WO2022151204A1 - Downlink control information alignment - Google Patents

Downlink control information alignment Download PDF

Info

Publication number
WO2022151204A1
WO2022151204A1 PCT/CN2021/071852 CN2021071852W WO2022151204A1 WO 2022151204 A1 WO2022151204 A1 WO 2022151204A1 CN 2021071852 W CN2021071852 W CN 2021071852W WO 2022151204 A1 WO2022151204 A1 WO 2022151204A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
type
size
dci format
rnti
Prior art date
Application number
PCT/CN2021/071852
Other languages
French (fr)
Inventor
Jing Shi
Peng Hao
Xing Liu
Xingguang WEI
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2021/071852 priority Critical patent/WO2022151204A1/en
Priority to CN202180069745.1A priority patent/CN116420406A/en
Publication of WO2022151204A1 publication Critical patent/WO2022151204A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This patent document is directed generally to wireless communications.
  • This patent document describes, among other things, techniques that allow the control information of unicast and/or multicast scheduling info is properly aligned so as to minimize additional decoding complexity on the receiving side.
  • a method for wireless communication includes configuring, by a base station, one or more control information formats.
  • the one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information.
  • the method also includes transmitting, by the base station, the configured control information to a terminal device.
  • a method for wireless communication includes monitoring, by a terminal device, one or more control information formats from a base station.
  • the one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information.
  • the method also includes performing, by the terminal device, a data transmission based on the configured control information.
  • a method for wireless communication includes configuring, by a base station, one or more control information formats.
  • the one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size the first type of control information.
  • the method also includes transmitting, by the base station, the configured control information to the terminal device.
  • a method for wireless communication includes monitoring, by a terminal device, one or more control information formats from a base station.
  • the one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size of the first type of control information.
  • the method also includes performing, by the terminal device, a data transmission based on the configured control information.
  • a communication apparatus in another example aspect, includes a processor that is configured to implement an above-described method.
  • a computer-program storage medium includes code stored thereon.
  • the code when executed by a processor, causes the processor to implement a described method.
  • FIG. 1A illustrates an example of unicast transmissions.
  • FIG. 1B illustrates an example of broadcast transmissions.
  • FIG. 1C illustrates an example of multicast transmissions.
  • FIG. 2A is a flowchart representation of a method for wireless communication in accordance with the present technology.
  • FIG. 2B is a flowchart representation of another method for wireless communication in accordance with the present technology.
  • FIG. 3A is a flowchart representation of another method for wireless communication in accordance with the present technology.
  • FIG. 3B is a flowchart representation of another method for wireless communication in accordance with the present technology.
  • FIG. 4 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
  • FIG. 5 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied.
  • Section headings are used in the present document only to improve readability and do not limit scope of the disclosed embodiments and techniques in each section to only that section. Certain features are described using the example of Fifth Generation (5G) wireless protocol. However, applicability of the disclosed techniques is not limited to only 5G wireless systems.
  • 5G Fifth Generation
  • Downlink Control Information is used to indicate how data is scheduled and transmitted on data channels, such as the Physical Downlink Shared Channel (PDSCH) .
  • DCI formats provide the User Equipment (UE) details about the number of resource blocks, resource allocation type, modulation scheme, transport block, redundancy version, coding rate etc. for data transmissions.
  • the UEs monitor the control channel (s) , such as the Physical Downlink Control Channel (PDCCH) , to decode the control information for facilitating subsequent transmissions.
  • s such as the Physical Downlink Control Channel (PDCCH)
  • the total number of different DCI sizes is no more than four for a cell, and the different DCI sizes scrambled using Cell RNTI (C-RNTI) is no more than three for the cell.
  • C-RNTI Cell RNTI
  • the size budget of other types of RNTI that is, non-C-RNTI
  • the size budget of C-RNTI is three.
  • Different DCI sizes scrambled using C-RNTI refer to the DCI formats with CRC scrambled by C-RNTI.
  • certain DCI formats are aligned so as to reduce the number of different sizes. Table 1 shows example steps of aligning DCI sizes, such as DCI formats 0_0, 1_0, 1_1, 0_2, and/or 1_2.
  • FIGS. 1A-1C illustrates examples of unicast (FIG. 1A) , broadcast (FIG. 1B) , and multicast (FIG. 1C) transmissions from base stations to terminal devices.
  • FIG. 1C network conditions can vary for different terminal devices or UEs.
  • UEs operating under similar network conditions can be classified into a same group.
  • the transmission mechanism for multicast transmissions can be selected to better match the network conditions of each UE group.
  • each UE in the group can detect control information that is specific to itself (e.g., using unicast transmission as shown in FIG. 1A) .
  • all the UEs in the group can detect the same multicast scheduling information that is common to the group.
  • additional information needs to be added to the DCI formats, which can result in changes of DCI sizes. Therefore, there is a need to introduce a consistent mechanism to align DCI formats that include unicast and/or multicast scheduling information while satisfying the size limitation.
  • This patent document discloses techniques that are applicable in various embodiments to ensure that the control information including unicast and/or multicast scheduling info is properly aligned so as to minimize additional decoding complexity on the receiving side.
  • FIG. 2A is a flowchart representation of a method for wireless communication in accordance with the present technology.
  • the method 200 includes, at operation 210, configuring, by a base station, one or more control information formats.
  • the one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information.
  • the method 200 also includes, at operation 220, transmitting, by the base station, the configured control information to a terminal device.
  • FIG. 2B is a flowchart representation of a method 250 for wireless communication in accordance with the present technology.
  • the method 250 includes, at operation 260, monitoring, by a terminal device, one or more control information formats from a base station.
  • the one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information.
  • the method 250 also includes, at operation 270, performing, by the terminal device, a data transmission with the base station based on the configured control information.
  • a size of frequency-domain resource allocation of the second type of control information is determined based on a common frequency resource.
  • the common frequency resource is configured by higher layer signaling. That is a signaling message on a layer that is higher than the physical layer (e.g., the RRC layer) .
  • the format of the first type of control information and the format of the second type of control information are same and bit fields of the first type of control information and bit fields of the second type of control information are same.
  • the rule specifies that a size of frequency-domain resource allocation of the second type of control information is based on a special control resource set or an initial bandwidth part instead of the common frequency resource.
  • the rule further specifies one of:(1) s size of frequency-domain resource allocation of the first type of control information in a user-equipment specific search space (USS) is determined based on a special control resource set or an initial bandwidth part before the size of frequency-domain resource allocation of the second type of control information is determined based on the special control resource set or the initial bandwidth part; (2) the size of frequency-domain resource allocation of the second type of control information is determined based on the special control resource set or the initial bandwidth part before the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the special control resource set or the initial bandwidth part; or (3) the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the second type and first type of control information is determined based on the special control resource set the initial bandwidth part.
  • USS user-equipment specific search space
  • the rule specifies that a size of frequency-domain resource allocation of the first type of control information is determined based on the common frequency resource. In some embodiments, the rule further specifies one of: (1) the size of frequency-domain resource allocation of the first type of control information in a user-equipment specific search space (USS) is determined based on a special control resource set or an initial bandwidth part before the size of frequency-domain resource allocation of the first type of control information in a USS and a common search space (CSS) is determined based on the common frequency resource; (2) the size of frequency-domain resource allocation of the second type of control information in the CSS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the first type of control information in the USS is based on the common frequency resource; or (3) the size of frequency-domain resource allocation of the first type of control information in the USS is based on the common frequency resource before the size of frequency-domain resource allocation of the second type of control information in the CSS is determined based on the common frequency resource.
  • USS user-e
  • FIG. 3A is a flowchart representation of a method 300 for wireless communication in accordance with the present technology.
  • the method 300 includes, at operation 310, configuring, by a base station, one or more control information formats.
  • the one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI, and wherein the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size the first type of control information.
  • the method 300 also includes, at operation 320, transmitting, by the base station, the configured control information to the terminal device.
  • FIG. 3B is a flowchart representation of a method 350 for wireless communication in accordance with the present technology.
  • the method 350 includes, at operation 360, monitoring, by a terminal device, one or more control information formats from a base station.
  • the one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI.
  • the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size of the first type of control information.
  • the method 350 also includes, at operation 370, performing, by the terminal device, a data transmission with the base station based on the configured control information.
  • a size of frequency-domain resource allocation of the second type of control information is determined based on a common frequency resource.
  • the format of the first type of control information and the format of the second type of control information are same and bit fields of the first type of control information and bit fields of the second type of control information are different.
  • the size of the second type of control information is different than the size of the first type of control information, and the size of the second type of control information is classified in a different category than the first type of control information for the size limitation requirement of the one or more control information formats.
  • the rule further specifies that the configured control information includes a single set of non-fallback formats.
  • the single set of the non-fallback formats comprise a Downlink Control Information (DCI) format 0_1 and a DCI format 1_1, or a DCI format 0_2 and a DCI format 1_2.
  • DCI Downlink Control Information
  • the size of the first type of control information and the size of the second type of control information is aligned to a reference size.
  • the format the first type of control information and the format the second type of control information are different, and the size of the first type of control information and the size of the second type of control information is aligned to a reference size.
  • the reference size is determined based on one of: a value configured by a high layer signaling; the size of the second type of the control information; or a maximum size of the first type of control information common to a group of terminal devices.
  • the DCI that carries multicast scheduling information can have a new format (e.g. DCI format 2_x) and/or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) .
  • the multicast DCI format has the same size of an existing DCI format (e.g., the fallback DCI format)
  • the same DCI format can be reused for multicast scheduling.
  • DCI format 1_0 with multicast scheduling info is aligned with the fallback DCI (e.g., DCI format 1_0) .
  • DCI format 1_1 is also used for scheduling multicast PDSCH, the DCI format 1_1 can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of alignment. This ensures that the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE side remains the same.
  • the DCI format 1_1 can be used with CRC scrambled by C-RNTI. This ensures that the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE side remains the same.
  • DCI format 1_0 and format 1_1 carried by a group common PDCCH can be scrambled by a group-common RNTI (e.g., Single Cell RNTI, SC-RNTI, or Group RNTI, G-RNTI) to carry multicast scheduling information.
  • DCI format 1_0 can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic.
  • QoS Quality of Service
  • low QoS MBS traffic is scheduled using DCI format 1_0 and high QoS MBS traffic is scheduled using both DCI format 1_0 and 1_1.
  • high QoS MBS traffic can be schedule suing DCI format 2_x, with similar alignment rules as DCI format 1_1.
  • the size of frequency-domain resource allocation of the DCI format 1_0/1_1/2_x used for scheduling MBS is determined based on a common frequency resource configured by a high layer signaling (e.g., RRC signaling) , and is subject to change according to the alignment rule.
  • a high layer signaling e.g., RRC signaling
  • Alignment of the DCI formats can be achieved using at least one of the following methods.
  • the fallback DCI format (s) e.g., DCI format (s) that carry unicast scheduling information or SIB/Paging/RAR
  • the DCI format including multicast scheduling information is aligned with the fallback DCI format (s) .
  • DCI format 1_0 can be reused for multicast scheduling and the size of frequency-domain resource allocation are determined based on the common frequency resource configured by a signaling message on a layer that is higher than the physical layer (e.g., the RRC layer) .
  • the base station can align the size of fallback DCI format 0_0/1_0 in UE specific Search Space (USS) to the size of fallback DCI format 0_0/1_0 in Common Search Space (CSS) first. Then the base station can determine multicast DCI format 1_0 with CRC scrambled by the group-common RNTI (e.g. SC/G-RNTI) based on a special control resource set (e.g., CORESET 0) or the initial downlink bandwidth part for frequency-domain resource allocation (FDRA) .
  • group-common RNTI e.g. SC/G-RNTI
  • FDRA frequency-domain resource allocation
  • the multicast DCI format 1_0 with CRC scrambled by the group-common RNTI (e.g., SC-RNTI or G-RNTI) is then aligned to the size of DCI format 0_0/1_0 in CSS, as shown in Steps 4A and 4X in Table 2 below. That is, the size of frequency-domain resource allocation of DCI format 0_0/1_0 in USS is determined based on a special control resource set (CORESET 0) or an initial bandwidth part before the size of frequency-domain resource allocation of multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI is determined based on the special control resource set (CORESET 0) or the initial bandwidth part.
  • CORESET 0 special control resource set
  • the DCI format including multicast scheduling information is first aligned with the DCI format in CSS, then the DCI format in USS is also aligned with the DCI format in CSS.
  • DCI format 1_0 is reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource.
  • DCI format 1_0 (for multicast) with CRC scrambled by the group-common RNTI e.g. SC/G-RNTI
  • the size of frequency-domain resource allocation of DCI format 1_0 with CRC scrambled by SC/G-RNTI is determined based on the special control resource set (CORESET 0) or the initial bandwidth part before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 USS is determined based on the special control resource set (CORESET 0) or the initial bandwidth part.
  • the DCI format in CSS is aligned with the DCI format including multicast scheduling information
  • the DCI format in USS is also aligned with the multicast DCI format.
  • DCI format 1_0 can be reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource.
  • the base station can align the size of DCI format 0_0/1_0 in USS to the size of the multicast DCI format 1_0 based on the common frequency resource configured by a signaling message on a layer that is higher than the physical layer (e.g., the RRC layer) .
  • the base station can determine DCI format 1_0 (for multicast) with CRC scrambled by the group-common RNTI (e.g.
  • Step 4X and Step 4Y in Table 3 the DCI format 1_0 is then aligned to the size of DCI format 0_0/1_0 in CSS. That is, the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of DCI format 1_0 with CRC scrambled by SC/G-RNTI in CSS and DCI format 1_0 in CSS is determined based on the special control resource set (CORESET 0) or the initial bandwidth part.
  • CORESET 0 special control resource set
  • both DCI formats 1_0 and 1_1 are reused to schedule MBS PDSCH, while DCI formats 0_1, 1_1, 0_2, and/or 1_2 can be used to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 the DCI size limitation is not satisfied.
  • Step 4 one of the methods discussed above is used to align the multicast DCI format (s) .
  • the multicast DCI format 1_0 size can be determined based on CORESET 0/initial BWP.
  • the multicast DCI format 1_1 with CRC scrambled by SC/G-RNTI can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of alignment.
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2.
  • the fourth DCI size is multicast DCI format 1_1 with CRC scrambled by SC/G-RNTI. If format 2_0 or 2_1 is configured, then the size of the format 2_0 or 2_1 should be same as one of above four sizes.
  • the DCI that carries multicast scheduling information can have a new format (e.g., DCI format 2_x) and/or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) .
  • the multicast DCI format has the same size of an existing DCI format (e.g., the fallback DCI format)
  • the same DCI format can be reused for multicast scheduling.
  • DCI format 1_0 with multicast scheduling info is aligned with the fallback DCI (e.g., DCI format 1_0) .
  • DCI format 1_1/1_2 is also used for scheduling multicast PDSCH
  • the DCI format 1_1/1_2 with CRC scrambled by SC/G-RNTI can be aligned with same format 1_1/1_2 with CRC scrambled by C-RNTI.
  • the DCI format 2_x scrambled by SC/G-RNTI can be aligned with format 1_1/1_2 with CRC scrambled by C-RNTI. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
  • DCI format 1_0 and format 1_1/2_x carried by a group common PDCCH can be scrambled by a group-common RNTI (e.g., SC-RNTI or G-RNTI) to carry multicast scheduling information.
  • DCI format 1_0 can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic.
  • QoS Quality of Service
  • low QoS MBS traffic is scheduled using DCI format 1_0 and high QoS MBS traffic is scheduled using both DCI format 1_0 and 1_1.
  • high QoS MBS traffic can be schedule using DCI format 2_x, with similar alignment rules as DCI format 1_1.
  • the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
  • the size of frequency-domain resource allocation of the DCI format 1_0/1_1/1_2/2_x used for scheduling MBS is determined based on a common frequency resource configured by a high layer signaling (e.g., RRC signaling) .
  • the alignment rule can specify that a size of frequency-domain resource allocation of the fallback DCI format (s) is determined based on the common frequency resource of group-common DCI format (s) .
  • Alignment of the DCI formats can be achieved using at least one of the following methods.
  • the fallback DCI format (s) are aligned first, then the DCI format including multicast scheduling information is aligned with the fallback DCI format (s) .
  • DCI format 1_0 can be reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource.
  • the base station can align the size of DCI format 0_0/1_0 in USS to the size of DCI format 0_0/1_0 in CSS first. As shown in Steps 4A and 4X in Table 5, the size of the multicast DCI format 1_0 and the size of unicast DCI format 0_0/1_0 in CSS are aligned.
  • the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on a special control resource set (CORESET0) or an initial bandwidth part before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in CSS is determined based on the common frequency resource of the DCI format 1_0 with CRC scrambled by SC/G-RNTI.
  • CORESET0 special control resource set
  • an initial bandwidth part before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in CSS is determined based on the common frequency resource of the DCI format 1_0 with CRC scrambled by SC/G-RNTI.
  • the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 5 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
  • the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group.
  • the reference size is configured (e.g., using a Radio Resource Configuration, RRC, signaling message) .
  • RRC Radio Resource Configuration
  • the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE.
  • the reference size can also be the DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI. If DCI format 2_x is used, with similar alignment rules as DCI format 1_1 or 1_2.
  • the DCI format including multicast scheduling information is aligned.
  • Step 4X of Table 6 below DCI format 1_0 is reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource.
  • DCI format 1_0 (for multicast) with CRC scrambled by the group-common RNTI is aligned according to the size of DCI format 0_0/1_0 in CSS. That is, the size of frequency-domain resource allocation of DCI format 0_0/1_0 in CSS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on the common frequency resource.
  • the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 6 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
  • the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group.
  • the reference size can be preconfigured (e.g., using a Radio Resource Configuration signaling message) .
  • the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE.
  • the reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
  • the DCI format in CSS is aligned with the DCI format including multicast scheduling information
  • the DCI format in USS is also aligned with the multicast DCI format.
  • DCI format 1_0 can be reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource.
  • the base station can align the size of DCI format 0_0/1_0 in USS to the size of the multicast DCI format 1_0. Then, the base station can determine multicast DCI format 1_0 with CRC scrambled by the group-common RNTI based on common frequency resources for FDRA.
  • the multicast DCI format 1_0 is then aligned to the size of DCI format 0_0/1_0 in CSS. That is, the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 and the size of the DCI format 0_0/1_0 in CSS are aligned based on the common frequency resource.
  • Step 4B2 if needed, can be performed before or after Step 4B and/or 4C.
  • Step 4C2 if needed, can be performed before or after Step 4B and/or 4C.
  • the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group.
  • the reference size can be preconfigured (e.g., using a Radio Resource Configuration signaling message) .
  • the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE.
  • the reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
  • DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH.
  • DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 the DCI size limitation is not satisfied.
  • Step 4 one of the methods discussed above is used to align the multicast DCI format (s) .
  • the size of FDRA in DCI format 1_0 is determined by CORESET 0/initial BWP.
  • the size of DCI format 1_1 with CRC scrambled by SC/G-RNTI and DCI format 1_1 are aligned to a reference size (e.g., configured by RRC signaling) .
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2.
  • DCI format 2_0 is used for multicast scheduling, the multicast DCI format 2_0 is categorized as other RNTI for the purpose of alignment.
  • the DCI format 1_1 can instead be DCI format 1_2 and same mechanism can be used.
  • the DCI format 1_1 can instead be DCI format 2_x and same mechanism can be used in which the size of DCI format 2_x with CRC scrambled by SC/G-RNTI and DCI format 1_1 are aligned to a reference size, or the size of DCI format 2_x with CRC scrambled by SC/G-RNTI and DCI format 1_2 are aligned to a reference size.
  • the DCI that carries multicast scheduling information can have one or more new format (e.g., DCI format 1_0’ and/or format 2_x) or reuse one or more existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) .
  • one or more fields can be introduced in DCI format 1_0 for MBS scheduling information.
  • the multicast DCI with CRC scrambled by SC/G-RNTI can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of DCI size alignment.
  • the multicast DCI format 1_0 (or a new format) is considered to be one of the four different DCI sizes allowed for the cell. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
  • DCI format 1_0 is reused for multicast scheduling info but has different number of bits or different bit fields as the fallback DCI format.
  • DCI format 1_0 can be used to schedule low and/or high Quality of Service (QoS) MBS traffic. Alignment of the DCI formats can be achieved using the example method shown in Table 8 below.
  • a new DCI format 1_0’ is used for multicast scheduling. Because the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI, the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as other RNTI.
  • DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH.
  • DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 the DCI size limitation is not satisfied.
  • Step 4 the method discussed above is used to align the multicast DCI format (s) .
  • the size of FDRA in multicast DCI format 1_0 is determined by frequency resource common to the group of UEs and counted in the size budget of other RNTI (that is, non-C-RNTI) .
  • the size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP.
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2.
  • the fourth size of multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI is categorized as other RNTI for the purpose of alignment. If DCI format 2_0 or 2_1 is also configured, the size of DCI format 2_0 or 2_1 should be same as one of above four size.
  • the DCI that carries multicast scheduling information can have one or more new formats (e.g., DCI format 1_0’ and/or format 2_x) or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) .
  • one or more fields can be introduced in DCI format 1_0 for MBS scheduling information.
  • the multicast DCI with CRC scrambled by SC/G-RNTI can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of DCI size alignment.
  • DCI format 1_1/1_2 is also used for scheduling multicast PDSCH
  • the DCI format 1_1/1_2 can be counted as scrambled by C-RNTI for the purpose of alignment. That is, the multicast DCI format 1_0 is considered to be one of the four different DCI sizes allowed for the cell and the multicast DCI format 1_1/1_2 is aligned to be one of the three different DCI sizes allowed for C-RNTI. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size is not increased.
  • DCI format 1_0 is reused for multicast scheduling info but has different number of bits as the fallback DCI format.
  • a new DCI format 1_0’/2_x is used for multicast scheduling.
  • DCI format 1_1 can also be used for scheduling multicast PDSCH.
  • DCI format 1_0 can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic.
  • QoS Quality of Service
  • low QoS MBS traffic is scheduled using DCI format 1_0 and high QoS MBS traffic is scheduled using both DCI format 1_0 and 1_1.
  • high QoS MBS traffic can be schedule suing DCI format 2_x, with similar alignment rules as DCI format 1_1.
  • the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
  • the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as other RNTI.
  • the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 9 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
  • the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group.
  • the reference size can be preconfigured (e.g., using a Radio Resource Configuration, RRC, signaling message) .
  • RRC Radio Resource Configuration
  • the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE.
  • the reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
  • DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH.
  • DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 the DCI size limitation is not satisfied.
  • Step 4 the method discussed above is used to align the multicast DCI format (s) .
  • the size of FDRA for multicast DCI format 1_0/1_0’ is determined the frequency resources common to the group of UEs and is counted in the size budget of other RNTI (that is, non-C-RNTI) .
  • the size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP.
  • the size of DCI format 1_1/2_x with CRC scrambled by SC/G-RNTI and DCI format 1_1 in USS are aligned to a reference size (e.g., configured by RRC signaling) .
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2.
  • the fourth size of multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as other RNTI for the purpose of alignment. If DCI format 2_0 is used for multicast scheduling, the multicast DCI format 2_0 is categorized as other RNTI for the purpose of alignment.
  • the DCI that carries multicast scheduling information can have one or more new format (e.g., DCI format 1_0’) or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) . As discussed in Embodiments 3 and 4, one or more fields can be introduced in DCI format 1_0 for MBS scheduling information.
  • the multicast DCI with CRC scrambled by SC/G-RNTI can be counted in size budget of DCI with CRC scrambled by C-RNTI for the purpose of DCI size alignment.
  • DCI format 0_1/1_1 or DCI format 0_2/1_2 can be used to schedule unicast PDSCH. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
  • DCI format 1_0 is reused for multicast scheduling info but has different number of bits as the fallback DCI format.
  • a new DCI format 1_0’ is used for multicast scheduling.
  • DCI format 1_1 can also be used for scheduling multicast PDSCH with CRC scrambled by C-RNTI.
  • DCI format 1_0/1_0’ can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic.
  • QoS Quality of Service
  • low QoS MBS traffic is scheduled using DCI format 1_0/1_0’ and high QoS MBS traffic is scheduled using both DCI format 1_0/1_0’ and 1_1.
  • high QoS MBS traffic can be schedule using DCI format 2_x, with similar alignment rules as DCI format 1_1.
  • the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
  • Alignment of the DCI formats can be achieved using the example method shown in Table 9 below.
  • the multicast DCI format 1_0/1_0’ has a different size than the fallback DCI format 1_0.
  • the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI scheduling a multicast PDSCH is categorized as C-RNTI for the purpose of alignment. Only one set of fallback DCI formats --DCI format 0_1/1_1 or DCI format 0_2/1_2 --can be used to schedule unicast PDSCH.
  • DCI format 1_0/1_0’ is configured to schedule MBS PDSCH.
  • DCI formats 0_1 and/or 1_1 are configured to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 is performed (as shown in Table 9 above) , the DCI size limitation is not satisfied.
  • Step 4 the method discussed above is used to align the multicast DCI format (s) .
  • the size of FDRA in multicast DCI format 1_0/1_0’ is determined by frequency resource common to the group of UEs and counted in the size budget of C-RNTI.
  • the size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP.
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0 in CSS, multicast DCI format 1_0/1_0’, and DCI format 0_1/1_1.
  • the fourth size is determined based on DCI format 2_0 with CRC scrambled by SFI-RNTI.
  • the DCI that carries multicast scheduling information can have one or more new formats (e.g., DCI format 1_0’ and/or format 2_x) or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) .
  • one or more fields can be introduced in DCI format 1_0 for MBS scheduling information.
  • the multicast DCI 1_0/1_0’ with CRC scrambled by SC/G-RNTI can be counted in the size budget of C-RNTI for the purpose of DCI size alignment.
  • DCI format 1_1/1_2/2_x with CRC scrambled by SC/G RNTI are used for multicast scheduling
  • DCI format 1_1/1_2/2_x can be counted in the size budget of DCI formats with CRC scrambled by other RNTI (that is, not the C-RNTI) .
  • only one set of fallback DCI formats e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2
  • DCI format 0_1/1_1 or DCI format 0_2/1_2 can be used to schedule unicast PDSCH. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
  • DCI format 1_0 is reused for multicast scheduling info but has different number of bits as the fallback DCI format.
  • a new DCI format 1_0’ is used for multicast scheduling.
  • DCI format 1_1 can also be used for scheduling multicast PDSCH with CRC scrambled by SC/G-RNTI.
  • a new DCI format 2_x is used for scheduling multicast PDSCH with CRC scrambled by SC/G-RNTI.
  • DCI format 1_0/1_0’ can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1/2_x can be used to schedule high QoS MBS traffic.
  • QoS Quality of Service
  • low QoS MBS traffic is scheduled using DCI format 1_0/1_0’ and high QoS MBS traffic is scheduled using both DCI format 1_0/1_0’ and 1_1.
  • high QoS MBS traffic can be schedule using DCI format 2_x, with similar alignment rules as DCI format 1_1.
  • the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
  • Alignment of the DCI formats can be achieved using at least one of the following methods.
  • the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI.
  • the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as C-RNTI. Only one set of fallback DCI formats (e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2) can be used to schedule unicast PDSCH.
  • DCI format 1_1/1_2/2_x with CRC scrambled by SC/G RNTI are also used for multicast scheduling
  • DCI format 1_1/1_2/2_x are counted in the size budget of other RNTI (that is, not C-RNTI) . This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
  • DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH.
  • DCI formats 0_1 and/or 1_1 are configured to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 the DCI size limitation is not satisfied.
  • Step 4 the method discussed above is used to align the multicast DCI format (s) .
  • the size of FDRA in multicast DCI format 1_0/1_0’ is determined by frequency resource common to the group of UEs and counted in the size budget of C-RNTI.
  • the size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP.
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0 in CSS, multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI, and DCI format 0_1/1_1.
  • DCI format 2_0/2_1 is also configured, the multicast DCI format 2_0/2_1 is categorized as other RNTI which is the fourth DCI size.
  • the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI.
  • the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as C-RNTI. Only one set of fallback DCI formats (e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2) can be used to schedule unicast PDSCH.
  • DCI format 1_1/1_2/2_x are counted in the size budget of C-RNTI.
  • the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 11 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
  • DCI format 2_x with similar alignment rules as DCI format 1_1 or DCI format 1_2.
  • the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group.
  • the reference size can be preconfigured (e.g., using a Radio Resource Configuration, RRC, signaling message) .
  • RRC Radio Resource Configuration
  • the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE.
  • the reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
  • DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH.
  • DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH.
  • the common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP.
  • Step 3 the DCI size limitation is not satisfied.
  • Step 4 the method discussed above is used to align the multicast DCI format (s) .
  • the size of FDRA for multicast DCI format 1_0/1_1 is determined the frequency resources common to the group of UEs and is counted in the size budget of C-RNTI.
  • the size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP.
  • the size of DCI format 1_1 with CRC scrambled by SC/G-RNTI and DCI format 1_1 in USS are aligned to a reference size (e.g., configured by RRC signaling) .
  • the total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0 in CSS, multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI, and DCI format 0_1/1_1. If DCI format 2_0 is used for multicast scheduling, the multicast DCI format 2_0 is counted in the size budget of other RNTI for the purpose of alignment.
  • FIG. 4 shows an example of a wireless communication system 400 where techniques in accordance with one or more embodiments of the present technology can be applied.
  • a wireless communication system 400 can include one or more base stations (BSs) 405a, 405b, one or more wireless devices 410a, 410b, 410c, 410d, and a core network 425.
  • a base station 405a, 405b can provide wireless service to wireless devices 410a, 410b, 410c and 410d in one or more wireless sectors.
  • a base station 405a, 405b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
  • the core network 425 can communicate with one or more base stations 405a, 405b.
  • the core network 425 provides connectivity with other wireless communication systems and wired communication systems.
  • the core network may include one or more service subscription databases to store information related to the subscribed wireless devices 410a, 410b, 410c, and 410d.
  • a first base station 405a can provide wireless service based on a first radio access technology
  • a second base station 405b can provide wireless service based on a second radio access technology.
  • the base stations 405a and 405b may be co-located or may be separately installed in the field according to the deployment scenario.
  • the wireless devices 410a, 410b, 410c, and 410d can support multiple different radio access technologies.
  • the techniques and embodiments described in the present document may be implemented by the base stations of wireless devices described in the present document.
  • FIG. 5 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied.
  • a radio station 505 such as a base station or a wireless device (or a terminal device) can include processor electronics 510 such as a microprocessor that implements one or more of the wireless techniques presented in this document.
  • the radio station 505 can include transceiver electronics 515 to send and/or receive wireless signals over one or more communication interfaces such as antenna 520.
  • the radio station 505 can include other communication interfaces for transmitting and receiving data.
  • Radio station 505 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions.
  • the processor electronics 510 can include at least a portion of the transceiver electronics 515. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the radio station 505. In some embodiments, the radio station 505 may be configured to perform the methods described herein.
  • the present document discloses techniques that can be embodied in various embodiments to align the control information of unicast and/or multicast scheduling info properly to reduce or minimize additional decoding complexity on the receiving side.
  • the disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random-access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks e.g., CD ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Abstract

Methods, apparatus, and systems that allow the control information of unicast and/or multicast scheduling info to be properly aligned are disclosed. In one example aspect, a method for wireless communication includes configuring, by a base station, one or more control information formats. The one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information. The method also includes transmitting, by the base station, the configured control information to a terminal device.

Description

DOWNLINK CONTROL INFORMATION ALIGNMENT TECHNICAL FIELD
This patent document is directed generally to wireless communications.
BACKGROUND
Mobile communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of mobile communications and advances in technology have led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. Various techniques, including new ways to provide higher quality of service, longer battery life, and improved performance are being discussed.
SUMMARY
This patent document describes, among other things, techniques that allow the control information of unicast and/or multicast scheduling info is properly aligned so as to minimize additional decoding complexity on the receiving side.
In one example aspect, a method for wireless communication includes configuring, by a base station, one or more control information formats. The one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information. The method also includes transmitting, by the base station, the configured control information to a terminal device.
In another example aspect, a method for wireless communication includes monitoring, by a terminal device, one or more control information formats from a base station. The one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control  information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information. The method also includes performing, by the terminal device, a data transmission based on the configured control information.
In another example aspect, a method for wireless communication includes configuring, by a base station, one or more control information formats. The one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size the first type of control information. The method also includes transmitting, by the base station, the configured control information to the terminal device.
In another example aspect, a method for wireless communication includes monitoring, by a terminal device, one or more control information formats from a base station. The one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size of the first type of control information. The method also includes performing, by the terminal device, a data transmission based on the configured control information.
In another example aspect, a communication apparatus is disclosed. The apparatus includes a processor that is configured to implement an above-described method.
In yet another example aspect, a computer-program storage medium is disclosed. The computer-program storage medium includes code stored thereon. The code, when executed by a processor, causes the processor to implement a described method.
These, and other, aspects are described in the present document.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1A illustrates an example of unicast transmissions.
FIG. 1B illustrates an example of broadcast transmissions.
FIG. 1C illustrates an example of multicast transmissions.
FIG. 2A is a flowchart representation of a method for wireless communication in accordance with the present technology.
FIG. 2B is a flowchart representation of another method for wireless communication in accordance with the present technology.
FIG. 3A is a flowchart representation of another method for wireless communication in accordance with the present technology.
FIG. 3B is a flowchart representation of another method for wireless communication in accordance with the present technology.
FIG. 4 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
FIG. 5 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied.
DETAILED DESCRIPTION
Section headings are used in the present document only to improve readability and do not limit scope of the disclosed embodiments and techniques in each section to only that section. Certain features are described using the example of Fifth Generation (5G) wireless protocol. However, applicability of the disclosed techniques is not limited to only 5G wireless systems.
In wireless communications, such as Long-Term Evolution (LTE) systems and 5G New Radio (NR) systems, Downlink Control Information (DCI) is used to indicate how data is scheduled and transmitted on data channels, such as the Physical Downlink Shared Channel (PDSCH) . Different DCI formats provide the User Equipment (UE) details about the number of resource blocks, resource allocation type, modulation scheme, transport block, redundancy version, coding rate etc. for data transmissions. The UEs monitor the control channel (s) , such as the Physical Downlink Control Channel (PDCCH) , to decode the control information for facilitating subsequent transmissions.
To minimize DCI monitoring complexity on the UE side, there is a limitation on the number of different DCI sizes that a UE needs to detect. That is, the total number of different DCI sizes is no more than four for a cell, and the different DCI sizes scrambled using Cell RNTI  (C-RNTI) is no more than three for the cell. It is noted that the size budget of other types of RNTI (that is, non-C-RNTI) is one, and the size budget of C-RNTI is three. Different DCI sizes scrambled using C-RNTI refer to the DCI formats with CRC scrambled by C-RNTI. In order to satisfy the size limitation, certain DCI formats are aligned so as to reduce the number of different sizes. Table 1 shows example steps of aligning DCI sizes, such as DCI formats 0_0, 1_0, 1_1, 0_2, and/or 1_2.
Table 1 Example DCI Size Alignment
Figure PCTCN2021071852-appb-000001
Figure PCTCN2021071852-appb-000002
Figure PCTCN2021071852-appb-000003
Figure PCTCN2021071852-appb-000004
Figure PCTCN2021071852-appb-000005
The 5G NR systems continue to see fast growth of network demand and mobile applications. In particular, there is an increase in demand for multicast traffic load. Multicast traffic, which can be received by multiple terminal devices, is carried on physical channels such as the Physical Downlink Shared Channel (PDSCH) . FIGS. 1A-1C illustrates examples of unicast (FIG. 1A) , broadcast (FIG. 1B) , and multicast (FIG. 1C) transmissions from base stations to terminal devices. For multicast transmissions as shown in FIG. 1C, network conditions can vary for different terminal devices or UEs. To improve multicast transmission efficiency, UEs operating under similar network conditions can be classified into a same group. The transmission mechanism for multicast transmissions can be selected to better match the network conditions of each UE group.
To schedule downlink data transmissions for a group of UEs, each UE in the group can detect control information that is specific to itself (e.g., using unicast transmission as shown  in FIG. 1A) . Alternatively, all the UEs in the group can detect the same multicast scheduling information that is common to the group. To indicate group-common multicast scheduling information on the PDCCH, additional information needs to be added to the DCI formats, which can result in changes of DCI sizes. Therefore, there is a need to introduce a consistent mechanism to align DCI formats that include unicast and/or multicast scheduling information while satisfying the size limitation.
This patent document discloses techniques that are applicable in various embodiments to ensure that the control information including unicast and/or multicast scheduling info is properly aligned so as to minimize additional decoding complexity on the receiving side.
FIG. 2A is a flowchart representation of a method for wireless communication in accordance with the present technology. The method 200 includes, at operation 210, configuring, by a base station, one or more control information formats. The one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information. The method 200 also includes, at operation 220, transmitting, by the base station, the configured control information to a terminal device.
FIG. 2B is a flowchart representation of a method 250 for wireless communication in accordance with the present technology. The method 250 includes, at operation 260, monitoring, by a terminal device, one or more control information formats from a base station. The one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information. The method 250 also includes, at operation 270, performing, by the terminal device, a data transmission with the base station based on the configured control information.
In some embodiments, a size of frequency-domain resource allocation of the second type of control information is determined based on a common frequency resource. The common  frequency resource is configured by higher layer signaling. That is a signaling message on a layer that is higher than the physical layer (e.g., the RRC layer) .
In some embodiments, the format of the first type of control information and the format of the second type of control information are same and bit fields of the first type of control information and bit fields of the second type of control information are same. In some embodiments, the rule specifies that a size of frequency-domain resource allocation of the second type of control information is based on a special control resource set or an initial bandwidth part instead of the common frequency resource. In some embodiments, the rule further specifies one of:(1) s size of frequency-domain resource allocation of the first type of control information in a user-equipment specific search space (USS) is determined based on a special control resource set or an initial bandwidth part before the size of frequency-domain resource allocation of the second type of control information is determined based on the special control resource set or the initial bandwidth part; (2) the size of frequency-domain resource allocation of the second type of control information is determined based on the special control resource set or the initial bandwidth part before the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the special control resource set or the initial bandwidth part; or (3) the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the second type and first type of control information is determined based on the special control resource set the initial bandwidth part.
In some embodiments, the rule specifies that a size of frequency-domain resource allocation of the first type of control information is determined based on the common frequency resource. In some embodiments, the rule further specifies one of: (1) the size of frequency-domain resource allocation of the first type of control information in a user-equipment specific search space (USS) is determined based on a special control resource set or an initial bandwidth part before the size of frequency-domain resource allocation of the first type of control information in a USS and a common search space (CSS) is determined based on the common frequency resource; (2) the size of frequency-domain resource allocation of the second type of control information in the CSS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the first type of control information in the USS is based on the common frequency resource; or (3) the size of frequency-domain resource  allocation of the first type of control information in the USS is based on the common frequency resource before the size of frequency-domain resource allocation of the second type of control information in the CSS is determined based on the common frequency resource.
FIG. 3A is a flowchart representation of a method 300 for wireless communication in accordance with the present technology. The method 300 includes, at operation 310, configuring, by a base station, one or more control information formats. The one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI, and wherein the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size the first type of control information. The method 300 also includes, at operation 320, transmitting, by the base station, the configured control information to the terminal device.
FIG. 3B is a flowchart representation of a method 350 for wireless communication in accordance with the present technology. The method 350 includes, at operation 360, monitoring, by a terminal device, one or more control information formats from a base station. The one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI. The one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size of the first type of control information. The method 350 also includes, at operation 370, performing, by the terminal device, a data transmission with the base station based on the configured control information.
In some embodiments, a size of frequency-domain resource allocation of the second type of control information is determined based on a common frequency resource.
In some embodiments, the format of the first type of control information and the format of the second type of control information are same and bit fields of the first type of control information and bit fields of the second type of control information are different. In some embodiments, the size of the second type of control information is different than the size of the first type of control information, and the size of the second type of control information is classified in a different category than the first type of control information for the size limitation  requirement of the one or more control information formats. In some embodiments, in case the size of the second type of control information is classified in the same category as the first type of control information, the rule further specifies that the configured control information includes a single set of non-fallback formats. In some embodiments, the single set of the non-fallback formats comprise a Downlink Control Information (DCI) format 0_1 and a DCI format 1_1, or a DCI format 0_2 and a DCI format 1_2.
In some embodiments, the size of the first type of control information and the size of the second type of control information is aligned to a reference size. In some embodiments, the format the first type of control information and the format the second type of control information are different, and the size of the first type of control information and the size of the second type of control information is aligned to a reference size. In some embodiments, the reference size is determined based on one of: a value configured by a high layer signaling; the size of the second type of the control information; or a maximum size of the first type of control information common to a group of terminal devices.
Some examples of the disclosed techniques are further described in the following example embodiments.
Embodiment 1
In some embodiments, the DCI that carries multicast scheduling information can have a new format (e.g. DCI format 2_x) and/or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) . In particular, in case the multicast DCI format has the same size of an existing DCI format (e.g., the fallback DCI format) , the same DCI format can be reused for multicast scheduling. In order to satisfy the DCI size limitation, DCI format 1_0 with multicast scheduling info is aligned with the fallback DCI (e.g., DCI format 1_0) . If DCI format 1_1 is also used for scheduling multicast PDSCH, the DCI format 1_1 can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of alignment. This ensures that the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE side remains the same. Alternatively, if DCI format 1_1 is used for scheduling multicast PDSCH, the DCI format 1_1 can be used with CRC scrambled by C-RNTI. This ensures that the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE side remains the same.
For example, DCI format 1_0 and format 1_1 carried by a group common PDCCH  can be scrambled by a group-common RNTI (e.g., Single Cell RNTI, SC-RNTI, or Group RNTI, G-RNTI) to carry multicast scheduling information. In some embodiments, DCI format 1_0 can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic. In some embodiments, low QoS MBS traffic is scheduled using DCI format 1_0 and high QoS MBS traffic is scheduled using both DCI format 1_0 and 1_1. In some embodiments, high QoS MBS traffic can be schedule suing DCI format 2_x, with similar alignment rules as DCI format 1_1. The size of frequency-domain resource allocation of the DCI format 1_0/1_1/2_x used for scheduling MBS is determined based on a common frequency resource configured by a high layer signaling (e.g., RRC signaling) , and is subject to change according to the alignment rule.
Alignment of the DCI formats can be achieved using at least one of the following methods.
Method 1:
In this method, the fallback DCI format (s) (e.g., DCI format (s) that carry unicast scheduling information or SIB/Paging/RAR) are aligned first, then the DCI format including multicast scheduling information is aligned with the fallback DCI format (s) . For example, DCI format 1_0 can be reused for multicast scheduling and the size of frequency-domain resource allocation are determined based on the common frequency resource configured by a signaling message on a layer that is higher than the physical layer (e.g., the RRC layer) . The base station can align the size of fallback DCI format 0_0/1_0 in UE specific Search Space (USS) to the size of fallback DCI format 0_0/1_0 in Common Search Space (CSS) first. Then the base station can determine multicast DCI format 1_0 with CRC scrambled by the group-common RNTI (e.g. SC/G-RNTI) based on a special control resource set (e.g., CORESET 0) or the initial downlink bandwidth part for frequency-domain resource allocation (FDRA) . As a result, the multicast DCI format 1_0 with CRC scrambled by the group-common RNTI (e.g., SC-RNTI or G-RNTI) is then aligned to the size of DCI format 0_0/1_0 in CSS, as shown in Steps 4A and 4X in Table 2 below. That is, the size of frequency-domain resource allocation of DCI format 0_0/1_0 in USS is determined based on a special control resource set (CORESET 0) or an initial bandwidth part before the size of frequency-domain resource allocation of multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI is determined based on the special control resource set (CORESET 0) or the initial bandwidth part.
Table 2
Figure PCTCN2021071852-appb-000006
Method 2
In this method, the DCI format including multicast scheduling information is first aligned with the DCI format in CSS, then the DCI format in USS is also aligned with the DCI format in CSS. As shown in Steps 4A and 4X of Table 3, DCI format 1_0 is reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource. As a result, DCI format 1_0 (for multicast) with CRC scrambled by the group-common RNTI (e.g. SC/G-RNTI) is aligned according to the size of DCI format 0_0/1_0 in CSS first. That is, the  size of frequency-domain resource allocation of DCI format 1_0 with CRC scrambled by SC/G-RNTI is determined based on the special control resource set (CORESET 0) or the initial bandwidth part before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 USS is determined based on the special control resource set (CORESET 0) or the initial bandwidth part.
Table 3
Figure PCTCN2021071852-appb-000007
Method 3
In this method, the DCI format in CSS is aligned with the DCI format including  multicast scheduling information, then the DCI format in USS is also aligned with the multicast DCI format. For example, DCI format 1_0 can be reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource. The base station can align the size of DCI format 0_0/1_0 in USS to the size of the multicast DCI format 1_0 based on the common frequency resource configured by a signaling message on a layer that is higher than the physical layer (e.g., the RRC layer) . Then, the base station can determine DCI format 1_0 (for multicast) with CRC scrambled by the group-common RNTI (e.g. SC/G-RNTI) based on common frequency resource for FDRA. As shown in Step 4X and Step 4Y in Table 3, the DCI format 1_0 is then aligned to the size of DCI format 0_0/1_0 in CSS. That is, the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of DCI format 1_0 with CRC scrambled by SC/G-RNTI in CSS and DCI format 1_0 in CSS is determined based on the special control resource set (CORESET 0) or the initial bandwidth part.
Table 4
Figure PCTCN2021071852-appb-000008
Figure PCTCN2021071852-appb-000009
In one example, both DCI formats 1_0 and 1_1 are reused to schedule MBS PDSCH, while DCI formats 0_1, 1_1, 0_2, and/or 1_2 can be used to schedule unicast PDSCH. The common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 4 above) , the DCI size limitation is not satisfied. In Step 4, one of the methods discussed above is used to align the multicast DCI format (s) . For example, the multicast DCI format 1_0 size can be determined based on CORESET 0/initial BWP. The multicast DCI format 1_1 with CRC scrambled by SC/G-RNTI can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of alignment. The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2. The fourth DCI size is multicast DCI format 1_1 with CRC scrambled by SC/G-RNTI. If format 2_0 or 2_1 is configured, then the size of the format 2_0 or 2_1 should be same as one of above four sizes.
Embodiment 2
As discussed above, the DCI that carries multicast scheduling information can have a new format (e.g., DCI format 2_x) and/or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) . In particular, in case the multicast DCI format has the same size of an existing DCI format (e.g., the fallback DCI format) , the same DCI format can be reused for multicast scheduling. In order to satisfy the DCI size limitation, DCI format 1_0 with multicast scheduling info is aligned with the fallback DCI (e.g., DCI format 1_0) . If DCI format 1_1/1_2 is also used for scheduling multicast PDSCH, the DCI format 1_1/1_2 with CRC scrambled by SC/G-RNTI can be aligned with same format 1_1/1_2 with CRC scrambled by C-RNTI. Alternatively, if DCI format 2_x is used for scheduling multicast PDSCH, the DCI format 2_x scrambled by SC/G-RNTI can be aligned with format 1_1/1_2 with CRC scrambled by C-RNTI. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the  complexity on the UE size remains the same.
For example, DCI format 1_0 and format 1_1/2_x carried by a group common PDCCH can be scrambled by a group-common RNTI (e.g., SC-RNTI or G-RNTI) to carry multicast scheduling information. In some embodiments, DCI format 1_0 can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic. In some embodiments, low QoS MBS traffic is scheduled using DCI format 1_0 and high QoS MBS traffic is scheduled using both DCI format 1_0 and 1_1. In some embodiments, high QoS MBS traffic can be schedule using DCI format 2_x, with similar alignment rules as DCI format 1_1. In some embodiments, the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information. The size of frequency-domain resource allocation of the DCI format 1_0/1_1/1_2/2_x used for scheduling MBS is determined based on a common frequency resource configured by a high layer signaling (e.g., RRC signaling) . The alignment rule can specify that a size of frequency-domain resource allocation of the fallback DCI format (s) is determined based on the common frequency resource of group-common DCI format (s) .
Alignment of the DCI formats can be achieved using at least one of the following methods.
Method 1:
In this method, similar to Method 1 in Embodiment 1, the fallback DCI format (s) are aligned first, then the DCI format including multicast scheduling information is aligned with the fallback DCI format (s) . For example, DCI format 1_0 can be reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource. The base station can align the size of DCI format 0_0/1_0 in USS to the size of DCI format 0_0/1_0 in CSS first. As shown in Steps 4A and 4X in Table 5, the size of the multicast DCI format 1_0 and the size of unicast DCI format 0_0/1_0 in CSS are aligned. That is, the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on a special control resource set (CORESET0) or an initial bandwidth part before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in CSS is determined based on the common frequency resource of the DCI format 1_0 with CRC scrambled by SC/G-RNTI.
In addition to aligning the multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI, the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1  and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 5 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
Table 5
Figure PCTCN2021071852-appb-000010
Figure PCTCN2021071852-appb-000011
For Step 4B2 and 4C2, the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group. The reference size is configured (e.g., using a Radio Resource Configuration, RRC, signaling message) . Alternatively, or in addition, the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE. The reference size can also be the DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI. If DCI format 2_x is used, with similar alignment rules as DCI format 1_1 or 1_2.
Method 2
In this method, similar to Method 2 of Embodiment 1, the DCI format including multicast scheduling information is aligned. As shown in Step 4X of Table 6 below, DCI format 1_0 is reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource. DCI format 1_0 (for multicast) with CRC scrambled by the group-common RNTI is aligned according to the size of DCI format 0_0/1_0 in CSS. That is, the size of frequency-domain resource allocation of DCI format 0_0/1_0 in CSS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on the common frequency resource.
In addition to aligning the multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI, the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 6 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
Table 6
Figure PCTCN2021071852-appb-000012
Figure PCTCN2021071852-appb-000013
For Step 4B2 and 4C2, the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group. The reference size can be preconfigured (e.g., using a Radio Resource Configuration signaling message) . Alternatively, or in addition, the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE. The reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
Method 3
In this method, similar to Method 3 of Embodiment 1, the DCI format in CSS is aligned with the DCI format including multicast scheduling information, then the DCI format in  USS is also aligned with the multicast DCI format. For example, DCI format 1_0 can be reused for multicast scheduling and the size of FDRA are determined based on the common frequency resource. The base station can align the size of DCI format 0_0/1_0 in USS to the size of the multicast DCI format 1_0. Then, the base station can determine multicast DCI format 1_0 with CRC scrambled by the group-common RNTI based on common frequency resources for FDRA. As shown in Step 4X and Step 4Y in Table 7 below, the multicast DCI format 1_0 is then aligned to the size of DCI format 0_0/1_0 in CSS. That is, the size of frequency-domain resource allocation of the DCI format 0_0/1_0 in USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the DCI format 0_0/1_0 and the size of the DCI format 0_0/1_0 in CSS are aligned based on the common frequency resource.
In addition to aligning the multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI, the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 7 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
Table 7
Figure PCTCN2021071852-appb-000014
Figure PCTCN2021071852-appb-000015
For Step 4B2 and 4C2, the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group. The reference size can be preconfigured (e.g., using a Radio Resource Configuration signaling message) . Alternatively, or in addition, the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE. The reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
In one example, DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH. DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH. The common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 4 above) , the DCI size limitation is not satisfied. In Step 4, one of the methods discussed above is used to align the multicast DCI format (s) . The size of FDRA in DCI format 1_0 is determined by CORESET 0/initial BWP. The size of DCI format 1_1 with CRC scrambled by SC/G-RNTI and DCI format 1_1 are aligned to a reference size (e.g., configured by RRC signaling) . The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2. If DCI format 2_0 is used for multicast scheduling, the multicast DCI format 2_0 is categorized as other RNTI for the purpose of alignment. In some embodiments, the DCI format 1_1 can instead be DCI format 1_2 and same mechanism can be used. In some embodiments,  the DCI format 1_1 can instead be DCI format 2_x and same mechanism can be used in which the size of DCI format 2_x with CRC scrambled by SC/G-RNTI and DCI format 1_1 are aligned to a reference size, or the size of DCI format 2_x with CRC scrambled by SC/G-RNTI and DCI format 1_2 are aligned to a reference size.
Embodiment 3
The DCI that carries multicast scheduling information can have one or more new format (e.g., DCI format 1_0’ and/or format 2_x) or reuse one or more existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) . For example, one or more fields can be introduced in DCI format 1_0 for MBS scheduling information. When the DCI that carries multicast scheduling information has a different size than the existing DCI formats (e.g., the fallback DCI) , the multicast DCI with CRC scrambled by SC/G-RNTI can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of DCI size alignment. That is, the multicast DCI format 1_0 (or a new format) is considered to be one of the four different DCI sizes allowed for the cell. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
For example, DCI format 1_0 is reused for multicast scheduling info but has different number of bits or different bit fields as the fallback DCI format. In some embodiments, DCI format 1_0 can be used to schedule low and/or high Quality of Service (QoS) MBS traffic. Alignment of the DCI formats can be achieved using the example method shown in Table 8 below. Alternatively, a new DCI format 1_0’ is used for multicast scheduling. Because the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI, the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as other RNTI.
Table 8
Figure PCTCN2021071852-appb-000016
Figure PCTCN2021071852-appb-000017
In one example, DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH. DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH. The common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 4 above) , the DCI size limitation is not satisfied. In Step 4, the method discussed above is used to align the multicast DCI format (s) . The size of FDRA in multicast DCI format 1_0 is determined by frequency resource common to the group of UEs and counted in the size budget of other RNTI (that is, non-C-RNTI) . The size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP. The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2. The fourth size of multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI is categorized as other RNTI for the purpose of alignment. If DCI format 2_0 or 2_1 is also configured, the size of DCI format 2_0 or 2_1 should be same as one of above four size.
Embodiment 4
The DCI that carries multicast scheduling information can have one or more new formats (e.g., DCI format 1_0’ and/or format 2_x) or reuse an existing format (e.g., DCI format  1_0 and/or format 1_1/1_2) . As discussed in Embodiment 3, one or more fields can be introduced in DCI format 1_0 for MBS scheduling information. When the DCI that carries multicast scheduling information has a different size than the existing DCI formats (e.g., the fallback DCI) , the multicast DCI with CRC scrambled by SC/G-RNTI can be counted in the size budget of other RNTI (that is, non-C-RNTI) for the purpose of DCI size alignment. If DCI format 1_1/1_2 is also used for scheduling multicast PDSCH, the DCI format 1_1/1_2 can be counted as scrambled by C-RNTI for the purpose of alignment. That is, the multicast DCI format 1_0 is considered to be one of the four different DCI sizes allowed for the cell and the multicast DCI format 1_1/1_2 is aligned to be one of the three different DCI sizes allowed for C-RNTI. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size is not increased.
For example, DCI format 1_0 is reused for multicast scheduling info but has different number of bits as the fallback DCI format. Alternatively, a new DCI format 1_0’/2_x is used for multicast scheduling. In some cases, DCI format 1_1 can also be used for scheduling multicast PDSCH. In some embodiments, DCI format 1_0 can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic. In some embodiments, low QoS MBS traffic is scheduled using DCI format 1_0 and high QoS MBS traffic is scheduled using both DCI format 1_0 and 1_1. In some embodiments, high QoS MBS traffic can be schedule suing DCI format 2_x, with similar alignment rules as DCI format 1_1. In some embodiments, the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
Because the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI, the multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as other RNTI. In addition to the alignment consideration for the multicast DCI format 1_0/1_0’, the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 9 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C.
Table 9
Figure PCTCN2021071852-appb-000018
Figure PCTCN2021071852-appb-000019
For Step 4B2 and 4C2, the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group. The reference size can be preconfigured (e.g., using a Radio Resource Configuration, RRC, signaling message) . Alternatively, or in addition, the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE. The reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
In one example, DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH. DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH. The common  frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 9 above) , the DCI size limitation is not satisfied. In Step 4, the method discussed above is used to align the multicast DCI format (s) . The size of FDRA for multicast DCI format 1_0/1_0’ is determined the frequency resources common to the group of UEs and is counted in the size budget of other RNTI (that is, non-C-RNTI) . The size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP. The size of DCI format 1_1/2_x with CRC scrambled by SC/G-RNTI and DCI format 1_1 in USS are aligned to a reference size (e.g., configured by RRC signaling) . The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0, DCI format 0_1/1_1, and DCI format 0_2/1_2. The fourth size of multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as other RNTI for the purpose of alignment. If DCI format 2_0 is used for multicast scheduling, the multicast DCI format 2_0 is categorized as other RNTI for the purpose of alignment.
Embodiment 5
The DCI that carries multicast scheduling information can have one or more new format (e.g., DCI format 1_0’) or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) . As discussed in Embodiments 3 and 4, one or more fields can be introduced in DCI format 1_0 for MBS scheduling information. In some embodiments, the multicast DCI with CRC scrambled by SC/G-RNTI can be counted in size budget of DCI with CRC scrambled by C-RNTI for the purpose of DCI size alignment. In such cases, only one set of fallback DCI formats (e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2) can be used to schedule unicast PDSCH. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
For example, DCI format 1_0 is reused for multicast scheduling info but has different number of bits as the fallback DCI format. Alternatively, a new DCI format 1_0’ is used for multicast scheduling. In some cases, DCI format 1_1 can also be used for scheduling multicast PDSCH with CRC scrambled by C-RNTI. In some embodiments, DCI format 1_0/1_0’ can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1 can be used to schedule high QoS MBS traffic. In some embodiments, low QoS MBS traffic is scheduled using DCI format 1_0/1_0’ and high QoS MBS traffic is scheduled using both DCI format 1_0/1_0’ and 1_1. In some embodiments, high QoS MBS traffic can be schedule using DCI format 2_x,  with similar alignment rules as DCI format 1_1. In some embodiments, the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
Alignment of the DCI formats can be achieved using the example method shown in Table 9 below. In this method, the multicast DCI format 1_0/1_0’ has a different size than the fallback DCI format 1_0. The multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI scheduling a multicast PDSCH is categorized as C-RNTI for the purpose of alignment. Only one set of fallback DCI formats --DCI format 0_1/1_1 or DCI format 0_2/1_2 --can be used to schedule unicast PDSCH.
Table 9
Figure PCTCN2021071852-appb-000020
In one example, DCI format 1_0/1_0’ is configured to schedule MBS PDSCH. DCI formats 0_1 and/or 1_1 are configured to schedule unicast PDSCH. The common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 9 above) , the DCI size limitation is not satisfied. In Step 4, the method discussed above is used to align the multicast DCI format (s) . The size of FDRA in multicast DCI format 1_0/1_0’ is determined by frequency resource common to the group of UEs and counted in the size budget of C-RNTI. The size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP. The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0 in CSS, multicast DCI format 1_0/1_0’, and DCI format 0_1/1_1. If DCI format 2_0 is also configured, the fourth size is determined based on DCI format 2_0 with CRC scrambled by SFI-RNTI.
Embodiment 6
The DCI that carries multicast scheduling information can have one or more new formats (e.g., DCI format 1_0’ and/or format 2_x) or reuse an existing format (e.g., DCI format 1_0 and/or format 1_1/1_2) . As discussed in the embodiments above, one or more fields can be introduced in DCI format 1_0 for MBS scheduling information. In some embodiments, the multicast DCI 1_0/1_0’ with CRC scrambled by SC/G-RNTI can be counted in the size budget of C-RNTI for the purpose of DCI size alignment. If DCI format 1_1/1_2/2_x with CRC scrambled by SC/G RNTI are used for multicast scheduling, DCI format 1_1/1_2/2_x can be counted in the size budget of DCI formats with CRC scrambled by other RNTI (that is, not the C-RNTI) . In such cases, only one set of fallback DCI formats (e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2) can be used to schedule unicast PDSCH. This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
For example, DCI format 1_0 is reused for multicast scheduling info but has different number of bits as the fallback DCI format. Alternatively, a new DCI format 1_0’ is used for multicast scheduling. In some cases, DCI format 1_1 can also be used for scheduling multicast PDSCH with CRC scrambled by SC/G-RNTI. Alternatively, a new DCI format 2_x is used for scheduling multicast PDSCH with CRC scrambled by SC/G-RNTI. In some embodiments, DCI format 1_0/1_0’ can be used to schedule low Quality of Service (QoS) MBS traffic and DCI format 1_1/2_x can be used to schedule high QoS MBS traffic. In some embodiments, low QoS  MBS traffic is scheduled using DCI format 1_0/1_0’ and high QoS MBS traffic is scheduled using both DCI format 1_0/1_0’ and 1_1. In some embodiments, high QoS MBS traffic can be schedule using DCI format 2_x, with similar alignment rules as DCI format 1_1. In some embodiments, the DCI format 1_2 can be used, instead of and/or in addition to DCI format 1_1, to carry multicast scheduling information.
Alignment of the DCI formats can be achieved using at least one of the following methods.
Method 1
In this method, the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI. The multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as C-RNTI. Only one set of fallback DCI formats (e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2) can be used to schedule unicast PDSCH. Alternatively, if DCI format 1_1/1_2/2_x with CRC scrambled by SC/G RNTI are also used for multicast scheduling, DCI format 1_1/1_2/2_x are counted in the size budget of other RNTI (that is, not C-RNTI) . This ensures the maximum number of DCI sizes in PDCCH blind detection remains unchanged, and the complexity on the UE size remains the same.
Table 10
Figure PCTCN2021071852-appb-000021
Figure PCTCN2021071852-appb-000022
In one example, DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH. DCI formats 0_1 and/or 1_1 are configured to schedule unicast PDSCH. The common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 10 above) , the DCI size limitation is not satisfied. In Step 4, the method discussed above is used to align the multicast DCI format (s) . The size of FDRA in multicast DCI format 1_0/1_0’ is determined by frequency resource common to the group of UEs and counted in the size budget of C-RNTI. The size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP. The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0 in CSS, multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI, and DCI format 0_1/1_1. If DCI format 2_0/2_1 is also configured, the multicast DCI format 2_0/2_1 is categorized as other RNTI which is the fourth DCI size.
Method 2
In this method, the size of DCI format 1_0/1_0’ with multicast scheduling information is different with the size of fallback DCI. The multicast DCI format 1_0/1_0’ with CRC scrambled by SC/G-RNTI is categorized as C-RNTI. Only one set of fallback DCI formats (e.g., DCI format 0_1/1_1 or DCI format 0_2/1_2) can be used to schedule unicast PDSCH. DCI format 1_1/1_2/2_x are counted in the size budget of C-RNTI. In addition to the alignment consideration for the multicast DCI format 1_1/1_2/2_x, the DCI format 1_1 and/or 1_2 in USS is also aligned with the multicast DCI format 1_1 and/or 1_2, such as shown in Steps 4B2 and 4C2 in Table 11 below. It is noted that Step 4B2, if needed, can be performed before or after Step 4B and/or 4C. Similarly, Step 4C2, if needed, can be performed before or after Step 4B and/or 4C. For DCI format 2_x, with similar alignment rules as DCI format 1_1 or DCI format  1_2.
Table 11
Figure PCTCN2021071852-appb-000023
For Step 4B2 and 4C2, the DCI format 1_2 or 1_2 in USS is aligned with the multicast DCI format 1_1 or 1_2 using a reference size that is commonly known to all UEs in the group. The reference size can be preconfigured (e.g., using a Radio Resource Configuration,  RRC, signaling message) . Alternatively, or in addition, the reference size can be the largest DCI format 1_1 or 1_2 in USS within the group of the UE. The reference size can also be the multicast DCI format 1_1 or 1_2 in CSS with CRC scrambled by SC/G-RNTI.
In one example, DCI format 1_0 and 1_1 are configured to schedule MBS PDSCH. DCI format 0_1, 1_1, 0_2, and/or 1_2 are configured to schedule unicast PDSCH. The common frequency resource for the group common PDCCH/PDSCH is different with CORESET 0/initial BWP. After Step 3 is performed (as shown in Table 11 above) , the DCI size limitation is not satisfied. In Step 4, the method discussed above is used to align the multicast DCI format (s) . The size of FDRA for multicast DCI format 1_0/1_1 is determined the frequency resources common to the group of UEs and is counted in the size budget of C-RNTI. The size of FDRA for DCI format 1_0 in CSS is determined by CORESET 0/initial BWP. The size of DCI format 1_1 with CRC scrambled by SC/G-RNTI and DCI format 1_1 in USS are aligned to a reference size (e.g., configured by RRC signaling) . The total number of different DCI sizes with C-RNTI is three for the cell: DCI format 0_0/1_0 in CSS, multicast DCI format 1_0 with CRC scrambled by SC/G-RNTI, and DCI format 0_1/1_1. If DCI format 2_0 is used for multicast scheduling, the multicast DCI format 2_0 is counted in the size budget of other RNTI for the purpose of alignment.
FIG. 4 shows an example of a wireless communication system 400 where techniques in accordance with one or more embodiments of the present technology can be applied. A wireless communication system 400 can include one or more base stations (BSs) 405a, 405b, one or  more wireless devices  410a, 410b, 410c, 410d, and a core network 425. A  base station  405a, 405b can provide wireless service to  wireless devices  410a, 410b, 410c and 410d in one or more wireless sectors. In some implementations, a  base station  405a, 405b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
The core network 425 can communicate with one or  more base stations  405a, 405b. The core network 425 provides connectivity with other wireless communication systems and wired communication systems. The core network may include one or more service subscription databases to store information related to the subscribed  wireless devices  410a, 410b, 410c, and 410d. A first base station 405a can provide wireless service based on a first radio access technology, whereas a second base station 405b can provide wireless service based on a second  radio access technology. The  base stations  405a and 405b may be co-located or may be separately installed in the field according to the deployment scenario. The  wireless devices  410a, 410b, 410c, and 410d can support multiple different radio access technologies. The techniques and embodiments described in the present document may be implemented by the base stations of wireless devices described in the present document.
FIG. 5 is a block diagram representation of a portion of a radio station in accordance with one or more embodiments of the present technology can be applied. A radio station 505 such as a base station or a wireless device (or a terminal device) can include processor electronics 510 such as a microprocessor that implements one or more of the wireless techniques presented in this document. The radio station 505 can include transceiver electronics 515 to send and/or receive wireless signals over one or more communication interfaces such as antenna 520. The radio station 505 can include other communication interfaces for transmitting and receiving data. Radio station 505 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions. In some implementations, the processor electronics 510 can include at least a portion of the transceiver electronics 515. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the radio station 505. In some embodiments, the radio station 505 may be configured to perform the methods described herein.
It will be appreciated that the present document discloses techniques that can be embodied in various embodiments to align the control information of unicast and/or multicast scheduling info properly to reduce or minimize additional decoding complexity on the receiving side. The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and  machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random-access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such  devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described, and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Claims (20)

  1. A method for wireless communication, comprising:
    configuring, by a base station, one or more control information formats, wherein the one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI, and wherein the one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information; and
    transmitting, by the base station, the configured control information to a terminal device.
  2. A method for wireless communication, comprising:
    monitoring, by a terminal device, one or more control information formats from a base station, wherein the one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI, and wherein the one or more control information formats conform to a rule specifying that a size of the second type of control information is aligned with a size of the first type of control information; and
    performing, by the terminal device, a data transmission based on the configured control information.
  3. The method of claim 1 or 2, wherein a size of frequency-domain resource allocation of the second type of control information is determined based on a common frequency resource.
  4. The method of any of claims 1 to 3, wherein the format of the first type of control information and the format of the second type of control information are same and bit fields of the first type of control information and bit fields of the second type of control information are same.
  5. The method of claim 4, wherein the rule specifies that a size of a frequency-domain resource allocation of the second type of control information is based on a special control resource set or an initial bandwidth part instead of the common frequency resource.
  6. The method of claim 5, wherein the rule further specifies one of:
    a size of frequency-domain resource allocation of the first type of control information in a user-equipment specific search space (USS) is determined based on a special control resource set or an initial bandwidth part before the size of frequency-domain resource allocation of the second type of control information is determined based on the special control resource set or the initial bandwidth part;
    the size of frequency-domain resource allocation of the second type of control information is determined based on the special control resource set or the initial bandwidth part before the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the special control resource set or the initial bandwidth part; or
    the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the second type and the first type of control information is determined based on the special control resource set or the initial bandwidth part.
  7. The method of claim 4, wherein the rule specifies that a size of frequency-domain resource allocation of the first type of control information is determined based on the common frequency resource.
  8. The method of claim 7, wherein the rule further specifies one of:
    the size of frequency-domain resource allocation of the first type of control information in a user-equipment specific search space (USS) is determined based on a special control resource set or an initial bandwidth part before the size of frequency-domain resource allocation of the first type of control information in a USS and a common search space (CSS) is determined based on the common frequency resource;
    the size of frequency-domain resource allocation of the second type of control information in the CSS is determined based on the common frequency resource before the size of frequency-domain resource allocation of the first type of control information in the USS is determined based on the common frequency resource; or
    the size of frequency-domain resource allocation of the first type of control information  in the USS is based on the common frequency resource before the size of frequency-domain resource allocation of the second type of control information in the CSS is determined based on the common frequency resource.
  9. A method for wireless communication, comprising:
    configuring, by a base station, one or more control information formats, wherein the one or more control information formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI, and wherein the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size the first type of control information; and
    transmitting, by the base station, the configured control information to the terminal device.
  10. A method for wireless communication, comprising:
    monitoring, by a terminal device, one or more control information formats from a base station, wherein the one or more control formats comprise a first type of control information with cyclic redundancy check (CRC) scrambled by a first Radio Network Temporary Identifier (RNTI) and a second type of control information with CRC scrambled by a second RNTI, and wherein the one or more control information formats conform to a rule specifying that a size of the second type of control information is determined independently from a size of the first type of control information; and
    performing, by the terminal device, a data transmission with the base station based on the configured control information.
  11. The method of claim 9 or 10, wherein a size of frequency-domain resource allocation of the second type of control information is determined based on a common frequency resource.
  12. The method of any of claims 9 to 11, wherein the format of the first type of control information and the format of the second type of control information are same and bit fields of  the first type control of information and bit fields of the second type of control information are same.
  13. The method of claim 12, wherein the size of the second type of control information is different than the size of the first type of control information, and wherein the size of the second type of control information is classified in a different category than the first type of control information for the size limitation requirement of the one or more control information formats.
  14. The method of claim 12, wherein, in case the size of the second type of control information is classified in the same category as the first type of control information, the rule further specifies that the configured control information includes a single set of non-fallback formats.
  15. The method of claim 14, wherein the single set of the non-fallback formats comprise a Downlink Control Information (DCI) format 0_1 and a DCI format 1_1, or a DCI format 0_2 and a DCI format 1_2.
  16. The method of any of claims 4 or 12, wherein the size of the first type of control information and the size of the second type of control information is aligned to a reference size.
  17. The method of any of claims 1, 2, 9 or 10, wherein the format the first type of control information and the format the second type of control information are different, and wherein the size of the first type of control information and the size of the second type of control information is aligned to a reference size.
  18. The method of claim 16 or 17, wherein the reference size is determined based on one of:
    a value configured by a high layer signaling;
    the size of the second type of control information; or
    a maximum size of the first type of control information common to a group of terminal devices.
  19. A communication apparatus, comprising a processor configured to implement a method recited in any one or more of claims 1 to 18.
  20. A computer program product having code stored thereon, the code, when executed by a processor, causing the processor to implement a method recited in any one or more of claims 1 to 18.
PCT/CN2021/071852 2021-01-14 2021-01-14 Downlink control information alignment WO2022151204A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/071852 WO2022151204A1 (en) 2021-01-14 2021-01-14 Downlink control information alignment
CN202180069745.1A CN116420406A (en) 2021-01-14 2021-01-14 Downlink control information alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071852 WO2022151204A1 (en) 2021-01-14 2021-01-14 Downlink control information alignment

Publications (1)

Publication Number Publication Date
WO2022151204A1 true WO2022151204A1 (en) 2022-07-21

Family

ID=82447860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071852 WO2022151204A1 (en) 2021-01-14 2021-01-14 Downlink control information alignment

Country Status (2)

Country Link
CN (1) CN116420406A (en)
WO (1) WO2022151204A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160100422A1 (en) * 2014-10-01 2016-04-07 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
US20180324768A1 (en) * 2017-05-04 2018-11-08 Sharp Laboratories Of America, Inc. SYSTEMS AND METHODS FOR SUPPORTING MULTIPLE ALLOCATIONS IN UL/DL GRANT FOR A 5G NR UE AND gNB
US20190029006A1 (en) * 2016-01-29 2019-01-24 Panasonic Intellectual Property Corporation Of America Enodeb, user equipment and wireless communication method
WO2019215704A1 (en) * 2018-05-11 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Configurable dci formatting indicator
US20200120649A1 (en) * 2015-07-14 2020-04-16 Motorola Mobility Llc Method and apparatus for transmitting in resource blocks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160100422A1 (en) * 2014-10-01 2016-04-07 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
US20200120649A1 (en) * 2015-07-14 2020-04-16 Motorola Mobility Llc Method and apparatus for transmitting in resource blocks
US20190029006A1 (en) * 2016-01-29 2019-01-24 Panasonic Intellectual Property Corporation Of America Enodeb, user equipment and wireless communication method
US20180324768A1 (en) * 2017-05-04 2018-11-08 Sharp Laboratories Of America, Inc. SYSTEMS AND METHODS FOR SUPPORTING MULTIPLE ALLOCATIONS IN UL/DL GRANT FOR A 5G NR UE AND gNB
WO2019215704A1 (en) * 2018-05-11 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Configurable dci formatting indicator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Summary of email discussion [100e-NR-L1enh_URLLC_PDCCH-01] on remaining issues on DCI format", 3GPP DRAFT; R1-2001404, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20200224 - 20200306, 6 March 2020 (2020-03-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051860450 *

Also Published As

Publication number Publication date
CN116420406A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US9407412B2 (en) Method, apparatus and system for receiving and sending scheduling information
US11394504B2 (en) Method and apparatus for uplink transmission
US11943065B2 (en) Techniques for reliable cellular communication
US20180279341A1 (en) Systems and methods for accommodating specific user equipments
US8578047B2 (en) Methods and systems for resource allocation
WO2021109459A1 (en) Resource determination in wireless communications
US20220360399A1 (en) Reference signaling design and configuration
CN111294960A (en) Method and device for identifying downlink control information
US10492172B2 (en) System information block enhancements
US20230209565A1 (en) Methods and systems for determining downlink control information in wireless networks
US20230179346A1 (en) Codebook design for multimedia broadcast multicast services (mbms)
US20220393717A1 (en) Flexible frequency hopping
WO2022151204A1 (en) Downlink control information alignment
WO2021003596A1 (en) Reducing unsuccessful paging
US20240098729A1 (en) Methods and systems for determining control information in wireless networks
US20240098755A1 (en) Methods and systems for determining control message format in wireless networks
US11510250B2 (en) Generating a scrambled payload using an initialization scrambling sequence
WO2022077300A1 (en) Scheduling multicast and broadcast services
US20220312536A1 (en) Transmitting radio resource control information
WO2024031474A1 (en) Physical layer scheduling for extended reality applications
JP7365399B2 (en) Base stations, terminals, and communication methods
WO2024026868A1 (en) Sidelink communication coexistence method and apparatus
WO2022151363A1 (en) Time domain resource allocation for non-terrestrial networks
CN116250184A (en) Method for beam switching and uplink control information transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 16/11/2023 )