WO2022149586A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2022149586A1
WO2022149586A1 PCT/JP2022/000155 JP2022000155W WO2022149586A1 WO 2022149586 A1 WO2022149586 A1 WO 2022149586A1 JP 2022000155 W JP2022000155 W JP 2022000155W WO 2022149586 A1 WO2022149586 A1 WO 2022149586A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
generator
power
rotation speed
vehicle body
Prior art date
Application number
PCT/JP2022/000155
Other languages
French (fr)
Japanese (ja)
Inventor
明 渡辺
泰典 太田
勇佑 今井
春樹 杉山
学 矢野
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2022574064A priority Critical patent/JP7429309B2/en
Publication of WO2022149586A1 publication Critical patent/WO2022149586A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to construction machinery. This application claims priority based on Japanese Patent Application No. 2021-000692 filed on January 6, 2021, and the contents thereof are incorporated herein by reference.
  • a hybrid hydraulic excavator for example, as described in Patent Document 1, an engine, a generator driven by the engine, a battery charged by the generator, and assisted in driving the engine while being driven by the electric power of the battery. It is known to be equipped with an electric motor. In such a hybrid hydraulic excavator, electric power is output from the battery when the controller is started or the engine is driven, and the generator receives the power of the engine to generate electricity and charge the battery.
  • the hybrid hydraulic excavator described in Patent Document 1 has the following problems.
  • the generator assists to accelerate the engine with the electric motor while the generator continues to generate electricity, the electric motor will return the power of the engine converted to electricity by the electric motor. , The efficiency of the electric motor and the generator will be lost, and the fuel consumption of the hydraulic excavator will increase.
  • the generator since the generator applies braking torque to the engine when generating electricity, it hinders the attempt to increase the engine speed. As a result, the responsiveness when increasing the engine speed is deteriorated, and the operational responsiveness of the hydraulic excavator is impaired.
  • An object of the present invention is to provide a construction machine capable of reducing fuel consumption and improving operational responsiveness.
  • the construction machine includes an engine, a variable displacement hydraulic pump driven by the engine, a hydraulic actuator driven by pressure oil supplied from the hydraulic pump, and an operating device for operating the hydraulic actuator.
  • a generator that receives power from the engine to generate power, a power storage device that stores the power generated by the generator, an engine control dial that sets a target engine rotation speed of the engine, and controls the generator.
  • a controller is provided, and the controller calculates a required hydraulic output value based on the operation amount of the operating device and a target engine rotation speed set in the engine control dial, and the controller calculates a required hydraulic output value based on the calculated required hydraulic output value.
  • the generator is stopped or the power generation amount of the generator is reduced to store the electricity. It is characterized by outputting power from the device.
  • the controller determines that it is necessary to increase the engine rotation speed in order to reach the required required engine rotation speed, the generator is stopped or the generator power generation amount is reduced to store electricity. Since the power is output from the device, the fuel consumption of the construction machine can be reduced. Moreover, since the responsiveness when increasing the engine speed is improved, the operation responsiveness can be improved.
  • fuel consumption can be reduced and operational responsiveness can be improved.
  • FIG. 1 is a side view showing a hydraulic excavator according to an embodiment
  • FIG. 2 is a configuration diagram showing a hydraulic excavator according to an embodiment.
  • the hydraulic excavator 1 according to the present embodiment is a hybrid hydraulic excavator in which a variable displacement main pump (hydraulic pump) 4 is driven by an engine 2 and an electric motor 3 to control an engine variable speed.
  • the pressure oil supplied from the main pump 4 is distributed by the control valve 5, and the distributed pressure oil is distributed to a plurality of hydraulic actuators (bucket cylinder 6, arm cylinder 7, boom cylinder 8, swivel motor 9, traveling).
  • a plurality of hydraulic actuators bucket cylinder 6, arm cylinder 7, boom cylinder 8, swivel motor 9, traveling.
  • the control valve 5 is a flow rate control valve that controls the flow rate of the pressure oil supplied from the main pump 4 to each hydraulic actuator.
  • the bucket cylinder 6 is a hydraulic actuator for driving the bucket 26, and is driven by the pressure oil supplied from the main pump 4.
  • the arm cylinder 7 is a hydraulic actuator for driving the arm 27, and is driven by the pressure oil supplied from the main pump 4.
  • the boom cylinder 8 is a hydraulic actuator for driving the boom 28, and is driven by the pressure oil supplied from the main pump 4.
  • the swivel motor 9 is a hydraulic actuator for swiveling the swivel body 29 with respect to the traveling body 30, and is driven by the pressure oil supplied from the main pump 4.
  • the traveling motor 10 is a hydraulic actuator for moving the traveling body 30 forward or backward, and is driven by the pressure oil supplied from the main pump 4.
  • the hydraulic actuator, the main pump 4, and the control valve 5 are each controlled by the vehicle body controller 13, which will be described later.
  • the hydraulic excavator 1 includes a vehicle body controller 13 that monitors and controls the state of the vehicle body, operations of each electric device, and the like, and an ECU (engine control unit) 22 that monitors and controls the state of the engine 2.
  • the vehicle body controller 13 and the ECU 22 are electrically connected to the lead battery 14 by the first electric system 17. Therefore, the vehicle body controller 13 and the ECU 22 can operate by receiving the electric power supply from the lead battery 14.
  • the hydraulic excavator 1 is equipped with a cabin 11 on which the operator is boarded.
  • the cabin 11 is provided with an operating device 12, a lock lever 23, and an engine control dial 24.
  • the operating device 12 is a device for the operator to operate each hydraulic actuator, and is configured by, for example, an operating lever.
  • the control valve 5 is driven, whereby the pressure oil in the bucket cylinder 6, the arm cylinder 7, the boom cylinder 8, the swivel motor 9, and the traveling motor 10 is controlled, so that the bucket 26 is controlled. , Arm 27, boom 28, swivel body 29 and traveling body 30, respectively.
  • the excavation operation, the turning operation, and the traveling operation of the hydraulic excavator 1 are realized.
  • the lock lever 23 is a device having a function of suppressing the operation of the hydraulic excavator 1 by locking (prohibiting) the operation by the operating device 12 when the operator does not operate the hydraulic excavator 1 or leaves the cabin 11.
  • the engine control dial 24 is a device for setting a target rotation speed of the engine 2.
  • the electric motor 3 receives electric power from the hybrid battery 15 which is a power storage device, and assists the drive of the engine 2. As shown in FIG. 2, the electric motor 3 is coaxially connected to the engine 2 and the main pump 4. By doing so, the main pump 4 is driven by two types of power, such as the engine 2 and the electric motor 3.
  • the electric motor 3 is controlled by the vehicle body controller 13 via the PCU (power control unit) 31.
  • the hydraulic excavator 1 further includes a generator 16 that receives power from the engine 2 to generate electricity and outputs electric power to an electric device such as an air conditioner compressor 20 to charge the hybrid battery 15.
  • the generator 16 is a motor that operates by converting direct current into three-phase alternating current with, for example, a PCU (inverter) 25 and controlling the three-phase alternating current, and is controlled by a vehicle body controller 13 via the PCU 25.
  • the generator 16 is electrically connected to the hybrid battery 15, the air conditioner compressor 20, and the engine fan 21 via a second electric system 18.
  • a DC / DC converter 19 is provided between the first electric system 17 and the second electric system 18.
  • the DC / DC converter 19 performs voltage conversion from the second electric system 18 to the first electric system 17 and outputs electric power to the first electric system 17.
  • the electric power generated by the generator 16 is voltage-converted to the DC / DC converter 19 and then output to the first electric system 17. Therefore, the lead battery 14 is charged and the electric power is supplied to the vehicle body controller 13 and the ECU 22.
  • the vehicle body controller 13 corresponds to the "controller" described in the claim range, for example, a CPU (Central Processing Unit) that executes an operation and a ROM (secondary storage device) that stores a program for the operation. It is composed of a microcomputer consisting of a combination of a Ready Only Memory) and a RAM (Random Access Memory) as a temporary storage device for storing the progress of operations and temporary control variables, and by executing the stored program. It monitors and controls the condition of the vehicle body and controls the operation of each electric device.
  • a CPU Central Processing Unit
  • ROM secondary storage device
  • the vehicle body controller 13 determines the discharge amount of the pressure oil of the main pump 4 and the distribution destination of the control valve 5 based on the operation amount of the operation device 12. Further, the vehicle body controller 13 calculates the required hydraulic pressure output value of the engine 2 based on the operation amount of the operating device 12 and the target engine rotation speed set in the engine control dial 24, and is based on the calculated required hydraulic pressure output value. Find the required engine speed. Further, the vehicle body controller 13 needs to determine whether or not it is necessary to increase the rotation speed of the engine 2 (in other words, accelerate the engine 2) in order to reach the required required engine rotation speed, and increase the rotation speed. When it is determined that there is, the generator 16 is stopped or the amount of power generated by the generator 16 is reduced, and power is output from the hybrid battery 15 to an electric device such as an electric motor 3.
  • an electric device such as an electric motor 3.
  • the lead battery 14 is connected to the vehicle body controller 13, the ECU 22, and the first electric system 17 via the first electric system 17, as shown by the arrow F1 in FIG.
  • the hybrid battery 15 outputs electric power to the air conditioner compressor 20, the engine fan 21, the PCU 25, 31, etc. via the second electric system 18 (that is, the electric power). supply).
  • the vehicle body controller 13 operates the electric motor 3 via the PCU 31. At this time, the electric motor 3 receives electric power from the hybrid battery 15 and rotates to start the engine 2.
  • the generator 16 After the engine is started, the generator 16 generates electricity by receiving the power of the engine 2. The generated power is voltage-converted by the DC / DC converter 19 and then output to the lead battery 14, the vehicle body controller 13, the ECU 22 and the like via the first electric system 17 (see the arrow F3 in FIG. 4). .. The lead battery 14 receives the electric power output from the generator 16 and charges the lead battery 14.
  • the electric power generated by the generator 16 is output to the air conditioner compressor 20, the engine fan 21, and the hybrid battery 15 via the second electric system 18 (see the arrow F4 in FIG. 4).
  • the hybrid battery 15 receives the electric power output from the generator 16 and charges the battery. Then, when the engine 2 is operating, the generator 16 basically continues to generate electricity.
  • the engine 2 is as efficient as possible regardless of the target engine speed set in the engine control dial 24.
  • the idling operation is performed at a certain number of revolutions.
  • the vehicle body controller 13 determines the number of revolutions to be actually operated so that the efficiency of the engine 2 is as good as possible, based on the isofuel consumption diagram (see FIG. 6) of the engine stored inside.
  • FIG. 6 schematically shows an isofuel consumption diagram showing the fuel consumption of the engine 2 by the torque on the vertical axis and the rotation speed on the horizontal axis.
  • the iso-output line is shown by a broken line
  • the iso-fuel consumption line is shown by a solid line.
  • the vehicle body controller 13 uses an efficiency map based on this isofuel consumption diagram.
  • the rotation speeds of both are substantially the same. Therefore, by adding the torque of the electric motor 3 to the engine torque shown on the vertical axis, the torque becomes substantially the same as the torque of the main pump 4. Further, the tilt angle of the main pump 4 at that time can be obtained from the torque of the main pump 4.
  • the required output of the engine 2 during idling operation is shown by a straight line L1. Then, looking for the most efficient engine speed on the straight line L1, it is when the engine speed is 1200 rpm, which is close to the fuel consumption line with less fuel consumption. Therefore, the vehicle body controller 13 can improve the efficiency of the engine 2 by operating the engine 2 at a rotation speed of 1200 rpm regardless of the setting of the engine control dial 24 in idling operation.
  • the vehicle body controller 13 acquires the operation amount of the operation device 12 via the operation amount detection sensor (not shown), and according to the operation content of the operation device 12. While controlling the engine 2 and the main pump 4, the control valve 5 is controlled so as to produce the required hydraulic output, and the hydraulic output is distributed to each hydraulic actuator.
  • the vehicle body controller 13 calculates the required hydraulic pressure output value of the engine 2 based on the operation amount of the operating device 12 and the target engine rotation speed set in the engine control dial 24. Further, the vehicle body controller 13 uses the above-mentioned efficiency map of the engine 2 based on the calculated required hydraulic pressure output value to obtain the highest efficiency of the engine 2 (that is, the required engine rotation speed) and the main pump 4. The combination with the tilt angle is obtained, and the main pump 4, the engine 2, the electric motor 3 and the generator 16 are controlled based on the obtained results.
  • the vehicle body controller 13 assists the acceleration of the engine 2 with the electric motor 3 while stopping the power generation of the generator 16 or reducing the amount of power generation.
  • the electric motor 3 and the generator 16 are controlled so as to reduce the number.
  • the vehicle body controller 13 uses the hybrid battery 15 to output electric power to the PCU 31, the electric motor 3, the engine fan 21, and the air conditioner compressor 20, and further DC / DC. Power is output to the lead battery 14, the vehicle body controller 13, the ECU 22 and the like via the converter 19 and the first electric system 17 (see the arrow F5 in FIG. 5). Then, when the acceleration of the engine 2 is completed and the rotation speed of the engine 2 becomes stable, the generator 16 starts power generation again.
  • step S11 the vehicle body controller 13 calculates the required hydraulic pressure output value.
  • the vehicle body controller 13 calculates the required hydraulic pressure output value based on the operation amount of the operating device 12 and the target engine rotation speed set in the engine control dial 24.
  • step S12 following step S11 the vehicle body controller 13 uses the above-mentioned efficiency map of the engine 2 based on the calculated required hydraulic pressure output value to obtain the most efficient rotation speed of the engine 2 (that is, the required engine rotation speed). And the combination with the tilt angle of the main pump 4 is obtained.
  • the vehicle body controller 13 since the required hydraulic pressure output value becomes the required engine output value, the vehicle body controller 13 has the highest efficiency of the engine 2 on the iso-output line L2. Since the rotation speed is often accelerated at a point and when the hydraulic output becomes high, the vehicle body controller 13 selects a point where the efficiency of the engine 2 is high and the rotation speed is high. As a result, the required engine speed and the required engine torque are obtained. Further, the vehicle body controller 13 obtains a tilt angle based on the obtained required engine torque.
  • step S13 the vehicle body controller 13 determines whether or not the required engine rotation speed is larger than the sum of the current engine rotation speed and the default value ⁇ .
  • the default value ⁇ is set in consideration of an error in determining that the engine speed is stable.
  • the current engine speed is detected by, for example, a speed detection sensor (not shown) and output to the vehicle body controller 13.
  • step S14 the vehicle body controller 13 controls the generator 16 so as to start power generation.
  • step S15 the vehicle body controller 13 determines whether or not the remaining battery level of the hybrid battery 15 is equal to or greater than the first threshold value.
  • the first threshold value here means the capacity at which power generation can be stopped, and even if the generator 16 is stopped, only the remaining amount of the hybrid battery 15 is enough for the PCU 31, the electric motor 3, the engine fan 21, the air conditioner compressor 20, and the vehicle body controller 13. And the capacity that can guarantee the power supply to the ECU 22.
  • the remaining battery level of the hybrid battery 15 can be obtained, for example, via the battery management unit inside the hybrid battery 15.
  • step S16 the vehicle body controller 13 stops the generator 16.
  • step S17 the control process proceeds to step S17.
  • the vehicle body controller 13 determines whether or not the remaining battery level of the hybrid battery 15 is equal to or greater than the second threshold value.
  • the second threshold value here means a capacity that can maintain the operation, and is set smaller than the first threshold value.
  • the operation-sustainable capacity is a capacity that can maintain the operation of the PCU 31, the electric motor 3, the engine fan 21, the air conditioner compressor 20, the vehicle body controller 13, and the ECU 22 even if the amount of power generated by the generator is reduced.
  • the capacity that can maintain this operation is determined by the difference between the required engine speed and the current engine speed, and the power generation stop time (or the amount of power generation is reduced) is determined. It is a capacity that can maintain the operation of the air conditioner compressor 20, the vehicle body controller 13, and the ECU 22, and is determined based on the results of experiments.
  • step S14 the control process proceeds to step S14, and the power generation of the generator 16 is started.
  • step S18 the vehicle body controller 13 controls the generator 16 so as to reduce the amount of power generated by the generator 16.
  • the generator is composed of a PCU and a motor
  • reducing the brake torque can be mentioned.
  • a method of stopping the generator to eliminate the amount of power generation when the generator is composed of a PCU and a motor, eliminating the brake torque (so-called free run) is mentioned, and the generator is an alternator.
  • the power connection of the engine may be disconnected by an electromagnetic clutch or the like.
  • step S19 following step S14, step S16 or step S18 the vehicle body controller 13 generates a command for the engine 2, the main pump 4 and the electric motor 3, and the generated command is used for the engine 2, the main pump 4 and the electric motor 3. Output to each. This ends a series of control processes.
  • the generator 16 when the vehicle body controller 13 determines that it is necessary to increase the rotation speed of the engine 2 in order to reach the required required engine rotation speed, the generator 16 is stopped or the generator 16 is generated.
  • the amount of power generated by the hybrid battery 15 is reduced and power is output from the hybrid battery 15. That is, when it is determined that it is necessary to increase the rotation speed to accelerate the engine 2, the vehicle body controller 13 stops the power generation of the generator 16 or reduces the power generation amount of the generator 16.
  • the engine power converted into electricity by the generator as in the conventional case can be prevented from being returned to the engine power by the electric motor, so that the loss of the electric motor 3 can be reduced and the hydraulic excavator can be used.
  • the fuel consumption of 1 can be reduced.
  • the braking torque to the engine 2 due to the power generation can be reduced, so that the responsiveness when increasing the rotation speed of the engine 2 can be reduced. Will improve. As a result, the operation responsiveness can be improved.
  • the generator 16 is a motor that operates by converting direct current into three-phase alternating current with a PCU (inverter) and controlling three-phase alternating current.
  • a PCU inverter
  • the engine 2 and an electromagnetic clutch are described. It may be composed of an alternator connected via the above, and in this case, the power generation can be stopped by disengaging the electromagnetic clutch.
  • the configuration in which the electric motor 3 assists when accelerating the rotation speed of the engine 2 has been described, but even if the hydraulic excavator has a configuration without the electric motor 3, the rotation speed of the engine 2 is accelerated.
  • the braking torque given to the engine 2 by the generator 16 is eliminated, so that the acceleration responsiveness of the rotation speed of the engine 2 is improved, and the effect of improving the operation responsiveness is expected. can.
  • Hydraulic excavator 2 Engine 3 Electric motor 4 Main pump (hydraulic pump) 5 Control valve 6 Bucket cylinder 7 Arm cylinder 8 Boom cylinder 9 Swing motor 10 Travel motor 11 Cabin 12 Operating device 13 Body controller 14 Lead battery 15 Hybrid battery 16 Generator 17 First electric system 18 Second electric system 19 DC / DC converter 20 Air conditioner compressor 21 Engine fan 22 ECU 23 Lock lever 24 Engine control dial 25, 31 PCU 26 Bucket 27 Arm 28 Boom 29 Swing body 30 Traveling body

Abstract

A hydraulic shovel 1 comprises a main pump 4 that is driven by an engine 2, an operation device 12 that operates a hydraulic actuator, a generator 16 that receives power from the engine 2 to generate electric power, a hybrid battery 15 that stores the electric power generated by the generator 16, an electric motor 3 that receives electric power supply from the hybrid battery 15 to assist the driving of the engine 2, and a vehicle body controller 13. When the vehicle body controller 13 determines that the engine speed needs to be increased in order to reach a required engine speed, the vehicle body controller 13 stops the generator 16 or reduces the amount of electric power generated by the generator 16, and outputs electric power from the hybrid battery 15.

Description

建設機械Construction machinery
 本発明は、建設機械に関する。
 本願は、2021年1月6日に出願された日本国特願2021-000692号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to construction machinery.
This application claims priority based on Japanese Patent Application No. 2021-000692 filed on January 6, 2021, and the contents thereof are incorporated herein by reference.
 近年、環境への配慮や燃費の向上を目的に電動化された建設機械が開発され、メインポンプをエンジンと電動モータといった2種類の動力で駆動するハイブリッド式油圧ショベルが特に注目されている。 In recent years, electrified construction machines have been developed for the purpose of considering the environment and improving fuel efficiency, and hybrid hydraulic excavators that drive the main pump with two types of power, an engine and an electric motor, are attracting particular attention.
 ハイブリッド式油圧ショベルとして、例えば特許文献1に記載のように、エンジンと、エンジンにより駆動される発電機と、発電機によって充電されるバッテリと、バッテリの電力により駆動されるとともにエンジンの駆動をアシストする電動モータとを備えるものが知られている。このようなハイブリッド式油圧ショベルでは、コントローラの始動やエンジンの駆動をアシストする際に、バッテリから電力が出力されており、発電機はエンジンの動力を受けて発電し、バッテリを充電する。 As a hybrid hydraulic excavator, for example, as described in Patent Document 1, an engine, a generator driven by the engine, a battery charged by the generator, and assisted in driving the engine while being driven by the electric power of the battery. It is known to be equipped with an electric motor. In such a hybrid hydraulic excavator, electric power is output from the battery when the controller is started or the engine is driven, and the generator receives the power of the engine to generate electricity and charge the battery.
特許第5085734号公報Japanese Patent No. 5085734
 しかし、上記特許文献1に記載のハイブリッド式油圧ショベルでは、以下の課題が生じる。すなわち、発電機が発電し続けたまま、電動モータでエンジンを加速するためにアシストすると、発電機がエンジンの動力を電気に変換したものを、電動モータがエンジンの動力に返すことになってしまい、電動モータと発電機の効率分の損失が発生し、油圧ショベルの燃料消費量が多くなる。また、発電機が発電を行う際にエンジンにブレーキングトルクをかけるので、エンジン回転数を上げようとする際の妨げになる。その結果、エンジンの回転数を上げる際の応答性が悪くなり、油圧ショベルの操作応答性を損なってしまう。 However, the hybrid hydraulic excavator described in Patent Document 1 has the following problems. In other words, if the generator assists to accelerate the engine with the electric motor while the generator continues to generate electricity, the electric motor will return the power of the engine converted to electricity by the electric motor. , The efficiency of the electric motor and the generator will be lost, and the fuel consumption of the hydraulic excavator will increase. In addition, since the generator applies braking torque to the engine when generating electricity, it hinders the attempt to increase the engine speed. As a result, the responsiveness when increasing the engine speed is deteriorated, and the operational responsiveness of the hydraulic excavator is impaired.
 本発明の目的は、燃料消費量を少なくすることができ、操作応答性を向上することができる建設機械を提供することにある。 An object of the present invention is to provide a construction machine capable of reducing fuel consumption and improving operational responsiveness.
 本発明に係る建設機械は、エンジンと、前記エンジンによって駆動される可変容量式の油圧ポンプと、前記油圧ポンプから供給される圧油によって駆動される油圧アクチュエータと、前記油圧アクチュエータを操作する操作装置と、前記エンジンからの動力を受けて発電する発電機と、前記発電機で発電する電力を蓄える蓄電装置と、前記エンジンの目標エンジン回転数を設定するエンジンコントロールダイヤルと、前記発電機を制御するコントローラと、を備え、前記コントローラは、前記操作装置の操作量と前記エンジンコントロールダイヤルに設定された目標エンジン回転数とに基づいて要求油圧出力値を算出し、算出した要求油圧出力値に基づいて要求エンジン回転数を求め、求めた要求エンジン回転数に達するために前記エンジンの回転数を上げる必要があると判断した場合、前記発電機を停止し又は前記発電機の発電量を減らして前記蓄電装置から電力を出力することを特徴としている。 The construction machine according to the present invention includes an engine, a variable displacement hydraulic pump driven by the engine, a hydraulic actuator driven by pressure oil supplied from the hydraulic pump, and an operating device for operating the hydraulic actuator. A generator that receives power from the engine to generate power, a power storage device that stores the power generated by the generator, an engine control dial that sets a target engine rotation speed of the engine, and controls the generator. A controller is provided, and the controller calculates a required hydraulic output value based on the operation amount of the operating device and a target engine rotation speed set in the engine control dial, and the controller calculates a required hydraulic output value based on the calculated required hydraulic output value. When the required engine rotation speed is obtained and it is determined that the engine rotation speed needs to be increased in order to reach the required required engine rotation speed, the generator is stopped or the power generation amount of the generator is reduced to store the electricity. It is characterized by outputting power from the device.
 本発明に係る建設機械では、コントローラは、求めた要求エンジン回転数に達するためにエンジンの回転数を上げる必要があると判断した場合、発電機を停止し又は発電機の発電量を減らして蓄電装置から電力を出力するので、建設機械の燃料消費量を少なくすることができる。しかも、エンジンの回転数を上げる際の応答性が良くなるので、操作応答性を向上することができる。 In the construction machine according to the present invention, when the controller determines that it is necessary to increase the engine rotation speed in order to reach the required required engine rotation speed, the generator is stopped or the generator power generation amount is reduced to store electricity. Since the power is output from the device, the fuel consumption of the construction machine can be reduced. Moreover, since the responsiveness when increasing the engine speed is improved, the operation responsiveness can be improved.
 本発明によれば、燃料消費量を少なくすることができ、操作応答性を向上することができる。 According to the present invention, fuel consumption can be reduced and operational responsiveness can be improved.
実施形態に係る油圧ショベルを示す側面図である。It is a side view which shows the hydraulic excavator which concerns on embodiment. 実施形態に係る油圧ショベルを示す構成図である。It is a block diagram which shows the hydraulic excavator which concerns on embodiment. エンジン起動前の電力の流れを説明するための図である。It is a figure for demonstrating the flow of electric power before starting an engine. エンジン始動後(ロックレバーがロック状態)の電力の流れを説明するための図である。It is a figure for demonstrating the flow of electric power after starting an engine (the lock lever is locked state). エンジン加速時の電力の流れを説明するための図である。It is a figure for demonstrating the flow of electric power at the time of engine acceleration. エンジンの等燃費線図である。It is a fuel consumption diagram of an engine. エンジンの等燃費線図である。It is a fuel consumption diagram of an engine. 油圧ショベルの車体コントローラの制御処理を示すフローチャートである。It is a flowchart which shows the control process of the body controller of a hydraulic excavator.
 以下、図面を参照して本発明に係る建設機械の実施形態について説明する。図面の説明において同一の要素には同一符号を付し、重複説明は省略する。また、以下では、建設機械として油圧ショベルの例を挙げて説明するが、本発明は油圧ショベルに限定されず、油圧ショベル以外の建設機械にも適用される。 Hereinafter, embodiments of the construction machine according to the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. Further, in the following, an example of a hydraulic excavator will be described as a construction machine, but the present invention is not limited to the hydraulic excavator and is also applied to construction machines other than the hydraulic excavator.
 図1は実施形態に係る油圧ショベルを示す側面図であり、図2は実施形態に係る油圧ショベルを示す構成図である。本実施形態に係る油圧ショベル1は、エンジン2及び電動モータ3で可変容量式のメインポンプ(油圧ポンプ)4を駆動し、エンジン可変速制御を行うハイブリッド式油圧ショベルである。油圧ショベル1では、メインポンプ4から供給される圧油がコントロールバルブ5によって分配され、分配された圧油が複数の油圧アクチュエータ(バケットシリンダ6、アームシリンダ7、ブームシリンダ8、旋回モータ9、走行モータ10)にそれぞれ供給されることで、掘削動作、旋回動作及び走行動作が行われる。 FIG. 1 is a side view showing a hydraulic excavator according to an embodiment, and FIG. 2 is a configuration diagram showing a hydraulic excavator according to an embodiment. The hydraulic excavator 1 according to the present embodiment is a hybrid hydraulic excavator in which a variable displacement main pump (hydraulic pump) 4 is driven by an engine 2 and an electric motor 3 to control an engine variable speed. In the hydraulic excavator 1, the pressure oil supplied from the main pump 4 is distributed by the control valve 5, and the distributed pressure oil is distributed to a plurality of hydraulic actuators (bucket cylinder 6, arm cylinder 7, boom cylinder 8, swivel motor 9, traveling). By being supplied to each of the motors 10), an excavation operation, a turning operation, and a traveling operation are performed.
 コントロールバルブ5は、メインポンプ4から各油圧アクチュエータに供給される圧油の流量を制御する流量制御弁である。バケットシリンダ6は、バケット26を駆動するための油圧アクチュエータであり、メインポンプ4から供給される圧油によって駆動されている。アームシリンダ7は、アーム27を駆動するための油圧アクチュエータであり、メインポンプ4から供給される圧油によって駆動されている。ブームシリンダ8は、ブーム28を駆動するための油圧アクチュエータであり、メインポンプ4から供給される圧油によって駆動されている。 The control valve 5 is a flow rate control valve that controls the flow rate of the pressure oil supplied from the main pump 4 to each hydraulic actuator. The bucket cylinder 6 is a hydraulic actuator for driving the bucket 26, and is driven by the pressure oil supplied from the main pump 4. The arm cylinder 7 is a hydraulic actuator for driving the arm 27, and is driven by the pressure oil supplied from the main pump 4. The boom cylinder 8 is a hydraulic actuator for driving the boom 28, and is driven by the pressure oil supplied from the main pump 4.
 旋回モータ9は、走行体30に対し旋回体29を旋回させるための油圧アクチュエータであり、メインポンプ4から供給される圧油によって駆動されている。走行モータ10は、走行体30を前進又は後進させるための油圧アクチュエータであり、メインポンプ4から供給される圧油によって駆動されている。そして、これらの油圧アクチュエータ、メインポンプ4及びコントロールバルブ5は後述の車体コントローラ13によってそれぞれ制御されている。 The swivel motor 9 is a hydraulic actuator for swiveling the swivel body 29 with respect to the traveling body 30, and is driven by the pressure oil supplied from the main pump 4. The traveling motor 10 is a hydraulic actuator for moving the traveling body 30 forward or backward, and is driven by the pressure oil supplied from the main pump 4. The hydraulic actuator, the main pump 4, and the control valve 5 are each controlled by the vehicle body controller 13, which will be described later.
 また、油圧ショベル1は、車体の状態の監視及び制御、並びに各電気機器の動作等を制御する車体コントローラ13と、エンジン2の状態監視及び制御を行うECU(エンジンコントロールユニット)22とを備えている。車体コントローラ13及びECU22は、第1の電気系統17によって鉛電池14と電気的に接続されている。このため、車体コントローラ13及びECU22は、鉛電池14からの電力供給を受けて動作可能になっている。 Further, the hydraulic excavator 1 includes a vehicle body controller 13 that monitors and controls the state of the vehicle body, operations of each electric device, and the like, and an ECU (engine control unit) 22 that monitors and controls the state of the engine 2. There is. The vehicle body controller 13 and the ECU 22 are electrically connected to the lead battery 14 by the first electric system 17. Therefore, the vehicle body controller 13 and the ECU 22 can operate by receiving the electric power supply from the lead battery 14.
 また、油圧ショベル1は、オペレータが搭乗するキャビン11を備えている。キャビン11には、操作装置12、ロックレバー23及びエンジンコントロールダイヤル24が設けられている。操作装置12は、オペレータが各油圧アクチュエータを操作するための装置であり、例えば操作レバーによって構成されている。操作レバーがオペレータに操作されると、コントロールバルブ5が駆動され、これによってバケットシリンダ6、アームシリンダ7、ブームシリンダ8、旋回モータ9及び走行モータ10内の圧油が制御されるので、バケット26、アーム27、ブーム28、旋回体29及び走行体30がそれぞれ駆動される。これによって、油圧ショベル1の掘削動作、旋回動作及び走行動作が実現される。 Further, the hydraulic excavator 1 is equipped with a cabin 11 on which the operator is boarded. The cabin 11 is provided with an operating device 12, a lock lever 23, and an engine control dial 24. The operating device 12 is a device for the operator to operate each hydraulic actuator, and is configured by, for example, an operating lever. When the operating lever is operated by the operator, the control valve 5 is driven, whereby the pressure oil in the bucket cylinder 6, the arm cylinder 7, the boom cylinder 8, the swivel motor 9, and the traveling motor 10 is controlled, so that the bucket 26 is controlled. , Arm 27, boom 28, swivel body 29 and traveling body 30, respectively. As a result, the excavation operation, the turning operation, and the traveling operation of the hydraulic excavator 1 are realized.
 ロックレバー23は、オペレータが油圧ショベル1を操作しない場合やキャビン11を離れる場合に操作装置12による操作をロック(禁止)することで、油圧ショベル1の動作を抑制させる機能を持つ装置である。エンジンコントロールダイヤル24は、エンジン2の目標回転数を設定するための装置である。 The lock lever 23 is a device having a function of suppressing the operation of the hydraulic excavator 1 by locking (prohibiting) the operation by the operating device 12 when the operator does not operate the hydraulic excavator 1 or leaves the cabin 11. The engine control dial 24 is a device for setting a target rotation speed of the engine 2.
 電動モータ3は、蓄電装置であるハイブリッドバッテリ15より電力供給を受け、エンジン2の駆動をアシスト(補助)する。図2に示すように、電動モータ3は、エンジン2及びメインポンプ4と同軸に接続されている。このようにすることで、メインポンプ4は、エンジン2と電動モータ3といった2種類の動力で駆動されることになる。なお、電動モータ3は、PCU(パワーコントロールユニット)31を介して車体コントローラ13によって制御されている。 The electric motor 3 receives electric power from the hybrid battery 15 which is a power storage device, and assists the drive of the engine 2. As shown in FIG. 2, the electric motor 3 is coaxially connected to the engine 2 and the main pump 4. By doing so, the main pump 4 is driven by two types of power, such as the engine 2 and the electric motor 3. The electric motor 3 is controlled by the vehicle body controller 13 via the PCU (power control unit) 31.
 また、油圧ショベル1は、エンジン2の動力を受けて発電し、エアコンコンプレッサ20等の電気機器に電力を出力しつつハイブリッドバッテリ15への充電を行う発電機16を更に備えている。発電機16は、例えばPCU(インバータ)25で直流を3相交流に変換し、3相交流を制御することで稼働するモータであり、PCU25を介して車体コントローラ13によって制御されている。この発電機16は、第2の電気系統18を介して、ハイブリッドバッテリ15、エアコンコンプレッサ20、エンジンファン21とそれぞれ電気的に接続されている。 Further, the hydraulic excavator 1 further includes a generator 16 that receives power from the engine 2 to generate electricity and outputs electric power to an electric device such as an air conditioner compressor 20 to charge the hybrid battery 15. The generator 16 is a motor that operates by converting direct current into three-phase alternating current with, for example, a PCU (inverter) 25 and controlling the three-phase alternating current, and is controlled by a vehicle body controller 13 via the PCU 25. The generator 16 is electrically connected to the hybrid battery 15, the air conditioner compressor 20, and the engine fan 21 via a second electric system 18.
 また、第1の電気系統17と第2の電気系統18との間には、DC/DCコンバータ19が設けられている。DC/DCコンバータ19は、第2の電気系統18から第1の電気系統17に対して電圧変換を行い、第1の電気系統17に電力を出力する。このようにすることで、発電機16により発電された電力は、DC/DCコンバータ19に電圧変換された後に、第1の電気系統17に出力される。従って鉛電池14の充電、車体コントローラ13及びECU22への電力供給が行われる。 Further, a DC / DC converter 19 is provided between the first electric system 17 and the second electric system 18. The DC / DC converter 19 performs voltage conversion from the second electric system 18 to the first electric system 17 and outputs electric power to the first electric system 17. By doing so, the electric power generated by the generator 16 is voltage-converted to the DC / DC converter 19 and then output to the first electric system 17. Therefore, the lead battery 14 is charged and the electric power is supplied to the vehicle body controller 13 and the ECU 22.
 車体コントローラ13は、請求の範囲に記載の「コントローラ」に相当するものであり、例えば演算を実行するCPU(Central Processing Unit)と、演算のためのプログラムを記憶した二次記憶装置としてのROM(Read Only Memory)と、演算経過の保存や一時的な制御変数を保存する一時記憶装置としてのRAM(Random Access Memory)とを組み合わせてなるマイクロコンピュータにより構成されており、記憶されたプログラムの実行によって車体の状態の監視及び制御、並びに各電気機器の動作等を制御する。 The vehicle body controller 13 corresponds to the "controller" described in the claim range, for example, a CPU (Central Processing Unit) that executes an operation and a ROM (secondary storage device) that stores a program for the operation. It is composed of a microcomputer consisting of a combination of a Ready Only Memory) and a RAM (Random Access Memory) as a temporary storage device for storing the progress of operations and temporary control variables, and by executing the stored program. It monitors and controls the condition of the vehicle body and controls the operation of each electric device.
 例えば、車体コントローラ13は、操作装置12の操作量に基づいてメインポンプ4の圧油の吐出量とコントロールバルブ5の分配先を決定する。また、車体コントローラ13は、操作装置12の操作量とエンジンコントロールダイヤル24に設定された目標エンジン回転数とに基づいてエンジン2の要求油圧出力値を算出し、算出した要求油圧出力値に基づいて要求エンジン回転数を求める。更に、車体コントローラ13は、求めた要求エンジン回転数に達するためにエンジン2の回転数を上げる(言い換えれば、エンジン2を加速する)必要があるか否かを判断し、回転数を上げる必要があると判断した場合に、発電機16を停止し又は発電機16の発電量を減らして、ハイブリッドバッテリ15から電動モータ3などの電気機器に電力を出力する。 For example, the vehicle body controller 13 determines the discharge amount of the pressure oil of the main pump 4 and the distribution destination of the control valve 5 based on the operation amount of the operation device 12. Further, the vehicle body controller 13 calculates the required hydraulic pressure output value of the engine 2 based on the operation amount of the operating device 12 and the target engine rotation speed set in the engine control dial 24, and is based on the calculated required hydraulic pressure output value. Find the required engine speed. Further, the vehicle body controller 13 needs to determine whether or not it is necessary to increase the rotation speed of the engine 2 (in other words, accelerate the engine 2) in order to reach the required required engine rotation speed, and increase the rotation speed. When it is determined that there is, the generator 16 is stopped or the amount of power generated by the generator 16 is reduced, and power is output from the hybrid battery 15 to an electric device such as an electric motor 3.
 以下、図3~図5を基にエンジン起動前からエンジン起動後までの電力の流れを説明する。 Hereinafter, the flow of electric power from before the engine is started to after the engine is started will be described with reference to FIGS. 3 to 5.
 まず、図3を基にエンジン起動前の電力の流れを説明する。油圧ショベル1が起動指令を受信した場合、鉛電池14は、図3の矢印F1に示すように、第1の電気系統17を介して車体コントローラ13、ECU22、及び該第1の電気系統17に接続された他の電気機器(図示せず)に電力を出力する(すなわち、電力供給)。また、このとき、ハイブリッドバッテリ15は、図3の矢印F2に示すように、第2の電気系統18を介してエアコンコンプレッサ20、エンジンファン21、PCU25,31等に電力を出力する(すなわち、電力供給)。 First, the flow of electric power before starting the engine will be explained based on FIG. When the hydraulic excavator 1 receives the start command, the lead battery 14 is connected to the vehicle body controller 13, the ECU 22, and the first electric system 17 via the first electric system 17, as shown by the arrow F1 in FIG. Outputs power (ie, power supply) to other connected electrical equipment (not shown). At this time, as shown by the arrow F2 in FIG. 3, the hybrid battery 15 outputs electric power to the air conditioner compressor 20, the engine fan 21, the PCU 25, 31, etc. via the second electric system 18 (that is, the electric power). supply).
 その後、油圧ショベル1がエンジン始動の指令を受信すると、車体コントローラ13は、PCU31を介して電動モータ3を作動させる。このとき、電動モータ3は、ハイブリッドバッテリ15からの電力供給を受けて回転し、エンジン2を始動させる。 After that, when the hydraulic excavator 1 receives the command to start the engine, the vehicle body controller 13 operates the electric motor 3 via the PCU 31. At this time, the electric motor 3 receives electric power from the hybrid battery 15 and rotates to start the engine 2.
 次に、図4を基にエンジン始動後(ロックレバーがロック状態)の電力の流れを説明する。エンジン始動後、エンジン2の動力を受けて発電機16は発電する。発電された電力は、DC/DCコンバータ19により電圧変換された後に、第1の電気系統17を介して鉛電池14、車体コントローラ13及びECU22等に出力される(図4中の矢印F3参照)。鉛電池14は、発電機16から出力された電力を受け、充電を行う。 Next, the flow of electric power after the engine is started (the lock lever is locked) will be described with reference to FIG. After the engine is started, the generator 16 generates electricity by receiving the power of the engine 2. The generated power is voltage-converted by the DC / DC converter 19 and then output to the lead battery 14, the vehicle body controller 13, the ECU 22 and the like via the first electric system 17 (see the arrow F3 in FIG. 4). .. The lead battery 14 receives the electric power output from the generator 16 and charges the lead battery 14.
 また、このとき、発電機16が発電した電力は、第2の電気系統18を介してエアコンコンプレッサ20、エンジンファン21及びハイブリッドバッテリ15に出力される(図4中の矢印F4参照)。ハイブリッドバッテリ15は発電機16から出力された電力を受け、充電を行う。そして、エンジン2が稼働している場合、基本的に発電機16は発電し続ける。 At this time, the electric power generated by the generator 16 is output to the air conditioner compressor 20, the engine fan 21, and the hybrid battery 15 via the second electric system 18 (see the arrow F4 in FIG. 4). The hybrid battery 15 receives the electric power output from the generator 16 and charges the battery. Then, when the engine 2 is operating, the generator 16 basically continues to generate electricity.
 ロックレバー23がロック状態のように、すぐに油圧ショベル1を稼働させる状況にない場合では、エンジンコントロールダイヤル24に設定された目標エンジン回転数に関わらず、エンジン2はその効率が可能な限り良くなる回転数でアイドリング運転を行う。このとき、車体コントローラ13は、内部に記憶されたエンジンの等燃費線図(図6参照)に基づいて、エンジン2の効率が可能な限り良くなるように実際に稼働させる回転数を決定する。 When the lock lever 23 is not in the locked state and the hydraulic excavator 1 is not immediately operated, the engine 2 is as efficient as possible regardless of the target engine speed set in the engine control dial 24. The idling operation is performed at a certain number of revolutions. At this time, the vehicle body controller 13 determines the number of revolutions to be actually operated so that the efficiency of the engine 2 is as good as possible, based on the isofuel consumption diagram (see FIG. 6) of the engine stored inside.
 図6はエンジン2の燃料消費量を縦軸トルクと横軸回転数で表した等燃費線図を模式的に表したものである。図6において、等出力線は破線で示し、等燃費線は実線で示している。車体コントローラ13は、この等燃費線図を基にした効率のマップを用いる。そして、本実施形態では、エンジン2がメインポンプ4の軸と直結されているので、両者の回転数がほぼ同一となる。従って、縦軸で示すエンジントルクに電動モータ3のトルクを加えることで、メインポンプ4のトルクとほぼ同一となる。また、メインポンプ4のトルクから、その際のメインポンプ4の傾転角を求めることができる。 FIG. 6 schematically shows an isofuel consumption diagram showing the fuel consumption of the engine 2 by the torque on the vertical axis and the rotation speed on the horizontal axis. In FIG. 6, the iso-output line is shown by a broken line, and the iso-fuel consumption line is shown by a solid line. The vehicle body controller 13 uses an efficiency map based on this isofuel consumption diagram. Further, in the present embodiment, since the engine 2 is directly connected to the shaft of the main pump 4, the rotation speeds of both are substantially the same. Therefore, by adding the torque of the electric motor 3 to the engine torque shown on the vertical axis, the torque becomes substantially the same as the torque of the main pump 4. Further, the tilt angle of the main pump 4 at that time can be obtained from the torque of the main pump 4.
 図6では、アイドリング運転時のエンジン2の必要な出力を直線L1で示す。そして、直線L1上の最もエンジンの効率の良い回転数を探すと、より燃料消費量の少ない等燃費線に近い、回転数が1200rpmのときである。従って、車体コントローラ13は、アイドリング運転においてエンジンコントロールダイヤル24の設定に関わらず、エンジン2を回転数1200rpmで動作させることで、エンジン2の効率を高めることができる。 In FIG. 6, the required output of the engine 2 during idling operation is shown by a straight line L1. Then, looking for the most efficient engine speed on the straight line L1, it is when the engine speed is 1200 rpm, which is close to the fuel consumption line with less fuel consumption. Therefore, the vehicle body controller 13 can improve the efficiency of the engine 2 by operating the engine 2 at a rotation speed of 1200 rpm regardless of the setting of the engine control dial 24 in idling operation.
 次に、図5を基にエンジン加速時の電力の流れを説明する。油圧ショベル1のオペレータが操作装置12を操作した場合、車体コントローラ13は、操作量検出センサ(図示せず)を介して操作装置12の操作量を取得し、操作装置12の操作内容に応じてエンジン2およびメインポンプ4を制御しつつ、必要な油圧出力を作るようにコントロールバルブ5を制御して各油圧アクチュエータに油圧出力を分配する。 Next, the flow of electric power during engine acceleration will be described with reference to FIG. When the operator of the hydraulic excavator 1 operates the operation device 12, the vehicle body controller 13 acquires the operation amount of the operation device 12 via the operation amount detection sensor (not shown), and according to the operation content of the operation device 12. While controlling the engine 2 and the main pump 4, the control valve 5 is controlled so as to produce the required hydraulic output, and the hydraulic output is distributed to each hydraulic actuator.
 このとき、車体コントローラ13は、操作装置12の操作量とエンジンコントロールダイヤル24に設定された目標エンジン回転数とに基づいて、エンジン2の要求油圧出力値を算出する。更に、車体コントローラ13は、算出した要求油圧出力値に基づいて、上述のエンジン2の効率マップを用いてエンジン2の効率が最も良くなる回転数(すなわち、要求エンジン回転数)およびメインポンプ4の傾転角との組み合わせを求め、求めた結果に基づいてメインポンプ4、エンジン2、電動モータ3及び発電機16を制御する。 At this time, the vehicle body controller 13 calculates the required hydraulic pressure output value of the engine 2 based on the operation amount of the operating device 12 and the target engine rotation speed set in the engine control dial 24. Further, the vehicle body controller 13 uses the above-mentioned efficiency map of the engine 2 based on the calculated required hydraulic pressure output value to obtain the highest efficiency of the engine 2 (that is, the required engine rotation speed) and the main pump 4. The combination with the tilt angle is obtained, and the main pump 4, the engine 2, the electric motor 3 and the generator 16 are controlled based on the obtained results.
 また、本実施形態では、回転数を上げてエンジン2を加速する際に、車体コントローラ13は、電動モータ3でエンジン2の加速をアシストしつつ、発電機16の発電を停止し又は発電量を減らすように電動モータ3及び発電機16を制御する。発電機16を停止し又は発電量を減らす間において、車体コントローラ13は、ハイブリッドバッテリ15を利用し、PCU31、電動モータ3、エンジンファン21、エアコンコンプレッサ20に電力を出力しつつ、更にDC/DCコンバータ19及び第1の電気系統17を介して鉛電池14、車体コントローラ13及びECU22などに電力を出力する(図5の矢印F5参照)。そして、エンジン2の加速が終了しエンジン2の回転数が安定すると、発電機16は、再び発電を開始する。 Further, in the present embodiment, when the engine 2 is accelerated by increasing the number of revolutions, the vehicle body controller 13 assists the acceleration of the engine 2 with the electric motor 3 while stopping the power generation of the generator 16 or reducing the amount of power generation. The electric motor 3 and the generator 16 are controlled so as to reduce the number. While the generator 16 is stopped or the amount of electric power is reduced, the vehicle body controller 13 uses the hybrid battery 15 to output electric power to the PCU 31, the electric motor 3, the engine fan 21, and the air conditioner compressor 20, and further DC / DC. Power is output to the lead battery 14, the vehicle body controller 13, the ECU 22 and the like via the converter 19 and the first electric system 17 (see the arrow F5 in FIG. 5). Then, when the acceleration of the engine 2 is completed and the rotation speed of the engine 2 becomes stable, the generator 16 starts power generation again.
 以下、図8を参照して車体コントローラ13の制御処理を説明する。 Hereinafter, the control process of the vehicle body controller 13 will be described with reference to FIG.
 まず、ステップS11では、車体コントローラ13は、要求油圧出力値を算出する。このとき、車体コントローラ13は、上述したように、操作装置12の操作量とエンジンコントロールダイヤル24に設定された目標エンジン回転数とに基づいて、要求油圧出力値を算出する。 First, in step S11, the vehicle body controller 13 calculates the required hydraulic pressure output value. At this time, as described above, the vehicle body controller 13 calculates the required hydraulic pressure output value based on the operation amount of the operating device 12 and the target engine rotation speed set in the engine control dial 24.
 ステップS11に続くステップS12では、車体コントローラ13は、算出した要求油圧出力値に基づき、上述のエンジン2の効率マップを用いてエンジン2の最も効率が良くなる回転数(すなわち、要求エンジン回転数)およびメインポンプ4の傾転角との組み合わせを求める。具体的には、例えば図7に示す95kwの等出力線L2の場合、要求油圧出力値が要求エンジン出力値となるため、車体コントローラ13は等出力線L2上で最もエンジン2の効率が良くなる点で、かつ油圧出力が高くなった際に回転数を加速させることが多いことから、車体コントローラ13は、エンジン2の効率が良く且つ回転数が高い点を選ぶ。これにより、要求エンジン回転数と要求エンジントルクとが求められる。更に、車体コントローラ13は、求められた要求エンジントルクに基づいて傾転角を求める。 In step S12 following step S11, the vehicle body controller 13 uses the above-mentioned efficiency map of the engine 2 based on the calculated required hydraulic pressure output value to obtain the most efficient rotation speed of the engine 2 (that is, the required engine rotation speed). And the combination with the tilt angle of the main pump 4 is obtained. Specifically, for example, in the case of the 95 kW iso-output line L2 shown in FIG. 7, since the required hydraulic pressure output value becomes the required engine output value, the vehicle body controller 13 has the highest efficiency of the engine 2 on the iso-output line L2. Since the rotation speed is often accelerated at a point and when the hydraulic output becomes high, the vehicle body controller 13 selects a point where the efficiency of the engine 2 is high and the rotation speed is high. As a result, the required engine speed and the required engine torque are obtained. Further, the vehicle body controller 13 obtains a tilt angle based on the obtained required engine torque.
 ステップS12に続くステップS13では、車体コントローラ13は、要求エンジン回転数が現在のエンジン回転数と既定の値αとの和よりも大きいか否かを判断する。既定の値αは、エンジン回転数が安定したと判断する際の誤差分を考慮して設定されるものである。現在のエンジン回転数は、例えば図示しない回転数検出センサによって検出され、車体コントローラ13に出力される。 In step S13 following step S12, the vehicle body controller 13 determines whether or not the required engine rotation speed is larger than the sum of the current engine rotation speed and the default value α. The default value α is set in consideration of an error in determining that the engine speed is stable. The current engine speed is detected by, for example, a speed detection sensor (not shown) and output to the vehicle body controller 13.
 そして、要求エンジン回転数が現在のエンジン回転数と既定の値αとの和以下であると判断された場合、制御処理はステップS14に進む。ステップS14では、車体コントローラ13は、発電を開始するように発電機16を制御する。 Then, when it is determined that the required engine rotation speed is equal to or less than the sum of the current engine rotation speed and the default value α, the control process proceeds to step S14. In step S14, the vehicle body controller 13 controls the generator 16 so as to start power generation.
 一方、要求エンジン回転数が現在のエンジン回転数と既定の値αとの和よりも大きいと判断された場合、制御処理はステップS15に進む。ステップS15では、車体コントローラ13は、ハイブリッドバッテリ15の電池残量が第1閾値以上か否かを判断する。ここでの第1閾値は、発電停止可能な容量を意味し、発電機16が停止してもハイブリッドバッテリ15の残量だけでPCU31、電動モータ3、エンジンファン21、エアコンコンプレッサ20、車体コントローラ13及びECU22への電力供給を保証できる容量である。なお、ハイブリッドバッテリ15の電池残量は、例えばハイブリッドバッテリ15内部の電池管理ユニットを介して取得することができる。 On the other hand, if it is determined that the required engine speed is larger than the sum of the current engine speed and the default value α, the control process proceeds to step S15. In step S15, the vehicle body controller 13 determines whether or not the remaining battery level of the hybrid battery 15 is equal to or greater than the first threshold value. The first threshold value here means the capacity at which power generation can be stopped, and even if the generator 16 is stopped, only the remaining amount of the hybrid battery 15 is enough for the PCU 31, the electric motor 3, the engine fan 21, the air conditioner compressor 20, and the vehicle body controller 13. And the capacity that can guarantee the power supply to the ECU 22. The remaining battery level of the hybrid battery 15 can be obtained, for example, via the battery management unit inside the hybrid battery 15.
 そして、ハイブリッドバッテリ15の電池残量が第1閾値以上であると判断された場合、制御処理はステップS16に進む。ステップS16では、車体コントローラ13は、発電機16を停止させる。一方、ハイブリッドバッテリ15の電池残量が第1閾値よりも小さいと判断された場合、制御処理はステップS17に進む。 Then, when it is determined that the remaining battery level of the hybrid battery 15 is equal to or higher than the first threshold value, the control process proceeds to step S16. In step S16, the vehicle body controller 13 stops the generator 16. On the other hand, if it is determined that the remaining battery level of the hybrid battery 15 is smaller than the first threshold value, the control process proceeds to step S17.
 ステップS17では、車体コントローラ13は、ハイブリッドバッテリ15の電池残量が第2閾値以上か否かを判断する。ここでの第2閾値は、動作維持可能な容量を意味し、上記第1閾値よりも小さく設定されている。動作維持可能な容量とは、発電機の発電量を減らしてもPCU31、電動モータ3、エンジンファン21、エアコンコンプレッサ20、車体コントローラ13及びECU22の動作を維持可能な容量である。この動作維持可能な容量は、要求エンジン回転数と現在のエンジン回転数との差から発電停止(又は発電量を減らす)時間が決まり、決まった時間内にPCU31、電動モータ3、エンジンファン21、エアコンコンプレッサ20、車体コントローラ13及びECU22の動作を維持可能な容量であり、実験の結果に基づいて決定されるものである。 In step S17, the vehicle body controller 13 determines whether or not the remaining battery level of the hybrid battery 15 is equal to or greater than the second threshold value. The second threshold value here means a capacity that can maintain the operation, and is set smaller than the first threshold value. The operation-sustainable capacity is a capacity that can maintain the operation of the PCU 31, the electric motor 3, the engine fan 21, the air conditioner compressor 20, the vehicle body controller 13, and the ECU 22 even if the amount of power generated by the generator is reduced. The capacity that can maintain this operation is determined by the difference between the required engine speed and the current engine speed, and the power generation stop time (or the amount of power generation is reduced) is determined. It is a capacity that can maintain the operation of the air conditioner compressor 20, the vehicle body controller 13, and the ECU 22, and is determined based on the results of experiments.
 そして、ハイブリッドバッテリ15の電池残量が第2閾値より小さいと判断された場合、制御処理は上記ステップS14に進み、発電機16の発電が開始される。一方、ハイブリッドバッテリ15の電池残量が第2閾値以上と判断された場合、制御処理はステップS18に進む。ステップS18では、車体コントローラ13は、発電機16の発電量を減らすように発電機16を制御する。 Then, when it is determined that the remaining battery level of the hybrid battery 15 is smaller than the second threshold value, the control process proceeds to step S14, and the power generation of the generator 16 is started. On the other hand, when it is determined that the remaining battery level of the hybrid battery 15 is equal to or higher than the second threshold value, the control process proceeds to step S18. In step S18, the vehicle body controller 13 controls the generator 16 so as to reduce the amount of power generated by the generator 16.
 発電量を減らす方法としては、発電機がPCUとモータとで構成された場合、ブレーキトルクを減らすことが挙げられる。また、発電機を停止して発電量を無くす方法としては、発電機がPCUとモータとで構成された場合、ブレーキトルクを無くす(いわゆるフリーラン)ことが挙げられており、発電機がオルタネータである場合、電磁クラッチ等でエンジンの動力接続を切断することが挙げられる。 As a method of reducing the amount of power generation, if the generator is composed of a PCU and a motor, reducing the brake torque can be mentioned. In addition, as a method of stopping the generator to eliminate the amount of power generation, when the generator is composed of a PCU and a motor, eliminating the brake torque (so-called free run) is mentioned, and the generator is an alternator. In some cases, the power connection of the engine may be disconnected by an electromagnetic clutch or the like.
 上記ステップS14、ステップS16又はステップS18に続くステップS19では、車体コントローラ13は、エンジン2、メインポンプ4及び電動モータ3に対する指令を生成し、生成した指令をエンジン2、メインポンプ4及び電動モータ3にそれぞれ出力する。これによって、一連の制御処理は終了する。 In step S19 following step S14, step S16 or step S18, the vehicle body controller 13 generates a command for the engine 2, the main pump 4 and the electric motor 3, and the generated command is used for the engine 2, the main pump 4 and the electric motor 3. Output to each. This ends a series of control processes.
 本実施形態に係る油圧ショベル1では、車体コントローラ13は、求めた要求エンジン回転数に達するためにエンジン2の回転数を上げる必要があると判断した場合、発電機16を停止し又は発電機16の発電量を減らしてハイブリッドバッテリ15から電力を出力する。すなわち、回転数を上げてエンジン2を加速する必要があると判断した場合に、車体コントローラ13は、発電機16の発電を停止し又は発電機16の発電量を減らす。これによって、従来のようにエンジンの動力が発電機により電気に変換されたものは、電動モータによってエンジンの動力に返されるのを防止できるので、電動モータ3の損失を減らすことができ、油圧ショベル1の燃料消費量を少なくすることができる。 In the hydraulic excavator 1 according to the present embodiment, when the vehicle body controller 13 determines that it is necessary to increase the rotation speed of the engine 2 in order to reach the required required engine rotation speed, the generator 16 is stopped or the generator 16 is generated. The amount of power generated by the hybrid battery 15 is reduced and power is output from the hybrid battery 15. That is, when it is determined that it is necessary to increase the rotation speed to accelerate the engine 2, the vehicle body controller 13 stops the power generation of the generator 16 or reduces the power generation amount of the generator 16. As a result, the engine power converted into electricity by the generator as in the conventional case can be prevented from being returned to the engine power by the electric motor, so that the loss of the electric motor 3 can be reduced and the hydraulic excavator can be used. The fuel consumption of 1 can be reduced.
 また、発電機16の発電を停止し又は発電機16の発電量を減らすことによって、発電に伴うエンジン2へのブレーキングトルクを減らすことができるので、エンジン2の回転数を上げる際の応答性が良くなる。その結果、操作応答性を向上することができる。 Further, by stopping the power generation of the generator 16 or reducing the amount of power generated by the generator 16, the braking torque to the engine 2 due to the power generation can be reduced, so that the responsiveness when increasing the rotation speed of the engine 2 can be reduced. Will improve. As a result, the operation responsiveness can be improved.
 なお、本実施形態において、発電機16はPCU(インバータ)で直流を3相交流に変換し、3相交流を制御することで稼働するモータであるのを述べたが、例えばエンジン2と電磁クラッチを介して接続されたオルタネータで構成されても良く、この場合、電磁クラッチを切り離すことで発電を停止することができる。 In the present embodiment, it has been described that the generator 16 is a motor that operates by converting direct current into three-phase alternating current with a PCU (inverter) and controlling three-phase alternating current. For example, the engine 2 and an electromagnetic clutch are described. It may be composed of an alternator connected via the above, and in this case, the power generation can be stopped by disengaging the electromagnetic clutch.
 また、本実施形態においてエンジン2の回転数を加速する際に電動モータ3でアシストする構成で説明したが、電動モータ3がない構成の油圧ショベルであっても、エンジン2の回転数を加速する際に発電機16を停止することで、発電機16がエンジン2に対して与えるブレーキングトルクがなくなるため、エンジン2の回転数の加速応答性が良くなり、操作応答性を向上する効果を期待できる。 Further, in the present embodiment, the configuration in which the electric motor 3 assists when accelerating the rotation speed of the engine 2 has been described, but even if the hydraulic excavator has a configuration without the electric motor 3, the rotation speed of the engine 2 is accelerated. By stopping the generator 16 at that time, the braking torque given to the engine 2 by the generator 16 is eliminated, so that the acceleration responsiveness of the rotation speed of the engine 2 is improved, and the effect of improving the operation responsiveness is expected. can.
 以上、本発明の実施形態について詳述したが、本発明は、上記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs are designed without departing from the spirit of the present invention described in the claims. You can make changes.
1  油圧ショベル
2  エンジン
3  電動モータ
4  メインポンプ(油圧ポンプ)
5  コントロールバルブ
6  バケットシリンダ
7  アームシリンダ
8  ブームシリンダ
9  旋回モータ
10  走行モータ
11  キャビン
12  操作装置
13  車体コントローラ
14  鉛電池
15  ハイブリッドバッテリ
16  発電機
17  第1の電気系統
18  第2の電気系統
19  DC/DCコンバータ
20  エアコンコンプレッサ
21  エンジンファン
22  ECU
23  ロックレバー
24  エンジンコントロールダイヤル
25,31  PCU
26  バケット
27  アーム
28  ブーム
29  旋回体
30  走行体
1 Hydraulic excavator 2 Engine 3 Electric motor 4 Main pump (hydraulic pump)
5 Control valve 6 Bucket cylinder 7 Arm cylinder 8 Boom cylinder 9 Swing motor 10 Travel motor 11 Cabin 12 Operating device 13 Body controller 14 Lead battery 15 Hybrid battery 16 Generator 17 First electric system 18 Second electric system 19 DC / DC converter 20 Air conditioner compressor 21 Engine fan 22 ECU
23 Lock lever 24 Engine control dial 25, 31 PCU
26 Bucket 27 Arm 28 Boom 29 Swing body 30 Traveling body

Claims (4)

  1.  エンジンと、
     前記エンジンによって駆動される可変容量式の油圧ポンプと、
     前記油圧ポンプから供給される圧油によって駆動される油圧アクチュエータと、
     前記油圧アクチュエータを操作する操作装置と、
     前記エンジンからの動力を受けて発電する発電機と、
     前記発電機で発電する電力を蓄える蓄電装置と、
     前記エンジンの目標エンジン回転数を設定するエンジンコントロールダイヤルと、
     前記発電機を制御するコントローラと、
    を備え、
     前記コントローラは、
     前記操作装置の操作量と前記エンジンコントロールダイヤルに設定された目標エンジン回転数とに基づいて要求油圧出力値を算出し、算出した要求油圧出力値に基づいて要求エンジン回転数を求め、求めた要求エンジン回転数に達するために前記エンジンの回転数を上げる必要があると判断した場合、前記発電機を停止し又は前記発電機の発電量を減らして前記蓄電装置から電力を出力することを特徴とする建設機械。
    With the engine
    A variable displacement hydraulic pump driven by the engine,
    A hydraulic actuator driven by the pressure oil supplied from the hydraulic pump, and
    An operating device that operates the hydraulic actuator and
    A generator that receives power from the engine to generate electricity,
    A power storage device that stores the power generated by the generator,
    The engine control dial that sets the target engine speed of the engine,
    The controller that controls the generator and
    Equipped with
    The controller
    The required hydraulic pressure output value is calculated based on the operation amount of the operating device and the target engine rotation speed set on the engine control dial, and the required engine rotation speed is obtained based on the calculated required hydraulic pressure output value. When it is determined that it is necessary to increase the engine speed in order to reach the engine speed, the generator is stopped or the amount of power generated by the generator is reduced to output power from the power storage device. Construction machinery.
  2.  前記蓄電装置より電力供給を受けて前記エンジンの駆動をアシストする電動モータを更に備え、
     前記コントローラは、前記エンジンの回転数を上げる必要があると判断した場合、前記発電機を停止し又は前記発電機の発電量を減らして前記蓄電装置から前記電動モータに電力を出力する請求項1に記載の建設機械。
    Further equipped with an electric motor that receives electric power from the power storage device and assists in driving the engine.
    When the controller determines that it is necessary to increase the rotation speed of the engine, the generator is stopped or the amount of power generated by the generator is reduced to output power from the power storage device to the electric motor. Construction machinery described in.
  3.  前記エンジンの回転数を上げる必要があると判断した場合において、前記コントローラは、前記蓄電装置の電池残量が第1閾値以上であるとき、前記発電機を停止するように制御する請求項1に記載の建設機械。 The first aspect of the present invention is to control the generator to stop when the remaining battery level of the power storage device is equal to or higher than the first threshold value when it is determined that the engine rotation speed needs to be increased. Described construction machinery.
  4.  前記エンジンの回転数を上げる必要があると判断した場合において、前記コントローラは、前記蓄電装置の電池残量が前記第1閾値よりも小さく且つ第2閾値以上であるとき、前記発電機の発電量を減らすように制御する請求項3に記載の建設機械。 When it is determined that it is necessary to increase the rotation speed of the engine, the controller determines that the remaining battery level of the power storage device is smaller than the first threshold value and equal to or higher than the second threshold value, and the power generation amount of the generator is increased. The construction machine according to claim 3, which is controlled to reduce the amount of power generation.
PCT/JP2022/000155 2021-01-06 2022-01-06 Construction machine WO2022149586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022574064A JP7429309B2 (en) 2021-01-06 2022-01-06 construction machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-000692 2021-01-06
JP2021000692 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149586A1 true WO2022149586A1 (en) 2022-07-14

Family

ID=82357719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000155 WO2022149586A1 (en) 2021-01-06 2022-01-06 Construction machine

Country Status (2)

Country Link
JP (1) JP7429309B2 (en)
WO (1) WO2022149586A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190541A (en) * 2002-12-10 2004-07-08 Hitachi Constr Mach Co Ltd Hydraulic drive device of working machine
JP2008121659A (en) * 2006-10-20 2008-05-29 Kobelco Contstruction Machinery Ltd Hybrid operation machine
JP2011105125A (en) * 2009-11-17 2011-06-02 Toyota Industries Corp Drive controller for cargo handling vehicle
JP5085734B2 (en) * 2008-06-27 2012-11-28 住友重機械工業株式会社 Hybrid construction machine
JP2015063147A (en) * 2013-09-24 2015-04-09 コベルコ建機株式会社 Hybrid construction machine
JP2015148237A (en) * 2014-02-04 2015-08-20 日立建機株式会社 Construction machine
JP2017053212A (en) * 2016-12-13 2017-03-16 株式会社小松製作所 Work vehicle and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190541A (en) * 2002-12-10 2004-07-08 Hitachi Constr Mach Co Ltd Hydraulic drive device of working machine
JP2008121659A (en) * 2006-10-20 2008-05-29 Kobelco Contstruction Machinery Ltd Hybrid operation machine
JP5085734B2 (en) * 2008-06-27 2012-11-28 住友重機械工業株式会社 Hybrid construction machine
JP2011105125A (en) * 2009-11-17 2011-06-02 Toyota Industries Corp Drive controller for cargo handling vehicle
JP2015063147A (en) * 2013-09-24 2015-04-09 コベルコ建機株式会社 Hybrid construction machine
JP2015148237A (en) * 2014-02-04 2015-08-20 日立建機株式会社 Construction machine
JP2017053212A (en) * 2016-12-13 2017-03-16 株式会社小松製作所 Work vehicle and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2022149586A1 (en) 2022-07-14
JP7429309B2 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP5154578B2 (en) Hybrid construction machine
US8532855B2 (en) Hybrid construction machine
US8798876B2 (en) Hybrid working machine and controlling method thereof
US6766874B2 (en) System for driving hybrid vehicle, method thereof and electric power supply system therefor
JP5759019B1 (en) Hybrid work machine
US8676452B2 (en) Hybrid type working machine
WO2013175658A1 (en) Hybrid work machine and hybrid work machine control method
JPH0879915A (en) Hybrid vehicle
JP4173489B2 (en) Hybrid drive wheel work vehicle
US20130190960A1 (en) Hybrid working machine
JP5037555B2 (en) Hybrid construction machine
JP6617727B2 (en) Hybrid vehicle
JP2010173599A (en) Control method for hybrid type operation machinery, and control method for servo control system
US20180229732A1 (en) Powertrain operation and regulation
JP5095361B2 (en) Swivel drive control device and construction machine including the same
JP6046281B2 (en) Engine control apparatus for hybrid work machine, hybrid work machine, and engine control method for hybrid work machine
JP4647146B2 (en) Construction machine drive device, construction machine and construction machine drive program
JP5583901B2 (en) Hybrid construction machine
JP2015214808A (en) Construction machine
JP3092452B2 (en) Power generation control method for series hybrid vehicles
WO2022149586A1 (en) Construction machine
JP2010077727A (en) Hybrid type construction machinery
JP2010001655A (en) Swing drive control unit and construction machinery including the same
JP2010037855A (en) Hybrid construction machinery
JP5037558B2 (en) Hybrid construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736754

Country of ref document: EP

Kind code of ref document: A1