WO2022151057A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2022151057A1
WO2022151057A1 PCT/CN2021/071524 CN2021071524W WO2022151057A1 WO 2022151057 A1 WO2022151057 A1 WO 2022151057A1 CN 2021071524 W CN2021071524 W CN 2021071524W WO 2022151057 A1 WO2022151057 A1 WO 2022151057A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
message
indication information
radio bearer
information
Prior art date
Application number
PCT/CN2021/071524
Other languages
English (en)
French (fr)
Inventor
毛颖超
郭英昊
胡力
常俊仁
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/071524 priority Critical patent/WO2022151057A1/zh
Publication of WO2022151057A1 publication Critical patent/WO2022151057A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present application relate to the field of wireless communications, and, more particularly, to methods and apparatuses for data transmission.
  • the small data transmission technology on the RRC-based shared configuration authorization (configured grant, CG) resource can be used, that is, the terminal device uses the radio resource control resume request (radio resource control resume request, RRCR ResumeRequest) plus
  • the uplink data is sent to the network device in the form of an uplink message.
  • the data volume of small data is relatively large, one uplink message is not enough to transmit all small data, or the same service continuously generates small data that needs to be sent, you need to repeat the above RRC recovery request plus The way of uplink data reduces the transmission efficiency.
  • the RRC recovery request in each uplink message will carry the same information for identity verification, such as the recovery integrity message authentication code resumeMAC-I.
  • identity verification such as the recovery integrity message authentication code resumeMAC-I.
  • This information is repeatedly transmitted to the access device, and there is a risk of replay. This further affects the security of small data transmission on CG resources.
  • the present application provides a method and apparatus for data transmission, which can enable a terminal device in a disconnected state to send data on CG resources more efficiently and securely.
  • a method for data transmission is provided, the method can be performed by a terminal device or a module (such as a circuit) configured in the terminal device, the method includes: sending a first message, where the first message includes a radio resource control RRC The recovery request and the first uplink data, wherein the RRC recovery request is sent through the first signaling radio bearer SRB0; the second signaling radio bearer with the access device is recovered, wherein the second signaling radio bearer includes SRB1, SRB2 or SRB1 and SRB2; sending a second message, where the second message includes second uplink data and identity information, wherein the identity information is sent to the access device through the restored second signaling radio bearer.
  • RRC radio resource control
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent
  • the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal device of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the terminal device is in a disconnected state, more specifically, in an inactive state.
  • the RRC restoration request includes: the wireless network temporary identifier I-RNTI, the restoration cause Resume Cause and the restoration integrity message authentication code ResumeMAC-1, wherein the restoration integrity message authentication code ResumeMAC-1 is used to identify the terminal device. identification, wherein the recovery integrity message authentication code is the lower 16 bits of the integrity message authentication code MAC-I.
  • the method further includes: receiving the first indication information, and restoring the second signaling radio bearer with the access device, including: restoring the second signaling radio bearer according to the first indication information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the first message further includes second indication information, where the second indication information is used to indicate the second uplink data to be transmitted, and the second indication message is sent through the first signaling radio bearer SRB0 .
  • the first uplink data and the second uplink data are sent to the access device through the data radio bearer DRB.
  • the method further includes: receiving third indication information from the access device, where the third indication information is used to instruct the next hop chain of the terminal device to calculate the NCC value, and encrypt the second uplink data according to the NCC value.
  • the uplink data can be encrypted by using the NCC value, thereby further improving the security of information transmission.
  • the method further includes: sending non-access stratum NAS signaling to the access device through the second signaling radio bearer SRB2, where the NAS signaling includes positioning information, and the positioning information is used by the access device to determine the terminal device s position.
  • the NAS signaling further includes identity information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the method further includes: starting a timer, and before the timer expires, not using the CG timing corresponding to the configured authorized CG resource to send the second message, or, according to the access
  • the fourth indication information of the device sends the second message by using the CG occasion corresponding to the CG resource.
  • using the CG opportunity corresponding to the CG resource to send the second message includes: according to the fourth indication information of the access device, using the first CG opportunity corresponding to the CG resource to send the second message, Or, according to the fourth indication information of the access device, the second message is sent by using the second CG occasion corresponding to the CG resource, where the first CG occasion is different from the second CG occasion.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the method further includes: receiving fifth indication information, where the fifth indication information is used to instruct to end the data transmission process.
  • the fifth indication information further includes the NCC value; according to the fifth indication information, the second signaling radio bearer and the data radio bearer DRB are suspended.
  • a method for data transmission is provided, the method can be performed by an access device or a module (such as a circuit) configured in the access device, the method includes: receiving a first message, where the first message includes radio resource control The RRC recovery request and the first uplink data, wherein the RRC recovery request is received through the first signaling radio bearer SRB0; the second signaling radio bearer with the terminal device is recovered, wherein the second signaling radio bearer includes SRB1, SRB2 or SRB1 and SRB2; receiving a second message, where the second message includes second uplink data and identity information, wherein the identity information is received from the terminal device through the second signaling radio bearer.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent
  • the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal device of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the terminal device is in a disconnected state, more specifically, in an inactive state.
  • the RRC restoration request includes: the wireless network temporary identifier I-RNTI, the restoration cause Resume Cause and the restoration integrity message authentication code ResumeMAC-1, wherein the restoration integrity message authentication code ResumeMAC-1 is used to identify the terminal equipment,
  • the recovery integrity message authentication code is the lower 16 bits of the integrity message authentication code MAC-I.
  • the method further includes: sending first indication information, where the first indication information is used to instruct the terminal device to restore the second signaling radio bearer.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2. It avoids sending the same recovery integrity message authentication code ResumeMAC-I for identity authentication every data transmission, thereby avoiding the risk of replaying identity authentication information and improving the security of data transmission.
  • the first message further includes second indication information, where the second indication information is used to indicate the second uplink data to be transmitted, and the second indication message is received through the first signaling radio bearer SRB0 .
  • the first uplink data and the second uplink data are received through a data radio bearer DRB.
  • the method further includes: sending third indication information to the terminal equipment, where the third indication information is used to instruct the terminal equipment to calculate an NCC value in the next hop chain, wherein the NCC value is used by the terminal equipment to perform the second uplink data encryption.
  • the uplink data can be encrypted by using the NCC value, thereby further improving the security of information transmission.
  • the method further includes: receiving non-access stratum NAS signaling from the terminal device through the second signaling radio bearer SRB2, where the NAS signaling includes positioning information, and the positioning information is used to determine the location of the terminal device.
  • the NAS signaling further includes identity information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the method further includes: sending fourth indication information to the terminal device, where the fourth information is used to instruct the terminal device to send the second message using the CG timing corresponding to the configured authorized CG resource, Or, the fourth information is used to instruct the terminal device not to use the CG occasion corresponding to the CG resource to send the second message.
  • the fourth information is used to instruct the terminal device to use the CG opportunity corresponding to the configured authorized CG resource to send the second message, including: the fourth indication information is used to instruct the terminal device to use the first CG opportunity corresponding to the CG resource to send the second message of the terminal device.
  • the message and another terminal device use the second CG occasion corresponding to the CG resource to send the message of the other terminal device, wherein the terminal device is different from the other terminal device, and the first CG occasion is different from the second CG occasion.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the method further includes: sending fifth indication information to the terminal device, where the fifth indication information includes an NCC value, wherein the fifth indication information is used to instruct the terminal device to suspend the second signaling radio bearer and the data radio bearer DRB.
  • a data transmission device including: a transceiver unit configured to send a first message, where the first message includes a radio resource control RRC recovery request and first uplink data, wherein the wireless The bearer SRB0 sends an RRC recovery request; the processing unit is used to recover the second signaling radio bearer with the access device, wherein the second signaling radio bearer includes SRB1 or SRB2 or SRB1 and SRB2; the transceiver unit is also used for sending The second message, where the second message includes second uplink data and identity information, wherein the identity information is sent to the access device through the recovered second signaling radio bearer.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent
  • the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal device of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the device is configured in or itself is the terminal device.
  • the transceiver unit is further configured to receive first indication information, where the first indication information is used to instruct to restore the second signaling radio bearer.
  • the processing unit is further configured to restore the second signaling radio bearer according to the first indication information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the transceiver unit is further configured to send second indication information, where the second indication information is used to indicate the second uplink data to be transmitted, and the second indication message is sent through the first signaling radio bearer SRB0.
  • the transceiver unit is further configured to send the first uplink data and the second uplink data to the access device through the data radio bearer DRB.
  • the transceiver unit is further configured to receive third indication information, where the third indication information is used to instruct the next hop chain of the terminal device to calculate the NCC value, and correspondingly, the processing unit is configured to, according to the NCC value, Upstream data encryption.
  • the uplink data can be encrypted by using the NCC value, thereby further improving the security of information transmission.
  • the transceiver unit is further configured to send non-access stratum NAS signaling to the access device through the second signaling radio bearer SRB2, where the NAS signaling includes positioning information, and the positioning information is used by the access device to determine The location of the end device.
  • the NAS signaling further includes identity information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2. It avoids sending the same recovery integrity message authentication code ResumeMAC-I for identity authentication every data transmission, thereby avoiding the risk of replaying identity authentication information and improving the security of data transmission.
  • the processing unit is further configured to: start a timer, and before the timer expires, do not use the CG timing corresponding to the configured authorized CG resource to send the second message, or, according to the The fourth indication information of the access device sends the second message by using the CG occasion corresponding to the CG resource.
  • using the CG opportunity corresponding to the CG resource to send the second message includes: according to the fourth indication information of the access device, using the first CG opportunity corresponding to the CG resource to send the second message, Or, according to the fourth indication information of the access device, the second message is sent by using the second CG occasion corresponding to the CG resource, where the first CG occasion is different from the second CG occasion.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send data on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the transceiver unit is further configured to receive fifth indication information, where the fifth indication information is used to instruct to end the data transmission process, and the fifth indication information further includes an NCC value.
  • the processing unit is further configured to suspend the second signaling radio bearer and the data radio bearer DRB according to the fifth indication information.
  • each unit in the apparatus is respectively configured to execute each step of the above-mentioned first aspect and the communication method in each implementation manner of the first aspect.
  • the apparatus is a communication circuit, which may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device that may include a transmitter for transmitting information or data and a receiver for receiving information or data.
  • a data transmission device including: a transceiver unit configured to receive a first message, where the first message includes a radio resource control RRC recovery request and first uplink data, wherein the radio bearer is transmitted through the first signaling SRB0 receives the RRC recovery request; the processing unit is configured to recover the second signaling radio bearer with the terminal device, wherein the second signaling radio bearer includes SRB1, SRB2 or SRB1 and SRB2; the transceiver unit is further configured to receive the second signaling radio bearer message, the second message includes second uplink data and identity information, wherein the identity information is received from the terminal device through the second signaling radio bearer.
  • the terminal device in the non-connected state needs to continue to send uplink small data after sending a small data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, And the identity information is sent on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal device of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2. It avoids sending the same recovery integrity message authentication code ResumeMAC-I for identity authentication every data transmission, thereby avoiding the risk of identity authentication information replay and improving the security of data transmission.
  • the device is configured in or itself is the access device.
  • the transceiver unit is further configured to send first indication information, where the first indication information is used to instruct the terminal device to restore the second signaling radio bearer.
  • the terminal device in the non-connected state when the terminal device in the non-connected state needs to continue to send uplink small data after sending a small data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, And the identity information is sent on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the transceiver unit is further configured to receive second indication information, where the second indication information is used to indicate the second uplink data to be transmitted, and the second indication message is wirelessly transmitted through the first signaling Bearer SRB0 is received.
  • the transceiver unit is further configured to receive the first uplink data and the second uplink data through the data radio bearer DRB.
  • the transceiver unit is further configured to send third indication information to the terminal device, where the third indication information is used to instruct the terminal device to calculate an NCC value in the next hop chain, where the NCC value is used by the terminal device to encrypt the second uplink data.
  • the uplink data can be encrypted by using the NCC value, thereby further improving the security of information transmission.
  • the transceiver unit is further configured to receive non-access stratum NAS signaling from the terminal device through the second signaling radio bearer SRB2, where the NAS signaling includes positioning information, and the positioning information is used to determine the location of the terminal device.
  • the NAS signaling further includes identity information.
  • the terminal device in the non-connected state when the terminal device in the non-connected state needs to continue to send uplink small data after sending a small data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, And the identity information is sent on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the transceiver unit is further configured to send fourth indication information to the terminal device, where the fourth information is used to instruct the terminal device to send the second message using the CG timing corresponding to the configured authorized CG resource , or, the fourth information is used to instruct the terminal device not to use the CG occasion corresponding to the CG resource to send the second message.
  • the fourth information is used to instruct the terminal device to use the CG opportunity corresponding to the configured authorized CG resource to send the second message, including: the fourth indication information is used to instruct the terminal device to use the first CG opportunity corresponding to the CG resource to send the second message of the terminal device.
  • the message and another terminal device use the second CG occasion corresponding to the CG resource to send the message of the other terminal device, wherein the terminal device is different from the other terminal device, and the first CG occasion is different from the second CG occasion.
  • the terminal device in the non-connected state when the terminal device in the non-connected state needs to continue to send uplink small data after sending a small data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, And the identity information is sent on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the transceiver unit is further configured to send fifth indication information to the terminal device, where the fifth indication information includes an NCC value, wherein the fifth indication information is used to instruct the terminal device to suspend the second signaling radio bearer and the data radio. Bearing DRB.
  • each unit in the apparatus is respectively configured to execute each step of the communication method in the above-mentioned second aspect and each implementation manner of the second aspect.
  • the apparatus is a communication circuit, which may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device that may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a data transmission device comprising: a processor, a memory, the memory for storing a computer program, and the processor for calling and running the computer program from the memory, so that the communication device executes the first aspect and the A data transmission method in any of the second aspects and various implementations thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device further includes a transmitter (transmitter) and a receiver (receiver).
  • a data transmission system including a terminal device and an access device.
  • the terminal device is used to indicate the method of each implementation manner in the foregoing first aspect
  • the access device is used to indicate the method of each implementation manner in the foregoing second aspect.
  • the data transmission system may further include other devices that interact with the data transmission device in the solutions provided in the embodiments of the present application.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes the computer to execute the above-mentioned first to sixth aspects A method of any of the two aspects and possible implementations thereof.
  • a computer-readable medium stores a computer program (also referred to as code, or instruction), when it runs on a computer, causing the computer to execute the above-mentioned first aspect to sixth A method of any of the two aspects and possible implementations thereof.
  • a computer program also referred to as code, or instruction
  • a circuit system comprising a memory and a processor, the memory is used for storing a computer program, and the processor is used for calling and running the computer program from the memory, so that the communication device installed with the circuit system executes the above-mentioned A method of any of the first to second aspects and possible implementations thereof.
  • the circuit system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • FIG. 1 is a schematic configuration diagram of an example of the communication system of the present application.
  • FIG. 2 is a schematic interaction diagram of an example of a wireless communication process in the prior art of the present application.
  • FIG. 3 is a schematic interaction diagram of an example of a wireless communication process of the present application.
  • FIG. 4 is another example of a schematic interaction diagram of the wireless communication process of the present application.
  • FIG. 5 is a schematic interaction diagram of another example of the wireless communication process of the present application.
  • FIG. 6 is a schematic interaction diagram of an example of the wireless communication process of the present application.
  • FIG. 7 is another schematic interaction diagram of the wireless communication process of the present application.
  • FIG. 8 is a schematic interaction diagram of another example of the wireless communication process of the present application.
  • FIG. 9 is a schematic structural diagram of an example of a data transmission apparatus of the present application.
  • FIG. 10 is a schematic structural diagram of another example of the data transmission device of the present application.
  • FIG. 11 is a schematic structural diagram of an example of a terminal device of the present application.
  • FIG. 12 is a schematic structural diagram of an example of an access device of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnection microwave access
  • WiMAX the future fifth 5th generation
  • NR vehicle-to-other equipment
  • V2X can include vehicle-to-network (V2N), vehicle-to-vehicle (V2X) Vehicle to Vehicle (V2V), Vehicle to
  • FIG. 1 shows a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the communication system 100 of the present application may include an access device 101 , a terminal device 102 , and a terminal device 103 .
  • the terminal equipment in the embodiments of the present application may also be referred to as: user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, subscriber unit, subscriber station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • user equipment user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal subscriber unit, subscriber station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (mobile internet device, M ID), wearable device, virtual reality (virtual reality, VR) device, Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid (smart gr Wireless terminals in identification), wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols Session initiation protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or other devices connected to wireless modems Processing equipment, vehicle-mounted equipment, wearable equipment, terminal equipment in the future 5G network or terminal equipment in the future evolved public land mobile network (
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the access device in this embodiment of the present application may be a device used to communicate with a terminal device, and the access device may also be referred to as an access network device or a wireless access network device, for example, the access device may be an LTE system
  • the evolved base station (evolved NodeB, eNB or eNodeB) in the network can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the access device can be a relay station, access point, Vehicle-mounted devices, wearable devices, access devices in future 5G networks or access devices in future evolved PLMN networks, etc., can be access points (access points, APs) in WLAN, or new wireless systems (new wireless systems).
  • the gNB in the radio, NR) system is not limited in this embodiment of the present application.
  • the access device is a device in the RAN, or in other words, is a RAN node that accesses the terminal device to the wireless network.
  • gNB transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B, NB
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • HNB Home Base Station
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU-UP nodes user plane CU nodes
  • the access device provides services for the cell, and the terminal device communicates with the access device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may correspond to the access device (for example, a base station).
  • a cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), millicell Femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system may further include core network equipment, the core network equipment may be connected with a plurality of access network equipment for controlling the access network equipment, and may distribute data received from the network side (eg, the Internet) to access network equipment.
  • the network side eg, the Internet
  • Random Access Channel Random Access Channel
  • CG-Based Pre-Configured Granted CG resource-based transmissions
  • RACH-based Random Access Channel
  • CG-Based Pre-Configured Granted CG resource-based transmissions
  • CG Type1 CG Type 1
  • a CG Type1 resource is a shared resource, it is a contention-based transmission.
  • the access device gNB can successfully decode it.
  • the gNB needs to determine the UE information and perform UE identity verification. Therefore, an uplink (uplink, UL) message sent by the UE to the base station needs to carry the UE identity identifier and identity authentication information.
  • the terminal device 102 may send uplink small data to the access device 101 through the DRB.
  • the terminal device 102 sends a first message to the access device 101, where the first message includes a radio resource control RRC recovery request and first uplink data.
  • the RRC recovery request includes: wireless network temporary identifier (inactive-radio network temporary identifier, I-RNTI), recovery cause (resume cause) and recovery integrity message authentication code (resume message authentication code for integrity, ResumeMAC-I),
  • the ResumeMAC-I is used for the access device 101 to identify and verify the terminal device 102 .
  • the terminal device 102 sends the RRC recovery request through the signaling radio bearer SRB0, and sends the first uplink data through the data radio bearer DRB.
  • the terminal device 102 can also derive a new security key according to the next hop chain calculation (NextHopChainingCount, NCC) provided in the RRC release (RRCRelease) message of the previous connection, and re-establish the access stratum (access stratum, AS) security sex.
  • NCC next hop chain calculation
  • the terminal device 102 uses the stored security key to calculate resumeMAC-I for RRC integrity protection, derives the new key using the NCC value provided in the RRCRelease message of the previous connection and the stored security context, uses the new key for data sent through the DRB. Key encryption.
  • the above-mentioned ResumeMAC-I may be the lower 16 bits of the integrity message authentication code (MAC-I). That is, the relative position of the ResumeMAC-I in the RRC recovery request is basically fixed, so a third-party device can obtain the ResumeMAC-I, which may cause a risk of replay, which in turn affects the security of data transmission.
  • MAC-I integrity message authentication code
  • the access device 101 identifies the terminal device context according to the RRC resume request, and verifies the identity through ResumeMAC-I.
  • the terminal device 102 After the terminal device 102 has sent the first uplink data, if there is still subsequent small data to be sent, such as the second uplink data, the terminal device 102 will repeat the step of S220, that is, the second uplink data is sent by the RRC recovery request plus the uplink data. Upstream news.
  • the terminal device 102 When the terminal device 102 has no data to transmit, for example, the terminal device 102 informs the access device 101 that no subsequent data needs to be transmitted by means of a data buffer report carried in the uplink message, or the access device 101 does not receive the terminal within a certain period of time. Device 102 has an indication of a subsequent data transfer. Then at S240, the access device 101 sends an RRCRelease message with a suspension indication to end the small data transmission process.
  • a third-party device may be referred to as an "attack UE” obtains the resumeMAC-I of the terminal device 102, which can carry the obtained resumeMAC -I sends uplink data to the access device 101, and the access device determines that the "attack UE" is the
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to execute the methods provided by the embodiments of the present application. It is enough to communicate.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program; or can be used in a terminal device. or components of network equipment (eg chips or circuits).
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), card, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 3 shows an example of a schematic interaction diagram of a wireless communication process according to an embodiment of the present application.
  • an RRC resume request (which may include ResumeMAC-1 for identity authentication) is carried through SRB0 when small data is sent for the first time (ie, the following "first message")
  • Subsequent small data transmissions no longer pass through SRB0, but instead transmit the identity information through the additionally restored SRB1 or SRB2. This can improve data transmission efficiency and security.
  • the terminal device 102 sends a first message, where the first message includes a radio resource control RRC recovery request and first uplink data, wherein the RRC recovery request is sent through the first signaling radio bearer SRB0.
  • the above-mentioned terminal device 102 is in a disconnected state, for example, in an inactive state.
  • the terminal device 102 may be an example of the terminal device 102 or 103 shown in FIG. 1 , and step S310 may be similar to step S220 of FIG. 2 .
  • the RRC recovery request may include: I-RNTI, recovery reason, and ResumeMAC-I, where ResumeMAC-I is used by the access device 101 to identify the terminal device 102, where the ResumeMAC-I is the integrity message authentication code MAC- The lower 16 bits of I.
  • the first message may further include indication information for indicating that there is still second uplink data, and the indication information is also sent through the above-mentioned first signaling radio bearer SRB0.
  • the indication information may be a status buffer report (buffer status report, BSR), or may be release assistance indication (RAI), the indication information may indicate whether there is a subsequent transmission, and further, It can indicate the number of subsequently transmitted data packets or the amount of subsequently transmitted data.
  • the access device 101 identifies the terminal device context according to the RRC resume request, and verifies the identity of the terminal device 102 through ResumeMAC-I.
  • the terminal device 102 restores the second signaling radio bearer with the access device 101, where the second signaling radio bearer may include SRB1, SRB2, or SRB1 and SRB2.
  • the terminal device 102 can restore only SRB1, or only SRB2, or can restore both SRB1 and SRB2.
  • the terminal device 102 can restore the second signaling radio bearer by itself, for example, when initiating a small data transmission process or when sending an RRCResumeRequest, or when determining that there is subsequent small data that needs to continue to be transmitted; or, the terminal device 102 can After receiving the indication information that the access device 101 instructs to restore the second signaling radio bearer, the second signaling radio bearer is restored according to the indication information.
  • the terminal device sends a second message, where the second message includes second uplink data and identity information, wherein the identity information is sent through the recovered second signaling radio bearer.
  • both the first uplink data and the second uplink data are sent through the data radio bearer DRB, and the terminal device can also derive a new key according to the NCC value in the RRC release message of the previous connection and the stored security context, Encrypt the first uplink data; in the same way, before sending the second uplink data, the terminal device can receive the third indication information containing the new NCC value from the access device, and adopt the same method, according to the new NCC value, The second uplink data is encrypted, or the second data is encrypted by a new key generated through horizontal key derivation.
  • the count value COUNT calculated by the MAC-I of the DRB for integrity protection is incremented by one each time the data is transmitted.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal equipment of the present application sends the identity information on the recovered signaling radio bearer SRB1/SRB2, so that the RRC message or RRC signaling that only contains the terminal equipment identity information can be processed through the encryption and integrity protection information of SRB1 or SRB2. for security protection.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • FIG. 4 shows another example of a schematic interaction diagram of the wireless communication process of the present application.
  • the terminal device 102 initiates a small data transmission process, and the terminal device 102 restores the data radio bearer DRB.
  • the terminal device 102 sends a first message, where the first message includes a radio resource control recovery request and first uplink data, wherein the RRC recovery request is sent to the access device 101 through the signaling radio bearer SRB0.
  • the access device 101 identifies the context of the terminal device 102, and verifies the identity of the terminal device 102. Steps S410 , S420 and S430 are similar to steps S210 , S220 and S230 in FIG. 2 above, and are not described in detail to avoid repetition.
  • the access device 101 sends indication information to the terminal device 102 indicating that the signaling radio bearer SRB1 is resumed or maintained, which may be referred to as the first indication information. It should be understood that if the terminal device 102 has not resumed the signaling radio bearer SRB1 before this step, the first indication information is the indication information instructing the terminal device 102 to resume the signaling radio bearer SRB1.
  • the terminal device The signaling radio bearer SRB1 is restored according to the first indication information; if the terminal device 102 has restored the signaling radio bearer SRB1 before this step, for example, when initiating the small data transmission process, the first indication information should be an indication
  • the terminal device 102 maintains the indication information of the signaling radio bearer SRB1, or may not send the first indication information.
  • the indication information is carried in the radio resource control release RRCRelease message, or may be carried in a new downlink RRC message defined by the access device, and the message is sent to the terminal device 102 through the signaling radio bearer SRB1.
  • the indication information is carried in a new downlink RRC message defined by the access device, and the RRC message is sent to the terminal device 102 through the radio bearer SRB1 or SRB0, wherein the newly defined downlink RRC message includes the terminal device identity. information.
  • the radio resource control release message or the newly defined downlink RRC message can also indicate that the terminal device 102 is successfully verified, can continue to send subsequent data, and at the same time instruct the terminal device 102 to keep the DRB not released or suspended.
  • the message may further include third indication information, where the third indication information is used to instruct the terminal device to calculate the NCC value of the next hop chain of the security calculation.
  • the access device may send encrypted downlink data to the terminal device terminal device 102 on the data radio bearer DRB while sending the message.
  • the terminal device 102 sends a second message, where the second message includes the identity information and the second uplink data, wherein the identity information is sent to the access device through the signaling radio bearer SRB1.
  • the identity information of the terminal device 102 is carried in a new RRC message, the message is generated by the terminal device 102 and the message only contains the identity information of the terminal device 102 .
  • the terminal device 102 sends encrypted uplink data to the access device on the data radio bearer DRB while sending the RRC message.
  • the above-mentioned new RRC message and encrypted uplink data may be sent to the access device together at the next available CG opportunity, or may be sent to the access device at the designated CG opportunity according to the fourth indication information of the access device. sent together to the access device.
  • the access device verifies the UE identity information and receives uplink data.
  • each uplink data sent by the terminal device 102 to the access device may also include second indication information, where the indication information is used to indicate the amount of remaining data or whether there is subsequent data to be transmitted, which is an example and not a limitation , the indication information may be a data cache report.
  • the access device sends fifth indication information indicating the end of the small data transmission process, wherein the fifth indication information is a radio resource control release RRCRelease message, wherein the fifth indication information is further
  • the terminal device 102 may be instructed to suspend the signaling radio bearer SRB1.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal equipment of the present application sends the identity information on the recovered signaling radio bearer SRB1/SRB2, so that the RRC message or RRC signaling that only contains the terminal equipment identity information can be processed through the encryption and integrity protection information of SRB1 or SRB2. for security protection.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • FIG. 5 shows another example of a schematic interaction diagram of the wireless communication process of the present application.
  • the terminal device 102 initiates a small data transmission process to restore the data radio bearer DRB.
  • the terminal device 102 sends a first message, where the first message includes a radio resource control recovery request RRCResumeRequest and first uplink data, wherein the RRC recovery request is sent to the access device through the signaling radio bearer SRB0.
  • the access device 101 identifies the context of the terminal device 102, and verifies the identity of the terminal device 102. Steps S510 , S520 and S530 are similar to steps S210 , S220 and S230 in FIG. 2 above, and are not described in detail to avoid repetition.
  • the access device 101 sends indication information to the terminal device 102 for resuming or maintaining the signaling radio bearer SRB2, which may be referred to as first indication information, wherein the first indication information may also indicate resuming or maintaining the signaling radio bearer SRB2. Bears SRB1.
  • the first indication information should be to instruct the terminal device 102 to restore the signaling radio bearer SRB2.
  • the terminal device according to the The first indication information restores SRB2; if the terminal device 102 has restored the signaling radio bearer SRB2 before this step, the indication information should be the indication information that instructs the terminal device 102 to keep the signaling radio bearer SRB2, or may not Send the first indication information.
  • the indication information is carried in the radio resource control release RRCRelease message, or may be carried in a new downlink RRC message defined by the access device, and the message is sent to the terminal device 102 through the signaling radio bearer SRB1.
  • the indication information is carried in a new downlink RRC message defined by the access device, and the RRC message is sent to the terminal device 102 through the radio bearer SRB1 or SRB0, wherein the newly defined downlink RRC message includes the terminal device identity identification information).
  • the radio resource control release message or the new RRC message can also indicate that the terminal device 102 is successfully verified, can continue to send subsequent data, and at the same time instruct 102 to keep the DRB not released or suspended.
  • the message may further include third indication information, where the third indication information is used to instruct the terminal device to calculate the NCC value of the next hop chain of the security calculation.
  • the access device may send encrypted downlink data to the terminal device 102 on the data radio bearer DRB while sending the message.
  • the terminal device 102 sends a second message including NAS signaling, wherein the NAS signaling includes positioning information, where the positioning information may be a position measurement result, wherein the second message is sent to the access device on the signaling radio bearer SRB2
  • the NAS signaling further includes the identity information of the terminal device 102 .
  • the terminal device 102 sends a second message, where the second message includes NAS signaling and second uplink data, wherein the NAS signaling includes positioning information, where the positioning information may be a position measurement result, wherein the signaling radio bearer SRB2 Send the NAS signaling to the access device.
  • the NAS signaling further includes the identity information of the terminal device 102 .
  • the location information may be a provided location information message (provied location information, LPP).
  • LPP provided location information
  • the NAS signaling may also be transmitted on the signaling radio bearer SRB1.
  • the terminal device 102 may send encrypted uplink data to the access device on the data radio bearer DRB while sending the NAS signaling.
  • the above-mentioned new NAS signaling may be sent to the access device together at the next CG opportunity, or may be sent to the access device according to Chapter 4 instruction information of the access device. , and sent to the access device together at the specified CG occasion.
  • the access device verifies the UE identity and receives the second message.
  • each uplink data sent by the terminal device 102 to the access device may further include second indication information, where the second indication information is used to indicate the amount of remaining data or whether there is subsequent data to be transmitted.
  • the second indication information may be a data cache report.
  • the access device When the access device determines that there is no subsequent data to be transmitted, then, in S570, the access device sends fifth indication information indicating the end of the small data transmission process, where the fifth indication information may be a radio resource control release RRCRelease message, wherein , the fifth indication information may also instruct the terminal device 102 to suspend the signaling radio bearers SRB1 and SRB2.
  • the fifth indication information may be a radio resource control release RRCRelease message, wherein , the fifth indication information may also instruct the terminal device 102 to suspend the signaling radio bearers SRB1 and SRB2.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request will carry the same information for authentication, such as resumeMAC-I information, which is repeatedly transmitted to the access equipment, there will be a risk of replay, which will affect the security of small data transmission on CG resources.
  • the terminal device of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the above embodiment shows a process in which only one UE performs small data transmission with the access device.
  • transmission as shown in Figure 6:
  • the terminal device 102 restores the data radio bearer DRB and the signaling radio bearer SRB1; at S611, the terminal device 103 restores the data radio bearer DRB and the signaling radio bearer SRB1.
  • both the terminal device 102 and the terminal device 103 can use the next hop chain provided in the corresponding previously connected radio resource control release RRCRelease message to calculate the NCC to derive a new security key, and re-establish the AS security key sex.
  • the resume MAC-I information in the stored key generation logical channel CCCH message can be used for RRC integrity protection; and the NCC value and the stored NCC value provided in the RRCRelease message of the corresponding previous connection can be used.
  • the security context derives a new key and encrypts the DRB data with the new key.
  • the terminal device 102 sends a first message belonging to the terminal device 102, where the first message includes the RRC recovery request of the terminal device 102 and the first uplink data of the terminal device 102, wherein the terminal device 102 is sent through the signaling radio bearer SRB0 at S621, the terminal device 103 sends a first message belonging to the terminal device 103, the first message includes the RRC recovery request of the terminal device 103 and the first uplink data of the terminal device 103, wherein the SRB0 is carried by the signaling radio bearer.
  • the RRC recovery request of the terminal device 103 is sent.
  • the above RRC resume request message includes information of the wireless network temporary identifier I-RNTI of each terminal device, resume request information and resume MAC-I information for identity authentication.
  • Terminal equipment The terminal equipment 102 and the terminal equipment 103 respectively send encrypted uplink data to the access equipment 101 on their corresponding data radio bearers DRB while sending the recovery request.
  • the access device 101 identifies the terminal device context and verifies the UE identity.
  • the access device identifies the context of the terminal device 102 according to the RRC message sent by the terminal device 102, and verifies the identity of the terminal device 102 through its corresponding resume MAC-I information;
  • the terminal device 103 context checks the identity of the terminal device 103 through its corresponding resume MAC-I information.
  • the access device 101 sends, to the terminal device 102, indication information indicating that the signaling radio bearer SRB1 is maintained, and the indication information may also indicate that subsequent CG resources are allowed for information transmission.
  • the indication information is carried in the radio resource control release RRCRelease message, or may be carried in a new downlink RRC message defined by the access device, and the message is sent to the terminal device 102 through the signaling radio bearer SRB1.
  • the indication information is carried in a new downlink RRC message defined by the access device, and the RRC message is sent to the terminal device 102 through the radio bearer SRB1 or SRB0, wherein the newly defined downlink RRC message includes the terminal device identity. information.
  • the radio resource control release message or the new downlink RRC message can also indicate that the terminal device 102 has successfully verified, and can continue to send subsequent data, and at the same time instruct the terminal device 102 to keep the DRB not released or suspended.
  • the message may further include the NCC value for the next hop chain calculation for the terminal device to perform the security calculation.
  • the access device may send encrypted downlink data to the terminal device 102 on the data radio bearer DRB while sending the message.
  • the access device sends indication information to the terminal device 103 indicating that the use of subsequent CG resources for information transmission is prohibited.
  • the indication information is carried in a radio resource control release RRCRelease message, and may also be carried in a new downlink RRC message defined by the access device.
  • the message is sent to the terminal device 103 on the signaling radio bearer SRB1.
  • the message may further include indication information for instructing the terminal device 103 to suspend the signaling radio bearer SRB1.
  • the terminal device 102 sends a second message, where the second message includes the identity information and the second uplink data, wherein the identity information is sent to the access device through the signaling radio bearer SRB1.
  • the identity information of the terminal device 102 is carried in a new RRC message, the message is generated by the terminal device 102 and the message only contains the identity information of the terminal device 102 .
  • the terminal device 102 sends encrypted uplink data to the access device on the data radio bearer DRB while sending the identity information, that is, the uplink user data is transmitted on the DTCH, and communicated with the CCCH Multiplexing of uplink RRC messages on
  • the above-mentioned new RRC message and encrypted uplink data are sent to the access device 101 together at the next CG occasion, or can be sent to the access device 101 together at the specified CG occasion according to the indication information of the access device 101.
  • Access device 101 .
  • the access device 101 verifies the identity of the terminal device 102 and receives uplink data.
  • each uplink data sent by the terminal device 102 to the access device may further include second indication information, where the second indication information is used to indicate the amount of remaining data or the subsequent data to be transmitted, as an example and not a limitation.
  • the second indication information may be a data buffer status report (BSR) or release assistance indication (RAI), the indication information may indicate whether there is a subsequent transmission, and further, may also indicate a subsequent transmission The number of data packets or the amount of data to be transmitted subsequently. .
  • the access device 101 sends fifth indication information indicating the end of the small data transmission process, where the fifth indication information may be a radio resource control release RRCRelease message, wherein the fifth indication
  • the information message may also instruct the terminal device 102 to suspend the signaling radio bearer SRB1.
  • the access device instructs that only one of the terminal devices is allowed to use CG resources for information transmission, which prevents multiple terminal devices from using the same CG resource at the same time
  • the terminal device in the non-connected state needs to continue to send uplink small data after sending a small uplink data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, and restore The identity information is sent on the signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal device of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the RRC message or RRC signaling that only contains the identity information can be secured through the encryption and integrity protection information of SRB1 or SRB2.
  • Protect The same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • FIG. 7 shows another example of a schematic interaction diagram of the wireless communication process of the present application.
  • the terminal device if the terminal device satisfies the conditions for initiating small data transmission, the terminal device initiates a small data transmission process, and at S710, the terminal device 102 restores the data radio bearer DRB and the signaling radio bearer SRB1; at S711, the terminal device 103 restores The data radio bearer DRB and the signaling radio bearer SRB1.
  • the terminal device 102 sends a first message belonging to the terminal device 102, where the first message includes the RRC recovery request of the terminal device 102 and the first uplink data of the terminal device 102, wherein the terminal device 102 is sent through the signaling radio bearer SRB0
  • the terminal device 103 sends a first message belonging to the terminal device 103, the first message includes the RRC recovery request of the terminal device 103 and the first uplink data of the terminal device 103, wherein the SRB0 is wirelessly carried by signaling.
  • the RRC recovery request of the terminal device 103 is sent.
  • the access device 101 identifies the terminal device context, and verifies the terminal device identity. Steps S710 , S720 and S711 , S721 and S730 are similar to steps S610 , S620 and S611 , S621 and S630 in FIG. 6 , and are not described in detail to avoid repetition.
  • the access device 101 sends the terminal device 102 instruction information indicating that information is transmitted at the first CG occasion.
  • the above-mentioned first CG timing may be the next available CG timing, or may be an indicated specific CG timing.
  • the access device 101 sends the terminal device 103 instruction information indicating that information is transmitted at the second CG occasion.
  • a CG resource includes a plurality of CG opportunities, and the above-mentioned first CG opportunity is a CG opportunity different from the second CG opportunity.
  • indication information may further include indication information of maintaining the signaling radio bearer SRB1.
  • the above-mentioned indication information is carried in a radio resource control release RRCRelease message, and may also be carried in a new downlink RRC message defined by the access device.
  • the message is sent to the corresponding terminal equipment on the signaling radio bearer SRB1.
  • the message can also indicate that the corresponding terminal equipment is successfully verified, and can continue to send subsequent data, and at the same time instruct the corresponding terminal equipment to keep the DRB from releasing and not suspending.
  • the message may further include the NCC value for the next hop chain calculation for the terminal device to perform the security calculation.
  • the access device 101 sends encrypted downlink data to the corresponding terminal device 102 or 103 on the data radio bearer DRB while sending the message.
  • the terminal device 102 sends a second message belonging to the terminal device 102 at the first CG opportunity, where the second message includes the identity information of the terminal device 102 and the second uplink data of the terminal device 102, wherein the wireless bearer is carried by signaling
  • the SRB1 sends the identity information of the terminal device 102 to the access device 101 .
  • the terminal device 103 sends a second message belonging to the terminal device 103 at the second CG opportunity, the second message includes the identity information of the terminal device 103 and the second uplink data of the terminal device 103, wherein the signaling
  • the radio bearer SRB1 sends the identity information of the terminal device 103 to the access device.
  • the identity information of the corresponding terminal equipment is carried in a corresponding new RRC message, the messages are generated by the terminal equipment 102 and the terminal equipment 103 respectively, and the message only contains the identity information of the corresponding terminal.
  • the access device 101 verifies the identity of each terminal device, and receives uplink data of each terminal device.
  • the uplink data sent by each terminal device to the access device each time may also include indication information, where the indication information is used to indicate the amount of remaining data or whether there is subsequent data to be transmitted, as an example.
  • the indication information may be a data cache report.
  • the access device determines that there is no subsequent data to be transmitted according to the above identification information, then, in S770 and S771, the access device sends indication information indicating the end of the small data transmission process to the corresponding terminal device, wherein the indication information is wireless Resource control releases the RRCRelease message.
  • the message may further include indication information indicating that the corresponding terminal device suspends the signaling radio bearer SRB1.
  • the access device instructs different terminal devices to transmit information at different CG timings, thereby avoiding that multiple terminal devices use the same CG resource for information transmission.
  • Information transmission is carried out at the right time, causing signal interference between different terminal devices, thereby ensuring the success rate of information transmission.
  • the terminal device in the non-connected state needs to continue to send uplink small data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, and use the restored signaling radio bearer SRB1/SRB2.
  • the identity information is sent, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal equipment of the present application sends the identity information on the recovered signaling radio bearer SRB1/SRB2, so that the RRC message or RRC signaling that only contains the terminal equipment identity information can be processed through the encryption and integrity protection information of SRB1 or SRB2. for security protection.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • FIG. 8 shows another schematic example of the wireless communication process of the present application. Interaction diagram.
  • the terminal device 102 sends an uplink message on CG occasion 1 .
  • the terminal device 102 has restored the data radio bearer DRB used for small data transmission before sending the uplink message, and the terminal device 102 can use the previously connected radio resource control to release the downlink provided in the RRCRelease message.
  • One-hop chain calculation NCC derives new security keys and re-establishes AS security.
  • the restored media access control ResumeMAC-I information in the CCCH message of the stored key generation logical channel can be used for RRC integrity protection; the new NCC value and the stored security context are derived using the NCC value provided in the RRCRelease message of the previous connection and the stored security context. , encrypt the data of DRB with the new key.
  • the terminal device 102 may also restore the signaling radio bearer SRB1 or SRB2.
  • the terminal device 102 may also restore the signaling radio bearers SRB1 and SRB2.
  • the terminal device starts a timer.
  • Start condition The terminal device sends the uplink data and starts the timer.
  • the terminal device 102 During the running of the timer, the terminal device 102 cannot use the CG opportunity to send uplink data, or the terminal device 102 performs an operation according to the instruction of the base station.
  • the timer has a fixed period, and the period may be an integer multiple of the CG period or an integer multiple of the subframe.
  • the timer period may be 2 CG occasions.
  • the access device 101 sends indication information to the terminal device 102 .
  • the above-mentioned indication information may be indication information that instructs the terminal device 102 to perform data transmission at the designated CG timing, or may be an indication that instructs the terminal device 102 to prohibit the use of subsequent CG resources for data transmission. information.
  • the terminal device performs an operation according to the indication information.
  • the terminal device stops the timer after receiving the indication information, and restarts the timer after sending the uplink message next time.
  • the access device does not send any indication to the terminal device 102, then, in S850, the terminal device 102 does not perform any operation in the period of the timer until the timer expires. That is, as shown in Figure b, when there are CG occasions 2 and 3 suitable for the terminal device 102 to perform data transmission, the terminal device 102 cannot use it without receiving an instruction.
  • the terminal device when the timer expires, can perform other services, for example, use the next available CG opportunity to send uplink data, and no longer expect a response from the access device.
  • the terminal device when multiple terminal devices need to use CG resources for information transmission, uses the CG timing in the CG resource pool to transmit information according to the instruction of the access device, thereby improving the utilization rate of CG resources and reducing services delay.
  • the terminal device in the non-connected state needs to continue to send uplink small data after sending a small uplink data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, and restore The identity information is sent on the signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal equipment of the present application sends the identity information on the recovered signaling radio bearer SRB1/SRB2, so that the RRC message or RRC signaling that only contains the terminal equipment identity information can be processed through the encryption and integrity protection information of SRB1 or SRB2. for security protection.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • FIG. 9 is a schematic diagram of an apparatus 900 for data transmission provided by an embodiment of the present application.
  • the apparatus 900 may be a terminal device (for example, the terminal device 102 or 103 ), or may be a chip or a circuit, such as a chip or a circuit that can be provided in the terminal device.
  • the apparatus 900 may include a processing unit 910 (ie, an example of a processing unit), and optionally, a storage unit 920 .
  • the storage unit 920 is used to store instructions.
  • the processing unit 910 is configured to execute the instructions stored in the storage unit 920, so that the apparatus 900 implements the steps performed by the terminal device (eg, the terminal device 102) in the above method.
  • the apparatus 900 may further include an input port 930 (ie, an example of a communication unit) and an output port 940 (ie, another example of a communication unit).
  • the processing unit 910, the storage unit 920, the input port 930 and the output port 940 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the storage unit 920 is used to store a computer program, and the processing unit 910 can be used to call and run the computer program from the storage unit 920 to complete the steps of the terminal device in the above method.
  • the storage unit 920 may be integrated in the processing unit 910, or may be provided separately from the processing unit 910.
  • the input port 930 may be a receiver
  • the output port 940 may be a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 930 is an input interface
  • the output port 940 is an output interface
  • the functions of the input port 930 and the output port 940 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processing unit 910 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processing unit or a general-purpose chip.
  • a general-purpose computer may be used to implement the data transmission device (for example, the terminal device 102 or 103 ) provided in this embodiment of the present application.
  • the program codes that will realize the functions of the processing unit 910, the input port 930 and the output port 940 are stored in the storage unit 920, and the general processing unit implements the functions of the processing unit 910, the input port 930 and the output port 940 by executing the codes in the storage unit 920. .
  • the output port 940 is configured to send a first message, where the first message includes a radio resource control RRC recovery request and first uplink data, wherein the RRC recovery request is sent through the first signaling radio bearer SRB0.
  • the processing unit 910 is configured to restore the second signaling radio bearer with the access device, where the second signaling radio bearer includes SRB1, SRB2 or SRB1 and SRB2.
  • the output port 940 is further configured to send a second message, where the second message includes second uplink data and identity information, wherein the identity information is sent to the access device through the restored second signaling radio bearer.
  • the terminal device in the disconnected state when the terminal device in the disconnected state needs to continue to send uplink small data after sending one uplink data, it can restore other signaling radio bearers except SRB0, such as SRB1 and/or SRB2, And the identity information is sent on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal equipment of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the RRC message and RRC signaling that only contain the terminal equipment identity information can be processed through the encryption and integrity protection information of SRB1 or SRB2. for security protection.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the apparatus 900 is configured in or itself is the terminal device.
  • the input port 930 is configured to receive first indication information, where the first indication information is used to instruct to restore the second signaling radio bearer.
  • the processing unit is further configured to restore the second signaling radio bearer according to the first indication information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the output port 940 is further configured to send second indication information, where the second indication information is used to indicate the second uplink data to be transmitted, and the second indication message is sent through the first signaling radio bearer SRB0.
  • the output port 940 is further configured to send the first uplink data and the second uplink data to the access device through the data radio bearer DRB.
  • the input port 930 is further configured to receive third indication information, where the third indication information is used to instruct the next hop chain of the terminal device to calculate the NCC value, and correspondingly, the processing unit is configured to, according to the NCC value, perform an operation on the second uplink. data encryption.
  • the uplink data can be encrypted by using the NCC value, thereby further improving the security of information transmission.
  • the output port 940 is further configured to send non-access stratum NAS signaling to the access device through the second signaling radio bearer SRB2, where the NAS signaling includes positioning information, and the positioning information is used by the access device to determine the terminal. The location of the device.
  • the NAS signaling further includes identity information.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the processing unit 510 is further configured to start a timer, and before the timer expires, do not use the CG timing corresponding to the configured authorized CG resource to send the second message, or, according to the access device
  • the fourth indication information is used to send the second message using the CG timing corresponding to the CG resource.
  • the input port 930 is used to receive the fourth information of the access device
  • the output port 940 is used to use the CG timing corresponding to the CG resource to send the first message. Two news.
  • using the CG opportunity corresponding to the CG resource to send the second message includes: according to the fourth indication information of the access device, using the first CG opportunity corresponding to the CG resource to send the second message, Or, according to the fourth indication information of the access device, the second message is sent by using the second CG occasion corresponding to the CG resource, where the first CG occasion is different from the second CG occasion.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the input port 930 is further configured to receive fifth indication information, where the fifth indication information is used to instruct to end the data transmission process, and the fifth indication information further includes an NCC value.
  • the processing unit 910 is further configured to suspend the second signaling radio bearer and the data radio bearer DRB according to the fifth indication information.
  • the functions and actions of the modules or units in the apparatus 900 listed above are only exemplary descriptions.
  • the apparatus 900 is configured in or is the above-mentioned terminal equipment (for example, the terminal equipment 102 or 103 )
  • the The modules or units may be used to perform various actions or processing procedures performed by the terminal device in the above method.
  • the detailed description thereof is omitted.
  • FIG. 10 is a schematic diagram of an apparatus 1000 for data transmission provided by an embodiment of the present application.
  • the apparatus 1000 may be an access device (eg, the access device 101 ), or may be a chip or a circuit, such as a chip or a circuit that may be provided in the access device.
  • the apparatus 1000 may include a processing unit 1010 (ie, an example of a processing unit) and a storage unit 1020 .
  • the storage unit 1020 is used to store instructions.
  • the processing unit 1010 is configured to execute the instructions stored in the storage unit 1020, so that the apparatus 1000 implements the steps performed by the access device in the above method.
  • the apparatus 1000 may further include an input port 1030 (ie, an example of a communication unit) and an output port 1040 (ie, another example of a communication unit).
  • the processing unit 1010, the storage unit 1020, the input port 1030 and the output port 1040 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the storage unit 1020 is used to store a computer program, and the processing unit 1010 can be used to call and run the computer program from the storage unit 1020 to control the input port 1030 to receive signals, and control the output port 1040 to send signals, so as to complete the above method. Steps for terminal equipment.
  • the storage unit 1020 may be integrated in the processing unit 1010, or may be provided separately from the processing unit 1010.
  • the apparatus 1000 is a data transmission device (eg, the access device 101 )
  • the input port 1030 is a receiver
  • the output port 1040 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 1030 is an input interface
  • the output port 1040 is an output interface
  • the functions of the input port 1030 and the output port 1040 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processing unit 1010 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processing unit or a general-purpose chip.
  • a general-purpose computer may be used to implement the data transmission device (for example, the access device 101 ) provided in this embodiment of the present application.
  • the program codes that will implement the functions of the processing unit 1010, the input port 1030 and the output port 1040 are stored in the storage unit 1020, and the general processing unit implements the functions of the processing unit 1010, the input port 1030 and the output port 1040 by executing the codes in the storage unit 1020 .
  • the input port 1030 is configured to receive a first message, where the first message includes a radio resource control RRC recovery request and first uplink data, wherein the RRC recovery request is received through the first signaling radio bearer SRB0.
  • the processing unit 1010 is configured to restore the second signaling radio bearer with the terminal device, where the second signaling radio bearer includes SRB1, SRB2 or SRB1 and SRB2.
  • the input port 1030 is further configured to receive a second message, where the second message includes second uplink data and identity information, wherein the identity information is received from the terminal device through the second signaling radio bearer.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2. It avoids sending the same recovery integrity message authentication code ResumeMAC-I for identity authentication every data transmission, thereby avoiding the risk of replaying identity authentication information and improving the security of data transmission.
  • the RRC recovery request and uplink data are repeatedly sent, that is, the first message is repeatedly sent, the RRC recovery request will carry the same information for identity verification, such as resumeMAC-I information, which If the information is repeatedly transmitted to the access device, there is a risk of replay, which in turn affects the security of small data transmission on CG resources.
  • the terminal equipment of the present application sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the RRC message and RRC signaling that only contain the terminal equipment identity information can be processed through the encryption and integrity protection information of SRB1 or SRB2. for security protection.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the apparatus 1000 is configured in or is itself the access device (eg, the access device 101).
  • the output port 1040 is configured to send first indication information, where the first indication information is used to instruct the terminal device to restore the second signaling radio bearer.
  • the input port 1030 is used to receive second indication information, where the second indication information is used to indicate the second uplink data to be transmitted, and the second indication message is received through the first signaling radio bearer SRB0.
  • the input port 1030 is further configured to receive the first uplink data and the second uplink data through the data radio bearer DRB.
  • the output port 1040 is further configured to send third indication information to the terminal equipment, where the third indication information is used to instruct the next hop chain of the terminal equipment to calculate the NCC value, wherein the NCC value is used for the terminal equipment to encrypt the second uplink data. .
  • the uplink data can be encrypted by using the NCC value, thereby further improving the security of information transmission.
  • the input port 1030 is further configured to receive non-access stratum NAS signaling from the terminal device through the second signaling radio bearer SRB2, where the NAS signaling includes positioning information, and the positioning information is used to determine the location of the terminal device.
  • the NAS signaling further includes identity information.
  • the output port 1040 is further configured to send fourth indication information to the terminal device, where the fourth information is used to instruct the terminal device to use the configured CG timing corresponding to the authorized CG resource to send the second message, or , and the fourth information is used to instruct the terminal device not to send the second message using the CG opportunity corresponding to the CG resource.
  • the fourth information is used to instruct the terminal device to use the CG opportunity corresponding to the configured authorized CG resource to send the second message, including: the fourth indication information is used to instruct the terminal device to use the first CG opportunity corresponding to the CG resource to send the second message of the terminal device.
  • the message and another terminal device use the second CG occasion corresponding to the CG resource to send the message of the other terminal device, wherein the terminal device is different from the other terminal device, and the first CG occasion is different from the second CG occasion.
  • a terminal device in a disconnected state when a terminal device in a disconnected state needs to continue to send uplink small data after sending an uplink small data, it can restore other signaling radio bearers other than SRB0, such as SRB1 and/or SRB2 , and send the identity information on the recovered signaling radio bearer SRB1/SRB2, thereby improving the efficiency of the terminal device sending data on the CG resource.
  • the terminal device sends the identity information on the restored signaling radio bearer SRB1/SRB2, so that the identity information can be safely protected through the encryption and integrity protection information of SRB1 or SRB2.
  • the same recovery integrity message authentication code ResumeMAC-I used for identity authentication is avoided for each data transmission, thereby avoiding the risk of replaying the identity authentication information and improving the security of data transmission.
  • the output port 1040 is further configured to send fifth indication information to the terminal device, where the fifth indication information includes an NCC value, wherein the fifth indication information is used to instruct the terminal device to suspend the second signaling radio bearer and the data radio bearer DRB.
  • modules or units in the apparatus 1000 listed above are only exemplary descriptions.
  • the modules or units in the apparatus 1000 can be used to execute the above method.
  • Each action or processing process performed by the access device (for example, the access device 101 ) is omitted here in order to avoid redundant descriptions.
  • FIG. 11 is a schematic structural diagram of a terminal device 1100 provided by this application.
  • the foregoing apparatus 900 may be configured in the terminal device 1100 , or the foregoing apparatus 900 itself may be the terminal device 1100 .
  • the terminal device 1100 can perform the actions performed by the terminal device (for example, the terminal device 102 or 103 ) in the above method.
  • FIG. 11 only shows the main components of the terminal device.
  • the terminal device 100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, and to control the entire terminal device, execute software programs, and process data of the software programs, for example, for supporting the terminal device to execute the above-mentioned transmission precoding matrix instruction method embodiment. the described action.
  • the memory is mainly used to store software programs and data, such as the codebook described in the above embodiments.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit together with the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 only shows one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs. data.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiver function may be regarded as the transceiver unit 1110 of the terminal device 1100
  • a processor with a processing function may be regarded as the processing unit 1120 of the terminal device 1100
  • the terminal device 1100 includes a transceiver unit 1110 and a processing unit 1120 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 1110 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1110 may be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • FIG. 12 is a schematic structural diagram of an access device 1200 according to an embodiment of the present application, which may be used to implement the functions of the access device (eg, the access device 101 ) in the foregoing method.
  • the access device 1200 includes one or more radio frequency units, such as a remote radio unit (RRU) 1210 and one or more baseband units (BBU) (also referred to as digital units, digital units, DUs) )1220.
  • RRU 1210 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1211 and a radio frequency unit 1211 .
  • the RRU1210 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending the signaling messages described in the above embodiments to terminal equipment.
  • the part of the BBU1220 is mainly used to perform baseband processing and control the base station.
  • the RRU 1210 and the BBU 1220 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU1220 is the control center of the base station, which can also be called a processing unit, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spread spectrum.
  • the BBU (processing unit) 1220 may be used to control the base station 40 to perform the operation procedures related to the network device in the foregoing method embodiments.
  • the BBU1220 may be composed of one or more single boards, and the multiple single boards may jointly support a wireless access network of a single access standard (such as an LTE system or a 5G system), or may support different access modes respectively. into the standard wireless access network.
  • the BBU 1220 also includes a memory 1221 and a processor 1222 .
  • the memory 1221 is used to store necessary instructions and data.
  • the memory 1221 stores the codebook and the like in the above-mentioned embodiments.
  • the processor 1222 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiments.
  • the memory 1221 and the processor 1222 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • SoC system-on-chip
  • all or part of the functions of part 1220 and part 1210 can be implemented by SoC technology, for example, a base station function chip Implementation, the base station function chip integrates a processor, a memory, an antenna interface and other devices, the program of the base station related functions is stored in the memory, and the processor executes the program to realize the related functions of the base station.
  • the base station function chip can also read the external memory of the chip to realize the related functions of the base station.
  • FIG. 12 the structure of the access device illustrated in FIG. 12 is only a possible form, and should not constitute any limitation to the embodiments of the present application. This application does not exclude the possibility of other forms of base station structures that may appear in the future.
  • the embodiment of the present application further provides a data transmission system, which includes the aforementioned access device and one or more than one terminal device.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输的方法,应用于处于非连接态的终端设备,包括:发送第一消息,第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送RRC恢复请求;恢复与接入设备的第二信令无线承载,其中,第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;发送第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过第二信令无线承载,向接入设备发送身份标识信息。

Description

数据传输的方法和装置 技术领域
本申请实施例涉及无线通信领域,并且,更具体地,涉及数据传输的方法和装置。
背景技术
对于非连接态的终端设备,可以采用基于RRC的共享配置的授权(configured grant,CG)资源上的小数据传输技术,即终端设备以无线资源控制恢复请求(radio resource control resume request,RRCResumeRequest)加上行数据组成上行消息的形式向网络设备发送。但是,如果需要连续发送小数据,例如小数据的数据量相对较大,一次上行消息不足以传输完所有的小数据,或者同一个业务不断产生小数据需要发送,则需要重复上述RRC恢复请求加上行数据的方式,导致传输效率降低。同时,每次上行消息中的RRC恢复请求中会携带相同的用于身份验证的信息,如恢复完整性消息认证码resumeMAC-I,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。
发明内容
本申请提供了一种数据传输的方法和装置,能够使处于非连接态的终端设备在CG资源上更高效、更安全地发送数据。
第一方面,提供了一种数据传输的方法,该方法可以由终端设备或配置于终端设备的模块(如电路)执行,该方法包括:发送第一消息,该第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送RRC恢复请求;恢复与接入设备的第二信令无线承载,其中,第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;发送第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过恢复的第二信令无线承载,向接入设备发送身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
其中,终端设备处于非连接态,更具体地,处于非激活态。
应理解,RRC恢复请求包括:无线网络临时标识I-RNTI、恢复原因Resume Cause和恢复完整性消息认证码ResumeMAC-I,其中恢复完整性消息认证码ResumeMAC-I用于对所述终端设备进行身份识别,其中该恢复完整性消息认证码为完整性消息认证码MAC-I的低16比特。
可选地,所述方法还包括:接收第一指示信息,恢复与接入设备的第二信令无线承载,包括:根据第一指示信息恢复第二信令无线承载。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在第一方面的某些实现方式中,第一消息还包括第二指示信息,第二指示信息用于指示待传输的第二上行数据,该第二指示消息通过第一信令无线承载SRB0发送。
在本申请实施例中,第一上行数据和第二上行数据通过数据无线承载DRB发送至接入设备。
可选地,所述方法还包括:从接入设备接收第三指示信息,第三指示信息用于指示终端设备的下一跳链计算NCC值,根据NCC值,对第二上行数据加密。
从而,根据本申请的方案,能够利用NCC值对上行数据进行加密,进一步提高信息传输的安全性。
可选地,所述方法还包括:通过第二信令无线承载SRB2,向接入设备发送非接入层NAS信令,该NAS信令包括定位信息,定位信息用于接入设备确定终端设备的位置。
其中,该NAS信令还包括身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在本申请实施例的某些实现方式中,所述方法还包括:启动定时器,在定时器到期之前,不使用配置的授权CG资源对应的CG时机发送第二消息,或者,根据接入设备的第四指示信息,使用CG资源对应的CG时机发送第二消息。
其中,根据接入设备的第四指示信息,使用CG资源对应的CG时机发送第二消息,包括:根据接入设备的第四指示信息,使用CG资源对应的第一CG时机发送第二消息,或者,根据接入设备的第四指示信息,使用CG资源对应的第二CG时机发送第二消息,其中,第一CG时机不同于第二CG时机。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发 送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,所述方法还包括:接收第五指示信息,第五指示信息用于指示结束数据传输过程。第五指示信息还包括NCC值;根据第五指示信息,挂起第二信令无线承载和数据无线承载DRB。
第二方面,提供了一种数据传输的方法,该方法可以由接入设备或配置于接入设备的模块(如电路)执行,该方法包括:接收第一消息,第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0接收RRC恢复请求;恢复与终端设备的第二信令无线承载,其中,第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;接收第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过第二信令无线承载,从终端设备接收身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
其中,终端设备处于非连接态,更具体地,处于非激活态。
应理解,RRC恢复请求包括:无线网络临时标识I-RNTI、恢复原因Resume Cause和恢复完整性消息认证码ResumeMAC-I,其中恢复完整性消息认证码ResumeMAC-I用于对终端设备进行身份识别,其中该恢复完整性消息认证码为完整性消息认证码MAC-I的低16比特。
可选地,所述方法还包括:发送第一指示信息,第一指示信息用于指示终端设备恢复第二信令无线承载。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码 ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在第二方面的某些实现方式中,第一消息还包括第二指示信息,第二指示信息用于指示待传输的第二上行数据,该第二指示消息通过第一信令无线承载SRB0接收。
在本申请实施例中,第一上行数据和第二上行数据通过数据无线承载DRB接收。
可选地,所述方法还包括:向终端设备发送第三指示信息,第三指示信息用于指示终端设备的下一跳链计算NCC值,其中该NCC值用于终端设备对第二上行数据加密。
从而,根据本申请的方案,能够利用NCC值对上行数据进行加密,进一步提高信息传输的安全性。
可选地,所述方法还包括:通过第二信令无线承载SRB2,从终端设备接收非接入层NAS信令,该NAS信令包括定位信息,定位信息用于确定终端设备的位置。
其中,该NAS信令还包括身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在本申请实施例的某些实现方式中,所述方法还包括:向终端设备发送第四指示信息,第四信息用于指示终端设备使用配置的授权CG资源对应的CG时机发送第二消息,或者,第四信息用于指示终端设备不使用CG资源对应的CG时机发送第二消息。
其中,第四信息用于指示终端设备使用配置的授权CG资源对应的CG时机发送第二消息包括:第四指示信息用于指示终端设备使用CG资源对应的第一CG时机发送终端设备的第二消息和另一终端设备使用CG资源对应的第二CG时机发送另一终端设备的消息,其中,该终端设备不同于另一终端设备,第一CG时机不同于第二CG时机。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,所述方法还包括:向终端设备发送第五指示信息,第五指示信息包括NCC值,其中,第五指示信息用于指示终端设备挂起第二信令无线承载和数据无线承载DRB。
第三方面,提供了一种数据传输的装置,包括:收发单元,用于发送第一消息,该第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送RRC恢复请求;处理单元,用于恢复与接入设备的第二信令无线承载,其中,第二信令无线承载包括SRB1或SRB2或SRB1和SRB2;所述收发单元还用于发送第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过恢复的第二信令无线承载, 向所述接入设备发送身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
其中,该装置配置在或本身即为所述终端设备中。
可选地,所述收发单元还用于接收第一指示信息,该第一指示信息用于指示恢复所述第二信令无线承载。所述处理单元还用于根据第一指示信息恢复所述第二信令无线承载。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,所述收发单元还用于发送第二指示信息,第二指示信息用于指示待传输的第二上行数据,该第二指示消息通过第一信令无线承载SRB0发送。
在本申请实施例中,所述收发单元还用于将第一上行数据和第二上行数据通过数据无线承载DRB发送至接入设备。
可选地,所述收发单元还用于接收第三指示信息,第三指示信息用于指示终端设备的下一跳链计算NCC值,相应地,处理单元用于根据该NCC值,对第二上行数据加密。
从而,根据本申请的方案,能够利用NCC值对上行数据进行加密,进一步提高信息传输的安全性。
可选地,所述收发单元还用于通过第二信令无线承载SRB2,向接入设备发送非接入层NAS信令,该NAS信令包括定位信息,该定位信息用于接入设备确定终端设备的位置。
其中,该NAS信令还包括身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码 ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在本申请实施例的某些实现方式中,所述处理单元还用于:启动定时器,在定时器到期之前,不使用配置的授权CG资源对应的CG时机发送第二消息,或者,根据接入设备的第四指示信息,使用CG资源对应的CG时机发送第二消息。
其中,根据接入设备的第四指示信息,使用CG资源对应的CG时机发送第二消息,包括:根据接入设备的第四指示信息,使用CG资源对应的第一CG时机发送第二消息,或者,根据接入设备的第四指示信息,使用CG资源对应的第二CG时机发送第二消息,其中,第一CG时机不同于第二CG时机。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送数据,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,所述收发单元还用于接收第五指示信息,第五指示信息用于指示结束数据传输过程,第五指示信息还包括NCC值。相应地,所述处理单元还用于根据第五指示信息,挂起第二信令无线承载和数据无线承载DRB。
其中,该装置中的各单元分别用于执行上述第一方面以及第一方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信电路,通信电路可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第四方面,提供了一种数据传输的装置,包括:收发单元,用于接收第一消息,第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0接收RRC恢复请求;处理单元,用于恢复与终端设备的第二信令无线承载,其中,第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;所述收发单元还用于接收第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过第二信令无线承载,从终端设备接收身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避 免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
其中,该装置配置在或本身即为所述接入设备中。
可选地,所述收发单元还用于,发送第一指示信息,第一指示信息用于指示终端设备恢复第二信令无线承载。
根据本申请的方案,在非连接态的终端设备在发送一个小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在第四方面的某些实现方式中,所述收发单元还用于接收第二指示信息,第二指示信息用于指示待传输的第二上行数据,该第二指示消息通过第一信令无线承载SRB0接收。
收发单元还用于通过数据无线承载DRB接收第一上行数据和第二上行数据。
可选地,收发单元还用于向终端设备发送第三指示信息,第三指示信息用于指示终端设备的下一跳链计算NCC值,其中NCC值用于终端设备对第二上行数据加密。
从而,根据本申请的方案,能够利用NCC值对上行数据进行加密,进一步提高信息传输的安全性。
可选地,所述收发单元还用于通过第二信令无线承载SRB2,从终端设备接收非接入层NAS信令,该NAS信令包括定位信息,定位信息用于确定终端设备的位置。
其中,该NAS信令还包括身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在本申请实施例的某些实现方式中,所述收发单元还用于向终端设备发送第四指示信息,第四信息用于指示终端设备使用配置的授权CG资源对应的CG时机发送第二消息,或者,第四信息用于指示终端设备不使用CG资源对应的CG时机发送第二消息。
其中,第四信息用于指示终端设备使用配置的授权CG资源对应的CG时机发送第二消息包括:第四指示信息用于指示终端设备使用CG资源对应的第一CG时机发送终端设备的第二消息和另一终端设备使用CG资源对应的第二CG时机发送另一终端设备的消息,其中,终端设备不同于另一终端设备,第一CG时机不同于第二CG时机。
根据本申请的方案,在非连接态的终端设备在发送一个小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源 上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,所述收发单元还用于向终端设备发送第五指示信息,第五指示信息包括NCC值,其中,第五指示信息用于指示终端设备挂起第二信令无线承载和数据无线承载DRB。
其中,该装置中的各单元分别用于执行上述第二方面以及第二方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信电路,通信电路可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种数据传输设备,包括:处理器、存储器、该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面和第二方面中的任一方面及其各种实现方式中的数据传输方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该终端设备还包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种数据传输系统,包括终端设备和接入设备。
其中,终端设备用于指示上述第一方面中的各实现方式的方法,接入设备用于指示上述第二方面中的各实现方式的方法。
在一个可能的设计中,该数据传输系统还可以包括本申请实施例提供的方案中与数据传输设备进行交互的其他设备。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面中的任意方面及其可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任意方面及其可能实现方式中的方法。
第九方面,提供了一种电路系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该电路系统的通信设备执行上述第一方面至第二方面中的任意方面及其可能实现方式中的方法。
其中,该电路系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
附图说明
图1是本申请的通信系统的一例示意性结构图。
图2是本申请现有技术的无线通信过程的一例示意性交互图。
图3是本申请的无线通信过程的一例示意性交互图。
图4是本申请的无线通信过程的另一例示意性交互图。
图5是本申请的无线通信过程的又一例示意性交互图。
图6是本申请的无线通信过程的一例示意性交互图。
图7是本申请的无线通信过程的另一例示意性交互图。
图8是本申请的无线通信过程的又一例示意性交互图。
图9是本申请的数据传输的装置的一例示意性结构图。
图10是本申请的数据传输的装置的另一例示意性结构图
图11是本申请的终端设备的一例示意性结构图。
图12是本申请的接入设备的一例示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system formobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(w身份标识eband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldw身份标识e interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR),车到其它设备(Vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-Vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(Long Term Evolution-Vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of Things,IoT)、机器间通信长期演进技术(Long Term Evolution-Machine,LTE-M),机器到机器(Machine to Machine,M2M)等。
图1示出了本申请实施例提供的一种网络架构的示意图,如图1所示,本申请的通信系统100可以包括接入设备101和终端设备102以及终端设备103。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,M身份标识)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设 备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart gr身份标识)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
应理解,本申请对于终端设备的具体形式不作限定。
另外,本申请实施例中的接入设备可以是用于与终端设备通信的设备,该接入设备也可以称为接入网设备或无线接入网设备,例如,接入设备可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入设备或者未来演进的PLMN网络中的接入设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB本申请实施例并不限定。
另外,在本申请实施例中,接入设备是RAN中的设备,或者说,是将终端设备接入到无线网络的RAN节点。例如,作为示例而非限定,作为接入设备,可以列举:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless felity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
接入设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源, 或者说,频谱资源)与接入设备进行通信,该小区可以是接入设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,上述图1仅是示例性说明,不应对本申请构成任何限定。例如,通信系统还可以包括核心网设备,核心网设备可以与多个接入网设备连接,用于控制接入网设备,并且,可以将从网络侧(例如,互联网)接收到的数据分发至接入网设备。
针对小数据传输,当前正在讨论基于随机接入信道(RACH-based)和基于预配置的授权CG(CG-Based)资源的传输。对于CG资源上的小数据传输,只考虑CG类型1(CG Type1)资源。当CG Type1资源是共享资源时,其是基于竞争的传输,当一个UE在一个资源上传输成功,接入设备gNB可以成功解码,此时gNB需要确定该UE信息及进行UE身份验证。因此,需要在UE给基站发送的上行(uplink,UL)消息中带UE身份标识及身份认证信息。
下面将结合图2,以图1中的终端设备102向接入设备101发起小数据传输为例对小数据传输的过程进行描述。
假设处于非连接态的终端设备102判断满足发起小数据传输条件,发起小数据传输,在S210,恢复数据无线承载(data radio bearer,DRB)。终端设备102可通过DRB向接入设备101发送上行小数据。
在S220,终端设备102向接入设备101发送第一消息,第一消息包括无线资源控制RRC恢复请求和第一上行数据。其中,RRC恢复请求包括:无线网络临时标识(inactive-radio network temporary identifier,I-RNTI)、恢复原因(resume cause)和恢复完整性消息认证码(resume message authentication code for integrity,ResumeMAC-I),其中ResumeMAC-I用于接入设备101对终端设备102进行身份识别及验证。
更具体地,终端设备102通过信令无线承载SRB0发送该RRC恢复请求,通过数据无线承载DRB发送第一上行数据。另外,终端设备102还可以根据先前连接的RRC释放(RRCRelease)消息中提供的下一跳链计算(NextHopChainingCount,NCC)导出新的安全密钥,并重新建立接入层(access stratum,AS)安全性。终端设备102使用存储的安全密钥计算resumeMAC-I用于RRC完整性保护,使用先前连接的RRCRelease消息中提供的NCC值和存储的安全上下文导出新的密钥,对通过DRB发送的数据使用新密钥加密。
上述ResumeMAC-I可以为完整性消息认证码(MAC-I)的低16比特。即,ResumeMAC-I在RRC恢复请求中的相对位置是基本固定的,因此第三方设备可以获取该ResumeMAC-I,这样会有重放的风险,进而影响数据传输的安全性。
在S230,接入设备101根据RRC恢复请求识别终端设备上下文,并通过ResumeMAC-I验证身份。
当终端设备102发送完第一上行数据以后,如果仍有后续小数据需要发送,例如第二上行数据,终端设备102会重复S220的步骤,即通过RRC恢复请求加上上行数据的方式发送第二上行消息。
当终端设备102没有数据需要传输时,例如,终端设备102通过上行消息中携带数据 缓存报告的方式通知接入设备101没有后续数据需要传输,或者,接入设备101在一定时间内没有收到终端设备102有后续数据传输的指示。则在S240,接入设备101发送带有挂起指示的RRCRelease消息结束该小数据传输的过程。
在上述小数据传输的过程中,终端设备102每次向接入设备101发送上行数据时,均需要发送RRC恢复请求,传输效率较低;并且所发送的RRC恢复请求中均会携带相同的resumeMAC-I,其重复传输到接入设备101,会有重放的风险,例如,第三方设备(可称为“攻击UE”)获取了终端设备102的resumeMAC-I,其可以携带获取到的resumeMAC-I向接入设备101发送上行数据,接入设备通过resumeMAC-I验证认为该“攻击UE”是终端设备102,可能使得接入设备无法与终端设备102正常通信,不利于数据传输的安全性。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块;或者是可用于终端设备或网络设备的部件(例如芯片或者电路)。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图3示出了本申请一个实施例的无线通信过程的一例示意性交互图。在图3的实施例中,除了第一次发送小数据(即,下述“第一消息”)时会通过SRB0携带RRC恢复请求(其可以包括用于身份认证的ResumeMAC-I)之外,后续小数据传输不再通过SRB0,而是通过另外恢复的SRB1或SRB2传输身份标识信息。这样能够提高数据传输效率和安全性。
如图3所示,在S310,终端设备102发送第一消息,第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送RRC恢复请求。
应理解,在本申请实施例中,上述终端设备102处于非连接态,例如,处于非激活态。终端设备102可以是图1中所示的终端设备102或103的一例,且步骤S310可以与图2的步骤S220类似。
例如,RRC恢复请求可包括:I-RNTI、恢复原因和ResumeMAC-I,其中ResumeMAC-I用于接入设备101对终端设备102进行身份识别,其中该ResumeMAC-I为完整性消息认证码MAC-I的低16比特。
在本申请实施例的一些实现方式中,第一消息还可以包括用于指示还有第二上行数据的指示信息,该指示信息同样通过上述第一信令无线承载SRB0发送。作为示例而非限定,该指示信息可以是状态缓存报告(buffer status report,BSR),也可以是释放辅助信息(release assistance indication,RAI),该指示信息可以指示是否有后续传输,更进一步地, 可以指示后续传输的数据包的个数或者后续传输的数据量。
在S320,接入设备101根据RRC恢复请求识别终端设备上下文,并通过ResumeMAC-I验证终端设备102的身份。
在S330,终端设备102恢复与接入设备101的第二信令无线承载,其中,该第二信令无线承载可包括SRB1、SRB2或SRB1和SRB2。换句话说,终端设备102可以仅恢复SRB1,也可以仅恢复SRB2,或者也可以同时恢复SRB1和SRB2。
可选地,终端设备102可以自行恢复第二信令无线承载,例如在发起小数据传输过程时或在发送RRCResumeRequest时,或在确定有后续小数据需要继续传输时;或者,终端设备102可以在接收到接入设备101指示恢复上述第二信令无线承载的指示信息后,根据该指示信息恢复第二信令无线承载。
在S340,终端设备发送第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过恢复的第二信令无线承载发送该身份标识信息。
在本申请实施例中,第一上行数据和第二上行数据均通过数据无线承载DRB发送,终端设备还可以根据先前连接的RRC释放消息中的NCC值和存储的安全上下文导出新的密钥,对第一上行数据加密;同样的,终端设备在发送第二上行数据之前,可以从接入设备接收包含新的NCC值的第三指示信息,采取同样的方式,根据新的NCC值,对第二上行数据进行加密,或者,第二数据是通过水平密钥推演产生的新密钥进行加密。此外,在同一个小数据传输的过程中,每次数据传输时DRB的用于完整性保护的MAC-I的计算的计数值COUNT都加一。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含终端设备身份标识信息的RRC消息或RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
下面将结合图4至图8对本申请实施例恢复第二信令无线承载的不同情况进行详细描述。
图4示出了本申请的无线通信过程的另一例示意性交互图。
如图4所示,在S410,终端设备102发起小数据传输过程,终端设备102恢复数据无线承载DRB。在S420,终端设备102发送第一消息,第一消息包括无线资源控制恢复请求和第一上行数据,其中通过信令无线承载SRB0向接入设备101发送RRC恢复请求。在S430,接入设备101识别终端设备102上下文,校验终端设备102身份。步骤S410、S420和S430与上述图2中步骤S210、S220和S230相似,为避免重复,不再详细描述。
在S440,接入设备101向终端设备102发送指示恢复或保持信令无线承载SRB1的指示信息,我们可以把它称为第一指示信息。应理解,如果终端设备102在该步骤之前,没有恢复信令无线承载SRB1,则,该第一指示信息为指示终端设备102恢复信令无线承载SRB1的指示信息,对应地,在S441,终端设备根据该第一指示信息恢复信令无线承载SRB1;如果终端设备102在该步骤之前,例如,在发起小数据传输过程时已经恢复了信令无线承载SRB1,则,该第一指示信息应为指示终端设备102保持信令无线承载SRB1的指示信息,或者可以不发送该第一指示信息。
可选地,该指示信息承载于无线资源控制释放RRCRelease消息中,也可以承载于接入设备定义的一条新的下行RRC消息中,该消息通过信令无线承载SRB1发送给终端设备102。或者,该指示信息承载于接入设备定义的一条新的下行RRC消息中,该RRC消息通过无线承载SRB1或SRB0发送给终端设备102,其中,该新定义的下行RRC消息中包括终端设备身份标识信息。
应理解,该无线资源控制释放消息或新定义的下行RRC消息还可以指示终端设备102校验成功,可以继续发送后续数据,并同时指示终端设备102保持DRB不释放不挂起。该消息中还可以包括第三指示信息,该第三指示信息用于指示终端设备进行安全计算的下一跳链计算NCC值。
可选地,在本申请实施例中,如果存在下行数据,则接入设备在发送该消息的同时可以在数据无线承载承载DRB上向终端设备终端设备102发送加密后的下行数据。
在S450,终端设备102发送第二消息,第二消息包括身份标识信息和第二上行数据,其中通过信令无线承载SRB1向接入设备发送身份标识信息。
其中,终端设备102的身份标识信息承载于新的RRC消息中,该消息由终端设备102生成且该消息只包含终端设备102的身份标识信息。
应理解,终端设备102在发送该RRC消息的同时在数据无线承载DRB上向接入设备发送加密后的上行数据。
作为示例而非限定,上述新的RRC消息和加密后的上行数据可以在下一个可用的CG时机上一起发送到接入设备,也可以根据接入设备的第四指示信息,在指定的CG时机上一起发送到接入设备。
在S460,接入设备校验UE身份标识信息,接收上行数据。
如果还有进一步的数据传输,则重复S450和S460的步骤,应理解,“重复”表示为步骤上是相同的,但包含的上行数据是不同的。
应理解,终端设备102每次向接入设备发送的上行数据中还可以包括第二指示信息,所述指示信息用于指示剩余数据的多少或者有无待传输的后续数据,作为示例而非限定,所述指示信息可以是数据缓存报告。
如果没有待传输的后续数据,则,S470,接入设备发送指示该小数据传输过程结束的第五指示信息,其中该第五指示信息是无线资源控制释放RRCRelease消息,其中该第五指示信息还可以终端设备102指示挂起信令无线承载SRB1。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资 源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含终端设备身份标识信息的RRC消息或RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
图5示出了本申请的无线通信过程的另一例示意性交互图。
在S510,终端设备102发起小数据传输过程,恢复数据无线承载DRB。在S520,终端设备102发送第一消息,第一消息包括无线资源控制恢复请求RRCResumeRequest和第一上行数据,其中通过信令无线承载SRB0向接入设备发送RRC恢复请求。在S530,接入设备101识别终端设备102上下文,校验终端设备102身份。步骤S510、S520和S530与上述图2中步骤S210、S220和S230相似,为避免重复,不再详细描述。
在S540,接入设备101向终端设备102发送恢复或保持信令无线承载SRB2的指示信息,我们可以把它称为第一指示信息,其中该第一指示信息还可以指示恢复或保持信令无线承载SRB1。
应理解,如果终端设备102在此步骤之前,没有恢复信令无线承载SRB2,则,该第一指示信息应为指示终端设备102恢复信令无线承载SRB2,对应地,在S541,终端设备根据该第一指示信息恢复SRB2;如果终端设备102在此步骤之前,已经恢复了信令无线承载SRB2,则,该指示信息应为指示终端设备102保持信令无线承载SRB2的指示信息,或者,可以不发送该第一指示信息。
可选地,该指示信息承载于无线资源控制释放RRCRelease消息中,也可以承载于接入设备定义的一条新的下行RRC消息中,该消息通过信令无线承载SRB1发送给终端设备102。或者,该指示信息承载于接入设备定义的一条新的下行RRC消息中,该RRC消息通过无线承载SRB1或SRB0发送给终端设备102,其中,该该新定义的下行RRC消息中包含终端设备身份标识信息)。
应理解,该无线资源控制释放消息或新的RRC消息还可以指示终端设备102校验成功,可以继续发送后续数据,并同时指示102保持DRB不释放不挂起。该消息中还可以包括第三指示信息,该第三指示信息用于指示终端设备进行安全计算的下一跳链计算NCC值。
可选地,在本申请实施例中,如果有下行数据,则接入设备可以在发送该消息的同时在数据无线承载承载DRB上向终端设备102发送加密后的下行数据。
在S550,终端设备102发送第二消息,第二消息包括NAS信令,其中该NAS信令包括定位信息,其中定位信息可以是位置测量结果,其中在信令无线承载SRB2上向接入设备发送该NAS信令。可选地,该NAS信令还包含终端设备102的身份标识信息。
或在S550,终端设备102发送第二消息,第二消息包括NAS信令和第二上行数据,其中该NAS信令包括定位信息,其中定位信息可以是位置测量结果,其中在信令无线承 载SRB2上向接入设备发送该NAS信令。可选地,该NAS信令还包含终端设备102的身份标识信息。
可选地,该位置信息可以是提供的位置信息消息(provied location information,LPP)。
可选地,在本申请实施例的某些实现方式中,该NAS信令也可在信令无线承载SRB1进行传输。
应理解,在本申请实施例中,终端设备102在发送该NAS信令的同时可以在数据无线承载DRB上向接入设备发送加密后的上行数据。
作为示例而非限定,上述新的NAS信令,或上述NAS信令和加密后的上行数据,可以在下一个CG时机上一起发送到接入设备,也可以根据接入设备的第四章指示信息,在指定的CG时机上一起发送到接入设备。
在S560,接入设备校验UE身份,接收第二消息。
应理解,如果还有后续数据传输,则重复S550和S560的步骤。应理解,“重复”表示为步骤上是相同的,但包含的上行数据是不同的。
应理解,终端设备102每次向接入设备发送的上行数据中还可以包括第二指示信息,该第二指示信息用于指示剩余数据的多少或者有无待传输的后续数据,作为示例而非限定,第二指示信息可以是数据缓存报告。
当接入设备判断没有待传输的后续数据,则,S570,接入设备发送指示该小数据传输过程结束的第五指示信息,其中,该第五指示信息可以是无线资源控制释放RRCRelease消息,其中,该第五指示信息还可以指示终端设备102挂起信令无线承载SRB1和SRB2。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照发送RRC恢复请求和上行数据的方式传输多个数据包,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
上述实施例示出了只有一个UE与接入设备进行小数据传输的过程,在实际应用中,可能会有多个UE(例如图1中终端设备102和103)与接入设备101同时进行小数据传输,如图6所示:
在S610,终端设备102恢复数据无线承载DRB和信令无线承载SRB1;在S611,终端设备103恢复数据无线承载DRB和信令无线承载SRB1。
在本申请实施例中,终端设备102和终端设备103均可以使用其对应的先前连接的无线资源控制释放RRCRelease消息中提供的下一跳链计算NCC导出新的安全密钥,并重新建立AS安全性。具体地,可使用存储的密钥生成逻辑信道CCCH消息中的恢复媒体接入控制ResumeMAC-I信息用于RRC完整性保护;并使用其对应的先前连接的RRCRelease 消息中提供的NCC值和存储的安全上下文导出新的密钥,对DRB的数据使用新密钥加密。
在S620,终端设备102发送属于终端设备102的第一消息,该第一消息包括终端设备102的RRC恢复请求和终端设备102的第一上行数据,其中,通过信令无线承载SRB0发送终端设备102的RRC恢复请求;在S621,终端设备103发送属于终端设备103的第一消息,该第一消息包括终端设备103的RRC恢复请求和终端设备103第一上行数据,其中,通过信令无线承载SRB0发送终端设备103的RRC恢复请求。
其中,上述RRC恢复请求消息包括各终端设备的无线网络临时标识I-RNTI信息,恢复原因ResumeRequest信息以及用于身份认证的恢复媒体接入控制ResumeMAC-I信息。
终端设备终端设备102和终端设备103在发送恢复请求的同时在其对应的数据无线承载DRB上分别向接入设备101发送加密后的上行数据。
在S630,接入设备101识别终端设备上下文,校验UE身份。
具体地,接入设备根据终端设备102发送的RRC消息识别终端设备102上下文,通过其对应的恢复媒体接入控制ResumeMAC-I信息校验终端设备102的身份;根据终端设备103发送的RRC消息识别终端设备103上下文,通过其对应的恢复媒体接入控制ResumeMAC-I信息校验终端设备103的身份。
在S640,接入设备101向终端设备102发送指示保持信令无线承载SRB1的指示信息,该指示信息还可以指示允许使用后续CG资源进行信息传输。
可选地,该指示信息承载于无线资源控制释放RRCRelease消息中,也可以承载于接入设备定义的一条新的下行RRC消息中,该消息通过信令无线承载SRB1发送给终端设备102。或者,该指示信息承载于接入设备定义的一条新的下行RRC消息中,该RRC消息通过无线承载SRB1或SRB0发送给终端设备102,其中,该新定义的下行RRC消息中包括终端设备身份标识信息。
可选地,该无线资源控制释放消息或新的下行RRC消息还可以指示终端设备102校验成功,可以继续发送后续数据,并同时指示终端设备102保持DRB不释放不挂起。
可选地,该消息中还可以包括用于终端设备进行安全计算的下一跳链计算NCC值。
应理解,在本申请实施例中,接入设备在发送该消息的同时可以在数据无线承载承载DRB上向终端设备102发送加密后的下行数据。
在S641,接入设备向终端设备103发送指示禁止使用后续CG资源进行信息传输指示信息。
可选地,该指示信息承载于无线资源控制释放RRCRelease消息中,也可以承载于接入设备定义的一条新的下行RRC消息中。该消息在信令无线承载SRB1上发送给终端设备103。
可选地,该消息还可以包括指示终端设备103挂起信令无线承载SRB1的指示信息。
在S650,终端设备102发送第二消息,第二消息包括身份标识信息和第二上行数据,其中通过信令无线承载SRB1向接入设备发送身份标识信息。
其中,终端设备102的身份标识信息承载于新的RRC消息中,该消息由终端设备102生成且该消息只包含终端设备102的身份标识信息。
应理解,在本申请实施例中,终端设备102在发送该身份标识信息的同时在数据无线承载DRB上向接入设备发送加密后的上行数据,即上行用户数据在DTCH上传输,并与 CCCH上的上行RRC消息复用。
作为示例而非限定,上述新的RRC消息和加密后的上行数据在下一个CG时机上一起发送到接入设备101,也可以根据接入设备101的指示信息,在指定的CG时机上一起发送到接入设备101。
在S660,接入设备101校验终端设备102身份,接收上行数据。
应理解,如果还有后续数据传输,则重复S650和S660的步骤。应理解,“重复”表示为步骤上是相同的,但包含的上行数据是不同的。
应理解,终端设备102每次向接入设备发送的上行数据中还可以包括第二指示信息,该第二指示信息用于指示剩余数据的多少或者有待传输的后续数据,作为示例而非限定,第二指示信息可以是数据缓存报告(buffer status report,BSR),也可以是释放辅助信息(release assistance indication,RAI),该指示信息可以指示是否有后续传输,更进一步地,还可以指示后续传输的数据包的个数或者后续传输的数据量。。
如果没有待传输的后续数据,则,S670,接入设备101发送指示该小数据传输过程结束的第五指示信息,该第五指示信息可以是无线资源控制释放RRCRelease消息,其中,该第五指示信息消息还可以指示终端设备102挂起信令无线承载SRB1。
应理解,上述允许终端设备102而禁止终端设备103进行信息传输只是作为一个可能的例子,不应对本申请的技术方案造成限制,凡是接入设备指示只允许一个UE使用后续CG资源进行传输的情况均属于本实施例的保护范围。
根据本申请的方案,当有多个终端设备需要使用CG资源进行信息传输时,接入设备指示只允许其中一个终端设备使用CG资源进行信息传输,避免了多个终端设备同时使用同一个CG资源而造成不同UE间的信号干扰,从而保证了信息传输的成功率。同时,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含身份标识信息的RRC消息或RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
图7示出了本申请的无线通信过程的另一例示意性交互图。
如图7所示,如果终端设备满足发起小数据传输的条件,终端设备发起小数据传输过程,在S710,终端设备102恢复数据无线承载DRB和信令无线承载SRB1;在S711,终端设备103恢复数据无线承载DRB和信令无线承载SRB1。在S720,终端设备102发送属于终端设备102的第一消息,该第一消息包括终端设备102的RRC恢复请求和终端设备102的第一上行数据,其中,通过信令无线承载SRB0发送终端设备102的RRC恢复请求;在S721,终端设备103发送属于终端设备103的第一消息,该第一消息包括终端 设备103的RRC恢复请求和终端设备103第一上行数据,其中,通过信令无线承载SRB0发送终端设备103的RRC恢复请求。在S730,接入设备101识别终端设备上下文,校验终端设备身份。步骤S710、S720和S711、S721以及S730与上述图6中步骤S610、S620和S611、S621以及S630相似,为避免重复,不再详细描述。
在S740,接入设备101向终端设备102发送指示在第一CG时机进行信息传输的指示信息。
其中,上述第一CG时机可以是下一个可用的CG时机,也可以是指示的特定的CG时机。
在S741,接入设备101向终端设备103发送指示在第二CG时机进行信息传输的指示信息。
应理解,在CG资源中包括多个CG时机,上述第一CG时机为不同于第二CG时机的CG时机。
应理解,上述指示信息中还可以包括保持信令无线承载SRB1的指示信息。
可选地,上述指示信息承载于无线资源控制释放RRCRelease消息中,也可以承载于接入设备定义的一条新的下行RRC消息中。该消息在信令无线承载SRB1上发送给对应的终端设备。
可选地,该消息还可以指示对应的终端设备校验成功,可以继续发送后续数据,并同时指示对应的终端设备保持DRB不释放不挂起。
可选地,该消息中还可以包括用于终端设备进行安全计算的下一跳链计算NCC值。
应理解,在本申请实施例中,如果有下行小数据,接入设备101在发送该消息的同时在数据无线承载承载DRB上向对应的终端设备102或103发送加密后的下行数据。
在S750,终端设备102在第一CG时机时,发送属于终端设备102的第二消息,第二消息包括终端设备102的身份标识信息和终端设备102的第二上行数据,其中通过信令无线承载SRB1向接入设备101发送终端设备102的身份标识信息。
在S751,终端设备终端设备103在第二CG时机时,发送属于终端设备103的第二消息,第二消息包括终端设备103的身份标识信息和终端设备103的第二上行数据,其中通过信令无线承载SRB1向接入设备发送终端设备103的身份标识信息。
其中,对应终端设备的身份标识信息承载于对应的新的RRC消息中,该消息分别由终端设备102和终端设备103生成且该消息只包含对应终端的身份标识信息。
在S760,接入设备101校验各个终端设备身份,接收各个终端设备的上行数据。
应理解,如果还有后续数据传输,则重复S750和S760的步骤。可选地,应理解,每个终端设备每次向接入设备发送的上行数据中还可以包括指示信息,所述指示信息用于指示剩余数据的多少或者有无待传输的后续数据,作为示例而非限定,所述指示信息可以是数据缓存报告。
当接入设备根据上述标识信息判断没有待传输的后续数据,则,在S770和S771,接入设备向对应的终端设备发送指示该小数据传输过程结束的指示信息,其中,该指示信息是无线资源控制释放RRCRelease消息。
可选地,该消息还可以包括指示对应的终端设备挂起信令无线承载SRB1的指示信息。
应理解,上述指示终端设备102在第一CG时机而指示终端设备103在第二CG时 机进行信息传输只是作为一个可能的例子,不应对本申请的技术方案造成限制,凡是接入设备指示不同终端设备在不同CG时机进行传输的情况均属于本实施例的保护范围。
根据本申请的方案,当有多个终端设备需要使用CG资源进行信息传输时,接入设备指示不同的终端设备在不同的CG时机进行信息传输,从而避免了多个终端设备在同一个CG资源时机上进行信息传输,造成不同终端设备间的信号干扰,从而保证了信息传输的成功率。同时,在非连接态的终端设备需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含终端设备身份标识信息的RRC消息或RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
为对上述实施例中在利用CG资源进行小数据传输中,终端设备根据接入设备的指示信息执行操作的过程进行示例性说明,图8示出了本申请的无线通信过程的另一例示意性交互图。
如图8中图例a所示,S810,终端设备102在CG时机1上发送上行消息。
其中,在本实施例中,终端设备102在发送上行消息之前,已经恢复了用于小数据传输的数据无线承载DRB,并且终端设备102可以使用先前连接的无线资源控制释放RRCRelease消息中提供的下一跳链计算NCC导出新的安全密钥,并重新建立AS安全性。具体地,可使用存储的密钥生成逻辑信道CCCH消息中的恢复媒体接入控制ResumeMAC-I信息用于RRC完整性保护;使用先前连接的RRCRelease消息中提供的NCC值和存储的安全上下文导出新的密钥,对DRB的数据使用新密钥加密。
可选地,在本申请的实施例中,终端设备102还可以恢复信令无线承载SRB1或SRB2。
可选地,在本申请的实施例中,终端设备102还可以恢复信令无线承载SRB1和SRB2。
S820,终端设备启动定时器。
启动条件:终端设备发送了上行数据,启动定时器。
在定时器运行期间,终端设备102不能使用CG时机发送上行数据,或者,终端设备102根据基站指示执行操作。其中,该定时器有固定周期,该周期可以是CG周期的整数倍,也可以是子帧的整数倍。作为示例而非限定,如图例b,定时器周期可为2个CG时机。
情形一
S830,接入设备101向终端设备102发送指示信息。
作为示例而非限定,在本申请实施例中,上述指示信息可以是指示终端设备102在指定CG时机进行数据传输的指示信息,也可以是指示终端设备102禁止使用后续CG资源进行数据传输的指示信息。
S840,终端设备根据指示信息执行操作。
应理解,终端设备在接收到该指示信息后,停止定时器,并在下一次发送上行消息后,重新开启定时器。
情形二
在定时器的周期内,接入设备没有向终端设备102发送任何指示,则,S850,终端设备102在定时器的周期内不进行任何操作直至定时器结束。即,如图例b中所示,在有适合终端设备102进行数据传输的CG时机2和3时,终端设备102在没有接收到指示时,也不可使用。
应理解,在本申请实施例中,当该定时器超时后,终端设备可以执行其他业务,例如,使用下一个可用的CG时机发送上行数据,不再期待接入设备回应。
根据本申请的方案,当有多个终端设备需要使用CG资源进行信息传输时,终端设备根据接入设备的指示使用CG资源池中CG时机进行信息传输,从而提高CG资源的利用率,减少业务的时延。同时,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含终端设备身份标识信息的RRC消息或RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
根据前述方法,图9为本申请实施例提供的数据传输的装置900的示意图。
其中,该装置900可以为终端设备(例如,终端设备102或103),也可以为芯片或电路,比如可设置于终端设备的芯片或电路。
该装置900可以包括处理单元910(即,处理单元的一例),可选地,还可以包括存储单元920。该存储单元920用于存储指令。
一种可能的方式中,该处理单元910用于执行该存储单元920存储的指令,以使装置900实现如上述方法中终端设备,(例如,终端设备102)执行的步骤。
进一步的,该装置900还可以包括输入口930(即,通信单元的一例)和输出口940(即,通信单元的另一例)。进一步的,该处理单元910、存储单元920、输入口930和输出口940可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储单元920用于存储计算机程序,该处理单元910可以用于从该存储单元920中调用并运行该计算计程序,完成上述方法中终端设备的步骤。该存储单元920可以集成在处理单元910中,也可以与处理单元910分开设置。
可选地,一种可能的方式中,该输入口930可以为接收器,该输出口940为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称 为收发器。
可选地,一种可能的方式中,该输入口930为输入接口,该输出口940为输出接口。
作为一种实现方式,输入口930和输出口940的功能可以考虑通过收发电路或者收发的专用芯片实现。处理单元910可以考虑通过专用处理芯片、处理电路、处理单元或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的数据传输设备(例如,终端设备102或103)。即将实现处理单元910、输入口930和输出口940功能的程序代码存储在存储单元920中,通用处理单元通过执行存储单元920中的代码来实现处理单元910、输入口930和输出口940的功能。
在一种实现方式中,输出口940用于发送第一消息,该第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送RRC恢复请求。
处理单元910,用于恢复与接入设备的第二信令无线承载,其中,第二信令无线承载包括SRB1、SRB2或SRB1和SRB2。
输出口940还用于发送第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过恢复的第二信令无线承载,向所述接入设备发送身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含终端设备身份标识信息的RRC消息和RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
其中,该装置900配置在或本身即为所述终端设备中。
可选地,输入口930用于接收第一指示信息,该第一指示信息用于指示恢复所述第二信令无线承载。所述处理单元还用于根据第一指示信息恢复所述第二信令无线承载。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,输出口940还用于发送第二指示信息,第二指示信息用于指示待传输的第二上行数据,该第二指示消息通过第一信令无线承载SRB0发送。
在本申请实施例中,所述输出口940还用于将第一上行数据和第二上行数据通过数据无线承载DRB发送至接入设备。
可选地,输入口930还用于接收第三指示信息,第三指示信息用于指示终端设备的下一跳链计算NCC值,相应地,处理单元用于根据该NCC值,对第二上行数据加密。
从而,根据本申请的方案,能够利用NCC值对上行数据进行加密,进一步提高信息传输的安全性。
可选地,输出口940还用于通过第二信令无线承载SRB2,向接入设备发送非接入层NAS信令,该NAS信令包括定位信息,该定位信息用于接入设备确定终端设备的位置。
其中,该NAS信令还包括身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
在本申请实施例的一些实现方式中,处理单元510还用于启动定时器,在定时器到期之前,不使用配置的授权CG资源对应的CG时机发送第二消息,或者,根据接入设备的第四指示信息,使用CG资源对应的CG时机发送第二消息,相应的,输入口930用于接收接入设备的第四只是信息,输出口940用于使用CG资源对应的CG时机发送第二消息。
其中,根据接入设备的第四指示信息,使用CG资源对应的CG时机发送第二消息,包括:根据接入设备的第四指示信息,使用CG资源对应的第一CG时机发送第二消息,或者,根据接入设备的第四指示信息,使用CG资源对应的第二CG时机发送第二消息,其中,第一CG时机不同于第二CG时机。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,输入口930还用于接收第五指示信息,第五指示信息用于指示结束数据传输过程,第五指示信息还包括NCC值。相应地,处理单元910还用于根据第五指示信息,挂起第二信令无线承载和数据无线承载DRB。
其中,以上列举的装置900中各模块或单元的功能和动作仅为示例性说明,当该装置900配置在或本身即为上述终端设备(例如,终端设备102或103)时,装置900中各模块或单元可以用于执行上述方法中终端设备所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
该装置900所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及 其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图10为本申请实施例提供的数据传输的装置1000的示意图。
其中,该装置1000可以为接入设备(例如,接入设备101),也可以为芯片或电路,比如可设置于接入设备的芯片或电路。
该装置1000可以包括处理单元1010(即,处理单元的一例)和存储单元1020。该存储单元1020用于存储指令。
该处理单元1010用于执行该存储单元1020存储的指令,以使装置1000实现如上述方法中接入设备执行的步骤。
进一步的,该装置1000还可以包括输入口1030(即,通信单元的一例)和输出口1040(即,通信单元的另一例)。进一步的,该处理单元1010、存储单元1020、输入口1030和输出口1040可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储单元1020用于存储计算机程序,该处理单元1010可以用于从该存储单元1020中调用并运行该计算计程序,以控制输入口1030接收信号,控制输出口1040发送信号,完成上述方法中终端设备的步骤。该存储单元1020可以集成在处理单元1010中,也可以与处理单元1010分开设置。
可选地,若该装置1000为数据传输设备(例如,接入设备101),该输入口1030为接收器,该输出口1040为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置1000为芯片或电路,该输入口1030为输入接口,该输出口1040为输出接口。
作为一种实现方式,输入口1030和输出口1040的功能可以考虑通过收发电路或者收发的专用芯片实现。处理单元1010可以考虑通过专用处理芯片、处理电路、处理单元或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的数据传输设备(例如,接入设备101)。即将实现处理单元1010、输入口1030和输出口1040功能的程序代码存储在存储单元1020中,通用处理单元通过执行存储单元1020中的代码来实现处理单元1010、输入口1030和输出口1040的功能。
在一种实现方式中,输入口1030用于接收第一消息,第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0接收RRC恢复请求。
处理单元1010,用于恢复与终端设备的第二信令无线承载,其中,第二信令无线承载包括SRB1、SRB2或SRB1和SRB2。
输入口1030还用于接收第二消息,第二消息包括第二上行数据和身份标识信息,其中,通过第二信令无线承载,从终端设备接收身份标识信息。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码 ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
另一方面,如果按照重复发送RRC恢复请求和上行数据的方式,即重复发送上述第一消息的方式,则RRC恢复请求中会携带相同的用于身份验证的信息,如resumeMAC-I信息,该信息重复传输到接入设备,会有重放的风险,进而影响在CG资源上传输小数据的安全性。而本申请的终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对只包含终端设备身份标识信息的RRC消息和RRC信令进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
其中,该装置1000配置在或本身即为所述接入设备(例如,接入设备101)中。
可选地,输出口1040用于发送第一指示信息,第一指示信息用于指示终端设备恢复第二信令无线承载。
输入口1030用于接收第二指示信息,第二指示信息用于指示待传输的第二上行数据,该第二指示消息通过第一信令无线承载SRB0接收。
输入口1030还用于通过数据无线承载DRB接收第一上行数据和第二上行数据。
可选地,输出口1040还用于向终端设备发送第三指示信息,第三指示信息用于指示终端设备的下一跳链计算NCC值,其中NCC值用于终端设备对第二上行数据加密。
从而,根据本申请的方案,能够利用NCC值对上行数据进行加密,进一步提高信息传输的安全性。
可选地,输入口1030还用于通过第二信令无线承载SRB2,从终端设备接收非接入层NAS信令,该NAS信令包括定位信息,定位信息用于确定终端设备的位置。
其中,该NAS信令还包括身份标识信息。
在本申请实施例的一些实现方式中,输出口1040还用于向终端设备发送第四指示信息,第四信息用于指示终端设备使用配置的授权CG资源对应的CG时机发送第二消息,或者,第四信息用于指示终端设备不使用CG资源对应的CG时机发送第二消息。
其中,第四信息用于指示终端设备使用配置的授权CG资源对应的CG时机发送第二消息包括:第四指示信息用于指示终端设备使用CG资源对应的第一CG时机发送终端设备的第二消息和另一终端设备使用CG资源对应的第二CG时机发送另一终端设备的消息,其中,终端设备不同于另一终端设备,第一CG时机不同于第二CG时机。
根据本申请的方案,在非连接态的终端设备在发送一个上行小数据后,还需要继续发送上行小数据时,可通过恢复除了SRB0之外的其他信令无线承载,如SRB1和/或SRB2,并在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,从而提高终端设备在CG资源上发送数据的效率。同时,终端设备在恢复的信令无线承载SRB1/SRB2上发送身份标识信息,这样能够通过SRB1或SRB2的加密和完整性保护信息对身份标识信息进行安全保护。避免了每次数据传输都发送相同的用于身份认证的恢复完整性消息认证码ResumeMAC-I,从而能够避免身份验证信息重放的风险,提高数据传输的安全性。
可选地,输出口1040还用于向终端设备发送第五指示信息,第五指示信息包括NCC值,其中,第五指示信息用于指示终端设备挂起第二信令无线承载和数据无线承载DRB。
其中,以上列举的装置1000中各模块或单元的功能和动作仅为示例性说明,当该装 置1000配置在或本身即为接入设备时,装置1000中各模块或单元可以用于执行上述方法中接入设备(例如,接入设备101)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置1000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图11为本申请提供的一种终端设备1100的结构示意图。上述装置900可以配置在该终端设备1100中,或者,上述装置900本身可以即为该终端设备1100。或者说,该终端设备1100可以执行上述方法中终端设备(例如终端设备102或103)执行的动作。
为了便于说明,图11仅示出了终端设备的主要部件。如图11所示,终端设备100包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备1100的收发单元1110,将具有处理功能的处理器视为终端设备1100的处理单元1120。如图1100所示,终端设备1100包括收发单元1110和处理单元1120。收发单元也可以称 为收发器、收发机、收发装置等。可选地,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图12为本申请实施例提供的一种接入设备1200的结构示意图,可以用于实现上述方法中的接入设备(例如,接入设备101)的功能。接入设备1200包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1210和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1220。所述RRU1210可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1211和射频单元1211。所述RRU1210部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU1220部分主要用于进行基带处理,对基站进行控制等。所述RRU1210与BBU1220可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU1220为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)1220可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU1220可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU1220还包括存储器1221和处理器1222。所述存储器1221用以存储必要的指令和数据。例如存储器1221存储上述实施例中的码本等。所述处理器1222用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(system-on-chip,SoC)技术的发展,可以将1220部分和1210部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选地,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图12示例的接入设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种数据传输系统,其包括前述的接入设备和一个或多于一个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种数据传输的方法,其特征在于,所述方法应用于处于非连接态的终端设备,所述方法包括:
    发送第一消息,所述第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送所述RRC恢复请求;
    恢复与接入设备的第二信令无线承载,其中,所述第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;
    发送第二消息,所述第二消息包括第二上行数据和身份标识信息,其中,通过所述第二信令无线承载,向所述接入设备发送所述身份标识信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息;
    所述恢复与接入设备的第二信令无线承载,包括:
    根据所述第一指示信息恢复所述第二信令无线承载。
  3. 根据权利要求1所述方法,其特征在于,所述第一消息还包括第二指示信息,所述第二指示信息用于指示待传输的第二上行数据。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第一信令无线承载SRB0,向所述接入设备发送所述第二指示信息;
    通过数据无线承载DRB,向所述接入设备发送所述第一上行数据和所述第二上行数据。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    从所述接入设备接收第三指示信息,所述第三指示信息用于指示所述终端设备的下一跳链计算NCC值;
    根据所述NCC值,对所述第二上行数据加密。
  6. 根据权利要求1所述的方法,其特征在于,所述RRC恢复请求包括:无线网络临时标识I-RNTI、恢复原因Resume Cause和恢复完整性消息认证码ResumeMAC-I,其中所述恢复完整性消息认证码ResumeMAC-I用于对所述终端设备进行身份识别。
  7. 据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第二信令无线承载SRB2,向所述接入设备发送非接入层NAS信令,所述NAS信令包括定位信息,所述定位信息用于所述接入设备确定所述终端设备的位置。
  8. 根据权利要求7所述的方法,其特征在于,所述NAS信令还包括所述身份标识信息。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    启动定时器;
    在所述定时器到期之前,不使用配置的授权CG资源对应的CG时机发送所述第二消息,或者,根据所述接入设备的第四指示信息,使用所述CG资源对应的CG时机发送所述第二消息。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述接入设备的第四指示信 息,使用所述CG资源对应的CG时机发送所述第二消息,包括:
    根据所述接入设备的第四指示信息,使用所述CG资源对应的第一CG时机发送所述第二消息,或者,根据所述接入设备的第四指示信息,使用所述CG资源对应的第二CG时机发送所述第二消息,其中,所述第一CG时机不同于所述第二CG时机。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    接收第五指示信息,所述第五指示信息用于指示结束所述数据传输过程,所述第五指示信息还包括NCC值;
    根据所述第五指示信息,挂起所述第二信令无线承载和数据无线承载DRB。
  12. 一种信息传输的方法,其特征在于,所述方法由接入设备执行,所述方法包括:
    接收第一消息,所述第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0接收所述RRC恢复请求;
    恢复与终端设备的第二信令无线承载,其中,所述第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;
    接收第二消息,所述第二消息包括第二上行数据和身份标识信息,其中,通过所述第二信令无线承载,从所述终端设备接收所述身份标识信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述终端设备恢复所述第二信令无线承载。
  14. 根据权利要求12所述的方法,其特征在于,所述第一消息还包括第二指示信息,所述第二指示信息用于指示待传输的第二上行数据。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    通过第一信令无线承载SRB0,从所述终端设备接收所述第二指示信息;
    通过数据无线承载DRB,从所述终端设备接收所述第一上行数据和所述第二上行数据。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备的下一跳链计算NCC值,其中所述NCC值用于所述终端设备对所述第二上行数据加密。
  17. 根据权利要求12所述的方法,其特征在于,所述RRC恢复请求包括:无线网络临时标识I-RNTI、恢复原因Resume Cause和恢复完整性消息认证码ResumeMAC-I,其中所述恢复完整性消息认证码ResumeMAC-I用于对所述终端设备进行身份识别。
  18. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第二信令无线承载SRB2,从所述终端设备接收非接入层NAS信令,所述NAS信令包括定位信息,所述定位信息用于确定所述终端设备的位置。
  19. 根据权利要求18所述的方法,其特征在于,所述NAS信令还包括所述身份标识信息。
  20. 根据权利要求12-19中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四指示信息,所述第四信息用于指示所述终端设备使用配置的授权CG资源对应的CG时机发送所述第二消息,或者,所述第四信息用于指示所述终端设备不使用所述CG资源对应的CG时机发送所述第二消息。
  21. 根据权利要求20所述的方法,其特征在于,所述第四信息用于指示所述终端设备使用配置的授权CG资源对应的CG时机发送所述第二消息,包括:
    所述第四指示信息用于指示所述终端设备使用CG资源对应的第一CG时机发送所述终端设备的第二消息和另一终端设备使用CG资源对应的第二CG时机发送所述另一终端设备的消息,其中,所述终端设备不同于所述另一终端设备,所述第一CG时机不同于所述第二CG时机。
  22. 根据权利要求12-21中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第五指示信息,所述第五指示信息包括NCC值,其中,所述第五指示信息用于指示所述终端设备挂起所述第二信令无线承载和数据无线承载DRB。
  23. 一种数据传输装置,其特征在于,包括:
    收发单元,用于发送第一消息,所述第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0发送所述RRC恢复请求;
    处理单元,用于恢复与接入设备的第二信令无线承载,其中,所述第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;
    所述收发单元还用于发送第二消息,所述第二消息包括第二上行数据和身份标识信息,其中,通过所述第二信令无线承载,向所述接入设备发送所述身份标识信息。
  24. 根据权利要求23所述的数据传输装置,其特征在于,
    所述收发单元还用于:接收第一指示信息;
    所述处理单元具体用于:根据所述第一指示信息恢复所述第二信令无线承载。
  25. 根据权利要求23所述的数据传输装置,其特征在于,所述第一消息还包括第二指示信息,所述第二指示信息用于指示待传输的第二上行数据。
  26. 根据权利要求23至25中任一项所述的数据传输装置,其特征在于,所述收发单元还用于:
    通过所述第一信令无线承载SRB0,向所述接入设备发送所述第二指示信息;
    通过数据无线承载DRB,向所述接入设备发送所述第一上行数据和所述第二上行数据。
  27. 根据权利要求23至26中任一项所述的数据传输装置,其特征在于,
    所述收发单元还用于:从所述接入设备接收第三指示信息,所述第三指示信息用于指示所述终端设备的下一跳链计算NCC值;
    所述处理单元还用于:根据所述NCC值,对所述第二上行数据加密。
  28. 根据权利要求23所述的数据传输装置,其特征在于,所述RRC恢复请求包括:无线网络临时标识I-RNTI、恢复原因Resume Cause和恢复完整性消息认证码ResumeMAC-I,其中所述恢复完整性消息认证码ResumeMAC-I用于对所述终端设备进行身份识别。
  29. 根据权利要求23至25中任一项所述的数据传输装置,其特征在于,所述收发单元还用于:通过所述第二信令无线承载SRB2,向所述接入设备发送非接入层NAS信令,所述NAS信令包括定位信息,所述定位信息用于所述接入设备确定所述终端设备的位置。
  30. 根据权利要求29所述的数据传输装置,其特征在于,所述NAS信令还包括所述身份标识信息。
  31. 根据权利要求23至30中任一项所述的数据传输装置,其特征在于,
    所述处理单元还用于:启动定时器;
    所述收发单元还用于:在所述定时器到期之前,不使用配置的授权CG资源对应的CG时机发送所述第二消息,或者,根据所述接入设备的第四指示信息,使用所述CG资源对应的CG时机发送所述第二消息。
  32. 根据权利要求31所述的数据传输装置,所述根据所述接入设备的第四指示信息,使用所述CG资源对应的CG时机发送所述第二消息,包括:
    根据所述接入设备的第四指示信息,使用所述CG资源对应的第一CG时机发送所述第二消息,或者,根据所述接入设备的第四指示信息,使用所述CG资源对应的第二CG时机发送所述第二消息,其中,所述第一CG时机不同于所述第二CG时机。
  33. 根据权利要求23至32中任一项所述的数据传输装置,其特征在于,
    所述收发单元用于:接收第五指示信息,所述第五指示信息用于指示结束所述数据传输过程,所述第五指示信息还包括NCC值;
    所述处理单元用于:根据所述第五指示信息,挂起所述第二信令无线承载和数据无线承载DRB。
  34. 一种数据传输装置,其特征在于,包括:
    收发单元,用于接收第一消息,所述第一消息包括无线资源控制RRC恢复请求和第一上行数据,其中,通过第一信令无线承载SRB0接收所述RRC恢复请求;
    处理单元,用于恢复与终端设备的第二信令无线承载,其中,所述第二信令无线承载包括SRB1、SRB2或SRB1和SRB2;
    所述收发单元还用于接收第二消息,所述第二消息包括第二上行数据和身份标识信息,其中,通过所述第二信令无线承载,从所述终端设备接收所述身份标识信息。
  35. 根据权利要求34所述的数据传输装置,其特征在于,所述收发单元还用于:发送第一指示信息,所述第一指示信息用于指示所述终端设备恢复所述第二信令无线承载。
  36. 根据权利要求34所述的数据传输装置,其特征在于,所述第一消息还包括第二指示信息,所述第二指示信息用于指示待传输的第二上行数据。
  37. 根据权利要求34至36中任一项所述的数据传输装置,其特征在于,所述收发单元还用于:
    通过第一信令无线承载SRB0,从所述终端设备接收所述第二指示信息;
    通过数据无线承载DRB,从所述终端设备接收所述第一上行数据和所述第二上行数据。
  38. 根据权利要求34至37中任一项所述的数据传输装置,其特征在于,所述收发单元还用于:向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备的下一跳链计算NCC值,其中所述NCC值用于所述终端设备对所述第二上行数据加密。
  39. 根据权利要求34所述的数据传输装置,其特征在于,所述RRC恢复请求包括:无线网络临时标识I-RNTI、恢复原因Resume Cause和恢复完整性消息认证码ResumeMAC-I,其中所述恢复完整性消息认证码ResumeMAC-I用于对所述终端设备进行身份识别。
  40. 根据权利要求34所述的数据传输装置,其特征在于,所述收发单元还用于:通 过所述第二信令无线承载SRB2,从所述终端设备接收非接入层NAS信令,所述NAS信令包括定位信息,所述定位信息用于确定所述终端设备的位置。
  41. 根据权利要求40所述的数据传输装置,其特征在于,所述NAS信令还包括所述身份标识信息。
  42. 根据权利要求34至41中任一项所述的数据传输装置,其特征在于,所述收发单元还用于:向所述终端设备发送第四指示信息,所述第四信息用于指示所述终端设备使用配置的授权CG资源对应的CG时机发送所述第二消息,或者,所述第四信息用于指示所述终端设备不使用所述CG资源对应的CG时机发送所述第二消息。
  43. 根据权利要求42所述的数据传输装置,其特征在于,所述第四信息用于指示所述终端设备使用配置的授权CG资源对应的CG时机发送所述第二消息,包括:
    所述第四指示信息用于指示所述终端设备使用CG资源对应的第一CG时机发送所述终端设备的第二消息和另一终端设备使用CG资源对应的第二CG时机发送所述另一终端设备的消息,其中,所述终端设备不同于所述另一终端设备,所述第一CG时机不同于所述第二CG时机。
  44. 根据权利要求34至43中任一项所述的数据传输装置,其特征在于,所述收发单元还用于:向所述终端设备发送第五指示信息,所述第五指示信息包括NCC值,其中,所述第五指示信息用于指示所述终端设备挂起所述第二信令无线承载和数据无线承载DRB。
  45. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序/指令,其特征在于,该计算机程序/指令被处理器执行时实现权利要求1至22中任一项所述方法。
  46. 一种电路系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述电路系统的通信装置实现如权利要求1至11中任一项所述的方法;或者
    使得安装有所述电路系统的通信装置实现如权利要求12至22中任一项所述的方法。
  47. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置实现如权利要求1至22中任一项所述的方法。
PCT/CN2021/071524 2021-01-13 2021-01-13 数据传输的方法和装置 WO2022151057A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071524 WO2022151057A1 (zh) 2021-01-13 2021-01-13 数据传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071524 WO2022151057A1 (zh) 2021-01-13 2021-01-13 数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2022151057A1 true WO2022151057A1 (zh) 2022-07-21

Family

ID=82446564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071524 WO2022151057A1 (zh) 2021-01-13 2021-01-13 数据传输的方法和装置

Country Status (1)

Country Link
WO (1) WO2022151057A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215887A1 (en) * 2018-01-11 2019-07-11 Richard C. Burbidge Nr rrc connection setup optimisation
CN110418432A (zh) * 2018-04-26 2019-11-05 宏达国际电子股份有限公司 处理无线资源控制重建的装置及方法
CN110636565A (zh) * 2018-06-21 2019-12-31 电信科学技术研究院有限公司 Rrc非活跃状态下的数据传输方法、装置、终端及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215887A1 (en) * 2018-01-11 2019-07-11 Richard C. Burbidge Nr rrc connection setup optimisation
CN110418432A (zh) * 2018-04-26 2019-11-05 宏达国际电子股份有限公司 处理无线资源控制重建的装置及方法
CN110636565A (zh) * 2018-06-21 2019-12-31 电信科学技术研究院有限公司 Rrc非活跃状态下的数据传输方法、装置、终端及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on RRC-controlled small data transmission", 3GPP DRAFT; R2-2008959, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942009 *

Similar Documents

Publication Publication Date Title
EP2813098B1 (en) A fast-accessing method and apparatus
WO2020199942A1 (zh) 通信方法、通信装置和系统
WO2021063071A1 (zh) 无线通信方法和装置
WO2021203814A1 (zh) 处理时间同步报文的方法和装置
WO2019072170A1 (zh) 通信方法和通信装置
WO2020119615A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021062775A1 (zh) 一种寻呼消息的检测方法、装置及通信设备
WO2021204016A1 (zh) 通信方法以及通信装置
US20230107139A1 (en) Relay discovery method and terminal
WO2022252867A1 (zh) 通信方法及通信装置
WO2022151057A1 (zh) 数据传输的方法和装置
WO2023050094A1 (zh) 信息指示方法、第一接入网设备和核心网网元
WO2022133682A1 (zh) 数据传输方法、终端设备和网络设备
WO2022120516A1 (zh) 通信方法、设备和系统
WO2022027375A1 (zh) 选择接入小区的方法、终端设备和网络设备
WO2020191782A1 (zh) 一种数据传输方法及装置
CN114930890A (zh) 完整性保护方法和通信设备
WO2023155655A1 (zh) 算力能力感知方法和装置
WO2022141025A1 (zh) 用于传输数据的方法与装置
US20230189257A1 (en) Data transmission method and terminal device
WO2023133794A1 (zh) 数据传输方法、终端设备和网络设备
WO2022099475A1 (zh) 会话管理方法、终端设备和网络设备
WO2022021032A1 (zh) 信息处理方法、终端设备和网络设备
WO2022082781A1 (zh) 通信方法和通信装置
US20230199712A1 (en) Wireless communication method and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918273

Country of ref document: EP

Kind code of ref document: A1