WO2022151026A1 - Channel resource indicators for linked channel state information measurment reports - Google Patents

Channel resource indicators for linked channel state information measurment reports Download PDF

Info

Publication number
WO2022151026A1
WO2022151026A1 PCT/CN2021/071434 CN2021071434W WO2022151026A1 WO 2022151026 A1 WO2022151026 A1 WO 2022151026A1 CN 2021071434 W CN2021071434 W CN 2021071434W WO 2022151026 A1 WO2022151026 A1 WO 2022151026A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmrs
csi report
base station
cmr
report configuration
Prior art date
Application number
PCT/CN2021/071434
Other languages
French (fr)
Inventor
Mostafa KHOSHNEVISAN
Chenxi HAO
Xiaoxia Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/071434 priority Critical patent/WO2022151026A1/en
Publication of WO2022151026A1 publication Critical patent/WO2022151026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for determining channel resource indicators for linked channel state information measurement reports.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a UE may communicate with a BS via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit-receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
  • NR which may also be referred to as 5G
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with various aspects of the present disclosure.
  • RAN radio access network
  • Fig. 4 is a diagram illustrating an example of multiple transmit-receive point (multi-TRP) communication, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example associated with determining channel resource indicators (CRIs) for linked channel state information (CSI) measurement reports, in accordance with various aspects of the present disclosure.
  • CRIs channel resource indicators
  • CSI linked channel state information
  • Figs. 6, 7, 8, and 9 are diagrams illustrating example processes associated with determining CRIs for linked CSI measurement reports, in accordance with various aspects of the present disclosure.
  • Figs. 10 and 11 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
  • a user equipment (UE) for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; receive, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  • CRI channel resource indicator
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit, to a UE, a first CSI report configuration associated with a first set of CMRs; transmit, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receive, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive, from a base station, a CSI report configuration associated with a first set of CMRs; and transmit, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  • RI rank indicator
  • CQI channel quality indicator
  • LI layer indicator
  • PMI precoding matrix indicator
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit, to a UE, a CSI report configuration associated with a first set of CMRs; and receive, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • a method of wireless communication performed by a UE includes receiving, from a base station, a first CSI report configuration associated with a first set of CMRs; receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • a method of wireless communication performed by a base station includes transmitting, to a UE, a first CSI report configuration associated with a first set of CMRs; transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • a method of wireless communication performed by a UE includes receiving, from a base station, a CSI report configuration associated with a first set of CMRs; and transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • a method of wireless communication performed by a base station includes transmitting, to a UE, a CSI report configuration associated with a first set of CMRs; and receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive, from a base station, a first CSI report configuration associated with a first set of CMRs; receive, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmit, to a UE, a first CSI report configuration associated with a first set of CMRs; transmit, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receive, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive, from a base station, a CSI report configuration associated with a first set of CMRs; and transmit, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmit, to a UE, a CSI report configuration associated with a first set of CMRs; and receive, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • an apparatus for wireless communication includes means for receiving, from a base station, a first CSI report configuration associated with a first set of CMRs; means for receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and means for transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • an apparatus for wireless communication includes means for transmitting, to a UE, a first CSI report configuration associated with a first set of CMRs; means for transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and means for receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • an apparatus for wireless communication includes means for receiving, from a base station, a CSI report configuration associated with a first set of CMRs; and means for transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • an apparatus for wireless communication includes means for transmitting, to a UE, a CSI report configuration associated with a first set of CMRs; and means for receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or an LTE network, among other examples.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit-receive point (TRP) , or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts)
  • pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, directly or indirectly, via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • a respective output symbol stream e.g., for OFDM
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSQ reference signal received quality
  • CQI parameter CQI parameter
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • Antennas may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to base station 110.
  • control information e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI
  • Transmit processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-O
  • a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-9.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-9.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with determining CRIs for linked CSI measurement reports, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE may include means for receiving, from a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) , a first CSI report configuration associated with a first set of CMRs; means for receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and/or means for transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • the means for the UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
  • a base station may include means for transmitting, to a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) , a first CSI report configuration associated with a first set of CMRs; means for transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and/or means for receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • the means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • a UE may include means for receiving, from a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) , a CSI report configuration associated with a first set of CMRs; and/or means for transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
  • the means for the UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
  • the UE may further include means for refraining from transmitting, to the base station, CSI part 2 information. Additionally, or alternatively, the UE may further include means for receiving, from a base station, an additional CSI report configuration associated with a second set of CMRs.
  • a base station may include means for transmitting, to a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) , a CSI report configuration associated with a first set of CMRs; and/or means for receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
  • the means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • the base station may further include means for refraining from monitoring for CSI part 2 information from the UE. Additionally, or alternatively, the base station may further include means for transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a 5G access node 305 may include an access node controller 310.
  • the access node controller 310 may be a central unit (CU) of the distributed RAN 300.
  • a backhaul interface to a 5G core network 315 may terminate at the access node controller 310.
  • the 5G core network 315 may include a 5G control plane component 320 and a 5G user plane component 325 (e.g., a 5G gateway) , and the backhaul interface for one or both of the 5G control plane and the 5G user plane may terminate at the access node controller 310.
  • a backhaul interface to one or more neighbor access nodes 330 e.g., another 5G access node 305 and/or an LTE access node
  • the access node controller 310 may include and/or may communicate with one or more TRPs 335 (e.g., via an F1 Control (F1-C) interface and/or an F1 User (F1-U) interface) .
  • a TRP 335 may be a distributed unit (DU) of the distributed RAN 300.
  • a TRP 335 may correspond to a base station 110 described above in connection with Fig. 1.
  • different TRPs 335 may be included in different base stations 110.
  • multiple TRPs 335 may be included in a single base station 110.
  • a base station 110 may include a CU (e.g., access node controller 310) and/or one or more DUs (e.g., one or more TRPs 335) .
  • a TRP 335 may be referred to as a cell, a panel, an antenna array, or an array.
  • a TRP 335 may be connected to a single access node controller 310 or to multiple access node controllers 310.
  • a dynamic configuration of split logical functions may be present within the architecture of distributed RAN 300.
  • a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and/or a medium access control (MAC) layer may be configured to terminate at the access node controller 310 or at a TRP 335.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • multiple TRPs 335 may transmit communications (e.g., the same communication or different communications) in the same transmission time interval (TTI) (e.g., a slot, a mini-slot, a subframe, or a symbol) or different TTIs using different quasi-co-location (QCL) relationships (e.g., different spatial parameters, different transmission configuration indicator (TCI) states, different precoding parameters, and/or different beamforming parameters) .
  • TCI transmission time interval
  • a TCI state may be used to indicate one or more QCL relationships.
  • a TRP 335 may be configured to individually (e.g., using dynamic selection) or jointly (e.g., using joint transmission with one or more other TRPs 335) serve traffic to a UE 120.
  • Fig. 3 is provided as an example. Other examples may differ from what was described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of multi-TRP communication (sometimes referred to as multi-panel communication) , in accordance with various aspects of the present disclosure.
  • Multi-TRP communication may also be referred to as non-coherent joint transmission (NCJT) .
  • NJT non-coherent joint transmission
  • multiple TRPs 405 may communicate with the same UE 120.
  • a TRP 405 may correspond to a TRP 335 described above in connection with Fig. 3.
  • the multiple TRPs 405 may communicate with the same UE 120 in a coordinated manner (e.g., using coordinated multipoint transmissions) to improve reliability and/or increase throughput.
  • the TRPs 405 may coordinate such communications via an interface between the TRPs 405 (e.g., a backhaul interface and/or an access node controller 310) .
  • the interface may have a smaller delay and/or higher capacity when the TRPs 405 are co-located at the same base station 110 (e.g., when the TRPs 405 are different antenna arrays or panels of the same base station 110) , and may have a larger delay and/or lower capacity (as compared to co-location) when the TRPs 405 are located at different base stations 110.
  • the different TRPs 405 may communicate with the UE 120 using different QCL relationships (e.g., different TCI states) , different demodulation reference signal (DMRS) ports, and/or different layers (e.g., of a multi-layer communication) .
  • QCL relationships e.g., different TCI states
  • DMRS demodulation reference signal
  • a single physical downlink control channel may be used to schedule downlink data communications for a single physical downlink shared channel (PDSCH) .
  • Mode 1 multi-TRP transmission may also be referred to as single-DCI-based multi-TRP communication.
  • multiple TRPs 405 e.g., TRP A and TRP B
  • TRP A and TRP B may transmit communications to the UE 120 on the same PDSCH.
  • a communication may be transmitted using a single codeword with different spatial layers for different TRPs 405 (e.g., where one codeword maps to a first set of layers transmitted by a first TRP 405 and maps to a second set of layers transmitted by a second TRP 405) .
  • a communication may be transmitted using multiple codewords, where different codewords are transmitted by different TRPs 405 (e.g., using different sets of layers) .
  • different TRPs 405 may use different QCL relationships (e.g., different TCI states) for different DMRS ports corresponding to different layers.
  • a first TRP 405 may use a first QCL relationship or a first TCI state for a first set of DMRS ports corresponding to a first set of layers
  • a second TRP 405 may use a second (different) QCL relationship or a second (different) TCI state for a second (different) set of DMRS ports corresponding to a second (different) set of layers.
  • a TCI state in downlink control information may indicate the first QCL relationship (e.g., by indicating a first TCI state) and the second QCL relationship (e.g., by indicating a second TCI state) .
  • the first and the second TCI states may be indicated using a TCI field in the DCI.
  • the TCI field can indicate a single TCI state (for single-TRP transmission) or multiple TCI states (for multi-TRP transmission as discussed here) in this multi-TRP transmission mode (e.g., Mode 1) .
  • Mode 1 multi-TRP transmission that uses frequency division multiplexing (FDM) (e.g., in which different resource block (RB) sets of the PDSCH are associated with different TCI states) , time division multiplexing (TDM) (e.g., in which different repetitions of the PDSCH along the time domain are associated with different TCI states) , and/or another multiplexing scheme.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • a second multi-TRP transmission mode (e.g., Mode 2)
  • multiple PDCCHs may be used to schedule downlink data communications for multiple corresponding PDSCHs (e.g., one PDCCH for each PDSCH) .
  • Mode 2 multi-TRP transmission may also be referred to as multi-DCI-based multi-TRP communication.
  • a first PDCCH may schedule a first codeword to be transmitted by a first TRP 405
  • a second PDCCH may schedule a second codeword to be transmitted by a second TRP 405.
  • first DCI (e.g., transmitted by the first TRP 405) may schedule a first PDSCH communication associated with a first set of DMRS ports with a first QCL relationship (e.g., indicated by a first TCI state) for the first TRP 405, and second DCI (e.g., transmitted by the second TRP 405) may schedule a second PDSCH communication associated with a second set of DMRS ports with a second QCL relationship (e.g., indicated by a second TCI state) for the second TRP 405.
  • DCI (e.g., having DCI format 1_0 or DCI format 1_1) may indicate a corresponding TCI state for a TRP 405 corresponding to the DCI.
  • the TCI field of a DCI indicates the corresponding TCI state (e.g., the TCI field of the first DCI indicates the first TCI state and the TCI field of the second DCI indicates the second TCI state) .
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • a base station may indicate a CSI report configuration to a UE.
  • the base station may transmit a CSI-ReportConfig data structure (e.g., as defined in 3GPP specifications and/or another standard) to the UE, where the CSI-ReportConfig data structure indicates the CSI report configuration.
  • the CSI report configuration may link to a CMR set from which the UE selects one CMR to measure.
  • a CMR may indicate one or more resources (e.g., frequencies, times, beams, and/or other physical resources) associated with a reference signal (e.g., a CSI reference signal (CSI-RS) , a synchronization signal block (SSB) , and/or another reference signal) , such that the UE can measure that reference signal.
  • a reference signal e.g., a CSI reference signal (CSI-RS) , a synchronization signal block (SSB) , and/or another reference signal
  • the CSI report configuration may further link to a CSI resource set for interference measurement (CSI-IM set) , where each CMR is associated with no more than one CSI-IM of the CSI-IM set.
  • CSI-IM may indicate one or more resources (e.g., frequencies, times, beams, and/or other physical resources) that the UE should use to estimate interference associated with the reference signal for the selected CMR.
  • the CSI report configuration may further link to a non-zero power interference measurement resource (NZP-IMR, also referred to as IMR) set, where each CMR is associated with the IMR set.
  • An IMR may indicate one or more resources (e.g., frequencies, times, beams, and/or other physical resources) associated with a reference signal (e.g., a CSI-RS, an SSB, and/or another reference signal) , such that the UE can estimate interference using that reference signal.
  • a reference signal e.g., a CSI-RS, an SSB, and/or another reference signal
  • the resources identified by that CMR may be referred to as a “CSI hypothesis, ” and thus the UE transmits a CSI report associated with that CSI hypothesis, based on measurements using those resources, to the base station.
  • the CSI report may include a rank indicator (RI) , a CQI, a layer indicator (LI) , and/or a precoding matrix indicator (PMI) , in addition to or in lieu of L1 measurements (e.g., RSRP, RSSI, and/or another L1 measurement) .
  • An RI, a PMI, and/or a CQI may indicate a precoder matrix W, from a set of precoder matrices in a codebook, for the base station to use for downlink communications to the UE.
  • an LI may further indicate that a precoder matrix associated with the RI, the PMI, and/or the CQI should not exceed a maximum number of layers that the UE can use (e.g., for MIMO communications) .
  • the base station may instruct the UE that the CSI report configuration is periodic (e.g., the UE should perform measurements and transmit a CSI report based on those measurements periodically) or semi-persistent (e.g., the UE should perform measurements and transmit a CSI report whenever a trigger, such as receipt of a medium access control (MAC) control element (MAC-CE) and/or downlink control information (DCI) from the base station, is satisfied) .
  • MAC medium access control
  • MAC-CE medium access control element
  • DCI downlink control information
  • the base station may provide a resource grant for a periodic uplink slot in which the UE may transmit the CSI report to the base station.
  • slot may refer to a portion of a subframe, which in turn may be a fraction of a radio frame within an LTE, 5G, or other wireless communication structure.
  • a slot may include one or more symbols.
  • symbol may refer to an OFDM symbol or another similar symbol within a slot.
  • a CSI report may be associated with multiple CMRs.
  • the base station may include multiple TRPs such that the CSI report is associated with a CMR from one TRP and a CMR from another TRP.
  • the UE may still transmit two separate CSI reports to the base station, where each CSI report is associated with one CMR, but the CSI reports may be linked.
  • a selected CMR for the first CSI report may be associated with a first TRP of the base station
  • a selected CMR for the second CSI report may be associated with a second TRP of the base station.
  • the UE may use joint measurements (e.g., measurements of both CMRs and, in some cases, associated CSI-IMs and/or an associated IMR set) to generate both CSI reports. Accordingly, the base station may schedule multi-TRP transmissions (e.g., as described above in connection with Fig. 4) based on the selected CMRs and both CSI reports.
  • joint measurements e.g., measurements of both CMRs and, in some cases, associated CSI-IMs and/or an associated IMR set
  • the base station may schedule multi-TRP transmissions (e.g., as described above in connection with Fig. 4) based on the selected CMRs and both CSI reports.
  • Some techniques and apparatuses described herein enable a UE (e.g., UE 120) to determine a CRI to use in a CSI report associated with a CSI report configuration included in two or more linked CSI report configurations. As a result, the UE 120 may accurately indicate a selected CMR from the first CSI report configuration using the CRI. Accordingly, the UE 120 can improve quality and/or reliability of communications with a base station (e.g., base station 110) by ensuring accurate CRIs in CSI reports for the linked CSI report configurations.
  • a base station e.g., base station 110
  • some techniques and apparatuses described herein enable the UE 120 to retain a same payload size for a CSI report even when a CMR is not selected from a corresponding CSI report configuration. Accordingly, the UE 120 can improve quality and/or reliability of communications with the base station 110 by ensuring that the base station 110 can properly receive and decode the CSI report even when a CMR is not selected from the corresponding CSI report configuration. Additionally, some techniques and apparatuses described herein enable the UE 120 to refrain from transmitting CSI part 2 information when a CMR is not selected from the corresponding CSI report configuration. As a result, the UE 120 may conserve processing resources and network overhead when a CMR is not selected from the corresponding CSI report configuration.
  • Fig. 5 is a diagram illustrating an example 500 associated with determining CRIs for linked CSI measurement reports, in accordance with various aspects of the present disclosure.
  • example 500 includes communication between a base station 110 and a UE 120.
  • the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100.
  • the base station 110 and the UE 120 may communicate via a wireless access link, which may include an uplink and a downlink.
  • the base station 110 may transmit, and the UE 120 may receive, a first CSI report configuration and a second CSI report configuration that is linked to the first CSI report configuration.
  • the first CSI report configuration and the second CSI report configuration may be linked such that the UE 120 uses joint measurements, based at least in part on both configurations, to generate a first CSI report associated with the first CSI report configuration and a second CSI report associated with the second CSI report configuration.
  • the first CSI report configuration may be associated with a first TRP of the base station 110 (e.g., TRP A as described above in connection with Fig.
  • the second CSI report configuration may be associated with a second TRP of the base station 110 (e.g., TRP B as described above in connection with Fig. 4) .
  • TRP B a second TRP of the base station 110
  • the description below relates to two CSI report configurations, the description similarly applies to three linked CSI report configurations, four linked CSI report configurations, and so on.
  • the first CSI report configuration may be associated with a first set of CMRs.
  • the second CSI report configuration may be associated with a second set of CMRs.
  • the UE 120 may select a CSI hypothesis to use for performing joint measurements (e.g., as described below in connection with reference number 510) .
  • the CSI hypothesis may include one CMR from the first set of CMRs and one CMR from the second set of CMRs.
  • the UE 120 may generate CSI reports (e.g., e.g., as described below in connection with reference number 515 and 520) , based at least in part on the joint measurements, that the base station 110 may use for multi-TRP scheduling (e.g., as described above in connection with Fig.
  • the CSI hypothesis may include one CMR from the second set of CMRs but no CMR from the first set of CMRs.
  • the UE 120 may generate CSI reports (e.g., e.g., as described below in connection with reference number 515 and 520) , based at least in part on the joint measurements, that the base station 110 may use for single-TRP scheduling (e.g., when the TRPs of the base station 110 are connected to a non-ideal backhaul) .
  • the CSI hypothesis may include one CMR from the first set of CMRs but no CMR from the second set of CMRs.
  • the UE 120 may generate CSI reports (e.g., e.g., as described below in connection with reference number 515 and 520) , based at least in part on the joint measurements, that the base station 110 may use for single-TRP scheduling (e.g., when the TRPs of the base station 110 are connected to a non-ideal backhaul) .
  • CSI reports e.g., e.g., as described below in connection with reference number 515 and 520
  • single-TRP scheduling e.g., when the TRPs of the base station 110 are connected to a non-ideal backhaul
  • the UE 120 may perform one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration.
  • the UE 120 may additional perform one or more interference measurements based at least in part on the first CSI report configuration and/or one or more interference measurements based at least in part on the second CSI report configuration
  • the UE 120 may use these measurements to calculate an RI, a CQI, an LI, and/or a PMI, for including in CSI reports (e.g., as described below) , in addition to or in lieu of L1 measurements (e.g., RSRP, RSSI, and/or another L1 measurement) .
  • L1 measurements e.g., RSRP, RSSI, and/or another L1 measurement
  • the UE 120 may transmit, and the base station 110 may receive, a first CSI report, based at least in part on the one or more joint channel measurements, that includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • the CRI may indicate a CMR selected from the first set of CMRs and may include a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the quantity of CMRs in the first set of CMRs may be represented by N 1 such that a size of the CRI in bits is set to by the UE 120.
  • the UE 120 must select a CMR from the first set of CMR when selecting a CSI hypothesis.
  • a size of the CRI in bits may be set to by the UE 120.
  • the UE 120 may select a CSI hypothesis with no CMR from the first set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) .
  • a TRP of the base station 110 corresponding to the first CSI report configuration may be aware when the UE 120 selects a CSI hypothesis with no CMR from the first set of CMRs but is not aware of which CMR was selected from the second set of CMRs.
  • the CRI may further indicate whether a CMR is selected from the second set of CMRs.
  • the quantity of CMRs in the first set of CMRs may be represented by N 1 such that a size of the CRI in bits is set to by the UE 120.
  • the UE 120 must select a CMR from the first set of CMR when selecting a CSI hypothesis and can indicate whether the CSI hypothesis also includes a CMR from the second set of CMRs using the additional bit (e.g., provided by the +1) .
  • a TRP of the base station 110 corresponding to the first CSI report configuration may be aware when the UE 120 selects a CSI hypothesis with a CMR from the second set of CMRs but is not aware of which CMR was selected from the second set of CMRs.
  • the UE 120 may map possible CSI hypotheses to codepoints such that a size of the CRI in bits may be set to by the UE 120.
  • a size of the CRI in bits may be set to by the UE 120.
  • the UE 120 may select a CSI hypothesis with no CMR from the first set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) .
  • the UE 120 can also select a CSI hypothesis that includes both a CMR from the first set of CMRs and a CMR from the second set of CMRs and indicate this using the additional bit (e.g., provided by the +1 outside the log function) .
  • a TRP of the base station 110 corresponding to the first CSI report configuration may be aware when the UE 120 selects a CSI hypothesis with a CMR from the second set of CMRs but is not aware of which CMR was selected from the second set of CMRs.
  • the UE 120 may map possible CSI hypotheses to codepoints such that a size of the CRI in bits may be set to by the UE 120.
  • the CRI may indicate a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and may include a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  • the quantity of CMRs in the first set of CMRs may be represented by N 1
  • the quantity of CMRs in the second set of CMRs may be represented by N 2 such that a size of the CRI in bits is set to by the UE 120.
  • the UE 120 must select both a CMR from the first set of CMRs and a CMR from the second set of CMRs when selecting a CSI hypothesis.
  • a size of the CRI in bits may be set to by the UE 120.
  • the UE 120 may select a CSI hypothesis with no CMR from the first set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) .
  • a size of the CRI in bits may be set to by the UE 120.
  • the UE 120 may select a CSI hypothesis with no CMR from the second set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) .
  • a size of the CRI in bits may be set to by the UE 120. Accordingly, a TRP of the base station 110 corresponding to the first CSI report configuration may be aware of which CMRs were selected from both the first set of CMRs and the second set of CMRs.
  • a CRI included in a second CSI report may be a same size as the CRI included in the first CSI report; however, an order of bits may be different (e.g., because CMR selections for the set of CMRs associated with that report are encoded first) .
  • the CRI may indicate a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  • the UE 120 may map possible CSI hypotheses to codepoints such that a size of the CRI in bits may be set to by the UE 120, where M represents a quantity of CSI hypotheses that include a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  • a TRP of the base station 110 corresponding to the first CSI report configuration may be aware of which CMRs were selected from both the first set of CMRs and the second set of CMRs.
  • a CRI included in a second CSI report (e.g., as described below in connection with reference number 515) may be the same as the CRI included in the first CSI report.
  • the UE 120 may lack an RI, a CQI, an LI, and/or a PMI to include report in the first CSI report.
  • the base station 110 will not be able to decode the first CSI report if the UE 120 were to transmit a smaller payload by excluding bits that usually encode the RI, the CQI, the LI, and/or the PMI.
  • the UE 120 may include at least one preconfigured value in the first CSI report for the RI, the CQI, the LI, and/or the PMI.
  • the preconfigured value may be programmed (and/or otherwise preconfigured) into the UE 120.
  • the UE 120 may be programmed with any preconfigured value since the base station 110 will discard the values after decoding the CRI, which indicates no CMR was selected from the first set of CMRs.
  • the UE 120 may be programmed with a preconfigured value according to 3GPP specifications and/or another standard, such as all zeroes.
  • the UE 120 may encode information regarding which CMR was selected (e.g., from the second set of CMRs) in one or more fields that typically include the RI, the CQI, the LI, and/or the PMI. Accordingly, after decoding the CRI, which indicates no CMR was selected from the first set of CMRs, the base station 110 may be configured to decode those one or more fields and determine which CMR was selected.
  • the first CSI report may include CSI part 1 information.
  • the UE 120 may refrain from transmitting, and the base station 110 may refrain from monitoring for, CSI part 2 information.
  • the CSI part 1 information may include a CQI, an RI, and/or L1 measurements whiles the CSI part 2 information may include an LI and/or a PMI. Because these parts are usually encoded and transmitted separately, the UE 120 may refrain from transmitting CSI part 2 information because the base station 110 is aware not to monitor for CSI part 2 information after receiving the CRI (included in CSI part 1 information) that indicates no CMR was selected from the first set of CMRs. Accordingly, the UE 120 and the base station 110 may conserve additional processing resources and network overhead.
  • the UE 120 may transmit, and the base station 110 may receive, a second CSI report, based at least in part on the one or more joint channel measurements, that includes a CRI that indicates whether a CMR is selected from the second set of CMRs.
  • the CRI for the second CSI report may be determined similarly to the CRI for the first CSI report, as described above.
  • the UE 120 may lack an RI, a CQI, an LI, and/or a PMI to include report in the second CSI report.
  • the UE 120 may encode values for the RI, the CQI, the LI, and/or the PMI similarly as described above for the first CSI report. Additionally, in some aspects, the UE 120 may refrain from transmitting, and the base station 110 may refrain from monitoring for, CSI part 2 information.
  • the UE 120 may determine a CRI to use in a CSI report associated with a CSI report configuration included in two or more linked CSI report configurations. As a result, the UE 120 may accurately indicate a selected CMR from the first CSI report configuration using the CRI. Accordingly, the UE 120 can improve quality and/or reliability of communications with the base station 110 by ensuring accurate CRIs in CSI reports for the linked CSI report configurations.
  • the UE 120 may retain a same payload size for a CSI report even when a CMR is not selected from a corresponding CSI report configuration. Accordingly, the UE 120 can improve quality and/or reliability of communications with the base station 110 by ensuring that the base station 110 can properly receive and decode the CSI report even when a CMR is not selected from the corresponding CSI report configuration. Additionally, in some aspects, the UE 120 may refrain from transmitting CSI part 2 information when a CMR is not selected from the corresponding CSI report configuration. As a result, the UE 120 may conserve processing resources and network overhead when a CMR is not selected from the corresponding CSI report configuration.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) performs operations associated with determining CRIs for linked CSI measurement reports.
  • the UE e.g., UE 120 and/or apparatus 1000 of Fig. 10.
  • process 600 may include receiving, from a base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) , a first CSI report configuration associated with a first set of CMRs (block 610) .
  • a base station e.g., base station 110 and/or apparatus 1100 of Fig. 11
  • the UE e.g., using reception component 1002, depicted in Fig. 10
  • process 600 may include receiving, from the base station, a second CSI report configuration associated with a second set of CMRs (block 620) .
  • the UE e.g., using reception component 1002 may receive the second CSI report configuration associated with the second set of CMRs, as described above.
  • the second CSI report configuration is linked to the first CSI report configuration.
  • process 600 may include transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration (block 630) .
  • the UE e.g., using transmission component 1004, depicted in Fig. 10
  • the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  • the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  • the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  • the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  • the first CSI report configuration is associated with a first TRP of the base station
  • the second CSI report configuration is associated with a second TRP of the base station.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) performs operations associated with determining CRIs for linked CSI measurement reports.
  • the base station e.g., base station 110 and/or apparatus 1100 of Fig. 11
  • process 700 may include transmitting, to a UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) , a first CSI report configuration associated with a first set of CMRs (block 710) .
  • a UE e.g., UE 120 and/or apparatus 1000 of Fig. 10
  • the base station e.g., using transmission component 1104, depicted in Fig. 1
  • process 700 may include transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs (block 720) .
  • the base station e.g., using transmission component 1104
  • the second CSI report configuration is linked to the first CSI report configuration.
  • process 700 may include receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration (block 730) .
  • the base station e.g., using reception component 1102, depicted in Fig. 11
  • the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  • the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  • the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  • the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  • the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station
  • the second CSI report configuration is associated with a second TRP of the base station.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) performs operations associated with transmitting linked CSI measurement reports.
  • the UE e.g., UE 120 and/or apparatus 1000 of Fig. 10.
  • process 800 may include receiving, from a base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) , a CSI report configuration associated with a first set of CMRs (block 810) .
  • a base station e.g., base station 110 and/or apparatus 1100 of Fig. 11
  • the UE e.g., using reception component 1002, depicted in Fig. 10
  • process 800 may further include receiving, from the base station, an additional CSI report configuration associated with a second set of CMRs (block 820) .
  • the UE e.g., using reception component 1002 may receive the additional CSI report configuration associated with the second set of CMRs, as described above.
  • process 800 may include transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected (block 830) .
  • the UE e.g., using transmission component 1004, depicted in Fig. 10
  • the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
  • process 800 may further include refraining from transmitting, to the base station, CSI part 2 information (block 840) .
  • the UE e.g., using transmission component 1004
  • the CSI report (e.g., as described above in connection with reference number 830) may include CSI part 1 information.
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the preconfigured value includes zero.
  • At least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  • the CSI report configuration is associated with a first TRP of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 900 is an example where the base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) performs operations associated with receiving linked CSI measurement reports.
  • the base station e.g., base station 110 and/or apparatus 1100 of Fig. 11
  • process 900 may include transmitting, to a UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) , a CSI report configuration associated with a first set of CMRs (block 910) .
  • a UE e.g., UE 120 and/or apparatus 1000 of Fig. 10
  • the base station e.g., using transmission component 1104, depicted in Fig. 1
  • process 900 may further include transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs (block 920) .
  • the base station e.g., using transmission component 1104 may transmit the additional CSI report configuration associated with the second set of CMRs, as described above.
  • process 900 may include receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected (block 930) .
  • the base station e.g., using reception component 1102, depicted in Fig. 11
  • the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
  • process 900 may further include refraining from monitoring for CSI part 2 information from the UE (block 940) .
  • the base station e.g., using reception component 1102 may refrain from monitoring for CSI part 2 information, as described above.
  • the CSI report (e.g., as described above in connection with reference number 930) may include CSI part 1 information.
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the preconfigured value includes zero.
  • At least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  • the CSI report configuration is associated with a first TRP of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a UE, or a UE may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include an encoding component 1008, among other examples.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 5. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6, process 800 of Fig. 8, or a combination thereof.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006.
  • the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the reception component 1002 may receive, from the apparatus 1006, a first CSI report configuration associated with a first set of CMRs. Additionally, the reception component 1002 may receive, from the apparatus 1006, a second CSI report configuration associated with a second set of CMRs and that is linked to the first CSI report configuration. Accordingly, the transmission component 1004 may transmit, to the apparatus 1006, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration.
  • the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • the encoding component 1008 may encode the CRI as described above in connection with Fig. 5. In some aspects, the encoding component 1008 may include a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the reception component 1002 may receive, from the apparatus 1006, a CSI report configuration associated with a first set of CMRs. Accordingly, the transmission component 1004 may transmit, to the apparatus 1006, a CSI report indicating that no CMR from the first set of CMRs was selected.
  • the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
  • the encoding component 1008 may encode the RI, the CQI, the LI, and/or the PMI as described above in connection with Fig. 5.
  • the reception component 1002 may further receive, from the apparatus 1006, an additional CSI report configuration associated with a second set of CMRs. Accordingly, a CMR from the second set of CMRs may be selected, and the encoding component 1008 may encode the RI, the CQI, the LI, and/or the PMI based at least in part on the selected CMR as described above in connection with Fig. 5.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • Fig. 11 is a block diagram of an example apparatus 1100 for wireless communication.
  • the apparatus 1100 may be a base station, or a base station may include the apparatus 1100.
  • the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104.
  • the apparatus 1100 may include a decoding component 1108, among other examples.
  • the apparatus 1100 may be configured to perform one or more operations described herein in connection with Fig. 5. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7, process 900 of Fig. 9, or a combination thereof.
  • the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106.
  • the reception component 1102 may provide received communications to one or more other components of the apparatus 1100.
  • the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1106.
  • the reception component 1102 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106.
  • one or more other components of the apparatus 1106 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106.
  • the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106.
  • the transmission component 1104 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
  • the transmission component 1104 may transmit, to the apparatus 1106, a first CSI report configuration associated with a first set of CMRs. Additionally, the transmission component 1104 may transmit, to the apparatus 1106, a second CSI report configuration associated with a second set of CMRs and that is linked to the first CSI report configuration. Accordingly, the reception component 1102 may receive, from the apparatus 1106, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration.
  • the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
  • the decoding component 1108 may decode the CRI as described above in connection with Fig. 5. In some aspects, the decoding component 1108 may include a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 1104 may transmit, to the apparatus 1106, a CSI report configuration associated with a first set of CMRs. Accordingly, the reception component 1102 may receive, from the apparatus 1106, a CSI report indicating that no CMR from the first set of CMRs was selected.
  • the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
  • the decoding component 1108 may discard the RI, the CQI, the LI, and/or the PMI as described above in connection with Fig. 5.
  • the transmission component 1104 may further transmit, to the apparatus 1106, an additional CSI report configuration associated with a second set of CMRs. Accordingly, a CMR from the second set of CMRs may be selected, and the decoding component 1108 may decode the RI, the CQI, the LI, and/or the PMI to determine information based at least in part on the selected CMR as described above in connection with Fig. 5.
  • Fig. 11 The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
  • a method of wireless communication performed by a user equipment comprising: receiving, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  • CRI channel resource indicator
  • Aspect 2 The method of aspect 1, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • Aspect 3 The method of aspect 1, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • Aspect 4 The method of any of aspects 1 through 3, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • Aspect 5 The method of aspect 4, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  • Aspect 6 The method of aspect 4, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  • Aspect 7 The method of aspect 1, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  • Aspect 8 The method of aspect 1, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  • Aspect 9 The method of any of aspects 1 through 8, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
  • TRP transmit-receive point
  • a method of wireless communication performed by a base station comprising: transmitting, to a user equipment (UE) , a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  • CRI channel resource indicator
  • Aspect 11 The method of aspect 10, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • Aspect 12 The method of aspect 10, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • Aspect 13 The method of any of aspects 10 through 12, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  • Aspect 14 The method of aspect 13, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  • Aspect 15 The method of aspect 13, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  • Aspect 16 The method of aspect 10, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  • Aspect 17 The method of aspect 10, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  • Aspect 18 The method of any of aspects 10 through 18, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
  • TRP transmit-receive point
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving, from a base station, a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  • RI rank indicator
  • CQI channel quality indicator
  • LI layer indicator
  • PMI precoding matrix indicator
  • Aspect 20 The method of aspect 19, wherein the preconfigured value includes zero.
  • Aspect 21 The method of any of aspects 19 through 20, wherein the CSI report includes CSI part 1 information, and wherein the method further comprises: refraining from transmitting, to the base station, CSI part 2 information.
  • Aspect 22 The method of any of aspects 19 through 21, further comprising: receiving, from a base station, an additional CSI report configuration associated with a second set of CMRs, wherein a CMR from the second set of CMRs is selected.
  • Aspect 23 The method of aspect 22, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  • Aspect 24 The method of any of aspects 22 through 23, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  • TRP transmit-receive point
  • a method of wireless communication performed by a base station comprising: transmitting, to a user equipment (UE) , a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  • RI rank indicator
  • CQI channel quality indicator
  • LI layer indicator
  • PMI precoding matrix indicator
  • Aspect 26 The method of aspect 25, wherein the preconfigured value includes zero.
  • Aspect 27 The method of any of aspects 25 through 26, wherein the CSI report includes CSI part 1 information, and wherein the UE does not transmit, to the base station, CSI part 2 information.
  • Aspect 28 The method of any of aspects 25 through 27, further comprising: transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs, wherein a CMR from the second set of CMRs is selected.
  • Aspect 29 The method of aspect 28, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  • Aspect 30 The method of any of aspects 28 through 29, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  • TRP transmit-receive point
  • Aspect 31 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 1-9.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 1-9.
  • Aspect 33 An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 1-9.
  • Aspect 34 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 1-9.
  • Aspect 35 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 1-9.
  • Aspect 36 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 10-18.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 10-18.
  • Aspect 38 An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 10-18.
  • Aspect 39 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 10-18.
  • Aspect 40 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 10-18.
  • Aspect 41 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 19-24.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 19-24.
  • Aspect 43 An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 19-24.
  • Aspect 44 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 19-24.
  • Aspect 45 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 19-24.
  • Aspect 46 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 25-30.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 25-30.
  • Aspect 48 An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 25-30.
  • Aspect 49 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 25-30.
  • Aspect 50 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 25-30.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs). The UE may receive, from the base station, a second CSI report configuration associated with a second set of CMRs. The second CSI report configuration is linked to the first CSI report configuration. The UE may transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration. The first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs. Numerous other aspects are described.

Description

CHANNEL RESOURCE INDICATORS FOR LINKED CHANNEL STATE INFORMATION MEASURMENT REPORTS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for determining channel resource indicators for linked channel state information measurement reports.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A UE may communicate with a BS via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit-receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. NR, which may also be referred to as 5G, is a set of enhancements to the LTE mobile  standard promulgated by the 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of multiple transmit-receive point (multi-TRP) communication, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example associated with determining channel resource indicators (CRIs) for linked channel state information (CSI) measurement reports, in accordance with various aspects of the present disclosure.
Figs. 6, 7, 8, and 9 are diagrams illustrating example processes associated with determining CRIs for linked CSI measurement reports, in accordance with various aspects of the present disclosure.
Figs. 10 and 11 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
SUMMARY
In some aspects, a user equipment (UE) for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; receive, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit, to a UE, a first CSI report configuration associated with a first set of CMRs; transmit, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receive, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive, from a base station, a CSI report configuration associated with a first set of CMRs; and transmit, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report  includes a preconfigured value as at least one of an rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit, to a UE, a CSI report configuration associated with a first set of CMRs; and receive, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
In some aspects, a method of wireless communication performed by a UE includes receiving, from a base station, a first CSI report configuration associated with a first set of CMRs; receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, a method of wireless communication performed by a base station includes transmitting, to a UE, a first CSI report configuration associated with a first set of CMRs; transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, a method of wireless communication performed by a UE includes receiving, from a base station, a CSI report configuration associated with a first set of CMRs; and transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
In some aspects, a method of wireless communication performed by a base station includes transmitting, to a UE, a CSI report configuration associated with a first set of CMRs; and receiving, from the UE, a CSI report indicating that no CMR from the  first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive, from a base station, a first CSI report configuration associated with a first set of CMRs; receive, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmit, to a UE, a first CSI report configuration associated with a first set of CMRs; transmit, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receive, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receive, from a base station, a CSI report configuration associated with a first set of CMRs; and transmit, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmit, to a UE, a CSI report configuration associated with a first set of CMRs; and receive, from the UE, a CSI report indicating that no CMR from the first set of CMRs was  selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
In some aspects, an apparatus for wireless communication includes means for receiving, from a base station, a first CSI report configuration associated with a first set of CMRs; means for receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and means for transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, an apparatus for wireless communication includes means for transmitting, to a UE, a first CSI report configuration associated with a first set of CMRs; means for transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and means for receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
In some aspects, an apparatus for wireless communication includes means for receiving, from a base station, a CSI report configuration associated with a first set of CMRs; and means for transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
In some aspects, an apparatus for wireless communication includes means for transmitting, to a UE, a CSI report configuration associated with a first set of CMRs; and means for receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, CQI, LI, or PMI.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be  implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or an LTE network, among other examples. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit-receive point (TRP) , or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects,  the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, directly or indirectly, via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, or the like. A frequency may also be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like. For example, devices of wireless network 100 may  communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and  synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
Antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may  include one or more antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to base station 110. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-9.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or  demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-9.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with determining CRIs for linked CSI measurement reports, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) may include means for receiving, from a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) , a first CSI report configuration associated with a first set of CMRs; means for receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and/or means for transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs. The means for the UE to perform operations described herein may include, for example, one or more of antenna  252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
In some aspects, a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) may include means for transmitting, to a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) , a first CSI report configuration associated with a first set of CMRs; means for transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and/or means for receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs. The means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
In some aspects, a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) may include means for receiving, from a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) , a CSI report configuration associated with a first set of CMRs; and/or means for transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI. The means for the UE to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
In some aspects, the UE may further include means for refraining from transmitting, to the base station, CSI part 2 information. Additionally, or alternatively, the UE may further include means for receiving, from a base station, an additional CSI report configuration associated with a second set of CMRs.
In some aspects, a base station (e.g., the base station 110 and/or apparatus 1100 of Fig. 11) may include means for transmitting, to a UE (e.g., the UE 120 and/or apparatus 1000 of Fig. 10) , a CSI report configuration associated with a first set of CMRs; and/or means for receiving, from the UE, a CSI report indicating that no CMR  from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI. The means for the base station to perform operations described herein may include, for example, one or more of transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, demodulator 232, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
In some aspects, the base station may further include means for refraining from monitoring for CSI part 2 information from the UE. Additionally, or alternatively, the base station may further include means for transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 illustrates an example logical architecture of a distributed RAN 300, according to aspects of the present disclosure. A 5G access node 305 may include an access node controller 310. The access node controller 310 may be a central unit (CU) of the distributed RAN 300. In some aspects, a backhaul interface to a 5G core network 315 may terminate at the access node controller 310. The 5G core network 315 may include a 5G control plane component 320 and a 5G user plane component 325 (e.g., a 5G gateway) , and the backhaul interface for one or both of the 5G control plane and the 5G user plane may terminate at the access node controller 310. Additionally, or alternatively, a backhaul interface to one or more neighbor access nodes 330 (e.g., another 5G access node 305 and/or an LTE access node) may terminate at the access node controller 310.
The access node controller 310 may include and/or may communicate with one or more TRPs 335 (e.g., via an F1 Control (F1-C) interface and/or an F1 User (F1-U) interface) . A TRP 335 may be a distributed unit (DU) of the distributed RAN 300. In some aspects, a TRP 335 may correspond to a base station 110 described above in connection with Fig. 1. For example, different TRPs 335 may be included in different  base stations 110. Additionally, or alternatively, multiple TRPs 335 may be included in a single base station 110. In some aspects, a base station 110 may include a CU (e.g., access node controller 310) and/or one or more DUs (e.g., one or more TRPs 335) . In some cases, a TRP 335 may be referred to as a cell, a panel, an antenna array, or an array.
TRP 335 may be connected to a single access node controller 310 or to multiple access node controllers 310. In some aspects, a dynamic configuration of split logical functions may be present within the architecture of distributed RAN 300. For example, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and/or a medium access control (MAC) layer may be configured to terminate at the access node controller 310 or at a TRP 335.
In some aspects, multiple TRPs 335 may transmit communications (e.g., the same communication or different communications) in the same transmission time interval (TTI) (e.g., a slot, a mini-slot, a subframe, or a symbol) or different TTIs using different quasi-co-location (QCL) relationships (e.g., different spatial parameters, different transmission configuration indicator (TCI) states, different precoding parameters, and/or different beamforming parameters) . In some aspects, a TCI state may be used to indicate one or more QCL relationships. A TRP 335 may be configured to individually (e.g., using dynamic selection) or jointly (e.g., using joint transmission with one or more other TRPs 335) serve traffic to a UE 120.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what was described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of multi-TRP communication (sometimes referred to as multi-panel communication) , in accordance with various aspects of the present disclosure. Multi-TRP communication may also be referred to as non-coherent joint transmission (NCJT) . As shown in Fig. 4, multiple TRPs 405 may communicate with the same UE 120. A TRP 405 may correspond to a TRP 335 described above in connection with Fig. 3.
The multiple TRPs 405 (shown as TRP A and TRP B) may communicate with the same UE 120 in a coordinated manner (e.g., using coordinated multipoint transmissions) to improve reliability and/or increase throughput. The TRPs 405 may coordinate such communications via an interface between the TRPs 405 (e.g., a backhaul interface and/or an access node controller 310) . The interface may have a smaller delay and/or higher capacity when the TRPs 405 are co-located at the same base  station 110 (e.g., when the TRPs 405 are different antenna arrays or panels of the same base station 110) , and may have a larger delay and/or lower capacity (as compared to co-location) when the TRPs 405 are located at different base stations 110. The different TRPs 405 may communicate with the UE 120 using different QCL relationships (e.g., different TCI states) , different demodulation reference signal (DMRS) ports, and/or different layers (e.g., of a multi-layer communication) .
In a first multi-TRP transmission mode (e.g., Mode 1) , a single physical downlink control channel (PDCCH) may be used to schedule downlink data communications for a single physical downlink shared channel (PDSCH) . Mode 1 multi-TRP transmission may also be referred to as single-DCI-based multi-TRP communication. In this case, multiple TRPs 405 (e.g., TRP A and TRP B) may transmit communications to the UE 120 on the same PDSCH. For example, a communication may be transmitted using a single codeword with different spatial layers for different TRPs 405 (e.g., where one codeword maps to a first set of layers transmitted by a first TRP 405 and maps to a second set of layers transmitted by a second TRP 405) . As another example, a communication may be transmitted using multiple codewords, where different codewords are transmitted by different TRPs 405 (e.g., using different sets of layers) . In either case, different TRPs 405 may use different QCL relationships (e.g., different TCI states) for different DMRS ports corresponding to different layers. For example, a first TRP 405 may use a first QCL relationship or a first TCI state for a first set of DMRS ports corresponding to a first set of layers, and a second TRP 405 may use a second (different) QCL relationship or a second (different) TCI state for a second (different) set of DMRS ports corresponding to a second (different) set of layers. In some aspects, a TCI state in downlink control information (DCI) (e.g., transmitted on the PDCCH, such as DCI format 1_0 or DCI format 1_1) may indicate the first QCL relationship (e.g., by indicating a first TCI state) and the second QCL relationship (e.g., by indicating a second TCI state) . The first and the second TCI states may be indicated using a TCI field in the DCI. In general, the TCI field can indicate a single TCI state (for single-TRP transmission) or multiple TCI states (for multi-TRP transmission as discussed here) in this multi-TRP transmission mode (e.g., Mode 1) . Although described above in connection with space division multiplexing (SDM) (e.g., in which different sets of layers of the PDSCH are associated with different TCI states) , the description similarly applies to Mode 1 multi-TRP transmission that uses frequency division multiplexing (FDM) (e.g., in which different resource block (RB) sets of the  PDSCH are associated with different TCI states) , time division multiplexing (TDM) (e.g., in which different repetitions of the PDSCH along the time domain are associated with different TCI states) , and/or another multiplexing scheme.
In a second multi-TRP transmission mode (e.g., Mode 2) , multiple PDCCHs may be used to schedule downlink data communications for multiple corresponding PDSCHs (e.g., one PDCCH for each PDSCH) . Mode 2 multi-TRP transmission may also be referred to as multi-DCI-based multi-TRP communication. In this case, a first PDCCH may schedule a first codeword to be transmitted by a first TRP 405, and a second PDCCH may schedule a second codeword to be transmitted by a second TRP 405. Furthermore, first DCI (e.g., transmitted by the first TRP 405) may schedule a first PDSCH communication associated with a first set of DMRS ports with a first QCL relationship (e.g., indicated by a first TCI state) for the first TRP 405, and second DCI (e.g., transmitted by the second TRP 405) may schedule a second PDSCH communication associated with a second set of DMRS ports with a second QCL relationship (e.g., indicated by a second TCI state) for the second TRP 405. In this case, DCI (e.g., having DCI format 1_0 or DCI format 1_1) may indicate a corresponding TCI state for a TRP 405 corresponding to the DCI. The TCI field of a DCI indicates the corresponding TCI state (e.g., the TCI field of the first DCI indicates the first TCI state and the TCI field of the second DCI indicates the second TCI state) .
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
In some situations, a base station may indicate a CSI report configuration to a UE. For example, the base station may transmit a CSI-ReportConfig data structure (e.g., as defined in 3GPP specifications and/or another standard) to the UE, where the CSI-ReportConfig data structure indicates the CSI report configuration. Generally, the CSI report configuration may link to a CMR set from which the UE selects one CMR to measure. A CMR may indicate one or more resources (e.g., frequencies, times, beams, and/or other physical resources) associated with a reference signal (e.g., a CSI reference signal (CSI-RS) , a synchronization signal block (SSB) , and/or another reference signal) , such that the UE can measure that reference signal. Sometimes, the CSI report configuration may further link to a CSI resource set for interference measurement (CSI-IM set) , where each CMR is associated with no more than one CSI-IM of the CSI-IM set. A CSI-IM may indicate one or more resources (e.g., frequencies, times, beams, and/or other physical resources) that the UE should use to estimate interference  associated with the reference signal for the selected CMR. Additionally, or alternatively, the CSI report configuration may further link to a non-zero power interference measurement resource (NZP-IMR, also referred to as IMR) set, where each CMR is associated with the IMR set. An IMR may indicate one or more resources (e.g., frequencies, times, beams, and/or other physical resources) associated with a reference signal (e.g., a CSI-RS, an SSB, and/or another reference signal) , such that the UE can estimate interference using that reference signal. When the UE selects a CMR, along with any corresponding CSI-IM and/or IMR set, the resources identified by that CMR (and, in some cases, CSI-IM and/or IMR set) may be referred to as a “CSI hypothesis, ” and thus the UE transmits a CSI report associated with that CSI hypothesis, based on measurements using those resources, to the base station.
In NR, the CSI report may include a rank indicator (RI) , a CQI, a layer indicator (LI) , and/or a precoding matrix indicator (PMI) , in addition to or in lieu of L1 measurements (e.g., RSRP, RSSI, and/or another L1 measurement) . An RI, a PMI, and/or a CQI may indicate a precoder matrix W, from a set of precoder matrices in a codebook, for the base station to use for downlink communications to the UE. Additionally, or alternatively, an LI may further indicate that a precoder matrix associated with the RI, the PMI, and/or the CQI should not exceed a maximum number of layers that the UE can use (e.g., for MIMO communications) .
The base station may instruct the UE that the CSI report configuration is periodic (e.g., the UE should perform measurements and transmit a CSI report based on those measurements periodically) or semi-persistent (e.g., the UE should perform measurements and transmit a CSI report whenever a trigger, such as receipt of a medium access control (MAC) control element (MAC-CE) and/or downlink control information (DCI) from the base station, is satisfied) . Accordingly, the base station may provide a resource grant for a periodic uplink slot in which the UE may transmit the CSI report to the base station. As used herein, “slot” may refer to a portion of a subframe, which in turn may be a fraction of a radio frame within an LTE, 5G, or other wireless communication structure. In some aspects, a slot may include one or more symbols. Moreover, “symbol” may refer to an OFDM symbol or another similar symbol within a slot.
Sometimes, a CSI report may be associated with multiple CMRs. For example, the base station may include multiple TRPs such that the CSI report is associated with a CMR from one TRP and a CMR from another TRP. In some  situations, the UE may still transmit two separate CSI reports to the base station, where each CSI report is associated with one CMR, but the CSI reports may be linked. For example, a selected CMR for the first CSI report may be associated with a first TRP of the base station, and a selected CMR for the second CSI report may be associated with a second TRP of the base station. The UE may use joint measurements (e.g., measurements of both CMRs and, in some cases, associated CSI-IMs and/or an associated IMR set) to generate both CSI reports. Accordingly, the base station may schedule multi-TRP transmissions (e.g., as described above in connection with Fig. 4) based on the selected CMRs and both CSI reports.
Some techniques and apparatuses described herein enable a UE (e.g., UE 120) to determine a CRI to use in a CSI report associated with a CSI report configuration included in two or more linked CSI report configurations. As a result, the UE 120 may accurately indicate a selected CMR from the first CSI report configuration using the CRI. Accordingly, the UE 120 can improve quality and/or reliability of communications with a base station (e.g., base station 110) by ensuring accurate CRIs in CSI reports for the linked CSI report configurations.
Additionally, some techniques and apparatuses described herein enable the UE 120 to retain a same payload size for a CSI report even when a CMR is not selected from a corresponding CSI report configuration. Accordingly, the UE 120 can improve quality and/or reliability of communications with the base station 110 by ensuring that the base station 110 can properly receive and decode the CSI report even when a CMR is not selected from the corresponding CSI report configuration. Additionally, some techniques and apparatuses described herein enable the UE 120 to refrain from transmitting CSI part 2 information when a CMR is not selected from the corresponding CSI report configuration. As a result, the UE 120 may conserve processing resources and network overhead when a CMR is not selected from the corresponding CSI report configuration.
Fig. 5 is a diagram illustrating an example 500 associated with determining CRIs for linked CSI measurement reports, in accordance with various aspects of the present disclosure. As shown in Fig. 5, example 500 includes communication between a base station 110 and a UE 120. In some aspects, the base station 110 and the UE 120 may be included in a wireless network, such as wireless network 100. The base station 110 and the UE 120 may communicate via a wireless access link, which may include an uplink and a downlink.
As shown in connection with reference number 505, the base station 110 may transmit, and the UE 120 may receive, a first CSI report configuration and a second CSI report configuration that is linked to the first CSI report configuration. For example, the first CSI report configuration and the second CSI report configuration may be linked such that the UE 120 uses joint measurements, based at least in part on both configurations, to generate a first CSI report associated with the first CSI report configuration and a second CSI report associated with the second CSI report configuration. In some aspects, the first CSI report configuration may be associated with a first TRP of the base station 110 (e.g., TRP A as described above in connection with Fig. 4) , and the second CSI report configuration may be associated with a second TRP of the base station 110 (e.g., TRP B as described above in connection with Fig. 4) . Although the description below relates to two CSI report configurations, the description similarly applies to three linked CSI report configurations, four linked CSI report configurations, and so on.
The first CSI report configuration may be associated with a first set of CMRs. Similarly, the second CSI report configuration may be associated with a second set of CMRs. Accordingly, the UE 120 may select a CSI hypothesis to use for performing joint measurements (e.g., as described below in connection with reference number 510) . For example, the CSI hypothesis may include one CMR from the first set of CMRs and one CMR from the second set of CMRs. In this example, the UE 120 may generate CSI reports (e.g., e.g., as described below in connection with reference number 515 and 520) , based at least in part on the joint measurements, that the base station 110 may use for multi-TRP scheduling (e.g., as described above in connection with Fig. 4) . As an alternative, the CSI hypothesis may include one CMR from the second set of CMRs but no CMR from the first set of CMRs. In this example, the UE 120 may generate CSI reports (e.g., e.g., as described below in connection with reference number 515 and 520) , based at least in part on the joint measurements, that the base station 110 may use for single-TRP scheduling (e.g., when the TRPs of the base station 110 are connected to a non-ideal backhaul) . Similarly, the CSI hypothesis may include one CMR from the first set of CMRs but no CMR from the second set of CMRs. In this example, the UE 120 may generate CSI reports (e.g., e.g., as described below in connection with reference number 515 and 520) , based at least in part on the joint measurements, that the base station 110 may use for single-TRP scheduling (e.g., when the TRPs of the base station 110 are connected to a non-ideal backhaul) .
As shown in connection with reference number 510, the UE 120 may perform one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration. In some aspects, the UE 120 may additional perform one or more interference measurements based at least in part on the first CSI report configuration and/or one or more interference measurements based at least in part on the second CSI report configuration The UE 120 may use these measurements to calculate an RI, a CQI, an LI, and/or a PMI, for including in CSI reports (e.g., as described below) , in addition to or in lieu of L1 measurements (e.g., RSRP, RSSI, and/or another L1 measurement) .
As shown in connection with reference number 515, the UE 120 may transmit, and the base station 110 may receive, a first CSI report, based at least in part on the one or more joint channel measurements, that includes a CRI that indicates whether a CMR is selected from the first set of CMRs. In some aspects, the CRI may indicate a CMR selected from the first set of CMRs and may include a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs. For example, the quantity of CMRs in the first set of CMRs may be represented by N 1 such that a size of the CRI in bits is set to
Figure PCTCN2021071434-appb-000001
by the UE 120. In this example, the UE 120 must select a CMR from the first set of CMR when selecting a CSI hypothesis. As an alternative, a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000002
by the UE 120. In this example, the UE 120 may select a CSI hypothesis with no CMR from the first set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) . Accordingly, a TRP of the base station 110 corresponding to the first CSI report configuration may be aware when the UE 120 selects a CSI hypothesis with no CMR from the first set of CMRs but is not aware of which CMR was selected from the second set of CMRs.
In some aspects, the CRI may further indicate whether a CMR is selected from the second set of CMRs. For example, the quantity of CMRs in the first set of CMRs may be represented by N 1 such that a size of the CRI in bits is set to
Figure PCTCN2021071434-appb-000003
by the UE 120. In this example, the UE 120 must select a CMR from the first set of CMR when selecting a CSI hypothesis and can indicate whether the CSI hypothesis also includes a CMR from the second set of CMRs using the additional bit (e.g., provided by the +1) . Furthermore, a TRP of the base station 110 corresponding to the first CSI report configuration may be aware when the UE 120 selects a CSI hypothesis with a CMR from the second set of CMRs but is not aware of which CMR was selected from  the second set of CMRs. Similarly, the UE 120 may map possible CSI hypotheses to codepoints such that a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000004
by the UE 120.
As an alternative, a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000005
by the UE 120. In this example, the UE 120 may select a CSI hypothesis with no CMR from the first set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) . The UE 120 can also select a CSI hypothesis that includes both a CMR from the first set of CMRs and a CMR from the second set of CMRs and indicate this using the additional bit (e.g., provided by the +1 outside the log function) . Accordingly, a TRP of the base station 110 corresponding to the first CSI report configuration may be aware when the UE 120 selects a CSI hypothesis with a CMR from the second set of CMRs but is not aware of which CMR was selected from the second set of CMRs. Similarly, the UE 120 may map possible CSI hypotheses to codepoints such that a size of the CRI in bits may be set to 
Figure PCTCN2021071434-appb-000006
by the UE 120.
In some aspects, the CRI may indicate a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and may include a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs. For example, the quantity of CMRs in the first set of CMRs may be represented by N 1, and the quantity of CMRs in the second set of CMRs may be represented by N 2 such that a size of the CRI in bits is set to
Figure PCTCN2021071434-appb-000007
Figure PCTCN2021071434-appb-000008
by the UE 120. In this example, the UE 120 must select both a CMR from the first set of CMRs and a CMR from the second set of CMRs when selecting a CSI hypothesis. As an alternative, a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000009
Figure PCTCN2021071434-appb-000010
by the UE 120. In this example, the UE 120 may select a CSI hypothesis with no CMR from the first set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) . As another alternative, a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000011
by the UE 120. In this example, the UE 120 may select a CSI hypothesis with no CMR from the second set of CMRs and indicate this using the additional codepoint (e.g., provided by the +1 within the log function) . As yet another alternative, a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000012
by the UE 120. Accordingly, a TRP of the base station 110 corresponding to the first CSI report configuration may be aware of which CMRs were selected from both the first set of CMRs and the second set of CMRs. Moreover, a CRI included in a second CSI report (e.g., as described below in connection with reference number 515) may be a same size as the CRI included in the first CSI report; however, an order of bits may be different (e.g., because CMR selections for the set of CMRs associated with that report are encoded first) .
As an alternative, the CRI may indicate a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs. For example, the UE 120 may map possible CSI hypotheses to codepoints such that a size of the CRI in bits may be set to
Figure PCTCN2021071434-appb-000013
by the UE 120, where M represents a quantity of CSI hypotheses that include a pair of CMRs selected from both the first set of CMRs and the second set of CMRs. In some aspects, all pairs of CMRs may be valid CSI hypothesis such that M = N 1*N 2. Accordingly, a TRP of the base station 110 corresponding to the first CSI report configuration may be aware of which CMRs were selected from both the first set of CMRs and the second set of CMRs. Moreover, a CRI included in a second CSI report (e.g., as described below in connection with reference number 515) may be the same as the CRI included in the first CSI report.
When the UE 120 does not select a CMR from the first set of CMRs (e.g., because the UE 120 selected a CMR from the second set of CMRs, as described above) , the UE 120 may lack an RI, a CQI, an LI, and/or a PMI to include report in the first CSI report. However, the base station 110 will not be able to decode the first CSI report if the UE 120 were to transmit a smaller payload by excluding bits that usually encode the RI, the CQI, the LI, and/or the PMI. Accordingly, in some aspects, the UE 120 may include at least one preconfigured value in the first CSI report for the RI, the CQI, the LI, and/or the PMI. In some aspects, the preconfigured value may be programmed (and/or otherwise preconfigured) into the UE 120. For example, the UE 120 may be programmed with any preconfigured value since the base station 110 will discard the values after decoding the CRI, which indicates no CMR was selected from the first set of CMRs. In another example, the UE 120 may be programmed with a preconfigured value according to 3GPP specifications and/or another standard, such as all zeroes.
As an alternative, the UE 120 may encode information regarding which CMR was selected (e.g., from the second set of CMRs) in one or more fields that typically include the RI, the CQI, the LI, and/or the PMI. Accordingly, after decoding the CRI, which indicates no CMR was selected from the first set of CMRs, the base station 110  may be configured to decode those one or more fields and determine which CMR was selected.
In any of the aspects described above, the first CSI report may include CSI part 1 information. Accordingly, in some aspects, the UE 120 may refrain from transmitting, and the base station 110 may refrain from monitoring for, CSI part 2 information. For example, the CSI part 1 information may include a CQI, an RI, and/or L1 measurements whiles the CSI part 2 information may include an LI and/or a PMI. Because these parts are usually encoded and transmitted separately, the UE 120 may refrain from transmitting CSI part 2 information because the base station 110 is aware not to monitor for CSI part 2 information after receiving the CRI (included in CSI part 1 information) that indicates no CMR was selected from the first set of CMRs. Accordingly, the UE 120 and the base station 110 may conserve additional processing resources and network overhead.
As shown in connection with reference number 520, the UE 120 may transmit, and the base station 110 may receive, a second CSI report, based at least in part on the one or more joint channel measurements, that includes a CRI that indicates whether a CMR is selected from the second set of CMRs. The CRI for the second CSI report may be determined similarly to the CRI for the first CSI report, as described above. Moreover, when the UE 120 does not select a CMR from the second set of CMRs (e.g., because the UE 120 selected a CMR from the first set of CMRs, as described above) , the UE 120 may lack an RI, a CQI, an LI, and/or a PMI to include report in the second CSI report. Accordingly, the UE 120 may encode values for the RI, the CQI, the LI, and/or the PMI similarly as described above for the first CSI report. Additionally, in some aspects, the UE 120 may refrain from transmitting, and the base station 110 may refrain from monitoring for, CSI part 2 information.
By using techniques as described in connection with Fig. 5, the UE 120 may determine a CRI to use in a CSI report associated with a CSI report configuration included in two or more linked CSI report configurations. As a result, the UE 120 may accurately indicate a selected CMR from the first CSI report configuration using the CRI. Accordingly, the UE 120 can improve quality and/or reliability of communications with the base station 110 by ensuring accurate CRIs in CSI reports for the linked CSI report configurations.
Additionally, or alternatively, in some aspects, the UE 120 may retain a same payload size for a CSI report even when a CMR is not selected from a corresponding  CSI report configuration. Accordingly, the UE 120 can improve quality and/or reliability of communications with the base station 110 by ensuring that the base station 110 can properly receive and decode the CSI report even when a CMR is not selected from the corresponding CSI report configuration. Additionally, in some aspects, the UE 120 may refrain from transmitting CSI part 2 information when a CMR is not selected from the corresponding CSI report configuration. As a result, the UE 120 may conserve processing resources and network overhead when a CMR is not selected from the corresponding CSI report configuration.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where the UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) performs operations associated with determining CRIs for linked CSI measurement reports.
As shown in Fig. 6, in some aspects, process 600 may include receiving, from a base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) , a first CSI report configuration associated with a first set of CMRs (block 610) . For example, the UE (e.g., using reception component 1002, depicted in Fig. 10) may receive the first CSI report configuration associated with the first set of CMRs, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include receiving, from the base station, a second CSI report configuration associated with a second set of CMRs (block 620) . For example, the UE (e.g., using reception component 1002) may receive the second CSI report configuration associated with the second set of CMRs, as described above. In some aspects, the second CSI report configuration is linked to the first CSI report configuration.
As further shown in Fig. 6, in some aspects, process 600 may include transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration (block 630) . For example, the UE (e.g., using transmission component 1004, depicted in Fig. 10) may transmit the first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, as  described above. In some aspects, the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
In a second aspect, alone or in combination with the first aspect, the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
In a third aspect, alone or in combination with one or more of the first and second aspects, the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first CSI report configuration is associated with a first TRP of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 700 is an example where the base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) performs operations associated with determining CRIs for linked CSI measurement reports.
As shown in Fig. 7, in some aspects, process 700 may include transmitting, to a UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) , a first CSI report configuration associated with a first set of CMRs (block 710) . For example, the base station (e.g., using transmission component 1104, depicted in Fig. 1) may transmit the first CSI report configuration associated with a first set of CMRs, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs (block 720) . For example, the base station (e.g., using transmission component 1104) may transmit the second CSI report configuration associated with the second set of CMRs, as described above. In some aspects, the second CSI report configuration is linked to the first CSI report configuration.
As further shown in Fig. 7, in some aspects, process 700 may include receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration (block 730) . For example, the base station (e.g., using reception component 1102, depicted in Fig. 11) may receive the first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, as described above. In some aspects, the first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
In a second aspect, alone or in combination with the first aspect, the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
In a third aspect, alone or in combination with one or more of the first and second aspects, the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 800 is an example where the UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) performs operations associated with transmitting linked CSI measurement reports.
As shown in Fig. 8, in some aspects, process 800 may include receiving, from a base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) , a CSI report configuration associated with a first set of CMRs (block 810) . For example, the UE (e.g., using reception component 1002, depicted in Fig. 10) may receive the CSI report configuration associated with the first set of CMRs, as described above.
In some aspects, and as further shown in Fig. 8, process 800 may further include receiving, from the base station, an additional CSI report configuration associated with a second set of CMRs (block 820) . For example, the UE (e.g., using reception component 1002) may receive the additional CSI report configuration associated with the second set of CMRs, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected (block 830) . For example, the UE (e.g., using transmission component 1004, depicted in Fig. 10) may transmit, to the base station, the CSI report indicating that no CMR from the first set of CMRs was selected, as described above. In some aspects, the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
In some aspects, and as further shown in Fig. 8, process 800 may further include refraining from transmitting, to the base station, CSI part 2 information (block 840) . For example, the UE (e.g., using transmission component 1004) may refrain from transmitting CSI part 2 information, as described above. Accordingly, the CSI report (e.g., as described above in connection with reference number 830) may include CSI part 1 information.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the preconfigured value includes zero.
In a second aspect, alone or in combination with the first aspect, at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
In a third aspect, alone or in combination with one or more of the first and second aspects, the CSI report configuration is associated with a first TRP of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 900 is an example where the base station (e.g., base station 110 and/or apparatus 1100 of Fig. 11) performs operations associated with receiving linked CSI measurement reports.
As shown in Fig. 9, in some aspects, process 900 may include transmitting, to a UE (e.g., UE 120 and/or apparatus 1000 of Fig. 10) , a CSI report configuration associated with a first set of CMRs (block 910) . For example, the base station (e.g., using transmission component 1104, depicted in Fig. 1) may transmit the CSI report configuration associated with a first set of CMRs, as described above.
In some aspects, and as further shown in Fig. 9, process 900 may further include transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs (block 920) . For example, the base station (e.g., using transmission component 1104) may transmit the additional CSI report configuration associated with the second set of CMRs, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected (block 930) . For example, the base station (e.g., using reception component 1102, depicted in Fig. 11) may receive the CSI report indicating that no CMR from the first set of CMRs was selected, as described above. In some aspects, the CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI.
In some aspects, and as further shown in Fig. 9, process 900 may further include refraining from monitoring for CSI part 2 information from the UE (block 940) . For example, the base station (e.g., using reception component 1102) may refrain from monitoring for CSI part 2 information, as described above. Accordingly, the CSI report  (e.g., as described above in connection with reference number 930) may include CSI part 1 information.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the preconfigured value includes zero.
In a second aspect, alone or in combination with the first aspect, at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
In a third aspect, alone or in combination with one or more of the first and second aspects, the CSI report configuration is associated with a first TRP of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a UE, or a UE may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004. As further shown, the apparatus 1000 may include an encoding component 1008, among other examples.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 5. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6, process 800 of Fig. 8, or a combination thereof. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of  components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006. In some aspects, the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
In some aspects, the reception component 1002 may receive, from the apparatus 1006, a first CSI report configuration associated with a first set of CMRs. Additionally, the reception component 1002 may receive, from the apparatus 1006, a  second CSI report configuration associated with a second set of CMRs and that is linked to the first CSI report configuration. Accordingly, the transmission component 1004 may transmit, to the apparatus 1006, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration. The first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs. For example, the encoding component 1008 may encode the CRI as described above in connection with Fig. 5. In some aspects, the encoding component 1008 may include a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
In some aspects, the reception component 1002 may receive, from the apparatus 1006, a CSI report configuration associated with a first set of CMRs. Accordingly, the transmission component 1004 may transmit, to the apparatus 1006, a CSI report indicating that no CMR from the first set of CMRs was selected. The CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI. For example, the encoding component 1008 may encode the RI, the CQI, the LI, and/or the PMI as described above in connection with Fig. 5.
In some aspects, the reception component 1002 may further receive, from the apparatus 1006, an additional CSI report configuration associated with a second set of CMRs. Accordingly, a CMR from the second set of CMRs may be selected, and the encoding component 1008 may encode the RI, the CQI, the LI, and/or the PMI based at least in part on the selected CMR as described above in connection with Fig. 5.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
Fig. 11 is a block diagram of an example apparatus 1100 for wireless communication. The apparatus 1100 may be a base station, or a base station may include the apparatus 1100. In some aspects, the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication  with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104. As further shown, the apparatus 1100 may include a decoding component 1108, among other examples.
In some aspects, the apparatus 1100 may be configured to perform one or more operations described herein in connection with Fig. 5. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7, process 900 of Fig. 9, or a combination thereof. In some aspects, the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106. The reception component 1102 may provide received communications to one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1106. In some aspects, the reception component 1102 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106. In some aspects, one or more other components of the apparatus  1106 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106. In some aspects, the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106. In some aspects, the transmission component 1104 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
In some aspects, the transmission component 1104 may transmit, to the apparatus 1106, a first CSI report configuration associated with a first set of CMRs. Additionally, the transmission component 1104 may transmit, to the apparatus 1106, a second CSI report configuration associated with a second set of CMRs and that is linked to the first CSI report configuration. Accordingly, the reception component 1102 may receive, from the apparatus 1106, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration. The first CSI report includes a CRI that indicates whether a CMR is selected from the first set of CMRs. For example, the decoding component 1108 may decode the CRI as described above in connection with Fig. 5. In some aspects, the decoding component 1108 may include a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
In some aspects, the transmission component 1104 may transmit, to the apparatus 1106, a CSI report configuration associated with a first set of CMRs. Accordingly, the reception component 1102 may receive, from the apparatus 1106, a CSI report indicating that no CMR from the first set of CMRs was selected. The CSI report includes a preconfigured value as at least one of an RI, a CQI, an LI, or a PMI. For example, the decoding component 1108 may discard the RI, the CQI, the LI, and/or the PMI as described above in connection with Fig. 5.
In some aspects, the transmission component 1104 may further transmit, to the apparatus 1106, an additional CSI report configuration associated with a second set of CMRs. Accordingly, a CMR from the second set of CMRs may be selected, and the  decoding component 1108 may decode the RI, the CQI, the LI, and/or the PMI to determine information based at least in part on the selected CMR as described above in connection with Fig. 5.
The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
The following provides an overview of some aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
Aspect 2: The method of aspect 1, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
Aspect 3: The method of aspect 1, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
Aspect 4: The method of any of aspects 1 through 3, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
Aspect 5: The method of aspect 4, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
Aspect 6: The method of aspect 4, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
Aspect 7: The method of aspect 1, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
Aspect 8: The method of aspect 1, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
Aspect 9: The method of any of aspects 1 through 8, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
Aspect 10: A method of wireless communication performed by a base station, comprising: transmitting, to a user equipment (UE) , a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
Aspect 11: The method of aspect 10, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
Aspect 12: The method of aspect 10, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
Aspect 13: The method of any of aspects 10 through 12, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
Aspect 14: The method of aspect 13, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
Aspect 15: The method of aspect 13, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
Aspect 16: The method of aspect 10, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
Aspect 17: The method of aspect 10, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
Aspect 18: The method of any of aspects 10 through 18, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
Aspect 19: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a base station, a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
Aspect 20: The method of aspect 19, wherein the preconfigured value includes zero.
Aspect 21: The method of any of aspects 19 through 20, wherein the CSI report includes CSI part 1 information, and wherein the method further comprises: refraining from transmitting, to the base station, CSI part 2 information.
Aspect 22: The method of any of aspects 19 through 21, further comprising: receiving, from a base station, an additional CSI report configuration associated with a second set of CMRs, wherein a CMR from the second set of CMRs is selected.
Aspect 23: The method of aspect 22, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
Aspect 24: The method of any of aspects 22 through 23, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
Aspect 25: A method of wireless communication performed by a base station, comprising: transmitting, to a user equipment (UE) , a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
Aspect 26: The method of aspect 25, wherein the preconfigured value includes zero.
Aspect 27: The method of any of aspects 25 through 26, wherein the CSI report includes CSI part 1 information, and wherein the UE does not transmit, to the base station, CSI part 2 information.
Aspect 28: The method of any of aspects 25 through 27, further comprising: transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs, wherein a CMR from the second set of CMRs is selected.
Aspect 29: The method of aspect 28, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
Aspect 30: The method of any of aspects 28 through 29, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
Aspect 31: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 1-9.
Aspect 32: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 1-9.
Aspect 33: An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 1-9.
Aspect 34: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 1-9.
Aspect 35: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 1-9.
Aspect 36: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 10-18.
Aspect 37: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 10-18.
Aspect 38: An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 10-18.
Aspect 39: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 10-18.
Aspect 40: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 10-18.
Aspect 41: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 19-24.
Aspect 42: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 19-24.
Aspect 43: An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 19-24.
Aspect 44: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 19-24.
Aspect 45: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 19-24.
Aspect 46: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more aspects of aspects 25-30.
Aspect 47: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more aspects of aspects 25-30.
Aspect 48: An apparatus for wireless communication, comprising at least one means for performing the method of one or more aspects of aspects 25-30.
Aspect 49: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more aspects of aspects 25-30.
Aspect 50: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more aspects of aspects 25-30.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As  used herein, a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, or a combination of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ”  “having, ” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (68)

  1. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    receive, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  2. The UE of claim 1, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  3. The UE of claim 1, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  4. The UE of any of claims 1 through 3, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  5. The UE of claim 4, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  6. The UE of claim 4, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  7. The UE of claim 1, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  8. The UE of claim 1, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  9. The UE of any of claims 1 through 8, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
  10. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a user equipment (UE) , a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    transmit, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    receive, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  11. The base station of claim 10, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  12. The base station of claim 10, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  13. The base station of any of claims 10 through 12, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  14. The base station of claim 13, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  15. The base station of claim 13, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  16. The base station of claim 10, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  17. The base station of claim 10, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  18. The base station of any of claims 10 through 17, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
  19. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, from a base station, a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    transmit, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  20. The UE of claim 19, wherein the preconfigured value includes zero.
  21. The UE of claim 19 or claim 20, wherein the CSI report includes CSI part 1 information, and wherein the memory and the one or more processors are further configured to:
    refrain from transmitting, to the base station, CSI part 2 information.
  22. The UE of any of claims 19 through 21, wherein the memory and the one or more processors are further configured to:
    receive, from a base station, an additional CSI report configuration associated with a second set of CMRs,
    wherein a CMR from the second set of CMRs is selected.
  23. The UE of claim 22, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  24. The UE of claim 22 or claim 23, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  25. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a user equipment (UE) , a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    receive, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  26. The base station of claim 25, wherein the preconfigured value includes zero.
  27. The base station of claim 25 or claim 26, wherein the CSI report includes CSI part 1 information, and wherein the UE does not transmit, to the base station, CSI part 2 information.
  28. The base station of any of claims 25 through 27, wherein the memory and the one or more processors are further configured to:
    transmit, to the UE, an additional CSI report configuration associated with a second set of CMRs,
    wherein a CMR from the second set of CMRs is selected.
  29. The base station of claim 28, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  30. The base station of claim 28 or claim 29, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  31. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  32. The method of claim 31, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  33. The method of claim 31, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  34. The method of any of claims 31 through 33, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  35. The method of claim 34, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  36. The method of claim 34, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  37. The method of claim 31, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  38. The method of claim 31, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  39. The method of any of claims 31 through 37, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
  40. A method of wireless communication performed by a base station, comprising:
    transmitting, to a user equipment (UE) , a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  41. The method of claim 40, wherein the CRI indicates a CMR selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  42. The method of claim 40, wherein the CRI indicates whether a CMR is selected from the first set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  43. The method of any of claims 40 through 42, wherein the CRI indicates a CMR selected from the first set of CMRs and whether a CMR is selected from the second set  of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs.
  44. The method of claim 43, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using a single bit.
  45. The method of claim 43, wherein the CRI indicates whether the selected CMR is from the second set of CMRs using at least one codepoint.
  46. The method of claim 40, wherein the CRI indicates a CMR selected from the first set of CMRs and a CMR selected from the second set of CMRs and includes a quantity of bits based at least in part on a quantity of CMRs in the first set of CMRs and a quantity of CMRs in the second set of CMRs.
  47. The method of claim 40, wherein the CRI indicates a selected CSI hypothesis that includes a CMR selected from the first set of CMRs, a CMR selected from the second set of CMRs, or a pair of CMRs selected from both the first set of CMRs and the second set of CMRs.
  48. The method of any of claims 40 through 47, wherein the first CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the second CSI report configuration is associated with a second TRP of the base station.
  49. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a base station, a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  50. The method of claim 49, wherein the preconfigured value includes zero.
  51. The method of claim 49 or claim 50, wherein the CSI report includes CSI part 1 information, and wherein the method further comprises:
    refraining from transmitting, to the base station, CSI part 2 information.
  52. The method of any of claims 49 through 51, further comprising:
    receiving, from a base station, an additional CSI report configuration associated with a second set of CMRs,
    wherein a CMR from the second set of CMRs is selected.
  53. The method of claim 52, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  54. The method of claim 52 or claim 53, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  55. A method of wireless communication performed by a base station, comprising:
    transmitting, to a user equipment (UE) , a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  56. The method of claim 55, wherein the preconfigured value includes zero.
  57. The method of claim 55 or claim 56, wherein the CSI report includes CSI part 1 information, and wherein the UE does not transmit, to the base station, CSI part 2 information.
  58. The method of any of claims 55 through 57, further comprising:
    transmitting, to the UE, an additional CSI report configuration associated with a second set of CMRs,
    wherein a CMR from the second set of CMRs is selected.
  59. The method of claim 58, wherein at least one of the RI, the CQI, the LI, or the PMI is based at least in part on the selected CMR.
  60. The method of claim 58 or claim 59, wherein the CSI report configuration is associated with a first transmit-receive point (TRP) of the base station, and the additional CSI report configuration is associated with a second TRP of the base station.
  61. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    receive, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    receive, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    transmit, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  62. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    transmit, to a user equipment (UE) , a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    transmit, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    receive, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  63. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    receive, from a base station, a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    transmit, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  64. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    transmit, to a user equipment (UE) , a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    receive, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  65. An apparatus for wireless communication, comprising:
    means for receiving, from a base station, a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    means for receiving, from the base station, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    means for transmitting, to the base station, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  66. An apparatus for wireless communication, comprising:
    means for transmitting, to a user equipment (UE) , a first channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ;
    means for transmitting, to the UE, a second CSI report configuration associated with a second set of CMRs, wherein the second CSI report configuration is linked to the first CSI report configuration; and
    means for receiving, from the UE, a first CSI report, based at least in part on one or more joint channel measurements based at least in part on the first CSI report configuration and the second CSI report configuration, wherein the first CSI report includes a channel resource indicator (CRI) that indicates whether a CMR is selected from the first set of CMRs.
  67. An apparatus for wireless communication, comprising:
    means for receiving, from a base station, a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    means for transmitting, to the base station, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
  68. An apparatus for wireless communication, comprising:
    means for transmitting, to a user equipment (UE) , a channel state information (CSI) report configuration associated with a first set of channel measurement resources (CMRs) ; and
    means for receiving, from the UE, a CSI report indicating that no CMR from the first set of CMRs was selected, wherein the CSI report includes a preconfigured value as at least one of a rank indicator (RI) , channel quality indicator (CQI) , layer indicator (LI) , or precoding matrix indicator (PMI) .
PCT/CN2021/071434 2021-01-13 2021-01-13 Channel resource indicators for linked channel state information measurment reports WO2022151026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071434 WO2022151026A1 (en) 2021-01-13 2021-01-13 Channel resource indicators for linked channel state information measurment reports

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071434 WO2022151026A1 (en) 2021-01-13 2021-01-13 Channel resource indicators for linked channel state information measurment reports

Publications (1)

Publication Number Publication Date
WO2022151026A1 true WO2022151026A1 (en) 2022-07-21

Family

ID=82447666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071434 WO2022151026A1 (en) 2021-01-13 2021-01-13 Channel resource indicators for linked channel state information measurment reports

Country Status (1)

Country Link
WO (1) WO2022151026A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190223161A1 (en) * 2018-01-12 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Signaling in rrc and mac for pdsch resource mapping for periodic and semipersistent reference signal assumptions
US20200153497A1 (en) * 2018-11-14 2020-05-14 Mediatek Inc. Transmission Configuration Indication (TCI) - State Indication for Non-Coherent Joint Transmission (NCJT) Channel State Information (CSI) Reporting
US20200267584A1 (en) * 2017-09-29 2020-08-20 Lg Electronics Inc. Method for reporting aperiodic csi in wireless communication system and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267584A1 (en) * 2017-09-29 2020-08-20 Lg Electronics Inc. Method for reporting aperiodic csi in wireless communication system and device therefor
US20190223161A1 (en) * 2018-01-12 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Signaling in rrc and mac for pdsch resource mapping for periodic and semipersistent reference signal assumptions
US20200153497A1 (en) * 2018-11-14 2020-05-14 Mediatek Inc. Transmission Configuration Indication (TCI) - State Indication for Non-Coherent Joint Transmission (NCJT) Channel State Information (CSI) Reporting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "CSI enhancements: MTRP and FR1 FDD reciprocity", 3GPP DRAFT; R1-2006796, vol. RAN WG1, 8 August 2020 (2020-08-08), pages 1 - 12, XP051918246 *

Similar Documents

Publication Publication Date Title
US20230361832A1 (en) Channel state information (csi) reference signal capability reporting for multiple transmit receive point csi measurement
WO2021237666A1 (en) Precoder indication for non-codebook-based uplink transmissions
WO2021168597A1 (en) Association of phase tracking reference signal ports and demodulation reference signal ports for multi-beam uplink repetitions
WO2021151241A1 (en) Non-coherent joint transmission hypothesis evaluation in multi-transmit receive point deployments
US11916609B2 (en) Techniques for indicating a user equipment capability for Layer 1 signal to interference plus noise ratio measurement
US11533098B2 (en) Semi-persistent channel state information reporting
WO2021226861A1 (en) Multiple uplink configurations for multiple antenna panel transmissions
CN116210260A (en) Channel state information report type configuration
US11758425B2 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2022151026A1 (en) Channel resource indicators for linked channel state information measurment reports
CN114175523A (en) Sounding reference signal configuration for supporting virtual and non-virtual port sounding
WO2022151022A1 (en) Channel state information joint measurements
US11665683B2 (en) User equipment reporting for full duplex multi-beam selection
WO2021217481A1 (en) Subband reporting for channel state information of multiple transmission reception points
US20220368395A1 (en) Beam group based channel state information reporting
US11924140B2 (en) Subband channel quality information
WO2022165747A1 (en) Transmission configuration indicator indication for non-serving cell information
WO2022000224A1 (en) Backhaul aware bandwidth management
WO2021151239A1 (en) Port group pairing for channel state information in multi-transmit receive point deployments
WO2022204848A1 (en) Power control indication using sounding reference signal resource indicators
WO2021151253A1 (en) Resource pair groups for channel state information in multi-transmit receive point deployments
WO2021195655A1 (en) Sub-band interference level indication using physical uplink control channel communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918242

Country of ref document: EP

Kind code of ref document: A1