WO2022149358A1 - Laser device, underwater optical wireless communication device, and laser machining device - Google Patents

Laser device, underwater optical wireless communication device, and laser machining device Download PDF

Info

Publication number
WO2022149358A1
WO2022149358A1 PCT/JP2021/042518 JP2021042518W WO2022149358A1 WO 2022149358 A1 WO2022149358 A1 WO 2022149358A1 JP 2021042518 W JP2021042518 W JP 2021042518W WO 2022149358 A1 WO2022149358 A1 WO 2022149358A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
laser
laser light
fibers
core
Prior art date
Application number
PCT/JP2021/042518
Other languages
French (fr)
Japanese (ja)
Inventor
隼規 坂本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022573936A priority Critical patent/JPWO2022149358A5/en
Publication of WO2022149358A1 publication Critical patent/WO2022149358A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/287Structuring of light guides to shape optical elements with heat application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • This disclosure relates to a laser device, an underwater optical wireless communication device, and a laser processing device.
  • Patent Document 1 describes a rectangular fiber having a mode scramble effect fused and connected to a non-rectangular fiber.
  • Patent Document 2 describes a plurality of fibers bundled at a tapered portion and coupled to one fiber.
  • Patent Document 2 proposes a method of constructing a fiber combiner using polygonal fibers and suppressing heat generation at the combiner coupling portion.
  • a fiber combiner is an optical component manufactured by bundling a plurality of fibers, melting and stretching them, and fusing them with one fiber.
  • Laser light input to a plurality of fibers can be emitted from one fiber, and is utilized in applications such as efficiently collecting light sources for clad excitation of a fiber laser. Further, in the fiber combiner, laser light input in the opposite direction, that is, one fiber, can be emitted from a plurality of fibers.
  • the beam profile of the laser beam emitted from the fiber has a correlation with the beam profile of the laser beam incident on the fiber. That is, the laser light incident from a high NA (numerical aperture) having a large incident angle has a high NA component at the time of fiber exit, and the laser light incident from a low NA having a small incident angle has a low NA component at the time of fiber exit. Tend. As the laser beam propagates through the fiber, this tendency is alleviated and homogenized. However, when a sufficient fiber length cannot be secured or when the fiber core diameter is large, it tends to be difficult to make them uniform.
  • the incident NA of the laser beam is limited by the distance between the emission points between the laser light sources.
  • the fibers of this laser device are connected to a junction such as a fiber combiner and branched by multiple fibers, the output of each fiber varies and is not uniformed thereafter, resulting in emission from each fiber. There is a problem that the output of the laser beam to be generated varies.
  • the present disclosure has been made in view of the actual circumstances, and one purpose of the present disclosure is to provide a laser device capable of suppressing variations in the output of laser light emitted from a plurality of fibers.
  • a laser device includes a plurality of laser light sources, an optical transmission unit, and one or more condensing optical elements.
  • the plurality of laser light sources emit laser light.
  • the optical transmission unit receives the laser light emitted from the plurality of laser light sources from one end and emits the laser light from the other end.
  • the one or more condensing optical elements condense the laser light emitted from the plurality of laser light sources and make it incident on one end of the optical transmission unit.
  • the optical transmission unit includes a first fiber, a second fiber, and a junction.
  • the first fiber has a portion that is one and is one end.
  • the second fiber has two or more portions that are the ends of the other.
  • the junction connects a portion opposite to one end of the first fiber and a portion opposite to the other end of the plurality of second fibers.
  • the joints are arranged so that the cores of the plurality of second fibers are contained in the cores of the first fiber having a polygonal cross-sectional shape, and the cores of the first fiber and the cores of the plurality of second fibers are fused. It is connected.
  • the underwater optical wireless communication device includes a laser device.
  • the underwater optical wireless communication device is used underwater and transmits a signal by a laser beam to perform communication.
  • a laser processing device includes a laser device.
  • the laser processing device simultaneously emits laser light in a plurality of directions to perform laser welding.
  • the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions.
  • a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space is desired.
  • the wireless communication device can efficiently fill the space.
  • a laser processing apparatus for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
  • the underwater optical wireless communication device 51 and the laser device 50 according to the first embodiment will be described.
  • the underwater optical wireless communication device 51 is configured to include the laser device 50.
  • FIG. 1 is a diagram showing a laser device 50 according to the first embodiment.
  • FIG. 2 is a diagram showing a laser housing 100.
  • FIG. 3 is a diagram showing LD40.
  • 4A and 4B are diagrams showing an output state of the underwater optical wireless communication device 51.
  • the laser device 50 includes a laser housing 100 and an optical transmission unit 30.
  • the optical transmission unit 30 includes a fiber 7, a plurality of fibers 13, and a fiber combiner 8 as a junction.
  • the laser light emitted from the laser housing 100 is emitted as a plurality of laser beams 11 via the optical transmission unit 30.
  • the laser housing 100 includes a plurality of high-power laser diodes (hereinafter, simply referred to as “LD”) 40 and one or more condensing optical elements as a laser light source.
  • LD high-power laser diodes
  • Each of the plurality of LD40s emits a laser beam.
  • one or more condensing optical elements are composed of a collimating lens 2, a beam expander 5, and a condensing lens 6. With these condensing optical elements, the laser light emitted from the plurality of LD40s is condensed and incident on one end of the optical transmission unit 30 (left side in the figure).
  • the multiple LD40s have LD chips contained in a ⁇ 9.0 package and have high heat dissipation performance.
  • the LD40 is housed in the holder 1a.
  • the collimating lens 2 is housed in the holder 2a.
  • collimated light having a desired beam profile can be obtained.
  • the positional relationship between the plurality of LD40s and the collimating lens 2 is fixed by YAG laser welding between the holder 1a and the holder 2a via the connecting pipe 3.
  • the collimated plurality of laser beams 4 reduce the beam diameter by the beam expander 5.
  • the plurality of laser beams 4 are focused on the end face of the fiber 7 by the condenser lens 6 and coupled to the fiber core.
  • the laser housing 100 is composed of a plurality of LD40s and one or more condensing optical elements (collimating lens 2, beam expander 5, condensing lens 6). That is, the laser device 50 includes a plurality of LD40s, one or more condensing optical elements, and an optical transmission unit 30.
  • the optical transmission unit 30 incidents the laser light emitted from the plurality of LD40s from one end and emits the laser light from the other end.
  • one end refers to the left end of the optical transmission unit 30 (the left end of the fiber 7), and the other end is the right end of the optical transmission unit 30. Refers to a portion (the right end of the fiber 13).
  • the fiber 7 has a portion that is one and becomes one end (left end).
  • the plurality of fibers 13 have a portion that is two or more and becomes the other end portion (right end portion).
  • the fiber combiner 8 has a portion opposite to one end of the fiber 7 (the right end of the fiber 7) and a portion opposite the other end of the plurality of fibers 13 (fiber). Connect with the left end of 13).
  • the fiber 7 is connected to the plurality of fibers 10 inside the fiber combiner 8 via the fusion splicer 9.
  • the fiber 7 has a length of, for example, about 30 m.
  • the fiber combiner 8 has a plurality of fibers 10 combined into one end by heating with a burner or the like.
  • the core and clad of the plurality of fibers 10 can be tapered. Flatten the end of the fiber thinned on the taper. In this way, it is possible to fuse this with the right end of the fiber 7.
  • the plurality of fibers 10 may be used as the fiber combiner 8.
  • a part of the laser beam leaks at the fusion part of the fiber combiner 8 due to the fusion loss.
  • the fiber combiner 8 is housed in a metal package. Efficient heat dissipation can be achieved by fixing the metal package to the heat sink.
  • the laser light propagated to the plurality of fibers 10 is emitted as the laser light 11 from the plurality of fibers 10.
  • the laser beam 11 can be emitted in any direction.
  • the cross section of the fiber 7 is as shown in the fiber cross section 7b.
  • the cross section of the plurality of fibers 10 is as shown in the plurality of fiber cross sections 10b. These cross sections will be described later with reference to FIGS. 8A to 8G.
  • the underwater optical wireless communication device 51 includes a laser device 50.
  • the underwater optical wireless communication device 51 is used underwater and transmits a signal by a laser beam to perform communication.
  • the underwater optical wireless communication device 51 is a mobile body that moves underwater.
  • the underwater optical wireless communication device 51 communicates with, for example, an optical communication device fixed in the sea.
  • the underwater optical wireless communication device 51 includes an AUV (Autonomous Underwater Vehicle).
  • the underwater optical wireless communication device 51 when the underwater optical wireless communication device 51 receives the communication light emitted from the optical communication device, optical communication is performed between the optical communication device and the underwater optical wireless communication device 51, and the underwater optical wireless communication device 51 is performed.
  • the optical communication device can perform optical communication between the underwater optical wireless communication device 51 and the optical communication device.
  • Electromagnetic waves have a large amount of attenuation in water and a short propagation distance. Therefore, for wireless communication underwater, sound waves with a long propagation distance are generally used. On the other hand, among electromagnetic waves, visible light has a relatively small amount of attenuation in water. Therefore, by receiving the digitally modulated light emitted from one device by the photodiode or photomultiplier tube built in the other device, wireless communication is performed between the two devices.
  • the end of the fiber 13 is cleaved and smoothed. Then, as shown in FIG. 4B, the emission angles of the fibers 13 are adjusted and arranged.
  • the laser beams 41, 42, and 43 are composed of three fibers 13, and emits laser beams 41, 42, and 43, respectively.
  • the communicable distance is L, and communication is possible within the emission range of the illustrated laser beams 41, 42, and 43.
  • FIG. 5 is a diagram showing an example of a fiber combiner.
  • FIG. 1 an example in which one laser beam is divided into a plurality of laser beams is shown.
  • the present invention is not limited to this, and a plurality of laser beams may be aggregated into one laser beam.
  • the one corresponding to the fiber 7 corresponds to the plurality of fibers 14, and the one corresponding to the plurality of fibers 13 corresponds to the fiber 17.
  • the fiber combiner 8 may be something like the fiber combiner 16.
  • the diameter of the plurality of fibers 10 was configured to be constant.
  • the diameter of the plurality of fibers 15 is configured to become smaller as it approaches the fiber 17.
  • the fibers of the fiber combiner are bundled, melted, stretched, adjusted to an outer diameter or core diameter close to the fiber to be connected, and then fused.
  • FIG. 6 is a diagram showing a state in which a plurality of LD40s are arranged.
  • the LD module 20 in which nine LD40s (LD40a to LD40i) are arranged is configured.
  • the LD 40s are arranged in a tile shape with an interval D of 3 ⁇ 3.
  • LD40a, LD40b, LD40c are arranged from the left in the upper part
  • LD40d, LD40e, LD40f are arranged from the left in the middle part
  • LD40g, LD40h, LD40i are arranged from the left in the lower part.
  • the LD40 inside the laser housing 100 is housed in a ⁇ 9.0 package and is housed in the holder 1a, there is a lower limit to the arrangement interval depending on the dimensions of the holder 1a.
  • the LD40s are arranged in a tile shape having a spacing D1 of 3 ⁇ 3, and the optical axis of the central LD40e and the optical axis of the fiber 7 are aligned with each other.
  • the distances from the central LD40e to the four LD40s (LD40b, d, f, h) adjacent to each other in the vertical and horizontal directions are approximately D1.
  • FIG. 7 is a diagram showing an incident angle and a laser beam intensity.
  • the relationship between the incident angle and the laser beam intensity is as shown in FIG. The distribution is such that the type + center becomes a little stronger.
  • the light intensity in the central portion is increased by the central LD40e, and the donut-shaped light intensity is increased by the eight LD40s around the LD40e.
  • the laser light intensity varies due to the restriction of the arrangement of the plurality of LD40s in the product design. Further, even if there is only one LD40, the intensity distribution will be a mountain-shaped distribution with a strong central intensity, and the laser beam intensity will also vary.
  • the incident NA of the laser beam incident on the fiber has a correlation with the emitted NA. Therefore, the laser beam intensity with respect to the emission angle from the fiber has a far field pattern that reflects the incident NA.
  • the intensity of the laser light emitted from the multiple port sides of the fiber combiner 8 was observed to vary. This is because the modes inside the fiber are not uniform.
  • the cross section of the fiber 7 is as shown in the fiber cross section 7b.
  • the cross section of the plurality of fibers 10 is as shown in the plurality of fiber cross sections 10b.
  • the fiber has a polygonal core cross-sectional structure, and the fiber combiner 8 and the fiber 7 using the fiber having a circular core cross-sectional structure are fused and connected.
  • the fiber combiner 8 is arranged so that the cores of the plurality of fibers 13 are accommodated in the cores of the fiber 7 having a polygonal cross section, and the cores of the fiber 7 and the cores of the plurality of fibers 13 are fused and connected. be. Further, the cross-sectional area of the core of the fiber 7 is larger than the cross-sectional area of any one of the plurality of fibers 13.
  • a specific description will be given.
  • FIG. 8A to 8G are views showing a cross-sectional view of the fiber.
  • the cross section shape of the core 71a is circular.
  • the cross section shape of the core 71b is rectangular.
  • the cross section shape of the core 71c is a hexagon.
  • the plurality of fiber cross sections 10a of the plurality of fibers 10 there are seven cores 101a, and the cross-sectional shape thereof is circular. Further, in the fiber combiner 8, seven cores 101a are arranged so as to fit in the core 71a of the fiber 7. Specifically, when the fusion connection is performed, the seven cores 101a are contained in the circle of the cores 71a. In the present embodiment, the core diameter of the plurality of fibers 10 and the core diameter of the plurality of fibers 13 are the same. When the ones of FIGS.
  • the fiber combiner 8 is arranged so that the cores of the plurality of fibers 13 are contained in the cores 71a of the fiber 7, and the cores 71a of the fiber 7 and the cores of the plurality of fibers 13 are arranged. Will be fused and connected. By doing so, the intensity of the laser beam does not vary at the fused and connected portions.
  • the cross section shape thereof is circular.
  • nine cores 101b are arranged so as to fit in the core 71b of the fiber 7. Specifically, when the fusion connection is performed, the nine cores 101b are contained in the rectangle of the core 71b.
  • the core diameter of the plurality of fibers 10 and the core diameter of the plurality of fibers 13 are the same.
  • the fiber combiner 8 is arranged so that the cores of the plurality of fibers 13 are contained in the cores 71b of the fiber 7, and the cores 71b of the fiber 7 and the cores of the plurality of fibers 13 are arranged. Will be fused and connected. By doing so, the intensity of the laser beam does not vary at the fused and connected portions.
  • the cross section shape of the plurality of fibers 10 is not limited to a circular shape, but may be a polygonal shape.
  • the diameter of the core 71a of the fiber 7 is 400 ⁇ m
  • the diameter of the core 101a of the plurality of fibers 10 is 105 ⁇ m
  • the diameter of the core of the fiber 13 is 105 ⁇ m. That is, the diameter (cross-sectional area) of the core 71a of the fiber 7 is larger than the diameter (cross-sectional area) of the core of the fiber 13.
  • the diameter of the core 71a of the fiber 7 is set to 200 ⁇ m
  • the diameter of the core 101a of the plurality of fibers 10 is changed to 50 to 105 ⁇ m
  • the fiber 13 is used.
  • the diameter of the core can be 105 ⁇ m.
  • the larger the fiber diameter the higher the manufacturing cost of the fiber. Therefore, it is desirable to make the fiber diameter as small as possible.
  • the cross-sectional area of the core 71b of the fiber 7 is larger than the cross-sectional area of the core of the fiber 13.
  • the cross-sectional area of the core 71c of the fiber 7 is larger than the cross-sectional area of the core of the fiber 13.
  • the fiber 7 When the core cross-sectional structure of the fiber 7 is polygonal, the fiber 7 has a mode scramble effect. Therefore, the laser beam emitted from the fiber 7 is more likely to be uniformized as compared with the case where the core cross-sectional structure of the fiber 7 is circular.
  • the optical transmission unit 30 is configured by the combination of FIGS. 8B and 8E. 8A to 8G illustrate that the core cross-sectional structure of the fiber 7 is rectangular or hexagonal, but any fiber having a mode scramble effect may be used.
  • the fiber 7 having a polygonal cross-sectional shape having a mode scramble effect is used, and the fiber combiner 8 is set so that the cores of the plurality of fibers 13 are contained in the core of the fiber 7 having a polygonal cross-sectional shape. Since they are arranged, it is possible to suppress variations in the output of the laser beam emitted from the plurality of fiber sides of the fiber combiner 8. This makes it possible to emit a laser beam having a uniform beam profile in multiple directions, which is useful for a device that emits laser light in multiple directions.
  • a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space.
  • the device can efficiently fill the space. As described above, in the present embodiment, it is possible to suppress the variation in the output of the plurality of emitted laser beams for the device that divides and uses one laser beam into a plurality of parts.
  • the laser apparatus 50 according to the second embodiment will be described.
  • the mode inside the fiber 7 is made uniform to further reduce the intensity variation of the laser beam emitted from the plurality of ports of the fiber combiner 8.
  • the laser housing 100 has a plurality of LD40s, and one or more condensing optical elements (collimating lens 2, beam expander 5, and condensing). It was equipped with a lens 6).
  • the laser housing 100 further includes a diffractive optical element 12.
  • Other configurations are the same as those of the first embodiment, and the underwater optical wireless communication device 51 includes the laser device 50 according to the second embodiment.
  • the cross section of the fiber 7 is defined as the fiber cross section 7b, and the cross section of the plurality of fibers 10 is described as the plurality of fiber cross sections 10b. It may be a combination of a fiber cross section 7c and a plurality of fiber cross sections 10c, or may be another combination.
  • FIG. 9 is a diagram showing a laser housing according to the second embodiment.
  • the diffractive optical element 12 is arranged between the beam expander 5 and the condenser lens 6.
  • a two-dimensional transmission type diffractive optical element designed as a homogenizer in which the intensity distribution becomes uniform at the time of laser focusing when the designated condenser lens 6 is used before being incident on the condenser lens 6.
  • An optical element 12 is arranged.
  • the beam profile of the collimated laser light before the condenser lens 6 is, for example, the donut mode (beam intensity distribution 31)
  • the beam profile is shaped into the collimated laser light having a top hat shape (beam intensity distribution 32). can do.
  • Uniform laser light can be fiber-coupled.
  • the beam profile of the laser beam incident on one end of the optical transmission unit 30 is focused in the shape of a top hat.
  • the beam profile is shaped into a top hat shape by the beam homogenizer optical system.
  • the beam profile is shaped into a top hat shape by using the diffractive optical element 12 as described in FIG.
  • the beam homogenizer optical system may be shaped into a top hat shape by using a DOE (Diffractive Optical Elements) beam shaper, or may be shaped into a top hat shape by using a fly-eye lens. It may be shaped into a top hat shape.
  • DOE diffractive Optical Elements
  • the laser beam incident on the fiber 7 is configured to be incident on the fiber combiner 8 from the fiber 7 without going out of the fiber.
  • the fiber 7 is divided into two fibers. Then, the laser light is once emitted from the fiber 7 before being incident on the fiber combiner 8, and the emitted laser light is condensed by the condensing optical element and then incident on the fiber 7 again.
  • Other configurations are the same as those of the first embodiment and the second embodiment.
  • the configuration is such that the middle of the path of the fiber 7 is divided. Then, a condensing optical element is arranged between the divided left fiber 7 and the right fiber 7.
  • the condensing optical element may be composed of a plurality of condensing optical elements (collimating lens 2, beam expander 5, condensing lens 6, etc.), or one condensing optical element. It may be configured.
  • the laser light emitted from the laser housing 100 is incident on the fiber 7. After that, the laser light once emitted from the fiber 7 (left side) is condensed by the condensing optical element and is incident on the fiber 7 (right side) again. After that, the laser beam is incident on the fiber combiner 8 from the fiber 7.
  • the cross-sectional shape of the fiber 7 divided into left and right may be a rectangular shape or a polygon such as the core 71b, or one may be a circular shape such as the core 71a.
  • the fiber 7 is arranged in a straight line or an arbitrary curve.
  • the fiber 7 is configured to be bent a plurality of times in an S shape.
  • Other configurations are the same as those of the first embodiment to the third embodiment.
  • FIG. 10 is a diagram showing a fiber according to a fourth embodiment.
  • the fiber 7 is bent so as to draw a curve of an angle ⁇ with a radius of curvature R, and then, on the opposite side, the fiber 7 is bent so as to draw a curve of an angle ⁇ with a radius of curvature R.
  • the fiber 7 is bent in an S shape. By repeating this, the fiber 7 has a configuration in which the fiber 7 is bent a plurality of times in an S shape.
  • the higher-order mode can be converted into the radiation mode.
  • the laser beam in the radiation mode hits the coating or the like arranged outside the fiber, is absorbed, and generates heat. Therefore, the periphery is covered with a metal housing to absorb the leaked laser beam. Clad mode In order to actively extract light, contacting an object with a refractive index higher than that of the clad with the clad increases the extraction efficiency. Even if the fiber is repeatedly bent in the S order, the extraction efficiency is improved.
  • the underwater optical wireless communication device 51 has been described as an example of the device provided with the laser device 50.
  • the device provided with the laser device 50 is not limited to this.
  • the laser processing device 52 will be illustrated and described as an example of the device including the laser device 50.
  • Other configurations are the same as those of the first to fourth embodiments.
  • the laser processing device 52 includes a laser device 50 and a laser output unit 62.
  • the laser processing apparatus 52 includes a laser apparatus 50 as shown in FIGS. 1 to 3, and is assumed to correspond to the plurality of fibers 13 in FIG. 1 and has 3 on the output side. It is equipped with a book fiber.
  • laser beams 63, 64, and 65 are emitted from each fiber, respectively.
  • the laser processing device 52 simultaneously emits laser light in a plurality of directions to perform laser welding.
  • the output side is not limited to the one provided with three fibers, and a plurality of fibers may be arranged at equal intervals. However, if the number of lines is increased too much, the output per line will decrease, so it is necessary to divide the number so that laser processing can be performed.
  • the fiber 7 having a polygonal cross-sectional shape having a mode scramble effect is used, and the fiber combiner 8 is set so that the cores of the plurality of fibers 13 are contained in the core of the fiber 7 having a polygonal cross-sectional shape. Since they are arranged, it is possible to suppress variations in the output of the laser beam emitted from the plurality of fiber sides of the fiber combiner 8. This makes it possible to emit a laser beam having a uniform beam profile in multiple directions, which is useful for a device that emits laser light in multiple directions. In a laser processing apparatus, for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
  • FIG. 12 is a diagram showing a laser housing according to a modified example.
  • the diffractive optical element 12 is arranged between the beam expander 5 and the condenser lens 6.
  • the present invention is not limited to this, and the diffractive optical element 12 may be arranged between the condenser lens 6 and the fiber 7.
  • the beam profile at the time of focusing can be made uniform (beam intensity distribution 31). Is the beam intensity distribution 32).
  • it can be realized by eliminating the condenser lens 6 and arranging a diffractive optical element designed to collect light when a collimated laser beam is incident.
  • the laser device includes a plurality of laser light sources, an optical transmission unit, and one or more condensing optical elements.
  • the plurality of laser light sources emit laser light.
  • the optical transmission unit receives the laser light emitted from the plurality of laser light sources from one end and emits the laser light from the other end.
  • the one or more condensing optical elements condense the laser light emitted from the plurality of laser light sources and make it incident on one end of the optical transmission unit.
  • the optical transmission unit includes a first fiber, a plurality of second fibers, and a junction.
  • the first fiber has a portion that is one and is one end.
  • the second fiber has two or more portions that are the ends of the other.
  • the junction connects a portion of the first fiber opposite to one end of the first fiber and a portion of the plurality of second fibers opposite to the other end of the fiber.
  • the joints are arranged so that the cores of the plurality of second fibers are contained in the cores of the first fiber having a polygonal cross-sectional shape, and the cores of the first fiber and the cores of the plurality of second fibers are fused. It is connected.
  • the first fiber having a polygonal cross-sectional shape having a mode scramble effect is used, and the joint portion has a plurality of first fibers in the core of the first fiber having a polygonal cross-sectional shape. Since the cores of the two fibers are arranged so as to fit into each other, it is possible to suppress variations in the output of laser light emitted from a plurality of fiber sides of the fiber combiner (joint portion). As a result, the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions.
  • a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space.
  • the wireless communication device can efficiently fill the space.
  • a laser processing apparatus for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
  • the laser device in a laser device to which a fiber combiner is applied to divide one laser light into a plurality of laser lights and emit the laser light, the laser light emitted from a plurality of fiber sides of the fiber combiner. The variation of the output of is suppressed.
  • the beam profile of the laser light incident on one end of the optical transmission unit is focused in the shape of a top hat.
  • the laser device since the intensity of the laser light incident on one end of the optical transmission unit is made uniform, the output of the laser light emitted from the plurality of fiber sides of the fiber combiner is made uniform. Variation can be suppressed.
  • the beam profile is shaped into a top hat shape by the beam homogenizer optical system.
  • the laser apparatus since the intensity of the laser light incident on one end of the optical transmission unit is made uniform, the output of the laser light emitted from the plurality of fiber sides of the fiber combiner is made uniform. Variation can be suppressed.
  • the beam profile is shaped into a top hat shape by using a diffractive optical element.
  • the laser apparatus since the intensity of the laser light incident on one end of the optical transmission unit is made uniform, the output of the laser light emitted from the plurality of fiber sides of the fiber combiner is made uniform. Variation can be suppressed.
  • laser light is emitted from the first fiber and the emitted laser light is condensed before being incident on the junction.
  • the light is collected by an optical element and then incident again on the first fiber.
  • the analytical laser apparatus since the laser light is collected again by the condensing optical element, it is possible to suppress the variation in the output of the laser light emitted from the plurality of fiber sides of the fiber combiner.
  • the first fiber is bent a plurality of times in an S shape.
  • the analytical laser apparatus since the higher-order mode can be converted into the radiation mode, the variation in the output of the laser light emitted from the plurality of fiber sides of the fiber combiner can be suppressed.
  • the underwater optical wireless communication device includes the laser device according to any one of items 1 to 7.
  • the underwater optical wireless communication device is used underwater and transmits a signal by a laser beam to perform communication.
  • the underwater optical wireless communication device described in item 8 variation in the output of laser light emitted from a plurality of fiber sides of the fiber combiner (joint portion) can be suppressed. As a result, the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions.
  • a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space is desired. The device can efficiently fill the space.
  • the laser processing apparatus includes the laser apparatus according to any one of paragraphs 1 to 7.
  • the laser processing device simultaneously emits laser light in a plurality of directions to perform laser welding.
  • the laser processing apparatus described in Section 9
  • variations in the output of laser light emitted from a plurality of fiber sides of a fiber combiner (joint portion) can be suppressed.
  • the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions.

Abstract

One fiber (7) has a part which becomes one end. At least two fibers (13) have parts which respectively become other ends. A fiber combiner (8) connects a part opposite to the part of the fiber (7) which becomes one end and parts opposite to the parts of the fibers (13) which become the respective other ends. The fiber combiner (8) is configured such that cores of the fibers (13) are arrayed so as to fit into a core of the fiber (7) having a polygonal cross-sectional shape, and the core of the fiber (7) and the cores of the fibers (13) are fusion-spliced.

Description

レーザ装置、水中光無線通信装置およびレーザ加工装置Laser equipment, underwater optical wireless communication equipment and laser processing equipment
 本開示は、レーザ装置、水中光無線通信装置およびレーザ加工装置に関する。 This disclosure relates to a laser device, an underwater optical wireless communication device, and a laser processing device.
 従来、レーザ光源からファイバを介してレーザ光を出射させるレーザ装置が知られている。このようなレーザ装置に用いられるファイバとして、特許文献1に、モードスクランブル効果のある矩形ファイバを非矩形ファイバに融着接続させたものが記載されている。特許文献1では、非矩形ファイバより均一なビームプロファイルを持つレーザ光を得ることができる。また、特許文献2には、複数のファイバをテーパ部で束ねて1本のファイバに結合させるものが記載されている。特許文献2では、多角形のファイバを使用してファイバコンバイナを構成し、コンバイナ結合部の発熱を抑える方法が提案されている。 Conventionally, a laser device that emits a laser beam from a laser light source via a fiber is known. As a fiber used in such a laser device, Patent Document 1 describes a rectangular fiber having a mode scramble effect fused and connected to a non-rectangular fiber. In Patent Document 1, it is possible to obtain a laser beam having a more uniform beam profile than a non-rectangular fiber. Further, Patent Document 2 describes a plurality of fibers bundled at a tapered portion and coupled to one fiber. Patent Document 2 proposes a method of constructing a fiber combiner using polygonal fibers and suppressing heat generation at the combiner coupling portion.
 ファイバコンバイナとは、複数のファイバを束ねて溶融、延伸させ、1本のファイバと融着することで作製される光学部品のことである。複数本のファイバに入力したレーザ光を1本のファイバから出射させることができ、ファイバレーザのクラッド励起用光源を効率的に集める用途等で活用されている。また、ファイバコンバイナでは、逆方向すなわち1本のファイバに入力したレーザ光を複数本のファイバから出射させることもできる。 A fiber combiner is an optical component manufactured by bundling a plurality of fibers, melting and stretching them, and fusing them with one fiber. Laser light input to a plurality of fibers can be emitted from one fiber, and is utilized in applications such as efficiently collecting light sources for clad excitation of a fiber laser. Further, in the fiber combiner, laser light input in the opposite direction, that is, one fiber, can be emitted from a plurality of fibers.
特開2009-198680号公報Japanese Unexamined Patent Publication No. 2009-198680 特開2015-040992号公報Japanese Patent Application Laid-Open No. 2015-040992
 このとき、ファイバから出射されるレーザ光のビームプロファイルは、ファイバに入射されるレーザ光のビームプロファイルと相関を持つ。すなわち、入射角が大きい高NA(開口数)から入射されたレーザ光はファイバ出射時の高NA成分となり、入射角が小さい低NAから入射されたレーザ光はファイバ出射時の低NA成分となる傾向がある。ファイバ内をレーザ光が伝搬するにつれて、この傾向は緩和されて均一化されていく。しかしながら、十分なファイバ長を確保できない場合や、ファイバコア径が大きな場合には均一化されにくい傾向がある。 At this time, the beam profile of the laser beam emitted from the fiber has a correlation with the beam profile of the laser beam incident on the fiber. That is, the laser light incident from a high NA (numerical aperture) having a large incident angle has a high NA component at the time of fiber exit, and the laser light incident from a low NA having a small incident angle has a low NA component at the time of fiber exit. Tend. As the laser beam propagates through the fiber, this tendency is alleviated and homogenized. However, when a sufficient fiber length cannot be secured or when the fiber core diameter is large, it tends to be difficult to make them uniform.
 複数のレーザ光源から出射された各々のレーザ光を1本のファイバに結合させるファイバ結合型レーザ装置において、レーザ光源間の発光点の間隔により、レーザ光の入射NAが制限される。このレーザ装置のファイバをファイバコンバイナのような接合部に接続して複数のファイバで分岐させたとき、各々のファイバ出力にばらつきが生じ、その後も均一化されず、結果として、各々のファイバから出射されるレーザ光の出力にばらつきが生じるという問題があった。 In a fiber-coupled laser device that combines each laser beam emitted from a plurality of laser light sources into one fiber, the incident NA of the laser beam is limited by the distance between the emission points between the laser light sources. When the fibers of this laser device are connected to a junction such as a fiber combiner and branched by multiple fibers, the output of each fiber varies and is not uniformed thereafter, resulting in emission from each fiber. There is a problem that the output of the laser beam to be generated varies.
 本開示は、係る実情に鑑みてなされたものであり、複数本のファイバから出射されるレーザ光の出力のばらつきを抑えることができるレーザ装置を提供することを一つの目的とする。 The present disclosure has been made in view of the actual circumstances, and one purpose of the present disclosure is to provide a laser device capable of suppressing variations in the output of laser light emitted from a plurality of fibers.
 本開示のある局面に従うレーザ装置は、複数のレーザ光源と、光伝送部と、1つ以上の集光光学素子とを備える。複数のレーザ光源は、レーザ光を出射する。光伝送部は、複数のレーザ光源から出射されたレーザ光を一方の端部から入射し他方の端部から出射する。1つ以上の集光光学素子は、複数のレーザ光源から出射されたレーザ光を集光して光伝送部の一方の端部に入射させる。光伝送部は、第1ファイバと、第2ファイバと、接合部とを含む。第1ファイバは、1本であって一方の端部となる部分を有する。第2ファイバは、2本以上であって他方の端部となる部分を有する。接合部は、第1ファイバの一方の端部となる部分の反対側の部分と、複数の第2ファイバの他方の端部となる部分の反対側の部分とを繋ぐ。接合部は、断面形状が多角形の第1ファイバのコアの中に複数の第2ファイバのコアが収まるように配列して、第1ファイバのコアと複数の第2ファイバのコアとを融着接続してある。 A laser device according to an aspect of the present disclosure includes a plurality of laser light sources, an optical transmission unit, and one or more condensing optical elements. The plurality of laser light sources emit laser light. The optical transmission unit receives the laser light emitted from the plurality of laser light sources from one end and emits the laser light from the other end. The one or more condensing optical elements condense the laser light emitted from the plurality of laser light sources and make it incident on one end of the optical transmission unit. The optical transmission unit includes a first fiber, a second fiber, and a junction. The first fiber has a portion that is one and is one end. The second fiber has two or more portions that are the ends of the other. The junction connects a portion opposite to one end of the first fiber and a portion opposite to the other end of the plurality of second fibers. The joints are arranged so that the cores of the plurality of second fibers are contained in the cores of the first fiber having a polygonal cross-sectional shape, and the cores of the first fiber and the cores of the plurality of second fibers are fused. It is connected.
 本開示の別の局面に従う水中光無線通信装置は、レーザ装置を備える。水中光無線通信装置は、水中で使用され、レーザ光により信号を送信して通信を行う。 The underwater optical wireless communication device according to another aspect of the present disclosure includes a laser device. The underwater optical wireless communication device is used underwater and transmits a signal by a laser beam to perform communication.
 本開示の別の局面に従うレーザ加工装置は、レーザ装置を備える。レーザ加工装置は、レーザ光を複数方向に同時に出射してレーザ溶接する。 A laser processing device according to another aspect of the present disclosure includes a laser device. The laser processing device simultaneously emits laser light in a plurality of directions to perform laser welding.
 本開示によれば、複数本のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。これにより、レーザ光が均一化されるため、多方向にレーザ光を出射する装置に有用である。例えば、水中光通信装置においては、通信不可能エリアを低減させるために、水中空間全体に均一なパワー及びビームプロファイルを有するレーザ光を放射できるレーザ光源が望まれているが、本開示の水中光無線通信装置は、空間を効率よく充填することができる。レーザ加工装置においては、例えば、120度間隔の円周に均一なビームプロファイル、レーザ光パワーを有するレーザ光を照射させることができるため、円筒部品の溶接等を行う場合に有用である。 According to the present disclosure, it is possible to suppress variations in the output of laser light emitted from the side of a plurality of fibers. As a result, the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions. For example, in an underwater optical communication device, in order to reduce a non-communicable area, a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space is desired. The wireless communication device can efficiently fill the space. In a laser processing apparatus, for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
第1実施形態に係るレーザ装置を示す図である。It is a figure which shows the laser apparatus which concerns on 1st Embodiment. レーザ筐体を示す図である。It is a figure which shows the laser housing. LDを示す図である。It is a figure which shows LD. 水中光無線通信装置の出力状態を示す図である。It is a figure which shows the output state of the underwater optical wireless communication device. 水中光無線通信装置の出力状態を示す図である。It is a figure which shows the output state of the underwater optical wireless communication device. ファイバコンバイナの一例を示す図である。It is a figure which shows an example of a fiber combiner. 複数のLDを配置した状態を示す図である。It is a figure which shows the state which arranged a plurality of LDs. 入射角とレーザ光強度を示す図である。It is a figure which shows the incident angle and the laser beam intensity. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. ファイバの断面図を示す図である。It is a figure which shows the sectional view of the fiber. 第2実施形態に係るレーザ筐体を示す図である。It is a figure which shows the laser housing which concerns on 2nd Embodiment. 第4実施形態に係るファイバを示す図である。It is a figure which shows the fiber which concerns on 4th Embodiment. 第5実施形態に係るレーザ加工装置の出力状態を示す図である。It is a figure which shows the output state of the laser processing apparatus which concerns on 5th Embodiment. 第5実施形態に係るレーザ加工装置の出力状態を示す図である。It is a figure which shows the output state of the laser processing apparatus which concerns on 5th Embodiment. 変形例に係るレーザ筐体を示す図である。It is a figure which shows the laser housing which concerns on the modification.
 以下、各実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一又は相当部分については、同一符号を付してその説明は繰り返さない。 Hereinafter, each embodiment will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 [第1実施形態]
 以下、第1実施形態に係る水中光無線通信装置51およびレーザ装置50について説明する。第1実施形態においては、水中光無線通信装置51がレーザ装置50を備える構成となっている。
[First Embodiment]
Hereinafter, the underwater optical wireless communication device 51 and the laser device 50 according to the first embodiment will be described. In the first embodiment, the underwater optical wireless communication device 51 is configured to include the laser device 50.
 図1は、第1実施形態に係るレーザ装置50を示す図である。図2は、レーザ筐体100を示す図である。図3は、LD40を示す図である。図4A,図4Bは、水中光無線通信装置51の出力状態を示す図である。 FIG. 1 is a diagram showing a laser device 50 according to the first embodiment. FIG. 2 is a diagram showing a laser housing 100. FIG. 3 is a diagram showing LD40. 4A and 4B are diagrams showing an output state of the underwater optical wireless communication device 51.
 図1に示すように、レーザ装置50は、レーザ筐体100と光伝送部30とを備える。
 光伝送部30は、ファイバ7と、複数のファイバ13と、接合部としてのファイバコンバイナ8とを含む。本実施の形態においては、レーザ筐体100から出射されるレーザ光が光伝送部30を介して複数のレーザ光11として出射される構成となっている。
As shown in FIG. 1, the laser device 50 includes a laser housing 100 and an optical transmission unit 30.
The optical transmission unit 30 includes a fiber 7, a plurality of fibers 13, and a fiber combiner 8 as a junction. In the present embodiment, the laser light emitted from the laser housing 100 is emitted as a plurality of laser beams 11 via the optical transmission unit 30.
 図2に示すように、レーザ筐体100は、レーザ光源として複数のハイパワーレーザダイオード(以下、単に「LD」と称する)40と、1つ以上の集光光学素子とを備える。複数のLD40は、それぞれレーザ光を出射する。 As shown in FIG. 2, the laser housing 100 includes a plurality of high-power laser diodes (hereinafter, simply referred to as “LD”) 40 and one or more condensing optical elements as a laser light source. Each of the plurality of LD40s emits a laser beam.
 本実施の形態では、1つ以上の集光光学素子は、コリメートレンズ2、ビームエキスパンダー5、および集光レンズ6により構成される。これらの集光光学素子によって、複数のLD40から出射されたレーザ光を集光して光伝送部30の一方の端部(図の左側)に入射させる。 In the present embodiment, one or more condensing optical elements are composed of a collimating lens 2, a beam expander 5, and a condensing lens 6. With these condensing optical elements, the laser light emitted from the plurality of LD40s is condensed and incident on one end of the optical transmission unit 30 (left side in the figure).
 複数のLD40は、Φ9.0パッケージにLDチップが収められており、高い放熱性能を有する。図3に示すように、LD40はホルダ1aに収められている。コリメートレンズ2は、ホルダ2aに収められている。LD40とコリメートレンズ2の位置を微調整することで、所望のビームプロファイルを有するコリメート光を得ることができる。ホルダ1aとホルダ2a間は連結パイプ3を介して、それぞれYAGレーザ溶接することで、複数のLD40とコリメートレンズ2の位置関係が固定される。 The multiple LD40s have LD chips contained in a Φ9.0 package and have high heat dissipation performance. As shown in FIG. 3, the LD40 is housed in the holder 1a. The collimating lens 2 is housed in the holder 2a. By finely adjusting the positions of the LD40 and the collimated lens 2, collimated light having a desired beam profile can be obtained. The positional relationship between the plurality of LD40s and the collimating lens 2 is fixed by YAG laser welding between the holder 1a and the holder 2a via the connecting pipe 3.
 図2に戻り、コリメートされた複数のレーザ光4は、ビームエキスパンダー5によってビーム径を縮小させる。次に、複数のレーザ光4は、集光レンズ6によりファイバ7の端面に集光され、ファイバコアに結合する。 Returning to FIG. 2, the collimated plurality of laser beams 4 reduce the beam diameter by the beam expander 5. Next, the plurality of laser beams 4 are focused on the end face of the fiber 7 by the condenser lens 6 and coupled to the fiber core.
 レーザ筐体100は、複数のLD40および1つ以上の集光光学素子(コリメートレンズ2、ビームエキスパンダー5、集光レンズ6)で構成されている。つまり、レーザ装置50は、複数のLD40と、1つ以上の集光光学素子と、光伝送部30とを備える構成となっている。 The laser housing 100 is composed of a plurality of LD40s and one or more condensing optical elements (collimating lens 2, beam expander 5, condensing lens 6). That is, the laser device 50 includes a plurality of LD40s, one or more condensing optical elements, and an optical transmission unit 30.
 図1に戻り、光伝送部30は、複数のLD40から出射されたレーザ光を一方の端部から入射し他方の端部から出射する。ここで、図1において、「一方の端部」は、光伝送部30の左側の端部(ファイバ7の左側の端部)を指し、他方の端部は、光伝送部30の右側の端部(ファイバ13の右側の端部)を指している。 Returning to FIG. 1, the optical transmission unit 30 incidents the laser light emitted from the plurality of LD40s from one end and emits the laser light from the other end. Here, in FIG. 1, "one end" refers to the left end of the optical transmission unit 30 (the left end of the fiber 7), and the other end is the right end of the optical transmission unit 30. Refers to a portion (the right end of the fiber 13).
 ファイバ7は、1本であって一方の端部(左側の端部)となる部分を有する。複数のファイバ13は、2本以上であって他方の端部(右側の端部)となる部分を有する。 The fiber 7 has a portion that is one and becomes one end (left end). The plurality of fibers 13 have a portion that is two or more and becomes the other end portion (right end portion).
 ファイバコンバイナ8は、ファイバ7の一方の端部となる部分の反対側の部分(ファイバ7の右側の端部)と、複数のファイバ13の他方の端部となる部分の反対側の部分(ファイバ13の左側の端部)とを繋ぐ。 The fiber combiner 8 has a portion opposite to one end of the fiber 7 (the right end of the fiber 7) and a portion opposite the other end of the plurality of fibers 13 (fiber). Connect with the left end of 13).
 具体的に説明すると、ファイバ7は、融着部9を介してファイバコンバイナ8内部にある複数ファイバ10に接続されている。ファイバ7は、たとえば、30m程度の長さを有する。ファイバコンバイナ8は、複数ファイバ10をバーナーでの加熱等により片端が1本にまとめられている。 Specifically, the fiber 7 is connected to the plurality of fibers 10 inside the fiber combiner 8 via the fusion splicer 9. The fiber 7 has a length of, for example, about 30 m. The fiber combiner 8 has a plurality of fibers 10 combined into one end by heating with a burner or the like.
 なお、溶融加熱時に延伸応力を印加すれば、複数ファイバ10のコアおよびクラッドをテーパ状に細くすることができる。テーパ上に細くしたファイバ端を平面加工する。このようにして、これとファイバ7の右端間を融着することができる。なお、複数ファイバ10をファイバコンバイナ8としてもよい。 If draw stress is applied during melt heating, the core and clad of the plurality of fibers 10 can be tapered. Flatten the end of the fiber thinned on the taper. In this way, it is possible to fuse this with the right end of the fiber 7. The plurality of fibers 10 may be used as the fiber combiner 8.
 ファイバコンバイナ8の融着部では融着損失によりレーザ光の一部が漏れる。ハイパワーのレーザ光をファイバコンバイナ8に入力する場合、発熱により破損のおそれがある。そのため、ファイバコンバイナ8は金属パッケージ内に収められている。金属パッケージをヒートシンクに固定することで効率的に放熱できる。 A part of the laser beam leaks at the fusion part of the fiber combiner 8 due to the fusion loss. When a high-power laser beam is input to the fiber combiner 8, there is a risk of damage due to heat generation. Therefore, the fiber combiner 8 is housed in a metal package. Efficient heat dissipation can be achieved by fixing the metal package to the heat sink.
 複数ファイバ10に伝搬されたレーザ光は、複数ファイバ10からレーザ光11として出射される。複数ファイバ10の出射方向を調整することによって、任意の方向にレーザ光11を出射することができる。 The laser light propagated to the plurality of fibers 10 is emitted as the laser light 11 from the plurality of fibers 10. By adjusting the emission direction of the plurality of fibers 10, the laser beam 11 can be emitted in any direction.
 ファイバ7の断面は、ファイバ断面7bのようになっている。複数ファイバ10の断面は、複数ファイバ断面10bのようになっている。これらの断面については、図8A~図8Gを用いて後述する。 The cross section of the fiber 7 is as shown in the fiber cross section 7b. The cross section of the plurality of fibers 10 is as shown in the plurality of fiber cross sections 10b. These cross sections will be described later with reference to FIGS. 8A to 8G.
 図4Aに示すように、水中光無線通信装置51は、レーザ装置50を備える。水中光無線通信装置51は、水中で使用され、レーザ光により信号を送信して通信を行う。 As shown in FIG. 4A, the underwater optical wireless communication device 51 includes a laser device 50. The underwater optical wireless communication device 51 is used underwater and transmits a signal by a laser beam to perform communication.
 水中光無線通信装置51は、水中を移動する移動体である。水中光無線通信装置51は、たとえば、海中で固定された光通信装置と通信を行う。水中光無線通信装置51は、AUV(Autonomous Underwater Vehicle:自律型無人潜水機)を含む。 The underwater optical wireless communication device 51 is a mobile body that moves underwater. The underwater optical wireless communication device 51 communicates with, for example, an optical communication device fixed in the sea. The underwater optical wireless communication device 51 includes an AUV (Autonomous Underwater Vehicle).
 たとえば、光通信装置から発光された通信光を水中光無線通信装置51が受光することにより、光通信装置と水中光無線通信装置51との間において光通信を行うとともに、水中光無線通信装置51から発光された通信光を光通信装置が受光することにより、水中光無線通信装置51と光通信装置との間において光通信を行うことが可能なように構成される。 For example, when the underwater optical wireless communication device 51 receives the communication light emitted from the optical communication device, optical communication is performed between the optical communication device and the underwater optical wireless communication device 51, and the underwater optical wireless communication device 51 is performed. By receiving the communication light emitted from the optical communication device, the optical communication device can perform optical communication between the underwater optical wireless communication device 51 and the optical communication device.
 電磁波は水中での減衰量が大きく、伝搬距離が短い。そのため、水中での無線通信は、伝搬距離の長い音波が一般的である。一方で電磁波の中で可視光は水中の減衰量が比較的小さい。そこで、ある機器から発せられたデジタル変調光を、もう一方の機器に内蔵されたフォトダイオードや光電子増倍管で受光することで、2つの機器間で無線通信を行う。 Electromagnetic waves have a large amount of attenuation in water and a short propagation distance. Therefore, for wireless communication underwater, sound waves with a long propagation distance are generally used. On the other hand, among electromagnetic waves, visible light has a relatively small amount of attenuation in water. Therefore, by receiving the digitally modulated light emitted from one device by the photodiode or photomultiplier tube built in the other device, wireless communication is performed between the two devices.
 ファイバ13の終端をクリーブして平滑処理する。そして、図4Bに示すように、ファイバ13の出射角度を調整して並べる。 The end of the fiber 13 is cleaved and smoothed. Then, as shown in FIG. 4B, the emission angles of the fibers 13 are adjusted and arranged.
 このようにして、複数の方向に可視レーザ光を放出することができる。この例では、3つのファイバ13で構成され、それぞれ、レーザ光41,42,43を出射する。通信可能な距離はLであり、図示したレーザ光41,42,43の出射範囲内で通信が可能である。 In this way, visible laser light can be emitted in multiple directions. In this example, it is composed of three fibers 13, and emits laser beams 41, 42, and 43, respectively. The communicable distance is L, and communication is possible within the emission range of the illustrated laser beams 41, 42, and 43.
 このように、四方八方にレーザ光を出射することができるので、可視光が減衰しない距離であれば、送信機と受信機の位置調整を最小限にとどめて通信することができる。つまり、レーザ光の出射範囲が広いために、送信機に対する受信機の位置の自由度が高くなる。 In this way, since the laser light can be emitted in all directions, communication can be performed with the position adjustment of the transmitter and the receiver minimized as long as the visible light is not attenuated. That is, since the emission range of the laser beam is wide, the degree of freedom in the position of the receiver with respect to the transmitter is high.
 図5は、ファイバコンバイナの一例を示す図である。本実施の形態においては、図1に示したように、1つのレーザ光を複数のレーザ光に分ける例を示した。しかし、これに限らず、複数のレーザ光を1つのレーザ光に集約するようにしてもよい。この場合、ファイバ7に相当するものが複数のファイバ14に相当し、複数のファイバ13に相当するものがファイバ17に相当する。また、ファイバコンバイナ8は、ファイバコンバイナ16のようなものであってもよい。 FIG. 5 is a diagram showing an example of a fiber combiner. In the present embodiment, as shown in FIG. 1, an example in which one laser beam is divided into a plurality of laser beams is shown. However, the present invention is not limited to this, and a plurality of laser beams may be aggregated into one laser beam. In this case, the one corresponding to the fiber 7 corresponds to the plurality of fibers 14, and the one corresponding to the plurality of fibers 13 corresponds to the fiber 17. Further, the fiber combiner 8 may be something like the fiber combiner 16.
 図1の例においては、複数ファイバ10の径は一定となるように構成されていた。一方で、図5の例においては、複数ファイバ15の径はファイバ17に近づくにつれて小さくなるように構成される。ファイバコンバイナのファイバは、束ねて溶融させ引き伸ばし、接続したいファイバと近い外径あるいはコア径に調整してから融着させる。 In the example of FIG. 1, the diameter of the plurality of fibers 10 was configured to be constant. On the other hand, in the example of FIG. 5, the diameter of the plurality of fibers 15 is configured to become smaller as it approaches the fiber 17. The fibers of the fiber combiner are bundled, melted, stretched, adjusted to an outer diameter or core diameter close to the fiber to be connected, and then fused.
 図6は、複数のLD40を配置した状態を示す図である。図6に示すように、本実施の形態では、9つのLD40(LD40a~LD40i)を配置したLDモジュール20を構成する。LDモジュール20においては、LD40が間隔Dの3×3のタイル状に配置されている。具体的には、上部に左からLD40a,LD40b,LD40cを配置し、中部に左からLD40d,LD40e,LD40fを配置し、下部に左からLD40g,LD40h,LD40iを配置している。 FIG. 6 is a diagram showing a state in which a plurality of LD40s are arranged. As shown in FIG. 6, in the present embodiment, the LD module 20 in which nine LD40s (LD40a to LD40i) are arranged is configured. In the LD module 20, the LD 40s are arranged in a tile shape with an interval D of 3 × 3. Specifically, LD40a, LD40b, LD40c are arranged from the left in the upper part, LD40d, LD40e, LD40f are arranged from the left in the middle part, and LD40g, LD40h, LD40i are arranged from the left in the lower part.
 レーザ筐体100内部のLD40は、Φ9.0パッケージに収められ、それがホルダ1aに収められているため、ホルダ1aの寸法によって配置間隔に下限がある。 Since the LD40 inside the laser housing 100 is housed in a Φ9.0 package and is housed in the holder 1a, there is a lower limit to the arrangement interval depending on the dimensions of the holder 1a.
 本例では、LD40が間隔D1の3×3のタイル状に配置され、中央のLD40eの光軸とファイバ7の光軸を一致させる構成である。このとき、中央のLD40eから見て上下左右に隣接する4つのLD40(LD40b,d,f,h)までの距離は、おおよそD1となる。また、斜め方向に隣接する4つのLD40(LD40a,c,g,i)までの距離はおおよそ21/2×D1(=D2)となる。 In this example, the LD40s are arranged in a tile shape having a spacing D1 of 3 × 3, and the optical axis of the central LD40e and the optical axis of the fiber 7 are aligned with each other. At this time, the distances from the central LD40e to the four LD40s (LD40b, d, f, h) adjacent to each other in the vertical and horizontal directions are approximately D1. Further, the distance to four LD40s (LD40a, c, g, i) adjacent in the diagonal direction is approximately 2 1/2 × D1 (= D2).
 このことから、各々コリメートされた複数のレーザ光4は、集光レンズ6において、中心成分1つ、中心からD1離れた成分4つ、中心から21/2×D1(=D2)離れた成分4つとなる。したがって、集光レンズ6の中心からの距離が0,D1,21/2D1の成分に集中される。このような事情から、ファイバ7に入射される複数のレーザ光4は一部のNA(開口数)に集中することになる。 From this, each of the collimated plurality of laser beams 4 has one central component, four components D1 away from the center, and a component 2 1/2 × D1 (= D2) away from the center in the condenser lens 6. There will be four. Therefore, the distance from the center of the condenser lens 6 is concentrated on the components of 0, D1, 2, 1/2 D1. Due to such circumstances, the plurality of laser beams 4 incident on the fiber 7 are concentrated on a part of NA (numerical aperture).
 図7は、入射角とレーザ光強度を示す図である。上記のように、集光レンズ6の中心からの距離が0,D1,21/2D1の成分に集中された結果、入射角とレーザ光強度との関係は、図7に示すようなドーナツ型+中心が少し強くなる分布となる。中心部分の光強度が強くなるのは中央のLD40eによるものであり、ドーナツ型に光強度が強くなるのはLD40eの周囲の8つのLD40によるものである。 FIG. 7 is a diagram showing an incident angle and a laser beam intensity. As described above, as a result of the distance from the center of the condenser lens 6 being concentrated on the components of 0, D1, 2 1/2 D1, the relationship between the incident angle and the laser beam intensity is as shown in FIG. The distribution is such that the type + center becomes a little stronger. The light intensity in the central portion is increased by the central LD40e, and the donut-shaped light intensity is increased by the eight LD40s around the LD40e.
 このように、LDモジュール20においては、製品設計上の複数のLD40の配置の制約により、レーザ光強度のばらつきが出てしまうことになる。また、仮に、LD40が1つであったとしても、強度分布は、中央の強度が強い山形の分布となり、やはり、レーザ光強度のばらつきが出る。 As described above, in the LD module 20, the laser light intensity varies due to the restriction of the arrangement of the plurality of LD40s in the product design. Further, even if there is only one LD40, the intensity distribution will be a mountain-shaped distribution with a strong central intensity, and the laser beam intensity will also vary.
 一般にファイバに入射されたレーザ光の入射NAは出射NAと相関を持つ。したがって、ファイバからの出射角に対するレーザ光強度は、入射NAが反映されたファーフィールドパターンを持つ。 Generally, the incident NA of the laser beam incident on the fiber has a correlation with the emitted NA. Therefore, the laser beam intensity with respect to the emission angle from the fiber has a far field pattern that reflects the incident NA.
 ファイバ7とファイバコンバイナ8の1ポート側を融着接続したときに、ファイバコンバイナ8の複数ポート側から出射されるレーザ光は強度にばらつきが観測された。これは、ファイバ内部のモードが均一でないためである。 When the fiber 7 and the one port side of the fiber combiner 8 were fused and connected, the intensity of the laser light emitted from the multiple port sides of the fiber combiner 8 was observed to vary. This is because the modes inside the fiber are not uniform.
 以下、ファイバ7内部のモードを均一にさせてファイバコンバイナ8の複数ポート側から出射されるレーザ光の強度バラツキを低減する手法を提案する。 Hereinafter, we propose a method of making the mode inside the fiber 7 uniform to reduce the intensity variation of the laser light emitted from the plurality of ports of the fiber combiner 8.
 図1を用いて説明したように、ファイバ7の断面は、ファイバ断面7bのようになっている。複数ファイバ10の断面は、複数ファイバ断面10bのようになっている。 As described with reference to FIG. 1, the cross section of the fiber 7 is as shown in the fiber cross section 7b. The cross section of the plurality of fibers 10 is as shown in the plurality of fiber cross sections 10b.
 このように、ファイバ7のコア断面構造が多角形であるファイバとし、コア断面構造が円形であるファイバを使用したファイバコンバイナ8とファイバ7とを融着接続させている。 As described above, the fiber has a polygonal core cross-sectional structure, and the fiber combiner 8 and the fiber 7 using the fiber having a circular core cross-sectional structure are fused and connected.
 ファイバコンバイナ8は、断面形状が多角形のファイバ7のコアの中に複数のファイバ13のコアが収まるように配列して、ファイバ7のコアと複数のファイバ13のコアとを融着接続してある。また、ファイバ7のコアの断面積は、複数のファイバ13のいずれかのコアの断面積よりも大きい。以下、具体的に説明する。 The fiber combiner 8 is arranged so that the cores of the plurality of fibers 13 are accommodated in the cores of the fiber 7 having a polygonal cross section, and the cores of the fiber 7 and the cores of the plurality of fibers 13 are fused and connected. be. Further, the cross-sectional area of the core of the fiber 7 is larger than the cross-sectional area of any one of the plurality of fibers 13. Hereinafter, a specific description will be given.
 図8A~図8Gは、ファイバの断面図を示す図である。図8Aに示すように、この例では、ファイバ7のファイバ断面7aにおいて、コア71aの断面形状は円形である。図8Bに示すように、この例では、ファイバ7のファイバ断面7bにおいて、コア71bの断面形状は矩形である。図8Cに示すように、この例では、ファイバ7のファイバ断面7cにおいて、コア71cの断面形状は六角形である。 8A to 8G are views showing a cross-sectional view of the fiber. As shown in FIG. 8A, in this example, in the fiber cross section 7a of the fiber 7, the cross section shape of the core 71a is circular. As shown in FIG. 8B, in this example, in the fiber cross section 7b of the fiber 7, the cross section shape of the core 71b is rectangular. As shown in FIG. 8C, in this example, in the fiber cross section 7c of the fiber 7, the cross section shape of the core 71c is a hexagon.
 図8Dに示すように、この例では、複数ファイバ10の複数ファイバ断面10aにおいて、コア101aが7つあり、その断面形状は円形である。また、ファイバコンバイナ8において、ファイバ7のコア71aの中に7つのコア101aが収まるように配列されている。具体的には、融着接続したときに、コア71aの円内に7つのコア101aが入るようになっている。本実施の形態においては、複数ファイバ10のコア径と複数のファイバ13のコア径は同じである。図8Aと図8Dのものを用いた場合、ファイバコンバイナ8は、ファイバ7のコア71aの中に複数のファイバ13のコアが収まるように配列され、ファイバ7のコア71aと複数のファイバ13のコアとが融着接続されることになる。このようにすることで、融着接続された箇所においてレーザ光の強度にばらつきが発生しなくなる。 As shown in FIG. 8D, in this example, in the plurality of fiber cross sections 10a of the plurality of fibers 10, there are seven cores 101a, and the cross-sectional shape thereof is circular. Further, in the fiber combiner 8, seven cores 101a are arranged so as to fit in the core 71a of the fiber 7. Specifically, when the fusion connection is performed, the seven cores 101a are contained in the circle of the cores 71a. In the present embodiment, the core diameter of the plurality of fibers 10 and the core diameter of the plurality of fibers 13 are the same. When the ones of FIGS. 8A and 8D are used, the fiber combiner 8 is arranged so that the cores of the plurality of fibers 13 are contained in the cores 71a of the fiber 7, and the cores 71a of the fiber 7 and the cores of the plurality of fibers 13 are arranged. Will be fused and connected. By doing so, the intensity of the laser beam does not vary at the fused and connected portions.
 図8Eに示すように、この例では、複数ファイバ10の複数ファイバ断面10bにおいて、コア101bが9つあり、その断面形状は円形である。また、ファイバコンバイナ8において、ファイバ7のコア71bの中に9つのコア101bが収まるように配列されている。具体的には、融着接続したときに、コア71bの矩形内に9つのコア101bが入るようになっている。本実施の形態においては、複数ファイバ10のコア径と複数のファイバ13のコア径は同じである。図8Bと図8Eのものを用いた場合、ファイバコンバイナ8は、ファイバ7のコア71bの中に複数のファイバ13のコアが収まるように配列され、ファイバ7のコア71bと複数のファイバ13のコアとが融着接続されることになる。このようにすることで、融着接続された箇所においてレーザ光の強度にばらつきが発生しなくなる。 As shown in FIG. 8E, in this example, in the plurality of fiber cross sections 10b of the plurality of fibers 10, there are nine cores 101b, and the cross section shape thereof is circular. Further, in the fiber combiner 8, nine cores 101b are arranged so as to fit in the core 71b of the fiber 7. Specifically, when the fusion connection is performed, the nine cores 101b are contained in the rectangle of the core 71b. In the present embodiment, the core diameter of the plurality of fibers 10 and the core diameter of the plurality of fibers 13 are the same. When the ones of FIGS. 8B and 8E are used, the fiber combiner 8 is arranged so that the cores of the plurality of fibers 13 are contained in the cores 71b of the fiber 7, and the cores 71b of the fiber 7 and the cores of the plurality of fibers 13 are arranged. Will be fused and connected. By doing so, the intensity of the laser beam does not vary at the fused and connected portions.
 図8Fに示すように、この例では、複数ファイバ10の複数ファイバ断面10cにおいて、コア101cが13個あり、その断面形状は円形である。また、ファイバコンバイナ8において、ファイバ7のコア71cの中に13個のコア101cが収まるように配列されている。 As shown in FIG. 8F, in this example, in the plurality of fiber cross sections 10c of the plurality of fibers 10, there are 13 cores 101c, and the cross section shape thereof is circular. Further, in the fiber combiner 8, 13 cores 101c are arranged so as to fit in the core 71c of the fiber 7.
 図8Gに示すように、この例では、複数ファイバ10の複数ファイバ断面10dにおいて、コア101dが19個あり、その断面形状は円形である。また、ファイバコンバイナ8において、ファイバ7のコア71aの中に19個のコア101cが収まるように配列されている。なお、複数ファイバ10において、断面形状は円形であるものに限らず、多角形であってもよい。 As shown in FIG. 8G, in this example, in the plurality of fiber cross sections 10d of the plurality of fibers 10, there are 19 cores 101d, and the cross section shape thereof is circular. Further, in the fiber combiner 8, 19 cores 101c are arranged so as to fit in the core 71a of the fiber 7. The cross-sectional shape of the plurality of fibers 10 is not limited to a circular shape, but may be a polygonal shape.
 ここで、図8Aと図8Dとの対比において、ファイバ7のコア71aの径は400μmであり、複数ファイバ10のコア101aの径は105μmであり、ファイバ13のコアの径は105μmである。つまり、ファイバ7のコア71aの径(断面積)の方がファイバ13のコアの径(断面積)よりも大きい。 Here, in comparison between FIGS. 8A and 8D, the diameter of the core 71a of the fiber 7 is 400 μm, the diameter of the core 101a of the plurality of fibers 10 is 105 μm, and the diameter of the core of the fiber 13 is 105 μm. That is, the diameter (cross-sectional area) of the core 71a of the fiber 7 is larger than the diameter (cross-sectional area) of the core of the fiber 13.
 なお、ファイバコンバイナを図5に示したようなもので構成した場合、たとえば、ファイバ7のコア71aの径は200μmにして、複数ファイバ10のコア101aの径を50~105μmに変化させ、ファイバ13のコアの径を105μmとすることができる。本実施の形態のような水中光通信装置においては、対水圧性能を維持させるためにはファイバ径が大きいほどファイバの製造コストが高くなるため、できる限りファイバ径を小さくする方が望ましい。 When the fiber combiner is configured as shown in FIG. 5, for example, the diameter of the core 71a of the fiber 7 is set to 200 μm, the diameter of the core 101a of the plurality of fibers 10 is changed to 50 to 105 μm, and the fiber 13 is used. The diameter of the core can be 105 μm. In an underwater optical communication device as in the present embodiment, in order to maintain the water pressure performance, the larger the fiber diameter, the higher the manufacturing cost of the fiber. Therefore, it is desirable to make the fiber diameter as small as possible.
 同様に、図8Bと図8Eとの対比においても、ファイバ7のコア71bの断面積の方がファイバ13のコアの断面積よりも大きくなる。また、図8Cと図8Fとの対比においても、ファイバ7のコア71cの断面積の方がファイバ13のコアの断面積よりも大きくなる。 Similarly, in the comparison between FIGS. 8B and 8E, the cross-sectional area of the core 71b of the fiber 7 is larger than the cross-sectional area of the core of the fiber 13. Also, in comparison between FIGS. 8C and 8F, the cross-sectional area of the core 71c of the fiber 7 is larger than the cross-sectional area of the core of the fiber 13.
 ファイバ7のコア断面構造が多角形である場合、ファイバ7はモードスクランブル効果がある。このため、ファイバ7のコア断面構造が円形である場合に比べて、ファイバ7から出射されるレーザ光は均一化されやすくなる。 When the core cross-sectional structure of the fiber 7 is polygonal, the fiber 7 has a mode scramble effect. Therefore, the laser beam emitted from the fiber 7 is more likely to be uniformized as compared with the case where the core cross-sectional structure of the fiber 7 is circular.
 このため、本実施の形態においては、図8Bと図8Eとの組合せにより光伝送部30を構成している。図8A~図8Gにおいて、ファイバ7のコア断面構造が矩形や六角形であるものを例示しているが、モードスクランブル効果を有するファイバであればどのようなものでもよい。 Therefore, in the present embodiment, the optical transmission unit 30 is configured by the combination of FIGS. 8B and 8E. 8A to 8G illustrate that the core cross-sectional structure of the fiber 7 is rectangular or hexagonal, but any fiber having a mode scramble effect may be used.
 以上説明したように、モードスクランブル効果のある断面形状が多角形のファイバ7を用い、ファイバコンバイナ8は、断面形状が多角形のファイバ7のコアの中に複数のファイバ13のコアが収まるように配列しているため、ファイバコンバイナ8の複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。これにより、多方向に均一なビームプロファイルをもつレーザビームを出射することができるため、多方向にレーザ光を出射する装置に有用である。 As described above, the fiber 7 having a polygonal cross-sectional shape having a mode scramble effect is used, and the fiber combiner 8 is set so that the cores of the plurality of fibers 13 are contained in the core of the fiber 7 having a polygonal cross-sectional shape. Since they are arranged, it is possible to suppress variations in the output of the laser beam emitted from the plurality of fiber sides of the fiber combiner 8. This makes it possible to emit a laser beam having a uniform beam profile in multiple directions, which is useful for a device that emits laser light in multiple directions.
 水中光通信装置においては、通信不可能エリアを低減させるために、水中空間全体に均一なパワー及びビームプロファイルを有するレーザ光を放射できるレーザ光源が望まれているが、本開示の水中光無線通信装置は、空間を効率よく充填することができる。このように、本実施の形態においては、1つのレーザ光を複数に分けて利用する装置を対象として、出射される複数のレーザ光の出力のばらつきを抑えることができる。 In the underwater optical communication device, in order to reduce the communication impossible area, a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space is desired. The device can efficiently fill the space. As described above, in the present embodiment, it is possible to suppress the variation in the output of the plurality of emitted laser beams for the device that divides and uses one laser beam into a plurality of parts.
 [第2実施形態]
 次に、第2実施形態に係るレーザ装置50について説明する。第2実施形態においては、ファイバ7内部のモードを均一にさせてファイバコンバイナ8の複数ポート側から出射されるレーザ光の強度バラツキをさらに低減させる構成について説明する。
[Second Embodiment]
Next, the laser apparatus 50 according to the second embodiment will be described. In the second embodiment, a configuration will be described in which the mode inside the fiber 7 is made uniform to further reduce the intensity variation of the laser beam emitted from the plurality of ports of the fiber combiner 8.
 図1~図8Gを用いて説明した第1実施形態にレーザ装置50は、レーザ筐体100が複数のLD40と、1つ以上の集光光学素子(コリメートレンズ2、ビームエキスパンダー5、および集光レンズ6)を備えるものであった。 In the first embodiment described with reference to FIGS. 1 to 8G, in the laser apparatus 50, the laser housing 100 has a plurality of LD40s, and one or more condensing optical elements (collimating lens 2, beam expander 5, and condensing). It was equipped with a lens 6).
 第2実施形態に係るレーザ装置50においては、レーザ筐体100は、さらに、回折光学素子12を備える。その他の構成は、第1実施形態と同じであり、水中光無線通信装置51は、第2実施形態に係るレーザ装置50を備えるものとする。 In the laser apparatus 50 according to the second embodiment, the laser housing 100 further includes a diffractive optical element 12. Other configurations are the same as those of the first embodiment, and the underwater optical wireless communication device 51 includes the laser device 50 according to the second embodiment.
 なお、第1実施形態においては、ファイバ7の断面をファイバ断面7bとし、複数ファイバ10の断面を複数ファイバ断面10bとして説明したが、これに限らず、ファイバ断面7aと複数ファイバ断面10aとの組合せであってもよく、ファイバ断面7cと複数ファイバ断面10cとの組合せであってもよく、その他の組合せであってもよい。 In the first embodiment, the cross section of the fiber 7 is defined as the fiber cross section 7b, and the cross section of the plurality of fibers 10 is described as the plurality of fiber cross sections 10b. It may be a combination of a fiber cross section 7c and a plurality of fiber cross sections 10c, or may be another combination.
 図9は、第2実施形態に係るレーザ筐体を示す図である。本例においては、図9に示すように、ビームエキスパンダー5と集光レンズ6との間に回折光学素子12を配置している。 FIG. 9 is a diagram showing a laser housing according to the second embodiment. In this example, as shown in FIG. 9, the diffractive optical element 12 is arranged between the beam expander 5 and the condenser lens 6.
 第2実施形態においては、集光レンズ6に入射される前に、指定の集光レンズ6使用時にレーザ集光時に強度分布が均一となるホモジナイザとして設計された2次元透過型回折光学素子(回折光学素子12)を配置する。 In the second embodiment, a two-dimensional transmission type diffractive optical element (diffraction) designed as a homogenizer in which the intensity distribution becomes uniform at the time of laser focusing when the designated condenser lens 6 is used before being incident on the condenser lens 6. An optical element 12) is arranged.
 集光レンズ6よりも前のコリメートレーザ光のビームプロファイルが例えば、ドーナツモード(ビーム強度分布31)であるときに適用すると、ビームプロファイルがトップハット形状(ビーム強度分布32)のコリメートレーザ光に整形することができる。均一なレーザ光をファイバ結合することができる。 When applied when the beam profile of the collimated laser light before the condenser lens 6 is, for example, the donut mode (beam intensity distribution 31), the beam profile is shaped into the collimated laser light having a top hat shape (beam intensity distribution 32). can do. Uniform laser light can be fiber-coupled.
 このように、光伝送部30の一方の端部に入射するレーザ光のビームプロファイルは、トップハット形状で集光される。具体的には、ビームプロファイルは、ビームホモジナイザ光学系によってトップハット形状に整形される。 In this way, the beam profile of the laser beam incident on one end of the optical transmission unit 30 is focused in the shape of a top hat. Specifically, the beam profile is shaped into a top hat shape by the beam homogenizer optical system.
 本実施の形態においては、ビームプロファイルは、図9の説明のように、回折光学素子12を用いてトップハット形状に整形されている。ビームホモジナイザ光学系によってトップハット形状に整形されるものとしては、DOE(Diffractive Optical Elements、回折型光学部品)ビームシェイパを用いてトップハット形状に整形するものであってもよいし、フライアイレンズを用いてトップハット形状に整形するものであってもよい。 In the present embodiment, the beam profile is shaped into a top hat shape by using the diffractive optical element 12 as described in FIG. The beam homogenizer optical system may be shaped into a top hat shape by using a DOE (Diffractive Optical Elements) beam shaper, or may be shaped into a top hat shape by using a fly-eye lens. It may be shaped into a top hat shape.
 [第3実施形態]
 第1実施形態および第2実施形態においては、ファイバ7に入射されたレーザ光は、ファイバ外に出ることなく、ファイバ7からファイバコンバイナ8に入射されるように構成されている。
[Third Embodiment]
In the first embodiment and the second embodiment, the laser beam incident on the fiber 7 is configured to be incident on the fiber combiner 8 from the fiber 7 without going out of the fiber.
 これに対して、第3実施形態においては、ファイバ7が2つのファイバに分割されるような構成にする。そして、ファイバコンバイナ8に入射させる前に、ファイバ7からレーザ光を一旦出射させ、出射させたレーザ光を集光光学素子により集光させてからファイバ7に再度入射させるように構成する。その他の構成は、第1実施形態や第2実施形態と同じである。 On the other hand, in the third embodiment, the fiber 7 is divided into two fibers. Then, the laser light is once emitted from the fiber 7 before being incident on the fiber combiner 8, and the emitted laser light is condensed by the condensing optical element and then incident on the fiber 7 again. Other configurations are the same as those of the first embodiment and the second embodiment.
 たとえば、図1の構成において、ファイバ7の経路の途中が分断されているような構成にする。そして、分断された左側のファイバ7と右側のファイバ7との間に集光光学素子を配置する。 For example, in the configuration of FIG. 1, the configuration is such that the middle of the path of the fiber 7 is divided. Then, a condensing optical element is arranged between the divided left fiber 7 and the right fiber 7.
 集光光学素子は、第1実施形態と同様に、複数の集光光学素子(コリメートレンズ2、ビームエキスパンダー5、集光レンズ6など)で構成してもよいし、1つの集光光学素子で構成してもよい。 As in the first embodiment, the condensing optical element may be composed of a plurality of condensing optical elements (collimating lens 2, beam expander 5, condensing lens 6, etc.), or one condensing optical element. It may be configured.
 レーザ筐体100から出射されたレーザ光は、ファイバ7に入射される。その後、一度ファイバ7(左側)から出射したレーザ光は、集光光学素子により集光されて、再びファイバ7(右側)に入射される。その後、レーザ光はファイバ7から、ファイバコンバイナ8に入射される。左右に分かれたファイバ7の断面形状は、いずれもコア71bのような矩形形状や多角形であってもよいし、一方がコア71aのような円形であってもよい。 The laser light emitted from the laser housing 100 is incident on the fiber 7. After that, the laser light once emitted from the fiber 7 (left side) is condensed by the condensing optical element and is incident on the fiber 7 (right side) again. After that, the laser beam is incident on the fiber combiner 8 from the fiber 7. The cross-sectional shape of the fiber 7 divided into left and right may be a rectangular shape or a polygon such as the core 71b, or one may be a circular shape such as the core 71a.
 [第4実施形態]
 第1実施形態~第3実施形態においては、ファイバ7は直線あるいは任意の曲線で配置される。これに対して、第4実施形態においては、ファイバ7は、S字状に複数回曲げられているように構成する。その他の構成は、第1実施形態~第3実施形態と同じである。
[Fourth Embodiment]
In the first to third embodiments, the fiber 7 is arranged in a straight line or an arbitrary curve. On the other hand, in the fourth embodiment, the fiber 7 is configured to be bent a plurality of times in an S shape. Other configurations are the same as those of the first embodiment to the third embodiment.
 図10は、第4実施形態に係るファイバを示す図である。図10に示すように、ファイバ7を曲率半径Rで角度θの曲線を描くように曲げ、次に、反対側でも、ファイバ7を曲率半径Rで角度θの曲線を描くように曲げることで、ファイバ7は、S字状に曲げられる。そして、これを繰り返すことで、ファイバ7は、S字状に複数回曲げられた構成となる。 FIG. 10 is a diagram showing a fiber according to a fourth embodiment. As shown in FIG. 10, the fiber 7 is bent so as to draw a curve of an angle θ with a radius of curvature R, and then, on the opposite side, the fiber 7 is bent so as to draw a curve of an angle θ with a radius of curvature R. The fiber 7 is bent in an S shape. By repeating this, the fiber 7 has a configuration in which the fiber 7 is bent a plurality of times in an S shape.
 このように、ファイバ7を曲げることにより、高次モードを放射モードに変換させることができる。このとき、放射モードとなったレーザ光はファイバ外部に配置された被覆等にあたり、吸収され発熱する。そのため、周囲を金属筐体で覆い、漏れレーザ光を吸収させる。クラッドモード光を積極的に取り出すために、クラッドの屈折率以上の物体をクラッドに接触させると取り出し効率が上がる。ファイバをS次に繰り返し曲げても取り出し効率が上がる。 By bending the fiber 7 in this way, the higher-order mode can be converted into the radiation mode. At this time, the laser beam in the radiation mode hits the coating or the like arranged outside the fiber, is absorbed, and generates heat. Therefore, the periphery is covered with a metal housing to absorb the leaked laser beam. Clad mode In order to actively extract light, contacting an object with a refractive index higher than that of the clad with the clad increases the extraction efficiency. Even if the fiber is repeatedly bent in the S order, the extraction efficiency is improved.
 [第5実施形態]
 第1実施形態~第4実施形態においては、レーザ装置50を備える装置として、水中光無線通信装置51を例に挙げて説明した。しかし、レーザ装置50を備える装置としてはこれに限らない。第5実施形態においては、レーザ装置50を備える装置の一例として、レーザ加工装置52を例示して説明する。その他の構成は、第1実施形態~第4実施形態と同じである。
[Fifth Embodiment]
In the first to fourth embodiments, the underwater optical wireless communication device 51 has been described as an example of the device provided with the laser device 50. However, the device provided with the laser device 50 is not limited to this. In the fifth embodiment, the laser processing device 52 will be illustrated and described as an example of the device including the laser device 50. Other configurations are the same as those of the first to fourth embodiments.
 図11A,図11Bは、第5実施形態に係るレーザ加工装置の出力状態を示す図である。図11A,図11Bに示すように、レーザ加工装置52は、レーザ装置50とレーザ出力部62とを備える。本図は概略図であるが、レーザ加工装置52は、図1~図3で示したようなレーザ装置50を備えており、図1の複数のファイバ13に相当するものとして、出力側に3本のファイバを備えている。 11A and 11B are diagrams showing the output state of the laser processing apparatus according to the fifth embodiment. As shown in FIGS. 11A and 11B, the laser processing device 52 includes a laser device 50 and a laser output unit 62. Although this figure is a schematic view, the laser processing apparatus 52 includes a laser apparatus 50 as shown in FIGS. 1 to 3, and is assumed to correspond to the plurality of fibers 13 in FIG. 1 and has 3 on the output side. It is equipped with a book fiber.
 そして、各ファイバからそれぞれ、レーザ光63,64,65が出射される。このように、レーザ加工装置52は、レーザ光を複数方向に同時に出射してレーザ溶接する。 Then, laser beams 63, 64, and 65 are emitted from each fiber, respectively. In this way, the laser processing device 52 simultaneously emits laser light in a plurality of directions to perform laser welding.
 レーザ加工において円筒形の部品を固定するとき、例えば図6に示すように120度の間隔で対称となるよう同時タイミングでレーザ光を照射する方法が知られている。このとき、パワーのバラツキにより溶接時の変移が大きくなる。本手法を用いると、出射されるレーザ光63,64,65の出力のばらつきを抑えることができる。 When fixing a cylindrical part in laser machining, for example, as shown in FIG. 6, a method of irradiating laser light at the same timing so as to be symmetrical at intervals of 120 degrees is known. At this time, the change during welding becomes large due to the variation in power. By using this method, it is possible to suppress variations in the outputs of the emitted laser beams 63, 64, 65.
 なお、出力側に3本のファイバを備えるものに限らず、複数本を均等間隔で配置するものであればよい。ただし、本数を増やし過ぎると1本当たりの出力が低下するため、レーザ加工ができる程度の本数に分ける必要がある。 It should be noted that the output side is not limited to the one provided with three fibers, and a plurality of fibers may be arranged at equal intervals. However, if the number of lines is increased too much, the output per line will decrease, so it is necessary to divide the number so that laser processing can be performed.
 以上説明したように、モードスクランブル効果のある断面形状が多角形のファイバ7を用い、ファイバコンバイナ8は、断面形状が多角形のファイバ7のコアの中に複数のファイバ13のコアが収まるように配列しているため、ファイバコンバイナ8の複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。これにより、多方向に均一なビームプロファイルをもつレーザビームを出射することができるため、多方向にレーザ光を出射する装置に有用である。レーザ加工装置においては、例えば、120度間隔の円周に均一なビームプロファイル、レーザ光パワーを有するレーザ光を照射させることができるため、円筒部品の溶接等を行う場合に有用である。 As described above, the fiber 7 having a polygonal cross-sectional shape having a mode scramble effect is used, and the fiber combiner 8 is set so that the cores of the plurality of fibers 13 are contained in the core of the fiber 7 having a polygonal cross-sectional shape. Since they are arranged, it is possible to suppress variations in the output of the laser beam emitted from the plurality of fiber sides of the fiber combiner 8. This makes it possible to emit a laser beam having a uniform beam profile in multiple directions, which is useful for a device that emits laser light in multiple directions. In a laser processing apparatus, for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
 [変形例]
 図12は、変形例に係るレーザ筐体を示す図である。第2実施形態においては、図9に示したように、ビームエキスパンダー5と集光レンズ6との間に回折光学素子12を配置するようにした。しかし、これに限らず、集光レンズ6とファイバ7との間に回折光学素子12を配置するようにしてもよい。
[Modification example]
FIG. 12 is a diagram showing a laser housing according to a modified example. In the second embodiment, as shown in FIG. 9, the diffractive optical element 12 is arranged between the beam expander 5 and the condenser lens 6. However, the present invention is not limited to this, and the diffractive optical element 12 may be arranged between the condenser lens 6 and the fiber 7.
 集光レンズ6よりも後、すなわち収束している途中に2次元透過型回折格子(回折光学素子12)を配置すれば、集光時のビームプロファイルを均一にすることもできる(ビーム強度分布31がビーム強度分布32となる)。または集光レンズ6をなくして、コリメートレーザ光が入射されたときに集光ができるよう設計された回折光学素子を配置して実現することができる。 By arranging the two-dimensional transmission type diffraction grating (diffraction optical element 12) after the condenser lens 6, that is, in the middle of convergence, the beam profile at the time of focusing can be made uniform (beam intensity distribution 31). Is the beam intensity distribution 32). Alternatively, it can be realized by eliminating the condenser lens 6 and arranging a diffractive optical element designed to collect light when a collimated laser beam is incident.
 [態様]
 上述した例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the above-described exemplary embodiments are specific examples of the following embodiments.
 (第1項)一態様に係るレーザ装置は、複数のレーザ光源と、光伝送部と、1つ以上の集光光学素子とを備える。複数のレーザ光源は、レーザ光を出射する。光伝送部は、複数のレーザ光源から出射されたレーザ光を一方の端部から入射し他方の端部から出射する。1つ以上の集光光学素子は、複数のレーザ光源から出射されたレーザ光を集光して光伝送部の一方の端部に入射させる。光伝送部は、第1ファイバと、複数の第2ファイバと、接合部とを含む。第1ファイバは、1本であって一方の端部となる部分を有する。第2ファイバは、2本以上であって他方の端部となる部分を有する。接合部は、第1ファイバの一方の端部となる部分の反対側の部分と、複数の第2ファイバの他方の端部となる部分の反対側の部分とを繋ぐ。接合部は、断面形状が多角形の第1ファイバのコアの中に複数の第2ファイバのコアが収まるように配列して、第1ファイバのコアと複数の第2ファイバのコアとを融着接続してある。 (1) The laser device according to one aspect includes a plurality of laser light sources, an optical transmission unit, and one or more condensing optical elements. The plurality of laser light sources emit laser light. The optical transmission unit receives the laser light emitted from the plurality of laser light sources from one end and emits the laser light from the other end. The one or more condensing optical elements condense the laser light emitted from the plurality of laser light sources and make it incident on one end of the optical transmission unit. The optical transmission unit includes a first fiber, a plurality of second fibers, and a junction. The first fiber has a portion that is one and is one end. The second fiber has two or more portions that are the ends of the other. The junction connects a portion of the first fiber opposite to one end of the first fiber and a portion of the plurality of second fibers opposite to the other end of the fiber. The joints are arranged so that the cores of the plurality of second fibers are contained in the cores of the first fiber having a polygonal cross-sectional shape, and the cores of the first fiber and the cores of the plurality of second fibers are fused. It is connected.
 第1項に記載のレーザ装置によれば、モードスクランブル効果のある断面形状が多角形の第1ファイバを用い、接合部は、断面形状が多角形の第1ファイバのコアの中に複数の第2ファイバのコアが収まるように配列しているため、ファイバコンバイナ(接合部)の複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。これにより、レーザ光が均一化されるため、多方向にレーザ光を出射する装置に有用である。例えば、水中光通信装置においては、通信不可能エリアを低減させるために、水中空間全体に均一なパワー及びビームプロファイルを有するレーザ光を放射できるレーザ光源が望まれているが、本開示の水中光無線通信装置は、空間を効率よく充填することができる。レーザ加工装置においては、例えば、120度間隔の円周に均一なビームプロファイル、レーザ光パワーを有するレーザ光を照射させることができるため、円筒部品の溶接等を行う場合に有用である。 According to the laser apparatus according to the first item, the first fiber having a polygonal cross-sectional shape having a mode scramble effect is used, and the joint portion has a plurality of first fibers in the core of the first fiber having a polygonal cross-sectional shape. Since the cores of the two fibers are arranged so as to fit into each other, it is possible to suppress variations in the output of laser light emitted from a plurality of fiber sides of the fiber combiner (joint portion). As a result, the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions. For example, in an underwater optical communication device, in order to reduce a non-communicable area, a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space is desired. The wireless communication device can efficiently fill the space. In a laser processing apparatus, for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
 (第2項)第1項に記載のレーザ装置では、第1ファイバのコアの断面積は、複数の第2ファイバのいずれかのコアの断面積よりも大きい。 (Clause 2) In the laser apparatus according to paragraph 1, the cross-sectional area of the core of the first fiber is larger than the cross-sectional area of any one of the plurality of second fibers.
 第2項に記載のレーザ装置によれば、1のレーザー光を複数のレーザー光に分けて出射するためにファイバコンバイナを適用したレーザ装置において、ファイバコンバイナの複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。 According to the laser device according to the second item, in a laser device to which a fiber combiner is applied to divide one laser light into a plurality of laser lights and emit the laser light, the laser light emitted from a plurality of fiber sides of the fiber combiner. The variation of the output of is suppressed.
 (第3項)第1項または第2項に記載のレーザ装置では、光伝送部の一方の端部に入射するレーザ光のビームプロファイルは、トップハット形状で集光されている。 (Clause 3) In the laser apparatus according to the first or second paragraph, the beam profile of the laser light incident on one end of the optical transmission unit is focused in the shape of a top hat.
 第3項に記載のレーザ装置によれば、光伝送部の一方の端部に入射されるレーザ光の強度が均一化されるため、ファイバコンバイナの複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。 According to the laser device according to the third item, since the intensity of the laser light incident on one end of the optical transmission unit is made uniform, the output of the laser light emitted from the plurality of fiber sides of the fiber combiner is made uniform. Variation can be suppressed.
 (第4項)第3項のいずれか1項に記載のレーザ装置では、ビームプロファイルは、ビームホモジナイザ光学系によってトップハット形状に整形されている。 (Clause 4) In the laser apparatus according to any one of the third paragraphs, the beam profile is shaped into a top hat shape by the beam homogenizer optical system.
 第4項に記載のレーザ装置によれば、光伝送部の一方の端部に入射されるレーザ光の強度が均一化されるため、ファイバコンバイナの複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。 According to the laser apparatus according to the fourth item, since the intensity of the laser light incident on one end of the optical transmission unit is made uniform, the output of the laser light emitted from the plurality of fiber sides of the fiber combiner is made uniform. Variation can be suppressed.
 (第5項)第3項に記載のレーザ装置では、ビームプロファイルは、回折光学素子を用いてトップハット形状に整形されている。 (Clause 5) In the laser device according to the third item, the beam profile is shaped into a top hat shape by using a diffractive optical element.
 第5項に記載のレーザ装置によれば、光伝送部の一方の端部に入射されるレーザ光の強度が均一化されるため、ファイバコンバイナの複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。 According to the laser apparatus according to the fifth item, since the intensity of the laser light incident on one end of the optical transmission unit is made uniform, the output of the laser light emitted from the plurality of fiber sides of the fiber combiner is made uniform. Variation can be suppressed.
 (第6項)第1項~第5項のいずれか1項に記載のレーザ装置では、接合部に入射させる前に、第1ファイバからレーザ光を出射させ、出射させたレーザ光を集光光学素子により集光させてから第1ファイバに再度入射させる。 (Clause 6) In the laser apparatus according to any one of the items 1 to 5, laser light is emitted from the first fiber and the emitted laser light is condensed before being incident on the junction. The light is collected by an optical element and then incident again on the first fiber.
 第6項に記載の分析レーザ装置によれば、レーザ光を集光光学素子により再度集光させるため、ファイバコンバイナの複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。 According to the analytical laser apparatus according to the sixth item, since the laser light is collected again by the condensing optical element, it is possible to suppress the variation in the output of the laser light emitted from the plurality of fiber sides of the fiber combiner.
 (第7項)第1項~第6項のいずれか1項に記載のレーザ装置では、第1ファイバは、S字状に複数回曲げられている。 (Clause 7) In the laser apparatus according to any one of the items 1 to 6, the first fiber is bent a plurality of times in an S shape.
 第7項に記載の分析レーザ装置によれば、高次モードを放射モードに変換させることができるため、ファイバコンバイナの複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。 According to the analytical laser apparatus according to the seventh item, since the higher-order mode can be converted into the radiation mode, the variation in the output of the laser light emitted from the plurality of fiber sides of the fiber combiner can be suppressed.
 (第8項)一態様に係る水中光無線通信装置は、第1項~第7項のいずれか1項に記載のレーザ装置を備える。水中光無線通信装置は、水中で使用され、レーザ光により信号を送信して通信を行う。 (Item 8) The underwater optical wireless communication device according to one aspect includes the laser device according to any one of items 1 to 7. The underwater optical wireless communication device is used underwater and transmits a signal by a laser beam to perform communication.
 第8項に記載の水中光無線通信装置によれば、ファイバコンバイナ(接合部)の複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。これにより、レーザ光が均一化されるため、多方向にレーザ光を出射する装置に有用である。水中光通信装置においては、通信不可能エリアを低減させるために、水中空間全体に均一なパワー及びビームプロファイルを有するレーザ光を放射できるレーザ光源が望まれているが、本開示の水中光無線通信装置は、空間を効率よく充填することができる。 According to the underwater optical wireless communication device described in item 8, variation in the output of laser light emitted from a plurality of fiber sides of the fiber combiner (joint portion) can be suppressed. As a result, the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions. In the underwater optical communication device, in order to reduce the communication impossible area, a laser light source capable of radiating a laser beam having a uniform power and beam profile in the entire underwater space is desired. The device can efficiently fill the space.
 (第9項)一態様に係るレーザ加工装置は、第1項~第7項のいずれか1項に記載のレーザ装置を備える。レーザ加工装置は、レーザ光を複数方向に同時に出射してレーザ溶接する。 (Section 9) The laser processing apparatus according to one aspect includes the laser apparatus according to any one of paragraphs 1 to 7. The laser processing device simultaneously emits laser light in a plurality of directions to perform laser welding.
 第9項に記載のレーザ加工装置によれば、ファイバコンバイナ(接合部)の複数のファイバ側から出射されるレーザ光の出力のばらつきを抑えられる。これにより、レーザ光が均一化されるため、多方向にレーザ光を出射する装置に有用である。レーザ加工装置においては、例えば、120度間隔の円周に均一なビームプロファイル、レーザ光パワーを有するレーザ光を照射させることができるため、円筒部品の溶接等を行う場合に有用である。 According to the laser processing apparatus described in Section 9, variations in the output of laser light emitted from a plurality of fiber sides of a fiber combiner (joint portion) can be suppressed. As a result, the laser beam is made uniform, which is useful for a device that emits the laser beam in multiple directions. In the laser processing apparatus, for example, it is possible to irradiate a circumference having a uniform beam profile and a laser beam having a laser beam power at intervals of 120 degrees, which is useful for welding cylindrical parts and the like.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1a,2a ホルダ、2 コリメートレンズ、3 連続パイプ、4 レーザ光、5 ビームエキスパンダー、6 集光レンズ、7 ファイバ、7a,7b,7c ファイバ断面、8 ファイバコンバイナ、9 融着部、10 複数ファイバ、10a,10b,10c,10d 複数ファイバ断面、11 複数レーザ光、12 回折光学素子、13 ファイバ、14,17 ファイバ、15 複数ファイバ、16 ファイバコンバイナ、20 LDモジュール、31,32 ビーム強度分布、40 LD、40a,40b,40c,40d,40e,40f,40g,40h,40i LD、41,42,43 レーザ光、50 レーザ装置、51 水中光無線通信装置、52 レーザ加工装置、61 レーザ出力部、63,64,65 レーザ光、71a,71b,71c コア、100 レーザ筐体、101a,101b,101c,101d コア。  1a, 2a holder, 2 collimating lens, 3 continuous pipe, 4 laser light, 5 beam expander, 6 condensing lens, 7 fiber, 7a, 7b, 7c fiber cross section, 8 fiber combiner, 9 fusion splicer, 10 multiple fibers, 10a, 10b, 10c, 10d Multiple fiber cross sections, 11 Multiple laser beams, 12 Diffraction optical elements, 13 fibers, 14, 17 fibers, 15 Multiple fibers, 16 Fiber combiners, 20 LD modules, 31, 32 Beam intensity distribution, 40 LD , 40a, 40b, 40c, 40d, 40e, 40f, 40g, 40h, 40i LD, 41, 42, 43 laser light, 50 laser device, 51 underwater optical wireless communication device, 52 laser processing device, 61 laser output unit, 63 , 64,65 laser beam, 71a, 71b, 71c core, 100 laser housing, 101a, 101b, 101c, 101d core. It was

Claims (9)

  1.  レーザ光を出射する複数のレーザ光源と、
     前記複数のレーザ光源から出射された前記レーザ光を一方の端部から入射し他方の端部から出射する光伝送部と、
     前記複数のレーザ光源から出射された前記レーザ光を集光して前記光伝送部の前記一方の端部に入射させる1つ以上の集光光学素子とを備え、
     前記光伝送部は、
      1本であって前記一方の端部となる部分を有する第1ファイバと、
      2本以上であって前記他方の端部となる部分を有する第2ファイバと、
      前記第1ファイバの前記一方の端部となる部分の反対側の部分と、複数の前記第2ファイバの前記他方の端部となる部分の反対側の部分とを繋ぐ接合部とを含み、
     前記接合部は、断面形状が多角形の前記第1ファイバのコアの中に複数の前記第2ファイバのコアが収まるように配列して、前記第1ファイバのコアと複数の前記第2ファイバのコアとを融着接続してある、レーザ装置。
    Multiple laser light sources that emit laser light,
    An optical transmission unit that incidents the laser light emitted from the plurality of laser light sources from one end and emits the laser light from the other end.
    It comprises one or more condensing optical elements that condense the laser light emitted from the plurality of laser light sources and condense the laser light to be incident on the one end of the optical transmission unit.
    The optical transmission unit is
    A first fiber having a portion that is one end of the fiber,
    A second fiber having two or more and having a portion to be the other end portion,
    Includes a junction that connects a portion of the first fiber that is the opposite end of the one end and a portion of the second fiber that is opposite to the other end of the second fiber.
    The joints are arranged so that the plurality of cores of the second fiber are contained in the core of the first fiber having a polygonal cross-sectional shape, and the core of the first fiber and the core of the plurality of second fibers are arranged. A laser device that is fused and connected to the core.
  2.  前記第1ファイバのコアの断面積は、複数の前記第2ファイバのいずれかのコアの断面積よりも大きい、請求項1に記載のレーザ装置。 The laser device according to claim 1, wherein the cross-sectional area of the core of the first fiber is larger than the cross-sectional area of any one of the plurality of the second fibers.
  3.  前記光伝送部の前記一方の端部に入射する前記レーザ光のビームプロファイルは、トップハット形状で集光されている、請求項1または請求項2に記載のレーザ装置。 The laser device according to claim 1 or 2, wherein the beam profile of the laser beam incident on the one end of the optical transmission unit is focused in the shape of a top hat.
  4.  前記ビームプロファイルは、ビームホモジナイザ光学系によって前記トップハット形状に整形されている、請求項3に記載のレーザ装置。 The laser device according to claim 3, wherein the beam profile is shaped into the top hat shape by a beam homogenizer optical system.
  5.  前記ビームプロファイルは、回折光学素子を用いて前記トップハット形状に整形されている、請求項3に記載のレーザ装置。 The laser device according to claim 3, wherein the beam profile is shaped into the top hat shape by using a diffractive optical element.
  6.  前記接合部に入射させる前に、前記第1ファイバから前記レーザ光を出射させ、出射させた前記レーザ光を集光光学素子により集光させてから前記第1ファイバに再度入射させる、請求項1~請求項5のいずれか1項に記載のレーザ装置。 1 The laser device according to any one of claims 5.
  7.  前記第1ファイバは、S字状に複数回曲げられている、請求項1~請求項6のいずれか1項に記載のレーザ装置。 The laser device according to any one of claims 1 to 6, wherein the first fiber is bent a plurality of times in an S shape.
  8.  請求項1~請求項7のいずれか1項に記載のレーザ装置を備え、
     水中で使用され、前記レーザ光により信号を送信して通信を行う、水中光無線通信装置。
    The laser apparatus according to any one of claims 1 to 7 is provided.
    An underwater optical wireless communication device that is used in water and transmits a signal by the laser beam to perform communication.
  9.  請求項1~請求項7のいずれか1項に記載のレーザ装置を備え、
     前記レーザ光を複数方向に同時に出射してレーザ溶接する、レーザ加工装置。
    The laser apparatus according to any one of claims 1 to 7 is provided.
    A laser processing device that simultaneously emits the laser light in a plurality of directions for laser welding.
PCT/JP2021/042518 2021-01-06 2021-11-19 Laser device, underwater optical wireless communication device, and laser machining device WO2022149358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573936A JPWO2022149358A5 (en) 2021-11-19 Underwater optical wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-000714 2021-01-06
JP2021000714 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149358A1 true WO2022149358A1 (en) 2022-07-14

Family

ID=82357248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042518 WO2022149358A1 (en) 2021-01-06 2021-11-19 Laser device, underwater optical wireless communication device, and laser machining device

Country Status (1)

Country Link
WO (1) WO2022149358A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215180A1 (en) * 2002-05-17 2003-11-20 Dimas Chris F. Radiation power demultiplexer
US20050265683A1 (en) * 2004-05-28 2005-12-01 Frank Cianciotto High efficiency multi-spectral optical splitter
WO2019150070A1 (en) * 2018-02-02 2019-08-08 Spi Lasers Uk Limited Apparatus and method for laser processing a material
WO2019233899A1 (en) * 2018-06-05 2019-12-12 Imagine Optic Methods and systems for generating high peak power laser pulses
US20200116913A1 (en) * 2017-05-04 2020-04-16 Nkt Photonics A/S Light system for supplying light
JP2022001936A (en) * 2020-06-22 2022-01-06 三菱電線工業株式会社 Optical branching device and optical branching method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215180A1 (en) * 2002-05-17 2003-11-20 Dimas Chris F. Radiation power demultiplexer
US20050265683A1 (en) * 2004-05-28 2005-12-01 Frank Cianciotto High efficiency multi-spectral optical splitter
US20200116913A1 (en) * 2017-05-04 2020-04-16 Nkt Photonics A/S Light system for supplying light
WO2019150070A1 (en) * 2018-02-02 2019-08-08 Spi Lasers Uk Limited Apparatus and method for laser processing a material
WO2019233899A1 (en) * 2018-06-05 2019-12-12 Imagine Optic Methods and systems for generating high peak power laser pulses
JP2022001936A (en) * 2020-06-22 2022-01-06 三菱電線工業株式会社 Optical branching device and optical branching method using the same

Also Published As

Publication number Publication date
JPWO2022149358A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US8873908B2 (en) Optical-fiber array and method
US5633967A (en) Waveguide fiber optical coupler
KR100271046B1 (en) Solid-state laser device which is pumped by light output from laser diode
JP2009520353A (en) System and method for generating intense laser light from a laser diode array
WO2014002715A1 (en) Optical fiber and optical cable
US11287574B2 (en) Optical fiber bundle with beam overlapping mechanism
WO2022149358A1 (en) Laser device, underwater optical wireless communication device, and laser machining device
CN112531462B (en) Bragg grating external cavity semiconductor laser module beam combining device
KR20200070577A (en) Optical fiber support apparatus and laser appartus comprising the same
US20190341745A1 (en) Laser device
US5553178A (en) Laser module using asymmetrical lens
JP7086501B2 (en) Combined wave optical system
JP7015989B2 (en) Optical transmission equipment
KR101339886B1 (en) Free space optical communication module
CN117192706B (en) Supercontinuum laser system for realizing hollow beam emission
JP4296692B2 (en) Laser beam synthesis optical system
CA2364913A1 (en) Laser diode module
KR20230072694A (en) Coiling structure of optical fiber for laser amplication and amplication apparatus for high power fiber laser using the same
JPH1078530A (en) Optical coupling device
CN117543320A (en) Compact laser output method, laser output head and laser device
JP4191095B2 (en) Light incident device
JPWO2022149358A5 (en) Underwater optical wireless communication device
KR20140127078A (en) Optical fiber pump-signal combiner and method of manufacturing for pump-signal combiner
CN116203736A (en) Light beam coupler
JPH10300973A (en) Coupling optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917583

Country of ref document: EP

Kind code of ref document: A1