WO2022151605A1 - 调整区域内各子区域的导频信号发射总功率的方法和装置 - Google Patents

调整区域内各子区域的导频信号发射总功率的方法和装置 Download PDF

Info

Publication number
WO2022151605A1
WO2022151605A1 PCT/CN2021/086811 CN2021086811W WO2022151605A1 WO 2022151605 A1 WO2022151605 A1 WO 2022151605A1 CN 2021086811 W CN2021086811 W CN 2021086811W WO 2022151605 A1 WO2022151605 A1 WO 2022151605A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
region
sampling period
workload
area
Prior art date
Application number
PCT/CN2021/086811
Other languages
English (en)
French (fr)
Inventor
陈鸽
葛超
Original Assignee
中国科学院数学与系统科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院数学与系统科学研究院 filed Critical 中国科学院数学与系统科学研究院
Publication of WO2022151605A1 publication Critical patent/WO2022151605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a method and an apparatus for adjusting the total transmission power of pilot signals in each sub-area within an area.
  • the business volume of the communication network has increased significantly, and the connection between mobile communication and people's life and work is getting closer and closer, and the user's demand for the performance of the mobile communication network is also increasing.
  • the base station plays an important role.
  • the traffic undertaken by each cell is also unbalanced, which may easily lead to some cells.
  • the carrier frequency is tight and the service is blocked, while the carrier frequency of some cells is idle and wasted in a certain period of time, resulting in a low overall utilization rate of communication resources. Therefore, there is a need for a method that can dynamically adjust the transmit power of the pilot channels of each cell, so that the traffic undertaken by each cell is basically balanced, the communication quality of users is improved, and the communication network has a high coverage rate.
  • the embodiments of this specification provide a method and apparatus for adjusting the total power of pilot signal transmission in each sub-area in an area, so that the traffic borne by each sub-area is basically balanced, and the communication quality of users is improved while ensuring that the communication network satisfies the Override conditions.
  • the workload of the i-th sub-area in the k-th sampling period is calculated by calculating the traffic busyness f i (kT) of the i-th sub-area in the k-th sampling period.
  • the obtaining the workload distribution of each neighbor sub-region of the i-th sub-region in the k-th sampling period specifically includes:
  • the method further includes:
  • adjusting the total pilot signal transmission power of the i-th sub-region in the next sampling period of the k-th sampling period specifically includes:
  • T is the time length of the sampling period.
  • the following formula (1) is used to calculate the traffic busyness f i (kT) of the i-th sub-region in the k-th sampling period;
  • a i ( ⁇ ) represents the utilization rate of the physical resource block of the i-th sub-region
  • H represents the time period for calculating the utilization rate a i ( ⁇ ) of the physical resource block.
  • the weighted average value ⁇ i (kT) is calculated using the following formula (2);
  • N i represents the set of all neighboring sub-regions of the i-th sub-region
  • f j (kT) represents the traffic busyness of the j-th neighbor region of the i-th sub-region
  • ⁇ ji represents the j-th sub-region
  • the adjustment amount u i (kT) is calculated using the following formula (4) in the PID controller;
  • k p is the proportional coefficient in the PID controller
  • k i is the integral coefficient in the PID controller
  • k d is the differential coefficient in the PID controller
  • ⁇ >1 is a positive integer, indicating truncation the number of cycles.
  • the total pilot signal transmission power of the i-th sub-region in the k+1-th sampling period is adjusted to P i ((k+1)T);
  • P i max is the rated power of the radio frequency transmitting unit of the ith sub-area
  • P i min (kT) is the minimum transmit power of the pilot channel required for the coverage of the ith sub-area in the k th sampling period.
  • the invention also discloses a device for adjusting the total transmission power of pilot signals of each sub-region in the region, including:
  • the workload acquisition module is used to calculate the workload of the ith sub-region in the kth sampling period
  • a workload distribution acquisition module configured to acquire the workload distribution of each neighbor sub-region of the i-th sub-region within the k-th sampling period
  • an adjustment module configured to adjust the total pilot signal transmission power of the i-th sub-region in the next sampling period of the k-th sampling period based on the workload and the workload distribution;
  • each sub-region receives the workload distribution of its neighbor sub-regions in each sampling period, and then adjusts its own workload in the next sampling period based on its own workload and the workload distribution of its neighbor sub-regions.
  • each sub-region can dynamically adjust the total transmission power of the pilot signal in each sampling period, so that the traffic borne by each sub-region is basically balanced, which can improve the user's While ensuring the communication quality, the communication network meets the coverage conditions.
  • FIG. 1 is a schematic diagram of an application scenario of a method for adjusting pilot signal transmit power of each sub-region in an area provided by an embodiment of the present specification
  • FIG. 2 is a schematic flow diagram of an overall scheme of a method for adjusting pilot signal transmit power of each sub-region in a region provided by the embodiment of the present specification;
  • FIG. 3 is a schematic structural diagram of an apparatus for adjusting the transmit power of pilot signals of each sub-region in a region corresponding to FIG. 2 according to an embodiment of the present specification.
  • the business volume of the communication network has increased significantly, and the connection between mobile communication and people's life and work is getting closer and closer, and the user's demand for the performance of the mobile communication network is also increasing.
  • the base station plays an important role.
  • the traffic undertaken by each cell is also unbalanced, which may easily lead to some cells.
  • the carrier frequency is tight and the service is blocked, while the carrier frequency of some cells is idle and wasted in a certain period of time, resulting in a low overall utilization rate of communication resources.
  • An embodiment of the present invention provides a method for adjusting the total transmission power of pilot signals in each sub-region in a region, which can adjust the transmission power of pilot channels in each sub-region, so that the traffic borne by each sub-region is basically balanced. While improving the communication quality of users, it is ensured that the communication network satisfies the coverage conditions.
  • FIG. 1 is an application scenario of a method for adjusting the transmit power of pilot signals in each sub-region in an area provided by the embodiment of this specification. schematic diagram.
  • a certain area S (such as a certain city) includes several sub-areas covered with a mobile communication network, and the set B is a collection of these sub-areas covered with a mobile communication network (the communication signal can be 2g, 3g, 4g or 5g),
  • the set B includes a total of M sub-regions (assuming that M is equal to 11 in this scenario), specifically including b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 , b 9 , b 10 and b 11 , as shown in Figure 1, each sub-region b i has a neighbor sub-region set N i , that is, a set of sub-regions adjacent to this sub-region b i in position, taking sub-region b 1 as an example
  • the neighbor sub-region N 1 of the sub-region b 1 includes the sub-regions b 2 , b 3 , b 4 , b 7 , b 10
  • a base station is installed in each sub-area b i to transmit mobile signals for user terminals in the sub-area.
  • the distribution of traffic in different sub-areas is not balanced.
  • the traffic is also unbalanced, which leads to the shortage of carrier frequencies and service congestion in some sub-areas during a certain period of time, while the carrier frequencies of some sub-areas are in an idle state during this period, resulting in waste. not tall.
  • This embodiment of the present invention assumes that the neighbor relationship of the two sub-regions is symmetrical, that is, if the sub-region b i is the neighbor of the sub-region b j , then the sub-region b j must also be the neighbor of the sub-region b i .
  • the time is in a synchronized state.
  • FIG. 1 is a schematic flowchart of a method for adjusting the total transmission power of pilot signals in each sub-region in an area according to an embodiment of the present specification. From a program perspective, the execution body of the process may be a program mounted on an application server or an application client.
  • the process can include the following steps:
  • the sampling period is the time period for calculating the workload of the ith sub-region, which is used to indicate how often the workload of the ith sub-region is collected.
  • the sampling period can be set flexibly as needed, for example, it can be set to 1 minutes, 2 minutes or 10 minutes, but it should not be set too long. Workload is used to indicate how busy the ith sub-region is during the sampling period.
  • Step 104 Acquire the workload distribution of each neighbor sub-region of the i-th sub-region in the k-th sampling period.
  • the ith subregion needs to obtain the workload distribution of its neighbor subregions in the kth sampling period.
  • One implementation that can be taken is that at the end of the kth sampling period, each neighbor subregion of the ith subregion sends a message packet to the ith subregion, and the message package includes a private field identifying the subregion ID. and subregional workload values.
  • the message packet can be sent through the X2 interface; if the sub-areas are connected to each other through the 5G network, the message packet can be sent through the Xn interface; at the same time, it is assumed that the transmission of this message packet And the delay caused by the receiving time is far less than the time span of the sampling period, so compared with the sampling period, the delay caused by the sending and receiving of the message packet can be ignored.
  • Step 106 Based on the workload and the workload distribution, adjust the total pilot signal transmission power of the i-th sub-region in the next sampling period of the k-th sampling period.
  • the i-th sub-region After the i-th sub-region receives the workload distribution of its neighbor sub-regions in the k-th sampling period, it can adjust its own workload in the k-th sampling period based on the workload distribution and its own workload.
  • the total power of the pilot signal transmitted in the sampling period In this way, the total transmission power of the pilot signal of the i-th sub-region in the k+1-th sampling period is optimized, and the efficiency of the entire system is improved.
  • the i-th sub-area is the implementation object, based on the workload distribution of the neighbor sub-areas of the i-th sub-area in the k-th sampling period and the i-th sub-area in the k-th sampling period.
  • the workload of the k-th sampling period is used to adjust the total pilot signal transmission power of the i-th sub-region in the k+1-th sampling period, so that the total pilot signal transmission power of the i-th sub-region is optimized.
  • the efficiency of the system has also been improved. According to needs, the total transmission power of pilot signals in more sub-regions in the region S can be optimized.
  • each sub-region sends its workload value within this sampling period to its neighbor sub-regions, and simultaneously receives the workload values of all its neighbor sub-regions within this sampling period. Based on its own workload value in this sampling period and the workload distribution of its neighbor sub-regions in this period, the total power of its own pilot signal transmission in the next sampling period is optimized, so that the efficiency of the entire system can be improved. Further improve.
  • the technical solution of this embodiment calculates the workload of the i-th sub-area in the k-th sampling period by calculating the traffic busyness f i (kT) of the i-th sub-area in the k-th sampling period.
  • the acquiring the workload distribution of each neighbor sub-region of the i-th sub-region in the k-th sampling period specifically includes:
  • the method further includes:
  • adjusting the total pilot signal transmission power of the i-th sub-region in the next sampling period of the k-th sampling period specifically includes:
  • T is the time length of the sampling period.
  • a i ( ⁇ ) represents the utilization rate of the physical resource block of the i-th sub-region
  • H represents the time period for calculating the utilization rate a i ( ⁇ ) of the physical resource block.
  • N i represents the set of all neighboring sub-regions of the i-th sub-region
  • f j (kT) represents the traffic busyness of the j-th neighbor region of the i-th sub-region
  • ⁇ ji represents the j-th sub-region
  • the neighbor relationship of the sub-regions is symmetrical
  • ⁇ ij is used to represent the relationship between the i-th sub-region and the j-th sub-region.
  • Correlation coefficient and ⁇ ij >0, and ⁇ ij ⁇ ji .
  • the correlation coefficients ⁇ ij and ⁇ ji can be calculated based on an empirical formula according to the distance between the sub-regions b i and b j , geographical features, and the emission angle of the base station antenna.
  • k p is the proportional coefficient in the PID controller
  • k i is the integral coefficient in the PID controller
  • k d is the differential coefficient in the PID controller
  • ⁇ >1 is a positive integer, used for Indicates the maximum number of cycles for the subregion to store and utilize historical information.
  • P i max is the rated power of the radio frequency transmitting unit of the ith sub-area
  • P i min (kT) is the minimum transmit power of the pilot channel required for the coverage of the ith sub-area in the k th sampling period.
  • FIG. 3 is a schematic structural diagram of an apparatus for adjusting the total transmission power of pilot signals in each sub-region in the region shown in FIG. 1 according to an embodiment of the present specification.
  • the device may include:
  • the workload acquiring module 301 is configured to acquire the workload of the i-th sub-region in the k-th sampling period.
  • the workload distribution acquisition module 302 is configured to acquire the workload distribution of each neighbor sub-region of the i-th sub-region within the k-th sampling period.
  • the adjustment module 303 is configured to adjust the total transmission power of pilot signals in the i-th sub-region in the next sampling period of the k-th sampling period based on the workload and the workload distribution.
  • each sub-region receives the workload distribution of its neighbor sub-regions in each sampling period, and then adjusts its own workload in the next sampling period based on its own workload and the workload distribution of its neighbor sub-regions.
  • each sub-region can dynamically adjust the total transmission power of the pilot signal in each sampling period, so that the traffic borne by each sub-region is basically balanced, which can improve the user's While ensuring the communication quality, the communication network meets the coverage conditions.
  • a Programmable Logic Device (such as a Field Programmable Gate Array (FPGA)) is an integrated circuit whose logic function is determined by user programming of the device.
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal Joint Component Interconnect
  • JHDL Java Hardware Description Language
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog Verilog
  • the controller may be implemented in any suitable manner, for example, the controller may take the form of eg a microprocessor or processor and a computer readable medium storing computer readable program code (eg software or firmware) executable by the (micro)processor , logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers, examples of controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as part of the control logic of the memory.
  • the controller may take the form of eg a microprocessor or processor and a computer readable medium storing computer readable program code (eg software or firmware) executable by the (micro)processor , logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers
  • ASICs application specific integrated circuits
  • controllers include but are not limited to
  • the controller in addition to implementing the controller in the form of pure computer-readable program code, the controller can be implemented as logic gates, switches, application-specific integrated circuits, programmable logic controllers and embedded devices by logically programming the method steps.
  • the same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included therein for realizing various functions can also be regarded as a structure within the hardware component. Or even, the means for implementing various functions can be regarded as both a software module implementing a method and a structure within a hardware component.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device Or a combination of any of these devices.
  • embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include forms of non-persistent memory, random access memory (RAM) and/or non-volatile memory in computer readable media, such as read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), or other optical storage , magnetic tape cartridges, magnetic tape-disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present application may be provided as a method, a system or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the application may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the application may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本说明书实施例公开了一种调整区域内各子区域的导频信号发射总功率的方法和装置。该方案包括:获取第i个子区域在第k个采样周期内的工作负荷;获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况;基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率;其中,i=1,2,...,M,M为区域内子区域的数量,k=1,2,...,N,N为采样周期的数量。本发明技术方案能够动态调整区域内各子区域的导频信道发射总功率,使各子区域所承担的业务量基本均衡,在提高用户的通信质量的同时保证通信网络满足覆盖条件。

Description

调整区域内各子区域的导频信号发射总功率的方法和装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种调整区域内各子区域的导频信号发射总功率的方法和装置。
背景技术
随着移动通信技术的不断发展,通信网络的业务量大幅增加,移动通信与人们的生活和工作的联系越来越紧密,用户对移动通信网络性能的需求也在不断提升。在通讯信号的发射与接收过程中,基站发挥着重要的作用,但由于在不同时段、不同区域内业务量的分布不均衡,各小区所承担的话务量也不均衡,从而容易导致部分小区在某个时段载频紧张、业务阻塞,而部分小区在某个时段载频闲置、浪费,从而导致通信资源的整体利用率不高。因此需要一种能够动态调整各小区导频信道的发射功率的方法,从而使得各小区所承担的业务量基本均衡,提高用户的通信质量,同时保证通信网络有较高的覆盖率。
发明内容
本说明书实施例提供一种调整区域内各子区域的导频信号发射总功率的方法和装置,以使各子区域所承担的业务量基本均衡,在提高用户的通信质量的同时保证通信网络满足覆盖条件。
为解决上述技术问题,本说明书实施例是这样实现的:
本说明书实施例提供的一种调整区域内各子区域的导频信号发射总功率的方法,包括:
获取第i个子区域在第k个采样周期内的工作负荷;
获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况;
基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率;
其中,i=1,2,...,M,M为区域内子区域的数量,k=1,2,...,N,N为采样周期的数量。
优选地,通过计算所述第i个子区域在所述第k个采样周期内的业务繁忙度f i(kT)计算所述第i个子区域在第k个采样周期内的工作负荷。
优选地,所述获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况,具体包括:
在所述第k个采样周期结束时,接收所述第i个子区域的所述各个邻居子区域在所述第k个采样周期内的业务繁忙度信息,通过所述业务繁忙度信息计算所述工作负荷分布情况。
优选地,所述获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况之后,还包括:
将所述第i个子区域在所述第k个采样周期内的导频信号发射总功率P i(kT)和业务繁忙度f i(kT)发送给所述第i个子区域的所述各个邻居子区域。
优选地,所述基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率,具体包括:
计算所述第i个子区域在所述第k个采样周期内的业务繁忙度f i(kT)与所述第i个子区域的所述各个邻居子区域在第k个采样周期内的业务繁忙度的差值的加权平均值Δ i(kT);
计算所述第i个子区域的所述导频信号发射总功率P i(kT)的调整量u i(kT);
依据所述调整量u i(kT)对所述第i个子区域在第k+1个采样周期内的导频信号发射总功率进行调整;
其中,T为所述采样周期的时间长度。
优选地,利用下述公式(1)计算所述第i个子区域在第k个采样周期内的业务繁忙度f i(kT);
Figure PCTCN2021086811-appb-000001
其中,a i(·)表示所述第i个子区域的物理资源块的利用率,H表示计算所述物理资源块的利用率a i(·)的时间周期。
优选地,利用下述公式(2)计算所述加权平均值Δ i(kT);
Figure PCTCN2021086811-appb-000002
其中N i表示所述第i个子区域的所有邻居子区域组成的集合,f j(kT)表示所述第i个子区域的第j个邻居区域的业务繁忙度,ω ji表示第j个子区域和第i个子区域之间的相关系数且ω ji>0。
优选地,在PID控制器中利用下述公式(4)计算所述调整量u i(kT);
Figure PCTCN2021086811-appb-000003
其中,k p为所述PID控制器中的比例系数;k i为所述PID控制器中的积分系数;k d为所述PID控制器中的微分系数;δ>1为正整数,表示截断的周期数。
优选地,将所述第i个子区域在所述第k+1个采样周期内的导频信号发射总功率调整为P i((k+1)T);
Figure PCTCN2021086811-appb-000004
其中,
Figure PCTCN2021086811-appb-000005
P i max为第i个子区域射频发射单元的额定功率;P i min(kT)为第i个子区域在所述第k个采样周期满足覆盖所需的导频信道最低发射功率。
同时本发明还公开一种调整区域内各子区域的导频信号发射总功率的装置,包括:
工作负荷获取模块,用于计算第i个子区域在第k个采样周期内的工作负荷;
工作负荷分布情况获取模块,用于获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况;
调整模块,用于基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率;
其中,i=1,2,...,M,M为区域内子区域的数量,k=1,2,...,N,N为采样周期的数量。
本说明书中提供的至少一个实施例能够达到以下有益效果:
本说明书实施例中各子区域在每个采样周期内接收其邻居子区域的工作负荷的分布情况,然后基于自身的工作负荷和其邻居子区域的工作负荷分布情况,调整自身在下一个采样周期内的导频信号发射总功率,这样本说明书实施例中各子区域能够动态调整各采样周期内的导频信号的发射总功率,从而各子区域所承担的业务量基本均衡,能够在提高用户的通信质量的同时保证通信网络满足覆盖条件。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例提供的一种调整区域内各子区域的导频信号发射功率的方法的应用场景的示意图;
图2为本说明书实施例提供的一种调整区域内各子区域的导频信号发射 功率的方法的整体方案流程示意图;
图3为本说明书实施例提供的对应于图2的一种调整区域内各子区域的导频信号发射功率的装置的结构示意图。
具体实施方式
为使本说明书一个或多个实施例的目的、技术方案和优点更加清楚,下面将结合本说明书具体实施例及相应的附图对本说明书一个或多个实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本说明书的一部分实施例,而不是全部的实施例。基于本说明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书一个或多个实施例保护的范围。
随着移动通信技术的不断发展,通信网络的业务量大幅增加,移动通信与人们的生活和工作的联系越来越紧密,用户对移动通信网络性能的需求也在不断提升。在通讯信号的发射与接收过程中,基站发挥着重要的作用,但由于在不同时段、不同区域内业务量的分布不均衡,各小区所承担的话务量也不均衡,从而容易导致部分小区在某个时段载频紧张、业务阻塞,而部分小区在某个时段载频闲置、浪费,从而导致通信资源的整体利用率不高。
本发明实施例提供一种调整区域内各子区域的导频信号发射总功率的方法,能够调整各子区域的导频信道的发射功率,从而使得各子区域所承担的业务量基本均衡,在提高用户的通信质量的同时保证通信网络满足覆盖条件。
为了清楚地介绍本实施技术方案,下面先对本实施例技术方案的应用场景进行介绍,图1为本说明书实施例提供的一种调整区域内各子区域的导频信号发射功率的方法的应用场景的示意图。在某区域S(如某个城市)包括若干覆盖有移动通信网络的子区域,集合B为这些覆盖有移动通信网络(通信信号可以为2g、3g、4g或5g)的子区域构成的集合,集合B中总共包括M个子区域(本场景中假设M等于11),具体包括b 1、b 2、b 3、b 4、b 5、b 6、b 7、b 8、b 9、b 10 和b 11,如图1所示,每个子区域b i都有一个邻居子区域集合N i,即与此子区域b i在位置上相邻的子区域构成的集合,以子区域b 1为例进行说明,子区域b 1的邻居子区域N 1包括子区域b 2、b 3、b 4、b 7、b 10和子区域b 11。本实施例技术方案中每个子区域b i都安装有基站,为子区域内的用户终端发射移动信号,但在不同时段,不同子区域内业务量的分布不均衡,各子区域所承担的话务量也不均衡,从而导致部分子区域在某个时段载频紧张、业务阻塞,而部分子区域在此时段载频处于闲置状态,造成浪费,从整个系统的效率角度考虑,整个系统的效率不高。
本发明实施例假设两个子区域的邻居关系是对称的,即如果子区域b i是子区域b j的邻居,那么子区域b j也必定是子区域b i的邻居,同时假设各子区域的时间处于同步状态,在初始零时刻,子区域b i的导频信号发射总功率为P i(0),i=1,2,...,M,M为区域内子区域的数量。
以下结合附图,详细说明本申请实施例提供的技术方案。
图1为本说明书实施例提供的一种调整区域内各子区域的导频信号发射总功率的方法的流程示意图。从程序角度而言,流程的执行主体可以为搭载于应用服务器的程序或应用客户端。
如图1所示,该流程可以包括以下步骤:
步骤102:获取第i个子区域在第k个采样周期内的工作负荷,其中k=1,2,...,N,,N为采样周期的数量。
采样周期是计算第i个子区域的工作负荷的时间周期,用于表示每隔多长时间采集一次第i个子区域的工作负荷,根据需要,采样周期的时间长短可以灵活设置,例如可以设置为1分钟、2分钟或者10分钟,但不宜设置的过长。工作负荷用于表明第i个子区域在采样周期内的工作繁忙程度。
步骤104:获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况。
本实施例技术方案中,在第k个采样周期结束时,第i个子区域需要获得其邻居子区域在此第k个采样周期内的工作负荷分布情况。可以采取的一种实施方式是,在第k个采样周期结束时,第i个子区域的各个邻居子区域分别向所述第i个子区域发送消息包,此消息包包括标识子区域ID的私有字段和子区域工作负荷数值。具体地,如果各子区域通过4G网络互相联接,则可以通过X2接口发送此消息包;如果各子区域通过5G网络互相联接,则可以通过Xn接口发送此消息包;同时假设此消息包的发送及接收时间造成的延时远远小于采样周期的时间跨度,从而相较于采样周期,消息包的发送及接收造成的延时可以忽略不计。
步骤106:基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率。
第i个子区域在接收到其邻居子区域在第k个采样周期的工作负荷分布情况后,就可以基于此工作负荷分布情况和其自身的工作负荷,调整自己在第k个采样周期的下一个采样周期的导频信号发射总功率。这样,对所述第i个子区域在第k+1个采样周期的导频信号发射总功率做了优化,整个系统的效率得到了提高。
需要说明的是,本实施例技术方案中,是以所述第i个子区域为实施对象,基于第i个子区域的邻居子区域在第k个采样周期的工作负荷分布情况和第i个子区域在第k个采样周期的工作负荷,来调整第i个子区域在第k+1个采样周期内的导频信号发射总功率,这样对第i个子区域的导频信号发射总功率进行了优化,整个系统的效率也得到了提高。根据需要,可以对区域S内的更多个子区域的导频信号发射总功率进行优化。即在每个采用周期结束时,每个子区域都向其邻居子区域发送其在此采样周期内的工作负荷数值,同时接收其所有邻居子区域在此采样周期内的工作负荷数值,每个子区域都基于此采样周期内自身的工作负荷数值和其邻居子区域在此周期内自身的工作负荷分布 情况,对自身在下一个采样周期的导频信号发射总功率进行优化,这样整个系统的效率能够进行进一步提高。
基于图1的方法,本说明书实施例还提供该方法的一些具体实施方式,下面进行说明。
本实施例技术方案通过计算所述第i个子区域在所述第k个采样周期内的业务繁忙度f i(kT)计算所述第i个子区域在第k个采样周期内的工作负荷。
可选的,所述获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况,具体包括:
在所述第k个采样周期结束时,接收所述第i个子区域的所述各个邻居子区域在所述第k个采样周期内的业务繁忙度信息,通过所述业务繁忙度信息计算所述工作负荷分布情况。
同时,本实施例技术方案中,所述获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况之后,还包括:
将所述第i个子区域在所述第k个采样周期内的导频信号发射总功率P i(kT)和业务繁忙度f i(kT)发送给所述第i个子区域的所述各个邻居子区域。
具体的,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率,具体包括:
计算所述第i个子区域在所述第k个采样周期内的业务繁忙度f i(kT)与所述第i个子区域的所述各个邻居子区域在第k个采样周期内的业务繁忙度的差值的加权平均值Δ i(kT);
计算所述第i个子区域的所述导频信号发射总功率P i(kT)的调整量u i(kT);
依据所述调整量u i(kT)对所述第i个子区域在第k+1个采样周期内的导频信号发射总功率进行调整;
其中,T为所述采样周期的时间长度。
可选的,利用下述公式(1)计算所述第i个子区域在第k个采样周期内的业务繁忙度f i(kT);
Figure PCTCN2021086811-appb-000006
其中,a i(·)表示所述第i个子区域的物理资源块的利用率,H表示计算所述物理资源块的利用率a i(·)的时间周期。
可选的,利用下述公式(2)计算所述加权平均值Δ i(kT);
Figure PCTCN2021086811-appb-000007
其中N i表示所述第i个子区域的所有邻居子区域组成的集合,f j(kT)表示所述第i个子区域的第j个邻居区域的业务繁忙度,ω ji表示第j个子区域和第i个子区域之间的相关系数且ω ji>0,同时,本实施例技术方案中,子区域的邻居关系是对称的,ω ij用来表示第i个子区域和第j个子区域之间的相关系数且ω ij>0,并且ω ij=ω ji。具体地,相关系数ω ij和ω ji可以根据子区域b i和b j之间的距离、地理特征,和基站天线的发射角度,基于经验公式进行计算。
可选的,在PID控制器中利用下述公式(4)计算所述调整量u i(kT);
Figure PCTCN2021086811-appb-000008
其中,k p为所述PID控制器中的比例系数;k i为所述PID控制器中的积分系数;k d为所述PID控制器中的微分系数;δ>1为正整数,用于表示子区域存储和利用历史信息的最大周期数。
可选的,将所述第i个子区域在所述第k+1个采样周期内的导频信号发射总功率调整为P i((k+1)T);
Figure PCTCN2021086811-appb-000009
其中,
Figure PCTCN2021086811-appb-000010
P i max为第i个子区域射频发射单元的额定功率;P i min(kT)为第i个子区域在所述第k个采样周期满足覆盖所需的导频信道最低发射功率。
基于同样的思路,本说明书实施例还提供了上述方法对应的装置,图3为本说明书实施例提供的对应于图1的调整区域内各子区域的导频信号发射总功率的装置的结构示意图。如图3所示,该装置可以包括:
工作负荷获取模块301,用于获取第i个子区域在第k个采样周期内的工作负荷。
工作负荷分布情况获取模块302,用于获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况。
调整模块303,用于基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率。
其中,i=1,2,...,M,M为区域内子区域的数量,k=1,2,...,N,N为采样周期的数量。
本说明书实施例中各子区域在每个采样周期内接收其邻居子区域的工作负荷的分布情况,然后基于自身的工作负荷和其邻居子区域的工作负荷分布情况,调整自身在下一个采样周期内的导频信号发射总功率,这样本说明书实施例中各子区域能够动态调整各采样周期内的导频信号的发射总功率,从而各子区域所承担的业务量基本均衡,能够在提高用户的通信质量的同时保证通信网络满足覆盖条件。
上述对本说明书特定实施例进行了描述。其他实施例在所附权利要求书 的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字符系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很 容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字符助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、 CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存 (PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字符多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带式磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技 术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种调整区域内各子区域的导频信号发射总功率的方法,其特征在于,包括:
    获取第i个子区域在第k个采样周期内的工作负荷;
    获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况;
    基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率;
    其中,i=1,2,...,M,M为区域内子区域的数量,k=1,2,...,N,N为采样周期的数量。
  2. 根据权利要求1所述的方法,其特征在于,通过计算所述第i个子区域在所述第k个采样周期内的业务繁忙度f i(kT)计算所述第i个子区域在第k个采样周期内的工作负荷。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况,具体包括:
    在所述第k个采样周期结束时,接收所述第i个子区域的所述各个邻居子区域在所述第k个采样周期内的业务繁忙度信息,通过所述业务繁忙度信息计算所述工作负荷分布情况。
  4. 根据权利要求1所述的方法,其特征在于,所述获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况之后,还包括:
    将所述第i个子区域在所述第k个采样周期内的导频信号发射总功率P i(kT)和业务繁忙度f i(kT)发送给所述第i个子区域的所述各个邻居子区域。
  5. 根据权利要求1所述的方法,其特征在于,所述基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率,具体包括:
    计算所述第i个子区域在所述第k个采样周期内的业务繁忙度f i(kT)与所述第i个子区域的所述各个邻居子区域在第k个采样周期内的业务繁忙度的差值的加权平均值Δ i(kT);
    计算所述第i个子区域的所述导频信号发射总功率P i(kT)的调整量u i(kT);
    依据所述调整量u i(kT)对所述第i个子区域在第k+1个采样周期内的导频信号发射总功率进行调整;
    其中,T为所述采样周期的时间长度。
  6. 根据权利要求2所述的方法,其特征在于,利用下述公式(1)计算所述第i个子区域在第k个采样周期内的业务繁忙度f i(kT);
    Figure PCTCN2021086811-appb-100001
    其中,a i(·)表示所述第i个子区域的物理资源块的利用率,H表示计算所述物理资源块的利用率a i(·)的时间周期。
  7. 根据权利要求5所述的方法,其特征在于,利用下述公式(2)计算所述加权平均值Δ i(kT);
    Figure PCTCN2021086811-appb-100002
    其中N i表示所述第i个子区域的所有邻居子区域组成的集合,f j(kT)表示所述第i个子区域的第j个邻居区域的业务繁忙度,ω ji表示第j个子区域和第i个子区域之间的相关系数且ω ji>0。
  8. 根据权利要求5所述的方法,其特征在于,在PID控制器中利用下述公式(4)计算所述调整量u i(kT);
    Figure PCTCN2021086811-appb-100003
    其中,k p为所述PID控制器中的比例系数;k i为所述PID控制器中的积分系数;k d为所述PID控制器中的微分系数;δ>1为正整数,用于表示子区域存储和利用历史信息的最大周期数。
  9. 根据权利要求5所述的方法,其特征在于,将所述第i个子区域在所述第k+1个采样周期内的导频信号发射总功率调整为P i((k+1)T);
    Figure PCTCN2021086811-appb-100004
    其中,
    Figure PCTCN2021086811-appb-100005
    P i max为第i个子区域射频发射单元的额定功率;P i min(kT)为第i个子区域在所述第k个采样周期满足覆盖所需的导频信道最低发射功率。
  10. 一种调整区域内各子区域的导频信号发射总功率的装置,其特征在于,包括:
    工作负荷获取模块,用于获取第i个子区域在第k个采样周期内的工作负荷;
    工作负荷分布情况获取模块,用于获取所述第i个子区域的各个邻居子区域在所述第k个采样周期内的工作负荷分布情况;
    调整模块,用于基于所述工作负荷和所述工作负荷分布情况,调整所述第i个子区域在所述第k个采样周期的下一个采样周期内的导频信号发射总功率;
    其中,i=1,2,...,M,M为区域内子区域的数量,k=1,2,...,N,N为采样周期的数量。
PCT/CN2021/086811 2021-01-12 2021-04-13 调整区域内各子区域的导频信号发射总功率的方法和装置 WO2022151605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110036222.9 2021-01-12
CN202110036222.9A CN112770381B (zh) 2021-01-12 2021-01-12 调整区域内各子区域的导频信号发射总功率的方法和装置

Publications (1)

Publication Number Publication Date
WO2022151605A1 true WO2022151605A1 (zh) 2022-07-21

Family

ID=75701604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086811 WO2022151605A1 (zh) 2021-01-12 2021-04-13 调整区域内各子区域的导频信号发射总功率的方法和装置

Country Status (2)

Country Link
CN (1) CN112770381B (zh)
WO (1) WO2022151605A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709771B (zh) * 2021-08-20 2023-03-10 中国科学院数学与系统科学研究院 调整信号发射功率的方法、装置、设备和可读介质
CN114205829B (zh) * 2021-11-05 2023-08-22 中国科学院数学与系统科学研究院 一种基于mr数据的移动通信网络覆盖率的计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079574A1 (en) * 2002-03-19 2003-09-25 Telia Ab (Publ) Method for configuring the power output of the pilot channels in a cellular radio network
CN102027788A (zh) * 2008-05-16 2011-04-20 高通股份有限公司 多载波通信系统中的动态覆盖调整
US20120270593A1 (en) * 2011-04-19 2012-10-25 Korea University Research And Business Foundation Method and apparatus for power control and load balancing based on load estimation of neighbor cell in wireless communication system
CN103237328A (zh) * 2013-04-11 2013-08-07 大唐移动通信设备有限公司 基于小区自动调整覆盖的负载均衡方法和设备
CN105307258A (zh) * 2015-09-23 2016-02-03 上海华为技术有限公司 一种调整导频参考信号发射功率的方法及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428830C (zh) * 2006-08-08 2008-10-22 华为技术有限公司 移动通信系统中邻区干扰抑制方法及基站节点
CN101848532B (zh) * 2009-03-24 2012-08-29 电信科学技术研究院 一种参考信号接收功率阈值的调整方法及设备
JP5222794B2 (ja) * 2009-06-05 2013-06-26 株式会社日立製作所 無線通信システムのリソース割当方法及び通信装置
CN101965038B (zh) * 2009-07-23 2015-06-10 中兴通讯股份有限公司 系统间基站的节能控制方法与装置
CN102395136B (zh) * 2011-11-04 2014-01-15 中国科学院研究生院 一种基于邻区场强信息的话务量分布计算方法及系统
WO2019019186A1 (zh) * 2017-07-28 2019-01-31 华为技术有限公司 上行功率控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079574A1 (en) * 2002-03-19 2003-09-25 Telia Ab (Publ) Method for configuring the power output of the pilot channels in a cellular radio network
CN102027788A (zh) * 2008-05-16 2011-04-20 高通股份有限公司 多载波通信系统中的动态覆盖调整
US20120270593A1 (en) * 2011-04-19 2012-10-25 Korea University Research And Business Foundation Method and apparatus for power control and load balancing based on load estimation of neighbor cell in wireless communication system
CN103237328A (zh) * 2013-04-11 2013-08-07 大唐移动通信设备有限公司 基于小区自动调整覆盖的负载均衡方法和设备
CN105307258A (zh) * 2015-09-23 2016-02-03 上海华为技术有限公司 一种调整导频参考信号发射功率的方法及基站

Also Published As

Publication number Publication date
CN112770381A (zh) 2021-05-07
CN112770381B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2022151605A1 (zh) 调整区域内各子区域的导频信号发射总功率的方法和装置
Xia et al. Phone2Cloud: Exploiting computation offloading for energy saving on smartphones in mobile cloud computing
TWI701597B (zh) 任務的分配方法、裝置及設備
US10206056B2 (en) Access to mobile location related information
TWI542986B (zh) 管理系統、多核系統和其管理方法
CN109002357B (zh) 资源分配方法、装置及物联网系统
US20170212581A1 (en) Systems and methods for providing power efficiency via memory latency control
CN109639833A (zh) 一种基于无线城域网微云负载均衡的任务调度方法
US20230128529A1 (en) Acceleration system, method and storage medium based on convolutional neural network
CN110727633A (zh) 基于SoC FPGA的边缘人工智能计算系统构架
US20240036631A1 (en) Protocol state aware power management
KR20180075760A (ko) 동적 전압 주파수 스케일링을 사용하는 시스템 온 칩 및 그것의 동작 방법
CN111162852B (zh) 一种基于匹配学习的泛在电力物联网接入方法
CN115396375B (zh) 一种业务处理方法、装置以及设备
WO2019000778A1 (zh) 一种虚拟小区的构建方法和装置
US20220224762A1 (en) Queuing control for distributed compute network orchestration
CN110838989A (zh) 一种用于基于令牌进行网络限流的方法和装置
CN113938992B (zh) 一种阈值确定方法及装置
CN114884823A (zh) 流量拥塞控制方法、装置、计算机可读介质及电子设备
CN109376845B (zh) 动态调整方法及动态调整协处理器
CN109510694B (zh) 一种控制信道单元资源的配置方法及网络侧设备
Sun et al. Performance analysis of mobile cloud computing with bursty demand: A tandem queue model
KR20230013028A (ko) 두 프로세서 시스템 간의 협력적 동적 클록 및 전압 스케일링 (dcvs)
CN113709771B (zh) 调整信号发射功率的方法、装置、设备和可读介质
CN110609603A (zh) 调频的方法及装置、终端和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918804

Country of ref document: EP

Kind code of ref document: A1