WO2022149566A1 - Remote system for determining risk of skin diseases and remote method for determining risk of skin diseases - Google Patents

Remote system for determining risk of skin diseases and remote method for determining risk of skin diseases Download PDF

Info

Publication number
WO2022149566A1
WO2022149566A1 PCT/JP2022/000025 JP2022000025W WO2022149566A1 WO 2022149566 A1 WO2022149566 A1 WO 2022149566A1 JP 2022000025 W JP2022000025 W JP 2022000025W WO 2022149566 A1 WO2022149566 A1 WO 2022149566A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
skin disease
risk determination
disease risk
remote
Prior art date
Application number
PCT/JP2022/000025
Other languages
French (fr)
Japanese (ja)
Inventor
公一朗 木島
Original Assignee
ピンポイントフォトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピンポイントフォトニクス株式会社 filed Critical ピンポイントフォトニクス株式会社
Priority to JP2022574048A priority Critical patent/JPWO2022149566A1/ja
Publication of WO2022149566A1 publication Critical patent/WO2022149566A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • Melanoma is a type of skin cancer and is a skin disease that has been increasing in Japan in recent years. Melanoma is present on the surface of the skin. That is, the melanoma exists in a position where it can be visually recognized without using a device such as an endoscope or an X-ray device possessed only by a medical institution. Therefore, as shown in Patent Document 1, the discolored part of the skin is photographed by a portable device such as a smartphone, and the photographed image is transferred to a remote server via an internet line to determine the risk of melanoma. A remote skin disease risk determination system has been proposed.
  • a user who may be a patient takes a picture of a mole 12 existing on the skin surface 9 of a foot by a smartphone 11, and an internet line is used. Transfer to the server 20 owned by the service provider via 19. After confirming the patient information by the image reception reception tool 21, the service provider confirms by the determination tool 22 whether or not this image is a target image for determining the risk of skin diseases such as moles and melanoma. Then, when it is determined that the image is for determining the risk of skin disease, the image data such as the texture, morphology, and color information of the mole 12 is extracted from the image by the feature parameter extraction tool 23. Next, this image data is classified by the image classification tool 24 and the risk determination tool 25 that have been machine-learned by the case learning data, and then the determination result is given to the user.
  • This remote skin disease risk determination system has the advantage that the burden on the user is small because the user does not have to go to the hospital. Also, on the medical institution side, there is an advantage that the burden on the medical staff is small because the screening is performed by the machine-learned device.
  • Image data such as texture, morphology, and color information of the hokuro 12 used in general machine learning image judgment systems vary depending on the lighting conditions, so it is necessary to prepare training data corresponding to many lighting conditions. There are drawbacks.
  • the present invention relates to a remote skin disease risk determination system and a remote skin disease risk determination method that can extract image data such as texture, morphology, and color information of mole 12 without variation even when the lighting conditions vary.
  • image data such as texture, morphology, and color information of mole 12 without variation even when the lighting conditions vary.
  • the variation in the color information of the subject photographed by an image photographing means such as a camera due to the illumination state can be corrected by a method generally used as a white balance correction.
  • a method for correcting variations in texture and morphology image data due to lighting conditions is not generally used.
  • FIG. 2 shows a photograph in which the mole is arranged almost in the center.
  • FIGS. 3 (a) to 3 (d) are photographs in which the luminance information of the photograph shown in FIG. 2 is changed as an example of images taken under different lighting conditions.
  • 3A is a photograph in which the right end of the photograph has the same luminance as the photograph shown in FIG. 2, but the luminance information is changed so that the left edge of the photograph has a luminance of 75%.
  • the upper left coordinate of the image is (0,0)
  • the upper right coordinate is (X, 0)
  • the lower left coordinate is (0, Y)
  • the lower right coordinate is (X).
  • the luminance I (i, j) of each coordinate (i, j) in FIG. 4A is relative to the luminance P (i, j) of the image shown in FIG. 2 as shown in Equation 1. It is an image having a brightness such that the brightness changes linearly according to the coordinates x after being multiplied by 0.75.
  • FIG. 3B is a photograph in which the right end of the photograph has the same luminance as the photograph shown in FIG. 2, but the luminance information is changed so that the left edge of the photograph has a luminance of 50%.
  • the image is multiplied by 0.5 with respect to the brightness P (i, j) of the image shown in FIG. 2, and then the brightness is set so that the brightness changes linearly according to the coordinates x. Is. Therefore, the image shown in FIG. 3A is an image in which the illumination state has an inclination of 25%, and the image shown in FIG. 3B is an image in which the illumination state has an inclination of 50%.
  • the image shown in FIG. 3C is an image in which the lighting state is uniformly reduced by 25%
  • the image shown in FIG. 3D is an image in which the lighting state is uniformly reduced by 50%.
  • the image shown in FIG. 3 (c) and the image shown in FIG. 3 (d) depend on the coordinate position with respect to the brightness P (i, j) of the image shown in FIG. 2 as shown in Equations 3 and 4. No, 0.75x and 0.5x images.
  • FIG. 5 shows the results of texture analysis of the three areas shown by the white lines in the image shown in FIG. 2 and the four images shown in FIG.
  • the caption described as original in FIG. 5 is the result of texture analysis of the portions shown in areas 1 to 3 of the image of FIG. 2, and (a) gradation (25%), (b) gradation (50%), ( c) The captions described as reduction (25%) and (d) reduction (50%) were subjected to texture analysis of the parts shown in areas 1 to 3 of the images shown in FIGS. 3 (a) to 3 (d), respectively.
  • a general entropy was used as the texture analysis method.
  • FIG. 6 shows an image feature analysis method using the phase stretch transform, which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1, on the images shown in FIGS. 2 and 3 (a) to 3 (d). After application, the results of texture analysis of the three areas shown by the white lines are shown.
  • the phase stretch transform is a method of performing edge detection by a non-linear detection method that combines phase information and derivative information of phase information in the phase information of an image obtained by Fourier transforming the image information. Since the edge information detected by this method is not binarized information but information having a gradation value, it is also possible to exclude the luminance information which is the background information by performing this edge detection. be.
  • the texture analysis method the same general entropy as the result in FIG. 5 was used.
  • the luminance information is removed by the boundary detection processing step that outputs the information having the gradation value before the texture information and the morphology information are analyzed, so that the texture analysis result varies in the lighting state. It turns out that it is not affected by.
  • the fact that the texture analysis results are not affected by the variation in lighting conditions indicates that even if the lighting conditions of the image taken by the user vary, the texture can be analyzed without being affected by the variation. Therefore, it is not necessary to prepare training data corresponding to many lighting conditions.
  • the present invention has been made in consideration of the above points, and by allowing variations in the lighting conditions of the shooting environment, variations in image data such as the texture and morphology of the hokuro become large, and therefore, many lighting conditions can be obtained. It provides a solution to the problem that it is necessary to prepare the corresponding learning data.
  • a boundary detection processing step of outputting information having a gradation value is used before analyzing texture information and morphology information.
  • the effect of variation in lighting conditions is excluded from the analysis results of the texture information and morphology information.
  • a member for correcting color information is arranged on a member that holds the relative position between the position of the smartphone and the mole, and by taking a picture of this member, the color information of the lighting is acquired and the color is corrected. Enables.
  • the remote skin disease risk determination system and the remote skin disease risk determination method of the present invention can exclude the influence of variations in lighting conditions from the analysis results of texture information and morphology information, learning data corresponding to many lighting conditions can be excluded. The need to prepare is reduced. Further, the remote skin disease risk determination system and the remote skin disease risk determination method of the present invention illuminate by arranging a member that holds a relative position between the position of the smartphone and the mole when taking an image of the skin with the smartphone. Even if the state changes, the influence of the variation in the lighting state can be excluded from the analysis results of the texture information and the morphology information. Therefore, it is possible to arrange a member that holds the relative position between the position of the smartphone and the mole, and it becomes easy to take an image without blurring.
  • a member on which a scale is formed is placed on a member that holds the relative position between the position of the smartphone and the mole, and the image is photographed.
  • This is an example of a mole image used in a remote skin disease risk determination system.
  • This is an example of a mole image with variations in lighting conditions used in a remote skin disease risk determination system.
  • It is a figure which shows the method of making the image of the mole with the variation of lighting conditions to be used for the remote skin disease risk determination system.
  • It is a figure of the experimental result which shows that the texture analysis in the remote skin disease risk determination system as a prior art varies depending on the variation of lighting conditions.
  • It is a figure of the experimental result which shows that the influence of the variation of a lighting state is excluded from the analysis result of the texture information and the morphology information by performing the boundary detection processing step before the texture analysis step.
  • the remote skin disease risk determination system having a step of excluding distortion characteristics of a camera by a scale of a member that fits a member that holds a relative position between the position of a smartphone and a mole of the present invention and a step of correcting color information of lighting.
  • It is a schematic block diagram. It is a schematic process diagram which shows the process of the application which a user performs through a smartphone in the remote skin disease risk determination system of this invention. It is a schematic process diagram which shows the process which the user acquires the condition which corrects the distortion of an image in the remote skin disease risk determination system of this invention using the application of a smartphone.
  • FIG. 7 shows a schematic configuration diagram of the remote skin disease risk determination system of the present invention.
  • a mole 12 formed on the skin surface 9 of a foot is photographed by a smartphone 11 which is a portable device having an image capturing function and a data transfer function, and an internet line 19 is taken.
  • the data is transferred to the server 31 owned by the service provider.
  • the service provider After confirming the patient information by the image reception reception tool 21, the service provider confirms by the determination tool 22 whether or not this image is a target image for determining the risk of skin diseases such as moles and melanoma.
  • the image feature analysis method using the phase stretch transform which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1
  • the background brightness information is excluded by the boundary / texture extraction tool 29 that outputs information having a gradation value.
  • the image data such as the texture and morphology of the mole 12 is extracted from the image by the feature parameter extraction tool 23. After that, this image data is classified by the image classification tool 24 and the risk determination tool 25 that have been machine-learned by the case learning data, and then the determination result is given.
  • the feature parameter extraction tool 23 is applied after the background brightness information is excluded by the boundary / texture extraction tool 29.
  • image data such as texture and morphology of the hokuro 12 that does not depend on the lighting conditions from the image
  • Image data can be extracted. Furthermore, since it is not necessary to use learning data considering variations in lighting conditions for the data machine-learned by the case learning data used in the image classification tool 24 and the risk determination tool 25, less learning data than in the conventional example. Can be used.
  • FIG. 8 shows a schematic configuration diagram of the member 40 that holds the relative position between the position of the smartphone and the mole.
  • This member is a macro that makes it easy to align the focal position of the camera of the smartphone 11 with the spacer member 41 that keeps the distance between the smartphone and the mole, which is a portable device having an image capturing function and a data transfer function, constant.
  • the structure is such that the photographing lens 42 is fixed.
  • a clip member 43 for holding a state in which the macro photography lens 42 is positioned substantially in front of the camera of the smartphone 11 is also provided.
  • the clip member has a structure in which the two clip holders 44 and 45 can be opened and closed from the fulcrum 46, and the smartphone 11 can be sandwiched by the spring force of the spring 47.
  • FIG. 9 shows a configuration diagram in which the mole 12 is photographed in a form in which the member 40 that holds the relative position between the position of the smartphone and the mole is fixed to the smartphone 11 by using the clip member 43.
  • the spacer member 41 of the member 40 that holds the relative position between the position of the smartphone and the mole is formed of a transparent member that transmits external light. Since the spacer member 41 is made of a transparent member, the image of the mole 12 can be taken by using outside light such as indoor lighting without having a lighting mechanism.
  • the spacer member 41 has a cylindrical shape or a conical shape without apex portions as shown in FIGS. 8 and 9, and the inner surface 41a thereof is a sand-treated surface. Since the inner surface 41a is a surface treated with sand, it is possible to prevent the shadow of the illumination from being clearly reflected in the image. Since the sand-treated surface is arranged on the inner surface 41a side instead of the outer peripheral surface of the spacer member 41, the risk of the photographer or the like touching the sand-treated surface is reduced, and oil or the like adheres to the sand-treated surface. It is possible to reduce the risk of deterioration of the diffused reflection characteristics of the surface.
  • the illumination state of the image of the mole 12 is poor as compared with the case where the member 40 that holds the relative position between the position of the smartphone and the mole is not used.
  • the image will be uniform, in the present invention, by excluding the background brightness information by the boundary / texture extraction tool 29 that outputs information having a gradation value, the texture due to the variation in the illumination state in the captured image, Since variations in image data such as morphology can be excluded, it is possible to use the member 40 that holds the relative position between the position of the smartphone and the mole.
  • FIG. 10 shows a schematic configuration diagram of a second member 39 that holds a relative position between the position of the smartphone and the mole.
  • the member 39 has a structure in which a color correction sheet 48 having a white color on the member 40 shown in FIG. 8 is fixed to a spacer member 41, and the color correction sheet 48 has an opening 48a so that a mole can be photographed.
  • the color correction sheet 48 is also arranged so as to be photographed in a part of the field of view.
  • the clip member 43 is used to fix the member 39 that holds the relative position between the position of the smartphone and the mole to the smartphone 11, and the configuration diagram of the case where the mole 12 is photographed is shown in FIG. Shown in.
  • FIG. 12 shows an example of an image of the mole 12 taken by using the second member 39 that holds the relative position between the position of the smartphone and the mole.
  • the image 49 of the color correction sheet 48 is photographed around the mole 12.
  • Luminance information of a plurality of arbitrary points of the image 49 of the color correction sheet for example, three points of 49a, 49b, and 49c is analyzed, and the red, green, and blue information of those points are (100, 110, 60), respectively.
  • the photographed lighting environment has the strongest green and the weakest blue. It can be seen from this information, and in the captured image shown in FIG. 12, the green luminance information is left as it is, and the red luminance information is multiplied by 1.1 in the three luminance information of 49a, 49b, and 49c to be blue. By multiplying the luminance information by 110/60, it can be obtained as (110, 110, 110), (165, 165, 165), (66, 66, 66), respectively.
  • the same correction is applied to the image portion of the hokuro 12, specifically, the green luminance information is left as it is, and the red luminance information is multiplied by 1.1 in the three luminance information of 49a, 49b, and 49c to obtain the blue luminance information.
  • the red luminance information is multiplied by 1.1 in the three luminance information of 49a, 49b, and 49c to obtain the blue luminance information.
  • FIG. 13 shows a cross-sectional structural view of a member 39 that holds the relative position between the position of the smartphone and the mole and the scale member 51 that fits into the spacer member 41 of the member 40.
  • FIG. 14 shows a configuration diagram of the scale member 51 attached to the member 40 that holds the relative position between the position of the smartphone attached to the smartphone 11 and the mole.
  • the scale member 51 has a configuration in which the surface 51a is arranged at the position of the skin when an image of a mole is taken by the smartphone 11 using the spacer member 41, and the scale member 51 has a scale arranged on the surface 51a.
  • FIG. 15 shows an example of a scale formed on the surface 51a of the scale member 51.
  • the scale includes, for example, a concentric scale pattern 52 and linear scale patterns 53 and 54 orthogonal to each other.
  • the scale patterns 52, 53, 54 By photographing the scale patterns 52, 53, 54 with the smartphone 11, it is possible to know the distortion information of the image of the image of the mole 12 located on the skin surface 9. That is, when the linear scale patterns 53 and 54 are distorted in the image in which the scale pattern is photographed, it can be seen that the same distortion is added to the image in the image in which the mole 12 is photographed. Therefore, if the scale patterns 52, 53, 54 are distorted in the image obtained by capturing the scale pattern, the distortion correction is performed so that the distorted scale patterns 52, 53, 54 become the actual scale pattern shown in FIG. That is, it is possible to generate an image without distortion by performing distortion correction. Further, it is possible to correctly know the shooting magnification by shooting the scale patterns 52, 53, 54 with the smartphone 11.
  • the remote skin disease risk determination system of the present invention by transferring the photograph of the scale 51 together with the image of the mole 12 from the smartphone to the server, the risk can be determined in the image without distortion, and the scale information is also a risk. It can be used for judgment.
  • FIG. 16 shows an image of the mole 12 taken by using the member 39 or the member 40 that holds the relative position between the position of the smartphone and the mole, and further, the member 39 or the member 40 that holds the relative position between the position of the smartphone and the mole.
  • the schematic block diagram of the remote skin disease risk determination system 60 which uses the image which image
  • a mole formed on the skin surface 9 of a foot is photographed by a smartphone 11 using a member 40 that holds a relative position between the position of the smartphone and the mole, and an internet line is used. Transfer to the server 61 owned by the service provider via 19.
  • the service provider After confirming the patient information by the image reception reception tool 21, the service provider confirms by the determination tool 22 whether or not this image is a target image for determining the risk of skin diseases such as moles and melanoma. Then, when it is determined that the image is for determining the risk of skin disease, the white balance correction analyzed by the image around the skull and the scale pattern of the scale 51 sent almost at the same time as the image of the skull.
  • the image correction tool 62 performs distortion correction from the image or the image using the scale pattern distortion information of the scale pattern image of the scale 51 sent in advance by the same user.
  • the boundary / texture extraction tool 29 that outputs information having gradation values to which the image feature analysis method using the phase stretch transform, which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1, is applied to the background. Exclude brightness information.
  • the image data such as the texture and morphology of the mole 12 is extracted from the image by the feature parameter extraction tool 23. After that, this image data is classified by the image classification tool 24 and the risk determination tool 25 that have been machine-learned by the case learning data, and then the determination result is notified to the user.
  • the remote skin disease risk determination system 60 shown in FIG. 16 performs processing after the mole image is in a state where the color information is not distorted due to distortion and lighting, the influence of the image distortion information on the risk determination is reduced. At the same time, it is possible to obtain the effect that the risk can be determined with the image magnification information added.
  • FIG. 17 (a) a screen 100 requesting the image of the mole 12 is displayed as shown in FIG. 17 (a).
  • the screen 101 including the image of the mole taken as shown in FIG. 17 (b) is displayed. It is displayed, and the user is requested to confirm the image such as whether the mole 12 is photographed without missing or is in focus, and the user performs the confirmation work.
  • the image data is transferred to the service provider, and as shown in FIG. 17C, a screen 102 indicating that the image transfer is performed and the instruction to wait for the determination result is displayed is displayed. After that, as shown in FIG. 17D, the screen 103 showing the determination result is displayed. In this example, the user goes to the hospital and a screen indicating that a diagnosis at the hospital is desired is displayed.
  • FIG. 18 shows a process of acquiring image distortion information, which is a work performed by a user using a smartphone.
  • the user attaches a member 39 or a member 40 that holds the relative position between the position of the smartphone and the mole to the smartphone 11, and further attaches the scale member 51 shown in FIG. 13 to the member 39 or the member.
  • It is an image confirmation screen after attaching to 40 and taking a picture. The user confirms that the scales 52, 53, and 54 are captured in the focused state on this image, and transfers the captured image.
  • the present invention has an advantage that the burden on the patient is small because the risk of the skin disease such as melanoma can be evaluated without the patient going to the hospital. Also, on the medical institution side, there is an advantage that the burden on the medical staff is small because the equipment that has been machine-learned performs screening with learning data that reduces the risk of skin diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Primary Health Care (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Risk determining systems that perform machine learning for an image capturing a lentigo need preparation through use of a lot of learning data in consideration of variations in illumination amount because a feature amount of the image such as morphology or texture is influenced by variations in illumination conditions. In this remote system for determining the risk of skin diseases and this remote method for determining the risk of skin diseases, prior to analyzing texture information and morphology information, brightness information is removed from an image capturing the skin through a boundary detection processing step for outputting information including a tone value, thereby enabling removal of an influence of variations in illumination conditions from the analysis results of the text information and the morphology information. This reduces the need of preparing learning data corresponding to various illumination conditions.

Description

遠隔皮膚疾患リスク判定システムおよび遠隔皮膚疾患リスク判定方法Remote skin disease risk determination system and remote skin disease risk determination method
 メラノーマ(悪性黒色腫)は皮膚がんの一種であり、近年、日本においても増加傾向にある皮膚疾患である。メラノーマは皮膚表面に存在している。すなわち、メラノーマは、内視鏡やレントゲン機器などの医療機関のみが有する機器を用いることなく目視できる位置に存在している。そのため、特許文献1に示すように皮膚の変色した部分をスマートフォンなど可搬性のあるデバイスにより撮影し、撮影した画像をインターネット回線を介して遠隔のサーバーに転送し、メラノーマであるかどうかのリスク判定をサーバー内で行う遠隔皮膚疾患リスク判定システムが提案されている。 Melanoma (melanoma) is a type of skin cancer and is a skin disease that has been increasing in Japan in recent years. Melanoma is present on the surface of the skin. That is, the melanoma exists in a position where it can be visually recognized without using a device such as an endoscope or an X-ray device possessed only by a medical institution. Therefore, as shown in Patent Document 1, the discolored part of the skin is photographed by a portable device such as a smartphone, and the photographed image is transferred to a remote server via an internet line to determine the risk of melanoma. A remote skin disease risk determination system has been proposed.
図1に示すように、特許文献1に示す遠隔皮膚疾患リスク判定システム10は、例えば足の皮膚表面9に存在するほくろ12をスマートフォン11により患者となる可能性のあるユーザーが撮影し、インターネット回線19を介して、サービス業者の有するサーバー20に転送する。サービス業者は、画像受信受付ツール21により患者情報を確認した後、この画像がほくろなどメラノーマなどの皮膚疾患のリスク判定を行う対象画像であるかの判定ツール22により確認する。そして、皮膚疾患のリスク判定を行う画像であると判断された場合には、特徴パラメーターの抽出ツール23により、画像からほくろ12のテキスチャー、モルフォロジー、色情報などの画像データを抽出する。つぎにこの画像データは症例学習データにより機械学習がなされた画像分類ツール24およびリスク判定ツール25により分類された後、判定結果がユーザーに与えられる。 As shown in FIG. 1, in the remote skin disease risk determination system 10 shown in Patent Document 1, for example, a user who may be a patient takes a picture of a mole 12 existing on the skin surface 9 of a foot by a smartphone 11, and an internet line is used. Transfer to the server 20 owned by the service provider via 19. After confirming the patient information by the image reception reception tool 21, the service provider confirms by the determination tool 22 whether or not this image is a target image for determining the risk of skin diseases such as moles and melanoma. Then, when it is determined that the image is for determining the risk of skin disease, the image data such as the texture, morphology, and color information of the mole 12 is extracted from the image by the feature parameter extraction tool 23. Next, this image data is classified by the image classification tool 24 and the risk determination tool 25 that have been machine-learned by the case learning data, and then the determination result is given to the user.
 この遠隔皮膚疾患リスク判定システムは、ユーザーが病院に行く必要がないので、ユーザーへの負担が少ないという利点がある。また医療機関側においてもスクリーニングを機械学習がなされた機器が行うので医療従事者への負担が少ないという利点がある。
 しかしながら、患者となる可能性のあるユーザーが撮影したほくろの画像が、機械学習に用いた画像と同様の照明状態において撮影されているとは限らない。一般の機械学習による画像判定システムに用いられているほくろ12のテキスチャー、モルフォロジー、色情報などの画像データは、照明状態によりばらつくので、多くの照明状態に対応した学習データを準備する必要があるという欠点がある。そこで本発明は、照明状態がばらついた場合においても、ほくろ12のテキスチャー、モルフォロジー、色情報などの画像データがばらつきなく抽出できる遠隔皮膚疾患リスク判定システムおよび遠隔皮膚疾患リスク判定方法に関するものである。また、ユーザーがスマートフォンによりほくろを撮影する際に、スマートフォンの位置とほくろとの相対位置を保持する部材が存在しないとブレなどが生じやすくなる。近年スマートフォンに具備されるカメラの画素数は増加傾向にあるので、撮影した画像の確認を低倍率で表示した際には確認することができないブレは撮影者が気づきにくく、このブレが存在する画像を撮影者はサーバーに送信する可能性は高く存在する。ブレのある画像は、判定ツール22により不適格画像として判定されるので判定結果に影響はないが、ユーザは不適格画像であった連絡を受信し、ユーザは再度ほくろを撮影し送信することとなるため、ユーザにおいては負荷が増えることとなる。
This remote skin disease risk determination system has the advantage that the burden on the user is small because the user does not have to go to the hospital. Also, on the medical institution side, there is an advantage that the burden on the medical staff is small because the screening is performed by the machine-learned device.
However, the image of the mole taken by a potential patient is not always taken under the same lighting conditions as the image used for machine learning. Image data such as texture, morphology, and color information of the hokuro 12 used in general machine learning image judgment systems vary depending on the lighting conditions, so it is necessary to prepare training data corresponding to many lighting conditions. There are drawbacks. Therefore, the present invention relates to a remote skin disease risk determination system and a remote skin disease risk determination method that can extract image data such as texture, morphology, and color information of mole 12 without variation even when the lighting conditions vary. Further, when a user takes a picture of a mole with a smartphone, blurring or the like is likely to occur if there is no member that holds a relative position between the position of the smartphone and the mole. In recent years, the number of pixels of cameras installed in smartphones has been increasing, so it is difficult for the photographer to notice blurring that cannot be confirmed when the confirmation of the captured image is displayed at a low magnification, and the image in which this blurring exists. There is a high possibility that the photographer will send the image to the server. An image with blur is determined as an ineligible image by the determination tool 22, so that the determination result is not affected. Therefore, the load on the user increases.
カメラなどの画像撮影手段により撮影された被写体の色情報の照明状態によるばらつきを補正は、ホワイトバランス補正として一般的に用いられている方法にて補正を行うことができる。しかし、テキスチャー、モルフォロジーの画像データの照明状態によるばらつきを補正する方法は一般的に用いられていない。
一般の画像判定システムに用いられているほくろ12のテキスチャー、モルフォロジーなどの画像データが、照明状態によりばらつきを有する事例を説明する。図2にはほくろがほぼ中心に配置されている写真を示す。そして、図3(a)~(d)には、異なる照明状
態にて撮影された画像の例として、図2に示した写真の輝度情報を変化させた写真である。図3(a)は、写真の右端は、図2に示した写真と同様の輝度であるが、写真の左端が75%の輝度になるように輝度情報を変化させた写真である。具体的には、図4に示すように画像の左上の座標を(0,0)、右上の座標を(X,0)、左下の座標を(0,Y)、右下の座標を(X,Y)として、図4(a)の各座標(i,j)の輝度I(i,j)は、数式1に示すように図2に示した画像の輝度P(i,j)に対して0.75倍された後、座標xに応じて直線的に輝度が変化するような輝度とされた画像である。図3(b)も同様に、写真の右端は、図2に示した写真と同様の輝度であるが、写真の左端が50%の輝度になるように輝度情報を変化させた写真である。数式2に示すように図2に示した画像の輝度P(i,j)に対して0.5倍された後、座標xに応じて直線的に輝度が変化するような輝度とされた画像である。したがって、図3(a)に示す画像は照明状態が25%の傾斜をもった画像であり、図3(b)に示す画像は照明状態が50%の傾斜をもった画像となる。
The variation in the color information of the subject photographed by an image photographing means such as a camera due to the illumination state can be corrected by a method generally used as a white balance correction. However, a method for correcting variations in texture and morphology image data due to lighting conditions is not generally used.
An example will be described in which the image data such as the texture and morphology of the mole 12 used in a general image determination system have variations depending on the lighting state. FIG. 2 shows a photograph in which the mole is arranged almost in the center. Then, FIGS. 3 (a) to 3 (d) are photographs in which the luminance information of the photograph shown in FIG. 2 is changed as an example of images taken under different lighting conditions. FIG. 3A is a photograph in which the right end of the photograph has the same luminance as the photograph shown in FIG. 2, but the luminance information is changed so that the left edge of the photograph has a luminance of 75%. Specifically, as shown in FIG. 4, the upper left coordinate of the image is (0,0), the upper right coordinate is (X, 0), the lower left coordinate is (0, Y), and the lower right coordinate is (X). , Y), the luminance I (i, j) of each coordinate (i, j) in FIG. 4A is relative to the luminance P (i, j) of the image shown in FIG. 2 as shown in Equation 1. It is an image having a brightness such that the brightness changes linearly according to the coordinates x after being multiplied by 0.75. Similarly, FIG. 3B is a photograph in which the right end of the photograph has the same luminance as the photograph shown in FIG. 2, but the luminance information is changed so that the left edge of the photograph has a luminance of 50%. As shown in Equation 2, the image is multiplied by 0.5 with respect to the brightness P (i, j) of the image shown in FIG. 2, and then the brightness is set so that the brightness changes linearly according to the coordinates x. Is. Therefore, the image shown in FIG. 3A is an image in which the illumination state has an inclination of 25%, and the image shown in FIG. 3B is an image in which the illumination state has an inclination of 50%.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
図3(c)に示す画像は照明状態が一様に25%少なくなった画像であり、図3(d)に示す画像は照明状態が一様に50%少なくなった画像となる。図3(c)に示す画像および図3(d)に示す画像は数式3および数式4に示すように図2に示した画像の輝度P(i,j)に対して座標位置に依存することなく、0.75倍および0.5倍された画像である。 The image shown in FIG. 3C is an image in which the lighting state is uniformly reduced by 25%, and the image shown in FIG. 3D is an image in which the lighting state is uniformly reduced by 50%. The image shown in FIG. 3 (c) and the image shown in FIG. 3 (d) depend on the coordinate position with respect to the brightness P (i, j) of the image shown in FIG. 2 as shown in Equations 3 and 4. No, 0.75x and 0.5x images.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
図2に示した画像および図3に示した4つの画像において白線で示した3つのエリアの部分のテキスチャー解析を行った結果を図5に示す。図5においてoriginalと記載したキャプションは図2の画像のarea1~area3に示した部分のテキスチャー解析を行った結果であり、(a)gradation(25%)、(b)gradation(50%)、(c)reduction(25%)、(d)reduction(50%)と記載したキャプションは、それぞれ図3(a)~(d)に示した画像のarea1~area3に示した部分のテキスチャー解析を行った結果である。なお、テキスチャーの解析手法は一般的なentropyを用いた。 FIG. 5 shows the results of texture analysis of the three areas shown by the white lines in the image shown in FIG. 2 and the four images shown in FIG. The caption described as original in FIG. 5 is the result of texture analysis of the portions shown in areas 1 to 3 of the image of FIG. 2, and (a) gradation (25%), (b) gradation (50%), ( c) The captions described as reduction (25%) and (d) reduction (50%) were subjected to texture analysis of the parts shown in areas 1 to 3 of the images shown in FIGS. 3 (a) to 3 (d), respectively. The result. A general entropy was used as the texture analysis method.
この結果から、照明状態がばらついたことに起因して、ほくろ12のテキスチャーの画像
データがばらつくことを示しており、多くの照明状態に対応した学習データを準備する必要があることを示している。またモルフォロジーの数値においては、照明状態がばらついたことに起因して、境界の線幅が変化することにより、モルフォロジーの解析値に影響を与えることとなる。
From this result, it is shown that the image data of the texture of the mole 12 varies due to the variation of the lighting state, and it is necessary to prepare the learning data corresponding to many lighting conditions. .. Further, in the numerical value of morphology, the line width of the boundary changes due to the variation of the illumination state, which affects the analysis value of morphology.
テキスチャー情報およびモルフォロジー情報の解析を正確に行うためには、照明方法に依存しない方法で、テキスチャー情報およびモルフォロジー情報の解析を行うことが望ましい。そこで、境界検出処理工程をテキスチャー情報およびモルフォロジー情報の解析工程である特徴パラメーターの抽出工程の前に行う検討を試みた。
図6は、図2および図3(a)~(d)に示した画像に、特許文献2および非特許文献1に示す境界検出処理工程であるフェーズストレッチトランスフォームを用いた画像特徴解析法を適用した後に、白線で示した3つのエリアの部分のテキスチャー解析行った結果を示す。フェーズストレッチトランスフォームとは、画像情報をフーリエ変換することにより得られる画像の位相情報において、位相情報と位相情報の導関数情報とを組み合わせた非線形の検出方法によりエッジ検出を行う方法である。そしてこの方法により検出されるエッジの情報は2値化された情報ではなく、諧調値を有する情報であるので、このエッジ検出を行うことにより背景情報である輝度情報を除外することができる方法でもある。テキスチャーの解析手法は図5の結果と同じく一般的なentropyを用いた。
In order to accurately analyze the texture information and the morphology information, it is desirable to analyze the texture information and the morphology information by a method that does not depend on the lighting method. Therefore, we attempted to study the boundary detection processing step before the feature parameter extraction step, which is the analysis step of texture information and morphology information.
FIG. 6 shows an image feature analysis method using the phase stretch transform, which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1, on the images shown in FIGS. 2 and 3 (a) to 3 (d). After application, the results of texture analysis of the three areas shown by the white lines are shown. The phase stretch transform is a method of performing edge detection by a non-linear detection method that combines phase information and derivative information of phase information in the phase information of an image obtained by Fourier transforming the image information. Since the edge information detected by this method is not binarized information but information having a gradation value, it is also possible to exclude the luminance information which is the background information by performing this edge detection. be. As the texture analysis method, the same general entropy as the result in FIG. 5 was used.
図6に示した結果から、テキスチャー情報およびモルフォロジー情報の解析を行う前に、諧調値を有する情報を出力する境界検出処理工程により輝度情報を除去することにより、テキスチャーの解析結果が照明状態のばらつきの影響を受けないことがわかる。テキスチャーの解析結果が照明状態のばらつきの影響を受けないことは、ユーザーが撮影する画像の照明状態がばらついたとしても、そのばらつきの影響を受けることなく、テキスチャーの解析を行うことができることを示しているので、多くの照明状態に対応した学習データを準備する必要がなくなることを示している。 From the results shown in FIG. 6, the luminance information is removed by the boundary detection processing step that outputs the information having the gradation value before the texture information and the morphology information are analyzed, so that the texture analysis result varies in the lighting state. It turns out that it is not affected by. The fact that the texture analysis results are not affected by the variation in lighting conditions indicates that even if the lighting conditions of the image taken by the user vary, the texture can be analyzed without being affected by the variation. Therefore, it is not necessary to prepare training data corresponding to many lighting conditions.
米国特許第8543519号明細書US Pat. No. 5,543,519 米国特許第10275891号明細書US Pat. No. 10,275,891
本発明は以上の点を考慮してなされたもので、撮影環境の照明状態にばらつきを許容することにより、ほくろのテキスチャー、モルフォロジーなどの画像データのばらつきが大きくなり、そのため、多くの照明状態に対応した学習データを準備する必要があるという課題の解決手法を提供するものである。 The present invention has been made in consideration of the above points, and by allowing variations in the lighting conditions of the shooting environment, variations in image data such as the texture and morphology of the hokuro become large, and therefore, many lighting conditions can be obtained. It provides a solution to the problem that it is necessary to prepare the corresponding learning data.
 かかる課題を解決するため本発明の遠隔皮膚疾患リスク判定システムおよび遠隔皮膚疾患リスク判定方法においては、テキスチャー情報およびモルフォロジー情報の解析を行う前に、諧調値を有する情報を出力する境界検出処理工程により皮膚が撮影された画像から輝度情報を除去することにより、テキスチャー情報およびモルフォロジー情報の解析結果から照明状態のばらつきの影響を除外する。
 また、スマートフォンによりユーザーが皮膚の画像を撮影する際に、スマートフォンの位置とほくろとの相対位置を保持する部材を用いることにより、ブレなどが生じにくくする。さらには、スマートフォンの位置とほくろとの相対位置を保持する部材に、スケールが形成された部材を配置して撮影を行い、そのスケールが撮影された画像から撮影画像のディストーション情報を取得しディストーション情報の補正を行うことにより、ほくろの大きさ情報を正確に取得することができるとともに、ゆがみのない画像を分類工程およびリスク判断工程に用いることができることとなる。スマートフォンの位置とほくろとの相対位置を保持する部材には、色情報を補正するための部材が配置されており、この部材を撮影することにより照明の色情報を取得し、色補正を行うことを可能にする。
In order to solve this problem, in the remote skin disease risk determination system and the remote skin disease risk determination method of the present invention, a boundary detection processing step of outputting information having a gradation value is used before analyzing texture information and morphology information. By removing the brightness information from the image of the skin taken, the effect of variation in lighting conditions is excluded from the analysis results of the texture information and morphology information.
Further, when the user takes an image of the skin with the smartphone, by using a member that holds the relative position between the position of the smartphone and the mole, blurring and the like are less likely to occur. Furthermore, a member on which a scale is formed is placed on a member that holds the relative position between the position of the smartphone and the mole, and the image is photographed. By making the correction of, it is possible to accurately acquire the size information of the mole, and it is possible to use the image without distortion in the classification step and the risk judgment step. A member for correcting color information is arranged on a member that holds the relative position between the position of the smartphone and the mole, and by taking a picture of this member, the color information of the lighting is acquired and the color is corrected. Enables.
 本発明の遠隔皮膚疾患リスク判定システムおよび遠隔皮膚疾患リスク判定方法は、テキスチャー情報およびモルフォロジー情報の解析結果から照明状態のばらつきの影響を除外することができるため、多くの照明状態に対応した学習データを準備する必要性が低減される。
 また、本発明の遠隔皮膚疾患リスク判定システムおよび遠隔皮膚疾患リスク判定方法は、スマートフォンにより皮膚の画像を撮影する際に、スマートフォンの位置とほくろとの相対位置を保持する部材を配置することによる照明状態の変化が生じても、テキスチャー情報およびモルフォロジー情報の解析結果から照明状態のばらつきの影響を除外することができる。そのため、スマートフォンの位置とほくろとの相対位置を保持する部材を配置することが可能となり、ブレがない画像の撮影が容易となる。
さらには、スマートフォンの位置とほくろとの相対位置を保持する部材に、スケールが形成された部材を配置して撮影を行い、そのスケールが撮影された画像から撮影画像のディストーション情報を取得しディストーション情報の補正を行うことにより、ほくろの大きさ情報を正確に取得することができるとともに、ゆがみのない画像を分類工程およびリスク判断工程に用いることができることとなる。
Since the remote skin disease risk determination system and the remote skin disease risk determination method of the present invention can exclude the influence of variations in lighting conditions from the analysis results of texture information and morphology information, learning data corresponding to many lighting conditions can be excluded. The need to prepare is reduced.
Further, the remote skin disease risk determination system and the remote skin disease risk determination method of the present invention illuminate by arranging a member that holds a relative position between the position of the smartphone and the mole when taking an image of the skin with the smartphone. Even if the state changes, the influence of the variation in the lighting state can be excluded from the analysis results of the texture information and the morphology information. Therefore, it is possible to arrange a member that holds the relative position between the position of the smartphone and the mole, and it becomes easy to take an image without blurring.
Furthermore, a member on which a scale is formed is placed on a member that holds the relative position between the position of the smartphone and the mole, and the image is photographed. By making the correction of, it is possible to accurately acquire the size information of the mole, and it is possible to use the image without distortion in the classification step and the risk judgment step.
従来技術としての遠隔皮膚疾患リスク判定システムの概略構成図である。It is a schematic block diagram of the remote skin disease risk determination system as a prior art. 遠隔皮膚疾患リスク判定システムに供するほくろの画像の例である。This is an example of a mole image used in a remote skin disease risk determination system. 遠隔皮膚疾患リスク判定システムに供する照明状態のばらつきがあるほくろの画像の例である。This is an example of a mole image with variations in lighting conditions used in a remote skin disease risk determination system. 遠隔皮膚疾患リスク判定システムに供する照明状態のばらつきがあるほくろの画像の作成方法を示す図である。It is a figure which shows the method of making the image of the mole with the variation of lighting conditions to be used for the remote skin disease risk determination system. 従来技術としての遠隔皮膚疾患リスク判定システムにおけるテキスチャー解析が照明状態のばらつきによりばらつくことを示す実験結果の図である。It is a figure of the experimental result which shows that the texture analysis in the remote skin disease risk determination system as a prior art varies depending on the variation of lighting conditions. テキスチャー解析工程の前に境界検出処理工程を行うことにより、テキスチャー情報およびモルフォロジー情報の解析結果から照明状態のばらつきの影響を除外されることを示す実験結果の図である。It is a figure of the experimental result which shows that the influence of the variation of a lighting state is excluded from the analysis result of the texture information and the morphology information by performing the boundary detection processing step before the texture analysis step. 本発明の遠隔皮膚疾患リスク判定システムの概略構成図である。It is a schematic block diagram of the remote skin disease risk determination system of this invention. 本発明の遠隔皮膚疾患リスク判定システムにおけるスマートフォンの位置とほくろとの相対位置を保持する部材の概略構成図である。It is a schematic block diagram of the member which holds the relative position of a smartphone and a mole in the remote skin disease risk determination system of this invention. 本発明の遠隔皮膚疾患リスク判定システムにおけるスマートフォンの位置とほくろとの相対位置を保持する部材をスマートフォンに取り付けた概略構成図である。It is a schematic block diagram which attached the member which holds the relative position between the position of the smartphone and the mole in the remote skin disease risk determination system of this invention to the smartphone. 本発明の遠隔皮膚疾患リスク判定システムにおける第2のスマートフォンの位置とほくろとの相対位置を保持する部材の概略構成図である。It is a schematic block diagram of the member which holds the position of the 2nd smartphone and the relative position of a mole in the remote skin disease risk determination system of this invention. 本発明の遠隔皮膚疾患リスク判定システムにおける第2のスマートフォンの位置とほくろとの相対位置を保持する部材をスマートフォンに取り付けた概略構成図である。It is a schematic block diagram which attached the member which holds the position of the 2nd smartphone and the relative position of a mole in the remote skin disease risk determination system of this invention to a smartphone. 本発明の遠隔皮膚疾患リスク判定システムにおける第2のスマートフォンの位置とほくろとの相対位置を保持する部材を用いて、カラー情報の補正を行う方法を示す概略図である。It is a schematic diagram which shows the method of correcting the color information by using the member which holds the relative position of the 2nd smartphone and the mole in the remote skin disease risk determination system of this invention. 本発明の遠隔皮膚疾患リスク判定システムにおけるスマートフォンの位置とほくろとの相対位置を保持する部材に勘合するスケール部材の断面構成図である。It is sectional drawing of the scale member which fits into the member which holds the position of a smartphone and the relative position of a mole in the remote skin disease risk determination system of this invention. 本発明の遠隔皮膚疾患リスク判定システムにおけるスマートフォンの位置とほくろとの相対位置を保持する部材に勘合するスケール部材をスマートフォンで撮影する場合の概略構成図である。It is a schematic block diagram in the case of taking a picture of the scale member which fits into the member which holds the relative position between the position of the smartphone and the mole in the remote skin disease risk determination system of this invention with a smartphone. 本発明の遠隔皮膚疾患リスク判定システムにおけるスマートフォンの位置とほくろとの相対位置を保持する部材に勘合するスケール部材の構成図である。It is a block diagram of the scale member which fits into the member which holds the position of a smartphone and the relative position of a mole in the remote skin disease risk determination system of this invention. 本発明のスマートフォンの位置とほくろとの相対位置を保持する部材に勘合するスケール部材のスケールによりカメラのディストーション特性を除外する工程および照明の色情報を補正する工程を有する遠隔皮膚疾患リスク判定システムの概略構成図である。The remote skin disease risk determination system having a step of excluding distortion characteristics of a camera by a scale of a member that fits a member that holds a relative position between the position of a smartphone and a mole of the present invention and a step of correcting color information of lighting. It is a schematic block diagram. 本発明の遠隔皮膚疾患リスク判定システムにおいて、ユーザーがスマートフォンを介して行うアプリケーションの工程を示す概略工程図である。It is a schematic process diagram which shows the process of the application which a user performs through a smartphone in the remote skin disease risk determination system of this invention. 本発明の遠隔皮膚疾患リスク判定システムにおいて画像のゆがみを補正する条件をスマートフォンのアプリケーションを用いてユーザーが取得する工程を示す概略工程図である。It is a schematic process diagram which shows the process which the user acquires the condition which corrects the distortion of an image in the remote skin disease risk determination system of this invention using the application of a smartphone.
本発明の遠隔皮膚疾患リスク判定システムの概略構成図を図7に示す。
この本発明の遠隔皮膚疾患リスク判定システム30は、例えば足の皮膚表面9に形成されたほくろ12を画像撮影機能とデータ転送機能を有する可搬性デバイスであるスマートフォン11により撮影し、インターネット回線19を介して、サービス業者の有するサーバー31に転送する。サービス業者は、画像受信受付ツール21により患者情報を確認した後、この画像がほくろなどメラノーマなどの皮膚疾患のリスク判定を行う対象画像であるかを判定ツール22により確認する。そして、皮膚疾患のリスク判定を行う画像であると判断された場合には、特許文献2および非特許文献1に示す境界検出処理工程であるフェーズストレッチトランスフォームを用いた画像特徴解析法を適用した諧調値を有する情報を出力する境界・テキスチャー抽出ツール29により背景の輝度情報を除外する。次に特徴パラメーターの抽出ツール23により、画像からほくろ12のテキスチャー、モルフォロジーなどの画像データを抽出する。その後この画像データは症例学習データにより機械学習がなされた画像分類ツール24およびリスク判定ツール25により分類された後、判定結果が与えられる。
FIG. 7 shows a schematic configuration diagram of the remote skin disease risk determination system of the present invention.
In the remote skin disease risk determination system 30 of the present invention, for example, a mole 12 formed on the skin surface 9 of a foot is photographed by a smartphone 11 which is a portable device having an image capturing function and a data transfer function, and an internet line 19 is taken. The data is transferred to the server 31 owned by the service provider. After confirming the patient information by the image reception reception tool 21, the service provider confirms by the determination tool 22 whether or not this image is a target image for determining the risk of skin diseases such as moles and melanoma. Then, when it was determined that the image was used to determine the risk of skin disease, the image feature analysis method using the phase stretch transform, which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1, was applied. The background brightness information is excluded by the boundary / texture extraction tool 29 that outputs information having a gradation value. Next, the image data such as the texture and morphology of the mole 12 is extracted from the image by the feature parameter extraction tool 23. After that, this image data is classified by the image classification tool 24 and the risk determination tool 25 that have been machine-learned by the case learning data, and then the determination result is given.
本発明の遠隔皮膚疾患リスク判定システムは、図5および図6の実験結果に示したように、境界・テキスチャー抽出ツール29により背景の輝度情報を除外した後に特徴パラメーターの抽出ツール23を適用することにより、画像から照明条件に依存しないほくろ12のテキスチャー、モルフォロジーなどの画像データを抽出することにより、撮影画像における照明状態のばらつきによるテキスチャー、モルフォロジーなどの画像データのばらつきを除外することができる。そのため、スマートフォン11により撮影された画像の照明状態が不均一であった場合、全体的に暗い画像であった場合などにおいても、最適な照明状態で撮影された画像と同様のテキスチャー、モルフォロジーなどの画像データを抽出することができる。
さらには、画像分類ツール24およびリスク判定ツール25に用いられる症例学習データ
により機械学習がなされたデータに、照明状態のばらつきを考慮した学習データを用いる必要がないので、従来例よりも少ない学習データを用いることが可能となる。
In the remote skin disease risk determination system of the present invention, as shown in the experimental results of FIGS. 5 and 6, the feature parameter extraction tool 23 is applied after the background brightness information is excluded by the boundary / texture extraction tool 29. By extracting image data such as texture and morphology of the hokuro 12 that does not depend on the lighting conditions from the image, it is possible to exclude variations in image data such as texture and morphology due to variations in lighting conditions in the captured image. Therefore, even if the lighting state of the image taken by the smartphone 11 is non-uniform, or the image is dark as a whole, the texture, morphology, etc. similar to those of the image taken under the optimum lighting state can be obtained. Image data can be extracted.
Furthermore, since it is not necessary to use learning data considering variations in lighting conditions for the data machine-learned by the case learning data used in the image classification tool 24 and the risk determination tool 25, less learning data than in the conventional example. Can be used.
上記の発明形態の説明においては、特許文献2および非特許文献1に示す境界検出処理工程であるフェーズストレッチトランスフォームを用いた画像特徴解析法を適用した境界・テキスチャー抽出ツール29を用いた例を示したが、諧調値を有するエッジ情報を抽出する機能を有していれば、他の方法の境界検出方法を用いることも可能である。 In the above description of the invention, an example using the boundary / texture extraction tool 29 to which the image feature analysis method using the phase stretch transform, which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1, is applied. As shown, it is also possible to use another method of boundary detection as long as it has a function of extracting edge information having a gradation value.
図8にスマートフォンの位置とほくろとの相対位置を保持する部材40の概略構成図を示す。この部材は、画像撮影機能とデータ転送機能を有する可搬性デバイスであるスマートフォンとほくろとの距離を一定に保持するスペーサー部材41に、ほくろの部分にスマートフォン11のカメラの焦点位置を合わせやすくするマクロ撮影用レンズ42が固着されている構造となっている。また、マクロ撮影用レンズ42がスマートフォン11のカメラのほぼ正面に位置した状態を保持するクリップ部材43も具備されている。クリップ部材は、2つのクリップホルダー44、45は支点46から開閉ができるとともに、バネ47のバネ力によりスマートフォン11を挟むことができる構造となっている。 FIG. 8 shows a schematic configuration diagram of the member 40 that holds the relative position between the position of the smartphone and the mole. This member is a macro that makes it easy to align the focal position of the camera of the smartphone 11 with the spacer member 41 that keeps the distance between the smartphone and the mole, which is a portable device having an image capturing function and a data transfer function, constant. The structure is such that the photographing lens 42 is fixed. Further, a clip member 43 for holding a state in which the macro photography lens 42 is positioned substantially in front of the camera of the smartphone 11 is also provided. The clip member has a structure in which the two clip holders 44 and 45 can be opened and closed from the fulcrum 46, and the smartphone 11 can be sandwiched by the spring force of the spring 47.
クリップ部材43を用いて、スマートフォンの位置とほくろとの相対位置を保持する部材40をスマートフォン11に固定した形態において、ほくろ12を撮影する場合の構成図を図9に示す。このスマートフォンの位置とほくろとの相対位置を保持する部材40をスマートフォン11に固定した状態でほくろ12の画像を撮影することにより、撮影された画像にブレなどが生じにくくすることができる。スマートフォンの位置とほくろとの相対位置を保持する部材40のスペーサー部材41は、外光を透過する透明性を有する部材により形成されている。スペーサー部材41が透明性を有する部材により構成されていることにより、照明機構を有せず室内照明などの外光を用いてほくろ12の画像を撮影することができる。 FIG. 9 shows a configuration diagram in which the mole 12 is photographed in a form in which the member 40 that holds the relative position between the position of the smartphone and the mole is fixed to the smartphone 11 by using the clip member 43. By taking an image of the mole 12 in a state where the member 40 that holds the relative position between the position of the smartphone and the mole is fixed to the smartphone 11, it is possible to prevent blurring or the like from occurring in the taken image. The spacer member 41 of the member 40 that holds the relative position between the position of the smartphone and the mole is formed of a transparent member that transmits external light. Since the spacer member 41 is made of a transparent member, the image of the mole 12 can be taken by using outside light such as indoor lighting without having a lighting mechanism.
スペーサー部材41は円筒形あるいは図8および図9に示すように頂点部分のない円錐形状を有しており、その内面41aは砂地処理された面であることが望ましい。内面41aは砂地処理された面であることにより、照明の影が明瞭に画像に写りこむことを防止することができる。砂地処理された面がスペーサー部材41の外周面ではなく内面41a側に配置されていることにより、撮影者などが砂地処理された面を触る危険性を低くし、油などが付着し砂地処理された面の乱反射特性が低下する危険性を低めることができる。 It is desirable that the spacer member 41 has a cylindrical shape or a conical shape without apex portions as shown in FIGS. 8 and 9, and the inner surface 41a thereof is a sand-treated surface. Since the inner surface 41a is a surface treated with sand, it is possible to prevent the shadow of the illumination from being clearly reflected in the image. Since the sand-treated surface is arranged on the inner surface 41a side instead of the outer peripheral surface of the spacer member 41, the risk of the photographer or the like touching the sand-treated surface is reduced, and oil or the like adheres to the sand-treated surface. It is possible to reduce the risk of deterioration of the diffused reflection characteristics of the surface.
スマートフォンの位置とほくろとの相対位置を保持する部材40を用いると、スマートフォンの位置とほくろとの相対位置を保持する部材40を用いない場合に比較して、ほくろ12の画像の照明状態が不均一になる可能性が高くなるが、本発明においては、諧調値を有する情報を出力する境界・テキスチャー抽出ツール29により背景の輝度情報を除外することにより、撮影画像における照明状態のばらつきによるテキスチャー、モルフォロジーなどの画像データのばらつきを除外することができるので、スマートフォンの位置とほくろとの相対位置を保持する部材40を用いることが可能となる。 When the member 40 that holds the relative position between the position of the smartphone and the mole is used, the illumination state of the image of the mole 12 is poor as compared with the case where the member 40 that holds the relative position between the position of the smartphone and the mole is not used. Although there is a high possibility that the image will be uniform, in the present invention, by excluding the background brightness information by the boundary / texture extraction tool 29 that outputs information having a gradation value, the texture due to the variation in the illumination state in the captured image, Since variations in image data such as morphology can be excluded, it is possible to use the member 40 that holds the relative position between the position of the smartphone and the mole.
図10にスマートフォンの位置とほくろとの相対位置を保持する第2の部材39の概略構成図を示す。この部材39は、図8に示した部材40に白色を有する色補正シート48がスペーサー部材41に固着された構成となっており、色補正シート48は開口48aを有しておりほくろの撮影がなされる場合において視野内のその一部に色補正シート48も撮影されるように配置されている。また、部材40と同様に、クリップ部材43を用いて、スマートフォンの位置とほくろとの相対位置を保持する部材39をスマートフォン11に固定した形態とし、ほくろ12を撮影する場合の構成図を図11に示す。 FIG. 10 shows a schematic configuration diagram of a second member 39 that holds a relative position between the position of the smartphone and the mole. The member 39 has a structure in which a color correction sheet 48 having a white color on the member 40 shown in FIG. 8 is fixed to a spacer member 41, and the color correction sheet 48 has an opening 48a so that a mole can be photographed. When this is done, the color correction sheet 48 is also arranged so as to be photographed in a part of the field of view. Further, as in the case of the member 40, the clip member 43 is used to fix the member 39 that holds the relative position between the position of the smartphone and the mole to the smartphone 11, and the configuration diagram of the case where the mole 12 is photographed is shown in FIG. Shown in.
スマートフォンの位置とほくろとの相対位置を保持する第2の部材39を用いてほくろ12を撮影した画像例を図12に示す。図12において色補正シート48の像49がほくろ12の周囲に撮影されている。色補正シートの像49の情報から撮影環境の照明の色情報を補正する方法を次に説明する。色補正シートの像49の複数の任意点、例えば49a、49b、49cの3点の輝度情報を解析し、それらの点の赤色、緑色、青色の情報がそれぞれ、(100,110,60)、(150,165,90)、(60,66,36)であるとすると、色補正シート48は白色であることから、撮影された照明環境は、緑色が最も強く、青色が最も弱い照明であることがこの情報からわかるとともに、図12に示した撮影画像においては、緑色の輝度情報をそのままとして、49a、49b、49cの3点の輝度情報において赤色の輝度情報を1.1倍し青色の輝度情報を110/60倍することにより、それぞれ(110,110,110)、(165,165,165)、(66,66,66)とすることができる。ほくろ12の画像部分においても同様の補正、具体的には、緑色の輝度情報をそのままとして、49a、49b、49cの3点の輝度情報において赤色の輝度情報を1.1倍し青色の輝度情報を110/60倍する補正を行うことにより、赤色、緑色、青色のバランスが均一な照明下で撮影された場合の色情報を再現することができることとなる。 FIG. 12 shows an example of an image of the mole 12 taken by using the second member 39 that holds the relative position between the position of the smartphone and the mole. In FIG. 12, the image 49 of the color correction sheet 48 is photographed around the mole 12. Next, a method of correcting the color information of the illumination of the shooting environment from the information of the image 49 of the color correction sheet will be described. Luminance information of a plurality of arbitrary points of the image 49 of the color correction sheet, for example, three points of 49a, 49b, and 49c is analyzed, and the red, green, and blue information of those points are (100, 110, 60), respectively. Assuming (150,165,90) and (60,66,36), since the color correction sheet 48 is white, the photographed lighting environment has the strongest green and the weakest blue. It can be seen from this information, and in the captured image shown in FIG. 12, the green luminance information is left as it is, and the red luminance information is multiplied by 1.1 in the three luminance information of 49a, 49b, and 49c to be blue. By multiplying the luminance information by 110/60, it can be obtained as (110, 110, 110), (165, 165, 165), (66, 66, 66), respectively. The same correction is applied to the image portion of the hokuro 12, specifically, the green luminance information is left as it is, and the red luminance information is multiplied by 1.1 in the three luminance information of 49a, 49b, and 49c to obtain the blue luminance information. By performing a correction of 110/60 times, it is possible to reproduce the color information when the image is taken under uniform illumination with a uniform balance of red, green, and blue.
図13にスマートフォンの位置とほくろとの相対位置を保持する部材39および部材40のスペーサー部材41に勘合するスケール部材51の断面構造図を示す。このスケール部材51を、スマートフォン11に取り付けられたスマートフォンの位置とほくろとの相対位置を保持する部材40に取り付けた状態の構成図を図14に示す。スケール部材51は、スペーサー部材41を用いたスマートフォン11によりほくろの画像を撮影する際の皮膚の位置に面51aが配置する構成となっており、スケール部材51は、面51aにスケールが配置されている。図15にスケール部材51の面51aに形成されているスケールの例を示す。スケールは例えば同心円状のスケールパターン52および互いに直交する直線状のスケールパターン53、54が構成されている。このスケールパターン52、53、54をスマートフォン11により撮影することで、皮膚表面9に位置するほくろ12を撮影した画像の有する画像のゆがみ情報を知ることができる。すなわち、スケールパターンを撮影した画像において、直線状のスケールパターン53、54がゆがんでいた場合には、ほくろ12を撮影した画像においても同様のゆがみが画像に加わっていることがわかる。したがって、スケールパターンを撮影した画像において、スケールパターン52、53、54がゆがんでいた場合には、その歪んだスケールパターン52、53、54が図15に示す実際のスケールパターンとなるようなひずみ補正、つまりディストーション補正を行うことによりゆがみのない画像を生成することができる。また、スケールパターン52、53、54をスマートフォン11により撮影すること撮影倍率を正しく知ることが可能である。 FIG. 13 shows a cross-sectional structural view of a member 39 that holds the relative position between the position of the smartphone and the mole and the scale member 51 that fits into the spacer member 41 of the member 40. FIG. 14 shows a configuration diagram of the scale member 51 attached to the member 40 that holds the relative position between the position of the smartphone attached to the smartphone 11 and the mole. The scale member 51 has a configuration in which the surface 51a is arranged at the position of the skin when an image of a mole is taken by the smartphone 11 using the spacer member 41, and the scale member 51 has a scale arranged on the surface 51a. There is. FIG. 15 shows an example of a scale formed on the surface 51a of the scale member 51. The scale includes, for example, a concentric scale pattern 52 and linear scale patterns 53 and 54 orthogonal to each other. By photographing the scale patterns 52, 53, 54 with the smartphone 11, it is possible to know the distortion information of the image of the image of the mole 12 located on the skin surface 9. That is, when the linear scale patterns 53 and 54 are distorted in the image in which the scale pattern is photographed, it can be seen that the same distortion is added to the image in the image in which the mole 12 is photographed. Therefore, if the scale patterns 52, 53, 54 are distorted in the image obtained by capturing the scale pattern, the distortion correction is performed so that the distorted scale patterns 52, 53, 54 become the actual scale pattern shown in FIG. That is, it is possible to generate an image without distortion by performing distortion correction. Further, it is possible to correctly know the shooting magnification by shooting the scale patterns 52, 53, 54 with the smartphone 11.
本発明の遠隔皮膚疾患リスク判定システムにおいては、スケール51の写真をほくろ12の画像とともにスマートフォンよりサーバーに転送することにより、ゆがみのない画像において、リスク判定を行うことができるとともに、スケール情報もリスク判定に用いることが可能となる。 In the remote skin disease risk determination system of the present invention, by transferring the photograph of the scale 51 together with the image of the mole 12 from the smartphone to the server, the risk can be determined in the image without distortion, and the scale information is also a risk. It can be used for judgment.
 図16に、スマートフォンの位置とほくろとの相対位置を保持する部材39あるいは部材40を用いて撮影したほくろ12の画像、さらに、スマートフォンの位置とほくろとの相対位置を保持する部材39あるいは部材40を用いてスケール部材51を撮影した画像を用いる遠隔皮膚疾患リスク判定システム60の概略構成図を示す。この本発明の遠隔皮膚疾患リスク判定システム60は、例えば足の皮膚表面9に形成されたほくろをスマートフォンの位置とほくろとの相対位置を保持する部材40を用いてスマートフォン11により撮影し、インターネット回線19を介して、サービス業者の有するサーバー61に転送する。サービス業者は、画像受信受付ツール21により患者情報を確認した後、この画像
がほくろなどメラノーマなどの皮膚疾患のリスク判定を行う対象画像であるかを判定ツール22により確認する。そして、皮膚疾患のリスク判定を行う画像であると判断された場合には、ほくろの周囲の画像により解析されるホワイトバランス補正、および、ほくろの画像とほぼ同時に送付されたスケール51のスケールパターンの画像あるいは、同一のユーザーより事前に送付されたスケール51のスケールパターンの画像のスケールパターンのゆがみ情報を用いた画像からのゆがみ補正を、画像補正ツール62により行う。ここでほくろの周囲に色補正シート48の画像がない場合には、ほくろ以外の部分の画像情報の輝度解析を用いて、ホワイトバランス補正を行うことも可能である。つぎに、特許文献2および非特許文献1に示す境界検出処理工程であるフェーズストレッチトランスフォームを用いた画像特徴解析法を適用した諧調値を有する情報を出力する境界・テキスチャー抽出ツール29により背景の輝度情報を除外する。次に特徴パラメーターの抽出ツール23により、画像からほくろ12のテキスチャー、モルフォロジーなどの画像データを抽出する。その後この画像データは症例学習データにより機械学習がなされた画像分類ツール24およびリスク判定ツール25により分類された後、判定結果がユーザーに通知される。
FIG. 16 shows an image of the mole 12 taken by using the member 39 or the member 40 that holds the relative position between the position of the smartphone and the mole, and further, the member 39 or the member 40 that holds the relative position between the position of the smartphone and the mole. The schematic block diagram of the remote skin disease risk determination system 60 which uses the image which image | photographed the scale member 51 with, is shown. In the remote skin disease risk determination system 60 of the present invention, for example, a mole formed on the skin surface 9 of a foot is photographed by a smartphone 11 using a member 40 that holds a relative position between the position of the smartphone and the mole, and an internet line is used. Transfer to the server 61 owned by the service provider via 19. After confirming the patient information by the image reception reception tool 21, the service provider confirms by the determination tool 22 whether or not this image is a target image for determining the risk of skin diseases such as moles and melanoma. Then, when it is determined that the image is for determining the risk of skin disease, the white balance correction analyzed by the image around the skull and the scale pattern of the scale 51 sent almost at the same time as the image of the skull. The image correction tool 62 performs distortion correction from the image or the image using the scale pattern distortion information of the scale pattern image of the scale 51 sent in advance by the same user. Here, when there is no image of the color correction sheet 48 around the mole, it is also possible to perform white balance correction by using the luminance analysis of the image information of the portion other than the mole. Next, the boundary / texture extraction tool 29 that outputs information having gradation values to which the image feature analysis method using the phase stretch transform, which is the boundary detection processing step shown in Patent Document 2 and Non-Patent Document 1, is applied to the background. Exclude brightness information. Next, the image data such as the texture and morphology of the mole 12 is extracted from the image by the feature parameter extraction tool 23. After that, this image data is classified by the image classification tool 24 and the risk determination tool 25 that have been machine-learned by the case learning data, and then the determination result is notified to the user.
 この図16に示した遠隔皮膚疾患リスク判定システム60は、ほくろの画像をゆがみおよび照明による色情報のゆがみがない状態とした後に処理を行うので、画像のゆがみ情報がリスク判定に及ぼす影響が低減されているとともに、画像倍率情報も付加された状態で、リスク判定を行うことができるという効果がえられる。 Since the remote skin disease risk determination system 60 shown in FIG. 16 performs processing after the mole image is in a state where the color information is not distorted due to distortion and lighting, the influence of the image distortion information on the risk determination is reduced. At the same time, it is possible to obtain the effect that the risk can be determined with the image magnification information added.
本発明の遠隔皮膚疾患リスク判定システムにおいて、ユーザーがスマートフォンを介して行うアプリケーションの工程の一例を図17を用いて説明する。ユーザーはアプリケーションを起動すると図17(a)に示すようにほくろ12の画像の撮影を要求する画面100が示される。その後ユーザーはスマートフォンの位置とほくろとの相対位置を保持する部材39をスマートフォン11に取り付け、ほくろの撮影を行うと、図17(b)に示すように撮影されたほくろの画像を含む画面101が表示され、ほくろ12が欠けなく撮影されているか、合焦しているかなど画像の確認を要求され、ユーザーは確認作業を行う。画像の確認作業を終了すると画像データはサービス業者に転送され図17(c)に示すように画像転送がなされ判定結果を待つことを指示されていることを示す画面102が表示される。その後図17(d)に示すように判定結果示す画面103が表示される。なお、この例においては、ユーザーは病院に行き病院における診断が望まれることを示す画面が表示された例である。 In the remote skin disease risk determination system of the present invention, an example of a process of an application performed by a user via a smartphone will be described with reference to FIG. When the user starts the application, a screen 100 requesting the image of the mole 12 is displayed as shown in FIG. 17 (a). After that, when the user attaches the member 39 that holds the relative position between the position of the smartphone and the mole to the smartphone 11 and takes a picture of the mole, the screen 101 including the image of the mole taken as shown in FIG. 17 (b) is displayed. It is displayed, and the user is requested to confirm the image such as whether the mole 12 is photographed without missing or is in focus, and the user performs the confirmation work. When the image confirmation work is completed, the image data is transferred to the service provider, and as shown in FIG. 17C, a screen 102 indicating that the image transfer is performed and the instruction to wait for the determination result is displayed is displayed. After that, as shown in FIG. 17D, the screen 103 showing the determination result is displayed. In this example, the user goes to the hospital and a screen indicating that a diagnosis at the hospital is desired is displayed.
次にユーザーがスマートフォンを用いて行う作業である画像のゆがみ情報の取得工程を図18に示す。図18におけるスマートフォンのアプリケーション画面104は、ユーザーがユーザーはスマートフォンの位置とほくろとの相対位置を保持する部材39あるいは部材40をスマートフォン11に取り付け、さらに図13に示すスケール部材51を部材39あるいは部材40に取り付けて撮影した後の画像確認画面である。ユーザーはこの画像にスケール52,53,54が合焦状態で撮影されていることを確認し撮影画像を転送する。 Next, FIG. 18 shows a process of acquiring image distortion information, which is a work performed by a user using a smartphone. In the application screen 104 of the smartphone in FIG. 18, the user attaches a member 39 or a member 40 that holds the relative position between the position of the smartphone and the mole to the smartphone 11, and further attaches the scale member 51 shown in FIG. 13 to the member 39 or the member. It is an image confirmation screen after attaching to 40 and taking a picture. The user confirms that the scales 52, 53, and 54 are captured in the focused state on this image, and transfers the captured image.
 本発明は、メラノーマなどの皮膚疾患に関して、患者が病院に行くことなくその疾患リスクを評価することができるので、患者への負担が少ないという利点がある。また医療機関側においても皮膚疾患のリスクを少ない学習データによりスクリーニングを機械学習がなされた機器が行うので医療従事者への負担が少ないという利点がある。 The present invention has an advantage that the burden on the patient is small because the risk of the skin disease such as melanoma can be evaluated without the patient going to the hospital. Also, on the medical institution side, there is an advantage that the burden on the medical staff is small because the equipment that has been machine-learned performs screening with learning data that reduces the risk of skin diseases.
9……皮膚表面、10……従来例のメラノーマリスク判定システム、11……スマートフォン、12……ほくろ、19……データ伝送路(インターネット)、20、31、61…
…サーバー、21……画像受信受付ツール、22……対象画像であるかの判定、23……特徴パラメーター抽出ツール、24……画像分類ツール、25……リスク判定ツール、29……境界・テキスチャー抽出ツール、30、60……メラノーマリスク判定システム、39、40……マクロ画像撮影レンズ、41……スペーサー、41a……乱反射処理面、42……レンズ、43……クリップ、44、45……クリップホルダー、46……クリップの支点、47……バネ、48……色補正シート、49色補正シートの像、51……解像度校正スケール、51a……スケール形成面、52、53、54……スケール、62……画像ゆがみ補正ツール、100、101、102、103、104……アプリケーション画面
9 ... Skin surface, 10 ... Conventional melanoma risk determination system, 11 ... Smartphone, 12 ... Mole, 19 ... Data transmission line (Internet), 20, 31, 61 ...
… Server, 21 …… Image reception reception tool, 22 …… Judgment of target image, 23 …… Feature parameter extraction tool, 24 …… Image classification tool, 25 …… Risk judgment tool, 29 …… Boundary / texture Extraction tool, 30, 60 ... Melanoma risk judgment system, 39, 40 ... Macro imaging lens, 41 ... Spacer, 41a ... Diffuse reflection processing surface, 42 ... Lens, 43 ... Clip, 44, 45 ... Clip holder, 46 ... Clip fulcrum, 47 ... Spring, 48 ... Color correction sheet, 49 color correction sheet image, 51 ... Resolution calibration scale, 51a ... Scale forming surface, 52, 53, 54 ... Scale, 62 …… Image distortion correction tool, 100, 101, 102, 103, 104 …… Application screen

Claims (14)

  1. 画像撮影機能とデータ転送機能を有する可搬性デバイスと、前記可搬性デバイスにより撮影された画像が転送されるサーバーデバイスよりなり、前記サーバーデバイス内の機械学習ツールにより可搬性デバイスにより撮影された皮膚の画像から疾患リスクの判定を行う皮膚疾患リスク判定システムにおいて、
    機械学習ツールによる前記画像の特徴パラメーターの抽出、画像分類、およびリスク判定処理を行う前に、
    諧調値を有する情報を出力する境界・テキスチャー抽出ツールにより画像の背景輝度情報を除去する工程を有することを特徴とする遠隔皮膚疾患リスク判定システム。
    It consists of a portable device having an image capturing function and a data transfer function, and a server device to which an image captured by the portable device is transferred, and the skin photographed by the portable device by a machine learning tool in the server device. In the skin disease risk judgment system that judges the disease risk from images
    Before extracting the feature parameters of the image, image classification, and risk determination processing by the machine learning tool,
    A remote skin disease risk determination system characterized by having a step of removing background brightness information of an image by a boundary / texture extraction tool that outputs information having a gradation value.
  2. 上記遠隔皮膚疾患リスク判定システムにおいて、上記皮膚疾患は、メラノーマであることを特徴とする請求項1に記載の遠隔皮膚疾患リスク判定システム。 The remote skin disease risk determination system according to claim 1, wherein the skin disease is melanoma in the remote skin disease risk determination system.
  3. 上記遠隔皮膚疾患リスク判定システムにおいて、上記境界・テキスチャー抽出ツールにより画像の背景輝度情報を除去する工程は、フェーズストレッチトランスフォームを用いた画像特徴解析法であることを特徴とする請求項1あるいは請求項2に記載の遠隔皮膚疾患リスク判定システム。 Claim 1 or claim, wherein in the remote skin disease risk determination system, the step of removing the background brightness information of the image by the boundary / texture extraction tool is an image feature analysis method using a phase stretch transform. Item 2. The remote skin disease risk determination system according to Item 2.
  4. 上記遠隔皮膚疾患リスク判定システムにおいて、上記皮膚の画像は、可搬性デバイスと疾患の判定を行う皮膚との距離をほぼ一定に保ち、かつ、外光を透過するスペーサー部材を可搬性デバイスに取り付けて撮影した画像であることを特徴とする請求項1より3のいずれかに記載の遠隔皮膚疾患リスク判定システム。 In the remote skin disease risk determination system, in the skin image, the distance between the portable device and the skin for determining the disease is kept substantially constant, and a spacer member that transmits external light is attached to the portable device. The remote skin disease risk determination system according to any one of claims 1 to 3, wherein the image is a photographed image.
  5. 上記遠隔皮膚疾患リスク判定システムにおいて、上記スペーサー部材はスペーサー部材には光学レンズが備えてあることを特徴とする請求項4に記載の遠隔皮膚疾患リスク判定システム。 The remote skin disease risk determination system according to claim 4, wherein in the remote skin disease risk determination system, the spacer member is provided with an optical lens.
  6. 上記遠隔皮膚疾患リスク判定システムにおいて、上記スペーサー部材はスペーサー部材の内側は砂地処理面となっていることを特徴とする請求項4あるいは請求項5に記載の遠隔皮膚疾患リスク判定システム。 The remote skin disease risk determination system according to claim 4 or 5, wherein in the remote skin disease risk determination system, the spacer member has a sandy surface treated on the inside of the spacer member.
  7. 上記遠隔皮膚疾患リスク判定システムにおいて、上記スペーサー部材に勘合し、スケールが形成されている部材を撮影した画像情報により、撮影画像のディストーションを補正および解像度情報の取得を行う工程を有することを特徴とする請求項4より6のいずれかに記載の遠隔皮膚疾患リスク判定システム。 The remote skin disease risk determination system is characterized by having a step of correcting the distortion of the photographed image and acquiring the resolution information by the image information obtained by fitting the spacer member and photographing the member on which the scale is formed. The remote skin disease risk determination system according to any one of claims 4 to 6.
  8. 画像撮影機能とデータ転送機能を有する可搬性デバイスと、前記可搬性デバイスにより撮影された画像が転送されるサーバーデバイスよりなり、前記サーバーデバイス内の機械学習ツールにより可搬性デバイスにより撮影された皮膚の画像から疾患リスクの判定を行う遠隔皮膚疾患リスク判定方法において、
    機械学習ツールによる前記画像の特徴パラメーターの抽出、画像分類、およびリスク判定処理を行う前に、
    諧調値を有する情報を出力する境界・テキスチャー抽出ツールにより画像の背景輝度情報を除去する工程を有することを特徴とする遠隔皮膚疾患リスク判定方法。
    It consists of a portable device having an image capturing function and a data transfer function, and a server device to which an image captured by the portable device is transferred, and the skin imaged by the portable device by a machine learning tool in the server device. In the remote skin disease risk determination method that determines the disease risk from images
    Before extracting the feature parameters of the image, image classification, and risk determination processing by the machine learning tool,
    A remote skin disease risk determination method comprising a step of removing background brightness information of an image by a boundary / texture extraction tool that outputs information having a gradation value.
  9. 上記遠隔皮膚疾患リスク判定方法において、上記皮膚疾患は、メラノーマであることを特徴とする請求項8に記載の遠隔皮膚疾患リスク判定方法。 The remote skin disease risk determination method according to claim 8, wherein the skin disease is melanoma in the remote skin disease risk determination method.
  10. 上記遠隔皮膚疾患リスク判定方法において、上記境界・テキスチャー抽出ツールにより画像の背景輝度情報を除去する工程は、フェーズストレッチトランスフォームを用いた画像特徴解析法であることを特徴とする請求項8あるいは請求項9に記載の遠隔皮膚疾患リスク判定方法。 Claim 8 or claim, wherein in the remote skin disease risk determination method, the step of removing the background brightness information of the image by the boundary / texture extraction tool is an image feature analysis method using a phase stretch transform. Item 9. The method for determining the risk of remote skin disease according to Item 9.
  11. 上記遠隔皮膚疾患リスク判定方法において、上記皮膚の画像は、可搬性デバイスと疾患の判定を行う皮膚との距離をほぼ一定に保ち、かつ、外光を透過するスペーサー部材を可搬性デバイスに取り付けて撮影した画像であることを特徴とする請求項8より10のいずれかに記載の遠隔皮膚疾患リスク判定方法。 In the remote skin disease risk determination method, in the skin image, the distance between the portable device and the skin for determining the disease is kept substantially constant, and a spacer member that transmits external light is attached to the portable device. The remote skin disease risk determination method according to any one of claims 8 to 10, wherein the image is a photographed image.
  12. 上記遠隔皮膚疾患リスク判定方法において、上記スペーサー部材はスペーサー部材には光学レンズが備えてあることを特徴とする請求項11に記載の遠隔皮膚疾患リスク判定方法。 The remote skin disease risk determination method according to claim 11, wherein in the remote skin disease risk determination method, the spacer member is provided with an optical lens.
  13. 上記遠隔皮膚疾患リスク判定方法において、上記スペーサー部材はスペーサー部材の内側は砂地処理面となっていることを特徴とする請求項11あるいは請求項12に記載の遠隔皮膚疾患リスク判定方法。 The remote skin disease risk determination method according to claim 11 or 12, wherein in the remote skin disease risk determination method, the inside of the spacer member is a sandy surface to be treated.
  14. 上記遠隔皮膚疾患リスク判定方法において、上記スペーサー部材に勘合し、スケールが形成されている部材を撮影した画像情報により、撮影画像のディストーションを補正および解像度情報の取得を行う工程を有することを特徴とする請求項11より13のいずれかに記載の遠隔皮膚疾患リスク判定方法。 The remote skin disease risk determination method is characterized by having a step of correcting the distortion of the photographed image and acquiring the resolution information by the image information obtained by fitting the spacer member and photographing the member on which the scale is formed. The remote skin disease risk determination method according to any one of claims 11 to 13.
PCT/JP2022/000025 2021-01-06 2022-01-04 Remote system for determining risk of skin diseases and remote method for determining risk of skin diseases WO2022149566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022574048A JPWO2022149566A1 (en) 2021-01-06 2022-01-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-000647 2021-01-06
JP2021000647 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149566A1 true WO2022149566A1 (en) 2022-07-14

Family

ID=82357777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000025 WO2022149566A1 (en) 2021-01-06 2022-01-04 Remote system for determining risk of skin diseases and remote method for determining risk of skin diseases

Country Status (2)

Country Link
JP (1) JPWO2022149566A1 (en)
WO (1) WO2022149566A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090864A (en) * 2004-09-24 2006-04-06 Denka Seiken Co Ltd Method for calculating content of specific component in vaccine
JP2013007803A (en) * 2011-06-23 2013-01-10 Access:Kk Commodity photographing device
US20170140545A1 (en) * 2014-05-05 2017-05-18 The Regents Of The University Of California Phase transform for object and shape detection in digital images
US20190188851A1 (en) * 2012-03-28 2019-06-20 University Of Houston System Methods for Screening and Diagnosing a Skin Condition
US20200336630A1 (en) * 2010-10-29 2020-10-22 The Regents Of The University Of California Cellscope apparatus and methods for imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090864A (en) * 2004-09-24 2006-04-06 Denka Seiken Co Ltd Method for calculating content of specific component in vaccine
US20200336630A1 (en) * 2010-10-29 2020-10-22 The Regents Of The University Of California Cellscope apparatus and methods for imaging
JP2013007803A (en) * 2011-06-23 2013-01-10 Access:Kk Commodity photographing device
US20190188851A1 (en) * 2012-03-28 2019-06-20 University Of Houston System Methods for Screening and Diagnosing a Skin Condition
US20170140545A1 (en) * 2014-05-05 2017-05-18 The Regents Of The University Of California Phase transform for object and shape detection in digital images

Also Published As

Publication number Publication date
JPWO2022149566A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
KR102363030B1 (en) Digital correction of optical system aberrations
JP5725975B2 (en) Imaging apparatus and imaging method
US7085430B2 (en) Correcting geometric distortion in a digitally captured image
JP5534756B2 (en) Image processing apparatus, image processing method, image processing system, and program
CN102984448A (en) Method of controlling an action, such as a sharpness modification, using a colour digital image
EP1378790A3 (en) Method and device for correcting lens aberrations in a stereo camera system with zoom
JP2010161744A5 (en)
Joze et al. Imagepairs: Realistic super resolution dataset via beam splitter camera rig
JP2007074579A (en) Image processor, and program
TWI394085B (en) Method of identifying the dimension of a shot subject
CN110915193A (en) Image processing system, server device, image processing method, and image processing program
JP2004222231A (en) Image processing apparatus and image processing program
JP2022536762A (en) Method and system for determining refractive characteristics of a subject's eye using an image capture device
JP2009284056A (en) Image processing apparatus, method, and program
WO2022149566A1 (en) Remote system for determining risk of skin diseases and remote method for determining risk of skin diseases
WO2017195794A1 (en) Cell observation apparatus and program
JP6866419B2 (en) How to detect motion in a video sequence
US10194880B2 (en) Body motion display device and body motion display method
Collins et al. Comparison of measurements from photographed lateral cephalograms and scanned cephalograms
EP3831060A1 (en) Method and system for mapping the non-uniformity of an image sensor
JPWO2022180786A5 (en) Image processing device, image processing method and program
JP2014116789A (en) Photographing device, control method therefor, and program
JP2017045430A (en) Image processing device, image processing system, image processing method and program
KR20210000585A (en) Body type measuring device using graph paper background
JP2002360545A (en) Thin hair part area evaluating method and system, thin hair part positioning plate and sample photo for evaluating thin hair part area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022574048

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 22736734

Country of ref document: EP

Kind code of ref document: A1