WO2022151432A1 - 资源调度的方法和通信设备 - Google Patents

资源调度的方法和通信设备 Download PDF

Info

Publication number
WO2022151432A1
WO2022151432A1 PCT/CN2021/072317 CN2021072317W WO2022151432A1 WO 2022151432 A1 WO2022151432 A1 WO 2022151432A1 CN 2021072317 W CN2021072317 W CN 2021072317W WO 2022151432 A1 WO2022151432 A1 WO 2022151432A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
message
search space
configuration information
scheduling
Prior art date
Application number
PCT/CN2021/072317
Other languages
English (en)
French (fr)
Inventor
李新县
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/072317 priority Critical patent/WO2022151432A1/zh
Priority to EP21918818.2A priority patent/EP4270838A1/en
Priority to BR112023014216A priority patent/BR112023014216A2/pt
Priority to PCT/CN2021/093104 priority patent/WO2022151620A1/zh
Priority to CN202180089831.9A priority patent/CN116830499A/zh
Priority to AU2021420338A priority patent/AU2021420338A1/en
Publication of WO2022151432A1 publication Critical patent/WO2022151432A1/zh
Priority to US18/352,321 priority patent/US20230361961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present application relates to the field of communication, and more particularly, to a method and communication device for resource scheduling.
  • a carrier aggregation (carrier aggregation, CA) technology is introduced to support a larger transmission bandwidth.
  • UE user equipment
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the present application provides a method and communication device for resource scheduling, which can effectively reduce the overhead of control signaling, and realize the scheduling requirements of diversified communication and the effectiveness of the system.
  • a first aspect provides a resource scheduling method, comprising: receiving a first message on a first downlink carrier of a first cell, where the first message is used to indicate scheduling information of a physical downlink shared channel PDSCH, the PDSCH corresponds to the first downlink carrier of the first cell and the second downlink carrier of the second cell; receiving a second message, the second message is used to indicate the physical uplink sharing of the first uplink carrier of the second cell Scheduling information of the channel PUSCH; according to the second message, the PUSCH is sent on the first uplink carrier of the second cell.
  • the terminal device can schedule the PDSCH of the first downlink carrier of the first cell and the PDSCH of the second downlink carrier of the second cell by receiving the first message on the first downlink carrier of the first cell;
  • the terminal device can schedule the PUSCH of the first uplink carrier of the second cell according to the second message received, and send the PUSCH to the network device, which effectively reduces the overhead of control signaling and satisfies the requirements of multiple It realizes the diversification of communication and the effectiveness of the system.
  • the PDSCH includes a first PDSCH and a second PDSCH, wherein the first PDSCH corresponds to the first cell, and the second PDSCH corresponds to the second cell.
  • the PDSCH includes a third PDSCH, wherein the third PDSCH corresponds to the first cell and the second cell.
  • the receiving the second message includes: receiving the second message on a second downlink carrier of the second cell; or receiving the second message on the first cell The second message is received on the first downlink carrier of the third cell; or the second message is received on the third downlink carrier of the third cell.
  • the terminal device may also receive DCI on the second downlink carrier of the second cell, which is used to indicate the scheduling information corresponding to the PDSCH of the third downlink carrier of the second cell.
  • the terminal equipment may also receive DCI on the second downlink carrier of the second cell, to instruct the terminal equipment to schedule the PUSCH or PDSCH of the second cell across carriers; and/or to instruct the terminal equipment to jointly schedule the second cell PDSCH and PDSCH of the third cell.
  • the terminal device may also receive DCI on the first downlink carrier of the first cell, which is used to instruct the terminal device to downlink cross-carrier scheduling on the first downlink carrier of the first cell.
  • PDSCH downlink cross-carrier scheduling on the first downlink carrier of the first cell.
  • the terminal equipment may also receive DCI on the first downlink carrier of the first cell, which is used to instruct the terminal equipment to schedule the PUSCH or PDSCH of the third cell across carriers; and/or used to instruct the terminal equipment to jointly schedule the first downlink in the downlink.
  • DCI on the first downlink carrier of the first cell, which is used to instruct the terminal equipment to schedule the PUSCH or PDSCH of the third cell across carriers; and/or used to instruct the terminal equipment to jointly schedule the first downlink in the downlink.
  • first configuration information of a first cell is received, where the first configuration information of the first cell is used to indicate a first search space; Spatial detection of a third message, where the third message is used to indicate the scheduling message of the third PDSCH of the first downlink carrier of the first cell or the scheduling message of the first PUSCH of the second uplink carrier of the first cell ; receiving first configuration information of a second cell, where the first configuration information of the second cell is used to indicate a second search space; and detecting the first message in the second search space.
  • the first configuration information of the first cell is the same as the first configuration information of the second cell
  • the second search space is the same as the first configuration information of the first cell.
  • the search space is the same, and the first message is detected in the first search space.
  • the two search spaces of the self-scheduling and joint scheduling both exist and are shared, that is, the terminal device can also blindly detect the first message in the first search space.
  • second configuration information of the first cell is received, where the second configuration information of the first cell is used to indicate a third search space;
  • a fourth message of spatial detection where the fourth message is used to indicate the scheduling message of the third PDSCH of the first downlink carrier of the first cell or the scheduling message of the first PUSCH of the second uplink carrier of the first cell ; Detect the first message in the third search space.
  • the first message may also be blindly detected in the self-scheduling search space.
  • second configuration information of a second cell is received, where the second configuration information of the second cell is used to indicate a fourth search space;
  • the second message is spatially detected.
  • third configuration information of the second cell is received, where the third configuration information of the second cell is used to indicate a fifth search space, and the fifth search space used to detect the first message; the second configuration information of the second cell is the same as the third configuration information of the second cell, the fourth search space is the same as the fifth search space, and in the The fifth search space detects the second message.
  • both search spaces of joint scheduling and uplink scheduling exist and are shared, that is, the terminal device can also blindly detect the second message in the search space of joint scheduling.
  • fourth configuration information of the second cell is received, where the fourth configuration information of the second cell is used to indicate a sixth search space, and the sixth search space for detecting the first message; detecting the second message in the sixth search space.
  • first indication information is received, where the first indication information is used to indicate that the first message is detected in the seventh search space, or the first indication information is used to indicate that the first message information is detected in an eighth search space, wherein the seventh search space includes a search space for carrying a fifth message, and the fifth message is used to indicate the information of the first cell.
  • the seventh search space includes a search space for carrying a fifth message
  • the fifth message is used to indicate the information of the first cell.
  • the eighth search space includes a search space for carrying the first message;
  • the Receiving the first message on the first downlink carrier of the first cell includes: receiving the first message on the first downlink carrier of the first cell according to the first indication information.
  • the method further includes: receiving fifth configuration information, where the fifth configuration information is used to indicate the first message Eight search spaces, the fifth configuration information includes configuration information related to the second cell.
  • the method further includes: receiving sixth configuration information, where the sixth configuration information is used to indicate the first message Seven search spaces, the seventh search space includes the eighth search space, and the sixth configuration information includes configuration information related to the first cell.
  • the terminal device can monitor at least one of the PDCCH corresponding to self-scheduling, cross-carrier scheduling and joint scheduling on the first cell and/or the second cell according to different configuration information.
  • a method for resource scheduling including: sending a first message on a first downlink carrier of a first cell, where the first message is used to indicate scheduling information of a physical downlink shared channel PDSCH, the The PDSCH corresponds to the first downlink carrier of the first cell and the second downlink carrier of the second cell; a second message is sent, and the second message is used to indicate the physical uplink sharing of the first uplink carrier of the second cell Scheduling information of the channel PUSCH; according to the second message, the PUSCH is received on the first uplink carrier of the second cell.
  • the network device can schedule the PDSCH of the first downlink carrier of the first cell and the PDSCH of the second downlink carrier of the second cell by sending the first message on the first downlink carrier of the first cell;
  • the network device can schedule the PUSCH of the first uplink carrier of the second cell according to the second message sent, and receive the PUSCH sent by the terminal device, which effectively reduces the overhead of control signaling and satisfies the Diversified scheduling requirements realize the diversification of communication and the effectiveness of the system.
  • the PDSCH includes a first PDSCH and a second PDSCH, wherein the first PDSCH corresponds to the first cell, and the second PDSCH corresponds to the second cell.
  • the PDSCH includes a third PDSCH, wherein the third PDSCH corresponds to the first cell and the second cell.
  • the sending the second message includes: sending the second message on a second downlink carrier of the second cell; or sending the second message on the first cell The second message is sent on the first downlink carrier of the third cell; or the second message is sent on the third downlink carrier of the third cell.
  • the network device may also send DCI on the third downlink carrier of the second cell to indicate scheduling information corresponding to the PDSCH of the third downlink carrier of the second cell.
  • the network device may also send DCI on the fourth downlink carrier of the second cell to instruct the terminal device to schedule the PUSCH or PDSCH of the second cell across carriers; and/or to instruct the terminal device to jointly schedule the PUSCH or PDSCH of the second cell.
  • PDSCH and PDSCH of the third cell may also send DCI on the fourth downlink carrier of the second cell to instruct the terminal device to schedule the PUSCH or PDSCH of the second cell across carriers; and/or to instruct the terminal device to jointly schedule the PUSCH or PDSCH of the second cell.
  • the network device may also send DCI on the third downlink carrier of the first cell to instruct the terminal device to downlink cross-carrier scheduling PDSCH on the third downlink carrier of the first cell. .
  • the network device may also send DCI on the fourth downlink carrier of the first cell to instruct the terminal device to schedule the PUSCH or PDSCH of the third cell across carriers; and/or to instruct the terminal device to jointly schedule the first cell in downlink PDSCH and PDSCH of the third cell.
  • a third message is sent on the first downlink carrier of the first cell, where the third message is used to indicate the first
  • the scheduling message of the third PDSCH of the downlink carrier or the scheduling message of the first PUSCH of the second uplink carrier of the first cell the first configuration information of the first cell is sent, and the first configuration information of the first cell is used to indicate the first search space, the first search space is used to detect the third message; send the first configuration information of the second cell, the first configuration information of the second cell is used to indicate the second search space, and the second search space is used to detect the first message.
  • second configuration information of the first cell is sent, where the second configuration information of the first cell is used to indicate a third search space, and the third search space used to detect the fourth message and the first message, where the fourth message is used to indicate the scheduling information of the fourth PDSCH of the first downlink carrier of the first cell or the second uplink carrier of the first cell
  • the scheduling information of the second PUSCH is sent, where the second configuration information of the first cell is used to indicate a third search space, and the third search space used to detect the fourth message and the first message, where the fourth message is used to indicate the scheduling information of the fourth PDSCH of the first downlink carrier of the first cell or the second uplink carrier of the first cell.
  • the first message may also be blindly detected in the self-scheduling search space.
  • second configuration information of the second cell is sent, where the second configuration information of the second cell is used to indicate a fourth search space, and the fourth search space for detecting the second message.
  • third configuration information of the second cell is sent, where the third configuration information of the second cell is used to indicate a fifth search space, and the fifth search space for detecting the first message.
  • both search spaces of joint scheduling and uplink scheduling exist and are shared, that is, the terminal device can also blindly detect the second message in the search space of joint scheduling.
  • fourth configuration information of the second cell is sent, where the fourth configuration information of the second cell is used to indicate a sixth search space, and the sixth search space for detecting the first message and the second message.
  • a communication device including: a transceiver unit configured to receive a first message on a first downlink carrier of a first cell, where the first message is used to indicate scheduling information of a physical downlink shared channel PDSCH , the PDSCH corresponds to the first downlink carrier of the first cell and the second downlink carrier of the second cell; the transceiver unit is further configured to receive a second message, and the second message is used to indicate the first downlink carrier of the second cell. Scheduling information of the physical uplink shared channel PUSCH of the first uplink carrier of the second cell; the transceiver unit is further configured to send the PUSCH on the first uplink carrier of the second cell according to the second message.
  • the PDSCH includes a first PDSCH and a second PDSCH, wherein the first PDSCH corresponds to the first cell, and the second PDSCH corresponds to the second cell.
  • the PDSCH includes a third PDSCH, wherein the third PDSCH corresponds to the first cell and the second cell.
  • the transceiver unit is further configured to receive the second message on the second downlink carrier of the second cell; or in the first cell The second message is received on the first downlink carrier of the third cell; or the second message is received on the third downlink carrier of the third cell.
  • the transceiver unit is further configured to receive first configuration information of the first cell, where the first configuration information of the first cell is used to indicate the first search space; a processing unit, configured to detect a third message in the first search space, where the third message is used to indicate the scheduling message of the third PDSCH of the first downlink carrier of the first cell or the first The scheduling message of the first PUSCH of the second uplink carrier of the cell; the transceiver unit is further configured to receive first configuration information of the second cell, where the first configuration information of the second cell is used to indicate the second search space; The processing unit is further configured to detect the first message in the second search space.
  • the processing unit is further used for the first configuration information of the first cell to be the same as the first configuration information of the second cell.
  • the first search space detects the first message.
  • the transceiver unit is further configured to receive second configuration information of the first cell, where the second configuration information of the first cell is used to indicate a third search space; the processing unit is further configured to detect a fourth message in the third search space, where the fourth message is used to indicate the scheduling message of the third PDSCH of the first downlink carrier of the first cell or all The scheduling message of the first PUSCH of the second uplink carrier of the first cell; the processing unit is further configured to detect the first message in the third search space.
  • the transceiver unit is further configured to receive second configuration information of the second cell, where the second configuration information of the second cell is used to indicate the fourth search space; the processing unit is further configured to detect the second message in the fourth search space.
  • the transceiver unit is further configured to receive third configuration information of the second cell, where the third configuration information of the second cell is used to indicate the fifth search space, the fifth search space is used to detect the first message; the processing unit is further used for the second configuration information of the second cell to be the same as the third configuration information of the second cell, and the second configuration information of the second cell is the same as that of the second cell.
  • the fifth search space detects the second message.
  • the transceiver unit is further configured to receive fourth configuration information of the second cell, where the fourth configuration information of the second cell is used to indicate the sixth search space, the sixth search space is used to detect the first message; the processing unit is further configured to detect the second message in the sixth search space.
  • a communication device comprising: a transceiver unit configured to send a first message on a first downlink carrier of a first cell, where the first message is used to indicate scheduling information of a physical downlink shared channel PDSCH , the PDSCH corresponds to the first downlink carrier of the first cell and the second downlink carrier of the second cell; the transceiver unit is further configured to send a second message, where the second message is used to indicate the first downlink carrier Scheduling information of the physical uplink shared channel PUSCH of the first uplink carrier of the second cell; the transceiver unit is further configured to receive the PUSCH on the first uplink carrier of the second cell according to the second message.
  • the PDSCH includes a first PDSCH and a second PDSCH, wherein the first PDSCH corresponds to the first cell, and the second PDSCH corresponds to the second cell.
  • the PDSCH includes a third PDSCH, wherein the third PDSCH corresponds to the first cell and the second cell.
  • the transceiver unit is further configured to send the second message on the second downlink carrier of the second cell; or in the first cell The second message is sent on the first downlink carrier of the third cell; or the second message is sent on the third downlink carrier of the third cell.
  • the transceiver unit is further configured to send a third message on the first downlink carrier of the first cell, where the third message is used to indicate The scheduling message of the third PDSCH of the first downlink carrier of the first cell or the scheduling message of the first PUSCH of the second uplink carrier of the first cell; the transceiver unit is further configured to send the first cell's first configuration information, where the first configuration information of the first cell is used to indicate a first search space, and the first search space is used to detect the third message; the transceiver unit is further configured to send the second cell The first configuration information of the second cell is used to indicate the second search space, and the second search space is used to detect the first message.
  • the transceiver unit is further configured to send second configuration information of the first cell, where the second configuration information of the first cell is used to indicate the third search space, the third search space is used to detect a fourth message and the first message, and the fourth message is used to indicate the scheduling information of the fourth PDSCH of the first downlink carrier of the first cell or the Scheduling information of the second PUSCH of the second uplink carrier of the first cell.
  • the transceiver unit is further configured to send third configuration information of the second cell, where the third configuration information of the second cell is used to indicate the fifth search space, and the fifth search space is used to detect the first message.
  • the transceiver unit is further configured to send fourth configuration information of the second cell, where the fourth configuration information of the second cell is used to indicate the sixth search space, and the sixth search space is used to detect the first message and the second message.
  • a terminal device including a transceiver, a processor, and a memory, where the processor is used to control the transceiver to send and receive signals, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory
  • the computer program enables the terminal device to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device further includes a transmitter (transmitter) and a receiver (receiver).
  • a network device including a transceiver, a processor, and a memory, where the processor is used to control the transceiver to send and receive signals, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory A computer program that causes the network device to perform the method of the second aspect or any one of possible implementations of the second aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication system including the above-mentioned terminal device and/or network device.
  • the communication system may further include other devices that interact with the terminal device in the solutions provided in the embodiments of the present application.
  • the communication system may further include other devices that interact with network devices in the solutions provided in the embodiments of the present application.
  • a communication device comprising a module or unit for implementing the method in the first aspect or any possible implementation manner of the first aspect; or for implementing the second aspect or any one of the second aspect A module or unit of possible implementations of methods in a mode.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, a terminal device, a P-CSCF device or a gateway device, etc.), and the communication chip may include a transmitter for sending information or data, and a transmitter for receiving information or data 's receiver.
  • the communication chip may include a transmitter for sending information or data, and a transmitter for receiving information or data 's receiver.
  • a computer-readable storage medium stores a computer program or code, and when the computer program or code is run on a computer, causes the computer to execute the above-mentioned first aspect or A method in any possible implementation manner of the first aspect, and a method in the second aspect or any possible implementation manner of the second aspect.
  • a tenth aspect provides a chip comprising at least one processor coupled to a memory for storing a computer program, the processor for invoking and running the computer program from the memory, so that the installation
  • the communication device with the chip executes the method in the first aspect or any possible implementation manner of the first aspect, and the second aspect or any possible implementation manner of the second aspect.
  • the chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a computer program product comprising: computer program code, when the computer program code is run by a terminal device, the terminal device is made to execute the above-mentioned first aspect or the first aspect
  • the method in any of the possible implementations, or when the computer program code is executed by the network device, causes the network device to execute the second aspect or the method in any of the possible implementations of the second aspect.
  • the physical downlink shared channel of multiple carriers can be scheduled through one downlink control information, which effectively reduces the overhead cost of control signaling, satisfies diversified scheduling requirements, and realizes communication diversification and system efficiency. sex.
  • a carrier is configured with joint PDSCH scheduling, and a design scheme of a search space for joint scheduling of the carrier is provided.
  • FIG. 1 is a schematic diagram of an example of a communication system to which the present application is applied.
  • FIG. 2 is a schematic diagram of a carrier aggregation scenario applicable to the present application.
  • FIG. 3 is a schematic diagram of the distribution of PDCCH candidate positions under different aggregation levels specified in the current protocol.
  • FIG. 4 is a schematic diagram of an example of cross-carrier scheduling to which the present application is applied.
  • FIG. 5 is a schematic diagram of an example of the resource scheduling method to which the present application is applied.
  • FIG. 6 is a schematic diagram of an example of a determined search space to which the present application is applied.
  • FIG. 7 is a schematic diagram of an example of determining the PDCCH monitoring timing to which the present application is applied.
  • FIG. 8 is a schematic diagram of another example of determining the search space to which the present application is applied.
  • FIG. 9 is a schematic diagram of another example to which the resource scheduling method of the present application is applied.
  • FIG. 10 is a schematic diagram of another example of determining the search space to which the present application is applied.
  • FIG. 11 is a schematic diagram of another example to which the resource scheduling method of the present application is applied.
  • FIG. 12 is a schematic diagram of another example of determining the search space to which the present application is applied.
  • FIG. 13 is a schematic diagram of an example of a communication device to which the present application is applied.
  • FIG. 14 is a schematic diagram of another example of a communication device to which the present application is applied.
  • FIG. 15 is a schematic diagram of an example of a communication device to which the present application is applied.
  • FIG. 16 is a schematic diagram of an example of a communication device to which the present application is applied.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for the channel resource transmission method of the present application.
  • the communication system 100 includes: a network controller 110 , at least one network device (eg, network device 120 and network device 130 ) and at least one terminal device (eg, terminal device 140 and terminal device 150 ).
  • a wireless communication network may include communicating multiple network devices capable of supporting multiple user devices.
  • User equipment can communicate with network equipment via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from network equipment to user equipment
  • the uplink (or reverse link) refers to the communication link from user equipment to network equipment.
  • FIG. 1 only takes the system including one network device as an example for description, but the embodiments of the present application are not limited to this.
  • the system may also include more network devices; similarly, the system may also include more terminals equipment.
  • the system may also be referred to as a network, which is not limited in this embodiment of the present application.
  • the terminal device (for example, the terminal device 140 or the terminal device 150 ) in this embodiment of the present application may be mobile or fixed.
  • the terminal device communicates with one or more core networks (Core Network, CN) through a radio access network (Radio Access Network, RAN).
  • Terminal equipment may refer to user equipment UE, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device can be a station (station, ST) in a wireless local area network (Wireless Local Area Networks, WLAN), and can also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless local loop).
  • station station
  • WLAN Wireless Local Area Networks
  • SIP Session Initiation Protocol
  • a terminal device in a 5G network or a terminal device in a public land mobile communication network (Public Land Mobile Network, PLMN) to be evolved in the future, etc., are not limited in this embodiment of the present application.
  • PLMN Public Land Mobile Network
  • the network device (for example, the network device 120 or the network device 130 ) in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a network device in the Global System for Mobile Communications or Code Division Multiple Access (CDMA) (Base Transceiver Station, BTS), it can also be a network device (NodeB, NB) in the wideband code division multiple access WCDMA system, it can also be an evolved network device (evolutional NodeB, eNB or eNodeB) in the LTE system, or It is the wireless controller in the Cloud Radio Access Network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G system, such as a transmission point (Transmission Point, TP), Transmission Reception Point (Transmission Reception Point, TRP), base station, small base station equipment, etc., or network equipment in the future evolution of the public land mobile network PLMN network, etc.
  • the network device 120 and the network device 130 may be controlled and/or scheduled by the network controller 110 .
  • the network controller 110 can perform unified resource scheduling and management on the multiple network devices it controls according to the information obtained and maintained from each network device. For example, sending control messages and/or indication information to multiple network devices under control.
  • the network controller 110 may be a separate physical device (as shown in FIG. 1 ), or may be a software and/or hardware functional module integrated on the network device, which is not particularly limited in this application.
  • the network device eg, network device 120
  • the terminal device eg, terminal device 140
  • the serving network device After the terminal device 140 is powered on, it can select a suitable or acceptable network device through cell search. After the cell is connected, the connection with the network side is completed through the attachment process. After the terminal device 140 completes the attachment process, it can perform data communication with the network device 120 .
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system 100 may also include other network devices and/or terminal devices, which are not shown in FIG. 1 .
  • Fig. 2 is a schematic diagram suitable for the carrier aggregation scenario of the present application.
  • the network device can schedule PDSCHs of multiple aggregated carriers (for example, carrier 1 and carrier 2) by sending one downlink control information DCI.
  • Carrier 1 corresponds to carrier 2.
  • carrier 1 may be understood as the first downlink carrier of cell #A
  • carrier 2 may be understood as the second downlink carrier of cell #B.
  • the above PDSCH includes PDSCH1 and PDSCH2, PDSCH1 corresponds to the first downlink carrier of cell #A, and PDSCH2 corresponds to the second downlink carrier of cell #B; or, the PDSCH includes PDSCH3, and PDSCH3 corresponds to the first downlink carrier of cell #A.
  • the downlink carrier corresponds to the second downlink carrier of cell #B.
  • a cell includes at least one downlink carrier and zero, one or more uplink carriers. The embodiments of the present application are described by taking a cell including one downlink carrier and one uplink carrier as an example.
  • the terminal device may receive downlink control information DCI on the PDCCH, and receive downlink data on the physical downlink shared channel PDSCH according to the instructions of the DCI; or send uplink data on the physical uplink shared channel PUSCH. data.
  • the process of receiving DCI by the terminal device can be as follows: the network device configures CORESET and search space for the terminal device, the terminal device blindly detects the candidate DCI format on the configured search space, and then performs CRC check on the received DCI, if the CRC check succeeds , the terminal device decodes the DCI and obtains the DCI content.
  • the PDSCH corresponds to the first downlink carrier of cell #A and the second downlink carrier of cell #A. How to realize the design of the search space for joint scheduling of the carrier and the uplink scheduling of the carrier have not yet been considered.
  • the present application provides a communication method, which supports terminal equipment to schedule downlink data of multiple carriers through one downlink control information in a carrier aggregation scenario, thereby reducing the overhead of control signaling;
  • the uplink scheduling requirements of the carrier scheduling PDSCH, and the configuration and determination of the joint scheduling search space are provided.
  • the control channel involved in this application can be used to carry resource scheduling information and other control information.
  • the control channel can be a physical downlink control channel (PDCCH), an enhanced physical downlink control channel (enhanced physical downlink control channel, ePDCCH), new radio physical downlink control channel (NR-PDCCH), and other downlink channels with the above functions defined as the network evolves.
  • PDCCH physical downlink control channel
  • ePDCCH enhanced physical downlink control channel
  • NR-PDCCH new radio physical downlink control channel
  • a channel may also be called a signal or other names, which are not particularly limited in this embodiment of the present application.
  • the physical downlink control channel PDCCH is used to carry downlink control information DCI.
  • PDCCH is mainly used for: (1) sending downlink scheduling information, also called downlink assignment (Downlink Assignment, DL Assignment), so that the UE can receive PDSCH; (2) sending uplink scheduling information, also called uplink grant (Uplink Assignment) Grant, UL Grant), so that the UE can send PUSCH; (3) send aperiodic channel quality indicator (channel quality indicator, CQI) reporting request; (4) notify the multicast control channel (multicast control channel, MCCH) changes; (5) ) send an uplink power control command; (6) feedback hybrid automatic repeat request (hybrid automatic repeat request, HARQ) related information; (7) include wireless network temporary identity (radio network tempory identity, RNTI), the identity information implicitly contains In the cyclic redundancy check (cyclic redundancy check, CRC) and so on.
  • wireless network temporary identity radio network tempory identity, RNTI
  • the identity information implicitly contains In the cyclic
  • DCI generally has multiple DCI formats, and each DCI format and the specific information it includes vary according to its functions.
  • DCI can use system information-radio network temporary identity (SI-RNTI) or paging-radio network temporary identity (P-RNTI) or random access-wireless network Scrambling such as random access-radio network temporary identity (RA-RNTI) to indicate cell-level information; cell-radio network temporary identity (C-RNTI) or configuration Scheduling-wireless network temporary identity (configured scheduling-radio network temporary identity, CS-RNTI) or semi-permanent configuration scheduling-wireless network temporary identity (semi persistent configured scheduling-radio network temporary identity, SP CSI-RNTI) and other scrambling, for Indicates UE-level information.
  • SI-RNTI system information-radio network temporary identity
  • P-RNTI paging-radio network temporary identity
  • RA-RNTI random access-wireless network Scrambling
  • RA-RNTI random access-radio network temporary identity
  • Control channel element CCE
  • resource element group REG
  • AL aggregation level
  • the resource element group REG can be understood as a basic unit of downlink control signaling for physical resource allocation, and is used to define the mapping of downlink control signaling to resource elements (resource elements, RE).
  • resource elements resource elements
  • one CCE consists of 6 REGs, and one REG corresponds to one resource block (resource block, RB), that is, one CCE is a continuous resource block containing 72 REs.
  • control region used to transmit the PDCCH is composed of logically divided control channel elements CCE.
  • the basic unit of the time-frequency resource of the DCI carried on the PDCCH is also a CCE.
  • a PDCCH can be transmitted on different aggregation levels AL, where AL indicates the number of CCEs contained in the search space.
  • AL may be 1, 2, 4, 8, and 16, and the value of the aggregation level is not particularly limited in this embodiment of the present application.
  • FIG. 3 shows a schematic diagram of the distribution of PDCCH candidate positions under different aggregation levels.
  • search spaces at the same aggregation level shown in the figure correspond to different shaded regions, and each shade represents a candidate position of the PDCCH.
  • each shade represents a candidate position of the PDCCH.
  • the network device may determine the aggregation level used by a certain PDCCH according to factors such as channel quality. For example: if the PDCCH is sent to a certain UE with good downlink channel quality (for example, located in the center of the cell), it may be sufficient to use 1 CCE to send the PDCCH; if the PDCCH is sent to a certain downlink channel with poor quality A UE (eg, located at the cell edge) may use 8 CCEs or even 16 CCEs to transmit the PDCCH to achieve sufficient robustness.
  • carrier aggregation technology is introduced in LTE-A to increase the bandwidth of system transmission.
  • Carrier aggregation is to aggregate two or more carrier units (component carriers, CCs) together to obtain a larger transmission bandwidth.
  • each carrier does not exceed a maximum of 20MHz.
  • the carrier randomly accessed by the UE is called the primary carrier component (PCC).
  • the cell corresponding to the primary carrier is the primary cell (PCell), and the primary cell and the terminal equipment maintain Radio Resourse Control (RRC). connection, the primary cell may include one downlink carrier and one uplink carrier.
  • the carrier other than the primary carrier is called the secondary carrier component (SCC), and the cell corresponding to the secondary carrier is the secondary cell (SCell), which is used to provide additional radio resources. There is no connection between the SCell and the terminal equipment.
  • the secondary cell may include one downlink carrier.
  • PCell is determined when the connection is established.
  • SCell is added/modified/released through the RRC connection reconfiguration message after the initial security activation procedure.
  • each carrier element corresponds to an independent cell, and usually one carrier element can be equivalent to one cell.
  • the meanings of a carrier and a carrier element can be understood as the same.
  • the CA function can support contiguous or non-contiguous carrier aggregation.
  • carrier aggregation supports aggregation between different carrier units, including: carrier unit aggregation of the same or different bandwidths; contiguous or non-contiguous carriers within the same frequency band Cell aggregation; aggregation of carriers in different frequency bands. That is, carrier aggregation scenarios can be divided into three types, including: in-band contiguous carrier aggregation, in-band non-contiguous carrier aggregation, and out-of-band non-contiguous carrier aggregation.
  • the carrier indicator field (CIF)-based cross-carrier scheduling supports the PDCCH sent on one serving cell to schedule radio resources on another serving cell. That is, control information is transmitted on one carrier unit (eg, PDCCH), and data channel resources corresponding to the control information are transmitted on another carrier unit (eg, PDSCH). That is to say, when a cell is configured with cross-carrier scheduling, the PDCCH cannot be sent on this cell, and the downlink control information of the cell can be sent on other cells. That is, the base station schedules the corresponding resources on its own cell by sending downlink control information in other cells.
  • carrier unit eg, PDCCH
  • PDSCH carrier unit
  • FIG. 4 shows a schematic diagram of a PCell scheduling SCell across carriers.
  • the PDCCH is not configured on the SCell, the control information is transmitted through the PDCCH of the PCell, and the corresponding data information is transmitted on the PDSCH of the SCell. That is, the terminal device receives control information on the PCell, and implements resource scheduling on the SCell.
  • Control resource set (control resource set, CORESET)
  • the UE may be configured with multiple CORESETs, and the CORESETs may include time-frequency resources, which may be continuous or discontinuous resource units in the time-frequency domain.
  • each CORESET occupies an integer multiple of 6 RBs (72 subcarriers) in the frequency domain; each CORESET may be the number of time units in the time domain, for example, a subframe or a time slot or a mini-slot in The number of symbols, which generally occupy ⁇ 1, 2, 3 ⁇ symbols in the time domain, can be at any position in a time slot.
  • a terminal device may listen to the PDCCH on one or more CORESETs.
  • a CORESET may be understood as a resource occupied by a transmission control channel; for a terminal device, the PDCCH search space of each terminal device belongs to the CORESET.
  • the network device can determine the resource used for sending the PDCCH from the CORESET, and the terminal device can determine the PDCCH search space from the CORESET.
  • the search space includes: common search space (CSS) and UE-specific search space (UE-specific search space, USS).
  • the common search space is used to transmit public information at the cell level, for example, including: control related to paging, random access response (RAR), broadcast control channel (BCCH), etc. Information; this information is the same for all user devices and needs to be monitored.
  • the UE-specific search space is used to transmit user equipment-level information, such as user-level data scheduling and power control information scheduling. But when the UE-specific search space does not have enough resources available, the common search space can also be used to transmit control information belonging to a specific user equipment.
  • the present application does not exclude the possibility of re-division or redefinition of the search space, and the resources used for transmitting terminal-level information may be defined as the UE-specific search space described in the embodiments of the present application.
  • a search space is defined for a certain CCE aggregation level.
  • a terminal device can have multiple search spaces, and the CCEs in each search space can be continuously distributed.
  • the UE may monitor the search space PDCCH candidates set of all activated serving cells on each non-DRX subframe. This means that the terminal device needs to try to decode each PDCCH in the set according to the DCI format to be monitored.
  • the network device when sending the PDCCH including the carrier indication field CIF, it knows which serving cell the PDCCH corresponds to, and also knows the PDCCH candidate set that the PDCCH can select.
  • the UE knows the set of CIFs that may be included on the PDCCH sent by each specific serving cell to the UE, so the UE can blindly detect the PDCCH by trying all possible CIF values on the serving cell.
  • Table 1 shows the correspondence between the aggregation level AL, the size of the search space and the number of PDCCH candidates M (L) that need to be monitored in a given search space:
  • the size of the search space is different, and the number of PDCCH candidates is also different.
  • the size of the search space M M (L) ⁇ L, or in other words, the number of CCEs included in the search space is the product of the aggregation level and the number of PDCCH candidates.
  • the PDCCHs sent by the network equipment to different user equipments may have different aggregation levels.
  • Table 1 is only for the convenience of understanding.
  • the corresponding relationship between the parameters is described in combination with the aggregation level AL defined in the LTE protocol, the size of the search space and the number of PDCCH candidates M (L) that need to be monitored in a given search space.
  • this should not constitute any limitation to the embodiments of this application, and this application does not exclude the aggregation level AL in other protocols, the size of the search space and the number of PDCCH candidates M (L) that need to be monitored in a given search space.
  • the possibility of redefining the corresponding relationship does not rule out the possibility of defining more parameters.
  • the common search space and the UE-specific search space may overlap, as may the UE-specific search spaces belonging to different user equipments. If the overlapping area is occupied by one user equipment, other user equipments will not be able to use these CCE resources.
  • the network device can select an available PDCCH candidate from the corresponding search space for each user equipment to be scheduled. If the CCE resource can be allocated, it will be scheduled, otherwise it will not be scheduled.
  • the terminal device may determine the corresponding search space according to the search space configuration information sent by the network device.
  • Table 2 shows the parameters that may be included in the configuration information of the associated search space and their specific meanings.
  • the configuration information used to determine the search space includes at least one parameter in Table 2.
  • the determination of the search space PDCCH by the terminal device mainly includes: determination of CORESET, determination of searchSpaceId, determination of the starting CCE and ending CCE positions corresponding to PDCCH candidates.
  • the possible implementation steps may include: first, according to the current search space and the associated CORESET configuration, determine the situation of the candidate PDCCH, wherein the time domain starting symbol position is determined by the current search space configuration, and the number of time domain symbols is determined by the CORESET associated with the search space. . Then, according to the current search space and the associated CORESET configuration, determine the CCE index of each candidate PDCCH in the CORESET (ie, the starting position of the CCE and the number of CCEs), and the specific CCE is determined by the search space function. Finally, the UE can identify its own DCI by performing a blind detection attempt of the CRC on the monitoring position.
  • the terminal device when configuring the search space, the terminal device will configure the number of PDCCH candidates corresponding to each PDCCH aggregation level.
  • the terminal device can determine the location of each PDCCH candidate according to at least one of the following formulas, namely:
  • n CID is the identifier of the serving cell group, which represents the ID of a serving cell group associated with the search space, and each cell in the serving cell may be a jointly scheduled cell.
  • the number of PDCCH candidates corresponding to aggregation level L is the search space associated with a serving cell.
  • n RNTI is the value of C-RNTI.
  • the UE Since the PDCCH is an instruction sent by the network device, the UE has not received other information except some system information before, so the UE does not know the number, size, location, and DCI format of the CCEs occupied by the UE, nor does it know the aggregation level of DCI. . Therefore, the UE can blindly detect all PDCCH candidates in the search space using different ALs according to the desired DCI format in the common search space or the UE-specific search space. That is, the UE detects the downlink control channel PDCCH sent by the network device by means of blind detection, so as to obtain the downlink control information DCI, and process the corresponding data service.
  • the UE does not know in advance which format of DCI the received PDCCH includes, nor which PDCCH candidate is used for transmission of the DCI, the UE knows what state it is in and the DCI information it expects to receive in this state. For example, in idle IDLE state, the UE expects to receive paging; after initiating random access (Random Access), the UE expects RAR; when there is uplink data to be sent, it expects UL Grant, etc.
  • Random Access Random Access
  • the UE knows its own search space and therefore knows which CCEs the DCI may be distributed on. For different expected information, the UE tries to use the corresponding wireless network temporary identity, possible DCI format, and possible aggregation level AL to perform CRC check with CCEs in its own search space. If the CRC check is successful, then the UE knows that this information is needed by itself, and also knows the corresponding DCI format, so as to further solve the DCI content.
  • the UE does not know which aggregation level to use for the PDCCH to be received, so the UE can try all possibilities.
  • there are a total of 4+2 6 PDCCH candidates.
  • the UE may blindly detect the PDCCH on the PCell and the activated SCell.
  • the maximum number of blind detections performed by the UE configured with CA is 44+32*the number of activated secondary cells. Among them, 44 blind detections are performed on PCell, and 32 blind detections are performed on SCell because there is no need to blindly detect the common search space.
  • the UE When the UE performs blind detection in the search space, it needs to try to decode the possible DCI formats, and does not need to match all the DCI formats.
  • the possible DCI formats depend on what information the UE expects to receive and the transmission mode. For example, if the UE expects to receive downlink data and uses TM3, when the UE decodes the PDCCH scrambled with C-RNTI, it can try to decode DCI format 1A and DCI format 2A using its own C-RNTI. At the same time, if the UE expects to receive System Information (SI) in the subframe, the SI-RNTI may be used to attempt to decode DCI format 1A and DCI format 1C.
  • SI System Information
  • the UE attempts blind detection using the payload length corresponding to the DCI format.
  • the UE may attempt decoding on every possible PDCCH candidate before successfully decoding the PDCCH. That is, the terminal blind detection means that the UE first calculates the starting position of the blind detection CCE according to the UE ID and subframe number, etc., and intercepts the guessed DCI length at the starting position of the CCE for decoding. If the CRC and PDCCH of the decoded information bits include If the CRCs are the same, it is considered that the information bits carried by the current PDCCH are the currently transmitted downlink control information DCI.
  • the cell may be a cell corresponding to a network device.
  • the cell may belong to a macro network device or a network device corresponding to a small cell.
  • the small cell here may include : urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high speed data transfer service.
  • the self-scheduling may be sending message #A on the first downlink carrier of cell #a, where message #A is used to indicate the scheduling information of the PDSCH of the first downlink carrier of cell #a, or used to indicate the cell #a
  • the scheduling information of the PUSCH of the first uplink carrier of #a; and the downlink joint scheduling may be to send message #B on the first downlink carrier of cell #a or the second downlink carrier of cell #b, and the message #B is used for Indicates the scheduling information of the PDSCH, where the PDSCH corresponds to the first downlink carrier of cell #a and the second downlink carrier of cell #b.
  • the PDSCH may include PDSCH #1 and PDSCH #2, PDSCH #1 corresponds to the first downlink carrier of cell #a, and PDSCH #2 corresponds to the second downlink carrier of cell #b; or, the PDSCH may include PDSCH #3, PDSCH #3 corresponds to the first downlink carrier of cell #a and the second downlink carrier of cell #b. It should be noted that this application does not limit the number of cells used for joint scheduling. Joint scheduling of downlink data can reduce the number of blind detections by terminal equipment and the overhead of DCI, and effectively improve the scheduling efficiency of carrier resources.
  • the downlink joint scheduling may also include sending a message #C on the first downlink carrier of cell #a, where message #C is used to indicate the scheduling information of the PDSCH, where the PDSCH may correspond to the first downlink carrier of cell #a.
  • the technical solutions provided in this application are applicable to a carrier aggregation scenario. It is assumed that the activated cell of a certain terminal device includes three cells: Cell#A, Cell#B, and Cell#C.
  • the cell Cell#A is the primary cell PCell
  • the cell Cell#B and the cell Cell#C are the secondary cell SCell1 and the secondary cell SCell2, respectively.
  • PCell and SCell1 support joint scheduling.
  • PCell scheduling SCell1 as an example, that is, the message for joint scheduling is sent on the PCell, and describe in detail how to schedule the first uplink carrier of SCell1 from three possible implementations. PUSCH, thereby reducing the overhead of control signaling, solving diversified scheduling requirements, and improving the effectiveness of the communication system.
  • FIG. 5 is a schematic diagram of an example of the resource scheduling method to which the present application is applied.
  • a rule may be predefined: PCell and SCell1 support joint scheduling of PDSCH, and SCell1 supports self-scheduling PUSCH.
  • the method 500 includes:
  • the network device sends the message #1 to the terminal device on the first downlink carrier of the PCell (ie, an example of the first cell); correspondingly, the terminal device receives the message #1 from the network device on the first downlink carrier of the PCell.
  • the terminal device sends the message #1 to the terminal device on the first downlink carrier of the PCell (ie, an example of the first cell); correspondingly, the terminal device receives the message #1 from the network device on the first downlink carrier of the PCell.
  • the message #1 is used to indicate the scheduling information of the PDSCH, and the PDSCH corresponds to the first downlink carrier of PCell and the second downlink carrier of SCell1.
  • the PDSCH may include a first PDSCH and a second PDSCH, where the first PDSCH corresponds to PCell and the second PDSCH corresponds to SCell1; or, the PDSCH may include a third PDSCH, where the third PDSCH corresponds to PCell and SCell1 correspond. That is, the terminal device can receive the downlink data transmitted on the first downlink carrier of the PCell and the second downlink carrier of the SCell1 by receiving the message #1 from the network device.
  • the network device sends message #2 to the terminal device on the second downlink carrier of SCell1 (ie, an example of the second cell); correspondingly, the terminal device receives message #2 from the network device on the second downlink carrier of SCell1.
  • SCell1 ie, an example of the second cell
  • the message #2 is used to indicate the scheduling information of the PUSCH of the first uplink carrier of SCell1, that is, the terminal device can obtain the scheduling information of the PUSCH#A of the first uplink carrier of SCell1 by the network device by receiving the message #2 from the network device. scheduling information.
  • the network device may send indication information #A to the terminal device in advance, which is used to indicate that the terminal device is configured with PCell and SCell1 to jointly schedule PDSCH, and supports SCell1 uplink self-scheduling SCell1, And notify or predefine: the scheduling information used for joint scheduling is sent on PCell, and the scheduling information used for uplink scheduling is sent on SCell1.
  • the predefined rule further includes: after the terminal device is configured with joint scheduling, the terminal device may also receive scheduling information on the second downlink carrier of SCell1, which is used to schedule the PUSCH of the first uplink carrier of SCell1.
  • the terminal device may receive scheduling information #1 on the first downlink carrier of PCell, which is used to schedule PDSCH#A of the first downlink carrier of PCell and the second downlink carrier of SCell1.
  • PDSCH#B, or PDSCH#C corresponding to the first downlink carrier of PCell and the second downlink carrier of SCell1; scheduling information #2 can also be received on the second downlink carrier of SCell1 for scheduling the first downlink carrier of SCell1 PUSCH#A of the uplink carrier.
  • the message #1 or the message #2 includes but is not limited to downlink control information DCI, uplink scheduling information, and the like.
  • the network device may also send message #1 or message #2 to the terminal through cell-specific or UE group-specific DCI on the PDCCH; or, send message #1 or message #2 to the terminal device through UE-specific DCI .
  • the terminal device can also receive the above-mentioned message #1 or message #2 in at least one of the following ways: RRC signaling, media access control management unit (media access control, control element, MAC CE), physical layer signaling ( For example: PDCCH) and so on.
  • RRC signaling media access control management unit (media access control, control element, MAC CE), physical layer signaling ( For example: PDCCH) and so on.
  • media access control management unit media access control, control element, MAC CE
  • PDCCH physical layer signaling
  • the terminal device sends PUSCH#A to the network device on the first uplink carrier of SCell1; correspondingly, the network device receives PUSCH#A from the terminal device on the first uplink carrier of SCell1.
  • the network device may also send a message #3 to the terminal device on the second downlink carrier of SCell1, which is used to indicate the scheduling information of PDSCH #C of the second downlink carrier of SCell1.
  • the network device may also send message #4 to the terminal device on the second downlink carrier of SCell1 to instruct the terminal device to schedule PUSCH #B or SCell2 of the third uplink carrier of SCell2 across carriers PDSCH#D of the third downlink carrier; and/or used to instruct the terminal equipment to jointly schedule PDSCH.
  • the PDSCH corresponds to the second downlink carrier of SCell1 and the third downlink carrier of SCell2.
  • the PDSCH includes PDSCH #E and PDSCH #F, wherein PDSCH #E corresponds to SCell1 and PDSCH #F corresponds to SCell2; or, the PDSCH includes PDSCH #G, and the PDSCH #G corresponds to SCell1 and SCell2.
  • the transport block carried in a PDSCH scheduled by the network device is mapped to the physical resource block on the downlink active bandwidth part BWP, if the physical resource block corresponds to the downlink carrier of cell 1, then the PDSCH corresponds to cell 1; if the physical resource block corresponds to the downlink carrier of cell 1; The physical resource block corresponds to the downlink carrier of cell 1 and the downlink carrier of cell 2, then the PDSCH corresponds to cell 1 and cell 2.
  • the PUSCH of the first uplink carrier of SCell1 can be implemented through SCell1 self-scheduling, that is, the network device sends message #2 on the second downlink carrier of SCell1 to instruct the terminal equipment to self-schedule PUSCH#A of the first uplink carrier of SCell1;
  • PDSCH of the second downlink carrier of SCell1 can be implemented through PCell downlink joint scheduling or SCell1 self-scheduling, that is, the network device sends message #3 on the third downlink carrier of SCell1 to indicate The terminal equipment self-schedules PDSCH #C of the second downlink carrier of SCell1; or sends message #1 on the first downlink carrier of PCell to instruct the terminal equipment to schedule PDSCH #B of the second downlink carrier of SCell1.
  • the network device jointly schedules the first downlink carrier of PCell and the second downlink carrier of SCell1 by sending message #1 on the first downlink carrier of PCell
  • the uplink scheduling requirements of the first uplink carrier of SCell1 are effectively realized, thereby reducing the overhead cost of control signaling and realizing diversified scheduling requirements and communication systems. effectiveness.
  • the above-mentioned embodiment implements how to schedule uplink data of SCell1 in the case that PCell and SCell1 support joint scheduling.
  • the technical solution is a further optimization strategy for a joint scheduling scenario to meet diversified scheduling requirements.
  • the technical solutions of the downlink joint scheduling and the SCell1 uplink scheduling may be decoupled, and the two operate independently. That is, the network device and the terminal device may support downlink joint scheduling based on PCell and SCell1, and perform downlink data reception and transmission, which specifically corresponds to the foregoing step S510. For brevity, details are not repeated here.
  • the information transmission between the network device and the terminal device may include one of the following: PCell self-scheduling, PCell downlink joint scheduling, PCell cross-carrier scheduling Scheduling and SCell1 self-scheduling. Therefore, the terminal device can monitor at least one of the PDCCHs corresponding to PCell self-scheduling, PCell cross-carrier scheduling and PCell joint scheduling on PCell according to the configuration information, and can also monitor at least one of the PDCCHs corresponding to SCell1 self-scheduling on SCell1.
  • Fig. 6 shows a schematic diagram of an example of a terminal device determining the search space of PCell and SCell1. As shown in Fig. 6, the method 600 includes:
  • the network device determines configuration information #A and/or configuration information #B.
  • the configuration information #A is used to indicate the search space #A, which indicates the search space of the PCell self-scheduling PDSCH and/or PUSCH, and is used to carry the PCell self-scheduling message #5;
  • the configuration information #B is used to indicate the search space #B, Indicates the search space where PCell and SCell1 jointly schedule PDSCH, which is used to carry message #1.
  • each set of search space configuration information includes a search period, the number of time units that are continuously searched in each search period, the monitoring timing in the time unit, the aggregation degree of the control channel unit CCEs in each monitoring timing, each The potential transmission position of the physical downlink control channel PDCCH under the CCE aggregation level, and the downlink control information format DCI format, corresponding to at least one of CORESET.
  • the parameters and their definitions in the search space configuration information have been described in Table 2 above, and will not be repeated here.
  • the configuration information #A and the configuration information #B are the same, that is, the search spaces of PCell self-scheduling and downlink joint scheduling exist at the same time and can be shared.
  • the configuration information #A includes at least the configuration parameters associated with the PCell, and the configuration parameters are all valid, and the configuration information #A can be used to indicate search space #A and search space #B; configuration information #B has two parameters, nrofCandidates and searchSpaceId, which are related to the SCell1 configuration, and other parameters are the configurations on the corresponding PCell.
  • the network device determines configuration information #A, where the configuration information #A is used to indicate a PCell self-scheduled search space #A, and the configuration information #A is used to carry the PCell self-scheduled message #5. It should be understood that this search space #A is on the PCell.
  • the network device may stipulate in a protocol with the terminal device, or the network device may notify the terminal device through signaling that the search space #A may also be used for blind detection of message #1. In this case, the PCell self-scheduling search space #A exists, the network device does not need to determine the configuration information #B, and the downlink joint scheduling search space is shared with the PCell self-scheduling search space.
  • the configuration information #A and the configuration information #B are different, that is, the search spaces for PCell self-scheduling and downlink joint scheduling exist simultaneously and are independent of each other. Then from the point of view of signaling configuration, the configuration information #A includes at least the configuration parameters of the associated PCell, and all the configuration parameters are valid; the two parameters nrofCandidates and searchSpaceId in the configuration information #B are the associated SCell1 configuration, and other parameters are It is the configuration on the corresponding PCell. It should be understood that configuration information #A and configuration information #B are two independent search space configurations.
  • searchSpaceId two parameters, nrofCandidates and searchSpaceId, in the configuration information #B are valid, and none of the other configuration parameters are valid.
  • the joint scheduling information may be sent on PCell or on SCell.
  • the network device can notify the UE on which cell's downlink carrier to receive the joint scheduling information through signaling, such as RRC signaling; or the network device can also notify the UE on which cell's downlink carrier to receive the information through predefined rules.
  • the joint scheduling information is, for example, on the downlink carrier corresponding to the cell with a small cell index.
  • the determined search space of the joint scheduling is the search space on the cell.
  • the determination of the search space may include multiple configuration parameters.
  • the determined search space of the joint scheduling is also on the PCell. It should be understood that the search space of PCell self-scheduling is also on the PCell, and at this time, the search space of PCell self-scheduling may be shared with the search space of downlink joint scheduling.
  • the network device may also add a new joint scheduling search space configuration in configuration information #B, that is, configure two new search space configurations directly in configuration information #B.
  • the parameters nrofCandidates and searchSpaceId are used to indicate the search space #B.
  • the number of the cell group can be used to notify the UE, and then the terminal device can determine the search space according to the above cell set number when determining the joint scheduling search space.
  • the above configuration information #B includes the cell number information.
  • the network device configures M cells for the terminal device, and activates N cells, where N is less than or equal to M.
  • the network device may divide the M cells into K cell groups, and the N cells into L cell groups, wherein the UEs in the K cell groups may implement joint scheduling.
  • the network device may notify the terminal device which cells support joint scheduling through the cell group numbers 0 to K-1 and/or 0 to L-1.
  • the number of the above cell group may or may not be included in the configuration information of the search space.
  • the number of the cell group can be mapped to the above formula for determining the CCE index, that is,
  • the network device sends configuration information #A and/or configuration information #B to the terminal device; correspondingly, the terminal device receives configuration information #A and/or configuration information #B from the network device.
  • the network device may send configuration information #A and/or configuration information #B to the terminal device through broadcast signaling, or RRC-specific signaling, or medium access control, MAC layer signaling, or physical layer signaling. .
  • the network device may send instruction information #B to the terminal device in advance, which is used to indicate which cell the terminal device will receive the search space configuration information on next.
  • the terminal device can receive the indication information #B on the PCell.
  • the indication information #B includes but is not limited to configuration information. For example, by receiving the indication information #B, the terminal device can know which serving cells are configured with downlink joint scheduling and which serving cells support uplink cross-carrier scheduling.
  • the terminal device after receiving the indication information #B, the terminal device knows that the PCell and SCell1 are configured to jointly schedule PDSCH, and the predefined rules include: the terminal device can receive the scheduling information #1 on the first downlink carrier of the PCell, use the For scheduling PDSCH#A of the first downlink carrier of PCell and PDSCH#B of the second downlink carrier of SCell1, or for scheduling PDSCH#C corresponding to the first downlink carrier of PCell and the second downlink carrier of SCell1; also Scheduling information #2 may be received on the second downlink carrier of SCell1 for scheduling PUSCH #A of the first uplink carrier of SCell1.
  • the predefined rule includes: after the terminal device is configured with joint scheduling, it can send the PDCCH on the second downlink carrier of SCell1 to implement self-scheduling.
  • the network device sends configuration information #A to the terminal device, where the configuration information #A is used to indicate the PCell self-scheduled search space #A, and the configuration information #A is used to carry the PCell self-scheduled message #5. It should be understood that this search space #A is on the PCell.
  • the network equipment may stipulate in the agreement with the terminal equipment, or the network equipment informs the terminal equipment through signaling, the search space #A can also be used for the blind detection message #1, that is, the control information used to indicate the downlink joint scheduling is also in the search space #A. A performs blind detection.
  • S630 The terminal device determines search space #A and/or search space #B according to the received configuration information #A and/or configuration information #B.
  • the terminal device can determine the search space according to configuration information #A #A and search space #B. It should be understood that if the joint scheduling information is sent on the PCell, then the determined search space is also on the PCell, so the search space #A and the search space #B are both on the PCell. If the network device wishes to jointly schedule multiple cells, the configuration information of the search space may be associated with one of the predefined cells, or may be associated with one of the indicated cells.
  • the terminal device determines the CORESET ID, searchSpaceId, and the number of candidates corresponding to each CCE aggregation level according to the received configuration information #A associated with the PCell.
  • the configuration parameters and the above position formula for calculating PDCCH candidates determine the CCE index corresponding to each PDCCH candidate, including the start index and the end index, so that the terminal device can detect the DCI used for PCell self-scheduling and downlink joint scheduling in the determined PDCCH candidates .
  • the terminal device determines which cell the search space #B is on according to predefined or configured information, and then determines the search space #B according to the received configuration information associated with the cell.
  • the configuration information includes CORESET ID, searchSpaceId, and the number of candidates corresponding to each CCE aggregation level.
  • the associated configuration information may be the configuration information of one cell, or the configuration information of multiple cells. For example, cell 1 and cell 2 are configured with downlink joint scheduling, and the pre-defined or configured search space #B is in cell 1.
  • the search space can be determined according to the search space configuration information on cell 1 or cell 2, or the search space can be determined jointly according to the search space information on cell 1 and cell 2.
  • the searchSpaceId in the search space configuration information on cell 2 the number of candidates corresponding to each CCE aggregation level, and the CORESET ID corresponding to the same searchSpaceId on cell 1 and cell 2.
  • the ID of the cell group may be used to indicate, and the cell group ID may also be included when determining the search space.
  • the terminal device determines a search space #A according to the configuration information #A, where the search space #A is used to blindly detect the PCell self-scheduled message #5. It should be understood that this search space #A is on the PCell.
  • the network equipment may stipulate in the agreement with the terminal equipment, or the network equipment informs the terminal equipment through signaling that the search space #A may also be used for the blind detection message #1.
  • there is a search space #A of PCell self-scheduling and the terminal device can implement downlink joint scheduling and blind detection of PCell self-scheduling in the search space #A.
  • the terminal device can determine the search space according to configuration information #A space #A, and the search space #B is determined according to the configuration information #B.
  • the determined search space is also on the PCell, so both the search space #A and the search space #B are on the PCell.
  • the network device determines the configuration information #C.
  • the configuration information #C is used to indicate the search space #C, which indicates the search space of the SCell1 self-scheduled PUSCH, and is used to carry the message #2.
  • the uplink scheduling DCI format includes format 0_1.
  • the network device sends the configuration information #C to the terminal device; correspondingly, the terminal device receives the configuration information #C from the network device.
  • the configuration information #C includes at least configuration parameters associated with SCell1.
  • the terminal device determines the search space #C according to the received configuration information #C.
  • the method for determining the search space #C of the SCell1 self-scheduling by the terminal device is the same as the method for determining the self-scheduling search space #A of the PCell mentioned in the above step S630, and for brevity, it will not be repeated here.
  • the network device can independently schedule joint downlink scheduling Configure 10 searchSpaceIds, or configure 10 searchSpaceIds for SCell1 uplink scheduling separately, or share 10 searchSpaceIds for downlink joint scheduling and SCell1 uplink scheduling.
  • a possible configuration method is as follows.
  • searchSpaceId and nrofCandidates in searchspaceforcombination take effect, wherein the CORESET ID is the same searchSpaceId corresponding to the cell that sends the joint scheduling DCI. CORESET ID.
  • the cells supporting joint scheduling include at least two cells (for example: PCell and SCell1).
  • the configuration information for determining the joint scheduling search space may be associated with any serving cell, that is, the configuration information may be included in the configuration information of any cell.
  • the configuration information for determining the joint scheduling search space can be associated with PCell, or with SCell1, or with the scheduled cell, or with the cell that sends the joint-scheduling DCI, or with the joint scheduling
  • the associated cell corresponds to n CI in the above-mentioned location formula for determining each PDCCH candidate.
  • the determination of the PCell and SCell1 search spaces can be performed by the terminal device itself according to predefined rules; it can also be determined by the network device, and through broadcast signaling or RRC dedicated signaling, or medium access control MAC layer signaling, or physical layer signaling, etc. to notify the terminal device, which is not limited in this application.
  • the above embodiment further determines the search space for uplink scheduling of SCell1 on the basis of determining the search space for downlink joint scheduling.
  • the technical solutions for determining the search space for joint scheduling and determining the search space for uplink scheduling may be decoupled, and the two operate independently. That is, based on PCell and SCell1 supporting downlink joint scheduling, the network device can determine the configuration information of the joint scheduling search space, and send the configuration information to the terminal device. The terminal device can also determine the corresponding search space according to the configuration information. in the above steps S610 to S630. For brevity, details are not repeated here.
  • the PDCCH monitoring occasion (PDCCH monitoring occasion) is a time unit used to monitor the PDCCH, and the relevant parameters are given in the search space configuration. Among them, the PDCCH monitoring occasion is jointly determined according to the three parameters of the PDCCH monitoring period configured by the RRC, the PDCCH monitoring offset and the PDCCH monitoring mode.
  • FIG. 7 shows a schematic diagram of an example of determining the PDCCH monitoring timing.
  • the PDCCH monitoring period is 2 time slots
  • the slot offset value is 0,
  • the number of CORESET time domain symbols associated with the search space is 1, and the symbol positions are 4, 5, 10 and 11.
  • the PDCCH monitoring mode uses a 14-bit bitmap configuration to indicate the position of the symbol to be monitored.
  • the 14-bit indication in the figure is a binary number (00001100001100). Each bit represents the position of a symbol, where 1 indicates that monitoring is required, and 0 indicates that it is not. Monitoring is required. Therefore, under this configuration, the terminal device can detect candidate PDCCHs at sym4, sym5, sym10 and sym11 on the second time slot of each detection cycle.
  • FIG. 8 shows an example schematic diagram of the terminal device determining the search space for the downlink joint scheduling and the SCell1 uplink scheduling, as shown in FIG. 8, the method 800 includes:
  • the network device sends configuration information #11 and/or configuration information #22 to the terminal device; correspondingly, the terminal device receives configuration information #11 and/or configuration information #22 from the network device.
  • the configuration information #11 is used to indicate the search space #11, and the search space #11 indicates the search space of PCell self-scheduling; the configuration information #22 is used to indicate the search space #22, and the search space #22 indicates the joint downlink of PCell and SCell1 The scheduling search space.
  • the configuration information #11 at least includes configuration parameters associated with the PCell
  • the configuration information #22 has two parameters, nrofCandidates and searchSpaceId, which are associated with the SCell1 configuration, and other parameters are the configuration on the corresponding PCell.
  • the terminal device determines the search space #11 according to the configuration information #11, and/or determines the search space #22 according to the configuration information #22.
  • search space #11 is used to carry message #11, which is used to indicate PDSCH #11 of PCell or PUSCH #11 of PCell;
  • search space #22 is used to carry message #22, and this message #22 is used to indicate PDSCH#22 of PCell and PDSCH#33 of SCell1.
  • a rule may be predefined: search space sharing between PCell self-scheduling and downlink joint scheduling.
  • search space #11 there is a search space of PCell self-scheduling, and the terminal device can detect message #22 in search space #11, that is, the terminal device detects message #22 for indicating joint downlink scheduling in search space #11 of PCell self-scheduling; or , the search spaces of PCell self-scheduling and downlink joint scheduling coexist, and message #22 can also be detected in search space #11.
  • a rule may also be predefined: the search spaces of PCell self-scheduling and downlink joint scheduling coexist and are independent of each other.
  • the terminal device detects message #11 in self-scheduled search space #11; and detects message #22 in jointly-scheduled search space #22.
  • steps S810 and S820 is the same as the above-mentioned steps S620 and S630, and for brevity, details are not repeated here.
  • the network device sends configuration information #33 to the terminal device; correspondingly, the terminal device receives configuration information #3 from the network device.
  • the configuration information #33 is used to indicate the search space #33, the search space #33 indicates the search space of the SCell1 uplink scheduling, and is used to carry the message #33; the message #33 is used to indicate the PUSCH# of the first uplink carrier of the SCell1 twenty two.
  • the terminal device determines the search space #33 according to the configuration information #33.
  • the search space #33 is used to detect DCI #33.
  • the method for the terminal device to determine the SCell1 self-scheduling search space #33 is the same as the method for determining the PCell self-scheduling search space #11 mentioned in the above step S630, and for brevity, it will not be repeated here.
  • a joint scheduling method is designed to solve the problem that in a carrier aggregation scenario, joint PDSCH scheduling is configured for one carrier, and the configuration and determination of the search space for joint scheduling of the carrier is realized, and the carrier
  • the requirement of uplink scheduling effectively reduces the overhead cost of control signaling, and solves the diversified scheduling requirements and the effectiveness of the communication system.
  • FIG. 9 is a schematic diagram of another example applying the resource scheduling method of the present application.
  • the difference from the first mode is that the PUSCH on the first uplink carrier of SCell1 supports uplink cross-carrier scheduling by PCell. That is to say, no PDCCH is configured on SCell1, control information is transmitted through the PDCCH of PCell, and corresponding data information is transmitted on the PDSCH of SCell1, that is, the terminal device receives control information on PCell to implement resource scheduling on SCell1.
  • a rule may be predefined: PCell and SCell1 support joint scheduling of PDSCH, and SCell1 supports uplink cross-carrier scheduling of PUSCH.
  • the method 900 includes:
  • the network device sends message #a to the terminal device on the first downlink carrier of the PCell (ie, an example of the first cell); correspondingly, the terminal device receives the message #a from the network device on the first downlink carrier of the PCell .
  • the message #a is used to indicate the scheduling information of the PDSCH, and the PDSCH corresponds to the first downlink carrier of PCell and the second downlink carrier of SCell1.
  • the PDSCH may include a first PDSCH and a second PDSCH, where the first PDSCH corresponds to PCell and the second PDSCH corresponds to SCell1; or, the PDSCH may include a third PDSCH, where the third PDSCH corresponds to PCell and SCell1 correspond. That is, the terminal device can receive the downlink data transmitted on the first downlink carrier of the PCell and the second downlink carrier of the SCell1 by receiving the message #a from the network device.
  • the terminal device can schedule the PDSCH #a of the first downlink carrier of PCell and the PDSCH #b of the second downlink carrier of SCell1.
  • the network device sends the message #b to the terminal device on the first downlink carrier of the PCell; correspondingly, the terminal device receives the message #b from the network device on the first downlink carrier of the PCell.
  • the message #b is used to indicate the scheduling information of the PUSCH of the first uplink carrier of SCell1 (that is, an example of the second cell), that is, the terminal device can obtain the first uplink carrier of the network device scheduling SCell1 by receiving the message #b Scheduling information of PUSCH#a.
  • the network device may send the indication information #C to the terminal device in advance to indicate that the terminal device is configured with PCell and SCell1 downlink joint scheduling, and supports PCell uplink cross-carrier scheduling SCell1 , and notify or predefine that the scheduling information used for joint scheduling is sent on the PCell, and the scheduling information used for uplink cross-carrier scheduling is also sent on the PCell.
  • the predefined rules include: after the terminal device is configured with joint scheduling, it can also receive scheduling information #3 on the first downlink carrier of PCell, which is used to schedule the PUSCH of the first uplink carrier of SCell1.
  • the terminal device sends PUSCH#a to the network device on the first uplink carrier of SCell1; correspondingly, the network device receives PUSCH#a from the terminal device on the first uplink carrier of SCell1.
  • the network device may also send a message #c to the terminal device on the first downlink carrier of PCell, which is used to indicate the scheduling information of PDSCH #c of the second downlink carrier of SCell1.
  • the network device may also send a message #d to the terminal device on the first downlink carrier of PCell, which is used to indicate the scheduling information of PUSCH #b of the third uplink carrier of SCell2 and/or SCell2
  • the scheduling information of PDSCH#d of the third downlink carrier or used to jointly schedule PDSCHs of multiple cells such as PCell, SCell1, and SCell2.
  • SCell1 since SCell1 supports cross-carrier scheduling, the second downlink carrier of SCell1 is not configured with PDCCH, and the terminal equipment does not need to monitor the PDCCH of SCell1. In other words, SCell1 does not support self-scheduling of its own carrier, nor does it support SCell1 cross-carrier scheduling and/or downlink joint scheduling of other cells, etc.
  • the terminal device can use two different DCI formats to schedule the PDSCH of the second downlink carrier of SCell1 respectively.
  • the DCI sizes of the two formats are aligned during blind detection, or the two DCI formats cannot be blindly detected at the same time, so as to avoid confusion in resource scheduling.
  • the network device can achieve the purpose of reducing the number of blind detection times of the terminal device through RRC signaling semi-static configuration.
  • the DCI sizes of PCell uplink cross-carrier scheduling and downlink cross-carrier scheduling also need to be aligned during blind detection.
  • the PUSCH of the first uplink carrier of SCell1 can be implemented through PCell uplink cross-carrier scheduling, that is, the network device sends message #b on the first downlink carrier of PCell to indicate the terminal
  • the device schedules the PUSCH#a of the first uplink carrier of SCell1 across carriers
  • the PDSCH of the second downlink carrier of SCell1 can be implemented through downlink joint scheduling or PCell cross-carrier scheduling, that is, the network device sends a message on the first downlink carrier of PCell#a c, used to instruct the terminal equipment to schedule the PDSCH #c of the second downlink carrier of SCell1 across carriers; or send message #a on the first downlink carrier of PCell to instruct the terminal equipment to jointly schedule the PDSCH of the second downlink carrier of SCell1 #b.
  • the cell that schedules uplink or downlink data of SCell1 across carriers is the same as the cell that jointly schedules downlink data of SCell1, and both are PCells.
  • the network equipment realizes joint scheduling of PDSCH of PCell and SCell1 by sending message #a on the first downlink carrier of PCell;
  • the downlink carrier sends message #b, which effectively implements the uplink scheduling requirement of the first uplink carrier of SCell1, thereby reducing the overhead cost of control signaling, and realizing diversified scheduling requirements and the effectiveness of the communication system.
  • the above-mentioned embodiment implements how to schedule uplink data of SCell1 in the case that PCell and SCell1 support joint scheduling.
  • the technical solution is a further optimization strategy for a joint scheduling scenario to meet diversified scheduling requirements.
  • the technical solutions of the downlink joint scheduling and the SCell1 uplink scheduling may be decoupled, and the two operate independently. That is, based on PCell and SCell1 supporting downlink joint scheduling, the network device can determine the configuration information of the joint scheduling search space, and send the configuration information to the terminal device, and the terminal device can also determine the corresponding search space according to the configuration information. in the above step S910. For brevity, details are not repeated here.
  • the terminal device may monitor PCell self-scheduling on the PCell, and at least one of the PDCCHs corresponding to PCell cross-carrier scheduling and downlink joint scheduling.
  • Fig. 10 shows a schematic diagram of a terminal device determining a search space of PCell. As shown in Fig. 10, the method 1000 includes:
  • the network device determines configuration information #a and/or configuration information #b.
  • the configuration information #a is used to indicate the search space #a, which indicates the search space of the PCell self-scheduling PDSCH and/or PUSCH, and is used to carry the PCell self-scheduling message #e;
  • the configuration information #b is used to indicate the search space #b, Indicates the search space where PCell and SCell1 jointly schedule PDSCH, which is used to carry message #a.
  • configuration information #a and configuration information #b are the same, that is, the search space of PCell self-scheduling and downlink joint scheduling can be shared; if configuration information #a and configuration information #b are different, that is, PCell self-scheduling and downlink joint scheduling
  • the scheduling search spaces exist simultaneously and independently of each other.
  • the related signaling configuration is similar to the above step S610, and for brevity, details are not repeated here.
  • the network device sends configuration information #a and/or configuration information #b to the terminal device; correspondingly, the terminal device receives configuration information #a and/or configuration information #b from the network device.
  • the terminal device determines search space #a and/or search space #b according to the received configuration information #a and/or configuration information #b.
  • configuration information #a and configuration information #b are the same, that is, the search space of PCell self-scheduling and downlink joint scheduling can be shared; if configuration information #a and configuration information #b are different, that is, PCell self-scheduling and downlink joint scheduling
  • the search spaces for scheduling are independent of each other. The determination of the search space is similar to the above-mentioned step S630, and for brevity, details are not repeated here.
  • the scheduling information used for PCell self-scheduling and SCell1 cross-carrier scheduling are both received and sent on SCell1, then the self-scheduling determined by the UE And/or the joint scheduling search space is also on SCell1.
  • the network device determines the configuration information #c.
  • the configuration information #c is used to indicate the search space #c, which indicates the search space of the PUSCH of the first uplink carrier of the PCell scheduling SCell1 across the carriers, and is used to carry the message #b.
  • the configuration information #b and the configuration information #c are the same, that is, the search spaces of the downlink joint scheduling and the SCell1 uplink scheduling exist at the same time and can be shared. Then from the point of view of signaling configuration, the two parameters nrofCandidates and searchSpaceId in the configuration information #b are the associated SCell1 configuration, and the other parameters are the configurations corresponding to the PCell, then the configuration information #b can be used to indicate the search space# b and search space #c.
  • the network device determines configuration information #b, where the configuration information #b is used to indicate the search space #b for downlink joint scheduling, and the configuration information #b is used to carry the jointly scheduled message #a. It should be understood that this search space #b is on the PCell.
  • the network device may stipulate in the agreement with the terminal device, or the network device informs the terminal device through signaling that the search space #b may also be used for blind detection of the message #b. That is to say, the network device does not need to determine the configuration information #c, and the search space of the uplink scheduling of the SCell1 is shared with the search space of the downlink joint scheduling.
  • the configuration information #b and the configuration information #c are different, that is, the search spaces for the downlink joint scheduling and the SCell1 uplink scheduling exist at the same time and are independent of each other.
  • the configuration information #b includes at least configuration parameters associated with SCell1: nrofCandidates1 and searchSpaceId 1, and other parameters are the configurations on the corresponding PCell.
  • the configuration information #c includes at least configuration parameters associated with SCell1: nrofCandidates2 and searchSpaceId 2. It should be understood that configuration information #b and configuration information #c are two independent search space configurations.
  • the network device may also configure the same effective parameter nrofCandidates2 in the configuration information #b and the configuration information #c, that is, the downlink joint scheduling and the uplink cross-carrier scheduling share the same nrofCandidates2.
  • the network device may be configured in one set of configuration information (for example, configuration information #b), and the other set of configuration information #c may be determined through a predefined or notified offset value.
  • the network device sends the configuration information #c to the terminal device; correspondingly, the terminal device receives the configuration information #c from the network device.
  • the configuration information #c includes at least configuration parameters associated with SCell1.
  • the terminal device determines the search space #c according to the received configuration information #c.
  • the terminal device can determine the search space according to configuration information #b #b, and the search space #c is determined according to the configuration information #c.
  • the above embodiment further determines the search space for uplink scheduling of SCell1 on the basis of determining the search space for downlink joint scheduling.
  • the technical solutions for determining the search space for joint scheduling and determining the search space for uplink scheduling may be decoupled, and the two operate independently. That is, based on PCell and SCell1 supporting downlink joint scheduling, the network device can determine the configuration information of the joint scheduling search space, and send the configuration information to the terminal device. The terminal device can also determine the corresponding search space according to the configuration information. in the above steps S1010 to S1030. For brevity, details are not repeated here.
  • a joint scheduling method is designed to solve the problem that in a carrier aggregation scenario, joint PDSCH scheduling is configured for a carrier, the configuration and determination of the search space for joint scheduling of the carrier is realized, and the carrier
  • the requirement of uplink scheduling effectively reduces the overhead cost of control signaling, and solves the diversified scheduling requirements and the effectiveness of the communication system.
  • FIG. 11 is a schematic diagram of another example to which the resource scheduling method of the present application is applied.
  • the difference from the first mode is that the PUSCH on the first uplink carrier of SCell1 is scheduled by the uplink cross-carrier of SCell2. That is, there is no PDCCH configured on SCell1, control information is transmitted through the PDCCH of SCell2, and the corresponding data information is transmitted on the PDSCH of SCell1, that is, the terminal device receives the control information on SCell2 to realize the scheduling of resources on SCell1.
  • a rule may be predefined: PCell and SCell1 support joint scheduling of PDSCH, and SCell1 supports uplink cross-carrier scheduling of PUSCH.
  • the method 1100 includes:
  • the network device sends a message # ⁇ to the terminal device on the first downlink carrier of the PCell (ie, an example of the first cell); correspondingly, the terminal device receives the message # ⁇ from the network device on the first downlink carrier of the PCell .
  • the message # ⁇ is used to indicate the scheduling information of the PDSCH, and the PDSCH corresponds to the first downlink carrier of PCell and the second downlink carrier of SCell1.
  • the PDSCH may include a first PDSCH and a second PDSCH, where the first PDSCH corresponds to PCell and the second PDSCH corresponds to SCell1; or, the PDSCH may include a third PDSCH, and the third PDSCH corresponds to PCell and SCell1 . That is, the terminal device can schedule the downlink data transmitted on the first downlink carrier of PCell and the second downlink carrier of SCell1 by receiving the message # ⁇ from the network device.
  • the terminal device can schedule PDSCH #1 of the first downlink carrier of PCell and PDSCH #2 of the second downlink carrier of SCell1.
  • the network device sends message # ⁇ to the terminal device on the third downlink carrier of SCell2 (ie, an example of the third cell); correspondingly, the terminal device receives message # ⁇ from the network device on the third downlink carrier of SCell2.
  • SCell2 ie, an example of the third cell
  • the message # ⁇ is used to indicate the scheduling information of the PUSCH of the first uplink carrier of SCell1 (that is, an example of the second cell), that is, the terminal device can obtain the information about the scheduling of SCell1 by the network device by receiving the message # ⁇ sent by the network device. Scheduling information of PUSCH #1 of the first uplink carrier.
  • the terminal device sends PUSCH#1 to the network device on the first uplink carrier of SCell1; correspondingly, the network device receives PUSCH#1 from the network device on the first uplink carrier of SCell1.
  • the network device may also send DCI# ⁇ to the terminal device on the third downlink carrier of SCell2 for the scheduling information of PUSCH#2 of the third uplink carrier of SCell2 and/or the third downlink of SCell2 Scheduling information of PDSCH #3 of the carrier, etc.
  • the network device may also send downlink scheduling information on SCell2 to instruct the terminal device to downlink and cross-carrier schedule the PDSCH of the second downlink carrier of SCell1.
  • SCell1 supports both the downlink joint scheduling of PDSCH with PCell and the downlink cross-carrier scheduling of PDSCH by SCell2
  • the PDSCH on SCell1 may be scheduled by PCell and SCell2 in downlink at the same time.
  • SCell1 is configured with PCell downlink joint scheduling and is also scheduled by SCell2 across carriers, then SCell2 is allowed to schedule the PUSCH of SCell1 across carriers in uplink at this time, and the downlink data of SCell1 can be scheduled through PCell across carriers and/or Downlink joint scheduling.
  • the purpose of this is to prevent multiple cells (eg PCell and SCell2) from scheduling the PDSCH of one cell (eg SCell1) at the same time. That is to say, it can avoid that one cell (eg, SCell1) is simultaneously scheduled for uplink data/downlink data by two cells (eg, PCell and SCell2), thereby effectively reducing problems such as garbled codes, resource conflicts, and channel congestion.
  • the terminal device can report it as a capability to the network device, then the network device can choose whether to configure and enable this function at the same time when determining the configuration information for the active cell where the terminal device is located.
  • This possible implementation is to some extent The flexible application of resource scheduling can be realized.
  • the PUSCH of the first uplink carrier of SCell1 can be implemented through SCell2 uplink cross-carrier scheduling, that is, the network device sends message # ⁇ on the third downlink carrier of SCell2 to indicate
  • the terminal equipment schedules the PUSCH#1 of the first uplink carrier of SCell1 across carriers;
  • the PDSCH of the second downlink carrier of SCell1 can be implemented by downlink joint scheduling or PCell downlink cross-carrier scheduling, that is, the network equipment is on the first downlink carrier of PCell.
  • SCell2 the cell that schedules uplink data of SCell1 across carriers
  • PCell the cell that schedules downlink data of SCell1 across carriers
  • the network equipment realizes joint scheduling of PDSCH of PCell and SCell1 by sending message # ⁇ on the first downlink carrier of PCell;
  • the three downlink carriers send message # ⁇ , which effectively implements the uplink scheduling requirements of the first uplink carrier of SCell1, thereby reducing the overhead cost of control signaling, and realizing diversified scheduling requirements and the effectiveness of the communication system.
  • the above-mentioned embodiment implements how to schedule uplink data of SCell1 in the case that PCell and SCell1 support joint scheduling.
  • the technical solution is a further optimization strategy for a joint scheduling scenario to meet diversified scheduling requirements.
  • the technical solutions of the downlink joint scheduling and the SCell1 uplink scheduling may be decoupled, and the two operate independently. That is, the network device and the terminal device may support downlink joint scheduling based on PCell and SCell1, and perform downlink data reception and transmission, which specifically corresponds to the foregoing step S1110. For brevity, details are not repeated here.
  • the terminal device can monitor PCell self-scheduling on PCell, at least one of PDCCH corresponding to PCell cross-carrier scheduling and downlink joint scheduling, and can monitor SCell2 self-scheduling and SCell2 cross-scheduling on SCell2 at the same time. At least one of the PDCCHs corresponding to carrier scheduling.
  • Fig. 12 shows a schematic diagram of an example in which the terminal device determines the search space of PCell and SCell2. As shown in Fig. 12, the method 1200 includes:
  • the network device determines configuration information #aa and/or configuration information #bb.
  • the configuration information #aa is used to indicate the search space #aa, which indicates the search space of the PCell self-scheduling PDSCH and/or PUSCH, and is used to carry the PCell self-scheduling message #&;
  • the configuration information #bb is used to indicate the search space #bb, Indicates the search space where PCell and SCell1 jointly schedule PDSCH, which is used to carry message # ⁇ .
  • the configuration information #aa and configuration information #bb are the same, that is, the search space of PCell self-scheduling and joint scheduling can be shared; if the configuration information #aa and configuration information #bb are different, that is, PCell self-scheduling and downlink joint scheduling
  • the related signaling configuration is similar to the above step S610, and for brevity, details are not repeated here.
  • the network device sends configuration information #aa and/or configuration information #bb to the terminal device; correspondingly, the terminal device receives configuration information #aa and/or configuration information #bb from the network device.
  • the terminal device determines the search space #aa and/or the search space #bb according to the received configuration information #aa and/or the configuration information #bb.
  • configuration information #aa and configuration information #bb are the same, that is, the search space of PCell self-scheduling and joint scheduling can be shared; if configuration information #aa and configuration information #bb are different, that is, PCell self-scheduling and joint scheduling
  • the search spaces are independent of each other. The determination of the search space is similar to the above-mentioned step S630, and for brevity, details are not repeated here.
  • the network device determines the configuration information #cc.
  • the configuration information #cc is used to indicate the search space #cc, which indicates the search space for the PUSCH of the first uplink carrier of the SCell1 to be scheduled across the carriers by the SCell2, and used to carry the message #bb.
  • the configuration information #bb and the configuration information #cc are different, that is, the search spaces for the downlink joint scheduling and the SCell1 uplink scheduling exist at the same time and are independent of each other.
  • the configuration information #bb and the configuration information #cc are two sets of independent search space configurations, and the related signaling configurations are similar to the above-mentioned step S1040, and are not repeated here for brevity.
  • the network device sends the configuration information #cc to the terminal device; correspondingly, the terminal device receives the configuration information #cc from the network device.
  • the configuration information #cc includes at least configuration parameters associated with SCell1: nrofCandidates and searchSpaceId.
  • the terminal device determines the search space #cc according to the received configuration information #cc.
  • the search spaces for the downlink joint scheduling and the SCell1 uplink scheduling exist at the same time and are independent of each other.
  • the determination of the search space is similar to the above step S1060, and for brevity, details are not repeated here.
  • the above embodiment further determines the search space for uplink scheduling of SCell1 on the basis of determining the search space for downlink joint scheduling.
  • the technical solutions for determining the search space for joint scheduling and determining the search space for uplink scheduling may be decoupled, and the two operate independently. That is, based on PCell and SCell1 supporting downlink joint scheduling, the network device can determine the configuration information of the joint scheduling search space, and send the configuration information to the terminal device. The terminal device can also determine the corresponding search space according to the configuration information. in the above steps S1210 to S1230. For brevity, details are not repeated here.
  • a joint scheduling method is designed to solve the problem that in a carrier aggregation scenario, joint PDSCH scheduling is configured for a carrier, the configuration and determination of the search space for joint scheduling of the carrier is realized, and the carrier
  • the requirement of uplink scheduling effectively reduces the overhead cost of control signaling, and solves the diversified scheduling requirements and the effectiveness of the communication system.
  • the above possible embodiments illustrate how to uplink schedule the PUSCH of the first uplink carrier of SCell1 from three possible implementations based on the PCell scheduling SCell1.
  • the technical solutions of the present application are also applicable to take SCell1 (that is, an example of the first cell) scheduling PCell (that is, an example of the second cell) as an example, that is, when PCell and SCell1 support downlink joint scheduling, the network
  • the device can send the first message on the first downlink carrier of SCell1, where the first message is used to indicate the scheduling information of the PDSCH of the physical downlink shared channel; at the same time, the network device sends the second message on the second downlink carrier of PCell, or
  • the first downlink carrier of SCell1 sends the second message, or the third downlink carrier of SCell2 sends the second message for uplink scheduling the PUSCH of the first uplink carrier of PCell.
  • the possible implementation steps are similar to the solution for scheduling SCell1 by the PCell in the foregoing embodiment, which is not repeated here for
  • the uplink scheduling of PCell is realized.
  • the DCI size needs to be aligned, and the DCI budget problem needs to be considered.
  • PCell as the primary cell, regardless of whether cross-carrier scheduling is configured, its common search space is used to transmit cell-level common information, such as control information related to Paging, RAR, BCCH, etc., which is used for all terminals. All devices are the same, they all need to be monitored.
  • the PCell scheduling SCell1 and SCell1 scheduling PCell are taken as examples to illustrate how the network device effectively performs uplink scheduling on SCell1 and PCell, and at the same time A scheme to configure and determine the search space of joint scheduling is proposed.
  • the technical solutions of the present application include but are not limited to this.
  • the technical solutions of the present application are also applicable to the case where SCell1 and SCell2 are configured with joint downlink scheduling, and when PCell, SCell1 and SCell2 are configured with joint downlink scheduling.
  • the technical solution of the present application is also applicable to the scenario where Cell1 and Cell2 are jointly scheduled, and the DCI used for the joint scheduling is sent on Cell3.
  • the possible implementation manners of the uplink data scheduling of the cell and the configuration and determination of the joint scheduling search space are basically similar to the above-mentioned technical solutions of the present application, and are not repeated here for brevity.
  • the network device when SCell1 and SCell2 are configured for joint downlink scheduling, taking SCell1 scheduling SCell2 as an example, the network device sends scheduling information on SCell1, and the scheduling information is used for downlink joint scheduling of the physical downlink shared channel PDSCH on SCell1 and SCell2.
  • the network device may implement uplink scheduling of the physical uplink shared channel PUSCH of SCell2 through SCell2 self-scheduling, or SCell1 uplink cross-carrier scheduling, or other SCell3 uplink cross-carrier scheduling.
  • the network device when PCell, SCell1, and SCell2 are configured for joint scheduling, taking PCell scheduling SCell1 and SCell2 at the same time as an example, the network device sends scheduling information on PCell, and the scheduling information is used for downlink joint scheduling of physical downlink sharing of PCell, SCell1, and SCell2.
  • Channel PDSCH at this time, the network device can achieve uplink scheduling of the physical uplink shared channel PUSCH of SCell1/SCell2 through SCell1/SCell2 self-scheduling, or PCell uplink cross-carrier scheduling, or other SCell3 uplink cross-carrier scheduling.
  • a possible implementation manner is similar to the above-mentioned technical solution, and details are not repeated here.
  • the above embodiment takes the activated cells PCell, SCell1 and SCell2 as examples, only to express the technical solution of the present application more clearly.
  • the number of activated cells should be greater than or equal to 2.
  • the above-mentioned number of activated cells shall not constitute any limitation in this application.
  • each cell supports downlink joint scheduling
  • the network device realizes uplink data scheduling based on the downlink joint scheduling between cells, and effectively achieves diversified scheduling requirements.
  • the embodiments of the present application are also applicable to uplink joint scheduling, and the network device implements downlink data scheduling based on uplink joint scheduling between cells.
  • cell 1 and cell 2 support uplink joint scheduling
  • DCI for joint scheduling can be sent in cell 1
  • the network device can perform uplink scheduling on the PUSCH of cell 2 based on this scenario.
  • the specific implementation manner is similar to the above-mentioned embodiment, and for brevity, details are not repeated here. in addition.
  • the determination of the search space for uplink joint scheduling may be similar to the manner for determining the search space for downlink joint scheduling, which will not be repeated here.
  • the base station can configure multiple secondary cells for the UE through signaling 1.
  • the initially configured cell is in the deactivated state.
  • the base station and the UE cannot perform data transmission on the deactivated cell.
  • the base station needs to instruct the UE to activate the configured cell through signaling 2.
  • the base station and the UE can perform data transmission on the cell.
  • the cells eg, PCell, SCell1, and SCell2 configured for joint scheduling in the foregoing embodiments are all cells after activation is completed.
  • the signaling 1 can also be used to indicate the activation of the cell, that is, the base station activates the cell while configuring the cell information.
  • the process of cell activation may include: the base station sends signaling 2 to the UE; correspondingly, the UE receives signaling 2 from the base station, and after the signaling 2 is processed, the UE can feed back HARQ information to the base station, that is, whether the UE correctly receives the signal sent by the base station. Signaling 2.
  • the base station sends a signal 1 to the UE, and the signal 1 is used to realize the synchronization between the base station and the UE; correspondingly, the UE receives the signal 1 from the base station; after processing the signal 1, the UE obtains the information required for cell activation according to the measurement signal 1, including the time frequency synchronization information, reference signal power; the base station sends signal 2 to the UE; correspondingly, after the UE receives signal 2 from the base station, the UE feeds back an effective channel measurement report to the base station; The cell is active.
  • signaling 1 may be radio resource control RRC signaling
  • signaling 2 may be media access control management unit MAC CE signaling
  • signal 1 may be a synchronization signal block single sideband (Single Side Band, SSB) signal
  • signal 2 may be a channel state information reference signal (Channel State Information-Reference Signal, CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the UE can use the SSB to obtain the information required for the cell activation period.
  • the activation time of the secondary cell is relatively long. Therefore, in order to reduce the activation time of the secondary cell, the Temporary reference signals are introduced in the secondary cell activation process.
  • the temporary reference signal may include a CSI-RS or a tracking reference signal (TRS).
  • TRS tracking reference signal
  • the UE may use the TRS as a temporary reference signal to activate the cell, and the TRS may be a periodic TRS or an aperiodic TRS.
  • the temporary reference signal may be defined as a periodic TRS, or the temporary reference signal may be defined as an aperiodic TRS, or the temporary reference signal includes a periodic TRS and an aperiodic TRS.
  • the base station can enable the UE to receive the TRS quickly, so as to obtain the information required for cell activation more quickly to complete the cell activation.
  • the temporary reference signal is a periodic TRS
  • configuring a short-period TRS can also enable the UE to receive the TRS more quickly and complete the cell activation.
  • CSI-RS signaling also includes periodic CSI-RS and aperiodic CSI-RS.
  • Temporary reference signals can be defined as periodic CSI-RS, and temporary reference signals can also be defined as aperiodic CSI-RS, or temporary reference signals can be defined as aperiodic CSI-RS.
  • the reference signal includes periodic CSI-RS and aperiodic CSI-RS. The technical effect of using CSI-RS to replace SSB is the same as TRS. Compared with using the SSB with a long period to complete the cell activation, using the temporary reference signal can reduce the cell activation delay.
  • the base station may configure a temporary reference signal set for the UE through signaling 3, and the temporary reference signal set may be configured according to the cell granularity, or may be configured according to the BWP granularity on the cell.
  • the base station may send signaling 4 and signaling 5 for cell activation to the UE, where signaling 4 is used to indicate at least one temporary reference signal in the configured reference set, and signaling 4 and signaling 5 here can be understood for the same signaling.
  • This approach can reduce the time for the UE to receive and process signaling, thereby further reducing the time for cell activation.
  • the above-mentioned temporary reference signal set may be preset or pre-defined, that is, the base station and the UE may negotiate and stipulate in advance.
  • signaling 3 is RRC signaling
  • signaling 4 and signaling 5 are both MAC CE signaling, and are the same MAC CE signaling
  • the base station activates the secondary cell through MAC CE signaling, and at the same time implicitly indicates to be activated.
  • Temporary reference signal on the cell is RRC signaling
  • signaling 4 and signaling 5 are both MAC CE signaling, and are the same MAC CE signaling
  • the base station activates the secondary cell through MAC CE signaling, and at the same time implicitly indicates to be activated.
  • Temporary reference signal on the cell is
  • the MAC CE signaling includes the index corresponding to the cell that needs to be activated.
  • the predefined implicit indication rule is: after the UE receives the MAC CE cell activation signaling, the signaling implicitly indicates that the cell is used for Temporary reference signal for cell activation.
  • the reference signal may have a predefined rule: according to all temporary reference signals in the temporary reference signal set configured in signaling 3, or may be one or more of the reference signal set determined by the UE according to the temporary reference signal predefined rule Temporary reference signal, or; one or more temporary reference signals in the reference signal set may be independently selected by the UE in the configured reference signal set.
  • the above-mentioned pre-defined rules for temporary reference signals may include: the indicated reference signal is a temporary reference signal corresponding to the largest or smallest resource index in the temporary reference signal set on the cell to be activated or an index determined by other methods; or, the indicated reference signal is The temporary reference signal corresponding to the maximum or minimum resource index in the temporary reference signal set in the specific BWP on the cell to be activated or the index determined by other methods, the number of the specific BWP is greater than or equal to 1, and the specific BWP can be the initial activated uplink or
  • the downlink BWP (the initial activated BWP is the BWP initially activated after the activation of a cell is completed) can be N uplink/downlink BWPs with the lowest or highest index, and N is greater than or equal to 1.
  • the temporary reference signal may be a TRS
  • the TRS includes a periodic TRS and an aperiodic TRS
  • the MAC CE signaling implicitly indicates the aperiodic TRS with an index corresponding to a predefined rule in the aperiodic TRS set.
  • the UE may also receive the periodic TRS according to the periodic TRS configuration. That is, after the UE receives the MAC CE signaling for cell activation, it can start to receive the corresponding reference signal according to the configuration of the aperiodic TRS and the periodic TRS.
  • the temporary reference signal is an aperiodic TRS
  • the MAC CE signaling implicitly indicates an aperiodic TRS with an index corresponding to a predefined rule in the aperiodic TRS set, that is, after the UE receives the MAC CE signaling for cell activation, it can Start receiving the corresponding reference signal according to the aperiodic TRS configuration.
  • the UE receives the MAC CE signaling from the base station, and at the same time determines the temporary reference signal to be received according to a predefined rule.
  • the implicit indication of the MAC CE may be the TRS corresponding to the index of the predefined rule in the TRS set, and the TRS set includes periodic TRS and aperiodic TRS, that is, after the UE receives the MAC CE signaling for cell activation, if the implicit If the indicated TRS is a periodic TRS, the UE receives the corresponding reference signal according to the periodic TRS configuration. If the implicitly indicated TRS is an aperiodic TRS, the UE receives aperiodic TRS according to the aperiodic TRS configuration, or according to the aperiodic TRS configuration. TRS and periodic TRS receive corresponding TRS.
  • the base station can add an identifier of whether the temporary reference signal is triggered in the existing MAC CE signaling, the identifier It can correspond to all cells; or add multiple identifiers of whether the temporary reference signal is triggered in the MAC CE signaling, and each cell can correspond to an identifier at this time.
  • the MAC CE signaling indicates that cell 1, cell 3, and cell 5 are activated, and carries an identifier to indicate whether cell 1, cell 3, and cell 5 trigger the above-mentioned predefined temporary reference signal at the same time; or cell 1 corresponds to a trigger temporary reference signal.
  • cell 3 corresponds to an identifier that does not trigger a temporary reference signal
  • cell 5 corresponds to an identifier that triggers a temporary reference signal.
  • the base station when the base station configures the cell information through RRC signaling, it may add an identifier in the RRC signaling whether to trigger or determine the temporary reference signal at the same time. After receiving the activation command of the cell, the UE further determines whether to receive the above-mentioned predefined temporary reference signal according to whether the cell configuration information includes the identifier of the simultaneous trigger or determination of the temporary reference signal. For example, the base station adds and configures cell #a through RRC signaling, and whether the corresponding trigger of the temporary reference signal corresponding to cell #a is correct (true) or enabled (enabled), then after the UE receives the MAC CE activation The predefined rule determines the TRS used for cell activation.
  • the UE does not receive the MAC CE activation signaling after receiving the MAC CE activation signaling.
  • the TRS for cell activation is determined according to predefined rules. For example, bits “1" and "0" can be used to represent whether the TRS is identified as true or false.
  • Predefined rules when the identifier used to trigger or determine the temporary reference signal in the RRC signaling received by the UE is 1, it means that the UE determines to receive the above-mentioned predefined temporary reference signal; otherwise, the UE determines not to receive the above-mentioned predefined temporary reference signal. Signal.
  • the base station may also pre-define a rule with the UE: when the RRC signaling sent by the base station includes an identifier that triggers or determines the temporary reference signal, correspondingly, the UE determines to receive the above-mentioned preset according to the trigger or determine the identifier of the temporary reference signal.
  • the defined temporary reference signal when the RRC signaling sent by the base station does not include the identifier of the trigger or determination of the temporary reference signal, correspondingly, the UE will not receive the identifier of the trigger or determination of the temporary reference signal, and further determines not to receive the above-defined Temporary reference signal.
  • the base station can implement this through configuration, and the pre-defined rule is: if a set of temporary reference signals available on the first activated downlink BWP of a to-be-activated cell is not configured, the UE determines not to trigger the temporary reference signal at the same time after receiving the cell activation signaling If there is an available temporary reference signal set on the BWP, the UE determines to trigger the temporary reference signal at the same time after receiving the cell activation signal.
  • the UE may report whether it supports the capability of simultaneously triggering cell activation and temporary reference signals, and the capability may indicate that all configured cells have the same capability, or each cell may have different capabilities. For example, it is supported on cell 1 but not supported on cell 2.
  • the base station and the UE can determine whether the cell activation signaling implicitly triggers the temporary reference signal at the same time according to the capability of the UE.
  • the base station may configure whether the UE supports simultaneous triggering of carrier activation and temporary reference signals on each cell according to the capabilities of the UE. For a UE that supports the simultaneous triggering capability, the base station may configure a supported or unsupported flag in the cell configuration; for a UE that does not support the simultaneous triggering capability, the base station may configure an unsupported flag in the cell configuration.
  • the above-mentioned signaling 4 and signaling 5 may also be radio resource control RRC, or downlink control information DCI.
  • RRC radio resource control
  • DCI downlink control information
  • the above-mentioned way 1 can realize the indication of cell activation and temporary reference signal at the same time, and can enhance the flexibility of temporary reference signal indication on the basis of reducing the delay of cell activation.
  • signaling 3 RRC signaling
  • signaling 4 as DCI
  • signaling 5 as an example of MAC CE
  • the MAC CE is carried in the PDSCH
  • the PDSCH is scheduled by the above-mentioned DCI. That is, the base station schedules the PDSCH through a DCI and triggers a temporary reference signal for cell activation on the cell to be activated.
  • the PDSCH includes a MAC CE signaling.
  • the MAC CE signaling is used to indicate one or more cells to be activated.
  • the DCI A field used to indicate a temporary signal, where the field of the temporary signal indicates a temporary reference signal used for cell activation on the one or more cells, and the field may be a CSI request field in the DCI.
  • the base station needs to send signaling 4 to the UE to indicate at least one temporary reference signal in the temporary reference signal set used for activating the cell.
  • the base station also needs to send signaling 5 to the UE, and the signaling 5 is used for cell activation; optionally, the base station can simultaneously send signaling 4 and signaling 5 for cell activation to the UE; correspondingly, the UE can simultaneously receive Signaling 4 and Signaling 5.
  • the difference between the first mode and the second mode is that in the first mode, the base station may implicitly indicate the temporary reference signal used for cell activation on the cell when sending the signaling 5 for cell activation, that is, the base station may not send the signaling 4 to the UE. .
  • the base station In the second mode, the base station needs to send signaling 4 and signaling 5 to the UE.
  • the interaction between the base station and the UE based on signaling 3 is similar to that in the above-mentioned mode 1, and is not repeated here for brevity.
  • the temporary reference signal may be a TRS
  • the TRS includes a periodic TRS and an aperiodic TRS
  • the MAC CE signaling implicitly indicates the aperiodic TRS with an index corresponding to a predefined rule in the aperiodic TRS set.
  • the UE may also receive the periodic TRS according to the periodic TRS configuration. That is, after the UE receives the MAC CE signaling for cell activation, it can start to receive the corresponding reference signal according to the configuration of the aperiodic TRS and the periodic TRS.
  • the temporary reference signal is aperiodic TRS, MAC CE signaling, MAC CE signaling implicitly indicates the aperiodic TRS corresponding to the index of the predefined rules in the aperiodic TRS set, that is, the UE receives the MAC CE for cell activation. After signaling, the corresponding reference signal can be received according to the aperiodic TRS configuration. Correspondingly, the UE receives the MAC CE signaling from the base station, and at the same time determines the temporary reference signal to be received according to a predefined rule.
  • the base station may also configure multiple temporary reference signal sets for the UE through signaling 3, and the temporary reference signal sets may be configured according to the cell granularity, or may be configured according to the BWP granularity on the cell. Then the signaling 4 sent by the base station to the UE may be used to indicate one or more temporary reference signal sets in the configured reference set, or may be used to indicate one or more of at least one temporary reference signal set in the configured reference set a temporary reference signal.
  • the specific implementation has been described above, and is not repeated here for brevity.
  • the base station can realize the activation of the cell by sending the activation request information to the UE in combination with the predefined rules, thereby realizing diversified resource scheduling requirements.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes no limitation.
  • the various embodiments described herein may be independent solutions, or may be combined according to internal logic, and these solutions all fall within the protection scope of the present application.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • FIG. 13 is a schematic diagram of a communication device 10 suitable for an embodiment of the present application, such as a network device.
  • the communication device 10 includes: a transceiver unit 11 and a processing unit 12 .
  • the transceiver unit 11 is configured to send a first message on the first downlink carrier of the first cell, where the first message is used to indicate the scheduling information of the physical downlink shared channel PDSCH, and the PDSCH corresponds to the first downlink carrier of the first cell.
  • the transceiver unit 11 is further configured to send a second message, where the second message is used to indicate scheduling information of the physical uplink shared channel PUSCH of the first uplink carrier of the second cell.
  • the transceiver unit 11 is further configured to receive the PUSCH on the first uplink carrier of the second cell according to the second message.
  • the communication device 10 may correspond to the network device in the method 500/900/1100 for resource scheduling according to the embodiments of the present application, and the communication device 10 may include a A module (or unit) of the method performed by the network device of the method 500/900/1100. Moreover, each module (or unit) and the above-mentioned other operations and/or functions in the communication device 10 are to implement the corresponding flow of the resource scheduling method 500/900/1100 in FIG. 5/FIG. 9/FIG. 11, respectively.
  • the transceiver unit 11 is configured to perform S510, S520 and S530/S910, S920 and S930/S1010, S1020 and S1030 in the methods 500/900/1100, and the process of each module (or unit) performing the above-mentioned corresponding steps is in the method 500 /900/1000 has been described in detail, and for brevity, it will not be repeated here.
  • the communication device 10 may correspond to the network device in the method 600/1000/1200 for determining a search space according to an embodiment of the present application, and the communication device 10 may include a method for performing the determination in FIG. 6/FIG. 10/FIG. 12.
  • each module (or unit) and the above-mentioned other operations and/or functions in the communication device 10 are to implement the corresponding flow of the method 600/1000/1200 for determining a search space in FIG. 6/FIG. 10/FIG. 12, respectively.
  • the transceiver unit 11 is configured to execute S620/1020/S1220 in the method 600/1000/1200
  • the processing unit 12 is configured to execute S610/S1010/S1210 in the method 600/1000/1200
  • each module (or unit) executes The processes of the above corresponding steps have been described in detail in the methods 600/1000/1200, and for brevity, they will not be repeated here.
  • the communication device 10 may correspond to the network device for resource scheduling and search space determination in the foregoing method embodiments, and the above and other management operations and/or functions of each module in the communication device 10 are for the purpose of Corresponding steps of the foregoing methods are implemented, so the beneficial effects in the foregoing method embodiments can also be achieved.
  • processing module in the embodiments of the present application may be implemented by a processor
  • transceiver module or unit
  • transceiver may be implemented by a transceiver
  • FIG. 14 is a schematic diagram of a communication device 20 suitable for an embodiment of the present application, such as a terminal device.
  • the communication device 20 includes: a transceiver unit 21 and a processing unit 22 .
  • the transceiver unit 21 is configured to receive a first message on the first downlink carrier of the first cell, where the first message is used to indicate the scheduling information of the physical downlink shared channel PDSCH, and the PDSCH corresponds to the first downlink carrier of the first cell.
  • the transceiver unit 21 is further configured to receive a second message, where the second message is used to indicate scheduling information of the physical uplink shared channel PUSCH of the first uplink carrier of the second cell.
  • the transceiver unit 21 is further configured to send the PUSCH on the first uplink carrier of the second cell according to the second message.
  • the communication device 20 may correspond to the terminal device in the method 500/900/1100 for resource scheduling according to the embodiments of the present application, and the communication device 20 may include a A module (or unit) of the method performed by the terminal device of the method 500/900/1100. Moreover, each module (or unit) and the above-mentioned other operations and/or functions in the communication device 20 are to implement the corresponding processes of the resource scheduling methods 500/900/1100 in FIG. 5/FIG. 9/FIG. 11, respectively.
  • the transceiver unit 21 is configured to perform S510, S520 and S530/S910, S920 and S930/S1110, S1120 and S1130 in the methods 500/900/1100, and the process of each module (or unit) performing the above-mentioned corresponding steps is in the method 500 /900/1100 has been described in detail, and for brevity, it will not be repeated here.
  • the communication device 20 may also correspond to the terminal device in the method 600/1000/1200 for determining a search space according to an embodiment of the present application, and the communication device 20 may include a device for performing the determination in FIG. 6/FIG. 10/FIG. 12.
  • each module (or unit) and the above-mentioned other operations and/or functions in the communication device 20 are to implement the corresponding flow of the method 600/1000/1200 for determining a search space in FIG. 6/FIG. 10/FIG. 12, respectively.
  • the transceiver module 21 is configured to execute S620/S1020/S1220 in the method 600/1000/1200
  • the processing unit 22 is configured to execute S630/S1030/S1230 in the method 600/1000/1200
  • each module (or unit) executes The processes of the above corresponding steps have been described in detail in the methods 600/1000/1200, and for brevity, they will not be repeated here.
  • the communication device 20 may correspond to the terminal device for resource scheduling and search space determination in the foregoing method embodiments, and the above-mentioned and other management operations and/or functions of each module in the communication device 20 are for the purpose of Corresponding steps of each of the foregoing methods are implemented, so the beneficial effects in the foregoing method embodiments can also be achieved.
  • processing module in the embodiments of the present application may be implemented by a processor
  • transceiver module or unit
  • transceiver may be implemented by a transceiver
  • FIG. 15 is a schematic diagram of a network device 30 suitable for this embodiment of the present application.
  • the network device 30 includes: a processor 31 , a transceiver 32 and a memory 33 .
  • the processor 31, the transceiver 32 and the memory 33 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 31, the transceiver 32 and the memory 33 may be implemented in a chip.
  • the memory 33 can store program codes, and the processor 31 calls the program codes stored in the memory 33 to implement corresponding functions of the network device.
  • the processor 31 is configured to determine the first configuration information of the first cell, the first configuration information of the first cell is used to indicate the first search space; determine the first configuration information of the second cell, the first configuration information of the second cell A configuration information is used to indicate the first search space.
  • the transceiver 32 is configured to send a first message on the first downlink carrier of the first cell, where the first message is used to indicate scheduling information of the physical downlink shared channel PDSCH, and the PDSCH corresponds to the first downlink of the first cell. carrier and the second downlink carrier of the second cell; send a second message, the second message is used to indicate the scheduling information of the physical uplink shared channel PUSCH of the first uplink carrier of the second cell; according to the second message, in the second cell The PUSCH is received on the first uplink carrier.
  • the network device 30 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 33 may store some or all of the instructions for performing the methods performed by the network device in the aforementioned methods.
  • the processor 31 can execute the instructions stored in the memory 33 in combination with other hardware (such as the transceiver 32) to complete the steps performed by the network device in the foregoing method.
  • other hardware such as the transceiver 32
  • FIG. 16 is a schematic diagram of a terminal device 40 suitable for this embodiment of the present application.
  • the terminal device 40 includes: a processor 41 , a transceiver 42 and a memory 43 .
  • the processor 41, the transceiver 42 and the memory 43 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 41, the transceiver 42 and the memory 43 may be implemented in a chip.
  • the memory 43 can store program codes, and the processor 41 invokes the program codes stored in the memory 43 to implement corresponding functions of the terminal device.
  • the processor 41 is configured to detect the third message in the first search space; and to detect the first message in the second search space.
  • the transceiver 42 is configured to receive the first message on the first downlink carrier of the first cell, the first message is used to indicate the scheduling information of the physical downlink shared channel PDSCH, and the PDSCH corresponds to the first downlink of the first cell. carrier and the second downlink carrier of the second cell; receive a second message, the second message is used to indicate the scheduling information of the physical uplink shared channel PUSCH of the first uplink carrier of the second cell; according to the second message, in the second cell The PUSCH is sent on the first uplink carrier.
  • the terminal device 40 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 43 may store some or all of the instructions for performing the methods performed by the terminal device in the aforementioned methods.
  • the processor 41 can execute the instructions stored in the memory 43 in combination with other hardware (eg, the transceiver 42 ) to complete the steps performed by the terminal device in the foregoing method.
  • other hardware eg, the transceiver 42
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM Double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal with one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源调度的方法和通信设备,该方法包括:在第一小区的第一下行载波上接收第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;接收第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;根据所述第二消息,在所述第二小区的第一上行载波上发送所述PUSCH。本申请实施例的资源调度方法,能够利用一个下行控制信息DCI调度多个载波上的数据,有效降低控制信令的开销,实现多元化的调度需求和通信,提升系统的有效性。

Description

资源调度的方法和通信设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源调度的方法和通信设备。
背景技术
在高级长期演进(Long Term Evolution Advance,LTE-A)系统中,引入载波聚合(carrier aggregation,CA)技术以支持更大的传输带宽。目前支持用户设备(user equipment,UE)在载波聚合场景下,网络设备可以使用一个下行控制信息(downlink control information,DCI)调度一个载波的物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
然而,随着日益增长的通信需求,资源频繁调度可能导致控制信令开销过大。
因此,为了降低控制信令的开销,如何实现利用一个下行控制信息DCI调度多个载波上的数据,满足多元化的调度需求是亟需解决的技术问题。
发明内容
本申请提供一种资源调度的方法和通信设备,能够有效降低控制信令的开销,实现通信多元化的调度需求和系统的有效性。
第一方面,提供了一种资源调度的方法,包括:在第一小区的第一下行载波上接收第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;接收第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;根据所述第二消息,在所述第二小区的第一上行载波上发送所述PUSCH。
根据本申请提供的方案,终端设备通过在第一小区的第一下行载波接收第一消息,能够调度第一小区的第一下行载波的PDSCH和第二小区的第二下行载波的PDSCH;在这一场景下,终端设备再根据接收的第二消息,能够调度第二小区的第一上行载波的PUSCH,并向网络设备发送所述PUSCH,有效降低了控制信令的开销,满足了多元化的调度需求,实现了通信多元化和系统的有效性。
示例地,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
示例地,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
结合第一方面,在第一方面的某些实现方式中,所述接收第二消息包括:在所述第二小区的第二下行载波上接收所述第二消息;或者在所述第一小区的第一下行载波上接收所述第二消息;或者在第三小区的第三下行载波上接收所述第二消息。
示例地,对于本载波支持调度PUSCH的情况,终端设备还可以在第二小区的第二下 行载波上接收DCI,用于指示第二小区的第三下行载波的PDSCH对应的调度信息。
示例地,终端设备设备还可以在第二小区的第二下行载波上接收DCI,用于指示终端设备跨载波调度第二小区的PUSCH或PDSCH;和/或用于指示终端设备联合调度第二小区的PDSCH和第三小区的PDSCH。
示例地,对于本载波不支持调度PUSCH的情况,终端设备还可以在第一小区的第一下行载波上接收DCI,用于指示终端设备下行跨载波调度第一小区的第一下行载波上的PDSCH。
示例地,终端设备设备还可以在第一小区的第一下行载波上接收DCI,用于指示终端设备跨载波调度第三小区的PUSCH或PDSCH;和/或用于指示终端设备下行联合调度第一小区的PDSCH和第三小区的PDSCH。
结合第一方面,在第一方面的某些实现方式中,接收第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间;在所述第一搜索空间检测第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;接收第二小区的第一配置信息,所述第二小区的第一配置信息用于指示第二搜索空间;在所述第二搜索空间检测所述第一消息。
结合第一方面,在第一方面的某些实现方式中,所述第一小区的第一配置信息与所述第二小区的第一配置信息相同,所述第二搜索空间与所述第一搜索空间相同,在所述第一搜索空间检测所述第一消息。
应理解,在上述可能实现方式中,所述自调度和联合调度的两个搜索空间均存在且共享,即终端设备也可以在所述第一搜索空间盲检测所述第一消息。
结合第一方面,在第一方面的某些实现方式中,接收第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间;在所述第三搜索空间检测第四消息,所述第四消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;在所述第三搜索空间检测所述第一消息。
应理解,在上述可能实现方式中,存在自调度的搜索空间,所述第一消息也可以在自调度的搜索空间进行盲检测。
结合第一方面,在第一方面的某些实现方式中,接收第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间;在所述第四搜索空间检测所述第二消息。
结合第一方面,在第一方面的某些实现方式中,接收第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息;所述第二小区的第二配置信息与所述第二小区的第三配置信息相同,所述第四搜索空间与所述第五搜索空间相同,在所述第五搜索空间检测所述第二消息。
应理解,在上述可能实现方式中,联合调度与上行调度的两个搜索空间均存在且共享,即终端设备也可以在联合调度的搜索空间盲检测所述第二消息。
结合第一方面,在第一方面的某些实现方式中,接收第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息;在所述第六搜索空间检测所述第二消息。
应理解,在上述可能实现方式中,存在联合调度的搜索空间,所述第二消息也在联合 调度的搜索空间进行盲检测。
结合第一方面,在第一方面的某些实现方式中,接收第一指示信息,所述第一指示信息用于指示在第七搜索空间检测所述第一消息,或者,所述第一指示信息用于指示在第八搜索空间检测所述第一消息信息,其中,所述第七搜索空间包括用于承载第五消息的搜索空间,所述第五消息用于指示所述第一小区的第一下行载波的第五PDSCH或所述第一小区的第二上行载波的第三PUSCH的搜索空间,所述第八搜索空间包括用于承载所述第一消息的搜索空间;所述在第一小区的第一下行载波上接收第一消息,包括:根据所述第一指示信息,在第一小区的第一下行载波上接收第一消息。
示例地,当所述第一指示信息用于指示在第八搜索空间检测所述第一消息时,所述方法还包括:接收第五配置信息,所述第五配置信息用于指示所述第八搜索空间,所述第五配置信息包括与所述第二小区有关的配置信息。
示例地,当所述第一指示信息用于指示在第七搜索空间检测所述第一消息时,所述方法还包括:接收第六配置信息,所述第六配置信息用于指示所述第七搜索空间,所述第七搜索空间包括所述第八搜索空间,所述第六配置信息包括与所述第一小区有关的配置信息。
综上所述,终端设备可以根据不同的配置信息在第一小区和/或第二小区上监听自调度、跨载波调度和联合调度对应的PDCCH中的至少一个。
第二方面,提供了一种资源调度的方法,包括:在第一小区的第一下行载波上发送第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;发送第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;根据所述第二消息,在所述第二小区的第一上行载波上接收所述PUSCH。
根据本申请提供的方案,网络设备通过在第一小区的第一下行载波发送第一消息,能够调度第一小区的第一下行载波的PDSCH和第二小区的第二下行载波的PDSCH;在这一场景下,网络设备再根据发送的第二消息,能够调度第二小区的第一上行载波的PUSCH,并接收终端设备发送的所述PUSCH,有效降低了控制信令的开销,满足了多元化的调度需求,实现了通信多元化和系统的有效性。
示例地,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
示例地,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
结合第二方面,在第二方面的某些实现方式中,所述发送第二消息包括:在所述第二小区的第二下行载波上发送所述第二消息;或者在所述第一小区的第一下行载波上发送所述第二消息;或者在第三小区的第三下行载波上发送所述第二消息。
示例地,对于本载波支持调度PUSCH的情况,网络设备还可以在第二小区的第三下行载波上发送DCI,用于指示第二小区的第三下行载波的PDSCH对应的调度信息。
示例地,网络设备还可以在第二小区的第四下行载波上发送DCI,用于指示终端设备跨载波调度第二小区的PUSCH或PDSCH;和/或用于指示终端设备联合调度第二小区的PDSCH和第三小区的PDSCH。
示例地,对于本载波不支持调度PUSCH的情况,网络设备还可以在第一小区的第三下行载波上发送DCI,用于指示终端设备下行跨载波调度第一小区的第三下行载波上的PDSCH。
示例地,网络设备还可以在第一小区的第四下行载波上发送DCI,用于指示终端设备跨载波调度第三小区的PUSCH或PDSCH;和/或用于指示终端设备下行联合调度第一小区的PDSCH和第三小区的PDSCH。
结合第二方面,在第二方面的某些实现方式中,在所述第一小区的第一下行载波上发送第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;发送第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间,所述第一搜索空间用于检测所述第三消息;发送第二小区的第一配置信息,所述第二小区的第一配置信息用于指示所述第二搜索空间,所述第二搜索空间用于检测所述第一消息。
结合第二方面,在第二方面的某些实现方式中,发送第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间,所述第三搜索空间用于检测第四消息和所述第一消息,所述第四消息用于指示所述第一小区的第一下行载波的第四PDSCH的调度信息或所述第一小区的第二上行载波的第二PUSCH的调度信息。
应理解,在上述可能实现方式中,存在自调度的搜索空间,所述第一消息也可以在自调度的搜索空间进行盲检测。
结合第二方面,在第二方面的某些实现方式中,发送第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间,所述第四搜索空间用于检测所述第二消息。
结合第二方面,在第二方面的某些实现方式中,发送第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息。
应理解,在上述可能实现方式中,联合调度与上行调度的两个搜索空间均存在且共享,即终端设备也可以在联合调度的搜索空间盲检测所述第二消息。
结合第二方面,在第二方面的某些实现方式中,发送第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息和所述第二消息。
应理解,在上述可能实现方式中,存在联合调度的搜索空间,所述第二消息也在联合调度的搜索空间进行盲检测。
第三方面,提供了一种通信设备,包括:收发单元,用于在第一小区的第一下行载波上接收第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;所述收发单元,还用于接收第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;所述收发单元,还用于根据所述第二消息,在所述第二小区的第一上行载波上发送所述PUSCH。
示例地,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
示例地,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
结合第三方面,在第三方面的某些实现方式中,所述收发单元,还用于在所述第二小区的第二下行载波上接收所述第二消息;或者在所述第一小区的第一下行载波上接收所述第二消息;或者在第三小区的第三下行载波上接收所述第二消息。
结合第三方面,在第三方面的某些实现方式中,所述收发单元,还用于接收第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间;处理单元,用于在所述第一搜索空间检测第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;所述收发单元,还用于接收第二小区的第一配置信息,所述第二小区的第一配置信息用于指示第二搜索空间;所述处理单元,还用于在所述第二搜索空间检测所述第一消息。
结合第三方面,在第三方面的某些实现方式中,所述处理单元,还用于所述第一小区的第一配置信息与所述第二小区的第一配置信息相同,在所述第一搜索空间检测所述第一消息。
结合第三方面,在第三方面的某些实现方式中,所述收发单元,还用于接收第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间;所述处理单元,还用于在所述第三搜索空间检测第四消息,所述第四消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;所述处理单元,还用于在所述第三搜索空间检测所述第一消息。
结合第三方面,在第三方面的某些实现方式中,所述收发单元,还用于接收第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间;所述处理单元,还用于在所述第四搜索空间检测所述第二消息。
结合第三方面,在第三方面的某些实现方式中,所述收发单元,还用于接收第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息;所述处理单元,还用于所述第二小区的第二配置信息与所述第二小区的第三配置信息相同,在所述第五搜索空间检测所述第二消息。
结合第三方面,在第三方面的某些实现方式中,所述收发单元,还用于接收第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息;所述处理单元,还用于在所述第六搜索空间检测所述第二消息。
第四方面,提供了一种通信设备,包括:收发单元,用于在第一小区的第一下行载波上发送第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;所述收发单元,还用于发送第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;所述收发单元,还用于根据所述第二消息,在所述第二小区的第一上行载波上接收所述PUSCH。
示例地,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
示例地,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
结合第四方面,在第四方面的某些实现方式中,所述收发单元,还用于在所述第二小区的第二下行载波上发送所述第二消息;或者在所述第一小区的第一下行载波上发送所述第二消息;或者在第三小区的第三下行载波上发送所述第二消息。
结合第四方面,在第四方面的某些实现方式中,所述收发单元,还用于在所述第一小区的第一下行载波上发送第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;所述收发单元,还用于发送第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间,所述第一搜索空间用于检测所述第三消息;所述收发单元,还用于发送第二小区的第一配置信息,所述第二小区的第一配置信息用于指示所述第二搜索空间,所述第二搜索空间用于检测所述第一消息。
结合第四方面,在第四方面的某些实现方式中,所述收发单元,还用于发送第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间,所述第三搜索空间用于检测第四消息和所述第一消息,所述第四消息用于指示所述第一小区的第一下行载波的第四PDSCH的调度信息或所述第一小区的第二上行载波的第二PUSCH的调度信息。
结合第四方面,在第四方面的某些实现方式中,所述收发单元,还用于发送第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息。
结合第四方面,在第四方面的某些实现方式中,所述收发单元,还用于发送第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息和所述第二消息。
第五方面,提供了一种终端设备,包括,收发器,处理器,存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面或第一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该终端设备还包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种网络设备,包括,收发器,处理器,存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第二方面或第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该网络设备还包括,发射机(发射器)和接收机(接收器)。
第七方面,提供了一种通信系统,包括上述终端设备和/或网络设备。
在一个可能的设计中,该通信系统还可以包括本申请实施例提供的方案中与终端设备进行交互的其他设备。
在另一个可能的设计中,该通信系统还可以包括本申请实施例提供的方案中与网络设 备进行交互的其他设备。
第八方面,提供了一种通信装置,包括用于实现第一方面或第一方面任一种可能实现方式中的方法的模块或单元;或者用于实现第二方面或第二方面任一种可能实现方式中的方法的模块或单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该通信装置为通信设备(例如,终端设备、P-CSCF设备或网关设备等),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序或代码,所述计算机程序或代码在计算机上运行时,使得所述计算机执行上述第一方面或第一方面任一种可能实现方式中的方法,以及第二方面或第二方面任一种可能实现方式中的方法。
第十方面,提供了一种芯片,包括至少一个处理器,所述至少一个处理器与存储器耦合,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片的通信装置执行上述第一方面或第一方面任一种可能实现方式中的方法,以及第二方面或第二方面任一种可能实现方式中的方法。
其中,该芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备运行时,使得所述终端设备执行上述第一方面或第一方面任一种可能实现方式中的方法,或者当所述计算机程序代码被网络设备运行时,使得所述网络设备执行上述第二方面或第二方面任一种可能实现方式中的方法。
根据本申请实施例的方案,通过一个下行控制信息能够调度多个载波的物理下行共享信道,有效降低控制信令的开销成本,满足了多元化的调度需求,实现了通信多元化和系统的有效性。同时,在载波聚合场景下,针对一个载波被配置了联合的PDSCH调度,提供了该载波联合调度的搜索空间的设计方案。
附图说明
图1是适用本申请的通信系统的一例示意图。
图2是适用本申请载波聚合场景的示意图。
图3是当前协议中规定的不同聚合等级下PDCCH候选位置的分布示意图。
图4是适用本申请的跨载波调度的一例示意图。
图5是适用本申请的资源调度方法的一例示意图。
图6是适用本申请的确定搜索空间的一例示意图。
图7是适用本申请的确定PDCCH监控时机的一例示意图。
图8是适用本申请的确定搜索空间的另一例示意图。
图9是适用本申请的资源调度方法的另一例示意图。
图10是适用本申请的确定搜索空间的又一例示意图。
图11是适用本申请的资源调度方法的又一例示意图。
图12是适用本申请的确定搜索空间的又一例示意图。
图13是适用本申请的通信设备的一例示意图。
图14是适用本申请的通信设备的另一例示意图。
图15是适用本申请的通信设备的一例示意图。
图16是适用本申请的通信设备的一例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、先进的长期演进系统LTE-A、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、以及第五代(5th Generation,5G)系统或新无线(New Radio,NR)等
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。
图1是适用于本申请信道资源传输方法的通信系统100的示意图。如图1所示,该通信系统100包括:网络控制器110、至少一个网络设备(例如,网络设备120和网络设备130)和至少一个终端设备(例如,终端设备140和终端设备150)。
具体地,终端设备140和150分别通过网络设备120和130接入无线网络。无线通信网络可以包括能够支持多个用户设备的通信多个网络设备。用户设备可以通过下行链路和上行链路与网络设备进行通信。下行链路(或前向链路)是指从网络设备到用户设备的通信链路,而上行链路(或反向链路)是指从用户设备到网络设备的通信链路。应理解,图1仅以系统包括一个网络设备为例进行说明,但本申请实施例并不限于此,例如,系统还可以包括更多的网络设备;类似地,系统也可以包括更多的终端设备。还应理解,系统也可以称为网络,本申请实施例对此并不限定。
本申请实施例中的终端设备(例如,终端设备140或终端设备150)可以是移动的或者固定的。终端设备通过无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信。终端设备可以指用户设备UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(station,ST),还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile  Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备(例如,网络设备120或网络设备130)可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯GSM系统或码分多址CDMA中的网络设备(Base Transceiver Station,BTS),也可以是宽带码分多址WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G系统中的网络设备,如传输点(Transmission Point,TP)、发送接收点(Transmission Reception Point,TRP)、基站、小基站设备等,又或者是未来演进的公共陆地移动网络PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,该网络设备120和网络设备130可以由网络控制器110控制和/或调度。网络控制器110可以根据从各网络设备获得和维护的信息对所控制的多个网络设备进行统一的资源调度和管理。例如,向所控制的多个网络设备发送控制消息和/或指示信息等。
应理解,网络控制器110可以是单独的物理设备(如图1所示),也可以是集成在网络设备上的一个软件和/或硬件功能模块,本申请对此并未特别限定。
在NR中,将终端设备(例如,终端设备140)首次接入的网络设备(例如,网络设备120)称为服务网络设备,终端设备140在开机后可以通过小区搜索选择一个合适或可接纳的小区后,然后通过附着流程完成与网络侧的连接。终端设备140在完成附着流程后,便可以与该网络设备120进行数据通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备和/或终端设备,图1中未予以画出。
需要说明的是,本申请的技术方案支持终端设备在载波聚合的场景下,有效实现多元化的资源调度。图2是适用于本申请载波聚合场景的示意图,如图2所示,网络设备可以通过发送一个下行控制信息DCI,调度多个聚合载波(例如,载波1和载波2)的PDSCH,该PDSCH与载波1和载波2对应。这里,载波1可以理解为小区#A的第一下行载波,载波2可以理解为小区#B的第二下行载波。例如,上述PDSCH包括PDSCH1和PDSCH2,PDSCH1与小区#A的第一下行载波对应,PDSCH2与小区#B的第二下行载波对应;或者,该PDSCH包括PDSCH3,PDSCH3与小区#A的第一下行载波和小区#B的第二下行载波对应。应理解,一个小区中至少包括一个下行载波,以及零个、一个或多个上行载波。本申请实施例以一个小区中包括一个下行载波和一个上行载波为例展开说明。
应理解,在网络设备和终端设备进行数据传输之前,终端设备可以在PDCCH接收下行控制信息DCI,并根据DCI的指示,在物理下行共享信道PDSCH接收下行数据;或者在物理上行共享信道PUSCH发送上行数据。终端设备接收DCI的过程可以为:网络设备为终端设备配置CORESET和搜索空间,终端设备在配置的搜索空间上盲检测候选的DCI格式,然后对接收的DCI进行CRC校验,如果CRC校验成功,终端设备就对该DCI进行解码,并获取DCI内容。
然而,在载波聚合的场景中,随着控制信令的开销日益增加,针对一个载波被配置了联合调度PDSCH时,即通过在小区#A的第一下行载波(或小区#B的第二下行载波)发送 一个DCI,用于指示PDSCH的调度信息,该PDSCH对应小区#A的第一下行载波和小区#A的第二下行载波。如何实现该载波的联合调度搜索空间的设计,以及该载波的上行调度是目前还没有考虑到的。
有鉴于此,本申请提供了一种通信方法,支持终端设备在载波聚合场景下,通过一个下行控制信息能够调度多个载波的下行数据,降低控制信令的开销;同时实现了被配置了联合调度PDSCH的载波的上行调度需求,以及提供了联合调度搜索空间的配置和确定的方案。
为了更好地理解本申请的技术方案,下面先对本申请中涉及的部分术语做简单介绍。
1.控制信道
本申请中涉及的控制信道可以用于承载资源调度信息和其他控制信息,例如该控制信道可以是物理下行控制信道(physical downlink control channel,PDCCH)、增强物理下行控制信道(enhanced physical downlink control channel,ePDCCH)、新空口物理下行控制信道(new radio physical downlink control channel,NR-PDCCH)以及随着网络演变而定义的具有上述功能的其他下行信道等。下文中为方便说明,仅以PDCCH为例详细说明本申请实施例的传输控制信道的方法。应理解,信道也可以叫做信号或者其他名称,本申请实施例对此并未特别限定。
示例地,物理下行控制信道PDCCH用于承载下行控制信息DCI。其中,PDCCH主要用于:(1)发送下行调度信息,也称之为下行分配(Downlink Assignment,DL Assigment),以便UE接收PDSCH;(2)发送上行调度信息,也称之为上行授权(Uplink Grant,UL Grant),以便UE发送PUSCH;(3)发送非周期性信道质量指示(channel quality indicator,CQI)上报请求;(4)通知多播控制信道(multicast control channel,MCCH)变化;(5)发送上行功率控制命令;(6)反馈混合自动重传请求(hybrid automatic repeat request,HARQ)相关信息;(7)包括无线网络临时标识(radio network tempory identity,RNTI),该标识信息隐式包含在循环冗余校验中(cyclic redundancy check,CRC)等。
应理解,DCI一般有多种DCI format,每种DCI format及其包括的具体信息根据其功能的不同而不同。DCI可以使用系统消息-无线网络临时标识(system information-radio network temporary identity,SI-RNTI)或寻呼-无线网络临时标识(paging-radio network temporary identity,P-RNTI)或随机接入-无线网络临时标识(random access-radio network temporary identity,RA-RNTI)等加扰,用于指示小区级的信息;也可以使用小区-无线网络临时标识(cell-radio network temporary identity,C-RNTI)或配置调度-无线网络临时标识(configured scheduling-radio network temporary identity,CS-RNTI)或半永久配置调度-无线网络临时标识(semi persistent configured scheduling-radio network temporary identity,SP CSI-RNTI)等加扰,用于指示UE级的信息。一个小区可以在上行和下行同时调度多个UE,即一个小区可以在每个调度时间单位发送多个调度信息。每个调度信息在独立的PDCCH上传输,也就是说,一个小区可以在一个调度时间单位上同时发送多个PDCCH。
2.控制信道单元(control channel element,CCE)、资源元素组(resource element group,REG)与聚合等级(aggregation level,AL):
资源元素组REG可以理解为下行控制信令进行物理资源分配的基本单位,用于定义下行控制信令到资源粒子(resource element,RE)的映射。例如,一个CCE由6个REG 组成,一个REG对应一个资源块(resource block,RB),即一个CCE是包含72个RE的连续资源块。
应理解,用于传输PDCCH的控制区域是由逻辑划分的控制信道单元CCE构成的。PDCCH上承载的DCI的时频资源的基本单位也是CCE。一个PDCCH可以在不同的聚合等级AL上进行传输,其中AL表示该搜索空间所包含的CCE的数量。例如,AL可以取值为1、2、4、8、16,本申请实施例对聚合等级的取值并未特别限定。图3示出了不同聚合等级下PDCCH候选位置的分布示意图。如图3所示,在AL=1时,代表DCI承载在1个CCE上,每个搜索空间的大小为1个CCE,PDCCH候选数目为6,该搜索空间的大小为6个CCEs,该6个CCEs连续分布于时频资源中;以此类推,为了简洁,这里不再一一列举。
需要说明的是,图中示出的在同一聚合等级下的搜索空间对应不同的阴影区域,每种阴影表示PDCCH的一个候选位置。为了简洁,后文中省略对相同或相似情况的说明。
另外,网络设备可以根据信道质量等因素来决定某个PDCCH使用的聚合等级。例如:如果PDCCH是发给某个下行信道质量很好的UE(例如,位于小区中心),则使用1个CCE来发送该PDCCH可能就足够了;如果PDCCH是发给某个下行信道质量很差的UE(例如,位于小区边缘),则可能使用8个CCE甚至16个CCE来发送该PDCCH以达到足够的健壮性。
3.载波聚合
为了满足单用户峰值速率和系统容量提升的要求,在LTE-A中引入载波聚合技术增加系统传输的带宽。载波聚合是将2个或更多数量的载波单元(component carrier,CC)聚合在一起,以获得更大的传输带宽。为了保证后向兼容性,每个载波最大不超过20MHz。UE随机接入的载波称之为主载波(primary carrier component,PCC),主载波对应的小区为主小区(primary cell,PCell),主小区与终端设备维持无线资源控制(Radio Resourse Control,RRC)连接,主小区可以包括一个下行载波和一个上行载波。除主载波之外的载波称之为辅载波(secondary carrier component,SCC),辅载波对应的小区为辅小区(secondary cell,SCell),用于提供额外的无线资源,SCell与终端设备之间不存在任何RRC通信,辅小区可以包括一个下行载波。
应理解,PCell是在连接建立时确定的。SCell是在初始安全激活流程之后,通过RRC连接重配置消息添加/修改/释放的。
实际上,每个载波单元对应一个独立的小区,通常可以将一个载波单元等同于一个小区。在本申请实施例中,载波和载波单元的含义可以理解为相同。CA功能可以支持连续或非连续载波聚合,为了高效地利用零碎的频谱,载波聚合支持不同载波单元之间的聚合,包括:相同或不同带宽的载波单元聚合;同一频带内邻接或非邻接的载波单元聚合;不同频带内的载波单元聚合。即载波聚合的场景可以分为3种,包括:带内连续载波聚合,带内非连续载波聚合和带外非连续载波聚合。
4.跨载波调度(cross-carrier scheduling)
基于载波指示域(carrier indicator field,CIF)的跨载波调度支持在一个服务小区serving cell上发送的PDCCH调度另一个serving cell上的无线资源。即控制信息在一个载波单元上传输(例如,PDCCH),控制信息对应的数据信道资源则在另一个载波单元(例如,PDSCH) 上传输。也就是说,当一个小区被配置了跨载波调度,那么这个小区上就不可以发送PDCCH,该小区的下行控制信息可以在其他小区上发送。即基站通过在其他小区发送下行控制信息,来调度本小区上对应的资源。
应理解,图4示出了PCell跨载波调度SCell的一例示意图,如图4所示,SCell上没有被配置PDCCH,控制信息通过PCell的PDCCH传输,而相应的数据信息则在SCell的PDSCH传输,即终端设备在PCell上接收控制信息,实现对SCell上资源的调度。
5.控制资源集合(control resource set,CORESET)
UE可以被配置多个CORESET,CORESET可以包括时频资源,时频域上可以是连续或不连续的资源单元。例如,每个CORESET在频域上占用6个RB(72个子载波)的整数倍;每个CORESET在时域上可以是时间单元的个数,例如,子帧或者时隙或者微时隙中的符号个数,时域上一般占用{1,2,3}符号,可以在一个时隙的任意位置。终端设备可以在一个或多个CORESET上监听PDCCH。
在本申请实施例中,对于网络设备而言,CORESET可以理解为发送控制信道所占的资源;对于终端设备而言,每个终端设备的PDCCH搜索空间都属于该CORESET。或者说,网络设备可以从该CORESET中确定发送PDCCH使用的资源,终端设备可以从该CORESET中确定PDCCH搜索空间。
6.搜索空间(search space,SS)
作为终端设备盲检测的搜索范围,搜索空间包括:公共搜索空间(common search space,CSS)和UE特定的搜索空间(UE-specific search space,USS)。其中,公共搜索空间用于传输小区级别的公共信息,例如包括:与寻呼(paging)、随机接入响应(random access response,RAR)、广播控制信道(broadcast control channel,BCCH)等相关的控制信息;该信息对所有用户设备来说都是一样的,都需要被监听。UE特定的搜索空间用于传输用户设备级别的信息,例如,用户级数据调度和功率控制信息调度等。但是当UE特定的搜索空间没有足够的可用资源时,公共搜索空间也可以用于传输属于某个特定用户设备的控制信息。
应理解,本申请并不排除对搜索空间的重新划分或者重新定义的可能,用于传输终端设备级别的信息的资源,均可以定义为本申请实施例中所述的UE特定的搜索空间。
一个搜索空间是对某一CCE聚合等级定义的。一个终端设备可以有多个搜索空间,每个搜索空间中的CCEs可以是连续分布的。如果UE被配置了载波聚合,则UE可以在每个non-DRX子帧上对所有激活的serving cell的搜索空间PDCCH candidates集合进行监听。这意味着终端设备需要根据所要监听的DCI format来尝试解码该集合中的每一个PDCCH。对于网络设备来说,它在发送包括载波指示域CIF的PDCCH时,知道该PDCCH对应哪个serving cell,也知道该PDCCH可选的PDCCH candidate集合。但对于UE来说,它并不确定PDCCH中包括的CIF值是什么,即不确定哪个serving cell可以给该UE发送PDCCH。UE知道每个特定的serving cell给该UE发送的PDCCH上可能包括的CIF的集合,因此UE可以在该serving cell上尝试所有可能的CIF取值盲检测PDCCH。将聚合等级AL=1,2,4,8上的搜索空间S k (L)定义为PDCCH candidates集合,该集合被称为该终端设备的搜索空间。
示例地,表一给出了一种聚合等级AL、搜索空间大小和给定的搜索空间内需要监听的PDCCH candidates个数M (L)之间的对应关系:
表一
Figure PCTCN2021072317-appb-000001
可以看到,在不同的聚合等级下,搜索空间的大小不同,PDCCH候选数目也不同。并且,搜索空间的大小M=M (L)·L,或者说,搜索空间所包含的CCE的数目为聚合等级与PDCCH候选数目的乘积。其中,网络设备发送给不同用户设备的PDCCH可以有不同的聚合等级。
应理解,表一仅为便于理解,结合LTE协议中定义的聚合等级AL、搜索空间大小和给定的搜索空间内需要监听的PDCCH candidates数目M (L)说明了各参数之间的对应关系,但这不应对本申请实施例构成任何限定,本申请也并不排除在其他协议中对聚合等级AL,搜索空间大小和给定的搜索空间内需要监听的PDCCH candidate数目M (L)之间的对应关系重新定义的可能,同时也不排除定义更多参数的可能。
还应理解,公共搜索空间和UE特定的搜索空间可能重叠,属于不同用户设备的UE特定的搜索空间也可能重叠。如果重叠的区域被一个用户设备占用,那么其它用户设备将不能再使用这些CCE资源。网络设备在调度时,可以针对每个待调度的用户设备,从对应的搜索空间中选择一个可用的PDCCH candidate。如果能分配到CCE资源就调度,否则就不调度。
需要说明的是,终端设备可以依据网络设备发送的搜索空间配置信息确定相应的搜索空间。示例地,表二给出了关联搜索空间的配置信息中可能包括的参数及其具体含义。在本申请实施例中,用于确定搜索空间的配置信息至少包括表二中的一个参数。
表二
Figure PCTCN2021072317-appb-000002
Figure PCTCN2021072317-appb-000003
关于终端设备确定搜索空间PDCCH,主要包括:CORESET的确定,searchSpaceId的确定,PDCCH candidates对应的起始CCE和结束CCE位置的确定。可能实现步骤可以包括:首先,根据当前搜索空间以及关联的CORESET配置,确定候选PDCCH的情况,其中时域起始符号位置由当前搜索空间配置决定,时域符号数目由此搜索空间关联的CORESET决定。然后,根据当前搜索空间以及关联的CORESET配置,确定每个候选PDCCH在CORESET内的CCE索引(即,CCE的起始位置以及CCE的个数),具体CCE的确定是通过搜索空间函数确定。最后,UE通过对监听位置进行CRC的盲检测尝试,就能够识别属于自己的DCI。
其中,终端设备在配置search space的时候,会配置每个PDCCH聚合等级对应的PDCCH candidates个数。终端设备可以根据下面公式中的至少一个来确定每个PDCCH candidates的位置,即:
Figure PCTCN2021072317-appb-000004
或者
Figure PCTCN2021072317-appb-000005
其中,对于任何公共搜索空间,
Figure PCTCN2021072317-appb-000006
对于UE特定的搜索空间,
Figure PCTCN2021072317-appb-000007
Y p,-1=n RNTI≠0,A p=39827。如果pmod3=0,A p=39829;如果pmod3=1,A p=39839;如果pmod3=2,D=65537;i=0,...,L-1;其中,p为COERSET的ID,s为search space的ID,L为聚合等级,
Figure PCTCN2021072317-appb-000008
为时隙编号,
Figure PCTCN2021072317-appb-000009
为PDCCH candidates编号,N CCE,p为COERSET p内CCE的个数,编号为0到N CCE,p-1。
应理解,n CI为载波指示域,如果一个载波被配置了跨载波调度,那么n CI为大于零的整数,否则n CI=0;如果一个载波被配置了联合调度,那么n CI为与联合调度搜索空间关联的载波指示域,该指示域用来标识联合调度的搜索空间。这里n CID为服务小区组的标识,表示搜索空间关联的一个服务小区组的ID,该服务小区中的各小区可以为联合调度的小区。另外,
Figure PCTCN2021072317-appb-000010
其中
Figure PCTCN2021072317-appb-000011
为聚合等级L对应的PDCCH candidates的数量,
Figure PCTCN2021072317-appb-000012
为关联到一个服务小区的search space。
对于公共搜索空间,
Figure PCTCN2021072317-appb-000013
对于UE特定搜索空间,
Figure PCTCN2021072317-appb-000014
为所有n CI中search space对应的CCE聚合等级L对应的PDCCH candidates个数中的最大值;n RNTI是C-RNTI的值。
7.PDCCH盲检
由于PDCCH是网络设备发送的指令,UE在此之前除了一些系统信息外没有接收过其 他信息,因此UE不知道其占用的控制信道单元CCE数目大小,位置,DCI format,也不知道DCI的聚合级别。因此,UE可以在公共搜索空间或者UE特定的搜索空间内,按照期望的DCI format,使用不同的AL盲检测搜索空间内的所有PDCCH candidates。即UE通过盲检测的方式,检测网络设备发送的下行控制信道PDCCH,从而获取下行控制信息DCI,处理相应的数据业务。
虽然UE事先并不知道要接收的PDCCH包括哪种格式的DCI,也不知道该DCI使用哪个PDCCH candidate进行传输,但UE知道自己处于何种状态以及在该状态下期待收到的DCI信息。例如,在空闲IDLE态时,UE期待收到寻呼;在发起随机接入(Random Access)后UE期待的是RAR;在有上行数据待发送时期待UL Grant等。
UE知道自己的搜索空间,因此知道DCI可能分布在哪些CCE上。对于不同的期望信息,UE尝试使用相应的无线网络临时标识、可能的DCI format、可能的聚合等级AL去与属于自己的搜索空间内的CCE做CRC校验。如果CRC校验成功,那么UE就知道这个信息是自己需要的,也就知道相应的DCI format,从而进一步解出DCI内容。
示例地,UE不知道要收到的PDCCH使用哪种聚合等级,所以UE可以把所有可能性都尝试一遍。例如:对于公共搜索空间,UE可以分别按Aggregation Level=4和Aggregation Level=8来搜索。当按AL=4盲检测时,16个CCE需要盲检测4次,即有4个PDCCH candidate;当按AL=8盲检测时,16个CCE需要盲检测2次,也就是有2个PDCCH candidates;那么对于公共空间来说,一共有4+2=6个PDCCH candidates。而对于UE特定的搜索空间,UE需要分别按Aggregation Level=1,2,4,8盲检测一遍,此时一共有6+6+2+2=16个PDCCH candidates。
应理解,UE可以在PCell和激活的SCell上盲检测PDCCH。另外,配置了CA的UE进行的盲检测次数最多为44+32*激活辅小区的个数。其中,在PCell上进行44次盲检,SCell因为不需要盲检测公共搜索空间,所以进行32次盲检。
UE在搜索空间盲检测时,需对可能出现的DCI format进行尝试解码,并不需要对所有的DCI format进行匹配。可能出现的DCI format取决于UE期望接收什么信息以及传输模式。例如:如果UE期待接收下行数据并使用TM3,当UE对使用C-RNTI加扰的PDCCH进行解码时,可以使用自己的C-RNTI对DCI format 1A和DCI format 2A进行尝试解码。如果同时该UE期望在该子帧内接收系统信息(System Information,SI),则可以使用SI-RNTI对DCI format 1A和DCI format 1C进行尝试解码。更确切地说,UE使用对应DCI format的有效载荷(payload)长度来尝试盲检。在成功解码PDCCH之前,UE可以在每一个可能的PDCCH candidate上尝试解码。即终端盲检测就是UE首先根据UE ID和子帧号等计算盲检测CCE的起始位置,在CCE起始位置截取猜测的DCI长度进行译码,如果译码后的信息比特的CRC和PDCCH包括的CRC相同,则认为当前的PDCCH承载的信息比特就是当前传输的下行控制信息DCI。
下面将结合附图和实施例详细描述本申请提供的资源调度的方法。
应理解,本申请将结合小区描述各个实施例,该小区可以是网络设备对应的小区,小区可以属于宏网络设备,也可以属于小小区(small cell)对应的网络设备,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高 速率的数据传输服务。
首先,为了更好地说明本申请的技术方案,对自调度和下行联合调度进行释义。例如,自调度可以是在小区#a的第一下行载波发送消息#A,该消息#A用于指示该小区#a的第一下行载波的PDSCH的调度信息,或者用于指示该小区#a的第一上行载波的PUSCH的调度信息;而下行联合调度则可以是在小区#a的第一下行载波或者小区#b的第二下行载波发送消息#B,该消息#B用于指示PDSCH的调度信息,其中,该PDSCH对应小区#a的第一下行载波和小区#b的第二下行载波。例如,该PDSCH可以包括PDSCH#1和PDSCH#2,PDSCH#1与小区#a的第一下行载波对应,PDSCH#2与小区#b的第二下行载波对应;或者,该PDSCH可以包括PDSCH#3,PDSCH#3与小区#a的第一下行载波和小区#b的第二下行载波对应。需要说明的是,本申请对用于联合调度的小区数量不作限定。联合调度下行数据能够减少终端设备盲检测的次数和DCI的开销,有效提高载波资源的调度效率。
可选地,下行联合调度还可以包括在小区#a的第一下行载波发送消息#C,该消息#C用于指示PDSCH的调度信息,其中,该PDSCH可以对应小区#a的第一下行载波、小区#b的第二下行载波和小区#c的第三下行载波等。应理解,本申请针对用于联合调度的载波数量不作限定。
作为示例而非限定,本申请提供的技术方案适用于载波聚合的场景,假设某终端设备的激活小区包括小区Cell#A,小区Cell#B和小区Cell#C三个小区。其中,小区Cell#A为主小区PCell,小区Cell#B和小区Cell#C分别为辅小区SCell1和辅小区SCell2。其中,PCell和SCell1支持联合调度,接下来以PCell调度SCell1为例,即用于联合调度的消息在PCell上发送,分别从三种可能的实现方式,详细说明如何调度SCell1的第一上行载波的PUSCH,从而降低控制信令的开销,解决多元化的调度需求,提高通信系统的有效性。
方式一:
图5是适用本申请的资源调度方法的一例示意图。
需要说明的是,在该实现方式中,可以预定义规则:PCell与SCell1支持联合调度PDSCH,且SCell1支持自调度PUSCH。如图5所示,该方法500包括:
S510,网络设备在PCell(即,第一小区的一例)的第一下行载波向终端设备发送消息#1;相应的,终端设备在PCell的第一下行载波从网络设备接收消息#1。
其中,该消息#1用于指示PDSCH的调度信息,该PDSCH对应PCell的第一下行载波和SCell1的第二下行载波。
示例地,该PDSCH可以包括第一PDSCH和第二PDSCH,其中,第一PDSCH与PCell对应,第二PDSCH与SCell1对应;或者,该PDSCH可以包括第三PDSCH,其中,第三PDSCH与PCell和SCell1对应。即终端设备通过从网络设备接收消息#1,可以实现接收PCell的第一下行载波和SCell1的第二下行载波上传输的下行数据。
S520,网络设备在SCell1(即,第二小区的一例)的第二下行载波向终端设备发送消息#2;相应的,终端设备在SCell1的第二下行载波从网络设备接收消息#2。
其中,该消息#2用于指示SCell1的第一上行载波的PUSCH的调度信息,即终端设备通过接收来自网络设备的消息#2,能够获取网络设备调度SCell1的第一上行载波的PUSCH#A的调度信息。
需要说明的是,网络设备在向终端设备发送调度信息之前,可以提前向终端设备发送 指示信息#A,用于指示终端设备被配置了PCell和SCell1联合调度PDSCH,且支持SCell1上行自调度SCell1,并通知或预定义:用于联合调度的调度信息在PCell上发送,用于上行调度的调度信息在SCell1上发送。可选地,预定义规则还包括:终端设备被配置了联合调度后,还可以在SCell1的第二下行载波接收调度信息,用于调度SCell1的第一上行载波的PUSCH。
对应地,终端设备在接收该指示信息#A后,可以在PCell的第一下行载波接收调度信息#1,用于调度PCell的第一下行载波的PDSCH#A和SCell1的第二下行载波的PDSCH#B,或者用于调度PCell的第一下行载波和SCell1的第二下行载波对应的PDSCH#C;还可以在SCell1第二下行载波接收调度信息#2,用于调度SCell1的第一上行载波的PUSCH#A。
应理解,在上述步骤S510和S520中,消息#1或消息#2包括但不限于下行控制信息DCI,上行调度信息等。
作为示例而非限定,网络设备还可以在PDCCH通过小区特定或UE组特定的DCI向终端发送消息#1或消息#2;或者,通过UE特定的DCI向终端设备发送消息#1或消息#2。
可选地,终端设备也可以通过以下至少一种方式接收上述消息#1或消息#2:RRC信令,媒体访问控制管理单元(media access control,control element,MAC CE),物理层信令(例如:PDCCH)等。
S530,根据接收的消息#2,终端设备在SCell1的第一上行载波向网络设备发送PUSCH#A;相应的,网络设备在SCell1的第一上行载波从终端设备接收PUSCH#A。
在一种可能的实现方式中,网络设备还可以在SCell1的第二下行载波向终端设备发送消息#3,用于指示SCell1的第二下行载波的PDSCH#C的调度信息。
在另一种可能的实现方式中,网络设备还可以在SCell1的第二下行载波上向终端设备发送消息#4,用于指示终端设备跨载波调度SCell2的第三上行载波的PUSCH#B或SCell2的第三下行载波的PDSCH#D;和/或用于指示终端设备联合调度PDSCH。其中,该PDSCH与SCell1的第二下行载波和SCell2的第三下行载波对应。示例地,该PDSCH包括PDSCH#E和PDSCH#F,其中,PDSCH#E与SCell1对应,PDSCH#F与SCell2对应;或者,该PDSCH包括PDSCH#G,该PDSCH#G与SCell1和SCell2对应。
示例地,网络设备调度的一个PDSCH中承载的传输块映射在下行激活带宽部分BWP上的物理资源块,如果该物理资源块与小区1的下行载波对应,那么该PDSCH和小区1对应;如果该物理资源块与小区1的下行载波和小区2的下行载波对应,那么该PDSCH与小区1和小区2对应。综上所述,在该可能实现方式下,SCell1的第一上行载波的PUSCH可以通过SCell1自调度来实现,即网络设备在SCell1的第二下行载波发送消息#2,用于指示终端设备自调度SCell1的第一上行载波的PUSCH#A;SCell1的第二下行载波的PDSCH可以通过PCell下行联合调度或SCell1自调度来实现,即网络设备在SCell1的第三下行载波发送消息#3,用于指示终端设备自调度SCell1的第二下行载波的PDSCH#C;或在PCell的第一下行载波发送消息#1,用于指示终端设备调度SCell1的第二下行载波的PDSCH#B。
应理解,本申请上述实施例是针对多个小区(至少包括一个PCell和一个SCell1)聚合的情况,,基于PCell下行联合调度SCell1的PDSCH,网络设备如何有效调度SCell1的第一上行载波的物理上行共享信道PUSCH。
根据上述实施例中提供的方案,支持终端设备在载波聚合的场景下,网络设备通过在PCell的第一下行载波发送消息#1,联合调度PCell的第一下行载波和SCell1的第二下行载波PDSCH,同时通过在SCell1的第二下行载波发送消息#2,有效实现SCell1的第一上行载波的上行调度需求,从而降低了控制信令的开销成本,实现了多元化的调度需求和通信系统的有效性。
作为示例而非限定,上述实施例是在PCell和SCell1支持联合调度的情况下,实现如何调度SCell1的上行数据。该技术方案是针对联合调度场景下的进一步优化策略,满足多元化的调度需求。可选地,在本申请实施例中,下行联合调度和SCell1上行调度的技术方案可以解耦,二者独立运行。即网络设备和终端设备可以基于PCell和SCell1支持下行联合调度,进行下行数据的接收和发送,具体对应于上述步骤S510。为了简洁,此处不再赘述。
需要特别说明的是,在上述可能实现方式中,SCell1被配置了下行联合调度,那么网络设备和终端设备之间的信息传输可以包括以下一种:PCell自调度,PCell下行联合调度,PCell跨载波调度和SCell1自调度。所以终端设备可以根据配置信息在PCell上监听PCell自调度,PCell跨载波调度和PCell联合调度对应的PDCCH中的至少一个,也可以在SCell1上监听SCell1自调度对应的PDCCH中至少一个。图6示出了终端设备确定PCell和SCell1搜索空间的一例示意图,如图6所示,该方法600包括:
S610,网络设备确定配置信息#A和/或配置信息#B。
其中,配置信息#A用于指示搜索空间#A,表示PCell自调度PDSCH和/或PUSCH的搜索空间,用于承载PCell自调度的消息#5;配置信息#B用于指示搜索空间#B,表示PCell和SCell1联合调度PDSCH的搜索空间,用于承载消息#1。
需要说明的是,每套搜索空间配置信息包括搜索周期、每个搜索周期持续搜索的时间单元的数量、该时间单元中的监测时机、每个监测时机中控制信道单元CCE的聚合程度、每个CCE聚合程度下的物理下行控制信道PDCCH的潜在传输位置、以及下行控制信息格式DCI format、对应CORESET中的至少一个。其中,搜索空间配置信息中的各个参数及其释义已经在上文表二中阐述,这里就不再赘述。
在一种可能的实现方式中,如果配置信息#A和配置信息#B相同,即PCell自调度和下行联合调度的搜索空间同时存在且可以共享。那么从信令配置角度来看,该配置信息#A中至少包括关联PCell的配置参数,且配置参数均生效,该配置信息#A可以用于指示搜索空间#A和搜索空间#B;配置信息#B中有nrofCandidates和searchSpaceId两个参数是关联的SCell1配置,其他参数都是对应PCell上的配置。
可选地,网络设备确定配置信息#A,该配置信息#A用于指示PCell自调度的搜索空间#A,该配置信息#A用于承载PCell自调度的消息#5。应理解,该搜索空间#A在PCell上。另外,网络设备可以与终端设备协议规定,或网络设备通过信令通知终端设备,搜索空间#A也可以用于盲检测消息#1。在这种情况下,存在PCell自调度的搜索空间#A,网络设备无需确定配置信息#B,下行联合调度的搜索空间与PCell自调度的搜索空间共享。
在另一种可能的实现方式中,如果配置信息#A和配置信息#B不同,即PCell自调度和下行联合调度的搜索空间同时存在且相互独立。那么从信令配置角度来看,该配置信息#A中至少包括关联PCell的配置参数,且配置参数均生效;配置信息#B中有nrofCandidates和searchSpaceId两个参数是关联的SCell1配置,其他参数都是对应PCell上的配置。应理 解,配置信息#A和配置信息#B是两套独立的搜索空间配置。
示例地,在确定用于联合调度的搜索空间#B时,配置信息#B中有nrofCandidates和searchSpaceId两个参数生效,其他配置参数均不生效。
需要说明的是,对于PCell和SCell1支持联合调度,那么联合调度的信息可以在PCell上发送,也可以在SCell上发送。网络设备可以通过信令通知UE在哪一个小区的下行载波上接收该联合调度的信息,例如RRC信令;或者网络设备也可以通过预定义的规则来通知UE在哪一个小区的下行载波上接收该联合调度的信息,例如在小区索引小的小区对应的下行载波上。当UE确定了联合调度的信息在哪一个小区上接收后,其确定的联合调度的搜索空间就是该小区上的搜索空间。其中,搜索空间的确定可以包括多个配置参数。
示例地,当UE确定了联合调度的信息在PCell上发送后,其确定的联合调度的搜索空间也就在PCell上。应理解,PCell自调度的搜索空间也在PCell上,此时PCell自调度的搜索空间可以和下行联合调度的搜索空间共享。
可选地,在另一种可能的实现方式中,针对PCell下行联合调度,网络设备也可以在配置信息#B中新增联合调度search space配置,即配置信息#B中直接配置两个新的参数nrofCandidates和searchSpaceId,用于指示搜索空间#B。
可选地,在配置不同小区联合调度的时候,可以使用小区组的编号来通知UE,那么终端设备在确定联合调度搜索空间的时候,可以根据上述小区集合编号来确定。对应地,上述配置信息#B中包括了该小区编号信息。
示例地,假设网络设备为终端设备配置了M个小区,并激活了N个小区,其中N小于或等于M。另外,网络设备可以把M个小区划分为K个小区组,N个小区划分为L个小区组,其中K个小区组内的UE可以实现联合调度。那么网络设备可以通过小区组的编号0~K-1,和/或0~L-1来通知终端设备支持联合调度的小区是哪些。可选地,上述小区组的编号可以包含或不包含在搜索空间的配置信息中。接下来,UE在确定搜索空间的时候,可以将该小区组的编号对应到上述CCE索引确定的公式中,即
Figure PCTCN2021072317-appb-000015
S620,网络设备向终端设备发送配置信息#A和/或配置信息#B;相应的,终端设备从网络设备接收配置信息#A和/或配置信息#B。
作为示例而非限定,网络设备可以通过广播信令,或RRC专有信令,或介质访问控制MAC层信令,或物理层信令向终端设备发送配置信息#A和/或配置信息#B。
需要说明的是,网络设备在向终端设备发送搜索空间配置信息之前,可以提前向终端设备发送指示信息#B,用于指示终端设备接下来在哪个小区上接收搜索空间的配置信息。一般地,终端设备可以在PCell上接收该指示信息#B。其中,该指示信息#B包括但不限于配置信息,比如:终端设备通过接收该指示信息#B可以知道哪些服务小区被配置了下行联合调度,哪些服务小区支持上行跨载波调度等。
示例地,终端设备在接收该指示信息#B后,知道PCell和SCell1被配置了联合调度PDSCH,并且,预定义规则包括:终端设备可以在PCell的第一下行载波接收调度信息#1,用于调度PCell的第一下行载波的PDSCH#A和SCell1的第二下行载波的PDSCH#B,或者用于调度PCell的第一下行载波和SCell1的第二下行载波对应的PDSCH#C;还可以在SCell1 的第二下行载波接收调度信息#2,用于调度SCell1的第一上行载波的PUSCH#A。
可选地,预定义规则包括:终端设备被配置了联合调度后,可以在SCell1的第二下行载波发送PDCCH实现自调度。
在一种可能的实现方式中,网络设备向终端设备发送配置信息#A,该配置信息#A用于指示PCell自调度的搜索空间#A,该配置信息#A用于承载PCell自调度的消息#5。应理解,该搜索空间#A在PCell上。另外,网络设备可以与终端设备协议规定,或网络设备通过信令通知终端设备,搜索空间#A也可以用于盲检测消息#1,即用于指示下行联合调度的控制信息也在搜索空间#A进行盲检测。
S630,终端设备根据接收的配置信息#A和/或配置信息#B,确定搜索空间#A和/或搜索空间#B。
在一种可能的实现方式中,如果配置信息#A和配置信息#B相同,即PCell自调度和下行联合调度的搜索空间同时存在且可以共享,那么终端设备可以根据配置信息#A确定搜索空间#A和搜索空间#B。应理解,联合调度的信息在PCell上发送,那么确定的搜索空间也在PCell,所以该搜索空间#A和搜索空间#B均在PCell上。如果网络设备希望联合调度多个小区,那么搜索空间的配置信息可以关联其中的一个预定义小区,也可以关联其中的一个指示的小区。
应理解,终端设备在确定PCell自调度的搜索空间#A时,根据接收的与PCell关联的配置信息#A,分别确定CORESET ID,searchSpaceId,以及每个CCE聚合等级对应的candidates个数,并根据配置参数和上述计算PDCCH candidates的位置公式确定每个PDCCH candidates对应的CCE索引,包括起始索引和结束索引,以便于终端设备在确定的PDCCH candidates中检测用于PCell自调度和下行联合调度的DCI。
还应理解,终端设备在确定联合调度的搜索空间#B时,根据预定义或配置的信息确定搜索空间#B在哪个小区上,然后根据接收的与该小区关联的配置信息确定搜索空间#B,配置信息包括CORESET ID,searchSpaceId,以及每个CCE聚合等级对应的candidates个数。其中关联的配置信息可以是一个小区上的配置信息,也可以是多个小区上的配置信息,比如小区1和小区2被配置了下行联合调度,并预定义或配置搜索空间#B在小区1的下行载波上,那么可以根据小区1或小区2上的搜索空间配置信息确定搜索空间,也可以根据小区1和小区2上的搜索空间信息联合确定搜索空间。比如小区2上的搜索空间配置信息中的searchSpaceId,每个CCE聚合等级对应的candidates个数,小区1上与小区2上相同searchSpaceId对应的CORESET ID。可选的,如果小区和小区被配置下行联合调度时,可以使用小区组的ID来指示,那么在确定搜索空间的时候,还可以包括小区组ID。
可选地,终端设备根据配置信息#A确定搜索空间#A,该搜索空间#A用于盲检测PCell自调度的消息#5。应理解,该搜索空间#A在PCell上。另外,网络设备可以与终端设备协议规定,或网络设备通过信令通知终端设备搜索空间#A也可以用于盲检测消息#1。在这种情况下,存在PCell自调度的搜索空间#A,终端设备可以在搜索空间#A实现下行联合调度和PCell自调度的盲检测。
在另一种可能的实现方式中,如果配置信息#A和配置信息#B不同,即PCell自调度和下行联合调度的搜索空间同时存在且相互独立,那么终端设备可以根据配置信息#A确定搜索空间#A,以及根据配置信息#B确定搜索空间#B。此时,由于联合调度的信息在PCell 上发送,那么确定的搜索空间也在PCell,所以搜索空间#A和搜索空间#B均在PCell上。
S640,网络设备确定配置信息#C。
其中,该配置信息#C用于指示搜索空间#C,表示SCell1自调度PUSCH的搜索空间,用于承载消息#2。
需要说明的是,如果搜索空间#C的确定是为了SCell1自调度PUSCH使用,那么配置信息#C中所有的配置参数均生效。其中,上行调度DCI format包括format 0_1。
S650,网络设备向终端设备发送配置信息#C;相应的,终端设备从网络设备接收配置信息#C。
其中,该配置信息#C中至少包括关联SCell1的配置参数。
S660,终端设备根据接收的配置信息#C确定搜索空间#C。
需要说明的是,终端设备确定SCell1自调度的搜索空间#C的方法与上述步骤S630中提及的确定PCell自调度搜索空间#A的方法一致,为了简洁,此处不再赘述。
示例地,每个搜索空间的search space的个数为10,也就是说,在配置了联合调度的小区(例如,上述PCell和SCell1)的控制资源集合CORESET中,网络设备可以单独为下行联合调度配置10个searchSpaceId,或者可以单独为SCell1上行调度配置10个searchSpaceId,又或者下行联合调度和SCell1上行调度共享10个searchSpaceId。
示例地,针对上述配置方式,一种可能的配置方式如下,当该服务小区被配置了下行联合调度,那么searchspaceforcombination中searchSpaceId和nrofCandidates生效,其中CORESET ID为发送联合调度DCI的小区上相同searchSpaceId对应的CORESET ID。
作为示例而非限定,终端设备配置联合调度的时候,支持联合调度的小区至少包括两个(例如:PCell和SCell1)。其中,确定联合调度搜索空间的配置信息可以关联任意一个服务小区,即该配置信息可以包含在任意一个小区的配置信息中。比如,PCell和SCell1配置了联合调度,那么确定联合调度搜索空间的配置信息可以关联到PCell,或者关联到SCell1,或者关联到被调度小区,或者关联到发送联合调度DCI的小区,或者关联到联合调度小区中最高/最低索引的服务小区等。本申请对此不作限定。需要说明的是,被关联的小区对应上述确定每个PDCCH candidates的位置公式中的n CI
可选地,在上述提供的方式中,PCell和SCell1搜索空间的确定可以由终端设备根据预定义的规则自己执行;也可以由网络设备确定,并通过广播信令,或RRC专有信令,或介质访问控制MAC层信令,或物理层信令等方式通知终端设备,本申请对此不作限定。
作为示例而非限定,上述实施例是在确定下行联合调度搜索空间的基础上,进一步确定SCell1上行调度的搜索空间。可选地,在本申请实施例中,确定联合调度的搜索空间和确定上行调度的搜索空间的技术方案可以解耦,二者独立运行。即基于PCell和SCell1支持下行联合调度,网络设备可以确定联合调度搜索空间的配置信息,并将该配置信息发送给终端设备,终端设备也可以根据该配置信息确定的该对应的搜索空间,具体对应于上述步骤S610至S630。为了简洁,此处不再赘述。需要说明的是,PDCCH监控时机(PDCCH monitoring occasion)是用于监控PDCCH的一个时间单位,相关的参数在search space配置中给出。其中,PDCCH monitoring occasion是根据RRC配置的PDCCH监控周期,PDCCH监控偏移和PDCCH监控模式三个参数共同决定的。
示例地,图7示出了确定PDCCH监控时机的一例示意图。如图7所示,假设PDCCH监 控周期为2个时隙,slot偏移值为0,搜索空间关联的CORESET时域符号数为1,符号位置为4,5,10和11。PDCCH监控模式是用一个14比特的bitmap配置指示需要监控的符号位置,该图中14比特的指示为二进制数(00001100001100),每个比特代表一个符号的位置,其中1表示需要监控,0表示不需要监控。因此,在此配置下,终端设备可以在每个检测周期的第二个时隙上的sym4,sym5,sym10和sym11检测候选PDCCH。
作为示例而非限定,对于搜索空间的确定方法,本申请还提供了另一种可能的实现方式,图8示出了终端设备确定下行联合调度和SCell1上行调度的搜索空间的一例示意图,如图8所示,该方法800包括:
S810,网络设备向终端设备发送配置信息#11和/或配置信息#22;相应的,终端设备从网络设备接收配置信息#11和/或配置信息#22。
其中,配置信息#11用于指示搜索空间#11,该搜索空间#11表示PCell自调度的搜索空间;配置信息#22用于指示搜索空间#22,该搜索空间#22表示PCell和SCell1联合下行调度的搜索空间。
应理解,配置信息#11至少包括关联PCell的配置参数,配置信息#22有nrofCandidates和searchSpaceId两个参数是关联的SCell1配置,其他参数都是对应PCell上的配。
S820,终端设备根据配置信息#11确定搜索空间#11,和/或根据配置信息#22确定搜索空间#22。
其中,搜索空间#11用于承载消息#11,该消息#11用于指示PCell的PDSCH#11或PCell的PUSCH#11;搜索空间#22用于承载消息#22,该消息#22用于指示PCell的PDSCH#22和SCell1的PDSCH#33。
在一种可能的实现方式,可以预定义规则:PCell自调度和下行联合调度的搜索空间共享。示例地,存在PCell自调度的搜索空间,终端设备可以在搜索空间#11检测消息#22,即终端设备在PCell自调度的搜索空间#11中检测用于指示联合下行调度的消息#22;或者,PCell自调度和下行联合调度的搜索空间共同存在,消息#22也可以在搜索空间#11中检测。
在另一种可能的实现方式,还可以预定义规则:PCell自调度和下行联合调度的搜索空间共同存在且相互独立。示例地,终端设备在自调度的搜索空间#11中检测消息#11;在联合调度的搜索空间#22中检测消息#22。
应理解,步骤S810和S820的实现方式与上述S620和S630步骤相同,为了简洁,此处不再赘述。
S830网络设备向终端设备发送配置信息#33;相应的,终端设备从网络设备接收配置信息#3。
其中,该配置信息#33用于指示搜索空间#33,该搜索空间#33表示SCell1上行调度的搜索空间,用于承载消息#33;消息#33用于指示SCell1的第一上行载波的PUSCH#22。
S840终端设备根据配置信息#33确定搜索空间#33。
其中,该搜索空间#33用于检测DCI#33。
需要说明的是,终端设备确定SCell1自调度的搜索空间#33的方法与上述步骤S630中提及的确定PCell自调度搜索空间#11的方法一致,为了简洁,此处不再赘述。
根据上述技术方案,通过设计了一种联合调度的方法,从而解决了在载波聚合场景中,针对一个载波被配置了联合PDSCH调度,实现该载波联合调度的搜索空间的配置和确定, 以及该载波上行调度的需求,有效降低了控制信令的开销成本,解决了多元化的调度需求和通信系统的有效性。
方式二:
图9是适用本申请的资源调度方法的另一例示意图,与方式一的区别在于,SCell1的第一上行载波上的PUSCH支持被PCell上行跨载波调度。也就是说,SCell1上没有被配置PDCCH,控制信息通过PCell的PDCCH传输,而相应的数据信息则在SCell1的PDSCH传输,即终端设备在PCell上接收控制信息,实现对SCell1上资源的调度。
需要说明的是,在该实现方式中,可以预定义规则:PCell与SCell1支持联合调度PDSCH,且SCell1支持被上行跨载波调度PUSCH。如图9所示,该方法900包括:
S910,网络设备在PCell(即,第一小区的一例)的第一下行载波向终端设备发送消息#a;相应的,终端设备在PCell的第一下行载波接收来自网络设备的消息#a。
其中,该消息#a用于指示PDSCH的调度信息,该PDSCH对应PCell的第一下行载波和SCell1的第二下行载波。
示例地,该PDSCH可以包括第一PDSCH和第二PDSCH,其中,第一PDSCH与PCell对应,第二PDSCH与SCell1对应;或者,该PDSCH可以包括第三PDSCH,其中,第三PDSCH与PCell和SCell1对应。即终端设备通过从网络设备接收消息#a,可以实现接收PCell的第一下行载波和SCell1的第二下行载波上传输的下行数据。
示例地,终端设备通过接收网络设备发送的消息#a,能够调度PCell的第一下行载波的PDSCH#a和SCell1的第二下行载波的PDSCH#b。
S920,网络设备在PCell的第一下行载波向终端设备发送消息#b;相应的,终端设备在PCell的第一下行载波接收来自网络设备的消息#b。
其中,该消息#b用于指示SCell1(即,第二小区的一例)的第一上行载波的PUSCH的调度信息,即终端设备通过接收消息#b,能够获取网络设备调度SCell1的第一上行载波的PUSCH#a的调度信息。
需要说明的是,网络设备在向终端设备发送调度信息之前,可以提前向终端设备发送指示信息#C,用于指示终端设备被配置了PCell和SCell1下行联合调度,且支持PCell上行跨载波调度SCell1,并通知或预定义:用于联合调度的调度信息在PCell上发送,用于上行跨载波调度的调度信息也在PCell上发送。可选地,预定义规则包括:终端设备被配置了联合调度后,还可以在PCell的第一下行载波接收调度信息#3,用于调度SCell1的第一上行载波的PUSCH。
S930,根据接收的消息#b,终端设备在SCell1的第一上行载波向网络设备发送PUSCH#a;相应的,网络设备在SCell1的第一上行载波接收来自终端设备的PUSCH#a。
在一种可能的实现方式中,网络设备还可以在PCell的第一下行载波向终端设备发送消息#c,用于指示SCell1的第二下行载波的PDSCH#c的调度信息。
在另一种可能的实现方式中,网络设备还可以在PCell的第一下行载波向终端设备发送消息#d,用于指示SCell2的第三上行载波的PUSCH#b的调度信息和/或SCell2的第三下行载波的PDSCH#d的调度信息;或者用于联合调度PCell、SCell1和SCell2等多个小区的PDSCH。
在上述可能实现方式中,由于SCell1支持被跨载波调度,所以SCell1的第二下行载 波就没有被配置PDCCH,终端设备也就不需要监听SCell1的PDCCH。换句话说,SCell1不支持本载波自调度,也不支持SCell1跨载波调度和/或下行联合调度其他小区等。
需要说明的是,当SCell1与PCell支持下行联合调度,同时支持被PCell的下行跨载波调度时,终端设备可以使用两种不同的DCI格式,分别调度SCell1的第二下行载波的PDSCH。可选地,这两种格式的DCI大小在盲检测时是对齐的,或者这两种DCI格式不可以被同时盲检测,避免造成资源调度混乱。另外,网络设备可以通过RRC信令半静态配置达到减少终端设备的盲检测次数的目的。
同样地,PCell上行跨载波调度和下行跨载波调度的DCI大小在盲检测时也是需要对齐的。
综上所述,在该可能实现方式下,SCell1的第一上行载波的PUSCH可以通过PCell上行跨载波调度来实现,即网络设备在PCell的第一下行载波发送消息#b,用于指示终端设备跨载波调度SCell1的第一上行载波的PUSCH#a;SCell1的第二下行载波的PDSCH可以通过下行联合调度或PCell跨载波调度来实现,即网络设备在PCell的第一下行载波发送消息#c,用于指示终端设备跨载波调度SCell1的第二下行载波的PDSCH#c;或在PCell的第一下行载波发送消息#a,用于指示终端设备联合调度SCell1的第二下行载波的PDSCH#b。很明显,这里跨载波调度SCell1上行或下行数据的小区与联合调度SCell1下行数据的小区相同,均为PCell。
根据上述实施例中提供的方案,支持终端设备在载波聚合的场景下,网络设备通过在PCell的第一下行载波发送消息#a,实现联合调度PCell和SCell1的PDSCH;同时通过在PCell的第一下行载波发送消息#b,有效实现SCell1的第一上行载波的上行调度需求,从而降低了控制信令的开销成本,实现了多元化的调度需求和通信系统的有效性。
作为示例而非限定,上述实施例是在PCell和SCell1支持联合调度的情况下,实现如何调度SCell1的上行数据。该技术方案是针对联合调度场景下的进一步优化策略,满足多元化的调度需求。可选地,在本申请实施例中,下行联合调度和SCell1上行调度的技术方案可以解耦,二者独立运行。即基于PCell和SCell1支持下行联合调度,网络设备可以确定联合调度搜索空间的配置信息,并将该配置信息发送给终端设备,终端设备也可以根据该配置信息确定的该对应的搜索空间,具体对应于上述步骤S910。为了简洁,此处不再赘述。需要特别说明的是,在上述可能实现方式中,终端设备可以在PCell上监听PCell自调度,PCell跨载波调度和下行联合调度对应的PDCCH中至少一个。图10示出了终端设备确定PCell的搜索空间的一例示意图,如图10所示,该方法1000包括:
S1010,网络设备确定配置信息#a和/或配置信息#b。
其中,配置信息#a用于指示搜索空间#a,表示PCell自调度PDSCH和/或PUSCH的搜索空间,用于承载PCell自调度的消息#e;配置信息#b用于指示搜索空间#b,表示PCell和SCell1联合调度PDSCH的搜索空间,用于承载消息#a。
需要说明的是,如果配置信息#a和配置信息#b相同,即PCell自调度和下行联合调度的搜索空间可以共享;如果配置信息#a和配置信息#b不同,即PCell自调度和下行联合调度的搜索空间同时存在且相互独立。其中,相关的信令配置与上述步骤S610类似,为了简洁,此处不再赘述。
S1020,网络设备向终端设备发送配置信息#a和/或配置信息#b;相应的,终端设备从 网络设备接收配置信息#a和/或配置信息#b。
S1030,终端设备根据接收的配置信息#a和/或配置信息#b,确定搜索空间#a和/或搜索空间#b。
需要说明的是,如果配置信息#a和配置信息#b相同,即PCell自调度和下行联合调度的搜索空间可以共享;如果配置信息#a和配置信息#b不同,即PCell自调度和下行联合调度的搜索空间相互独立。其中,搜索空间的确定与上述步骤S630类似,为了简洁,此处不再赘述。
应理解,在本申请实施例中,对于PCell跨载波调度SCell1的情形来说,用于PCell自调度和SCell1跨载波调度的调度信息都是在SCell1上接收和发送的,那么UE确定的自调度和/或联合调度的搜索空间也都是在SCell1上。
S1040,网络设备确定配置信息#c。
其中,该配置信息#c用于指示搜索空间#c,表示PCell跨载波调度SCell1的第一上行载波的PUSCH的搜索空间,用于承载消息#b。
在一种可能的实现方式中,如果配置信息#b和配置信息#c相同,即下行联合调度和SCell1上行调度的搜索空间同时存在且可以共享。那么从信令配置角度来看,该配置信息#b中nrofCandidates和searchSpaceId两个参数是关联的SCell1配置,其他参数都是与PCell对应的配置,则该配置信息#b可以用于指示搜索空间#b和搜索空间#c。
可选地,网络设备确定配置信息#b,该配置信息#b用于指示下行联合调度的搜索空间#b,该配置信息#b用于承载联合调度的消息#a。应理解,该搜索空间#b在PCell上。另外,网络设备可以与终端设备协议规定,或网络设备通过信令通知终端设备,搜索空间#b也可以用于盲检测消息#b。也就是说,网络设备无需确定配置信息#c,SCell1上行调度的搜索空间与下行联合调度的搜索空间共享。
在另一种可能的实现方式中,如果配置信息#b和配置信息#c不同,即下行联合调度和SCell1上行调度的搜索空间同时存在且相互独立。那么从信令配置角度来看,该配置信息#b中至少包括关联SCell1的配置参数:nrofCandidates1和searchSpaceId 1,其他参数都是对应PCell上的配置。该配置信息#c中至少包括关联SCell1的配置参数:nrofCandidates2和searchSpaceId 2。应理解,配置信息#b和配置信息#c是两套独立的搜索空间配置。
示例地,网络设备还可以在配置信息#b和配置信息#c中配置相同的有效参数nrofCandidates2,即下行联合调度和上行跨载波调度共享相同的nrofCandidates2。对于参数searchSpaceId,网络设备可以在其中一套配置信息(例如:配置信息#b)中配置,另一套配置信息#c可以通过预定义或通知的偏移值来确定。
示例地,网络设备可以针对PCell联合调度PDSCH,在配置信息#b中配置参数searchSpaceId 1,并告知终端设备配置信息#c中有效参数searchSpaceId 2相对于配置信息#b中有效参数searchSpaceId 1的偏移值,再根据公式searchSpaceId 2=(searchSpaceId 1+offset)mode,计算得到最大的search space个数就是配置信息#c的有效参数searchSpaceId 2。
S1050,网络设备向终端设备发送配置信息#c;相应的,终端设备从网络设备接收配置信息#c。
其中,该配置信息#c中至少包括关联SCell1的配置参数。
S1060,终端设备根据接收的配置信息#c确定搜索空间#c。
在一种可能的实现方式中,如果配置信息#b和配置信息#c不同,即下行联合调度和SCell1上行调度的搜索空间同时存在且相互独立,那么终端设备可以根据配置信息#b确定搜索空间#b,以及根据配置信息#c确定搜索空间#c。
作为示例而非限定,上述实施例是在确定下行联合调度搜索空间的基础上,进一步确定SCell1上行调度的搜索空间。可选地,在本申请实施例中,确定联合调度的搜索空间和确定上行调度的搜索空间的技术方案可以解耦,二者独立运行。即基于PCell和SCell1支持下行联合调度,网络设备可以确定联合调度搜索空间的配置信息,并将该配置信息发送给终端设备,终端设备也可以根据该配置信息确定的该对应的搜索空间,具体对应于上述步骤S1010至S1030。为了简洁,此处不再赘述。
根据上述技术方案,通过设计了一种联合调度的方法,从而解决了在载波聚合场景中,针对一个载波被配置了联合PDSCH调度,实现该载波联合调度的搜索空间的配置和确定,以及该载波上行调度的需求,有效降低了控制信令的开销成本,解决了多元化的调度需求和通信系统的有效性。
方式三:
图11是适用本申请的资源调度方法的另一例示意图,与方式一的区别在于,SCell1的第一上行载波上的PUSCH被SCell2上行跨载波调度。也就是说,SCell1上没有被配置PDCCH,控制信息通过SCell2的PDCCH传输,而相应的数据信息则在SCell1的PDSCH传输,即终端设备在SCell2上接收控制信息,实现对SCell1上资源的调度。需要说明的是,在该实现方式中,可以预定义规则:PCell与SCell1支持联合调度PDSCH,且SCell1支持被上行跨载波调度PUSCH。如图11所示,该方法1100包括:
S1110,网络设备在PCell(即,第一小区的一例)的第一下行载波向终端设备发送消息#α;相应的,终端设备在PCell的第一下行载波接收来自网络设备的消息#α。
其中,该消息#α用于指示PDSCH的调度信息,该PDSCH对应PCell的第一下行载波和SCell1的第二下行载波。
示例地,该PDSCH可以包括第一PDSCH和第二PDSCH,其中,第一PDSCH与PCell对应,第二PDSCH与SCell1对应;或者,该PDSCH可以包括第三PDSCH,该第三PDSCH与PCell和SCell1对应。即终端设备通过从网络设备接收消息#α,可以调度PCell的第一下行载波和SCell1的第二下行载波上传输的下行数据。
示例地,终端设备通过接收网络设备发送的消息#α,能够调度PCell的第一下行载波的PDSCH#1和SCell1的第二下行载波的PDSCH#2。
S1120,网络设备在SCell2(即,第三小区的一例)的第三下行载波向终端设备发送消息#β;相应的,终端设备在SCell2的第三下行载波接收来自网络设备的消息#β。
其中,该消息#β用于指示SCell1(即,第二小区的一例)的第一上行载波的PUSCH的调度信息,即终端设备通过接收网络设备发送的消息#β,可以获取网络设备调度SCell1的第一上行载波的PUSCH#1的调度信息。
S1130,根据接收的消息#β,终端设备在SCell1的第一上行载波向网络设备发送PUSCH#1;相应的,网络设备在SCell1的第一上行载波接收来自网络设备的PUSCH#1。
在一种可能的实现方式中,网络设备还可以在SCell2的第三下行载波向终端设备发送 DCI#γ,用于SCell2的第三上行载波的PUSCH#2的调度信息和/或SCell2第三下行载波的PDSCH#3的调度信息等。
应理解,网络设备也可以在SCell2上发送下行调度信息,用于指示终端设备下行跨载波调度SCell1的第二下行载波的PDSCH。但是考虑到,在这种情况下,SCell1既支持与PCell下行联合调度PDSCH,又支持被SCell2下行跨载波调度PDSCH,SCell1上的PDSCH有可能同时被PCell和SCell2下行调度。所以可以预定义:如果SCell1被配置了和PCell下行联合调度,且同时被SCell2跨载波调度,那么此时允许SCell2上行跨载波调度SCell1的PUSCH,SCell1的下行数据可以通过PCell跨载波调度和/或下行联合调度。这样做的目的是避免多个小区(例如:PCell和SCell2)同时调度一个小区(例如:SCell1)的PDSCH。也就是说,可以避免一个小区(例如:SCell1)同时被两个小区(例如:PCell和SCell2)调度上行数据/下行数据,从而有效减少乱码、资源冲突、信道拥堵等问题。另外,终端设备可以将其作为一种能力上报网络设备,那么网络设备在给终端设备所在的激活小区上确定配置信息时,可以选择是否同时配置并开启这个功能,该可能的实现方式某种程度上可以实现资源调度的灵活应用。
综上所述,在该可能实现方式下,SCell1的第一上行载波的的PUSCH可以通过SCell2上行跨载波调度来实现,即网络设备在SCell2的第三下行载波上发送消息#β,用于指示终端设备跨载波调度SCell1的第一上行载波的PUSCH#1;SCell1的第二下行载波的PDSCH可以通过下行联合调度或PCell下行跨载波调度来实现,即网络设备在PCell的第一下行载波上发送消息#Σ,用于指示终端设备跨载波调度SCell1的第二下行载波的PDSCH#4;或在PCell的第一下行载波发送消息#α,用于指示终端设备联合调度SCell1的第二下行载波的PDSCH#1。很明显,这里跨载波调度SCell1的上行数据的小区是SCell2,而下行联合调度或跨载波调度SCell1的下行数据的小区是PCell,二者不同。
根据上述实施例中提供的方案,支持终端设备在载波聚合的场景下,网络设备通过在PCell的第一下行载波发送消息#α,实现联合调度PCell和SCell1的PDSCH;同时通过在SCell2的第三下行载波发送消息#β,有效实现SCell1的第一上行载波的上行调度需求,从而降低了控制信令的开销成本,实现了多元化的调度需求和通信系统的有效性。
作为示例而非限定,上述实施例是在PCell和SCell1支持联合调度的情况下,实现如何调度SCell1的上行数据。该技术方案是针对联合调度场景下的进一步优化策略,满足多元化的调度需求。可选地,在本申请实施例中,下行联合调度和SCell1上行调度的技术方案可以解耦,二者独立运行。即网络设备和终端设备可以基于PCell和SCell1支持下行联合调度,进行下行数据的接收和发送,具体对应于上述步骤S1110。为了简洁,此处不再赘述。
需要说明的是,在上述可能实现方式中,终端设备可以在PCell上监听PCell自调度,PCell跨载波调度和下行联合调度对应的PDCCH中至少一个,同时可以在SCell2上监听SCell2自调度和SCell2跨载波调度对应的PDCCH中至少一个。图12示出了终端设备确定PCell和SCell2的搜索空间的一例示意图,如图12所示,该方法1200包括:
S1210,网络设备确定配置信息#aa和/或配置信息#bb。
其中,配置信息#aa用于指示搜索空间#aa,表示PCell自调度PDSCH和/或PUSCH的搜索空间,用于承载PCell自调度的消息#&;配置信息#bb用于指示搜索空间#bb,表示PCell和SCell1联合调度PDSCH的搜索空间,用于承载消息#α。
需要说明的是,如果配置信息#aa和配置信息#bb相同,即PCell自调度和联合调度的搜索空间可以共享;如果配置信息#aa和配置信息#bb不同,即PCell自调度和下行联合调度的搜索空间同时存在且相互独立。其中,相关的信令配置与上述步骤S610类似,为了简洁,此处不再赘述。
S1220,网络设备向终端设备发送配置信息#aa和/或配置信息#bb;相应的,终端设备从网络设备接收配置信息#aa和/或配置信息#bb。
S1230,终端设备根据接收的配置信息#aa和/或配置信息#bb,确定搜索空间#aa和/或搜索空间#bb。
需要说明的是,如果配置信息#aa和配置信息#bb相同,即PCell自调度和联合调度的搜索空间可以共享;如果配置信息#aa和配置信息#bb不同,即PCell自调度和联合调度的搜索空间相互独立。其中,搜索空间的确定与上述步骤S630类似,为了简洁,此处不再赘述。
S1240,网络设备确定配置信息#cc。
其中,该配置信息#cc用于指示搜索空间#cc,表示SCell2跨载波调度SCell1的第一上行载波的PUSCH的搜索空间,用于承载消息#bb。
在一种可能的实现方式中,如果配置信息#bb和配置信息#cc不同,即下行联合调度和SCell1上行调度的搜索空间同时存在且相互独立。配置信息#bb和配置信息#cc是两套独立的搜索空间配置,相关的信令配置与上述步骤S1040类似,为了简洁,此处不再赘述。
S1250,网络设备向终端设备发送配置信息#cc;相应的,终端设备从网络设备接收配置信息#cc。
其中,该配置信息#cc中至少包括关联SCell1的配置参数:nrofCandidates和searchSpaceId。
S1260,终端设备根据接收的配置信息#cc确定搜索空间#cc。
在一种可能的实现方式中,如果配置信息#bb和配置信息#cc不同,即下行联合调度和SCell1上行调度的搜索空间同时存在且相互独立。其中,搜索空间的确定与上述步骤S1060类似,为了简洁,此处不再赘述。
作为示例而非限定,上述实施例是在确定下行联合调度搜索空间的基础上,进一步确定SCell1上行调度的搜索空间。可选地,在本申请实施例中,确定联合调度的搜索空间和确定上行调度的搜索空间的技术方案可以解耦,二者独立运行。即基于PCell和SCell1支持下行联合调度,网络设备可以确定联合调度搜索空间的配置信息,并将该配置信息发送给终端设备,终端设备也可以根据该配置信息确定的该对应的搜索空间,具体对应于上述步骤S1210至S1230。为了简洁,此处不再赘述。根据上述技术方案,通过设计了一种联合调度的方法,从而解决了在载波聚合场景中,针对一个载波被配置了联合PDSCH调度,实现该载波联合调度的搜索空间的配置和确定,以及该载波上行调度的需求,有效降低了控制信令的开销成本,解决了多元化的调度需求和通信系统的有效性。
上述可能实施例是在PCell调度SCell1的基础上,从三种可能实现的方式说明如何上行调度SCell1的第一上行载波的PUSCH。同样地,本申请的技术方案也适用于以SCell1(即,第一小区的一例)调度PCell(即,第二小区的一例)为例,即在PCell和SCell1支持下行联合调度的情况下,网络设备可以在SCell1的第一下行载波发送第一消息,该第 一消息用于指示物理下行共享信道PDSCH的调度信息;同时,网络设备通过在PCell的第二下行载波发送第二消息,或者在SCell1的第一下行载波发送第二消息,或者在SCell2的第三下行载波发送第二消息,用于上行调度PCell的第一上行载波的PUSCH。可能的实现步骤与上述实施例中PCell调度SCell1的方案类似,为了简洁,这里就不再赘述。
应理解,对于网络设备通过在PCell的第二下行载波发送第二消息,或者在SCell1第一下行载波发送第二消息,或者在SCell2的第三下行载波发送第二消息,实现上行调度PCell的第一上行载波的PUSCH,DCI size需要对齐,同时需要考虑DCI budget问题。
特别地,PCell作为主小区,无论是否被配置了跨载波调度,其公共搜索空间用于传输小区级别的公共信息,例如:与Paging、RAR、BCCH等相关的控制信息,该信息对于所有的终端设备来说都是一样的,都需要被监听。
需要说明的是,上述实施例是在PCell与SCell1被配置下行联合调度的情况下,分别是以PCell调度SCell1,SCell1调度PCell为例,说明网络设备如何有效对SCell1和PCell进行上行调度的,同时提出对联合调度的搜索空间进行配置与确定的方案。但是本申请的技术方案包括但不限于此,本申请的技术方案同样适用于SCell1与SCell2被配置联合下行调度,以及适用于PCell、SCell1和SCell2被配置下行联合调度的情况下。即本申请的技术方案也适用于Cell1和Cell2联合调度,用于联合调度的DCI在Cell3上发送的场景。该小区的上行数据的调度以及联合调度搜索空间的配置与确定,可能的实现方式与本申请上述技术方案基本类似,为了简洁,此处就不再赘述。
示例地,当SCell1和SCell2被配置下行联合调度时,以SCell1调度SCell2为例,网络设备在SCell1上发送调度信息,该调度信息用于下行联合调度SCell1和SCell2上的物理下行共享信道PDSCH,此时网络设备可以通过SCell2自调度,或SCell1上行跨载波调度,或其他SCell3上行跨载波调度来实现上行调度SCell2的物理上行共享信道PUSCH。可能的实现方式与上述方案类似,此处就不再赘述。
示例地,当PCell、SCell1和SCell2被配置联合调度时,以PCell同时调度SCell1和SCell2为例,网络设备在PCell发送调度信息,该调度信息用于下行联合调度PCell、SCell1和SCell2的物理下行共享信道PDSCH,此时网络设备可以通过SCell1/SCell2自调度,或PCell上行跨载波调度,或其他SCell3上行跨载波调度来实现上行调度SCell1/SCell2的物理上行共享信道PUSCH。可能的实现方式与上述技术方案类似,此处就不再赘述。
需要说明的是,上述实施例以激活小区PCell、SCell1和SCell2为例,仅仅是为了更清楚地表述本申请的技术方案,为了实现本申请的技术方案,激活小区的数量满足大于等于2即可,上述激活小区的数目不应对本申请构成任何限定。
还需要说明的是,在本申请上述可能的实现方式中,各个小区之间均支持下行联合调度,网络设备基于小区之间的下行联合调度,实现上行数据的调度,有效实现多元化的调度需求。应理解,本申请实施例也适用于上行联合调度,网络设备基于小区之间的上行联合调度,实现下行数据的调度。例如,小区1和小区2支持上行联合调度,且用于联合调度的DCI可以在小区1发送,网络设备可以基于这种场景对小区2的PUSCH进行上行调度。具体实现方式与上述实施例类似,为了简洁,此处不再赘述。另外。上行联合调度的搜索空间的确定可以和下行联合调度搜索空间的确定方式类似,这里也不再赘述。
下面描述与小区激活方式相关的,适用于本申请实施例的资源确定的方法。为了更好 地理解该技术方案,首先对小区激活的流程做简单介绍。
基站可以通过信令1为UE配置多个辅小区,初始配置的小区为去激活状态,基站和UE在去激活的小区上不能进行数据传输,基站需要通过信令2指示UE激活所配置的小区,小区完成激活后,基站和UE可以在小区上进行数据传输。上述实施例中配置用于联合调度的小区(例如:PCell、SCell1和SCell2)均是激活完成后的小区。需要说明的是,信令1也可以用于指示小区的激活,即基站在配置小区信息的同时激活该小区。
小区激活的流程可以包括:基站向UE发送信令2;相应的,UE从基站接收信令2,待该信令2处理完成后,UE可以向基站反馈HARQ信息,即UE是否正确接收基站发送的信令2。基站向UE发送信号1,该信号1用于实现基站和UE的同步;相应的,UE从基站接收信号1;在处理信号1完成后,UE根据测量信号1得到小区激活需要的信息,包括时频同步信息,参考信号功率;基站向UE发送信号2;相应的,UE从基站接收信号2后,UE向基站反馈有效信道测量报告;基站在接收UE发送的有效信道测量报告之后,即认为对应小区为激活状态。
示例地,信令1可以为无线资源控制RRC信令,信令2可以为媒体访问控制管理单元MAC CE信令,信号1可以为同步信号块单边带(Single Side Band,SSB)信号,信号2可以为信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)。在小区激活的流程中,UE可以使用SSB来获取小区激活期需要的信息,但由于收发和处理SSB的周期较长,导致辅小区激活的时间较长,所以为了减少辅小区的激活时间,可以在辅小区激活过程中引入临时参考信号。
示例地,临时参考信号可以包括CSI-RS或跟踪参考信号(tracking reference signal,TRS)。UE可以使用TRS作为临时参考信号来进行小区的激活,那么TRS可以为周期的TRS,也可以为非周期的TRS。比如,可以限定临时参考信号为周期的TRS,也可以限定临时参考信号为非周期的TRS,或者临时参考信号包括周期的TRS和非周期TRS。基站通过指示非周期的TRS,可以使能UE快速的接收到TRS,从而更快的获取小区激活需要的信息完成小区激活。如果临时参考信号为周期的TRS,那么配置一个短周期的TRS也可以使能UE更快的接收到TRS完成小区激活。与TRS类似,CSI-RS信令也包括周期的CSI-RS和非周期CSI-RS,可以限定临时参考信号为周期的CSI-RS,也可以限定临时参考信号为非周期CSI-RS,或者临时参考信号包括周期的CSI-RS和非周期CSI-RS。使用CSI-RS替代SSB的技术效果与TRS相同。相比于使用周期很长的SSB来完成小区激活,使用临时参考信号可以减少小区激活时延。
方式一:
基站可以通过信令3给UE配置临时参考信号集合,该临时参考信号集合可以按照小区粒度进行配置,也可以按照小区上BWP粒度进行配置。基站可以通过向UE发送信令4和用于小区激活的信令5,其中,信令4用于指示配置的参考集合中的至少一个临时参考信号,这里的信令4和信令5可以理解为同一信令。该方式能够减少UE接收和处理信令的时间,从而进一步减少小区激活的时间。可选地,上述临时参考信号集合可以是预设的或预定义的,即基站和UE之间可以提前协商规定。
示例地,信令3为RRC信令,信令4和信令5都为MAC CE信令,且为同一MAC CE信令,基站通过MAC CE信令激活辅小区,同时隐式地指示待激活小区的上的临时参考 信号。
应理解,MAC CE信令中包括需要激活小区对应的索引,首先预定义隐式指示规则为:UE在接收MAC CE小区激活信令后,同时该信令隐式地指示了该小区上用于小区激活的临时参考信号。示例地,该参考信号可以预定义规则:根据信令3中配置的临时参考信号集合中的所有临时参考信号,或者可以为UE根据临时参考信号预定义规则确定的参考信号集合中一个或多个临时参考信号,或者;可以为配置的参考信号集合中UE自主选择参考信号集合中的一个或多个临时参考信号。其中,上述临时参考信号预定义规则可以包括:指示的参考信号为待激活小区上临时参考信号集合中资源索引最大或最小或其他方法确定的索引对应的临时参考信号;或,指示的参考信号为待激活小区上特定BWP内临时参考信号集合中资源索引最大或最小或其他方法确定的索引对应的临时参考信号,该特定的BWP的数量大于等于1,特定BWP可以为小区中的初始激活上行或下行BWP(初始激活BWP为一个小区完成激活后初始激活的BWP),可以为最低或最高索引的N个上行/下行BWP,N大于等于1。
可选地,临时参考信号可以为TRS,该TRS包括周期TRS和非周期TRS,其中,MAC CE信令隐式指示的是非周期的TRS集合中的预定义规则对应索引的非周期TRS。另外,UE也可以根据周期TRS配置接收周期TRS。即UE接收到用于小区激活的MAC CE信令后,可以根据非周期的TRS和周期TRS的配置开始接收对应的参考信号。或者临时参考信号为非周期TRS,MAC CE信令隐式指示的为非周期TRS集合中的预定义规则对应索引的非周期TRS,即UE接收到用于小区激活的MAC CE信令后,可以根据非周期的TRS配置开始接收对应的参考信号。相应的,UE从基站接收MAC CE信令,同时根据预定义的规则确定需要接收的临时参考信号。或者,MAC CE隐式指示的可以为TRS集合中预定义规则对应索引的TRS,TRS集合中包括周期TRS和非周期TRS,即UE接收到用于小区激活的MAC CE信令后,如果隐式指示的TRS为周期TRS,那么UE根据周期的TRS配置接收对应的参考信号,如果隐式指示的TRS为非周期TRS,那么UE根据非周期的TRS配置接收非周期的TRS,或者根据非周期的TRS和周期的TRS接收对应的TRS。
示例地,为了使能基站在发送MAC CE信令激活小区的时候,能够选择是否同时触发临时参考信号,基站可以在现有的MAC CE信令中添加一个临时参考信号是否触发的标识,该标识可以对应所有的小区;或者在MAC CE信令中添加多个临时参考信号是否触发的标识,此时每一个小区可以对应一个标识。例如,在MAC CE信令中指示小区1,小区3,小区5激活,同时携带一个标识指示小区1,小区3和小区5是否同时触发上述预定义的临时参考信号;或者小区1对应一个触发临时参考信号的标识,小区3对应一个不触发临时参考信号的标识,小区5对应一个触发临时参考信号的标识。
再例如,基站在通过RRC信令配置小区信息时,可以在RRC信令中新增一个是否同时触发或确定临时参考信号的标识。UE在接收到该小区的激活命令后,根据小区配置信息是否包括同时触发或确定临时参考信号的标识,进而确定是否接收上述预定义的临时参考信号。比如基站通过RRC信令添加配置小区#a,小区#a对应的是否同时触发临时参考信号标识为正确(true)或使能(enabled),那么UE在接收到MAC CE激活信令后,同时根据预定义规则确定用于小区激活的TRS,如果小区#a对应的是否同时触发临时参考信号标识为错误(false)或(非使能disabled),那么UE在接收到MAC CE激活信令后, 不根据预定义规则确定用于小区激活的TRS。示例地,可以利用比特为“1”和“0”代表触发临时参考信号标识为true还是false。预定义规则,当UE接收的RRC信令中用于触发或确定临时参考信号的标识为1,则表示UE确定接收上述预定义的临时参考信号;反之,UE确定不接收上述预定义的临时参考信号。
可选地,基站也可以与UE预定义规则:当基站发送的RRC信令中包括触发或确定临时参考信号的标识,对应的,UE根据该触发或确定临时参考信号的标识进而确定接收上述预定义的临时参考信号;当基站发送的RRC信令中不包括触发或确定临时参考信号的标识,对应的,UE不会收到触发或确定临时参考信号的标识,进而确定不接收上述预定义的临时参考信号。
或者,基站可以通过配置来实现,预定义规则:如果一个待激活的小区第一激活下行BWP上没有配置可用的临时参考信号集合,那么UE在接收小区激活信令后,确定不同时触发临时参考信号,如果该BWP上有可用的临时参考信号集合,那么UE在接收小区激活信号后,确定同时触发临时参考信号。
示例地,UE可以上报是否支持同时触发小区激活和临时参考信号的能力,该能力可以表示所有配置的小区能力相同,也可以是每个小区的能力不同。比如,在小区1上支持,在小区2上不支持。基站和UE可以根据UE的能力来确定小区激活信令是否同时隐式触发临时参考信号。进一步地,UE在上报上述能力后,基站可以根据UE的能力来配置UE在每个小区上是否支持同时触发载波激活和临时参考信号。对于支持同时触发能力的UE,基站可以在小区配置中配置支持或不支持的标识;对于不支持同时触发能力的UE,基站可以在小区配置中配置不支持的标识。
可选地,上述信令4和信令5还可以为也可以为无线资源控制RRC,或下行控制信息DCI。通过方式一实现同时指示小区激活和临时参考信号,可以在降低小区激活时延的基础上降低信令的开销。
上述方式一能够实现同时指示小区激活和临时参考信号,可以在降低小区激活时延的基础上增强临时参考信号指示的灵活性。
方式二:
以信令3为RRC信令,信令4为DCI,信令5为MAC CE示例,其中MAC CE被携带在PDSCH中,该PDSCH被上述DCI调度。即基站通过一个DCI调度PDSCH和触发待激活小区上用于小区激活的临时参考信号,该PDSCH中包括一个MAC CE信令,该MAC CE信令用于指示待激活的一个或多个小区,DCI用于指示临时信号的域,该临时信号的域指示该一个或多个小区上用于小区激活的临时参考信号,该域可以为DCI中的CSI请求域。
需要说明的是,在这种可能的实现方式中,基站需要向UE发送信令4,用于指示用于激活小区的临时参考信号集合中的至少一个临时参考信号。基站还需要向UE发送信令5,该信令5用于小区的激活;可选地,基站可以同时向UE发送信令4和用于小区激活的信令5;相应的,UE可以同时接收信令4和信令5。方式一与方式二的区别在于,方式一中基站可以在发送用于小区激活的信令5时,隐式指示小区上用于小区激活的临时参考信号,即基站可以不向UE发送信令4。而在方式二中,基站需要向UE发送信令4和信令5。其中,基站与UE之间基于信令3的交互与上述方式一中类似,为了简洁,此处不 再赘述。
示例地,临时参考信号可以为TRS,该TRS包括周期TRS和非周期TRS,其中,MAC CE信令隐式指示的是非周期的TRS集合中的预定义规则对应索引的非周期TRS。另外,UE也可以根据周期TRS配置接收周期TRS。即UE接收到用于小区激活的MAC CE信令后,可以根据非周期的TRS和周期TRS的配置开始接收对应的参考信号。或者临时参考信号为非周期TRS,MAC CE信令,MAC CE信令隐式指示的为非周期TRS集合中的预定义规则对应索引的非周期TRS,即UE接收到用于小区激活的MAC CE信令后,可以根据非周期的TRS配置开始接收对应的参考信号。相应的,UE从基站接收MAC CE信令,同时根据预定义的规则确定需要接收的临时参考信号。
可选地,基站也可以通过信令3给UE配置多个临时参考信号集合,该临时参考信号集合可以按照小区粒度进行配置,也可以按照小区上BWP粒度进行配置。那么基站向UE发送的信令4可以用于指示配置的参考集合中的一个或多个临时参考信号集合,或者可以用于指示配置的参考集合中的至少一个临时参考信号集合种的一个或多个临时参考信号。具体实现方式在上述已经说明,此处为了简洁,不再赘述。
根据上述实施例,基站通过向UE发送激活请求信息,并结合预定义规则,能够实现小区的激活,进而实现多元化的资源调度需求。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。上文中详细描述了适用于本申请实施例的资源调度的方法,下面将描述适用于本申请实施例的装置。
根据前述方法,图13是适用于本申请实施例的通信设备10的示意图,例如:网络设备。如图13所示,该通信设备10包括:收发单元11和处理单元12。
示例地,该收发单元11用于在第一小区的第一下行载波上发送第一消息,第一消息用于指示物理下行共享信道PDSCH的调度信息,PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波。
可选地该收发单元11还用于发送第二消息,第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息。
可选地该收发单元11还用于根据第二消息,在第二小区的第一上行载波上接收PUSCH。
应理解,通信设备10可以对应于根据本申请实施例的资源调度的方法500/900/1100中的网络设备,该通信设备10可以包括用于执行图5/图9/图11中资源调度的方法500/900/1100的网络设备执行的方法的模块(或单元)。并且,该通信设备10中的各模块(或单元)和上述其他操作和/或功能分别为了实现图5/图9/图11中资源调度的方法 500/900/1100的相应流程。
具体地,收发单元11用于执行方法500/900/1100中的S510、S520和S530/S910、S920和S930/S1010、S1020和S1030,各模块(或单元)执行上述相应步骤的过程在方法500/900/1000中已经详细说明,为了简洁,在此不再赘述。
还应理解,通信设备10可以对应于根据本申请实施例的确定搜索空间的方法600/1000/1200中的网络设备,该通信设备10可以包括用于执行图6/图10/图12中确定搜索空间的方法600/1000/1200的网络设备执行的方法的模块(或单元)。并且,该通信设备10中的各模块(或单元)和上述其他操作和/或功能分别为了实现图6/图10/图12中确定搜索空间的方法600/1000/1200的相应流程。
具体地,收发单元11用于执行方法600/1000/1200中的S620/1020/S1220,处理单元12用于执行方法600/1000/1200中的S610/S1010/S1210,各模块(或单元)执行上述相应步骤的过程在方法600/1000/1200中已经详细说明,为了简洁,在此不再赘述。
应理解,图13示例的通信设备10的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备的可能。
应理解,根据本申请实施例的通信设备10可对应于前述方法实施例的资源调度和确定搜索空间的网络设备,并且通信设备10中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的处理模块(或单元)可以由处理器实现,收发模块(或单元)可以由收发器实现。
根据前述方法,图14是适用于本申请实施例的通信设备20的示意图,例如:终端设备。如图14所示,该通信设备20包括:收发单元21和处理单元22。
示例地,该收发单元21用于在第一小区的第一下行载波上接收第一消息,第一消息用于指示物理下行共享信道PDSCH的调度信息,PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波。
可选地,该收发单元21还用于接收第二消息,第二消息用于指示第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息。
可选地,该收发单元21还用于根据第二消息,在第二小区的第一上行载波上发送PUSCH。
应理解,通信设备20可以对应于根据本申请实施例的资源调度的方法500/900/1100中的终端设备,该通信设备20可以包括用于执行图5/图9/图11中资源调度的方法500/900/1100的终端设备执行的方法的模块(或单元)。并且,该通信设备20中的各模块(或单元)和上述其他操作和/或功能分别为了实现图5/图9/图11中资源调度的方法500/900/1100的相应流程。
具体地,收发单元21用于执行方法500/900/1100中的S510、S520和S530/S910、S920和S930/S1110、S1120和S1130,各模块(或单元)执行上述相应步骤的过程在方法500/900/1100中已经详细说明,为了简洁,在此不再赘述。
应理解,通信设备20还可以对应于根据本申请实施例的确定搜索空间的方法600/1000/1200中的终端设备,该通信设备20可以包括用于执行图6/图10/图12中确定搜索空间的方法600/1000/1200的终端设备执行的方法的模块(或单元)。并且,该通信设 备20中的各模块(或单元)和上述其他操作和/或功能分别为了实现图6/图10/图12中确定搜索空间的方法600/1000/1200的相应流程。
具体地,收发模块21用于执行方法600/1000/1200中的S620/S1020/S1220,处理单元22用于执行方法600/1000/1200中的S630/S1030/S1230,各模块(或单元)执行上述相应步骤的过程在方法600/1000/1200中已经详细说明,为了简洁,在此不再赘述。
应理解,图14示例的通信设备20的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的终端设备的可能。
应理解,根据本申请实施例的通信设备20可对应于前述方法实施例的资源调度和确定搜索空间的终端设备,并且通信设备20中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的处理模块(或单元)可以由处理器实现,收发模块(或单元)可以由收发器实现。
根据前述方法,图15是适用于本申请实施例的网络设备30的示意图。如图15所示,该网络设备30包括:处理器31、收发器32和存储器33。
应理解,处理器31、收发器32和存储器33之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器31、收发器32和存储器33可以通过芯片实现。该存储器33可以存储程序代码,处理器31调用存储器33存储的程序代码,以实现该网络设备的相应功能。
示例地,该处理器31用于确定第一小区的第一配置信息,第一小区的第一配置信息用于指示第一搜索空间;确定第二小区的第一配置信息,第二小区的第一配置信息用于指示第一搜索空间。
示例地,该收发器32用于在第一小区的第一下行载波上发送第一消息,第一消息用于指示物理下行共享信道PDSCH的调度信息,PDSCH对应第一小区的第一下行载波和第二小区的第二下行载波;发送第二消息,第二消息用于指示第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;根据第二消息,在第二小区的第一上行载波上接收PUSCH。
可以理解的是,尽管并未示出,网络设备30还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器33可以存储用于执行前述方法中网络设备执行的方法的部分或全部指令。处理器31可以执行存储器33中存储的指令结合其他硬件(例如收发器32)完成前述方法中网络设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
根据前述方法,图16是适用于本申请实施例的终端设备40的示意图。如图16所示,该终端设备40包括:处理器41、收发器42和存储器43。
应理解,处理器41、收发器42和存储器43之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器41、收发器42和存储器43可以通过芯片实现。该存储器43可以存储程序代码,处理器41调用存储器43存储的程序代码,以实现该终端设备的相应功能。
示例地,该处理器41用于在第一搜索空间检测第三消息;以及在第二搜索空间检测 第一消息。
示例地,该收发器42用于在第一小区的第一下行载波上接收第一消息,第一消息用于指示物理下行共享信道PDSCH的调度信息,PDSCH对应第一小区的第一下行载波和第二小区的第二下行载波;接收第二消息,第二消息用于指示第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;根据第二消息,在第二小区的第一上行载波上发送PUSCH。
可以理解的是,尽管并未示出,终端设备40还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器43可以存储用于执行前述方法中终端设备执行的方法的部分或全部指令。处理器41可以执行存储器43中存储的指令结合其他硬件(例如收发器42)完成前述方法中终端设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介 质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文提及的“第一”、“第二”和“第三”等等仅仅是为了更清楚地表述本申请的技术方案而加以区分,不应对本申请构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可以根据例如具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种资源调度的方法,其特征在于,包括:
    在第一小区的第一下行载波上接收第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;
    接收第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;
    根据所述第二消息,在所述第二小区的第一上行载波上发送所述PUSCH。
  2. 如权利要求1所述的方法,其特征在于,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
  3. 如权利要求1所述的方法,其特征在于,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述接收第二消息包括:
    在所述第二小区的第二下行载波上接收所述第二消息;或者
    在所述第一小区的第一下行载波上接收所述第二消息;或者
    在第三小区的第三下行载波上接收所述第二消息。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间;
    在所述第一搜索空间检测第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;
    接收第二小区的第一配置信息,所述第二小区的第一配置信息用于指示第二搜索空间;
    在所述第二搜索空间检测所述第一消息。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一小区的第一配置信息与所述第二小区的第一配置信息相同,在所述第一搜索空间检测所述第一消息。
  7. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间;
    在所述第三搜索空间检测第四消息,所述第四消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;
    在所述第三搜索空间检测所述第一消息。
  8. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间;
    在所述第四搜索空间检测所述第二消息。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    接收第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息;
    所述第二小区的第二配置信息与所述第二小区的第三配置信息相同,在所述第五搜索空间检测所述第二消息。
  10. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息;
    在所述第六搜索空间检测所述第二消息。
  11. 一种资源调度的方法,其特征在于,包括:
    在第一小区的第一下行载波上发送第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;
    发送第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;
    根据所述第二消息,在所述第二小区的第一上行载波上接收所述PUSCH。
  12. 如权利要求11所述的方法,其特征在于,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
  13. 如权利要求11所述的方法,其特征在于,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述发送第二消息包括:
    在所述第二小区的第二下行载波上发送所述第二消息;或者
    在所述第一小区的第一下行载波上发送所述第二消息;或者
    在第三小区的第三下行载波上发送所述第二消息。
  15. 如权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一小区的第一下行载波上发送第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;
    发送第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间,所述第一搜索空间用于检测所述第三消息;
    发送第二小区的第一配置信息,所述第二小区的第一配置信息用于指示所述第二搜索空间,所述第二搜索空间用于检测所述第一消息。
  16. 如权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    发送第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间,所述第三搜索空间用于检测第四消息和所述第一消息,所述第四消息用于指示所述第 一小区的第一下行载波的第四PDSCH的调度信息或所述第一小区的第二上行载波的第二PUSCH的调度信息。
  17. 如权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间,所述第四搜索空间用于检测所述第二消息。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    发送第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息。
  19. 如权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息和所述第二消息。
  20. 一种通信设备,其特征在于,包括:
    收发单元,用于在第一小区的第一下行载波上接收第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;
    所述收发单元,还用于接收第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;
    所述收发单元,还用于根据所述第二消息,在所述第二小区的第一上行载波上发送所述PUSCH。
  21. 如权利要求20所述的通信设备,其特征在于,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
  22. 如权利要求20所述的通信设备,其特征在于,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
  23. 如权利要求20至22中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于在所述第二小区的第二下行载波上接收所述第二消息;或者
    所述收发单元,还用于在所述第一小区的第一下行载波上接收所述第二消息;或者
    所述收发单元,还用于在第三小区的第三下行载波上接收所述第二消息。
  24. 如权利要求20至23中任一项所述的通信设备,其特征在于,包括:
    所述收发单元,还用于接收第一小区的第一配置信息,所述第一小区的第一配置信息用于指示所述第一搜索空间;
    处理单元,用于在所述第一搜索空间检测第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;
    所述收发单元,还用于接收第二小区的第一配置信息,所述第二小区的第一配置信息用于指示所述第二搜索空间;
    所述处理单元,还用于在所述第二搜索空间检测所述第一消息。
  25. 如权利要求24所述的通信设备,其特征在于,
    所述处理单元,还用于所述第一小区的第一配置信息与所述第二小区的第一配置信息 相同,在所述第一搜索空间检测所述第一消息。
  26. 如权利要求20至23中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于接收第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间;
    所述处理单元,还用于在所述第三搜索空间检测第四消息,所述第四消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;
    所述处理单元,还用于在所述第三搜索空间检测所述第一消息。
  27. 如权利要求20至23中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于接收第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间;
    所述处理单元,还用于在所述第四搜索空间检测所述第二消息。
  28. 如权利要求27所述的通信设备,其特征在于,
    所述收发单元,还用于接收第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息;
    所述处理单元,还用于所述第二小区的第二配置信息与所述第二小区的第三配置信息相同,在所述第五搜索空间检测所述第二消息。
  29. 如权利要求20至23中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于接收第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息;
    所述处理单元,还用于在所述第六搜索空间检测所述第二消息。
  30. 一种通信设备,其特征在于,包括:
    收发单元,用于在第一小区的第一下行载波上发送第一消息,所述第一消息用于指示物理下行共享信道PDSCH的调度信息,所述PDSCH对应所述第一小区的第一下行载波和第二小区的第二下行载波;
    所述收发单元,还用于发送第二消息,所述第二消息用于指示所述第二小区的第一上行载波的物理上行共享信道PUSCH的调度信息;
    所述收发单元,还用于根据所述第二消息,在所述第二小区的第一上行载波上接收所述PUSCH。
  31. 如权利要求30所述的通信设备,其特征在于,所述PDSCH包括第一PDSCH和第二PDSCH,其中,所述第一PDSCH与所述第一小区对应,所述第二PDSCH与所述第二小区对应。
  32. 如权利要求30所述的通信设备,其特征在于,所述PDSCH包括第三PDSCH,其中,所述第三PDSCH与所述第一小区和所述第二小区对应。
  33. 如权利要求30至32中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于在所述第二小区的第二下行载波上发送所述第二消息;或者
    所述收发单元,还用于在所述第一小区的第一下行载波上发送所述第二消息;或者
    所述收发单元,还用于在第三小区的第三下行载波上发送所述第二消息。
  34. 如权利要求30至33中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于在所述第一小区的第一下行载波上发送第三消息,所述第三消息用于指示所述第一小区的第一下行载波的第三PDSCH的调度消息或所述第一小区的第二上行载波的第一PUSCH的调度消息;
    所述收发单元,还用于发送第一小区的第一配置信息,所述第一小区的第一配置信息用于指示第一搜索空间,所述第一搜索空间用于检测所述第三消息;
    所述收发单元,还用于发送第二小区的第一配置信息,所述第二小区的第一配置信息用于指示所述第二搜索空间,所述第二搜索空间用于检测所述第一消息。
  35. 如权利要求30至33中任一项所述的通信设备,其特征在于,
    所述收发单元,还用发送第一小区的第二配置信息,所述第一小区的第二配置信息用于指示第三搜索空间,所述第三搜索空间用于检测第四消息和所述第一消息,所述第四消息用于指示所述第一小区的第一下行载波的第四PDSCH的调度信息或所述第一小区的第二上行载波的第二PUSCH的调度信息。
  36. 如权利要求30至33中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于发送第二小区的第二配置信息,所述第二小区的第二配置信息用于指示第四搜索空间,所述第四搜索空间用于检测所述第二消息。
  37. 如权利要求36所述的通信设备,其特征在于,
    所述收发单元,还用于发送第二小区的第三配置信息,所述第二小区的第三配置信息用于指示第五搜索空间,所述第五搜索空间用于检测所述第一消息。
  38. 如权利要求30至33中任一项所述的通信设备,其特征在于,
    所述收发单元,还用于发送第二小区的第四配置信息,所述第二小区的第四配置信息用于指示第六搜索空间,所述第六搜索空间用于检测所述第一消息和所述第二消息。
  39. 一种通信系统,其特征在于,包括:
    终端设备,用于执行如权利要求1至10中任一项所述的方法;
    网络设备,用于执行如权利要求11至19中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至10中任一项或11至19中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,使得所述计算机执行如权利要求1至10中任一项或11至19中任一项所述的方法。
  42. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信装置执行如权利要求1至10中任一项或11至19中任一项所述的方法。
PCT/CN2021/072317 2021-01-15 2021-01-15 资源调度的方法和通信设备 WO2022151432A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2021/072317 WO2022151432A1 (zh) 2021-01-15 2021-01-15 资源调度的方法和通信设备
EP21918818.2A EP4270838A1 (en) 2021-01-15 2021-05-11 Resource scheduling method and communication device
BR112023014216A BR112023014216A2 (pt) 2021-01-15 2021-05-11 Método de escalonamento de recursos e dispositivo de comunicação
PCT/CN2021/093104 WO2022151620A1 (zh) 2021-01-15 2021-05-11 资源调度的方法和通信设备
CN202180089831.9A CN116830499A (zh) 2021-01-15 2021-05-11 资源调度的方法和通信设备
AU2021420338A AU2021420338A1 (en) 2021-01-15 2021-05-11 Resource scheduling method and communication device
US18/352,321 US20230361961A1 (en) 2021-01-15 2023-07-14 Resource scheduling method and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072317 WO2022151432A1 (zh) 2021-01-15 2021-01-15 资源调度的方法和通信设备

Publications (1)

Publication Number Publication Date
WO2022151432A1 true WO2022151432A1 (zh) 2022-07-21

Family

ID=82447791

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/072317 WO2022151432A1 (zh) 2021-01-15 2021-01-15 资源调度的方法和通信设备
PCT/CN2021/093104 WO2022151620A1 (zh) 2021-01-15 2021-05-11 资源调度的方法和通信设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093104 WO2022151620A1 (zh) 2021-01-15 2021-05-11 资源调度的方法和通信设备

Country Status (6)

Country Link
US (1) US20230361961A1 (zh)
EP (1) EP4270838A1 (zh)
CN (1) CN116830499A (zh)
AU (1) AU2021420338A1 (zh)
BR (1) BR112023014216A2 (zh)
WO (2) WO2022151432A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031696A1 (zh) * 2022-08-12 2024-02-15 富士通株式会社 信道状态信息的上报方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170195999A1 (en) * 2014-11-07 2017-07-06 Panasonic Intellectual Property Corporation Of America Physical downlink control channel, pdcch, assignment procedure
US20190313429A1 (en) * 2018-04-10 2019-10-10 FG Innovation Company Limited Methods and related devices for performing cross-carrier scheduling with beam operations
CN111132359A (zh) * 2019-12-31 2020-05-08 北京展讯高科通信技术有限公司 辅小区跨载波调度主小区下行控制信息的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170195999A1 (en) * 2014-11-07 2017-07-06 Panasonic Intellectual Property Corporation Of America Physical downlink control channel, pdcch, assignment procedure
US20190313429A1 (en) * 2018-04-10 2019-10-10 FG Innovation Company Limited Methods and related devices for performing cross-carrier scheduling with beam operations
CN111132359A (zh) * 2019-12-31 2020-05-08 北京展讯高科通信技术有限公司 辅小区跨载波调度主小区下行控制信息的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on joint scheduling", 3GPP DRAFT; R1-2006987, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 14 August 2020 (2020-08-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051920687 *

Also Published As

Publication number Publication date
WO2022151620A9 (zh) 2023-06-15
CN116830499A (zh) 2023-09-29
BR112023014216A2 (pt) 2023-10-03
US20230361961A1 (en) 2023-11-09
EP4270838A1 (en) 2023-11-01
WO2022151620A1 (zh) 2022-07-21
AU2021420338A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US10772118B2 (en) Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
CN110474737B (zh) 参数确定的方法、监控方法、通信装置
JP6779279B2 (ja) 部分サブフレームにおける(e)pdcchの改良されたブラインド復号
CN108521321B (zh) 用于发送和接收下行链路控制信息的方法和装置
CN113225164B (zh) 动态tdd上行链路/下行链路配置方法
US20180270800A1 (en) Method for monitoring, transmitting, and receiving downlink pre-emption indication information in new radio networks and apparatus thereof
US20190223204A1 (en) Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
US20180376497A1 (en) Control information reception method and user equipment, and control information transmission method and base station
WO2017113279A1 (zh) 系统信息传输方法、基站和用户设备
US20180048447A1 (en) User equipments, base stations and methods
WO2018171667A1 (zh) 一种信道传输方法及网络设备
TW201739211A (zh) 在lte進階系統中減少等待時間下鏈實體通道方法及程序
WO2020094019A1 (zh) 信息传输方法及装置
JP2018531537A (ja) 無線システムにおけるフレーミング、スケジューリング、および同期化
WO2019047719A1 (zh) 通信方法、终端设备和网络设备
EP3243351A1 (en) Evolved multimedia broadcast multicast service on enhanced component carriers
WO2018059168A1 (zh) 传输数据的方法、网络设备和终端设备
US20220399960A1 (en) Method, user equipment, apparatus and computer-readable storage medium for transmitting harq-ack codebook, and method and base station for receiving harq-ack codebook
WO2019122518A1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
JP2018507606A (ja) 拡張キャリアアグリゲーションに関するチャネル状態情報
WO2017101018A1 (zh) 载波跳转的方法、终端和基站
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
JP2019506022A (ja) アンライセンスド帯域のスケジューリング要求を多重するためのシステム及び方法
EP4236138A1 (en) Method, user equipment, processing device, storage medium, and computer program for receiving downlink channel, and method and base station for transmitting downlink channel
CN114731691A (zh) 用于发送下行链路控制信息的方法和基站及用于接收下行链路控制信息的用户设备、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918636

Country of ref document: EP

Kind code of ref document: A1