサブ画素を有する画素を複数有していてもよく、当該サブ画素ごとに1つずつ上述した発光素子2を備えていてもよい。この場合、同じ画素が含むサブ画素がそれぞれ備える発光素子2は、互いに発光色が異なっていてもよい。さらに、発光装置1は、各サブ画素に備える発光素子2を個別に駆動してもよい。この場合、発光装置1は、複数の画素を有する表示装置を構成できる。 Further, the light emitting device 1 may have a plurality of pixels having a plurality of sub pixels, and may be provided with the above-mentioned light emitting element 2 one by one for each of the sub pixels. In this case, the light emitting elements 2 included in the sub-pixels included in the same pixel may have different light emitting colors. Further, the light emitting device 1 may individually drive the light emitting element 2 provided in each sub-pixel. In this case, the light emitting device 1 can configure a display device having a plurality of pixels.
 表面修飾部18は、各量子ドット16の最外表面16Sに複数形成され、量子ドット16を修飾する。例えば、量子ドット16が上述したコア/シェル構造を備える場合、表面修飾部18は、量子ドット16のシェルの外表面を修飾してもよい。表面修飾部18の詳細な構造については後述する。なお、図3において、表面修飾部18は直鎖として図示されているが、表面修飾部18は必ずしも直鎖状の構造を有していなくともよく、屈曲した構造を有していてもよい。 A plurality of surface modification portions 18 are formed on the outermost surface 16S of each quantum dot 16 to modify the quantum dots 16. For example, when the quantum dot 16 has the core / shell structure described above, the surface modification unit 18 may modify the outer surface of the shell of the quantum dot 16. The detailed structure of the surface modification portion 18 will be described later. Although the surface modification portion 18 is shown as a straight line in FIG. 3, the surface modification portion 18 does not necessarily have a linear structure and may have a bent structure.
 表面修飾部18は、量子ドット16の欠陥またはダングリングボンド等の発生を抑制する機能を有している。ほかにも、表面修飾部18は、量子ドット16の凝集の低減、量子ドット16の周囲環境からの保護、量子ドット16の表面への電気安定性の付与、あるいは、量子ドット16の溶媒における溶解性または分散性の向上等の効果を奏する。 The surface modification portion 18 has a function of suppressing the occurrence of defects in the quantum dots 16 or dangling bonds. In addition, the surface modification portion 18 reduces the aggregation of the quantum dots 16, protects the quantum dots 16 from the surrounding environment, imparts electrical stability to the surface of the quantum dots 16, or dissolves the quantum dots 16 in a solvent. It has the effect of improving sex or dispersibility.
 非水系極性溶媒20は、量子ドット16の最外表面16Sの近傍に保持されている。特に、非水系極性溶媒20は、量子ドット16の周囲に位置する、不揮発性の複数の表面修飾部18の間の、量子ドット16の最外表面16Sの側に保持されている。非水系極性溶媒20の具体的例については後述する。 The non-aqueous polar solvent 20 is held in the vicinity of the outermost surface 16S of the quantum dots 16. In particular, the non-aqueous polar solvent 20 is held on the outermost surface 16S side of the quantum dots 16 between the plurality of non-volatile surface modification portions 18 located around the quantum dots 16. Specific examples of the non-aqueous polar solvent 20 will be described later.
 <配位子>
 表面修飾部18の具体的な構造について、図4を参照し、量子ドット16の最外表面16S、および、非水系極性溶媒20との配置関係を含め説明する。図4は、量子ドット16の最外表面16Sの近傍について示す概略拡大図であり、図3の領域Bについて示す拡大図である。
<Ligand>
The specific structure of the surface modification portion 18 will be described with reference to FIG. 4, including the arrangement relationship between the outermost surface 16S of the quantum dots 16 and the non-aqueous polar solvent 20. FIG. 4 is a schematic enlarged view showing the vicinity of the outermost surface 16S of the quantum dot 16, and is an enlarged view showing the region B of FIG.
 表面修飾部18は、少なくとも、配位子22を含む。配位子22は、配位官能基24と、炭素鎖26と、カチオン部28とを含む。配位官能基24は、量子ドット16の最外表面16Sに配位可能な官能基である。換言すれば、配位官能基24は、量子ドット16の最外表面16Sと配位結合を形成可能な官能基を含む。このため、本実施形態においては、配位官能基24と量子ドット16の最外表面16Sとの配位結合を介し、量子ドット16に配位子22が配位することにより、表面修飾部18が量子ドット16を修飾する。炭素鎖26は、配位官能基24とカチオン部28との間に形成され、配位官能基24とカチオン部28との双方と結合する。カチオン部28は、炭素鎖26の、配位官能基24とは反対の端部に形成された、カチオンを含む部位である。 The surface modification portion 18 contains at least a ligand 22. The ligand 22 contains a coordination functional group 24, a carbon chain 26, and a cation portion 28. The coordination functional group 24 is a functional group that can be coordinated to the outermost surface 16S of the quantum dot 16. In other words, the coordination functional group 24 contains a functional group capable of forming a coordination bond with the outermost surface 16S of the quantum dot 16. Therefore, in the present embodiment, the surface modification portion 18 is formed by the coordination of the ligand 22 to the quantum dot 16 via the coordination bond between the coordination functional group 24 and the outermost surface 16S of the quantum dot 16. Modifies the quantum dot 16. The carbon chain 26 is formed between the coordination functional group 24 and the cation portion 28, and bonds with both the coordination functional group 24 and the cation portion 28. The cation portion 28 is a moiety containing a cation formed at the end of the carbon chain 26 opposite to the coordination functional group 24.
 本実施形態において、表面修飾部18は、さらに、イオン液体30を含む。イオン液体30は、室温において液体の性状を示し、アニオンを含むアニオン部32と、カチオンを含むカチオン部34とを含む塩である。アニオン部32が、配位子22のカチオン部28とイオン結合を形成することにより、イオン液体30は配位子22と結合する。このため、表面修飾部18は、配位子22とイオン液体30とを含み、量子ドット16に配位可能な配位体となる。 In the present embodiment, the surface modification portion 18 further includes an ionic liquid 30. The ionic liquid 30 is a salt that exhibits liquid properties at room temperature and contains an anion portion 32 containing an anion and a cation portion 34 containing a cation. The ionic liquid 30 binds to the ligand 22 by forming an ionic bond with the cation portion 28 of the ligand 22 by the anion portion 32. Therefore, the surface modification portion 18 includes the ligand 22 and the ionic liquid 30, and becomes a coordinator capable of coordinating with the quantum dots 16.
 本実施形態に係る表面修飾部18の具体例について、図5を参照して説明する。本実施形態において、配位子22は、例えば、下記化学式に示す、2-ジエチルアミノエタンチオール塩酸塩であってもよい。 A specific example of the surface modification portion 18 according to the present embodiment will be described with reference to FIG. In this embodiment, the ligand 22 may be, for example, 2-diethylaminoethanethiol hydrochloride represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000001
 この場合、図5に示すように、配位子22は、配位官能基24に硫黄原子を、カチオン部28に4級アンモニウムイオンを含む。
Figure JPOXMLDOC01-appb-C000001
In this case, as shown in FIG. 5, the ligand 22 contains a sulfur atom in the coordination functional group 24 and a quaternary ammonium ion in the cation portion 28.
 また、本実施形態において、イオン液体30は、2-(メタクリロイルオキシ)-エチルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミドであってもよい。この場合、イオン液体30のアニオン部32は、例えば、下記化学式に示す、ビス(トリフルオロメタンスルホニル)イミドとなり、図5に示す、アニオン部32のアニオン32Aが、配位子22のカチオン部28とイオン結合を形成する。 Further, in the present embodiment, the ionic liquid 30 may be 2- (methacryloyloxy) -ethyltrimethylammonium bis (trifluoromethanesulfonyl) imide. In this case, the anion portion 32 of the ionic liquid 30 becomes, for example, a bis (trifluoromethanesulfonyl) imide shown in the following chemical formula, and the anion 32A of the anion portion 32 shown in FIG. 5 and the cation portion 28 of the ligand 22 Form an ionic bond.
Figure JPOXMLDOC01-appb-C000002
 さらに、イオン液体30のカチオン部34は、例えば、下記化学式に示す、2-(メタクリロイルオキシ)-エチルトリメチルアンモニウムとなる。
Figure JPOXMLDOC01-appb-C000002
Further, the cation portion 34 of the ionic liquid 30 is, for example, 2- (methacryloyloxy) -ethyltrimethylammonium represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000003
 表面修飾部18の構成をより一般化すると、例えば、配位子22は、下記化学式(1)に示す構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
To further generalize the structure of the surface modification portion 18, for example, the ligand 22 may have a structure represented by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000004
 化学式(1)において、Aは配位官能基24を表し、チオール基、カルボキシル基、ホスホノ基、またはアミノ基から選択される。R1、R2、およびR3は、H原子、メチル基、エチル基、プロピル基、またはイソプロピル基から各々選択される。n1は、配位子22の炭素鎖26の炭素原子数を表す自然数であり、1以上3以下である。当該n1の範囲は、配位子22が、極性溶媒に可溶である範囲に相当する。
Figure JPOXMLDOC01-appb-C000004
In the chemical formula (1), A represents the coordination functional group 24 and is selected from a thiol group, a carboxyl group, a phosphono group, or an amino group. R1, R2, and R3 are each selected from an H atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group. n1 is a natural number representing the number of carbon atoms in the carbon chain 26 of the ligand 22, and is 1 or more and 3 or less. The range of n1 corresponds to the range in which the ligand 22 is soluble in a polar solvent.
 また、イオン液体30のアニオン部32は、ビス(トリフルオロメタンスルホニル)イミド、チオサリチル酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、リン酸ジブチル、酢酸、ジシアナミド、硝酸、硫酸水素、硫酸オクチル、メタンスルホン酸、チオシアン酸、トリフルオロメタンスルホン酸、アミノ酢酸、およびエチル硫酸からなる群から、少なくとも1種を含む。 The anion portion 32 of the ionic liquid 30 contains bis (trifluoromethanesulfonyl) imide, thiosalicylic acid, tetrafluoroborate, hexafluorophosphate, dibutyl phosphate, acetic acid, disyanamide, nitrate, hydrogen sulfate, octyl sulfate, and methanesulfon. Includes at least one from the group consisting of acids, thiosocyanic acids, trifluoromethanesulfonic acids, aminoacetic acids, and ethylsulfates.
 さらに、イオン液体30のカチオン部34は、脂肪族四級アンモニウムイオン、イミダゾリウムイオン、ピリジニウムイオン、ホスホニウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、およびスルホニウムイオンからなる群から、少なくとも1種を含む。 Further, the cation portion 34 of the ionic liquid 30 contains at least one species from the group consisting of aliphatic quaternary ammonium ions, imidazolium ions, pyridinium ions, phosphonium ions, pyrrolidinium ions, piperidinium ions, and sulfonium ions.
 図4に示すように、非水系極性溶媒20は、量子ドット16の最外表面16Sの近傍、および、量子ドット16を修飾する複数の表面修飾部18の間に保持されている。特に、本実施形態においては、量子ドット16に配位する配位子22の全体が、量子ドット16の最外表面16Sの近傍に保持された非水系極性溶媒20の中に位置している。 As shown in FIG. 4, the non-aqueous polar solvent 20 is held in the vicinity of the outermost surface 16S of the quantum dots 16 and between a plurality of surface modification portions 18 that modify the quantum dots 16. In particular, in the present embodiment, the entire ligand 22 coordinated to the quantum dot 16 is located in the non-aqueous polar solvent 20 held in the vicinity of the outermost surface 16S of the quantum dot 16.
 <発光装置の製造方法>
 以下、発光装置1の製造方法について説明する。発光装置1は、アレイ基板3を形成し、アレイ基板3上に、発光素子2の各層を、陽極4から順に形成することにより製造されてもよい。発光素子2の各層のうち、発光層8を除く層は、図2を参照して説明した手法により形成されてもよい。
<Manufacturing method of light emitting device>
Hereinafter, a method for manufacturing the light emitting device 1 will be described. The light emitting device 1 may be manufactured by forming an array substrate 3 and forming each layer of a light emitting element 2 on the array substrate 3 in order from the anode 4. Of the layers of the light emitting element 2, the layers other than the light emitting layer 8 may be formed by the method described with reference to FIG.
 本実施形態に係る発光層8の形成方法について、図6を参照して説明する。本実施形態においては、後に詳述するが、第1液と第2液とを撹拌して得た、量子ドット16の分散系を、正孔輸送層6上に塗布することにより、発光層8を形成する。本実施形態に係る発光層8の形成方法について、第1液と第2液とを撹拌する撹拌工程を説明する工程断面図である図1を参照し、第1液と第2液との説明と併せて説明する。 The method of forming the light emitting layer 8 according to the present embodiment will be described with reference to FIG. In this embodiment, as will be described in detail later, the light emitting layer 8 is formed by applying the dispersion system of the quantum dots 16 obtained by stirring the first liquid and the second liquid onto the hole transport layer 6. To form. Regarding the method for forming the light emitting layer 8 according to the present embodiment, the first liquid and the second liquid will be described with reference to FIG. 1, which is a process cross-sectional view for explaining the stirring step of stirring the first liquid and the second liquid. It will be explained together with.
 <第1液および第2液の撹拌>
 本実施形態に係る発光層8の形成方法においては、はじめに、第1液の生成(ステップS2)と、第2液の生成(ステップS4)とを実行する。次いで、第1液と第2液とを、図1に示す容器36中において撹拌する(ステップS6)、撹拌工程を実行する。ここで、図1のステップS6Aには、ステップS6において、容器36中に注入した、第1液38と第2液40との撹拌を開始する直前の様子を示す。
<Stirring of 1st and 2nd liquids>
In the method for forming the light emitting layer 8 according to the present embodiment, first, the generation of the first liquid (step S2) and the generation of the second liquid (step S4) are executed. Next, the first liquid and the second liquid are stirred in the container 36 shown in FIG. 1 (step S6), and the stirring step is executed. Here, in step S6A of FIG. 1, the state immediately before starting the stirring of the first liquid 38 and the second liquid 40 injected into the container 36 in step S6 is shown.
 第1液38は、図1のステップS6Aに示すように、非極性溶媒42に、複数の配位子44が配位する量子ドット16を複数分散させた溶液である。非極性溶媒42は、量子ドット16が可溶である非極性の溶媒であれば特に問われず、例えば、オクタンを含む、非極性有機溶媒であってもよい。配位子44は、量子ドット16に配位するための配位官能基46を有し、非極性溶媒42に可溶の配位子であれば特に問われない。具体的に、配位子44は、ドデカンチオール、オレイン酸、または、オレイルアミン等であってもよい。第1液38は、非極性溶媒42に、量子ドット16と配位子44とを分散させて、適宜撹拌することにより生成されてもよい。 As shown in step S6A of FIG. 1, the first liquid 38 is a solution in which a plurality of quantum dots 16 in which a plurality of ligands 44 are coordinated are dispersed in a non-polar solvent 42. The non-polar solvent 42 is not particularly limited as long as it is a non-polar solvent in which the quantum dots 16 are soluble, and may be, for example, a non-polar organic solvent containing octane. The ligand 44 is not particularly limited as long as it has a coordination functional group 46 for coordinating to the quantum dot 16 and is soluble in the non-polar solvent 42. Specifically, the ligand 44 may be dodecanethiol, oleic acid, oleylamine, or the like. The first liquid 38 may be produced by dispersing the quantum dots 16 and the ligand 44 in a non-polar solvent 42 and stirring them appropriately.
 なお、図示の簡単のため、図1に示す第1液38には、量子ドット16に配位する配位子44の一部のみを示す。これに伴い、配位子44が量子ドット16の外周面の一部に偏って配位するように図示されているが、これに限られず、配位子44は、量子ドット16の外周面の全面に対し、略均一に配位してもよい。 For simplicity of illustration, the first liquid 38 shown in FIG. 1 shows only a part of the ligand 44 coordinated to the quantum dot 16. Along with this, the ligand 44 is shown so as to be biasedly coordinated to a part of the outer peripheral surface of the quantum dot 16, but the ligand 44 is not limited to this, and the ligand 44 is formed on the outer peripheral surface of the quantum dot 16. Coordination may be performed substantially uniformly over the entire surface.
 第2液40は、図1のステップS6Aに示すように、非水系極性溶媒20に、配位子22とイオン液体30とを分散させた溶液である。第2液40は、さらに、非水系極性溶媒20中に、配位子22のカチオン部28のカチオンとイオン結合するアニオンである、カウンターイオン48を含んでいてもよい。第2液40は、非水系極性溶媒20に配位子22を分散させた溶液と、非水系極性溶媒20にイオン液体30を分散させた溶液とを混合することにより生成されてもよい。 As shown in step S6A of FIG. 1, the second liquid 40 is a solution in which the ligand 22 and the ionic liquid 30 are dispersed in the non-aqueous polar solvent 20. The second liquid 40 may further contain counter ion 48, which is an anion that ionically bonds with the cation of the cation portion 28 of the ligand 22, in the non-aqueous polar solvent 20. The second liquid 40 may be produced by mixing a solution in which the ligand 22 is dispersed in the non-aqueous polar solvent 20 and a solution in which the ionic liquid 30 is dispersed in the non-aqueous polar solvent 20.
 非極性溶媒42と非水系極性溶媒20とは、互いに極性が異なるため、容器36中において、第1液38と第2液40とは分離する。また、例えば、第1液38の比重よりも第2液40の比重が軽い場合、第1液38よりも第2液40の方が、容器36中の上部に位置する。 Since the non-polar solvent 42 and the non-aqueous polar solvent 20 have different polarities from each other, the first liquid 38 and the second liquid 40 are separated in the container 36. Further, for example, when the specific gravity of the second liquid 40 is lighter than the specific gravity of the first liquid 38, the second liquid 40 is located at the upper part in the container 36 than the first liquid 38.
 第1液38と第2液40との撹拌が実行されると、配位子22のカチオン部28のカチオンと、イオン液体30のアニオン部32のアニオンとがイオン結合することにより、表面修飾部18が形成される。また、第1液38と第2液40との撹拌により、量子ドット16に配位する配位子が、配位子22と配位子44との間において平衡状態となる。 When the first liquid 38 and the second liquid 40 are stirred, the cation of the cation portion 28 of the ligand 22 and the anion of the anion portion 32 of the ionic liquid 30 are ionic bonded to form a surface modification portion. 18 is formed. Further, by stirring the first liquid 38 and the second liquid 40, the ligand coordinated to the quantum dot 16 becomes an equilibrium state between the ligand 22 and the ligand 44.
 ここで、第1液38において配位子22とイオン液体30とにより表面修飾部18が形成された場合に、当該表面修飾部18の濃度が、量子ドット16の濃度と比較して過剰となるように、第1液38には、過剰量の配位子22およびイオン液体30が含まれる。このため、第1液38と第2液40との撹拌が十分に実行された場合、量子ドット16に配位する配位子が、配位子44から配位子22に置き換わる。 Here, when the surface modification portion 18 is formed by the ligand 22 and the ionic liquid 30 in the first liquid 38, the concentration of the surface modification portion 18 becomes excessive as compared with the concentration of the quantum dots 16. As such, the first liquid 38 contains an excess amount of the ligand 22 and the ionic liquid 30. Therefore, when the first liquid 38 and the second liquid 40 are sufficiently stirred, the ligand coordinated to the quantum dot 16 is replaced from the ligand 44 to the ligand 22.
 <第3液の生成および第4液の取出>
 図1のステップS6Bは、第1液38と第2液40との撹拌を十分に実行し、その後十分な時間静置した後の容器36中の状態を示す。第1液38と第2液40との撹拌が十分に実行された場合、図1のステップS6Bに示す、第3液50が生成される。第3液50は、第4液52と、第5液54とを含む。
<Production of 3rd liquid and removal of 4th liquid>
Step S6B of FIG. 1 shows the state in the container 36 after the first liquid 38 and the second liquid 40 are sufficiently stirred and then allowed to stand for a sufficient time. When the first liquid 38 and the second liquid 40 are sufficiently stirred, the third liquid 50 shown in step S6B of FIG. 1 is generated. The third liquid 50 includes the fourth liquid 52 and the fifth liquid 54.
 第4液52は、図1のステップS6Bに示すように、非水系極性溶媒20に、表面修飾部18が修飾する量子ドット16が分散する溶液である。配位子22とイオン液体30とは、共にイオンを有するため、比較的強い極性を有する。このため、配位子22とイオン液体30とを含む表面修飾部18は、非極性溶媒42と比較して、非水系極性溶媒20によりよく溶ける。 As shown in step S6B of FIG. 1, the fourth liquid 52 is a solution in which the quantum dots 16 modified by the surface modification portion 18 are dispersed in the non-aqueous polar solvent 20. Since the ligand 22 and the ionic liquid 30 both have ions, they have relatively strong polarities. Therefore, the surface modification portion 18 containing the ligand 22 and the ionic liquid 30 is more soluble in the non-aqueous polar solvent 20 than in the non-polar solvent 42.
 したがって、表面修飾部18により修飾された量子ドット16は、配位子44が配位する量子ドット16と比較して、非極性溶媒42よりも非水系極性溶媒20によりよく溶ける。ゆえに、第1液38と第2液40との撹拌が十分に実行された場合、量子ドット16は、配位する配位子が、配位子44から、イオン液体30と結合する配位子22に置き換わることに伴い、非極性溶媒42から非水系極性溶媒20に移動する。このため、第4液52には、表面修飾部18が修飾する量子ドット16が、非水系極性溶媒20に分散する溶液となる。 Therefore, the quantum dots 16 modified by the surface modification portion 18 are more soluble in the non-aqueous polar solvent 20 than in the non-polar solvent 42, as compared with the quantum dots 16 to which the ligand 44 is coordinated. Therefore, when the first liquid 38 and the second liquid 40 are sufficiently stirred, the quantum dot 16 is a ligand in which the coordinating ligand is bound from the ligand 44 to the ionic liquid 30. With the replacement with 22, the non-polar solvent 42 moves to the non-aqueous polar solvent 20. Therefore, the fourth liquid 52 is a solution in which the quantum dots 16 modified by the surface modification portion 18 are dispersed in the non-aqueous polar solvent 20.
 なお、図1に示す第1液38における配位子44と同じく、図1に示す第4液52においては、量子ドット16を修飾する表面修飾部18の一部のみを示す。これに伴い、表面修飾部18が量子ドット16の外周面の一部に偏って位置するように図示されているが、これに限られず、表面修飾部18は、量子ドット16の外周面の全面に対し、略均一に位置してもよい。 Similar to the ligand 44 in the first liquid 38 shown in FIG. 1, in the fourth liquid 52 shown in FIG. 1, only a part of the surface modification portion 18 that modifies the quantum dots 16 is shown. Along with this, the surface modification portion 18 is shown so as to be biased to a part of the outer peripheral surface of the quantum dot 16, but the surface modification portion 18 is not limited to this, and the surface modification portion 18 is the entire outer surface surface of the quantum dot 16. On the other hand, the positions may be substantially uniform.
 一方、配位子44は非極性溶媒42に可溶であるため、量子ドット16との配位結合が解除された後においても、非極性溶媒42中に留まりつづける。したがって、第5液54は、非極性溶媒42に、配位子44が分散する溶液となる。 On the other hand, since the ligand 44 is soluble in the non-polar solvent 42, it remains in the non-polar solvent 42 even after the coordination bond with the quantum dot 16 is released. Therefore, the fifth liquid 54 becomes a solution in which the ligand 44 is dispersed in the non-polar solvent 42.
 なお、非極性溶媒42と非水系極性溶媒20とは、互いに極性が異なるため、第3液50を十分に静置した場合、図1のステップS6Bに示すように、容器36中において、第4液52と第5液54とは分離する。また、例えば、第4液52の比重よりも第5液54の比重が軽い場合、第4液52よりも第5液54の方が、容器36中の上部に位置する。 Since the non-polar solvent 42 and the non-aqueous polar solvent 20 have different polarities from each other, when the third liquid 50 is sufficiently allowed to stand, as shown in step S6B of FIG. The liquid 52 and the fifth liquid 54 are separated. Further, for example, when the specific gravity of the fifth liquid 54 is lighter than the specific gravity of the fourth liquid 52, the fifth liquid 54 is located at the upper part in the container 36 than the fourth liquid 52.
 なお、一般に、量子ドットは、特定波長の光を吸収することにより励起され、当該励起により発光する、光励起発光の特性を有する。このため、第3液50に対し紫外線等の電磁波を照射し、第4液52が含む量子ドット16を発光させることにより、第3液50が含む2層の何れが第4液52であるかを判断することが可能である。 In general, quantum dots have the characteristic of photoexcited light emission, which is excited by absorbing light of a specific wavelength and emits light by the excitation. Therefore, by irradiating the third liquid 50 with an electromagnetic wave such as ultraviolet rays and causing the quantum dots 16 contained in the fourth liquid 52 to emit light, which of the two layers contained in the third liquid 50 is the fourth liquid 52? It is possible to judge.
 ステップS6に次いで、第3液50から、第4液52を抽出する(ステップS8)、取出工程を実行する。上述した通り、十分に静置した第3液50において、第4液52と第5液54とは分離している。このため、第3液50の遠心分離により、第3液50から第4液52を抽出することが可能である。これにより、非水系極性溶媒20に、表面修飾部18が修飾する量子ドット16が分散する第4液52が、量子ドット分散系として生成される。なお、第4液52には、第2液40に含まれていたカウンターイオン48が含まれていてもよい。 Following step S6, the fourth liquid 52 is extracted from the third liquid 50 (step S8), and the extraction step is executed. As described above, in the third liquid 50 which has been sufficiently allowed to stand, the fourth liquid 52 and the fifth liquid 54 are separated. Therefore, it is possible to extract the fourth liquid 52 from the third liquid 50 by centrifuging the third liquid 50. As a result, the fourth liquid 52 in which the quantum dots 16 modified by the surface modification portion 18 are dispersed in the non-aqueous polar solvent 20 is generated as the quantum dot dispersion system. The fourth liquid 52 may contain the counter ions 48 contained in the second liquid 40.
 <発光層の形成>
 本実施形態に係る発光層8の形成工程においては、取出工程までに、発光装置1のうち、アレイ基板3、陽極4、および正孔輸送層6の形成が完了している。発光層8の形成工程においては、取出工程に次いで、第4液52を正孔輸送層6上に塗布し、当該第4液52を乾燥させる(ステップS10)。
<Formation of light emitting layer>
In the process of forming the light emitting layer 8 according to the present embodiment, the formation of the array substrate 3, the anode 4, and the hole transport layer 6 of the light emitting device 1 has been completed by the extraction step. In the step of forming the light emitting layer 8, following the take-out step, the fourth liquid 52 is applied onto the hole transport layer 6 and the fourth liquid 52 is dried (step S10).
 第4液52の塗布は、インクジェット法等、量子ドットの分散系を塗布する種々の手法を採用できる。第4液52の乾燥は、第4液52が含む非水系極性溶媒20が、各量子ドット16の最外表面16Sの近傍に残存する程度に実行する。換言すれば、第4液52の乾燥が実行されたとしても、各量子ドット16を修飾する、不揮発性の表面修飾部18の間に非水系極性溶媒20が保持されるため、量子ドット16の最外表面16Sの近傍に保持された非水系極性溶媒20は揮発しない。 For the application of the fourth liquid 52, various methods such as an inkjet method for applying a dispersion system of quantum dots can be adopted. The drying of the fourth liquid 52 is carried out to such an extent that the non-aqueous polar solvent 20 contained in the fourth liquid 52 remains in the vicinity of the outermost surface 16S of each quantum dot 16. In other words, even if the fourth liquid 52 is dried, the non-aqueous polar solvent 20 is retained between the non-volatile surface modifying portions 18 that modify each quantum dot 16, so that the quantum dots 16 The non-aqueous polar solvent 20 held in the vicinity of the outermost surface 16S does not volatilize.
 第4液52の乾燥は、例えば、第4液52が塗布された積層体を、60℃以上150℃以下の温度下にて、10分から30分程度静置することにより実行してもよい。特に、第4液52の乾燥は、100℃の環境下にて10分程度行うことが好ましい。または、第4液52の乾燥は、第4液52が塗布された積層体を、室温にて静置することにより実行してもよい。 Drying of the fourth liquid 52 may be carried out, for example, by allowing the laminate coated with the fourth liquid 52 to stand at a temperature of 60 ° C. or higher and 150 ° C. or lower for about 10 to 30 minutes. In particular, the fourth liquid 52 is preferably dried in an environment of 100 ° C. for about 10 minutes. Alternatively, the drying of the fourth liquid 52 may be carried out by allowing the laminate coated with the fourth liquid 52 to stand at room temperature.
 以上により、発光層8の形成工程が完了する。なお、発光層8には、第4液52に含まれるカウンターイオン48が含まれていてもよい。この後、発光層8上に、電子輸送層10および陰極12を順に形成することにより、発光素子2が形成され、発光装置1の製造工程が完了する。 With the above, the process of forming the light emitting layer 8 is completed. The light emitting layer 8 may contain counter ions 48 contained in the fourth liquid 52. After that, by forming the electron transport layer 10 and the cathode 12 in this order on the light emitting layer 8, the light emitting element 2 is formed, and the manufacturing process of the light emitting device 1 is completed.
 <量子ドット分散系の生成工程を踏まえた非水系極性溶媒の選択>
 上述した、量子ドット分散系である第4液52の生成工程を踏まえ、非水系極性溶媒20の具体的構成について説明する。
<Selection of non-aqueous polar solvent based on the generation process of quantum dot dispersion system>
The specific configuration of the non-aqueous polar solvent 20 will be described based on the above-mentioned step of producing the fourth liquid 52, which is a quantum dot dispersion system.
 本実施形態に係る第4液52の生成工程においては、非水系極性溶媒20中に、配位子22とイオン液体30とを分散させて、第2液40を生成する工程が存在する。このため、非水系極性溶媒20は、配位子22とイオン液体30とが溶解可能な極性溶媒であればよい。 In the step of producing the fourth liquid 52 according to the present embodiment, there is a step of dispersing the ligand 22 and the ionic liquid 30 in the non-aqueous polar solvent 20 to form the second liquid 40. Therefore, the non-aqueous polar solvent 20 may be any polar solvent in which the ligand 22 and the ionic liquid 30 can be dissolved.
 また、本実施形態に係る第4液52は、非水系極性溶媒20中に、表面修飾部18が修飾する量子ドット16が分散した量子ドット分散系である。このため、非水系極性溶媒20は、表面修飾部18が修飾する量子ドット16が溶解可能な極性溶媒であればよい。 Further, the fourth liquid 52 according to the present embodiment is a quantum dot dispersion system in which quantum dots 16 modified by the surface modification portion 18 are dispersed in a non-aqueous polar solvent 20. Therefore, the non-aqueous polar solvent 20 may be any polar solvent in which the quantum dots 16 modified by the surface modification portion 18 can be dissolved.
 したがって、非水系極性溶媒20としては、低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを採用することができる。 Therefore, as the non-aqueous polar solvent 20, at least one of a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether can be adopted.
 例えば、非水系極性溶媒20として採用可能な材料を例示すると、低級アルコールとしては、エタノール、プロパノール、またはブタノールが挙げられる。低級グリコールとしては、エチレングリコールが挙げられる。低級グリコールエステルとしては、プロピレングリコールモノメチルエーテルアセテート(PMA)が挙げられる。低級グリコールエーテルとしては、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)、プロピレングリコールモノメチルエーテル(PM)、またはエチレングリコールモノメチルエーテルが挙げられる。 For example, examples of materials that can be used as the non-aqueous polar solvent 20 include ethanol, propanol, and butanol as lower alcohols. Examples of the lower glycol include ethylene glycol. Examples of the lower glycol ester include propylene glycol monomethyl ether acetate (PMA). Examples of the lower glycol ether include propylene glycol 1-monomethyl ether 2-acetylate (PGMEA), propylene glycol monomethyl ether (PM), and ethylene glycol monomethyl ether.
 なお、本明細書において、『低級』とは、一分子の炭素原子数が2以上8以下であることを意図する。特に、非水系極性溶媒20が、低級アルコールである場合、換言すれば、一分子の炭素原子数が2以上8以下であるアルコールである場合、当該非水系極性溶媒20は、非極性溶媒42と比較して十分に高い極性を有する。 In the present specification, "lower" means that the number of carbon atoms in one molecule is 2 or more and 8 or less. In particular, when the non-aqueous polar solvent 20 is a lower alcohol, in other words, when the number of carbon atoms in one molecule is 2 or more and 8 or less, the non-aqueous polar solvent 20 is a non-polar solvent 42. It has a sufficiently high polarity in comparison.
 なお、非水系極性溶媒20の沸点は、100℃以上であってもよい。これにより、発光素子2の駆動によって生じる熱によって、量子ドット16の最外表面16Sの近傍に保持された非水系極性溶媒20が揮発することを低減できる。 The boiling point of the non-aqueous polar solvent 20 may be 100 ° C. or higher. As a result, it is possible to reduce the volatilization of the non-aqueous polar solvent 20 held in the vicinity of the outermost surface 16S of the quantum dots 16 due to the heat generated by driving the light emitting element 2.
 また、非水系極性溶媒20の沸点は、200℃以下であってもよい。一般に、量子ドット分散系の塗布および乾燥を用いて量子ドットを含む層を形成する場合、量子ドットの劣化を低減するために、当該量子ドット分散系の加熱乾燥の温度は、150℃程度までに制限される場合がある。この場合、非水系極性溶媒20の沸点が200℃以下であれば、当該非水系極性溶媒20を含む量子ドット分散系の加熱乾燥による量子ドットを含む層の形成を、150℃程度までの加熱により実現できる。したがって、非水系極性溶媒20の沸点が200℃以下であることにより、量子ドット16の劣化を低減しつつ、非水系極性溶媒20中に量子ドット16が分散する溶液から、量子ドット16を含む層を、より効率的に成膜する必要がある。 Further, the boiling point of the non-aqueous polar solvent 20 may be 200 ° C. or lower. Generally, when a layer containing quantum dots is formed by applying and drying a quantum dot dispersion system, the temperature of heating and drying of the quantum dot dispersion system should be up to about 150 ° C. in order to reduce deterioration of the quantum dots. May be restricted. In this case, if the boiling point of the non-aqueous polar solvent 20 is 200 ° C. or lower, the formation of the layer containing the quantum dots by heating and drying the quantum dot dispersion system containing the non-aqueous polar solvent 20 is performed by heating up to about 150 ° C. realizable. Therefore, when the boiling point of the non-aqueous polar solvent 20 is 200 ° C. or lower, the layer containing the quantum dots 16 from the solution in which the quantum dots 16 are dispersed in the non-aqueous polar solvent 20 while reducing the deterioration of the quantum dots 16. Needs to be formed more efficiently.
 また、非水系極性溶媒20の粘度は、0.5mPa・s以上であってもよい。これにより、量子ドット16の最外表面16Sの近傍に、十分な量の非水系極性溶媒20が保持される。また、非水系極性溶媒20の粘度は、20mPa・s以下であってもよい。これにより、非水系極性溶媒20中に量子ドット16が分散する溶液の塗布がより容易となり、量子ドット16を含む層を、より均一に形成できる。 Further, the viscosity of the non-aqueous polar solvent 20 may be 0.5 mPa · s or more. As a result, a sufficient amount of the non-aqueous polar solvent 20 is retained in the vicinity of the outermost surface 16S of the quantum dots 16. Further, the viscosity of the non-aqueous polar solvent 20 may be 20 mPa · s or less. As a result, it becomes easier to apply the solution in which the quantum dots 16 are dispersed in the non-aqueous polar solvent 20, and the layer containing the quantum dots 16 can be formed more uniformly.
 非水系極性溶媒20として採用可能な材料の粘度の測定値をいくつか例示すると、25℃において、エタノールが1.08mPa・s、メタノールが0.54mPa・s、PGMEAが1.1mPa・s、イソプロピルアルコールが1.9mPa・sである。なお、これらの材料の粘度の測定は、落球式粘度計:Lovis2000M/ME(アントンパール社製)を使用した。 To exemplify some measured values of the viscosity of the material that can be used as the non-aqueous polar solvent 20, at 25 ° C., ethanol is 1.08 mPa · s, methanol is 0.54 mPa · s, PGMEA is 1.1 mPa · s, and isopropyl. Alcohol is 1.9 mPa · s. A falling ball viscometer: Lovis2000M / ME (manufactured by Anton Pearl Co., Ltd.) was used to measure the viscosities of these materials.
 <量子ドット分散系の効果>
 本実施形態に係る量子ドット分散系である第4液52は、非水系極性溶媒20中に、量子ドット16と、配位子22およびイオン液体30を含む表面修飾部18とを含む。さらに、第4液52を生成する過程においては、量子ドット16を直接水に曝す過程が存在しない。このため、量子ドット16が、水分によって劣化することを低減しつつ、表面修飾部18を含む量子ドット分散系である第4液52を生成することができる。当該第4液52から形成された発光層8を含む発光素子2は、劣化が低減した量子ドット16を含むため、発光素子2の発光効率が改善する。
<Effect of quantum dot dispersion system>
The fourth liquid 52, which is the quantum dot dispersion system according to the present embodiment, contains the quantum dots 16 and the surface modification portion 18 containing the ligand 22 and the ionic liquid 30 in the non-aqueous polar solvent 20. Further, in the process of producing the fourth liquid 52, there is no process of directly exposing the quantum dots 16 to water. Therefore, it is possible to generate the fourth liquid 52, which is a quantum dot dispersion system including the surface modification portion 18, while reducing the deterioration of the quantum dots 16 due to moisture. Since the light emitting element 2 including the light emitting layer 8 formed from the fourth liquid 52 contains the quantum dots 16 with reduced deterioration, the luminous efficiency of the light emitting element 2 is improved.
 なお、本実施形態に係る、第4液52の生成工程において、量子ドット16を含む溶液に対し、適宜脱水処理を実行することができる。具体的には、例えば、量子ドット16を含む1mlの溶媒を含む溶液に対し、脱水処理を行うことにより、当該溶液が含む水分量を、1μl以下に低減することができる。 In the process of producing the fourth liquid 52 according to the present embodiment, the solution containing the quantum dots 16 can be appropriately dehydrated. Specifically, for example, by dehydrating a solution containing 1 ml of a solvent containing quantum dots 16, the amount of water contained in the solution can be reduced to 1 μl or less.
 したがって、上記脱水処理により、第4液52の水の含有量を、全体積に対して、0体積%以上、0.1体積%以下とすることができる。当該構成により、第4液52は、分散する量子ドット16の劣化を、十分に低減することができる。このため、第4液52から形成される発光層8の水の含有量についても、全体積に対して、0体積%以上、0.1体積%以下となる。 Therefore, by the above dehydration treatment, the water content of the fourth liquid 52 can be set to 0% by volume or more and 0.1% by volume or less with respect to the total volume. With this configuration, the fourth liquid 52 can sufficiently reduce the deterioration of the dispersed quantum dots 16. Therefore, the water content of the light emitting layer 8 formed from the fourth liquid 52 is also 0% by volume or more and 0.1% by volume or less with respect to the total volume.
 本実施形態において、量子ドット16は、最外表面16Sの近傍に、非水系極性溶媒20を保持している。このため、量子ドット16に対し水分が接近した場合においても、量子ドット16の最外表面16Sは、非水系極性溶媒20により保護される。したがって、量子ドット16は、発光層8中においても、水分による劣化を低減できる。 In the present embodiment, the quantum dot 16 holds the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S. Therefore, even when the moisture approaches the quantum dots 16, the outermost surface 16S of the quantum dots 16 is protected by the non-aqueous polar solvent 20. Therefore, the quantum dots 16 can reduce deterioration due to moisture even in the light emitting layer 8.
 量子ドット16が、最外表面16Sの近傍に非水系極性溶媒20を保持することにより奏される他の効果について、図7を参照して説明する。図7は、図4と同一の位置について示す他の概略拡大図である。 Other effects of the quantum dots 16 holding the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S will be described with reference to FIG. 7. FIG. 7 is another schematic enlarged view showing the same position as in FIG.
 量子ドット16が修飾する表面修飾部18の配位官能基24と、量子ドット16の最外表面16Sとの配位結合は、配位官能基24と炭素鎖26との結合、または、量子ドット16の分子同士の結合等に比べ弱い結合である。このため、発光層8として形成された後であっても、図7に示すように、配位官能基24と最外表面16Sとの配位結合が切断され、配位子22が量子ドット16から一時的に離脱する場合がある。 The coordination bond between the coordination functional group 24 of the surface modification portion 18 modified by the quantum dot 16 and the outermost surface 16S of the quantum dot 16 is a bond between the coordination functional group 24 and the carbon chain 26, or a quantum dot. It is a weak bond as compared with the bond between 16 molecules. Therefore, even after being formed as the light emitting layer 8, as shown in FIG. 7, the coordination bond between the coordination functional group 24 and the outermost surface 16S is broken, and the ligand 22 is the quantum dot 16. May be temporarily withdrawn from.
 しかしながら、本実施形態において、量子ドット16は、最外表面16Sの近傍に、非水系極性溶媒20を保持し、特に、配位子22は、非水系極性溶媒20の内部に位置している。このため、一時的に配位官能基24と最外表面16Sとの配位結合が切断された場合であっても、配位子22は直ちには量子ドット16から離れず、量子ドット16の近傍に留まる。 However, in the present embodiment, the quantum dot 16 holds the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S, and in particular, the ligand 22 is located inside the non-aqueous polar solvent 20. Therefore, even if the coordination bond between the coordination functional group 24 and the outermost surface 16S is temporarily broken, the ligand 22 does not immediately separate from the quantum dot 16 and is in the vicinity of the quantum dot 16. Stay in.
 したがって、配位子22が量子ドット16の近傍に留まっている間に、再度配位官能基24と最外表面16Sとの再配位が実現する場合がある。ゆえに、量子ドット16が最外表面16Sの近傍に、非水系極性溶媒20を保持することにより、配位子22が量子ドット16から完全に離脱することを低減でき、ひいては、表面修飾部18が量子ドット16から完全に離脱することを低減できる。 Therefore, the coordination between the coordination functional group 24 and the outermost surface 16S may be realized again while the ligand 22 remains in the vicinity of the quantum dot 16. Therefore, by holding the non-aqueous polar solvent 20 in the vicinity of the outermost surface 16S of the quantum dots 16, it is possible to reduce the complete detachment of the ligand 22 from the quantum dots 16, and thus the surface modification portion 18 It is possible to reduce the complete separation from the quantum dot 16.
 〔実施例〕
 <実施例に係る発光層の製造>
 本実施形態に係る量子ドット分散系の生成方法に沿って、実施例に係る量子ドット分散系を生成し、当該量子ドット分散系から、発光層8、および当該発光層8を備えた発光素子2を製造し、特性を測定した。本実施例に係る量子ドット分散系は、本実施形態に係る第4液52の生成方法と同一の手法により生成した。また、本実施例に係る発光層8は、本実施形態に係る発光層8の形成方法と同一の手法により形成した。
〔Example〕
<Manufacturing of light emitting layer according to Examples>
The quantum dot dispersion system according to the embodiment is generated according to the method for generating the quantum dot dispersion system according to the present embodiment, and the light emitting layer 8 and the light emitting element 2 provided with the light emitting layer 8 are generated from the quantum dot dispersion system. Was manufactured and its characteristics were measured. The quantum dot dispersion system according to this embodiment was generated by the same method as the method for producing the fourth liquid 52 according to this embodiment. Further, the light emitting layer 8 according to the present embodiment was formed by the same method as the method for forming the light emitting layer 8 according to the present embodiment.
 本実施例に係るステップS2においては、量子ドット16の濃度が20mg/mlとなるように、非極性溶媒42に量子ドット16を分散させて、第1液38を200μl生成した。本実施例において、非極性溶媒42にオクタンを、量子ドット16に、コアの粒径サイズが2nmである、CdSを含む量子ドットを採用した。 In step S2 according to this embodiment, the quantum dots 16 were dispersed in the non-polar solvent 42 so that the concentration of the quantum dots 16 was 20 mg / ml, and 200 μl of the first liquid 38 was produced. In this example, octane was used as the non-polar solvent 42, and quantum dots containing CdS having a core particle size of 2 nm were used as the quantum dots 16.
 本実施例に係るステップS4において、はじめに、イオン液体30の濃度が300mg/mlとなるように、非水系極性溶媒20にイオン液体30を分散させた溶液を200μl生成した。次に、配位子22を非水系極性溶媒20に溶解させた飽和溶液を生成し、当該飽和溶液を15分間の超音波洗浄した後、0.45μmのフィルタにてろ過を行うことにより、配位子22の溶液を500μl生成した。最後に、イオン液体30の溶液と配位子22の溶液とを混合することにより、第2液40を生成した。 In step S4 according to this example, first, 200 μl of a solution in which the ionic liquid 30 was dispersed in the non-aqueous polar solvent 20 was produced so that the concentration of the ionic liquid 30 was 300 mg / ml. Next, a saturated solution in which the ligand 22 is dissolved in the non-aqueous polar solvent 20 is generated, the saturated solution is ultrasonically washed for 15 minutes, and then filtered through a 0.45 μm filter. A solution of the aprotic 22 was produced in an amount of 500 μl. Finally, the second liquid 40 was produced by mixing the solution of the ionic liquid 30 and the solution of the ligand 22.
 本実施例において、非水系極性溶媒20にPGMEAを、イオン液体30に2-(メタクリロイルオキシ)-エチルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミドを、配位子22に2-ジエチルアミノエタンチオール塩酸塩を採用した。 In this example, PGMEA is added to the non-aqueous protic solvent 20, 2- (methacryloyloxy) -ethyltrimethylammonium bis (trifluoromethanesulfonyl) imide is added to the ionic liquid 30, and 2-diethylaminoethanethiol hydrochloride is added to the ligand 22. Adopted.
 本実施例に係るステップS6においては、上述した第1液38と第2液40とを、3時間室温にて撹拌し、第3液50を生成した。本実施例に係るステップS8においては、第3液50に対し、回転数を4000rpmとした遠心分離を10分間実行することにより、第3液50から第4液52を抽出した。これにより、本実施例に係る量子ドット分散系である第4液52を生成した。 In step S6 according to this embodiment, the above-mentioned first liquid 38 and second liquid 40 were stirred at room temperature for 3 hours to generate a third liquid 50. In step S8 according to this embodiment, the third liquid 50 was extracted from the third liquid 52 by centrifuging the third liquid 50 at a rotation speed of 4000 rpm for 10 minutes. As a result, the fourth liquid 52, which is the quantum dot dispersion system according to the present embodiment, was generated.
 本実施例に係るステップS10までに、アレイ基板3、陽極4、および正孔輸送層6を形成した積層体を用意した。本実施例に係るステップS10においては、第4液52を、上記積層体の正孔輸送層6上に塗布し、室温にて乾燥することにより、発光層8を得た。その後、発光層8上への、電子輸送層10および陰極12の形成を経て、発光装置1を製造した。 By step S10 according to this embodiment, a laminate having the array substrate 3, the anode 4, and the hole transport layer 6 formed was prepared. In step S10 according to this embodiment, the fourth liquid 52 was applied onto the hole transport layer 6 of the laminate and dried at room temperature to obtain a light emitting layer 8. Then, the light emitting device 1 was manufactured through the formation of the electron transport layer 10 and the cathode 12 on the light emitting layer 8.
 本実施例に係る量子ドット分散系を評価するために、いくつかの比較例に係る量子ドット分散系を製造し、当該量子ドットから、発光層および発光装置を製造した。 In order to evaluate the quantum dot dispersion system according to this example, the quantum dot dispersion system according to some comparative examples was manufactured, and the light emitting layer and the light emitting device were manufactured from the quantum dots.
 比較例1に係る量子ドット分散系は、実施例において採用した量子ドットをオクタンに分散させた溶液とした。比較例2に係る量子ドット分散系は、実施例および比較例1において採用した量子ドットを水に分散させた、量子ドット水溶液とした。比較例3に係る量子ドット分散系は、比較例2に係る量子ドット分散系と、PGMEAにイオン液体を分散させた溶液とを、3h室温にて撹拌して得られた、イオン液体が配位する量子ドットが分散するPGMEA溶液とした。 The quantum dot dispersion system according to Comparative Example 1 was a solution in which the quantum dots used in the examples were dispersed in octane. The quantum dot dispersion system according to Comparative Example 2 was an aqueous quantum dot solution in which the quantum dots used in Examples and Comparative Example 1 were dispersed in water. In the quantum dot dispersion system according to Comparative Example 3, the ionic liquid obtained by stirring the quantum dot dispersion system according to Comparative Example 2 and the solution in which the ionic liquid is dispersed in PGMEA at room temperature for 3 hours is coordinated. A PGMEA solution in which the resulting quantum dots were dispersed was prepared.
 各比較例に係る発光装置は、各比較例に係る量子ドット分散系を用いて、実施例に係る発光装置1と同一の手法により、それぞれ製造した。 The light emitting device according to each comparative example was manufactured by the same method as the light emitting device 1 according to the embodiment using the quantum dot dispersion system according to each comparative example.
 比較例1に係る量子ドット分散系が含む量子ドットの蛍光量子収率は、40%程度であることが分かった。ただし、比較例1に係る量子ドット分散系が含む量子ドットには、イオン液体が配位していない。このため、比較例1に係る量子ドット分散系が含む量子ドットは、イオン液体が配位する量子ドットと比較して、凝集が発生しやすく、量子ドットの信頼性の低下の遠因となる場合がある。 It was found that the fluorescence quantum yield of the quantum dots contained in the quantum dot dispersion system according to Comparative Example 1 was about 40%. However, the ionic liquid is not coordinated with the quantum dots included in the quantum dot dispersion system according to Comparative Example 1. Therefore, the quantum dots included in the quantum dot dispersion system according to Comparative Example 1 are more likely to agglomerate than the quantum dots to which the ionic liquid is coordinated, which may cause a decrease in the reliability of the quantum dots. be.
 また、比較例2に係る量子ドット分散系が含む量子ドットの蛍光量子収率は1%程度、比較例3に係る量子ドット分散系が含む量子ドットの蛍光量子収率は1%未満であることが分かった。比較例2および比較例3においては、量子ドットに配位する配位子をイオン液体に置換する工程において、水に量子ドットを曝すため、水によって量子ドットの最外表面が劣化し、量子ドットの蛍光量子収率が低下したと推察される。したがって、比較例3に係る量子ドット分散系は、比較例1に係る量子ドット分散系と比較して、成膜後における量子ドットの信頼性が向上するものの、量子ドットの蛍光量子収量が大きく低下する。ゆえに、比較例3に係る量子ドット分散系から形成された発光層を含む発光素子においては、外部量子効率が大きく低下する可能性がある。 Further, the fluorescence quantum yield of the quantum dots included in the quantum dot dispersion system according to Comparative Example 2 is about 1%, and the fluorescence quantum yield of the quantum dots included in the quantum dot dispersion system according to Comparative Example 3 is less than 1%. I found out. In Comparative Example 2 and Comparative Example 3, since the quantum dots are exposed to water in the step of replacing the ligands coordinated with the quantum dots with ionic liquids, the outermost surface of the quantum dots is deteriorated by the water, and the quantum dots are deteriorated. It is presumed that the fluorescence quantum yield of Therefore, the quantum dot dispersion system according to Comparative Example 3 has improved reliability of the quantum dots after film formation as compared with the quantum dot dispersion system according to Comparative Example 1, but the fluorescence quantum yield of the quantum dots is significantly reduced. do. Therefore, in the light emitting device including the light emitting layer formed from the quantum dot dispersion system according to Comparative Example 3, the external quantum efficiency may be significantly lowered.
 実施例に係る量子ドット分散系である、第4液52が含む量子ドット16の蛍光量子収率は、18%程度を維持していることが分かった。実施例1においては、量子ドット16の分散系の生成工程において、水に量子ドット16を直接曝す必要がなく、量子ドット16の最外表面16Sの劣化が低減し、量子ドット16の蛍光量子収率の低下が低減したものと推察される。 It was found that the fluorescence quantum yield of the quantum dots 16 contained in the fourth liquid 52, which is the quantum dot dispersion system according to the example, was maintained at about 18%. In the first embodiment, in the step of generating the dispersion system of the quantum dots 16, it is not necessary to directly expose the quantum dots 16 to water, the deterioration of the outermost surface 16S of the quantum dots 16 is reduced, and the fluorescence quantum yield of the quantum dots 16 is reduced. It is presumed that the decrease in the rate has decreased.
 実施例に係る量子ドット分散系である、第4液52が含む量子ドット16は、イオン液体30が配位し、かつ、比較的高い蛍光量子収率を維持した量子ドット16を含む。このため、実施例に係る第4液52から形成された発光層8は、量子ドット16の凝集が低減され、かつ、量子ドット16の発光効率の低下が低減されている。したがって、実施例に係る発光層8を備える発光装置1は、発光効率をより改善し、寿命をより長期化させる。 The quantum dot 16 included in the fourth liquid 52, which is the quantum dot dispersion system according to the embodiment, includes the quantum dot 16 in which the ionic liquid 30 is coordinated and maintains a relatively high fluorescence quantum yield. Therefore, in the light emitting layer 8 formed from the fourth liquid 52 according to the embodiment, the aggregation of the quantum dots 16 is reduced, and the decrease in the luminous efficiency of the quantum dots 16 is reduced. Therefore, the light emitting device 1 provided with the light emitting layer 8 according to the embodiment further improves the light emitting efficiency and prolongs the life.
 〔実施形態2〕
 <アニオン部を含む配位部>
 図8は、本実施形態に係る量子ドット16の最外表面16Sの近傍について示す概略拡大図であり、図4に対応する位置について示す拡大図である。なお、本明細書において、同一の機能を有する各部材には、同一の名称および参照符号を付し、構成の差異がない限り、同じ説明は繰り返さない。
[Embodiment 2]
<Coordination part including anion part>
FIG. 8 is a schematic enlarged view showing the vicinity of the outermost surface 16S of the quantum dot 16 according to the present embodiment, and is an enlarged view showing a position corresponding to FIG. In this specification, each member having the same function is given the same name and reference numeral, and the same description will not be repeated unless there is a difference in configuration.
 本実施形態に係る発光装置1は、表面修飾部18の構成が異なる点を除き、前実施形態に係る発光装置1と同一の構成を備えている。本実施形態において、表面修飾部18が含む配位子22は、図8に示すように、カチオン部28に代えて、アニオン部56を含む点を除き、前実施形態に係る配位子22と同一の構成を備える。 The light emitting device 1 according to the present embodiment has the same configuration as the light emitting device 1 according to the previous embodiment, except that the configuration of the surface modification portion 18 is different. In the present embodiment, as shown in FIG. 8, the ligand 22 contained in the surface modification portion 18 is the same as the ligand 22 according to the previous embodiment except that the anion portion 56 is included instead of the cation portion 28. It has the same configuration.
 アニオン部56は、炭素鎖26の、配位官能基24とは反対の端部に形成された、アニオンを含む部位である。このため、イオン液体30は、カチオン部34が、配位子22のアニオン部56とイオン結合を形成することにより、配位子22と結合している。上記点を除き、本実施形態に係る表面修飾部18は、前実施形態に係る表面修飾部18と同一の構成を備える。 The anion portion 56 is a portion of the carbon chain 26 containing an anion formed at the end opposite to the coordination functional group 24. Therefore, in the ionic liquid 30, the cation portion 34 is bonded to the ligand 22 by forming an ionic bond with the anion portion 56 of the ligand 22. Except for the above points, the surface modification unit 18 according to the present embodiment has the same configuration as the surface modification unit 18 according to the previous embodiment.
 本実施形態に係る表面修飾部18の具体例について、図9を参照して説明する。本実施形態において、配位子22は、例えば、下記化学式に示す、チオグリコール酸であってもよい。 A specific example of the surface modification portion 18 according to the present embodiment will be described with reference to FIG. In the present embodiment, the ligand 22 may be, for example, thioglycolic acid represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000005
 この場合、図9に示すように、配位子22は、配位官能基24に硫黄原子を、アニオン部56にカルボキシレートアニオンを含む。
Figure JPOXMLDOC01-appb-C000005
In this case, as shown in FIG. 9, the ligand 22 contains a sulfur atom in the coordination functional group 24 and a carboxylate anion in the anion portion 56.
 また、本実施形態において、イオン液体30の材料は、配位子22の有するイオンの極性に応じ、適宜変更してもよい。例えば、本実施形態において、イオン液体30は、1-ベンジル-3-メチルイミダゾリウムテトラフルオロホウ酸であってもよい。この場合、イオン液体30のカチオン部34は、例えば、下記化学式に示す、1-ベンジル-3-メチルイミダゾリウムであり、図5に示す、カチオン部34のカチオン34Cが、配位子22のアニオン部56とイオン結合を形成する。 Further, in the present embodiment, the material of the ionic liquid 30 may be appropriately changed according to the polarity of the ions possessed by the ligand 22. For example, in this embodiment, the ionic liquid 30 may be 1-benzyl-3-methylimidazolium tetrafluoroboric acid. In this case, the cation portion 34 of the ionic liquid 30 is, for example, 1-benzyl-3-methylimidazolium represented by the following chemical formula, and the cation 34C of the cation portion 34 shown in FIG. 5 is the anion of the ligand 22. It forms an ionic bond with part 56.
Figure JPOXMLDOC01-appb-C000006
 さらに、イオン液体30のアニオン部32は、例えば、下記化学式に示す、テトラフルオロホウ酸である。
Figure JPOXMLDOC01-appb-C000006
Further, the anion portion 32 of the ionic liquid 30 is, for example, tetrafluoroboric acid represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000007
 表面修飾部18の構成をより一般化すると、例えば、配位子22は、下記化学式(2)に示す構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000007
To further generalize the structure of the surface modification portion 18, for example, the ligand 22 may have a structure represented by the following chemical formula (2).
Figure JPOXMLDOC01-appb-C000008
 化学式(2)において、Bは配位官能基24を表し、チオール基、カルボキシル基、ホスホノ基、またはアミノ基から選択される。n2は、配位子22の炭素鎖26の炭素数を表す自然数であり、1以上3以下である。当該n2の範囲は、配位子22が、極性溶媒に可溶である範囲に相当する。
Figure JPOXMLDOC01-appb-C000008
In the chemical formula (2), B represents the coordination functional group 24 and is selected from a thiol group, a carboxyl group, a phosphono group, or an amino group. n2 is a natural number representing the number of carbon atoms in the carbon chain 26 of the ligand 22, and is 1 or more and 3 or less. The range of n2 corresponds to the range in which the ligand 22 is soluble in a polar solvent.
 本実施形態に係る発光装置1は、前実施形態に係る発光装置1と同一の手法にて製造できる。特に、本実施形態に係る発光層8は、ステップS4において生成する第2液40の溶質の材料を除き、前実施形態に係る発光層8と同一の手法によって形成できる。本実施形態において、第2液40は、アニオン部56を有する配位子22が分散する。なお、第2液40は、配位子22のアニオン部56のアニオンとイオン結合するカチオンである、カウンターイオンを含んでいてもよい。 The light emitting device 1 according to the present embodiment can be manufactured by the same method as the light emitting device 1 according to the previous embodiment. In particular, the light emitting layer 8 according to the present embodiment can be formed by the same method as the light emitting layer 8 according to the previous embodiment, except for the solute material of the second liquid 40 generated in step S4. In the present embodiment, the ligand 22 having the anion portion 56 is dispersed in the second liquid 40. The second liquid 40 may contain a counter ion, which is a cation that ionically bonds with the anion of the anion portion 56 of the ligand 22.
 本実施形態においても、前実施形態において説明した理由と同一の理由から、発光層8を含む発光素子2が、劣化が低減した量子ドット16を含むため、発光素子2の発光効率が改善する。 Also in this embodiment, for the same reason as described in the previous embodiment, the light emitting element 2 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the luminous efficiency of the light emitting element 2 is improved.
 また、前実施形態と比較して、本実施形態における配位子22は、イオンの極性を変わっている。このため、前実施形態および本実施形態のそれぞれに係る表面修飾部18は、含むイオン液体30の種類によって、より適切なイオンを含む配位子22を選択することができる。 Further, as compared with the previous embodiment, the ligand 22 in the present embodiment has changed the polarity of the ion. Therefore, the surface modification portion 18 according to each of the previous embodiment and the present embodiment can select the ligand 22 containing more appropriate ions depending on the type of the ionic liquid 30 contained.
 〔実施形態3〕
 <量子ドット分散系の製法の変形例>
 本実施形態に係る発光装置1は、上述した何れかの実施形態に係る発光装置1と同一の構成を備える。本実施形態に係る発光装置1の製造方法は、発光層8の形成に用いる量子ドット分散系である、第4液52の生成方法を除き、上述した何れかの実施形態に係る発光装置1の製造方法と同一の手法により製造できる。
[Embodiment 3]
<Modification example of manufacturing method of quantum dot dispersion system>
The light emitting device 1 according to the present embodiment has the same configuration as the light emitting device 1 according to any of the above-described embodiments. The method for manufacturing the light emitting device 1 according to the present embodiment is the method for producing the light emitting device 1 according to any one of the above-described embodiments, except for the method for producing the fourth liquid 52, which is a quantum dot dispersion system used for forming the light emitting layer 8. It can be manufactured by the same method as the manufacturing method.
 本実施形態に係る発光装置1の発光層8の形成方法について、図10を参照して説明する。本実施形態においては、後に詳述するが、量子ドット16の分散系の生成に先立ち、
第6液および第7液を撹拌し、量子ドット16の分散系の生成に用いる第8液の生成を実行する。本実施形態に係る発光層8の形成方法について、はじめに、第6液と第7液とを撹拌する撹拌工程を説明する工程断面図である図11を参照し、第6液と第7液との説明と併せて説明する。
A method of forming the light emitting layer 8 of the light emitting device 1 according to the present embodiment will be described with reference to FIG. In this embodiment, as will be described in detail later, prior to the generation of the dispersion system of the quantum dots 16.
The sixth liquid and the seventh liquid are stirred to carry out the generation of the eighth liquid used for the generation of the dispersion system of the quantum dots 16. Regarding the method for forming the light emitting layer 8 according to the present embodiment, first, with reference to FIG. 11, which is a process cross-sectional view for explaining the stirring step of stirring the sixth liquid and the seventh liquid, the sixth liquid and the seventh liquid It will be explained together with the explanation of.
 本実施形態に係る発光層8の形成方法においては、はじめに、第6液の生成(ステップS12)と、第7液の生成(ステップS14)とを実行する。次いで、第6液と第7液とを、図11に示す容器36中において撹拌する(ステップS16)、撹拌工程を実行する。ここで、図11のステップS16Aには、ステップS16において、容器36中に注入した、第6液58と第7液60との撹拌を開始する直前の様子を示す。 In the method for forming the light emitting layer 8 according to the present embodiment, first, the generation of the sixth liquid (step S12) and the generation of the seventh liquid (step S14) are executed. Next, the sixth liquid and the seventh liquid are stirred in the container 36 shown in FIG. 11 (step S16), and the stirring step is executed. Here, in step S16A of FIG. 11, the state immediately before starting the stirring of the sixth liquid 58 and the seventh liquid 60 injected into the container 36 in step S16 is shown.
 第6液58は、図11のステップS16Aに示すように、水62に、複数の配位子22を複数分散させた水溶液である。配位子22は、例えば、実施形態1に係る配位子22と同一の構成を有していてもよい。第6液58は、さらに、水62中に、配位子22のカチオン部28のカチオンとイオン結合するアニオンである、カウンターイオン48を含んでいてもよい。例えば、具体的に、第6液58は、配位子22として2-ジエチルアミノエタンチオール塩酸塩を200mg/ml含む、500μlの水溶液であってもよい。 As shown in step S16A of FIG. 11, the sixth liquid 58 is an aqueous solution in which a plurality of ligands 22 are dispersed in water 62. The ligand 22 may have, for example, the same configuration as the ligand 22 according to the first embodiment. The sixth liquid 58 may further contain counter ion 48, which is an anion that ionically bonds with the cation of the cation portion 28 of the ligand 22, in water 62. For example, specifically, the sixth liquid 58 may be a 500 μl aqueous solution containing 200 mg / ml of 2-diethylaminoethanethiol hydrochloride as the ligand 22.
 第7液60は、図11のステップS16Aに示すように、非水系極性溶媒20に、イオン液体30を分散させた溶液である。非水系極性溶媒20、および、イオン液体30は、それぞれ、上述した何れかの実施形態に係る、非水系極性溶媒20、および、イオン液体30と、同一の構成を備えていてもよい。例えば、具体的に、第7液60は、非水系極性溶媒20であるPGMEAに、イオン液体30である2-(メタクリロイルオキシ)-エチルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミドを300mg/ml含む、500μlの溶液であってもよい。 The seventh liquid 60 is a solution in which the ionic liquid 30 is dispersed in the non-aqueous polar solvent 20 as shown in step S16A of FIG. The non-aqueous polar solvent 20 and the ionic liquid 30 may each have the same configuration as the non-aqueous polar solvent 20 and the ionic liquid 30 according to any of the above-described embodiments. For example, specifically, the seventh solution 60 contains 300 mg / ml of 2- (methacryloyloxy) -ethyltrimethylammonium bis (trifluoromethanesulfonyl) imide, which is an ionic liquid 30, in PGMEA, which is a non-aqueous polar solvent 20. It may be a 500 μl solution.
 水62は、非水系極性溶媒20と比較して、より高極性の溶媒であるため、容器36中において、第6液58と第7液60とは分離する。また、例えば、第6液58の比重よりも第7液60の比重が軽い場合、第6液58よりも第7液60の方が、容器36中の上部に位置する。 Since water 62 is a more polar solvent than the non-aqueous polar solvent 20, the sixth liquid 58 and the seventh liquid 60 are separated in the container 36. Further, for example, when the specific gravity of the 7th liquid 60 is lighter than that of the 6th liquid 58, the 7th liquid 60 is located at the upper part in the container 36 than the 6th liquid 58.
 第6液58と第7液60との撹拌は、例えば、室温にて1.5時間実行されてもよい。第6液58と第7液60との撹拌が実行されると、配位子22のカチオン部28のカチオンと、イオン液体30のアニオン部32のアニオンとがイオン結合することにより、表面修飾部18が形成される。 Stirring of the sixth liquid 58 and the seventh liquid 60 may be performed, for example, at room temperature for 1.5 hours. When the sixth liquid 58 and the seventh liquid 60 are stirred, the cation of the cation portion 28 of the ligand 22 and the anion of the anion portion 32 of the ionic liquid 30 are ionic bonded to form a surface modification portion. 18 is formed.
 図11のステップS16Bは、第6液58と第7液60との撹拌を十分に実行し、その後十分な時間静置した後の容器36中の状態を示す。第6液58と第7液60との撹拌が十分に実行された場合、図11のステップS6Bに示す、第8液64が生成される。第8液64は、第9液66と、第10液68とを含む。 Step S16B of FIG. 11 shows the state in the container 36 after the sixth liquid 58 and the seventh liquid 60 are sufficiently stirred and then allowed to stand for a sufficient time. When the stirring of the sixth liquid 58 and the seventh liquid 60 is sufficiently performed, the eighth liquid 64 shown in step S6B of FIG. 11 is produced. The eighth liquid 64 contains the ninth liquid 66 and the tenth liquid 68.
 ここで、配位子22は、非水系極性溶媒20と比較して水62に対しよりよく溶解する場合がある。具体的に、2-ジエチルアミノエタンチオール塩酸塩は、PGMEA等の非水系極性溶媒と比較して、水によりよく溶解する。この場合、非水系極性溶媒20と比較して、水62を溶媒とした溶液の方が、より高濃度の配位子22の溶液が得られる場合がある。 Here, the ligand 22 may dissolve better in water 62 than in the non-aqueous polar solvent 20. Specifically, 2-diethylaminoethanethiol hydrochloride is more soluble in water than non-aqueous polar solvents such as PGMEA. In this case, a solution using water 62 as a solvent may obtain a solution having a higher concentration of the ligand 22 as compared with the non-aqueous polar solvent 20.
 しかしながら、イオン液体30が、水62と比較して非水系極性溶媒20によりよく溶解する場合、配位子22とイオン液体30とが結合して形成された表面修飾部18は、水62と比較して非水系極性溶媒20によりよく溶解する場合がある。この場合、第6液58と第7液60との撹拌が実行され、表面修飾部18が形成されると、水62と比較して、非水系極性溶媒20により多くの表面修飾部18が存在することとなる。 However, when the ionic liquid 30 dissolves better in the non-aqueous polar solvent 20 than in the water 62, the surface modification portion 18 formed by combining the ligand 22 and the ionic liquid 30 is compared with the water 62. In some cases, it dissolves better in the non-aqueous polar solvent 20. In this case, when the sixth liquid 58 and the seventh liquid 60 are stirred and the surface modification portion 18 is formed, more surface modification portions 18 are present in the non-aqueous polar solvent 20 as compared with the water 62. Will be done.
 したがって、第6液58と第7液60との撹拌が十分に実行された場合、図11のステップS6Bに示すように、非水系極性溶媒20を溶媒として含む第9液66の方が、水62を溶媒として含む第10液68よりも、より高濃度の表面修飾部18が分散する。以上より、非水系極性溶媒20中に、表面修飾部18が分散する、第9液66が生成される。 Therefore, when the stirring of the sixth liquid 58 and the seventh liquid 60 is sufficiently performed, as shown in step S6B of FIG. 11, the ninth liquid 66 containing the non-aqueous polar solvent 20 as a solvent is more water. The surface modification portion 18 having a higher concentration is dispersed than that of the tenth liquid 68 containing 62 as a solvent. From the above, the ninth liquid 66 in which the surface modification portion 18 is dispersed is generated in the non-aqueous polar solvent 20.
 ステップS16に次いで、第8液64から、第9液66を抽出する(ステップS18)。第9液66は、第8液64の遠心分離により抽出することが可能である。なお、本実施形態において、ステップS18の完了までに、第1液38の生成を実行する。第1液38は、実施形態1に係る第1液38と同一の構成を備えていてもよく、第1液38は、実施形態1に係るステップS2と同一の手法により生成されてもよい。 Following step S16, the ninth liquid 66 is extracted from the eighth liquid 64 (step S18). The ninth liquid 66 can be extracted by centrifuging the eighth liquid 64. In the present embodiment, the first liquid 38 is generated by the completion of step S18. The first liquid 38 may have the same configuration as the first liquid 38 according to the first embodiment, and the first liquid 38 may be generated by the same method as step S2 according to the first embodiment.
 次いで、抽出された第9液66を、第1液38と撹拌する、撹拌工程を実行する(ステップS20)。図12のステップS20Aは、第1液38と第9液66との撹拌を開始する直前の様子を示す。 Next, a stirring step of stirring the extracted 9th liquid 66 with the 1st liquid 38 is executed (step S20). Step S20A of FIG. 12 shows a state immediately before starting stirring of the first liquid 38 and the ninth liquid 66.
 実施形態1に係るステップS6と、本実施形態に係るステップS20との差異は、第1液38と撹拌される溶液が、第2液40であるか第9液66であるかの差異のみである。また、第2液40と第9液66との差異は、非水系極性溶媒20に溶解する配位子22とイオン液体30とが、既に表面修飾部18を形成していないかいるかの差異のみである。 The only difference between step S6 according to the first embodiment and step S20 according to the present embodiment is whether the solution to be agitated with the first liquid 38 is the second liquid 40 or the ninth liquid 66. be. The only difference between the second liquid 40 and the ninth liquid 66 is whether or not the ligand 22 dissolved in the non-aqueous polar solvent 20 and the ionic liquid 30 have already formed the surface modification portion 18. Is.
 図12のステップS20Bは、第1液38と第9液66との撹拌を十分に実行し、その後十分な時間静置した後の容器36中の状態を示す。上記事情から、第1液38と第9液66とを撹拌することにより、図12のステップS20Bに示すように、実施形態1に係る第3液50と同一の構成を有する溶液が得られる。ゆえに、ステップS20により、本実施形態に係る量子ドット分散系である、第4液52が生成される。 Step S20B of FIG. 12 shows the state in the container 36 after the first liquid 38 and the ninth liquid 66 are sufficiently stirred and then allowed to stand for a sufficient time. From the above circumstances, by stirring the first liquid 38 and the ninth liquid 66, as shown in step S20B of FIG. 12, a solution having the same configuration as the third liquid 50 according to the first embodiment can be obtained. Therefore, in step S20, the fourth liquid 52, which is the quantum dot dispersion system according to the present embodiment, is generated.
 この後、実施形態1に係るステップS8、ステップS10と同一の工程を順に実行することにより、本実施形態に係る発光層8が形成される。 After that, the light emitting layer 8 according to the present embodiment is formed by sequentially executing the same steps as step S8 and step S10 according to the first embodiment.
 本実施形態においても、前述の各実施形態において説明した理由と同一の理由から、発光層8を含む発光素子2が、劣化が低減した量子ドット16を含むため、発光素子2の発光効率が改善する。 Also in the present embodiment, for the same reason as described in each of the above-described embodiments, the light emitting element 2 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the luminous efficiency of the light emitting element 2 is improved. do.
 また、前述の各実施形態に係る、第4液52の生成方法と比較して、配位子22を予め水62に分散させ、その後、非水系極性溶媒20に分散するイオン液体30と結合させて、配位子22が分散する第9液66を生成する工程が存在する。上記構成により、配位子22とイオン液体30とが、より確実に結合し表面修飾部18となるため、表面修飾部18がより効率的に量子ドット16を修飾することができる。 Further, as compared with the method for producing the fourth liquid 52 according to each of the above-described embodiments, the ligand 22 is previously dispersed in water 62 and then combined with the ionic liquid 30 dispersed in the non-aqueous polar solvent 20. Therefore, there is a step of producing the ninth liquid 66 in which the ligand 22 is dispersed. With the above configuration, the ligand 22 and the ionic liquid 30 are more reliably bonded to form the surface modification portion 18, so that the surface modification portion 18 can modify the quantum dots 16 more efficiently.
 また、配位子22が、非水系極性溶媒20よりも水62に溶けやすい場合において、第6液58における配位子22の濃度を、前述の第2液40における配位子22の濃度よりも高めることが可能となる。これにより、第9液66における配位子22の濃度を高めることが可能となり、ひいては、第4液52における表面修飾部18の濃度を高めることができる。 Further, when the ligand 22 is more soluble in water 62 than the non-aqueous polar solvent 20, the concentration of the ligand 22 in the sixth liquid 58 is higher than the concentration of the ligand 22 in the second liquid 40 described above. Can also be increased. As a result, the concentration of the ligand 22 in the ninth liquid 66 can be increased, and thus the concentration of the surface modification portion 18 in the fourth liquid 52 can be increased.
 ただし、配位子22を水62に溶かす工程があるが、本実施形態においても、量子ドット16は、非水系極性溶媒20または非極性溶媒42にのみ直接曝され、水62に曝されることがない。したがって、本実施形態においては、第4液52における表面修飾部18の濃度を高めつつ、第4液52が含む量子ドット16の劣化を低減できる。 However, although there is a step of dissolving the ligand 22 in water 62, also in this embodiment, the quantum dots 16 are directly exposed only to the non-aqueous polar solvent 20 or the non-polar solvent 42, and are exposed to water 62. There is no. Therefore, in the present embodiment, it is possible to reduce the deterioration of the quantum dots 16 contained in the fourth liquid 52 while increasing the concentration of the surface modification portion 18 in the fourth liquid 52.
 〔実施形態4〕
 <イオン液体の重合>
 図13は、本実施形態に係る量子ドット16の最外表面16Sの近傍について示す概略拡大図であり、図4に対応する位置について示す拡大図である。本実施形態に係る発光装置1は、表面修飾部18の構成が異なる点を除き、実施形態1に係る発光装置1と同一の構成を備えている。本実施形態において、表面修飾部18は、イオン液体30に代わり、重合体70を含む点を除き、実施形態1に係る表面修飾部18と同一の構成を備える。
[Embodiment 4]
<Polymerization of ionic liquids>
FIG. 13 is a schematic enlarged view showing the vicinity of the outermost surface 16S of the quantum dot 16 according to the present embodiment, and is an enlarged view showing the position corresponding to FIG. The light emitting device 1 according to the present embodiment has the same configuration as the light emitting device 1 according to the first embodiment, except that the configuration of the surface modifying portion 18 is different. In the present embodiment, the surface modification portion 18 has the same configuration as the surface modification portion 18 according to the first embodiment, except that the polymer 70 is included instead of the ionic liquid 30.
 重合体70は、同一の量子ドット16に配位する複数の表面修飾部18同士が重合することにより形成される。特に、重合体70は、前述の各実施形態に係る複数のイオン液体30が、アニオン部32同士またはカチオン部34同士の間において重合することにより形成された重合体である。例えば、重合体70は、アニオン部32またはカチオン部34が重合性官能基を有するイオン液体30に対する熱処理または紫外線照射を実施し、重合反応を発生させることにより生成する。 The polymer 70 is formed by polymerizing a plurality of surface modification portions 18 coordinated to the same quantum dot 16. In particular, the polymer 70 is a polymer formed by polymerizing a plurality of ionic liquids 30 according to each of the above-described embodiments between the anion portions 32 and the cation portions 34. For example, the polymer 70 is produced by performing heat treatment or ultraviolet irradiation on an ionic liquid 30 in which the anion portion 32 or the cation portion 34 has a polymerizable functional group to generate a polymerization reaction.
 このため、重合体70は、複数のアニオン部32と複数のカチオン部34を含む。本実施形態においては、図13に示すように、重合体70の各アニオン部32のアニオンが、それぞれ配位子22のカチオン部28のカチオンと結合することにより、表面修飾部18を形成している。 Therefore, the polymer 70 includes a plurality of anion portions 32 and a plurality of cation portions 34. In the present embodiment, as shown in FIG. 13, the anion of each anion portion 32 of the polymer 70 is bonded to the cation of the cation portion 28 of the ligand 22, thereby forming the surface modification portion 18. There is.
 例えば、本実施形態においては、重合体70を、カチオン部34が重合性官能基を有するイオン液体30から生成するとする。この場合、カチオン部34は、上述した、2-(メタクリロイルオキシ)-エチルトリメチルアンモニウムを含んでいてもよい。換言すれば、カチオン部34は、重合性官能基として、メタクロイル基を有していてもよい。この場合、重合体70のカチオン部34は、カチオン部34同士の重合により、下記化学式に示す構造をとる。 For example, in the present embodiment, it is assumed that the polymer 70 is generated from the ionic liquid 30 in which the cation portion 34 has a polymerizable functional group. In this case, the cation portion 34 may contain 2- (methacryloyloxy) -ethyltrimethylammonium as described above. In other words, the cation portion 34 may have a metachloro group as a polymerizable functional group. In this case, the cation portion 34 of the polymer 70 has a structure represented by the following chemical formula by polymerizing the cation portions 34 with each other.
Figure JPOXMLDOC01-appb-C000009
 上記化学式において、n3は自然数であり、重合体70のカチオン部34の重合度を示す。
Figure JPOXMLDOC01-appb-C000009
In the above chemical formula, n3 is a natural number and indicates the degree of polymerization of the cation portion 34 of the polymer 70.
 本実施形態に係る発光装置1の発光層8の形成方法について、図14を参照して説明する。本実施形態に係る発光装置1の発光層8の形成方法において、ステップS2からステップS8までは、実施形態1に係る発光装置1の製造方法と同一の方法にて実行する。 A method of forming the light emitting layer 8 of the light emitting device 1 according to the present embodiment will be described with reference to FIG. In the method of forming the light emitting layer 8 of the light emitting device 1 according to the present embodiment, steps S2 to S8 are executed by the same method as the manufacturing method of the light emitting device 1 according to the first embodiment.
 本実施形態に係る発光層8の形成方法においては、第4液52の生成に次いで、第4液52へ重合開始剤を添加する(ステップS22)。第4液52へ添加する重合開始剤は、第4液52が含むイオン液体30の有する重合性官能基の種類に合わせ、従来公知の重合開始剤から適宜選択してもよい。 In the method for forming the light emitting layer 8 according to the present embodiment, the polymerization initiator is added to the fourth liquid 52 following the formation of the fourth liquid 52 (step S22). The polymerization initiator added to the fourth liquid 52 may be appropriately selected from conventionally known polymerization initiators according to the type of the polymerizable functional group of the ionic liquid 30 contained in the fourth liquid 52.
 次いで、重合開始剤が添加された第4液52を、例えば、正孔輸送層6上に塗布する(ステップS24)。本実施形態における第4液52の塗布は、前述した各実施形態における第4液52の塗布と同一の手法により実行されてもよい。 Next, the fourth liquid 52 to which the polymerization initiator is added is applied onto, for example, the hole transport layer 6 (step S24). The coating of the fourth liquid 52 in the present embodiment may be carried out by the same method as the coating of the fourth liquid 52 in each of the above-described embodiments.
 次いで、塗布された第4液52に対し、熱処理あるいは紫外線照射等の処理を実施することにより、第4液52のイオン液体30が含む重合性官能基同士を重合させる(ステップS26)。イオン液体30の重合性官能基同士の重合のために行う処理、または、当該処理の条件は、イオン液体30の種類、または、当該イオン液体30が含む重合性官能基の種類に応じて、適宜選択されてもよい。 Next, the coated fourth liquid 52 is subjected to a treatment such as heat treatment or ultraviolet irradiation to polymerize the polymerizable functional groups contained in the ionic liquid 30 of the fourth liquid 52 (step S26). The treatment performed for the polymerization of the polymerizable functional groups of the ionic liquid 30 or the conditions of the treatment are appropriate depending on the type of the ionic liquid 30 or the type of the polymerizable functional groups contained in the ionic liquid 30. May be selected.
 これにより、量子ドット16に配位した表面修飾部18のイオン液体30同士が重合し、重合体70が形成される。したがって、量子ドット16の最外表面16Sの近傍に、配位子22を介して重合体70が配位する、量子ドット構造体14が形成され、発光層8が形成される。 As a result, the ionic liquids 30 of the surface modification portion 18 coordinated to the quantum dots 16 are polymerized to form the polymer 70. Therefore, in the vicinity of the outermost surface 16S of the quantum dot 16, the quantum dot structure 14 in which the polymer 70 is coordinated via the ligand 22 is formed, and the light emitting layer 8 is formed.
 本実施形態においても、前述の各実施形態において説明した理由と同一の理由から、発光層8を含む発光素子2が、劣化が低減した量子ドット16を含むため、発光素子2の発光効率が改善する。 Also in the present embodiment, for the same reason as described in each of the above-described embodiments, the light emitting element 2 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the luminous efficiency of the light emitting element 2 is improved. do.
 また、本実施形態に係る量子ドット16に配位する表面修飾部18は、イオン液体30を由来とする重合体70を備える。このため、ある1つの量子ドット16と、ある1つの表面修飾部18が備える複数の配位子22のうちの1つとの配位結合が離脱した場合であっても、当該量子ドット16と他の配位子22の少なくとも1つとの配位結合が維持される蓋然性が向上する。したがって、表面修飾部18が量子ドット16から完全に離脱することを低減でき、量子ドット16の分散性をより向上させ、量子ドット16の凝集をより効率的に低減できる。 Further, the surface modification portion 18 coordinated to the quantum dots 16 according to the present embodiment includes a polymer 70 derived from the ionic liquid 30. Therefore, even when the coordination bond between a certain quantum dot 16 and one of the plurality of ligands 22 included in the one surface modification portion 18 is broken, the quantum dot 16 and the other The probability that a coordinate bond with at least one of the ligands 22 of the above is maintained is improved. Therefore, it is possible to reduce that the surface modification portion 18 is completely separated from the quantum dots 16, the dispersibility of the quantum dots 16 can be further improved, and the aggregation of the quantum dots 16 can be reduced more efficiently.
 〔実施形態5〕
 <波長変換層>
 図15は、本実施形態に係る発光装置72の概略断面図である。本実施形態に係る発光装置72は、光源部74と、光学層としての波長変換層76と、光強度制御部78とを、この順に積層して備える。
[Embodiment 5]
<Wavelength conversion layer>
FIG. 15 is a schematic cross-sectional view of the light emitting device 72 according to the present embodiment. The light emitting device 72 according to the present embodiment includes a light source unit 74, a wavelength conversion layer 76 as an optical layer, and a light intensity control unit 78 in this order.
 光源部74は、後述する波長変換層76に対し光を出射する光源を備える。光源部74は、例えば、青色光LEDバックライト、または、紫外光源等を含む、従来公知の光源を備えていてもよい。他にも、例えば、光源部74は、上述した各実施形態に係る発光層8を含む発光素子2であってもよい。 The light source unit 74 includes a light source that emits light to the wavelength conversion layer 76, which will be described later. The light source unit 74 may include a conventionally known light source including, for example, a blue light LED backlight, an ultraviolet light source, or the like. In addition, for example, the light source unit 74 may be a light emitting element 2 including the light emitting layer 8 according to each of the above-described embodiments.
 波長変換層76は、前述の何れかの実施形態に係る量子ドット構造体14を複数備えた光学層である。波長変換層76が含む量子ドット構造体14の量子ドット16は、光源部74から出射された光のうち、特定の波長の光を吸収することにより、量子ドット16中の半導体材料が有する価電子帯電子が導電帯まで励起される。当該電子の準位が導電帯から価電子帯に戻る際に、バンドギャップエネルギーに相当する波長を有する光が量子ドット16から放出される。なお、上記機構により量子ドット16から発光を得るためには、量子ドット16中の半導体材料のバンドギャップエネルギー以上のエネルギーを有する光を、量子ドット16に照射する必要がある。 The wavelength conversion layer 76 is an optical layer including a plurality of quantum dot structures 14 according to any of the above-described embodiments. The quantum dots 16 of the quantum dot structure 14 included in the wavelength conversion layer 76 absorb the light of a specific wavelength among the light emitted from the light source unit 74, so that the valence electrons of the semiconductor material in the quantum dots 16 are present. Banded electrons are excited to the conductive band. When the electron level returns from the conductive band to the valence band, light having a wavelength corresponding to the bandgap energy is emitted from the quantum dots 16. In order to obtain light emission from the quantum dots 16 by the above mechanism, it is necessary to irradiate the quantum dots 16 with light having an energy equal to or higher than the band gap energy of the semiconductor material in the quantum dots 16.
 上記機構より、波長変換層76は、光源部74から照射された光の少なくとも一部を吸収し、当該光よりも長波長の、特定の波長を有する光を照射する。換言すれば、波長変換層76は、照射された光の波長を、より長波長に変換する光学層とみなせる。光源部74からの光を、波長変換層76の量子ドット16からの光に変換するため、発光装置1は、波長スペクトルの半値幅が狭く、色度が深い光を発することができる。 From the above mechanism, the wavelength conversion layer 76 absorbs at least a part of the light emitted from the light source unit 74 and irradiates the light having a specific wavelength longer than the light. In other words, the wavelength conversion layer 76 can be regarded as an optical layer that converts the wavelength of the irradiated light into a longer wavelength. Since the light from the light source unit 74 is converted into the light from the quantum dots 16 of the wavelength conversion layer 76, the light emitting device 1 can emit light having a narrow half-value width of the wavelength spectrum and a deep chromaticity.
 光強度制御部78は、波長変換層76から、発光装置72の外部へ向けて放出される光の強度を制御する機構を有する。例えば、光強度制御部78は、波長変換層76側から順に、陽極80、液晶層82、陰極84を積層して備える。光強度制御部78は、陽極80と陰極84との電位差を変動させることにより、液晶層82が含む液晶の配列を変化させ、波長変換層76からの光の透過率を変化させる。これにより、波長変換層76から発光装置72の外部に放出される光の強度を、光強度制御部78が制御できる。 The light intensity control unit 78 has a mechanism for controlling the intensity of light emitted from the wavelength conversion layer 76 toward the outside of the light emitting device 72. For example, the light intensity control unit 78 is provided with an anode 80, a liquid crystal layer 82, and a cathode 84 stacked in this order from the wavelength conversion layer 76 side. The light intensity control unit 78 changes the arrangement of the liquid crystals included in the liquid crystal layer 82 by changing the potential difference between the anode 80 and the cathode 84, and changes the transmittance of light from the wavelength conversion layer 76. As a result, the light intensity control unit 78 can control the intensity of the light emitted from the wavelength conversion layer 76 to the outside of the light emitting device 72.
 本実施形態に係る発光装置72の波長変換層76は、前述した各実施形態に係る発光層8の形成方法と同一の方法により、光源部74上に量子ドット構造体14を含む溶液を塗布し、乾燥させることにより形成できる。光源部74および光強度制御部78は、従来公知の製造方法により製造することができる。 The wavelength conversion layer 76 of the light emitting device 72 according to the present embodiment is coated with a solution containing the quantum dot structure 14 on the light source unit 74 by the same method as the method for forming the light emitting layer 8 according to each of the above-described embodiments. , Can be formed by drying. The light source unit 74 and the light intensity control unit 78 can be manufactured by a conventionally known manufacturing method.
 本実施形態においても、前述の各実施形態において説明した理由と同一の理由から、発光層8を含む波長変換層76が、劣化が低減した量子ドット16を含むため、波長変換層76の波長変換効率が改善する。 Also in the present embodiment, for the same reason as described in each of the above-described embodiments, the wavelength conversion layer 76 including the light emitting layer 8 includes the quantum dots 16 with reduced deterioration, so that the wavelength conversion of the wavelength conversion layer 76 is performed. Efficiency improves.
 また、発光装置72は、複数のサブ画素を有する画素を複数有していてもよく、当該サブ画素ごとに、波長変換層76と光強度制御部78とを含む積層体86を1つずつ備えていてもよい。この場合、同じ画素が含むサブ画素がそれぞれ備える波長変換層76は、放出する光の波長が互いに異なっていてもよい。さらに、発光装置72は、各サブ画素に備える光強度制御部78を個別に駆動してもよい。この場合、発光装置72は、複数の画素を有する表示装置を構成できる。 Further, the light emitting device 72 may have a plurality of pixels having a plurality of sub-pixels, and each sub-pixel includes one laminated body 86 including a wavelength conversion layer 76 and a light intensity control unit 78. You may be. In this case, the wavelength conversion layers 76 included in the sub-pixels included in the same pixel may emit different wavelengths of light. Further, the light emitting device 72 may individually drive the light intensity control unit 78 provided in each sub-pixel. In this case, the light emitting device 72 can form a display device having a plurality of pixels.
 なお、本実施形態において、発光装置72が、光強度制御部78を有し、光強度制御部78を透過する光の強度を制御することにより、発光装置72からの発光強度を制御する構成を説明した。ただし、これに限られず、発光装置72は、必ずしも光強度制御部78を備えていなくともよい。 In the present embodiment, the light emitting device 72 has a light intensity control unit 78, and controls the light emission intensity from the light emitting device 72 by controlling the intensity of the light transmitted through the light intensity control unit 78. explained. However, the present invention is not limited to this, and the light emitting device 72 does not necessarily have to include the light intensity control unit 78.
 この場合、例えば、発光装置72は、光源部74に、サブ画素ごとに光の強度を制御可能な青色LEDが形成されていてもよい。あるいは、発光装置72は、光源部74に、サブ画素ごとに形成された青色発光素子が形成され、当該青色発光素子からの光を個別に制御してもよい。この場合、光源部74からの光の強度を、サブ画素ごとに制御することにより、波長変換層76に照射される光、および、波長変換層76から放出される光の強度を、サブ画素ごとに制御することができる。 In this case, for example, in the light emitting device 72, a blue LED capable of controlling the light intensity for each sub-pixel may be formed in the light source unit 74. Alternatively, in the light emitting device 72, a blue light emitting element formed for each sub-pixel is formed in the light source unit 74, and the light from the blue light emitting element may be individually controlled. In this case, by controlling the intensity of the light from the light source unit 74 for each sub-pixel, the intensity of the light emitted to the wavelength conversion layer 76 and the intensity of the light emitted from the wavelength conversion layer 76 can be determined for each sub-pixel. Can be controlled to.
 <補遺>
 上述した各実施形態において、発光装置1および発光装置72は、単一の発光層8または波長変換層76を備える。換言すれば、上述した各実施形態に係る発光装置は、単一の光学層を備えている。しかしながら、上述した各実施形態に係る発光装置は、これに限られず、例えば、複数の光学層を備えていてもよい。この場合、少なくとも、複数の光学層のうちの1である、第1光学層が、上述した各実施形態に係る発光層8または波長変換層76と同一の構成を備えていればよい。
<Addendum>
In each of the above embodiments, the light emitting device 1 and the light emitting device 72 include a single light emitting layer 8 or a wavelength conversion layer 76. In other words, the light emitting device according to each of the above-described embodiments includes a single optical layer. However, the light emitting device according to each of the above-described embodiments is not limited to this, and may include, for example, a plurality of optical layers. In this case, at least one of the plurality of optical layers, the first optical layer, may have the same configuration as the light emitting layer 8 or the wavelength conversion layer 76 according to each of the above-described embodiments.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
1、72 発光装置
2    発光素子
8    発光層
14   量子ドット構造体
16   量子ドット
18   表面修飾部(配位体)
20   非水系極性溶媒
22   配位子
28   カチオン部
30   イオン液体
38   第1液
40   第2液
42   非極性溶媒
50   第3液
52   第4液
56   アニオン部
66   第9液
70   重合体
76   波長変換層
1, 72 Light emitting device 2 Light emitting element 8 Light emitting layer 14 Quantum dot structure 16 Quantum dot 18 Surface modification part (coordinator)
20 Non-aqueous polar solvent 22 ligant 28 cation part 30 ionic liquid 38 first liquid 40 second liquid 42 non-polar solvent 50 third liquid 52 fourth liquid 56 anion part 66 ninth liquid 70 polymer 76 wavelength conversion layer

Claims (8)

  1.  (1)量子ドットおよび非極性溶媒を含んでいる第1液と、(2)前記量子ドットに配位可能かつカチオンまたはアニオンを含んでいる配位子、イオン液体、ならびに非水系極性溶媒を含んでいる第2液と、を撹拌する撹拌工程と、
     前記撹拌工程によって得られた第3液から、前記量子ドット、前記配位子と前記イオン液体とを含む配位体、および前記非水系極性溶媒を含んでいる第4液を取り出す取出工程とを含んでおり、
     前記非水系極性溶媒は、低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを含んでいる量子ドット分散系の製造方法。
    It contains (1) a first liquid containing a quantum dot and a non-polar solvent, and (2) a ligand, an ionic liquid, and a non-aqueous polar solvent that can be coordinated to the quantum dot and contains a cation or anion. A stirring step of stirring the second liquid and the solvent,
    From the third liquid obtained by the stirring step, a take-out step of taking out the quantum dot, the coordination body containing the ligand and the ionic liquid, and the fourth liquid containing the non-aqueous polar solvent is performed. Includes
    A method for producing a quantum dot dispersion system, wherein the non-aqueous polar solvent contains at least one of a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether.
  2.  前記イオン液体は、重合性官能基を含んでいる請求項1に記載の量子ドット分散系の製造方法。 The method for producing a quantum dot dispersion system according to claim 1, wherein the ionic liquid contains a polymerizable functional group.
  3.  前記イオン液体は、
      ビス(トリフルオロメタンスルホニル)イミド、チオサリチル酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、リン酸ジブチル、酢酸、ジシアナミド、硝酸、硫酸水素、硫酸オクチル、メタンスルホン酸、チオシアン酸、トリフルオロメタンスルホン酸、アミノ酢酸、およびエチル硫酸の少なくとも1つと、
      脂肪族四級アンモニウムイオン、イミダゾリウムイオン、ピリジニウムイオン、ホスホニウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、およびスルホニウムイオンの少なくとも1つとを含んでいる請求項1または2に記載の量子ドット分散系の製造方法。
    The ionic liquid is
    Bis (trifluoromethanesulfonyl) imide, thiosalicylic acid, tetrafluoroboric acid, hexafluorophosphate, dibutyl phosphate, acetic acid, disianamide, nitrate, hydrogen sulfate, octyl sulfate, methanesulfonic acid, thiosian acid, trifluoromethanesulfonic acid, amino With at least one of acetic acid and ethyl sulphate,
    The production of the quantum dot dispersion system according to claim 1 or 2, which comprises at least one of an aliphatic quaternary ammonium ion, an imidazolium ion, a pyridinium ion, a phosphonium ion, a pyrrolidinium ion, a piperidinium ion, and a sulfonium ion. Method.
  4.  量子ドットと、
     前記量子ドットに配位可能な配位体と、
     低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを含んでいる非水系極性溶媒とを備えており、
     全体積に対して、水の含有量が0体積%以上0.1体積%以下である量子ドット分散系。
    Quantum dots and
    A coordinate body that can be coordinated to the quantum dot and
    It comprises a non-aqueous polar solvent containing at least one of a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether.
    A quantum dot dispersion system in which the water content is 0% by volume or more and 0.1% by volume or less with respect to the total volume.
  5.  沸点が100℃以上200℃以下である請求項4に記載の量子ドット分散系。 The quantum dot dispersion system according to claim 4, wherein the boiling point is 100 ° C. or higher and 200 ° C. or lower.
  6.  粘度が0.5mPa・s以上20mPa・s以下である請求項4または5に記載の量子ドット分散系。 The quantum dot dispersion system according to claim 4 or 5, wherein the viscosity is 0.5 mPa · s or more and 20 mPa · s or less.
  7.  前記非水系極性溶媒は、炭素原子数が2以上8以下である分子を含んでいる請求項4から6のいずれか1項に記載の量子ドット分散系。 The quantum dot dispersion system according to any one of claims 4 to 6, wherein the non-aqueous polar solvent contains a molecule having 2 or more and 8 or less carbon atoms.
  8.  発光層と、光源から出射された光の波長を変換する波長変換層との少なくとも一方を、光学層として1以上備えており、
     前記1以上の光学層のうち第1光学層は、
      量子ドットと、
      前記量子ドットに配位可能な配位体と、
      低級アルコール、低級グリコール、低級グリコールエステル、および低級グリコールエーテルの少なくとも1つを含んでいる非水系極性溶媒とを備えており、
      前記第1光学層の全体積に対して、水の含有量が0体積%以上0.1体積%以下である発光装置。
    At least one of a light emitting layer and a wavelength conversion layer that converts the wavelength of light emitted from a light source is provided as one or more optical layers.
    Of the one or more optical layers, the first optical layer is
    Quantum dots and
    A coordinate body that can be coordinated to the quantum dot and
    It comprises a non-aqueous polar solvent containing at least one of a lower alcohol, a lower glycol, a lower glycol ester, and a lower glycol ether.
    A light emitting device having a water content of 0% by volume or more and 0.1% by volume or less with respect to the total volume of the first optical layer.
PCT/JP2021/001067 2021-01-14 2021-01-14 Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device WO2022153443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001067 WO2022153443A1 (en) 2021-01-14 2021-01-14 Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001067 WO2022153443A1 (en) 2021-01-14 2021-01-14 Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device

Publications (1)

Publication Number Publication Date
WO2022153443A1 true WO2022153443A1 (en) 2022-07-21

Family

ID=82448076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001067 WO2022153443A1 (en) 2021-01-14 2021-01-14 Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device

Country Status (1)

Country Link
WO (1) WO2022153443A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131613A (en) * 2017-02-16 2018-08-23 住友化学株式会社 Curable resin composition, cured film and display device
WO2020004336A1 (en) * 2018-06-26 2020-01-02 東京応化工業株式会社 Liquid composition, quantum dot-containing film, optical film, luminescent display element panel, and luminescent display device
JP2020506428A (en) * 2017-02-03 2020-02-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Quantum dot dispersion, self-luminous photosensitive resin composition, color filter, and image display device
US20200224095A1 (en) * 2019-01-16 2020-07-16 Shin-A T&C Quantum dots in which ionic liquids are ion-bonded and their preparation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506428A (en) * 2017-02-03 2020-02-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Quantum dot dispersion, self-luminous photosensitive resin composition, color filter, and image display device
JP2018131613A (en) * 2017-02-16 2018-08-23 住友化学株式会社 Curable resin composition, cured film and display device
WO2020004336A1 (en) * 2018-06-26 2020-01-02 東京応化工業株式会社 Liquid composition, quantum dot-containing film, optical film, luminescent display element panel, and luminescent display device
US20200224095A1 (en) * 2019-01-16 2020-07-16 Shin-A T&C Quantum dots in which ionic liquids are ion-bonded and their preparation method

Similar Documents

Publication Publication Date Title
Xuan et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays
Yan et al. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr 3 quantum dots
Cao et al. An improved strategy for high-quality cesium bismuth bromine perovskite quantum dots with remarkable electrochemiluminescence activities
US10056523B2 (en) Device including quantum dots
US9447927B2 (en) Light-emitting device containing flattened anisotropic colloidal semiconductor nanocrystals and processes for manufacturing such devices
Kumawat et al. Ligand engineering to improve the luminance efficiency of CsPbBr3 nanocrystal based light-emitting diodes
Chen et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles
CN102473850B (en) Device material for hole injection transport layer, ink for forming hole injection transport layer, device having hole injection transport layer, and method for manufacturing same
EP3715318B1 (en) Method for preparation of a semiconductor nanocrystal
KR20050112938A (en) Method for preparing a multi-layer of nano-crystals and organic-inorganic hybrid electro-luminescence device using the same
Shen et al. Stable and efficient red perovskite light-emitting diodes based on Ca2+-doped CsPbI3 nanocrystals
US9958137B2 (en) Light-emitting device containing anisotropic flat colloidal semiconductor nanocrystals and methods of manufacture thereof
CN110943178A (en) Self-assembly multi-dimensional quantum well CsPbX3Perovskite nanocrystalline electroluminescent diode
US10347836B2 (en) QLED device and manufacturing method thereof, QLED display panel and QLED display device
CN110484233B (en) Zinc oxide nanocrystal, zinc oxide nanocrystal composition, preparation method of zinc oxide nanocrystal composition and electroluminescent device
WO2020174594A1 (en) Light-emitting device, display device
JP7202352B2 (en) Quantum dot and method for manufacturing quantum dot
Jo et al. Solution-processed fabrication of light-emitting diodes using CsPbBr3 perovskite nanocrystals
JP2022050363A (en) Quantum dot, method for producing quantum dot, and use of quantum dot
WO2020148912A1 (en) Light emitting element, electroluminescent device, and manufacturing method of light emitting element
WO2022091373A1 (en) Light emitting element, display device, lighting device, and method for producing light emitting element
Lee et al. Efficient and stable perovskite nanocrystal light-emitting diodes with sulfobetaine-based ligand treatment
WO2022153443A1 (en) Method for manufacturing quantum dot dispersion, quantum dot dispersion, and light-emitting device
JP7469891B2 (en) Quantum dot light emitting device and display device
KR100636959B1 (en) Method for preparing a multi-layer of nanocrystal-polymer and organic-inorganic hybrid electro-luminescence device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP