WO2022151221A1 - 精确参考定时信息获取方法、通信设备及可读存储介质 - Google Patents

精确参考定时信息获取方法、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2022151221A1
WO2022151221A1 PCT/CN2021/071871 CN2021071871W WO2022151221A1 WO 2022151221 A1 WO2022151221 A1 WO 2022151221A1 CN 2021071871 W CN2021071871 W CN 2021071871W WO 2022151221 A1 WO2022151221 A1 WO 2022151221A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
random access
reference timing
precise reference
user equipment
Prior art date
Application number
PCT/CN2021/071871
Other languages
English (en)
French (fr)
Inventor
王和俊
生嘉
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to CN202180091014.7A priority Critical patent/CN116868672A/zh
Priority to PCT/CN2021/071871 priority patent/WO2022151221A1/zh
Publication of WO2022151221A1 publication Critical patent/WO2022151221A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications, and in particular, to a method for acquiring precise reference timing information, a communication device and a readable storage medium.
  • Time Sensitive Network is a set of standards (IEEE 802.1Q TSN standard) developed by the Institute of Electrical and Electronics Engineers (IEEE) to define the transmission of time-sensitive data and precise timing references over wired Ethernet (IEEE 802.3Ethernet standard).
  • IEEE 802.1Q TSN standard developed by the Institute of Electrical and Electronics Engineers (IEEE) to define the transmission of time-sensitive data and precise timing references over wired Ethernet (IEEE 802.3Ethernet standard).
  • the precise reference time comes from a central clock source called the "Grand Master" and is distributed between nodes through a series of relays based on the Precision Time Protocol (PTP, Precision Time Protocol, IEEE 1588 Precision Time Protocol).
  • the time synchronization accuracy that a user equipment (UE) can achieve depends on the maximum distance between a base station (eg, a gNB) and the UE.
  • a base station eg, a gNB
  • Inter-Site-Distance ISD, Inter-Site-Distance
  • the precise reference timing delivery and propagation delay measurement and compensation in 5G system are studied.
  • the main technical problem to be solved by the present application is to provide a method for obtaining precise reference timing information, a communication device and a readable storage medium, which can solve the problem in the prior art that a user equipment in a disconnected state cannot obtain precise reference timing information.
  • a first aspect of the present application provides a method for acquiring precise reference timing information, the method includes: a user equipment in a disconnected state sends a first random access message to a base station, where the first random access message includes Precise reference timing request information, the disconnected state includes RRC idle state or RRC inactive state; the user equipment receives the second random access message from the base station, obtains precise reference timing information from it, and returns to the disconnected state.
  • a second aspect of the present application provides a method for acquiring precise reference timing information, the method includes: a base station receives a first random access message from a user equipment in a disconnected state, the first random access message The message includes precise reference timing request information, and the disconnected state includes RRC idle state or RRC inactive state; the base station generates the corresponding precise reference timing information according to the precise reference timing request information; the base station sends a message containing the precise reference timing information to the user equipment. the second random access message, and control the user equipment to return to the disconnected state.
  • a third aspect of the present application provides a method for acquiring precise reference timing information, the method includes: a user equipment in a disconnected state sends a first random access message to a base station, where the first random access message includes Precise reference timing request information, the disconnected state includes RRC idle state or RRC inactive state; the base station generates corresponding precise reference timing information according to the precise reference timing request information; Random access message; the user equipment obtains precise reference timing information and returns to the disconnected state.
  • a first aspect of the present application provides a communication system, including a user equipment and a base station, where the user equipment is configured to send a first random access message to the base station, where the first random access message includes precise reference timing request information , the disconnected state includes the RRC idle state or the RRC inactive state; the base station is used to generate corresponding precise reference timing information according to the precise reference timing request information; the base station is used to send the user equipment.
  • the access message UE is used to obtain accurate reference timing information and restore to the disconnected state.
  • a first aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is used for executing instructions to achieve the precise accuracy provided by the first aspect of the present application Refer to the timing information acquisition method.
  • a second aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is used for executing instructions to achieve the precise accuracy provided by the second aspect of the present application Refer to the timing information acquisition method.
  • the present application provides a readable storage medium storing instructions, which implement the aforementioned method when the instructions are executed.
  • the user equipment in the disconnected state initiates random access to the base station and sends a first random access message to request to obtain the precise reference timing information
  • the user equipment obtains the precise reference timing information
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 1 is a schematic structural diagram of an embodiment of a wireless communication system or network of the present application.
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for acquiring precise reference timing information of the present application
  • FIG. 3 is a schematic flowchart of a second embodiment of a method for acquiring precise reference timing information of the present application
  • FIG. 4 is a schematic flowchart of a third embodiment of a method for acquiring precise reference timing information of the present application
  • FIG. 5 is a schematic flowchart of the fourth embodiment of the method for acquiring precise reference timing information of the present application
  • FIG. 6 is a schematic flowchart of a fifth embodiment of a method for obtaining precise reference timing information of the present application.
  • FIG. 7 is a schematic flowchart of a sixth embodiment of a method for acquiring precise reference timing information of the present application.
  • FIG. 8 is a schematic flowchart of a seventh embodiment of a method for acquiring precise reference timing information of the present application.
  • FIG. 9 is a schematic flowchart of the eighth embodiment of the method for acquiring precise reference timing information of the present application.
  • FIG. 10 is a schematic structural diagram of the first embodiment of the communication device of the present application.
  • FIG. 11 is a schematic structural diagram of a second embodiment of a communication device of the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a readable storage medium of the present application.
  • User equipment in this application may include or represent any portable computing device used for communication.
  • Examples of user equipment that may be used in certain embodiments of the described devices, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices such as laptops , handheld devices, tablets, tablet computers, netbooks, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
  • the user equipment may also be a reduced capability (Reduced Capability) user equipment.
  • FIG. 1 is a wireless communication comprising a core network 102 (or telecommunications infrastructure) with multiple network nodes 104a-104m (eg, base stations gNBs) serving cells 106a-106m of multiple wireless communication units 108a-108e (eg, UEs)
  • a schematic diagram of a system or network 100 .
  • a plurality of network nodes 104a-104m are connected to the core network 102 by links. These links may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • Core network 102 may include multiple core network nodes, network entities, application servers, or any other network or computing device that may communicate with one or more radio access networks including multiple network nodes 104a-104m.
  • the network nodes 104a-104m are illustrated as base stations, which may be gNBs in a 5G network, for example but not limited to.
  • Each of the plurality of network nodes 104a-104m (eg, base stations) has a footprint, which is schematically represented in FIG. 1 for serving one or more UEs 108a for simplicity and by way of example and not limitation
  • UEs 108a-108e can receive services from wireless communication system 100, such as voice, video, audio, or other communication services.
  • the wireless communication system or network 100 may include or represent any one or more communication networks used for communication between UEs 108a-108e and other devices, content sources, or servers connected to the wireless communication system or network 100.
  • Core network 102 may also include or represent one or more communication networks, one or more network nodes, entities, elements, application servers, servers, base stations or other links, coupled or connected to form wireless communication system or network 100 Network equipment. Links or couplings between network nodes may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • the wireless communication system or network 100 and core network 102 may include any suitable combination of a core network and a wireless access network comprising network nodes or entities, base stations, access points, etc. that enable UEs 108a-108e, wireless communication system 100 and Communication between network nodes 104a-104m of core network 102, content sources, and/or other devices connected to system or network 100 is enabled.
  • An example of a wireless communication network 100 may be at least one communication network or a combination thereof including, but not limited to, one or more wired and/or wireless telecommunications networks, a core network(s), radio access network(s), computer network(s), data communication network(s), internet, telephone network, wireless network, such as WiMAX based on the IEEE 802.11 standard by way of example only , WLAN and/or Wi-Fi network, or Internet Protocol (Internet Protocol, IP) network, packet-switched network or enhanced packet-switched network, IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) network or based on wireless, cellular or satellite Technical communication networks, such as mobile networks, Global System for Mobile Communications (GSM), GPRS networks, Wideband Code Division Multiple Access (W-CDMA), CDMA2000 or LTE/Advanced LTE communication network or any 2nd, 3rd, 4th or 5th generation and beyond type of communication network etc.
  • GSM Global System for Mobile Communications
  • W-CDMA Wideband Code Division Multiple Access
  • the wireless communication system 100 may be, by way of example only and not limited to, cyclic prefix orthogonal frequency division multiplexing (CP- 5G communication network using OFDM) technology.
  • the downlink may include one or more communication channels for transmitting data from one or more gNBs 104a-104m to one or more UEs 108a-108e.
  • a downlink channel is a communication channel used to transmit data, eg, from gNB 104a to UE 108a.
  • each frame may be 10ms in length
  • each frame may be divided into multiple subframes.
  • each frame may include 10 subframes of equal length, where each subframe consists of multiple time slots (eg, 2 time slots) for transmitting data.
  • time slots e.g, 2 time slots
  • a subframe may include several additional special fields or OFDM symbols, which may include, by way of example only, downlink synchronization symbols, broadcast symbols and/or uplink reference symbols.
  • FIG. 2 is the first embodiment of the method for obtaining precise reference timing information of the present application. This embodiment includes:
  • S210 The user equipment in the disconnected state sends a first random access message to the base station.
  • the RRC disconnected state includes the RRC idle state (ie RRC_IDLE state) and the RRC inactive state (ie RRC_INACTIVE state).
  • the user equipment in the disconnected state initiates random access to the base station and sends a request to the base station.
  • a first random access message is sent, where the first random access message includes precise reference timing request information, so as to request the base station to send precise reference timing information.
  • S230 The user equipment receives the second random access message from the base station, obtains precise reference timing information from the second random access message, and returns to the disconnected state.
  • the user equipment receives the second random access message from the base station and parses the second random access information to obtain accurate reference timing information.
  • the user equipment updates the local time synchronization information according to the precise reference timing information, and returns from the RRC RRC connected state to the RRC RRC disconnected state in response to the RRC state transition message.
  • the RRC state transition message is a message instructing the user equipment to perform state transition.
  • the RRC state transition message can be RRCConnectionRelease to control the user equipment to return to the RRC_IDLE state; when the user equipment is originally in the RRC_INACTIVE state, the RRC state transition message can be RRCConnectionSuspend to control the user equipment to return to RRC_INACTIVE state.
  • the user equipment in the disconnected state initiates random access to the base station and sends a first random access message to request to obtain the precise reference timing information, and the user equipment obtains the precise reference timing in the second random access message information, update the local time synchronization information and restore to the disconnected state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • the first random access message initiated to the base station may be a two-step random access procedure or a four-step random access procedure. Therefore, before the user equipment initiates random access to the base station, it needs to be determined according to the system state that the first random access message belongs to a two-step random access procedure or a four-step random access procedure.
  • the system status includes reference signal received power, signal strength, signal power consumption, and the like. In one embodiment, the random access procedure is selected according to the reference signal received power.
  • the first random access message selects a two-step random access process, and when the received power of the reference signal is less than or equal to the preset threshold, the first random access message selects a four-step random access process process.
  • the user equipment selects a random access resource dedicated to precise reference timing information for the first random access message according to the type of random access information.
  • the dedicated random access resources may be either dedicated random access opportunities or random access pilots, or may be dedicated random access opportunities and random access pilots.
  • FIG. 3 shows the second embodiment of the method for acquiring precise reference timing information of the present application.
  • the user equipment determines that the first random access message belongs to Two-step random access procedure.
  • the first random access message is message A in the two-step random access process
  • the second random access message is message B in the two-step random access process.
  • This embodiment includes:
  • S310 The user equipment in the disconnected state sends the message A in the two-step random access process to the base station.
  • Message A is a dedicated random access resource and payload transmission in a two-step random access type random access procedure.
  • Message A contains precise reference timing request information and dedicated random access resources.
  • the precise reference timing request information is the precise reference timing request field or auxiliary information in the first random access message.
  • the precise reference timing request field may be one or more bits. Different values of the precise reference timing request field are used to indicate whether there is precise reference timing request information, or the existence of the precise reference timing request field is used to indicate whether there is precise reference timing request information, such as when the precise reference timing request field appears. , then there is precise reference timing request information, otherwise, message A is a normal random access process and does not carry precise reference timing request information.
  • the auxiliary information of the precise reference timing request may be auxiliary information of the user equipment such as time-sensitive communication auxiliary information, which may include information such as time synchronization accuracy requirements of the precise reference timing.
  • the precise reference timing request may appear in various forms, which are not limited here.
  • S330 The base station sends the message B in the two-step random access process to the user equipment.
  • Message B is a response to message A in the two-step random access procedure, which may include a contention resolution response, a backoff indication, a backoff indication, and the like.
  • the base station receives the message A from the user equipment, and parses and obtains the precise reference timing request information.
  • the base station generates the precise reference timing information according to the precise reference timing request information, and packs the precise reference timing information and the RRC state transition message into a two-step random In the information B in the access process, the message B is sent to the user equipment.
  • S350 The user equipment acquires the precise reference timing information and the RRC state transition message from the message B.
  • the user equipment parses the information B, and obtains the precise reference timing information and the RRC state transition message.
  • the user equipment updates the local time synchronization information according to the precise reference timing information, and returns to the RRC idle state or the RRC inactive state in response to the RRC state transition message.
  • the user equipment in the disconnected state initiates a two-step random access to the base station and sends a message A to request to obtain the precise reference timing information, and the user equipment obtains the precise reference timing information in the message B, and updates the local time synchronization information and return to the disconnected state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 4 shows the third embodiment of the method for acquiring precise reference timing information of the present application.
  • the user equipment determines that the first random access message belongs to Two-step random access procedure.
  • the first random access message is message A in the two-step random access process
  • the second random access message is message B in the two-step random access process.
  • This embodiment includes:
  • S410 The user equipment in the disconnected state sends the message A in the two-step random access process to the base station.
  • S430 The base station sends the message B in the two-step random access process to the user equipment.
  • the base station receives the message A from the user equipment, and parses and obtains the precise reference timing request information.
  • the base station generates the precise reference timing information according to the precise reference timing request information, and packs the precise reference timing information into the information in the two-step random access process. B, and send message B to the user equipment.
  • S470 The user equipment sends message 3 in the four-step random access process to the base station.
  • the user equipment parses the information B to obtain accurate reference timing information.
  • the user equipment updates the local time synchronization information according to the precise reference timing information.
  • the RRC state transition request is packaged into the message 3, and the user equipment sends the message 3 in the four-step random access process to the base station to request to obtain the RRC state transition message.
  • S490 The base station sends message 4 in the four-step random access process to the user equipment.
  • the base station packs the RRC state transition message into message 4, and sends message 4 in the four-step random access process to the user equipment.
  • the user equipment returns to the RRC idle state or the RRC inactive state in response to the RRC state transition message.
  • the user equipment obtains the precise reference timing information and the RRC state transition request, respectively, updates the local time synchronization information, and returns to the disconnected state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 5 shows the fourth embodiment of the method for acquiring precise reference timing information of the present application.
  • the user equipment determines that the first random access message belongs to Two-step random access procedure.
  • the first random access message is message A in the two-step random access process
  • the second random access message is message B in the two-step random access process.
  • This embodiment includes:
  • S510 The user equipment in the disconnected state sends the message A in the two-step random access process to the base station.
  • S530 The base station sends the message B in the two-step random access process to the user equipment.
  • Message B contains precise reference timing information and RRC state transition messages.
  • S550 The user equipment cannot obtain accurate reference timing information from information B.
  • the user equipment re-initiates the two-step random access procedure to the base station to obtain precise reference timing information, that is, step S510 is performed again.
  • step S510 is performed again.
  • the user equipment initiates a four-step random access procedure to the base station to acquire precise reference timing information, that is, step S570 is performed.
  • step S570 After the user equipment backs off the corresponding duration according to the BI instruction, it re-initiates the four-step random access procedure to the base station, or switches to the precise reference timing acquisition method based on four-step random access, that is, step S570 is performed.
  • the user equipment counts the execution times of the two-step random access procedure. If the execution times are less than a preset threshold, the user equipment re-initiates the two-step random access procedure to obtain accurate reference timing information, ie, step S510 is performed again. Otherwise, the four-step random access procedure is re-initiated to the base station, or the method for acquiring precise reference timing based on four-step random access is switched, that is, step S570 is performed.
  • the user equipment continuously performs accurate reference timing acquisition based on two-step or four-step random access, and stops performing random access until the accurate reference timing information is successfully acquired, or when the number of times of performing random access is greater than or equal to a preset threshold. After that, stop performing accurate reference timing acquisition based on random access.
  • S570 The user equipment sends message 3 in the four-step random access process to the base station.
  • the message 3 includes the precise reference timing failure information or the precise reference timing request information, and the user equipment sends the message 3 in the four-step random access procedure to the base station to re-request the precise reference timing.
  • S590 The base station sends message 4 in the four-step random access process to the user equipment.
  • the base station receives the message 3 from the user equipment, and parses and obtains the precise reference timing failure information or the precise reference timing request information.
  • the base station generates the precise reference timing information according to the precise reference timing request information, and combines the precise reference timing information with the RRC state transition message. Packed and put into the message 4 in the four-step random access process, and the message 4 is sent to the user equipment.
  • step S570 if the user equipment parses the information 4, but cannot obtain the precise reference timing information from the information 4, the user equipment re-initiates the four-step random access procedure to the base station to obtain the precise reference timing information, that is, step S570 is performed again.
  • the user equipment parses the information 4 to obtain precise reference timing information and an RRC state transition message.
  • the user equipment updates the local time synchronization information according to the precise reference timing information, and returns to the RRC idle state or the RRC inactive state in response to the RRC state transition message.
  • the user equipment after the two-step random access fails to obtain the precise reference timing information, the user equipment re-initiates the two-step random access or combines the four-step random access, updates the local time synchronization information, and returns to the disconnected state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 6 shows the fifth embodiment of the method for acquiring precise reference timing information of the present application.
  • the user equipment determines that the first random access message belongs to Four-step random access procedure.
  • the first random access message is message 1 in the four-step random access procedure
  • the second random access message is message 2 in the four-step random access procedure.
  • This embodiment includes:
  • S610 The user equipment in the disconnected state sends message 1 in the four-step random access process to the base station.
  • Message 1 includes precise reference timing request information and dedicated random access resources.
  • S630 The base station sends message 2 in the four-step random access process to the user equipment.
  • Message 2 is a random access response message, used to respond to the user equipment indicating that the random access is successful.
  • Message 2 includes precise reference timing information.
  • S650 The user equipment sends message 3 in the four-step random access process to the base station.
  • the user equipment parses the information 2, obtains precise reference timing information, and updates the local time synchronization information. Pack the precise reference timing confirmation message into message 3 in the four-step random access procedure and send message 3 to the base station.
  • the user equipment if the user equipment fails to obtain precise reference timing information or fails to update local time synchronization information, the user equipment packages the precise reference timing failure information into message 3 in the four-step random access process and sends message 3 to the base station.
  • the precise reference timing failure information and the precise reference timing confirmation message may be mandatory first fields, and different values of the first field are used to represent the precise reference timing failure information or the precise reference timing confirmation message; the precise reference timing failure
  • the information and precise reference timing confirmation message can also be an optional second field. The presence or absence of the second field is used to indicate the precise reference timing failure information or the precise reference timing confirmation message.
  • there is precise reference timing confirmation information in message 3. Indicates that the accurate reference timing information is obtained successfully, otherwise, the accurate reference timing information is obtained successfully and fails.
  • the precise reference timing request information is used to indicate that the user equipment fails to obtain the precise reference timing information, and the base station is requested to re-send the precise reference timing information in the information 4 .
  • the specific expression form is not limited here.
  • S670 The base station sends message 4 in the four-step random access process to the user equipment.
  • the base station parses the message 3.
  • the base station packages the RRC state transition message into the information 4 in the four-step random access process and sends the message 4 to the user equipment.
  • the user equipment parses the information 4, and obtains the RRC state transition message. The user returns to the RRC idle state or the RRC inactive state in response to the RRC state transition message.
  • the base station When the base station analyzes and obtains the precise reference timing failure information, it packages the precise reference timing information and the RRC state transition message together into information 4 in the four-step random access process, and sends message 4 to the user equipment.
  • the user equipment parses the information 4, and obtains the precise reference timing information and the RRC state transition message.
  • the user equipment updates the local time synchronization information according to the precise reference timing information, and returns to the RRC idle state or the RRC inactive state in response to the RRC state transition message.
  • the user equipment in the disconnected state initiates a four-step random access to the base station and sends a message 1 to request to obtain the precise reference timing information, and considers the failure to obtain the precise reference timing information, the user equipment obtains the precise reference timing information, updates Local time synchronization information and restore to disconnected state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 7 shows the sixth embodiment of the method for acquiring precise reference timing information of the present application.
  • the user equipment determines that the first random access message belongs to Four-step random access procedure.
  • the first random access message is message 3 in the four-step random access procedure
  • the second random access message is message 4 in the four-step random access procedure.
  • This embodiment includes:
  • S710 The user equipment in the disconnected state sends message 1 in the four-step random access process to the base station.
  • Message 1 includes precise reference timing request related information and dedicated random access resources.
  • the information related to the precise reference timing request includes information such as the precise reference timing assistance information and the size of the resources occupied by the precise reference timing.
  • the information related to the precise reference timing request will be notified to the base station, and the user equipment will send the precise reference timing request information in message 3.
  • S730 The base station sends message 2 in the four-step random access process to the user equipment.
  • Message 2 includes an uplink grant allocated for the precise reference timing request information.
  • the uplink grant is used to notify the user and the device to send precise reference timing request information to the base station.
  • S750 The user equipment sends message 3 in the four-step random access process to the base station.
  • Message 3 includes precise reference timing request information.
  • S770 The base station sends message 4 in the four-step random access process to the user equipment.
  • Message 4 includes precise reference timing information and RRC state transition messages.
  • the user equipment parses the information 4 to obtain precise reference timing information and an RRC state transition message.
  • the user equipment updates the local time synchronization information according to the precise reference timing information, and returns to the RRC idle state or the RRC inactive state in response to the RRC state transition message.
  • step S710 if the user equipment parses the information 4 and fails to obtain the precise reference timing information or fails to update the local time synchronization information, the user equipment re-initiates the four-step random access procedure to obtain the precise reference timing information, that is, step S710 is performed again.
  • the user equipment parses the information 4, fails to obtain the precise reference timing information or fails to update the local time synchronization information, and the user equipment backs off the corresponding duration according to the BI instruction and re-initiates the four-step random access procedure to obtain the precise reference timing. information, that is, step S710 is performed again.
  • the user equipment in the disconnected state initiates a four-step random access to the base station and sends a message 3 to request to obtain the precise reference timing information, and considers the failure to obtain the accurate reference timing information, the user equipment obtains the precise reference in the message 4.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 8 is a seventh embodiment of a method for obtaining precise reference timing information of the present application, which includes:
  • S810 The base station receives the first random access message from the user equipment in the disconnected state.
  • S830 The base station generates corresponding precise reference timing information according to the precise reference timing request information.
  • the base station sends a second random access message including precise reference timing information to the user equipment, and controls the user equipment to return to a disconnected state.
  • the base station sends precise reference timing information to the user equipment by receiving the random access initiated by the user equipment and receiving the first random access message, so that the user equipment updates the local time synchronization information and returns to the disconnected state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • FIG. 9 is the eighth embodiment of the method for obtaining accurate reference timing information of the present application, and the embodiment includes:
  • S910 The user equipment in the disconnected state sends a first random access message to the base station.
  • S930 The base station generates corresponding precise reference timing information according to the precise reference timing request information.
  • the base station sends a second random access message including precise reference timing information to the user equipment.
  • S970 The user equipment acquires precise reference timing information, and returns to the disconnected state.
  • the user equipment in the disconnected state initiates random access to the base station and sends a first random access message, the base station user equipment sends precise reference timing information, the user equipment updates the local time synchronization information and restores to disconnection state.
  • the user equipment in the disconnected state can obtain accurate reference timing information in time without entering the connected state, so as to ensure that high-precision time synchronization and low delay of time-sensitive communication services can be guaranteed.
  • the first embodiment of the communication device of the present application includes: a processor 110 and a memory 120 .
  • the processor 110 controls the operation of the communication device, and the processor 110 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 110 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 110 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Memory 120 stores instructions and data required for processor 110 to operate.
  • the processor 110 is configured to execute an instruction to implement the method provided by the first embodiment of the method for obtaining precise reference timing information of the present application, the possible combination of steps performed by the user equipment in the second to sixth embodiments, and the eighth embodiment.
  • the second embodiment of the communication device of the present application includes: a processor 210 and a memory 220 .
  • the processor 210 controls the operation of the communication device, and the processor 210 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 210 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 210 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Memory 220 stores instructions and data required for processor 210 to operate.
  • the processor 210 is configured to execute instructions to implement the steps performed by the base station in the second to sixth embodiments of the method for obtaining precise reference timing information of the present application, the steps performed by the base station in the eighth embodiment, and the methods provided by the seventh embodiment and possible combinations.
  • the present application provides a communication system, which includes: user equipment and a base station.
  • the user equipment is the user equipment in the first embodiment of the communication device of the present application, and is used to implement the steps performed by the user equipment in the first embodiment, the second to sixth embodiments, and the eighth embodiment of the method for obtaining accurate reference timing information of the present application possible combinations of the provided methods.
  • the base station is the base station in the second embodiment of the communication device of the present application, and is used to implement the second to sixth embodiments of the accurate reference timing information acquisition method of the present application, the steps performed by the base station in the eighth embodiment, and the seventh embodiment and possible Combining the provided methods.
  • an embodiment of the readable storage medium of the present application includes a memory 310, and the memory 310 stores an instruction.
  • the instruction When the instruction is executed, the information provided by any embodiment and possible combination of the accurate reference timing information acquisition method of the present application is implemented. method.
  • the memory 310 may include a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a flash memory (Flash Memory), a hard disk, an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • flash Memory flash memory
  • the disclosed method and apparatus may be implemented in other manners.
  • the device implementations described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种精确参考定时信息获取方法,该方法包括:处于非连接态的用户设备向基站发送第一随机接入消息,第一随机接入消息包括精确参考定时请求信息,非连接态包括无线资源控制RRC空闲态或RRC非激活态;用户设备接收来自于基站的第二随机接入消息,从中获取精确参考定时信息,并恢复到非连接态。本申请还公开了一种通信设备和可读存储介质。

Description

精确参考定时信息获取方法、通信设备及可读存储介质 【技术领域】
本申请涉及通信领域,特别是涉及一种精确参考定时信息获取方法、通信设备及可读存储介质。
【背景技术】
时间敏感网络(TSN,Time Sensitive Network)是由电气与电子工程师协会(IEEE)开发的一组标准(IEEE 802.1Q TSN标准),用于定义有线以太网上对时间敏感的数据的传输以及精确定时参考(IEEE 802.3Ethernet标准)。精确参考时间来自被称为“Grand Master”的中央时钟源,并基于精确时间协议(PTP,Precision Time Protocol,IEEE 1588精确时间协议)在节点之间通过一系列中继进行分发。
通常情况下,用户设备(UE)可以达到的时间同步精度取决于基站(例如gNB)与UE之间的最大距离。随着站间距(ISD,Inter-Site-Distance)的增加,UE可达到的精度会变差。在此基础上,对5G系统中的精确参考定时交付和传播时延测量及补偿进行研究。
【发明内容】
本申请主要解决的技术问题是提供一种精确参考定时信息获取方法、通信设备及可读存储介质,能够解决现有技术中处于非连接态的用户设备无法获取精准参考定时信息的问题。
为了解决上述技术问题,本申请第一方面提供了一种精确参考定时信息获取方法,该方法包括:处于非连接态的用户设备向基站发送第一随机接入消息,第一随机接入消息包括精确参考定时请求信息,非连接态包括无线资源控制RRC空闲态或RRC非激活态;用户设备接收来自于基站的第二随机接入消息,从中获取精确参考定时信息,并恢复到非连接态。
为了解决上述技术问题,本申请第二方面提供了一种精确参考定时信息获取方法,该方法包括:基站接收来自于处于非连接态的用户设备的第一随机接 入消息,第一随机接入消息包括精确参考定时请求信息,非连接态包括无线资源控制RRC空闲态或RRC非激活态;基站根据精确参考定时请求信息生成对应的精确参考定时信息;基站向用户设备发送包含精确参考定时信息的第二随机接入消息,并控制用户设备恢复到非连接态。
为了解决上述技术问题,本申请第三方面提供了一种精确参考定时信息获取方法,该方法包括:处于非连接态的用户设备向基站发送第一随机接入消息,第一随机接入消息包括精确参考定时请求信息,非连接态包括无线资源控制RRC空闲态或RRC非激活态;基站根据精确参考定时请求信息生成对应的精确参考定时信息;基站向用户设备发送包含精确参考定时信息的第二随机接入消息;用户设备获取精确参考定时信息,并恢复到非连接态。
为了解决上述技术问题,本申请第一方面提供了一种通信系统,包括用户设备和基站,用户设备用于向基站发送第一随机接入消息,第一随机接入消息包括精确参考定时请求信息,非连接态包括无线资源控制RRC空闲态或RRC非激活态;基站用于根据精确参考定时请求信息生成对应的精确参考定时信息;基站用于向用户设备发送包含精确参考定时信息的第二随机接入消息用户设备用于获取精确参考定时信息,并恢复到非连接态。
为了解决上述技术问题,本申请第一方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第一方面所提供的精确参考定时信息获取方法。
为了解决上述技术问题,本申请第二方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第二方面所提供的精确参考定时信息获取方法。
为了解决上述技术问题,本申请提供了一种可读存储介质,存储有指令,指令被执行时实现前述的方法。
本申请的有益效果是:本申请通过将处于非连接态的用户设备向基站发起随机接入并发送第一随机接入消息以请求获取精确参考定时信息,用户设备获取精确参考定时信息,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请无线通信系统或网络一实施方式的结构示意图;
图2是本申请精确参考定时信息获取方法第一实施例的流程示意图;
图3是本申请精确参考定时信息获取方法第二实施例的流程示意图;
图4是本申请精确参考定时信息获取方法第三实施例的流程示意图;
图5是本申请精确参考定时信息获取方法第四实施例的流程示意图
图6是本申请精确参考定时信息获取方法第五实施例的流程示意图;
图7是本申请精确参考定时信息获取方法第六实施例的流程示意图;
图8是本申请精确参考定时信息获取方法第七实施例的流程示意图;
图9是本申请精确参考定时信息获取方法第八实施例的流程示意图;
图10是本申请通信设备第一实施例的结构示意图;
图11是本申请通信设备第二实施例的结构示意图;
图12是本申请可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,以下各实施例中不冲突的可以相互结合。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的“用户设备”可以包括或代表用于通信的任何便携式计算设备。在所描述的设备,方法和系统的某些实施例中可使用的用户设备的示例可以是有线或无线设备,例如移动设备,移动电话,终端,智能电话,便携式计算设备,诸如膝上型电脑,手持设备,平板,平板电脑,上网本,个人数字助理,音乐播放器以及能够进行有线或无线通信的其他计算设备。另外,用户设备还可以为能力降低(Reduced Capability)用户设备。
图1是包括核心网102(或电信基础设施),具有服务于多个无线通信单元108a-108e(例如UE)的小区106a-106m的多个网络节点104a-104m(例如基站gNB)的无线通信系统或网络100的示意图。多个网络节点104a-104m通过链路连接到核心网102。这些链路可以是有线或无线的(例如无线电通信链接、光纤等)。核心网102可包括多个核心网络节点,网络实体,应用服务器或可以与包括多个网络节点104a-104m的一个或多个无线接入网络进行通信的任何其他网络或计算设备。
在本示例中,网络节点104a-104m被示意为基站,例如但不限于,其在5G网络中可以是gNB。多个网络节点104a-104m(例如,基站)中的每个都具有足迹(footprint),为简化且例如但不限于,其在图1中示意性地表示用于服务于一个或多个UE 108a-108e的对应的圆形小区106a-106m。UE 108a-108e能够从无线通信系统100接收服务,例如声音、视频、音频或其他通信服务。
无线通信系统或网络100可以包括或代表用于UE 108a-108e与其他设备、内容源或连接无线通信系统或网络100的服务器之间的通信的任意一个或多个通信网络。核心网102也可以包括或代表链接,耦接或连接以形成无线通信系统或网络100的一个或多个通信网络,一个或多个网络节点,实体,元素,应用程序服务器,服务器,基站或其他网络设备。网络节点之间的链接或耦接可以是有线或无线的(例如无线电通信链接、光纤等)。该无线通信系统或网络100以及核心网102可以包括包含网络节点或实体的核心网络和无线接入网络的任何适当组合,基站,接入点等,其使得UE 108a-108e、无线通信系统100和核心网102的网络节点104a-104m、内容源和/或连接到系统或网络100的其他设备之间能够通信。
可在所描述的设备,方法和系统一些实施例中使用的无线通信网络100的示例可以是至少一个通信网络或其组合,包括但不限于,一个或多个有线和/或无线电信网络,一个或多个核心网,一个或多个无线接入网络,一个或多个计算机网络,一个或多个数据通信网络,互联网,电话网络,无线网络,例如基于仅作为示例的IEEE802.11标准的WiMAX、WLAN和/或Wi-Fi网络,或互联网协议(Internet Protocol,IP)网络,分组交换网络或增强型分组交换网络,IP多媒体子系统(IP Multimedia Subsystem,IMS)网络或基于无线、蜂窝或卫星技术的通信网络,诸如移动网络,全球移动通信系统(Global System for Mobile Communications,GSM),GPRS网络,宽带码分多址接入(Wideband Code Division  Multiple Access,W-CDMA),CDMA2000或LTE/高级LTE通信网络或任何第二代,第三代,第四代或第五代和超越类型的通信网络等。
在图1的示例中,该无线通信系统100可以是,仅作为示例但不限于,使用下行链路和上行链路信道的循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)技术的5G通信网络。下行链路可以包括用于将数据从一个或多个gNB 104a-104m传输到一个或多个UE108a-108e的一个或多个通信信道。通常下行链路信道是用于传输数据的通信信道,例如,从gNB 104a到UE 108a。
用于5G网络的上行链路和下行链路均被分成无线帧(例如,每个帧可以是10ms的长度),其中每个帧可以被分成多个子帧。例如,每个帧可以包括10个长度相等的子帧,其中每个子帧由用于传输数据的多个时隙(例如2个时隙)组成。除了时隙之外,子帧可以包括若干额外的特殊字段或OFDM符号,其可包括,仅作为示例,下行链路同步符号,广播符号和/或上行链路参考符号。
如图2所示,图2是本申请精确参考定时信息获取方法第一实施例,本实施方式包括:
S210:处于非连接态的用户设备向基站发送第一随机接入消息。
无线资源控制RRC非连接态包括无线资源控制RRC空闲态(即RRC_IDLE态)和无线资源控制RRC非激活态(即RRC_INACTIVE态),处于非连接态的用户设备向基站发起随机接入,并向基站发送第一随机接入消息,第一随机接入消息包括精确参考定时请求信息,以请求基站发送精准参考定时信息。
S230:用户设备接收来自于基站的第二随机接入消息,从中获取精确参考定时信息,并恢复到非连接态。
用户设备接收来自于基站的第二随机接入消息并解析第二随机接入信息,获取精准参考定时信息。用户设备根据精确参考定时信息更新本地时间同步信息,并响应RRC状态转换消息从无线资源控制RRC连接态恢复到无线资源控制RRC非连接态。RRC状态转换消息是指示用户设备进行状态转换的消息。当用户设备原本处于RRC_IDLE态时,RRC状态转换消息可以为RRCConnectionRelease,以控制用户设备恢复到RRC_IDLE态;当用户设备原本处于RRC_INACTIVE态时,RRC状态转换消息可以为RRCConnectionSuspend,以控制用户设备恢复到RRC_INACTIVE态。
该实施方式中,通过将处于非连接态的用户设备向基站发起随机接入并发 送第一随机接入消息以请求获取精确参考定时信息,用户设备在第二随机接入消息中获取精确参考定时信息,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
当处于非连接状态的用户设备需要获取精确参考定时信息时,向基站发起的第一随机接入消息可以为两步随机接入过程或四步随机接入过程。因此,在用户设备向基站发起随机接入之前,需要根据系统状态确定第一随机接入消息属于两步随机接入过程或四步随机接入过程。系统状态包括参考信号接收功率、信号强度、信号功耗等。在一实施方式中,根据参考信号接收功率选择随机接入过程。当参考信号接收功率大于预设门限时,第一随机接入消息选择两步随机接入过程,当参考信号接收功率小于或等于预设门限时,第一随机接入消息选择四步随机接入过程。
用户设备根据随机接入信息的类型为第一随机接入消息选择精确参考定时信息专用的随机接入资源。专用的随机接入资源可以为专用的随机接入机会或随机接入导频其中一种,也可以为专用的随机接入机会和随机接入导频两种。
如图3所示,图3是本申请精确参考定时信息获取方法第二实施例,是在本申请精确参考定时信息获取方法第一实施例的基础上,用户设备确定第一随机接入消息属于两步随机接入过程。第一随机接入消息为两步随机接入过程中的消息A,第二随机接入消息为两步随机接入过程中的消息B。本实施方式包括:
S310:处于非连接态的用户设备向基站发送两步随机接入过程中的消息A。
消息A是两步随机接入类型的随机接入过程中的专用的随机接入资源和有效载荷传输。消息A中包含精准参考定时请求信息和专用的随机接入资源。精确参考定时请求信息为第一随机接入消息中的精确参考定时请求字段或辅助信息。精确参考定时请求字段可以为一个或多个比特。精确参考定时请求字段的不同取值用于表示是否存在精确参考定时请求信息,或者精确参考定时请求字段的存在与否用于表示是否存在精确参考定时请求信息,如当精确参考定时请求字段出现时,则存在精确参考定时请求信息,否则,消息A为正常的随机接入过程,不携带有精确参考定时请求信息。精确参考定时请求辅助信息可以为时间敏感通信辅助信息等用户设备的辅助信息,其中可以包括精确参考定时的时间同步精度要求等信息。而精确参考定时请求可以以多种形式出现,在此处不做限定。
S330:基站向用户设备发送两步随机接入过程中的消息B。
消息B是两步随机接入过程中的对消息A的响应,其可以包括竞争解决的响应、回退指示和退避指示等。基站收到来自用户设备的消息A,并解析获取精准参考定时请求信息,基站根据精确参考定时请求信息生成精确参考定时信息,并将精确参考定时信息和RRC状态转换消息一起打包放入两步随机接入过程中的信息B中,并向用户设备发送消息B。
S350:用户设备从消息B中获取精确参考定时信息和RRC状态转换消息。
用户设备解析信息B,获取精确参考定时信息和RRC状态转换消息。用户设备根据精确参考定时信息更新本地时间同步信息,并响应RRC状态转换消息恢复到无线资源控制RRC空闲态或RRC非激活态。
该实施方式中,通过将处于非连接态的用户设备向基站发起两步随机接入并发送消息A以请求获取精确参考定时信息,用户设备在消息B中获取精确参考定时信息,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图4所示,图4是本申请精确参考定时信息获取方法第三实施例,是在本申请精确参考定时信息获取方法第一实施例的基础上,用户设备确定第一随机接入消息属于两步随机接入过程。第一随机接入消息为两步随机接入过程中的消息A,第二随机接入消息为两步随机接入过程中的消息B。本实施方式包括:
S410:处于非连接态的用户设备向基站发送两步随机接入过程中的消息A。
S430:基站向用户设备发送两步随机接入过程中的消息B。
基站收到来自用户设备的消息A,并解析获取精准参考定时请求信息,基站根据精确参考定时请求信息生成精确参考定时信息,并将精确参考定时信息打包放入两步随机接入过程中的信息B中,并向用户设备发送消息B。
S470:用户设备向基站发送四步随机接入过程中的消息3。
用户设备解析信息B,获取精确参考定时信息。用户设备根据精确参考定时信息更新本地时间同步信息。将RRC状态转换请求打包放入信息3中,用户设备向基站发送四步随机接入过程中的消息3以请求获取RRC状态转换消息。
S490:基站向用户设备发送四步随机接入过程中的消息4。
基站将RRC状态转换消息打包放入信息4中,并向用户设备发送四步随机接入过程中的消息4。
用户设备响应RRC状态转换消息恢复到无线资源控制RRC空闲态或RRC非激活态。
该实施方式中,结合两步随机接入和四步随机接入,用户设备分别获取精确参考定时信息和RRC状态转换请求,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图5所示,图5是本申请精确参考定时信息获取方法第四实施例,是在本申请精确参考定时信息获取方法第一实施例的基础上,用户设备确定第一随机接入消息属于两步随机接入过程。第一随机接入消息为两步随机接入过程中的消息A,第二随机接入消息为两步随机接入过程中的消息B。本实施方式包括:
S510:处于非连接态的用户设备向基站发送两步随机接入过程中的消息A。
S530:基站向用户设备发送两步随机接入过程中的消息B。
消息B包含精确参考定时信息和RRC状态转换消息。
S550:用户设备无法从信息B中获取精确参考定时信息。
在一实施方式中,用户设备重新向基站发起两步随机接入过程以获取精确参考定时信息,即再次执行步骤S510。
在一实施方式中,用户设备根据BI指示退避相应的持续时间后,重新向基站发起两步随机接入过程以获取精确参考定时信息,即再次执行步骤S510。
在一实施方式中,用户设备向基站发起四步随机接入过程以获取精确参考定时信息,即执行步骤S570。
在一实施方式中,用户设备根据BI指示退避相应的持续时间后,重新向基站发起四步随机接入过程,或转为基于四步随机接入的精确参考定时获取方法,即执行步骤S570。
在一实施方式中,用户设备统计两步随机接入过程的执行次数,若执行次数小于预设阈值,则重新发起两步随机接入过程以获取精确参考定时信息,即再次执行步骤S510。否则,重新向基站发起四步随机接入过程,或转为基于四步随机接入的精确参考定时获取方法,即执行步骤S570。
可选择地,用户设备连续执行基于两步或四步随机接入的精确参考定时获取,直到成功获取精确参考定时信息后停止执行随机接入,或当执行随机接入次数大于或等于预设阈值后停止执行基于随机接入的精确参考定时获取。
S570:用户设备向基站发送四步随机接入过程中的消息3。
消息3包括精确参考定时失败信息或精确参考定时请求信息,用户设备向基站发送四步随机接入过程中的消息3以重新进行精确参考定时请求。
S590:基站向用户设备发送四步随机接入过程中的消息4。
基站收到来自用户设备的消息3,并解析获取精确参考定时失败信息或精确参考定时请求信息,基站根据精确参考定时请求信息生成精确参考定时信息,并将精确参考定时信息和RRC状态转换消息一起打包放入四步随机接入过程中的信息4中,并向用户设备发送消息4。
在一实施方式中,用户设备解析信息4,但无法从信息4中获取精确参考定时信息,则用户设备重新向基站发起四步随机接入过程以获取精确参考定时信息,即再次执行步骤S570。
在一实施方式中,用户设备解析信息4,获取精确参考定时信息和RRC状态转换消息。用户设备根据精确参考定时信息更新本地时间同步信息,并响应RRC状态转换消息恢复到无线资源控制RRC空闲态或RRC非激活态。
该实施方式中,用户设备在两步随机接入获取精确参考定时信息失败后,重新发起两步随机接入或结合四步随机接入,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图6所示,图6是本申请精确参考定时信息获取方法第五实施例,是在本申请精确参考定时信息获取方法第一实施例的基础上,用户设备确定第一随机接入消息属于四步随机接入过程。第一随机接入消息为四步随机接入过程中的消息1,第二随机接入消息为四步随机接入过程中的消息2。本实施方式包括:
S610:处于非连接态的用户设备向基站发送四步随机接入过程中的消息1。
消息1包括精确参考定时请求信息和专用的随机接入资源。
S630:基站向用户设备发送四步随机接入过程中的消息2。
消息2是随机接入响应消息,用以响应用户设备表示随机接入成功。消息2包括精确参考定时信息。
S650:用户设备向基站发送四步随机接入过程中的消息3。
在一实施方式中,用户设备解析信息2,获取精确参考定时信息并更新本地时间同步信息。将精确参考定时确认消息打包放入四步随机接入过程中的消息3 并向基站发送消息3。
在一实施方式中,用户设备无法获取精确参考定时信息或更新本地时间同步信息失败,将精确参考定时失败信息打包放入四步随机接入过程中的消息3并向基站发送消息3。
可选择地,精确参考定时失败信息和精确参考定时确认消息可以是必选的第一字段,第一字段的不同取值用于表示精确参考定时失败信息或精确参考定时确认消息;精确参考定时失败信息和精确参考定时确认消息也可以是可选的第二字段,第二字段的存在与否用于表示精确参考定时失败信息或精确参考定时确认消息,如在信息3中存在精确参考定时确认信息表示精确参考定时信息获取成功,否则,精确参考定时信息获取成功失败。
可选择地,使用精确参考定时请求信息表示用户设备获取精确参考定时信息失败,并请求基站在信息4中重新发送精确参考定时信息。在此对具体的表现形式不做限定。
S670:基站向用户设备发送四步随机接入过程中的消息4。
基站解析消息3,当解析获取精确参考定时确认消息时,基站将RRC状态转换消息打包放入四步随机接入过程中的信息4中并向用户设备发送消息4。用户设备解析信息4,获取RRC状态转换消息。用户响应RRC状态转换消息恢复到无线资源控制RRC空闲态或RRC非激活态。
当基站解析获取精确参考定时失败信息时,将精确参考定时信息和RRC状态转换消息一起打包放入四步随机接入过程中的信息4中,并向用户设备发送消息4。用户设备解析信息4,获取精确参考定时信息和RRC状态转换消息。用户设备根据精确参考定时信息更新本地时间同步信息,并响应RRC状态转换消息恢复到无线资源控制RRC空闲态或RRC非激活态。
该实施方式中,通过将处于非连接态的用户设备向基站发起四步随机接入并发送消息1以请求获取精确参考定时信息,并考虑获取失败的情况,用户设备获取精确参考定时信息,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图7所示,图7是本申请精确参考定时信息获取方法第六实施例,是在本申请精确参考定时信息获取方法第一实施例的基础上,用户设备确定第一随机接入消息属于四步随机接入过程。第一随机接入消息为四步随机接入过程中 的消息3,第二随机接入消息为四步随机接入过程中的消息4。本实施方式包括:
S710:处于非连接态的用户设备向基站发送四步随机接入过程中的消息1。
消息1包括精确参考定时请求相关信息和专用的随机接入资源。精确参考定时请求相关信息包含精确参考定时辅助信息及其所占用资源大小等信息。该精确参考定时请求相关信息会通知基站,用户设备将在信息3中发送精确参考定时请求信息。
S730:基站向用户设备发送四步随机接入过程中的消息2。
消息2包括为精确参考定时请求信息分配的上行授权。该上行授权用以通知用和设备向基站发送精确参考定时请求信息。
S750:用户设备向基站发送四步随机接入过程中的消息3。
消息3包括精确参考定时请求信息。
S770:基站向用户设备发送四步随机接入过程中的消息4。
消息4包括精确参考定时信息和RRC状态转换消息。
在一实施方式中,用户设备解析信息4,获取精确参考定时信息和RRC状态转换消息。用户设备根据精确参考定时信息更新本地时间同步信息,并响应RRC状态转换消息恢复到无线资源控制RRC空闲态或RRC非激活态。
在一实施方式中,用户设备解析信息4,无法获取精确参考定时信息或更新本地时间同步信息失败,则重新发起四步随机接入过程以获取精确参考定时信息,即再次执行步骤S710。
在一实施方式中,用户设备解析信息4,无法获取精确参考定时信息或更新本地时间同步信息失败,用户设备根据BI指示退避相应的持续时间后重新发起四步随机接入过程以获取精确参考定时信息,即再次执行步骤S710。
该实施方式中,通过将处于非连接态的用户设备向基站发起四步随机接入并发送消息3以请求获取精确参考定时信息,并考虑获取失败的情况,用户设备在信息4中获取精确参考定时信息,更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图8所示,图8是本申请精确参考定时信息获取方法第七实施例,本实施方式包括:
S810:基站接收来自于处于非连接态的用户设备的第一随机接入消息。
S830:基站根据精确参考定时请求信息生成对应的精确参考定时信息。
S850:基站向用户设备发送包含精确参考定时信息的第二随机接入消息,并控制用户设备恢复到非连接态。
该实施方式中,基站通过接收用户设备向发起的随机接入并接收第一随机接入消息,向用户设备发送精确参考定时信息以使用户设备更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图9所示,图9是本申请精确参考定时信息获取方法第八实施例,本实施方式包括:
S910:处于非连接态的用户设备向基站发送第一随机接入消息。
S930:基站根据精确参考定时请求信息生成对应的精确参考定时信息。
S950:基站向用户设备发送包含精确参考定时信息的第二随机接入消息。
S970:用户设备获取精确参考定时信息,并恢复到所述非连接态。
该实施方式中,通过将处于非连接态的用户设备向基站发起随机接入并发送第一随机接入消息,基站用户设备发送精确参考定时信息,用户设备更新本地时间同步信息并恢复到非连接态。使得处于非连接态的用户设备能够不进入连接态的情况下及时获得精确参考定时信息,以确保时间敏感通信业务的高精度时间同步和低时延能够得到保障。
如图10所示,本申请通信设备第一实施例包括:处理器110和存储器120。
处理器110控制通信设备的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号序列的处理能力。处理器110还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器120存储处理器110工作所需要的指令和数据。
处理器110用于执行指令以实现本申请精确参考定时信息获取方法第一实施例及第二到第六实施例、第八实施例中用户设备执行的步骤可能的组合所提供的方法。
如图11所示,本申请通信设备第二实施例包括:处理器210和存储器220。
处理器210控制通信设备的操作,处理器210还可以称为CPU(Central Processing Unit,中央处理单元)。处理器210可能是一种集成电路芯片,具有信号序列的处理能力。处理器210还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器220存储处理器210工作所需要的指令和数据。
处理器210用于执行指令以实现本申请精确参考定时信息获取方法第二到第六实施例、第八实施例中基站执行的步骤及第七实施例及可能的组合所提供的方法。
请参阅图1,本申请提供一种通信系统,通信系统包括:用户设备和基站。
用户设备是本申请通信设备第一实施例中的用户设备,用于实现本申请精确参考定时信息获取方法第一实施例及第二到第六实施例、第八实施例中用户设备执行的步骤可能的组合所提供的方法。
基站是本申请通信设备第二实施例中的基站,用以实现本申请精确参考定时信息获取方法第二到第六实施例、第八实施例中基站执行的步骤及第七实施例及可能的组合所提供的方法。
如图12所示,本申请可读存储介质一实施例包括存储器310,存储器310存储有指令,该指令被执行时实现本申请精确参考定时信息获取方法任一实施例及可能的组合所提供的方法。
存储器310可以包括只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、闪存(Flash Memory)、硬盘、光盘等。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (37)

  1. 一种精确参考定时信息获取方法,其特征在于,所述方法包括:
    处于非连接态的用户设备向基站发送第一随机接入消息,所述第一随机接入消息包括精确参考定时请求信息,所述非连接态包括无线资源控制RRC空闲态或RRC非激活态;
    所述用户设备接收来自于所述基站的第二随机接入消息,从中获取精确参考定时信息,并恢复到所述非连接态。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一随机接入消息为两步随机接入过程中的消息A,所述第二随机接入消息为所述两步随机接入过程中的消息B。
  3. 根据权利要求2所述的方法,其特征在于,
    所述恢复到所述非连接态包括:
    所述用户设备从所述第二随机接入消息获取RRC状态转换消息;
    所述用户设备响应所述RRC状态转换消息恢复到所述非连接态。
  4. 根据权利要求2所述的方法,其特征在于,
    所述用户设备接收来自于所述基站的第二随机接入消息之后进一步包括:
    若所述用户设备无法从所述第二随机接入消息中获取所述精确参考定时信息,则向所述基站发送四步随机接入过程中的消息3,所述消息3包括精确参考定时失败信息或所述精确参考定时请求信息;
    接收来自于所述基站的所述四步随机接入过程中的消息4,所述消息4包括所述精确参考定时信息。
  5. 根据权利要求2所述的方法,其特征在于,
    所述用户设备接收来自于所述基站的第二随机接入消息之后进一步包括:
    若所述用户设备无法从所述第二随机接入消息中获取所述精确参考定时信息,则重新发起所述两步随机接入过程以获取所述精确参考定时信息。
  6. 根据权利要求2所述的方法,其特征在于,
    所述用户设备接收来自于所述基站的第二随机接入消息之后进一步包括:
    若所述用户设备无法从所述第二随机接入消息中获取所述精确参考定时信息,则统计所述两步随机接入过程的执行次数,若所述执行次数小于预设阈值,则重新发起所述两步随机接入过程以获取所述精确参考定时信息,否则向所述 基站发送四步随机接入过程中的消息3,所述消息3包括精确参考定时失败信息或所述精确参考定时请求信息;
    接收来自于所述基站的所述四步随机接入过程中的消息4,所述消息4包括所述精确参考定时信息。
  7. 根据权利要求1所述的方法,其特征在于,
    所述第一随机接入消息为四步随机接入过程中的消息1,所述第二随机接入消息为所述四步随机接入过程中的消息2;
    所述用户设备接收来自于所述基站的第二随机接入消息之后进一步包括:
    所述用户设备向所述基站发送所述四步随机接入过程中的消息3;
    所述用户设备接收来自于所述基站的所述四步随机接入过程中的消息4。
  8. 根据权利要求7所述的方法,其特征在于,
    若所述用户设备无法从所述第二随机接入消息中获取所述精确参考定时信息,则所述消息3包括精确参考定时失败信息或所述精确参考定时请求信息,所述消息4包括所述精确参考定时信息;
    若所述用户设备成功从所述第二随机接入消息中获取所述精确参考定时信息,则所述消息3包括精确参考定时确认消息。
  9. 根据权利要求8所述的方法,其特征在于,进一步包括:
    若所述用户设备无法从所述消息4中获取所述精确参考定时信息,则重新发起所述四步随机接入过程以获取所述精确参考定时信息。
  10. 根据权利要求7所述的方法,其特征在于,
    所述消息3包括必选的第一字段,所述第一字段的不同取值用于表示所述精确参考定时失败信息或精确参考定时确认消息;或
    所述消息3包括可选的第二字段,所述第二字段的存在与否用于表示所述精确参考定时失败信息或精确参考定时确认消息。
  11. 根据权利要求7所述的方法,其特征在于,
    所述恢复到所述非连接态包括:
    所述用户设备从所述消息4中获取RRC状态转换消息;
    所述用户设备响应所述RRC状态转换消息恢复到所述非连接态。
  12. 根据权利要求1所述的方法,其特征在于,
    所述第一随机接入消息为四步随机接入过程中的消息3,所述第二随机接入消息为所述四步随机接入过程中的消息4;
    所述处于非连接态的用户设备向基站发送第一随机接入消息之前进一步包括:
    所述用户设备向所述基站发送所述四步随机接入过程中的消息1;
    所述用户设备接收来自于所述基站的所述四步随机接入过程中的消息2。
  13. 根据权利要求12所述的方法,其特征在于,
    所述消息1包括精确参考定时请求相关信息和/或所述消息2包括为所述精确参考定时请求信息分配的上行授权。
  14. 根据权利要求12所述的方法,其特征在于,
    所述恢复到所述非连接态包括:
    所述用户设备从所述消息4获取RRC状态转换消息;
    所述用户设备响应所述RRC状态转换消息恢复到所述非连接态。
  15. 根据权利要求12所述的方法,其特征在于,进一步包括:
    若所述用户设备无法从所述第二随机接入消息中获取所述精确参考定时信息,则重新发起所述四步随机接入过程以获取所述精确参考定时信息。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,
    所述精确参考定时请求信息为所述第一随机接入消息中的精确参考定时请求字段或辅助信息。
  17. 根据权利要求16所述的方法,其特征在于,
    所述精确参考定时请求字段的不同取值用于表示是否存在所述精确参考定时请求信息,或所述精确参考定时请求字段的存在与否用于表示是否存在所述精确参考定时请求信息。
  18. 根据权利要求16所述的方法,其特征在于,
    所述辅助信息为时间敏感通信辅助信息。
  19. 根据权利要求1-15中任一项所述的方法,其特征在于,
    所述处于非连接态的用户设备向基站发送第一随机接入消息之前进一步包括:
    所述用户设备根据系统状态确定所述第一随机接入消息属于两步随机接入过程或四步随机接入过程。
  20. 根据权利要求1-15中任一项所述的方法,其特征在于,
    所述处于非连接态的用户设备向基站发送第一随机接入消息之前进一步包括:
    所述用户设备为所述第一随机接入消息选择精确参考定时信息专用的随机接入资源,所述专用的随机接入资源包括专用的随机接入机会和/或随机接入导频。
  21. 一种精确参考定时信息获取方法,其特征在于,所述方法包括:
    基站接收来自于处于非连接态的用户设备的第一随机接入消息,所述第一随机接入消息包括精确参考定时请求信息,所述非连接态包括无线资源控制RRC空闲态或RRC非激活态;
    所述基站根据所述精确参考定时请求信息生成对应的精确参考定时信息;
    所述基站向所述用户设备发送包含所述精确参考定时信息的第二随机接入消息,并控制所述用户设备恢复到所述非连接态。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第一随机接入消息为两步随机接入过程中的消息A,所述第二随机接入消息为所述两步随机接入过程中的消息B。
  23. 根据权利要求22所述的方法,其特征在于,
    所述第二随机接入消息包括RRC状态转换消息以控制所述用户设备恢复到所述非连接态。
  24. 根据权利要求22所述的方法,其特征在于,
    所述基站向所述用户设备发送包含所述精确参考定时信息的第二随机接入消息之后进一步包括:
    若所述基站收到来自于所述用户设备的四步随机接入过程中的消息3,所述消息3包括精确参考定时失败信息或所述精确参考定时请求信息;
    所述基站向所述用户设备发送所述四步随机接入过程中的消息4,所述消息4包括所述精确参考定时信息。
  25. 根据权利要求21所述的方法,其特征在于,
    所述第一随机接入消息为四步随机接入过程中的消息1,所述第二随机接入消息为所述四步随机接入过程中的消息2;
    所述基站向所述用户设备发送包含所述精确参考定时信息的第二随机接入消息之后进一步包括:
    所述基站接收来自于所述用户设备的所述四步随机接入过程中的消息3;
    所述基站向所述用户设备发送所述四步随机接入过程中的消息4。
  26. 根据权利要求25所述的方法,其特征在于,
    若所述消息3包括精确参考定时失败信息或所述精确参考定时请求信息,则所述消息4包括所述精确参考定时信息。
  27. 根据权利要求25所述的方法,其特征在于,
    所述消息4包括RRC状态转换消息,以控制所述用户设备恢复到所述非连接态。
  28. 根据权利要求21所述的方法,其特征在于,
    所述第一随机接入消息为四步随机接入过程中的消息3,所述第二随机接入消息为所述四步随机接入过程中的消息4;
    所述基站向所述用户设备发送包含所述精确参考定时信息的第二随机接入消息之前进一步包括:
    所述基站接收来自于所述用户设备的所述四步随机接入过程中的消息3;
    所述基站向所述用户设备发送所述四步随机接入过程中的消息4。
  29. 根据权利要求28所述的方法,其特征在于,
    所述消息1包括精确参考定时请求相关信息和/或所述消息2包括为所述精确参考定时请求信息分配的上行授权。
  30. 根据权利要求28所述的方法,其特征在于,
    所述消息4包括RRC状态转换消息,以控制所述用户设备恢复到所述非连接态。
  31. 根据权利要求21-30中任一项所述的方法,其特征在于,
    所述精确参考定时请求信息为所述第一随机接入消息中的精确参考定时请求字段或辅助信息。
  32. 根据权利要求21-30中任一项所述的方法,其特征在于,
    所述第一随机接入消息使用的随机接入资源为精确参考定时信息专用的随机接入资源,所述专用的随机接入资源包括专用的随机接入机会和/或随机接入导频。
  33. 一种精确参考定时信息获取方法,其特征在于,所述方法包括:
    处于非连接态的用户设备向基站发送第一随机接入消息,所述第一随机接入消息包括精确参考定时请求信息,所述非连接态包括无线资源控制RRC空闲态或RRC非激活态;
    所述基站根据所述精确参考定时请求信息生成对应的精确参考定时信息;
    所述基站向所述用户设备发送包含所述精确参考定时信息的第二随机接入 消息;
    所述用户设备获取精确参考定时信息,并恢复到所述非连接态。
  34. 一种通信系统,包括用户设备和基站,其特征在于,
    所述用户设备用于向基站发送第一随机接入消息,所述第一随机接入消息包括精确参考定时请求信息,所述非连接态包括无线资源控制RRC空闲态或RRC非激活态;
    所述基站用于根据所述精确参考定时请求信息生成对应的精确参考定时信息;
    所述基站用于向所述用户设备发送包含所述精确参考定时信息的第二随机接入消息;
    所述用户设备用于获取精确参考定时信息,并恢复到所述非连接态。
  35. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求1-20任一项所述的方法。
  36. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求21-32任一项所述的方法。
  37. 一种可读存储介质,存储有指令,其特征在于,所述指令被执行时实现如权利要求1-33任一项所述的方法。
PCT/CN2021/071871 2021-01-14 2021-01-14 精确参考定时信息获取方法、通信设备及可读存储介质 WO2022151221A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180091014.7A CN116868672A (zh) 2021-01-14 2021-01-14 精确参考定时信息获取方法、通信设备及可读存储介质
PCT/CN2021/071871 WO2022151221A1 (zh) 2021-01-14 2021-01-14 精确参考定时信息获取方法、通信设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071871 WO2022151221A1 (zh) 2021-01-14 2021-01-14 精确参考定时信息获取方法、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022151221A1 true WO2022151221A1 (zh) 2022-07-21

Family

ID=82447811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071871 WO2022151221A1 (zh) 2021-01-14 2021-01-14 精确参考定时信息获取方法、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116868672A (zh)
WO (1) WO2022151221A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716930A (zh) * 2014-09-26 2017-05-24 华为技术有限公司 利用可变持续时间参考信号来通信的设备、网络和方法
CN109756991A (zh) * 2017-11-06 2019-05-14 华为技术有限公司 通信方法及装置
CN109922440A (zh) * 2019-01-31 2019-06-21 维沃移动通信有限公司 数据同步方法、设备、移动终端和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716930A (zh) * 2014-09-26 2017-05-24 华为技术有限公司 利用可变持续时间参考信号来通信的设备、网络和方法
CN109756991A (zh) * 2017-11-06 2019-05-14 华为技术有限公司 通信方法及装置
CN109922440A (zh) * 2019-01-31 2019-06-21 维沃移动通信有限公司 数据同步方法、设备、移动终端和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "Data transmission in INACTIVE", 3GPP DRAFT; R2-167706 DATA TRANSMISSION IN RRC_INACTIVE, vol. RAN WG2, 4 November 2016 (2016-11-04), Reno, USA, pages 1 - 7, XP051192252 *

Also Published As

Publication number Publication date
CN116868672A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
US11770856B2 (en) Random access response method and device, base station and user equipment
US11979773B2 (en) Method and apparatus for multi-link data transmission, and storage medium
US11564271B2 (en) User equipment category signaling in an LTE-5G configuration
WO2021169775A1 (zh) 数据传输方法与设备
US10917834B2 (en) Method for transmitting system information and related devices
US20200374973A1 (en) Communication Method and Wireless Communications Apparatus
CN116321513A (zh) 用于执行随机接入信道进程的方法及其用户设备
EP3751955A1 (en) Method for activating packet data convergence protocol (pdcp) repetition mechanism and node device
US20210392612A1 (en) Method, device and terminal for location message transmission processing
WO2020259456A1 (zh) 数据包传输的方法和通信装置
JP6035622B2 (ja) ユーザデバイス間の直接通信のためのリソース割り当て方法及びデバイス
CN113972967B (zh) 辅助信息发送方法、接收方法、装置、终端及网络侧设备
TW201916653A (zh) 資訊指示方法、使用者設備及基地台
WO2020224648A1 (zh) 一种分配资源的方法、基站及终端
WO2022151221A1 (zh) 精确参考定时信息获取方法、通信设备及可读存储介质
WO2020030062A1 (zh) 一种通信方法及装置
US20220124778A1 (en) Method for Sidelink Implementation and Related Products
CN111162870B (zh) 控制数据传输的方法、装置、存储介质及终端和网络设备
JP7472265B2 (ja) 情報受信方法、情報送信方法、端末及びネットワーク機器
WO2020221237A1 (zh) 调整时域资源边界的方法和通信装置
RU2736782C1 (ru) Способ и устройство для передачи информации и сетевое устройство
WO2022152129A1 (zh) 上行数据发送增强流程的触发方法、装置及终端
WO2023169362A1 (zh) 一种寻呼方法及其装置
WO2022228322A1 (zh) 数据传输方法及装置、计算机可读存储介质
US20240137943A1 (en) Handling misalignment between arrival of critical data for transmission and transmission occasions of a configured grant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091014.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918429

Country of ref document: EP

Kind code of ref document: A1