WO2022149280A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2022149280A1
WO2022149280A1 PCT/JP2021/000567 JP2021000567W WO2022149280A1 WO 2022149280 A1 WO2022149280 A1 WO 2022149280A1 JP 2021000567 W JP2021000567 W JP 2021000567W WO 2022149280 A1 WO2022149280 A1 WO 2022149280A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
information
data
base station
dci
Prior art date
Application number
PCT/JP2021/000567
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
尚哉 芝池
春陽 越後
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/000567 priority Critical patent/WO2022149280A1/en
Priority to CN202180095352.8A priority patent/CN116982335A/en
Publication of WO2022149280A1 publication Critical patent/WO2022149280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • the MIMO (Multi Input Multi Output) system is supported as a wireless communication technology that transmits and receives data with multiple antennas and improves the data rate (frequency utilization efficiency).
  • a MIMO system a plurality of transmission / reception antennas are prepared in a transceiver, and different transmission information sequences are simultaneously transmitted from different transmission antennas.
  • SU-MIMO Single User MIMO
  • MU-MIMO Multiple User MIMO
  • UL transmission of a certain terminal is performed using the antennas / antenna ports of a plurality of terminals including the terminal (UE cooperative MIMO).
  • the present disclosure provides a terminal, a wireless communication method, and a base station capable of appropriately controlling communication even when communication is performed using antennas / antenna ports of a plurality of UEs. It is one of the purposes.
  • the terminal includes a receiving unit that receives information on the schedule, a transmitting unit that transmits information on at least a part of UL data to another terminal, and the other terminal based on the information on the schedule. It is characterized by having a control unit that controls to transmit the UL data in cooperation with a terminal.
  • communication can be appropriately controlled even when communication is performed using the antennas / antenna ports of a plurality of UEs.
  • FIG. 1A and 1B are diagrams showing an example of MU-MIMO and UE cooperative MIMO.
  • FIG. 2 is a diagram showing an example of an antenna port of UE cooperative MIMO.
  • FIG. 3 is a diagram showing an example of a synchronization signal in UE cooperative MIMO according to the first embodiment.
  • 4A and 4B are diagrams showing an example of communication control in UE cooperative MIMO according to the second embodiment.
  • FIG. 5 is a diagram showing another example of communication control in UE cooperative MIMO according to the second embodiment.
  • FIG. 6 is a diagram showing an example of resource allocation in UE cooperative MIMO according to the third embodiment.
  • 7A and 7B are diagrams showing an example of communication control in UE cooperative MIMO according to the fourth embodiment.
  • FIG. 8A and 8B are diagrams showing other examples of communication control in UE-coordinated MIMO according to the fourth embodiment.
  • 9A and 9B are diagrams showing other examples of communication control in UE-coordinated MIMO according to the fourth embodiment.
  • 10A and 10B are diagrams showing an example of DCI used for UE cooperative MIMO according to the fourth embodiment.
  • FIG. 11 is a diagram showing another example of communication control in UE cooperative MIMO according to the fourth embodiment.
  • FIG. 12 is a diagram showing another example of communication control in UE cooperative MIMO according to the fourth embodiment.
  • 13A and 13B are diagrams showing an example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment.
  • FIG. 14 is a diagram showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment.
  • FIG. 15 is a diagram showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment.
  • 16A and 16B are diagrams showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment.
  • 17A and 17B are diagrams showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment.
  • 18A and 18B are diagrams showing an example of SRS transmission in UE cooperative MIMO according to the sixth embodiment.
  • FIG. 19 is a diagram showing an example of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment.
  • FIG. 20 is a diagram showing other examples of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment.
  • FIG. 21 is a diagram showing other examples of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment.
  • FIG. 22 is a diagram showing other examples of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment.
  • FIG. 23 is a diagram showing an example of retransmission control in UE cooperative MIMO according to the seventh embodiment.
  • FIG. 24 is a diagram showing another example of retransmission control in UE cooperative MIMO according to the seventh embodiment.
  • FIG. 25 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 26 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 27 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 28 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • MIMO expansion In future wireless communication systems, it is being considered to increase the number of antennas / antenna ports (hereinafter, also referred to as antenna ports) of terminals to improve the communication throughput. On the other hand, when increasing the number of antenna ports in the UE, the distance between the antenna ports is required, so that the increase in the number of antenna ports is limited by the size of the UE and the like.
  • UE cooperative MIMO for example, UE corporate MIMO
  • Tx / Rx diversity Tx / Rx diversity
  • MU-MIMO enhancement multi-user MIMO
  • UE cooperative MIMO When applying UE cooperative MIMO, it is possible to increase the apparent number of antenna ports by using the antenna ports of multiple UEs even if there is an upper limit to the number of antenna ports due to restrictions such as UE size. It becomes. It is also specified that the spatial correlation becomes smaller by using the antenna ports at different positions (or different antenna port numbers 9).
  • UE cooperative MIMO is UE joint MIMO, UE corporate MIMO, and UE-to-UE cooperative transmission. It may be read as joint transmission between UEs, cooperative reception between UEs, joint reception between UEs, and the like.
  • MU-MIMO is equivalent to rank 2 SU-MIMO per UE (see FIG. 1A).
  • UE-coordinated MIMO it corresponds to rank 4 SU-MIMO (or virtual 4-port antenna) (see FIG. 1B).
  • rank 4 data for UE # 1 (eg, DL data / DL-SCH) is transmitted to UE # 1-UE # 2 and UE # 2 to UE # 2.
  • Data may be transferred to 1.
  • UE # 1 can receive data equivalent to 4 antenna ports even when it has only 2 antenna ports.
  • the data of UE # 1 may be transmitted from UE # 1-UE # 2.
  • UE # 1 has only two antenna ports, it is possible to transmit data equivalent to four antenna ports (virtual four-port antenna).
  • FIG. 2 shows an example of a case where UEs having two antenna ports cooperate with each other to perform communication using four antenna ports (virtual four antenna ports).
  • how to match the synchronization between UEs becomes a problem.
  • how to share data / control information between UEs becomes a problem.
  • the problem is how to control the schedule / retransmission when transmitting using UE cooperative MIMO.
  • the question is how to set the applied (or corresponding / related) beam / TCI state / spatial relationship to each antenna port.
  • how to control the retransmission control when using UE cooperative MIMO becomes a problem.
  • the present inventors examined the UE operation / base station operation that solves at least one of the above problems, and conceived the present embodiment.
  • wireless communication method (or UE operation / base station operation) according to each embodiment may be applied individually or in combination.
  • a / B” and “at least one of A and B” may be read interchangeably.
  • a / B / C” and “at least one of A, B and C” may be read interchangeably.
  • the cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, and band may be read as each other.
  • the index, the ID, the indicator, and the resource ID may be read as each other.
  • support, control, controllable, working, working may be read interchangeably.
  • configuration, activate, update, indicate, enable, specify, and select may be read as each other.
  • link, associate, correspond, and map may be read as each other.
  • “allocate”, “assign”, “monitor”, and “map” may be read as interchangeable with each other.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IE), and RRC messages may be read interchangeably.
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • delivery confirmation information HARQ-ACK, HARQ-ACK / NACK, HARQ-ACK information, HARQ, ACK / NACK, ACK, NACK, NACK only, UCI may be read as each other.
  • common, shared, group-common, UE common, and UE shared may be read as each other.
  • the UE individual DCI and the DCI having the CRC scrambled by the UE individual RNTI may be read as each other.
  • the UE individual RNTI may be, for example, C-RNTI.
  • the UE common DCI and the DCI having a CRC scrambled by the UE common RNTI may be read as each other.
  • the UE common RNTI may be, for example, multicast-RNTI.
  • the following description shows a case where two UEs (UE # 1 and UE # 2) cooperate to perform transmission, but the number of UEs performing cooperative transmission may be 3 or more. Further, in the following description, a case where each UE includes two antenna ports is shown, but the number of antenna ports included in each UE is not limited to this. UE # 1 and UE # 2 may contain the same number of antenna ports or may contain different numbers of antenna ports. Further, in the following description, the cooperative transmission in UL will be described as an example, but the present invention is not limited to this. A similar mechanism may be applied when DL data is transmitted cooperatively among a plurality of UEs.
  • the UE may be controlled to synchronize between UEs / antenna ports based on a predetermined synchronization signal.
  • the UE performing UE cooperative transmission may be read as a UE in which a predetermined upper layer parameter (for example, a parameter for UE cooperative MIMO) is set, or a UE that supports UE cooperative transmission.
  • a predetermined upper layer parameter for example, a parameter for UE cooperative MIMO
  • the predetermined synchronization signal may be transmitted / set periodically or may be transmitted / set aperiodically.
  • a given sync signal may be transmitted in a resource or occasion (see Figure 3).
  • the resource may be read as a transmit resource, a receive resource, or a measurement resource. Occasions may be read as transmit, receive, or measure.
  • the resource / occasion of the synchronization signal may be notified / set from the base station to the UE by using higher layer signaling or the like.
  • the UE may control the reception of a predetermined synchronization signal based on the resource / occasion notified from the base station.
  • the predetermined synchronization signal may always be transmitted at a set resource / occasion, or may be transmitted at a part of a set resource / occasion (or a resource candidate / occasion candidate). May be good.
  • the UE When the UE receives the synchronization signal, it may be controlled to perform synchronization (time / frequency synchronization) after a predetermined time has elapsed.
  • the predetermined time may be defined in the specifications, may be notified / set from the base station to the UE by higher layer signaling, or may be determined based on the reported UE capability information.
  • the UE may control synchronization by using a plurality of synchronization signals, or may control synchronization by using one synchronization signal. For example, when using a plurality of synchronization signals, the UE may control synchronization by applying an averaging process to the reception results of a plurality of synchronization signals received in the past. When using one synchronization signal, the UE may control synchronization each time the synchronization signal is received.
  • the predetermined synchronization signal may be transmitted from a network (for example, a base station).
  • the predetermined sync signal may be transmitted from the antenna port of the other UE / other UE.
  • the other UE may be a UE that cooperates when performing cooperative transmission / reception between UEs / antenna ports, or a UE that is a pair.
  • the channel / signal for example, SSB / TRS / CSI-RS
  • the existing system for example, before Rel.16
  • a new channel / signal may be applied.
  • the synchronization signal used for synchronization between the base station and the UE and the synchronization signal used for synchronization between a plurality of UEs may be set in common or may be set separately.
  • the UE uses the received / detected synchronization signal to coordinate transmission / reception timing between the UEs / antenna ports. May be determined.
  • the synchronization signal resource / occasion may be a resource / occasion for synchronization between the base station and the UE, or a resource / occasion for synchronization between the UE and the UE (antenna port-antenna port). You may. Alternatively, both the resource / occasion for synchronization between the base station and the UE and the resource / occasion for synchronization between the UE and the UE (between the antenna port and the antenna port) may be set respectively.
  • UE cooperative MIMO can be appropriately performed. Can be controlled.
  • the UE may be controlled to share predetermined information with other UEs to which UE-coordinated MIMO is applied.
  • the predetermined information may be at least one of transmission data, control information, and channel state information.
  • the transmission data may be read as transmission data information, UL data, DL data, UL-SCH, or DL-SCH.
  • transmission data (or PUSCH / UL data / UL-SCH) is transmitted in UE cooperative MIMO will be described as an example, but another UL signal / UL channel (for example, uplink control information) will be described.
  • / PUCCH can be similarly applied to the case of cooperative transmission.
  • FIG. 4A and 4B show an example of a case where the first UE (UE # 1) and the second UE (UE # 2) cooperate to perform UL transmission.
  • FIG. 4A shows a case where UE # 1 uses antenna ports # 0 and # 1, UE # 2 uses antenna ports # 2 and # 3, and a virtual 4-port antenna is used for transmission.
  • the number of antenna ports of each UE here, 2 each
  • the number of ranks / layers used for cooperative transmission here, 4
  • the number of UEs for cooperative transmission here, 2 are limited to this. I can't.
  • the base station transmits information regarding the UL transmission instruction to the UE.
  • the information regarding the UL transmission instruction may be read as information regarding the scheduling of UL transmission, information regarding the trigger of UL transmission, UL grant, and DL assignment (when cooperative reception is performed in DL).
  • the transmission data of UE # 1 (for example, a part of the transmission data) is also transmitted from UE # 2 is shown.
  • information about the transmission data of UE # 1 may be reported / notified / transferred / information shared (hereinafter, also referred to as transfer / information sharing) to UE # 2. That is, the information regarding the transmission data of UE # 1 is shared between UE # 1 and UE # 2.
  • the transmission data of UE # 1 may be read as UL data / UL-SCH corresponding to UE # 1 and UL data / UL-SCH for UE # 1.
  • the UL data / UL-SCH may be read as UL control information / UCI.
  • Information may be shared between UE # 1 and UE # 2 by transmitting / notifying predetermined information from UE # 1 to UE # 2.
  • existing communication methods such as unlicensed band (or shared spectrum), WiFi, and Bluetooth (registered trademark) may be applied.
  • UE # 1 may transfer / share predetermined information to UE # 2 by using an upper layer. That is, higher layer signaling may be used in communication between UEs.
  • the information sharing may be shared between UE # 1 and UE # 2 as a periodic report set by the base station.
  • the information sharing may be shared between UEs # 1 and UE # 2 as an aperiodic report triggered by the base station.
  • the information sharing may be configured to be voluntarily shared between UEs # 1 and UE # 2.
  • each UE may be configured to be able to instruct / instruct other UEs to report or share predetermined information.
  • information is shared between UEs using a channel for D2D or the like, and the shared information is used between a plurality of UEs. It may be controlled to perform cooperative transmission with.
  • FIG. 4B shows a case where the transmission data of UE # 1 (for example, a part of the transmission data) is transmitted from UE # 2, but the present invention is not limited to this.
  • the transmission data of UE # 2 (for example, a part of the transmission data) may be transmitted from UE # 1.
  • information sharing / information provision may be performed from UE # 2 to UE # 1 (see FIG. 5).
  • information about transmission data of UE # 1 (for example, a part of transmission data) is transferred from UE # 1 to UE # 2, and information about transmission data of UE # 2 (for example, a part of transmission data). Is transferred from UE # 2 to UE # 1.
  • the method of transferring transmission data from UE # 2 to UE # 1 may be controlled in the same manner as the method of transferring transmission data from UE # 1 to UE # 2.
  • predetermined parameters / configurations may be controlled to be shared between UEs / antenna ports.
  • a certain parameter / configuration for example, the first parameter / configuration
  • other parameters / configurations eg, second parameter / configuration
  • Predetermined parameters / configurations include at least demodulation reference signal settings (eg DMRS settings or DMRS configurations), number of layers / ranks (eg MIMO layers / MIMO ranks), transmit signal resources, and DMRS resources. There may be one.
  • the DMRS setting may be at least one of the DMRS symbol number in the time direction, the presence / absence of insertion of the additional DMRS (Additional DMRS), and the DMRS type (for example, type 1 or type 2) in the frequency direction.
  • Additional DMRS additional DMRS
  • DMRS type for example, type 1 or type 2
  • the transmission signal resource may be at least one of time, frequency, CDM / quadrature code, series number, and cyclic shift number.
  • the DMRS resource may be at least one of time, frequency, CDM / orthogonal code, series number, cyclic shift number, Comb index (for example, Comb index), and CDM group index (for example, CDM group index). ..
  • Information about the transmission signal resource / DMRS resource may be dynamically notified from the base station to the UE by using DCI at the time of transmission instruction (or schedule).
  • the network may set a predetermined parameter / configuration to a predetermined UE by using the upper layer / physical layer control information (for example, DCI).
  • the predetermined UE may be a plurality of UEs that perform cooperative transmission, or some UEs among the UEs that perform cooperative transmission (for example, a UE corresponding to the data to be transmitted (or a UE that is a transfer source of the transmission data)). )) May be.
  • Predetermined parameters / configurations may be set separately (eg, for coordinated transmission) from normal transmission (eg, UE-base station transmission).
  • the UE is also the same in the UE / antenna port (for example, the paired UE / antenna port) that performs cooperative transmission when a predetermined parameter / configuration is set by the upper layer / physical layer control information (for example, DCI). It may be assumed that the contents of are set. Alternatively, the UE may assume that the same content is set for some parameters / configurations and different contents are set for different parameters / configurations.
  • the UE may notify / instruct the same (or different) contents to the paired UE / antenna port when a predetermined parameter / configuration is set.
  • the method used for information sharing between UEs in the second aspect may be applied.
  • the DMRS symbol number and the like are set to be the same among the plurality of UEs (for example, between UE # 1 and UE # 2), and the DMRS Comb index / CDM group index and the like are set separately among the plurality of UEs (for example, for example). May be set differently).
  • the transmitted signal resource may be set in duplicate in a plurality of UEs, or may be set separately (for example, differently).
  • FIG. 6 is a diagram showing an example of resource setting / resource allocation for UE # 1 and UE # 2 that perform cooperative transmission.
  • UE # 1 transmits using antenna ports # 0 and # 1
  • UE # 2 transmits using antenna ports # 2 and # 3
  • the same contents are set as the first parameter / configuration (here, DMRS symbol) for UE # 1 and UE # 2
  • different contents are set as the second parameter / configuration (here, Comb index). Indicates the case where it is set.
  • the contents of the first parameter / configuration and the second parameter / configuration are not limited to this.
  • FIG. 6 shows a case where the transmission signal resources of UE # 1 and UE # 2 overlap, but the present invention is not limited to this, and the transmission signal resources of UE # 1 and UE # 2 do not overlap (or part of them). May be duplicated).
  • the base station uses a predetermined DCI to transmit information about the schedule to at least one UE among a plurality of UEs that perform cooperative transmission.
  • the information regarding the schedule may include at least one of the frequency resource, the time resource, the transmission timing, and the reception timing used for transmission / reception. Further, the information regarding the schedule may be read as the information regarding the UL transmission instruction or the information regarding the DL reception instruction.
  • the transmission of information regarding the schedule may be controlled based on at least one of the following aspects 4-1 to 4-3. Which of aspects 4-1 to 4-3 is applied may be defined in the specifications, or may be switched and set by using upper layer signaling / DCI or the like.
  • the configurable aspects may be limited based on the capability information of the UE (or the capability information reported by the UE).
  • the DCI used for UL transmission instruction / schedule may be a UE-specific DCI. That is, the UEs may be scheduled in a separate DCI for each UE (see FIG. 7A).
  • the UE uses the schedule information addressed to its own terminal to transmit data in cooperation with other UEs (for example, UL-to-UL cooperative MIMO transmission).
  • the base station transmits schedule information to UE # 1 and UE # 2.
  • the base station may transmit information about the schedule to UE # 1 by using the DCI corresponding to UE # 1 (for example, UE # 1 specific DCI).
  • the base station may transmit information about the schedule to UE # 2 by using the DCI corresponding to UE # 2 (for example, UE # 2 specific DCI).
  • UE # 1 notifies (information sharing) information such as transmission data to UE # 2. For example, UE # 1 may transfer / share information about transmission data to be transmitted using UE # 2 (or the antenna port of UE # 2) to UE # 2.
  • UE # 1 / UE # 2 coordinately transmit based on the information about the schedule received from the base station.
  • UL data corresponding to UE # 1 is transmitted from UE # 1 (or the antenna port of UE # 1) and UE # 2 (or the antenna port of UE # 2) is shown.
  • the information to be transmitted in cooperation is not limited to UL data (or UL-SCH), but may be UL control information (for example, UCI).
  • the schedule can be flexibly controlled for each UE.
  • FIG. 7A shows a case where information such as transmission data is notified (information sharing) from UE # 1 to UE # 2, but the present invention is not limited to this.
  • Information such as transmission data may be notified (information sharing) from UE # 2 to UE # 1 (see FIG. 7B).
  • FIG. 7B shows a case where the base station notifies UE # 1 of the first schedule information and UE # 2 is notified of the second schedule information.
  • the schedule information # 1 and # 2 are information about resources used for transmitting information (for example, information sharing 1) notified from UE # 1 to UE # 2, and notified from UE # 2 to UE # 1. At least one (eg, both) with information about the resource used to transmit the information (eg, information sharing 2) may be included.
  • the DCI used for UL transmission instruction / schedule may be transmitted only to a part of UEs among a plurality of UEs. That is, only some UEs may be notified of schedule information by UE-specific DCI (see FIG. 8A).
  • the information about the schedule may include information about the schedule for other terminals in addition to the information about the schedule for the UE to which the DCI is transmitted.
  • the base station transmits schedule information to UE # 1.
  • the base station may transmit information about the schedule to the UE # 1 by using the CRC scrambled DCI in the RNTI (for example, C-RNTI) corresponding to the UE # 1.
  • the DCI may include information regarding scheduling for UE # 1 and information regarding scheduling for UE # 2.
  • UE # 1 may notify UE # 2 of information about the schedule of UE # 2 as part of information sharing between UEs.
  • UE # 2 may transmit UL data (for example, UL data notified from UE # 1) by using inter-UE cooperative MIMO based on the acquired scheduling information.
  • the information to be transmitted in cooperation is not limited to UL data (or UL-SCH), but may be UL control information (for example, UCI).
  • FIG. 8A shows a case where information such as transmission data is notified (information sharing) from UE # 1 to UE # 2, but the present invention is not limited to this.
  • Information such as transmission data may be notified (information sharing) from UE # 2 to UE # 1 (see FIG. 8B).
  • the schedule information notified from the base station to UE # 1 includes information regarding resources used for transmitting information notified from UE # 1 to UE # 2 (for example, information sharing 1). At least one (for example, both) of information about a resource used for transmission of information (for example, information sharing 2) notified from UE # 2 to UE # 1 may be included.
  • the DCI used for UL transmission instruction / schedule may be a DCI common to a plurality of UEs (for example, a group common DCI). That is, the group common DCI may notify a plurality of UEs (eg, UEs # 1 and UE # 2) of schedule information (see FIG. 9A).
  • a group common DCI may notify a plurality of UEs (eg, UEs # 1 and UE # 2) of schedule information (see FIG. 9A).
  • the base station transmits schedule information to UE # 1 and UE # 2.
  • the base station may transmit information about the schedule to a plurality of UEs (for example, a pair of UE # 1 and UE # 2) using a CRC scrambled DCI with a common RNTI.
  • the DCI may include information regarding scheduling for UE # 1 and information regarding scheduling for UE # 2.
  • Each UE may acquire information regarding scheduling addressed to its own terminal from the group common DCI.
  • the common RNTI for a plurality of UEs may be notified / set from the base station to the UE by higher layer signaling or the like.
  • UE # 1 notifies (information sharing) information such as transmission data to UE # 2. For example, UE # 1 may transfer / share information about transmission data to be transmitted using UE # 2 (or the antenna port of UE # 2) to UE # 2.
  • UE # 1 / UE # 2 coordinately transmit based on the information about the schedule received from the base station.
  • UL data corresponding to UE # 1 is transmitted from UE # 1 (or the antenna port of UE # 1) and UE # 2 (or the antenna port of UE # 2) is shown.
  • the information to be transmitted in cooperation is not limited to UL data (or UL-SCH), but may be UL control information (for example, UCI).
  • FIG. 9A shows a case where information such as transmission data is notified (information sharing) from UE # 1 to UE # 2, but the present invention is not limited to this.
  • Information such as transmission data may be notified (information sharing) from UE # 2 to UE # 1 (see FIG. 9B).
  • a resource used for transmitting information (for example, information sharing 1) notified from UE # 1 to UE # 2 in the schedule information notified from the base station to UE # 1 and UE # 2.
  • each UE performs UL data (or UL-SCH) or PUSCH schedule (for example, resource control, etc.) transmitted by the own terminal by DCI addressed to the own terminal. ..
  • UE # 1 may receive control information addressed to UE # 2.
  • control information addressed to each UE can be transmitted using one DCI.
  • a separate DCI field may be set for each UE in the DCI (option 4-1). .. Alternatively, a DCI field common to UEs may be set in the DCI, and a different value may be notified for each UE (option 4-2).
  • FIG. 10A shows a case where the TPMI field is set for each UE in DCI.
  • the TPMI field may be expanded to set a field capable of instructing a different TPMI for each UE.
  • the DCI field for each UE may be only a predetermined (or predetermined type) DCI field.
  • a common value may be assumed (or commonly applied among UEs).
  • the DCI field set individually for each UE is a field related to at least one of a precoder for UL MIMO, a rank instruction, a UL beam instruction (for example, TPMI / SRI), and a TPC command (for example, a PUSCH TPC command). May be.
  • the fields related to the DMRS Comb index may be set individually for each UE.
  • the fields related to time resources / frequency resources may be set individually for each UE.
  • the DCI field that is the same / commonly set for each UE may be a DCI format notification (DCI format indicator) field, a timing instruction (timing indicator) field, or the like.
  • DCI format indicator DCI format indicator
  • timing instruction timing indicator
  • Option 4-2 A different value may be notified for each UE in a common DCI field among the UEs (see FIG. 10B). For example, information for each DCI code point (or each bit value of the DCI field) may be set for each UE by higher layer signaling or the like.
  • FIG. 10B shows a case where the TPMI field corresponding to UE # 1 and UE # 2 is set in common in DCI, and the correspondence between the code point of the TMPI field and the TMPI index is set separately for each UE. This makes it possible to specify a different TPMI index for each UE by using a common TPMI field.
  • a predetermined DCI format may be specified for UL transmission (eg, PUSCH transmission) that is transmitted cooperatively between UEs.
  • a predetermined DCI format may be specified for resource allocation / scheduling used for signal transmission (eg, information sharing) between UEs.
  • the predetermined DCI format may be configured by reading a bit in the existing DCI format or the like.
  • a given DCI format indicates a field used for UL transmission (eg, PUSCH transmission) transmitted in concert and a resource used for signal transmission between UEs (eg, information sharing between UEs). At least one of the fields may be included.
  • the base station uses a predetermined DCI format to at least set a schedule for PUSCH transmission (for example, UL coordinated PUSCH transmission) and a condition / schedule for signal transmission between UEs in communication between UEs (for example, resource allocation, etc.).
  • a schedule for PUSCH transmission for example, UL coordinated PUSCH transmission
  • a condition / schedule for signal transmission between UEs in communication between UEs for example, resource allocation, etc.
  • Fields used for PUSCH transmission include recorders for UL MIMO, rank instructions, UL beam instructions (eg, TPMI / SRI), and TPC commands (eg, PUSCH TPC commands). It may be a field related to at least one.
  • a field related to the DMRS Comb index may be set.
  • a field related to time resource / frequency resource may be set.
  • the field indicating the resource used for signal transmission between UEs may be a field related to a time resource / frequency resource or a field related to a TPC command. Fields for time resources / frequency resources may be set if different resource indications are supported across UEs.
  • the field related to the TPC command may be set when the closed loop TPC (for example, CL-TPC) is performed in the signal transmission between UEs.
  • a predetermined DCI (or a predetermined PDCCH) indicating at least one of resource allocation / schedule for inter-UE cooperative PUSCH transmission and inter-UE signal transmission is received / detected in a predetermined control resource set / search space. It may be configured.
  • the predetermined control resource set / search space may be read as at least one of a predetermined time resource, a predetermined frequency resource, and a predetermined subcarrier interval.
  • the UE may attempt to detect (for example, blind detection) the DCI instructing the UE cooperative PUSCH transmission in a predetermined control resource set / search space. In this case, it may be controlled so that the DCI (or PDCCH) corresponding to the UE cooperative PUSCH transmission is not detected in another control resource set / search space.
  • the predetermined DCI (or predetermined PDCCH) may be configured to be received / detected in any control resource set / search space.
  • the UE may attempt to detect (for example, blind detection) the DCI instructing the UE cooperative PUSCH transmission in the set control resource set / search space.
  • the UE may determine whether the UE-coordinated PUSCH is scheduled based on whether the predetermined DCI (or the predetermined PDCCH) is CRC scrambled by the RNTI for UE-coordinated PUSCH transmission.
  • the UE may determine if the UE cooperative PUSCH is scheduled based on a predetermined field of DCI.
  • Operation 1 UE-coordinated PUSCH schedule and allocation of inter-UE signal transmission resources
  • Operation 2 UE # 1 PUSCH (for example, PUSCH resource) schedule and UE # 2 PUSCH schedule
  • the fourth embodiment is not limited to this, and DCI / PDCCH may be transmitted a plurality of times (for example, twice).
  • the first DCI may transmit some information (eg, information about the schedule) and the second DCI may transmit the rest of the information.
  • the number of DCI bits at one time can be reduced, the coding rate can be reduced, and the error rate can be improved.
  • the UE shared information may be transmitted using the first DCI, and the UE individual information may be transmitted using the second DCI (see FIG. 12).
  • the first DCI may be CRC scrambled with the RNTI corresponding to the predetermined group common.
  • the first DCI may contain information about at least one of the resources, monitoring occasions, search space, and control resource set of the second DCI / PDCCH. In this case, the number of detections of the second DCI can be reduced.
  • the first DCI may be configured to include a DCI field common to UEs.
  • the first DCI may include a field that specifies a parameter that is commonly set among UEs.
  • the field may be, for example, at least one of a PUSCH timing instruction (for example, Timing indicator) field, a PUSCH time / frequency resource instruction field, and a resource instruction field for inter-UE signal transmission.
  • the second DCI may be CRC scrambled by the UE individual RNTI.
  • the second DCI may be configured to include a UE-specific DCI field.
  • the second DCI may include a field that specifies parameters that are set individually for the UE.
  • the field may be, for example, at least one of a UL MIMO recorder / rank indicator field, a UL beam indicator (TPMI / SRI) field, a DMRS comb index (or CDM group index) field, and a TPC command field. ..
  • first DCI is a group common and the second DCI is a UE individual is shown, but the present invention is not limited to this. Both the first DCI and the second DCI may be UE-individual. Further, the first DCI and the second DCI may be transmitted in the same slot / same CC / same BWP, or may be transmitted in different slots / different CC / different BWP.
  • the first DCI / second DCI may include a DAI field (eg, counter DAI / total DAI).
  • Kaunda DAI indicates the count value of DCI (or PDCCH)
  • total DAI indicates the total number of DCI (or PDCCH).
  • the UE When reception of a first DCI and a second DCI (or two-step DCI) is configured / defined, the UE has a first DCI (eg, a group common DCI) and a second DCI (eg, a UE). If only one of the individual DCIs) is received, the UE may detect a reception error in any of the DCIs.
  • a first DCI eg, a group common DCI
  • a second DCI eg, a UE
  • the UE may assume that the first DCI and the second DCI containing the same HARQ process ID correspond to each other. If only one of the first DCI and the second DCI can be received for the same HARQ process ID (eg, in a predetermined time content), the UE may detect an error in either DCI.
  • the order of transmission / reception of the first DCI and the second DCI may be specified.
  • the configuration may be such that the second DCI is transmitted / received after the first DCI. This makes it possible to simplify the DCI error detection operation in the UE.
  • the UE may control the UE to not perform inter-UE communication / UE cooperative PUSCH transmission.
  • the base station may determine that the UE has missed the first DCI / second DCI and retransmit the DCI. ..
  • the UE may control so as not to perform inter-UE communication / UE cooperative PUSCH transmission. For example, when the first DCI is detected incorrectly and the second DCI is received, the UE may control the UE to perform inter-UE communication and not to perform UE cooperative PUSCH transmission. Further, when the first DCI is received and the second DCI is misdetected, the UE may be controlled so as not to perform both the inter-UE communication and the UE cooperative PUSCH transmission. This makes it possible to appropriately use the DCI that has been correctly received.
  • the UE When performing UL transmission using UE cooperative MIMO, the UE reports / notifies / transfers / information sharing of data / control information including transmission data of the physical layer to other UEs based on a predetermined unit / predetermined unit. (Hereinafter, also referred to as transfer / information sharing) may be controlled.
  • the UE may divide the UL data transmitted by its own terminal into predetermined units (see FIG. 13A) and transfer / share information to other UEs (see FIG. 13B).
  • the predetermined unit may be at least one of a transport block (TB), a code word (CW), a code block (CB), and a bit unit.
  • TB transport block
  • CW code word
  • CB code block
  • bit unit a bit unit
  • the UE By dividing a part of TB / CW / CB of the UL data transmitted by the own terminal, the UE divides the data transmitted by the UL-SCH of the own terminal into the data to be transferred / shared to other UEs. It may be divided. By dividing into TB / CW / CB units, error determination / retransmission can be appropriately performed.
  • the division of UL data transmitted by the own terminal (for example, UE # 1) and UL data transmitted by another UE (for example, UE # 2) (for example, the boundary for dividing UL data) is set in a higher layer or the like. It may be determined or it may be determined based on a predetermined rule.
  • the setting by the upper layer may be set based on the number of TB / CW / CB, may be set based on the number of bits of UL-SCH of each UE, or may be set based on the number of UL-SCH of each UE. It may be set based on the conversion rate.
  • the predetermined rule may be to equalize the number of UL-SCH bits of a plurality of UEs (for example, UE # 1 and UE # 2).
  • the UE has data corresponding to the own terminal (for example, data transmitted from the antenna port of the own terminal to the base station) and data corresponding to the other terminal (for example, the data corresponding to the antenna port of the other terminal to the base station).
  • the data to be transmitted to may be divided.
  • the UE may assign the first half portion of the divided data (for example, TB / CW / CB / bit) to the own terminal and the latter half portion to another terminal.
  • a mechanism / mechanism of a communication system other than 3GPP may be used.
  • UE # 1 may be controlled to transmit predetermined information to UE # 2 by using wireless RAN (for example, WiFi) and short-distance data communication (for example, Bluetooth) (see FIG. 14).
  • Notifying predetermined information by the UE using the mechanism / mechanism of another communication system may correspond to transmitting the physical layer information to be transferred to the upper layer for the purpose of inter-UE communication.
  • UE # 2 may be controlled to transmit the physical layer information received from the upper layer by UL-SCH.
  • UE # 1 transmits CB # 2 of UL data (for example, CB # 1 + CB # 2) to UE # 2 by using an upper layer. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending.
  • the inter-UE transmission / reception method of the physical layer may be used.
  • UE # 1 may be controlled to transmit predetermined information to UE # 2 by using at least one of a channel for D2D and a side link (see FIG. 15).
  • UE # 1 transmits CB # 2 of UL data (for example, CB # 1 + CB # 2) to UE # 2 using D2D / side link. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending.
  • the base station may control the schedule.
  • D2D / sidelink is applied in information sharing between UEs, a configuration in which resources are autonomously selected among a plurality of UEs and transmission is controlled (aspect 5-1), and a base station transmits among a plurality of UEs.
  • At least one of the configurations (Aspects 5-2) in which transmission is controlled by selecting / scheduling resources may be applied.
  • a base station may set a resource pool for each UE by using upper layer signaling.
  • the UE may autonomously select a resource based on the resource pool and transmit it to another UE (see FIGS. 16A and 16B).
  • UE # 1 utilizes some UL data (for example, CB # 1 + CB # 2) of UL data (for example, CB # 2) by using the resources included in the resource pool preset in the upper layer.
  • CB # 2) is transmitted to UE # 2.
  • UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1)
  • UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2.
  • the base station may schedule UL data for each UE and schedule for coordinated transmission between UEs at the same time.
  • FIG. 16B shows a case where a UE-specific DCI is transmitted to each UE (Aspect 4-1), the method shown in Aspect 4-2 / Aspect 4-3 may be applied.
  • a UE whose resource pool is set by the upper layer transmits a signal by communication between UEs, it may select a resource from the resource pool and transmit a signal to another terminal using the selected resource. ..
  • the UE may autonomously perform carrier sense or the like to determine the state of the resource pool (for example, whether or not it is free), or based on the information known / notified / instructed by the base station. You may judge the state of the resource pool.
  • the resource pool may be randomly selected by the UE based on a random number or the like, or may be selected based on a predetermined rule.
  • the receiving UE (for example, UE # 2) may receive / measure the resource (or resource pool) set in the upper layer and receive the signal addressed to its own terminal. To determine whether the signal is addressed to the own terminal, for example, it is determined whether or not the CRC inserted in the data can be solved based on the ID (or C-RNTI) of the own terminal (for example, CRC check). You may.
  • the UE does not have to use the resource pool for information sharing between UEs.
  • WiFi CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • NRU NR unlicensed LBT (Listen Before Talk)
  • it is controlled to send if resources are available, and the receiving side. May decode the received signal and determine whether or not it is signalized to its own terminal based on information such as a MAC header.
  • the base station may instruct / schedule each UE the resources to be used for transmission between UE and UE.
  • the UE may control the transmission between the UE and the UE by utilizing the resources scheduled from the base station (see FIGS. 17A and 17B).
  • the data transfer source UE (here, UE # 1) to which the resource is allocated from the base station divides the physical layer data (TB / CW / CB) by using the allocated resource and partially data. (Here, CB # 2) is transmitted to another UE # 2.
  • the data transfer destination UE (here, UE # 2) to which the resource is allocated from the base station measures / receives the allocated resource, receives the divided physical layer data (TB / CW / CB), and receives the allocated physical layer data (TB / CW / CB). Transmission may be performed to the base station using UL-SCH of UE2.
  • UE # 1 uses a resource scheduled from the base station to obtain some UL data (for example, CB # 2) out of UL data (for example, CB # 1 + CB # 2). Send to UE # 2. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending.
  • the base station may schedule UL data for each UE and schedule for coordinated transmission between UEs at the same time.
  • FIG. 17B the case where the DCI of each UE is transmitted to each UE (Aspect 4-1) is shown, but the method shown in Aspect 4-2 / Aspect 4-3 may be applied.
  • the base station may grasp the channel information between each UE and the base station based on the UL signal transmitted from the UE.
  • the UL signal may be a predetermined reference signal (for example, SRS) or another signal.
  • the base station instructs / sets each UE to transmit UL signal / RS (hereinafter, also referred to as SRS) before scheduling each UE (for example, schedule of UE cooperative MIMO transmission / schedule of signal transmission between UEs). / May be triggered.
  • the base station may determine the TPMI / SRI of each UE based on the received SRS.
  • SRS (here, SRS # 1 and SRS # 2) transmitted from each UE (for example, UE # 1 and UE # 2) may use different SRS resources (see FIG. 18A). ).
  • the base station may set different SRS resources for UE # 1 and UE # 2 by using higher layer signaling or the like.
  • the SRS transmission timing (for example, timing advance) may be different between the UEs.
  • the base station may adjust the timing advance based on the reception result of the SRS.
  • the UE may be controlled by the SRS transmitter Australia from the base station for timing advance.
  • the UE may receive the timing advance command (TA command in MAC CE) included in the MAC CE transmitted by the PDSCH after the SRS transmission.
  • the UE may adjust the timing advance (or UL transmission timing) based on the received information.
  • the SRS (here, SRS # 1 and SRS # 2) transmitted from each UE (for example, UE # 1 and UE # 2) may use the same / common SRS resource.
  • the base station may set a common SRS resource for UE # 1 and UE # 2 by using upper layer signaling or the like. Each UE cooperates to transmit SRS using one SRS resource.
  • the SRS transmission timing (timing advance) between the UEs. Therefore, it may be controlled so that the timing advance is adjusted based on the UL transmission (for example, PRACH / SRS / PUSCH / PUCCH, etc.) before the SRS transmission.
  • the UL transmission for example, PRACH / SRS / PUSCH / PUCCH, etc.
  • the correspondence between the antenna ports may be the same at the time of SRS transmission and at the time of PUSCH transmission (for example, at the time of UE cooperative PUSCH transmission) (see FIG. 19).
  • the antenna ports may not be interchanged between the UEs during SRS transmission and PUSCH transmission.
  • the UL beam (for example, SRI / spatial relationship) may be configured to be the same during SRS transmission and PUSCH transmission.
  • the UE may assume that the beam of each antenna port (for example, spatial relationship / TCI state / pseudo-collocation) in PUSCH transmission is equal to that at the time of recent SRS transmission.
  • the antenna port (# 0, # 1) corresponding to UE # 1 at the time of SRS transmission, the spatial relationship (# 1), and the antenna port (# 0, # 1) corresponding to UE # 1 at the time of PUSCH transmission are shown.
  • the case where the spatial relation (# 1) is equal is shown.
  • the case where the spatial relations (# 2) are equal is shown.
  • PUSCH transmission is taken as an example in FIG. 19, the same mechanism / rule is applied to the transmission of other UL signals / UL channels (for example, PUCCH) that are cooperatively transmitted between UEs. May be good.
  • PUCCH UL signals / UL channels
  • one or more UEs transmit UL signals / UL channels
  • multiple beams or resources of one UL signal / UL channel
  • one UL signal / UL channel or resources of one UL signal / UL channel.
  • TCI states, spatial relationships, or pseudo-colocation (QCL) may be set.
  • the UL signal / UL channel may be read as at least one of SRS, PUSCH, and PUCCH.
  • the same antenna port may be mapped to the same physical antenna port (see FIG. 20). Further, the same beam (for example, TCI state, spatial relationship, or pseudo-collocation) may correspond between the channels of SRS / PUSCH / PUCCH (or between the signal and the channel) between the same antenna ports.
  • the same beam for example, TCI state, spatial relationship, or pseudo-collocation
  • the number at the antenna port at the time of SRS transmission and the number at the antenna port at the time of PUSCH transmission are made equal.
  • the same beam for example, TCI state, spatial relation, or pseudo-collocation
  • TCI state # 1 and TCI state # 2 may be set for a common SRS resource (for example, SRS resource # 1).
  • the phase is continuous between antenna ports # 0 and # 1 (coherent), the phase is continuous between antenna ports # 2 and # 3 (coherent), and antenna ports # 0- # 1 and antenna port # 2 are continuous.
  • the phase between # 3 may be non-continuous (not coherent).
  • the TCI state / spatial relationship / QCL may be set separately (for example, different) for each antenna port (see FIG. 21).
  • FIG. 21 shows a case where the TCI state # 1 and the TCI state # 2 are set for a common SRS resource (for example, SRS resource # 1).
  • the TCI state may be mapped to each antenna port based on a predetermined rule.
  • the case where the TCI state ID having a small index is mapped / corresponding to the antenna port number having a small number is shown.
  • the antenna ports # 0 and # 1 of the SRS resource # 1 are set to the TCI state # 1, and the antenna ports # 2 and # 3 of the SRS resource # 1 are set to the TCI state # 2. Further, even in the transmission of different UL signals / UL channels (for example, PUSCH transmission), the case where the association between the antenna port and the TCI state is the same is shown. Specifically, the antenna ports # 0 and # 1 of the PUSCH resource # 1 are set to the TCI state # 1, and the antenna ports # 2 and # 3 of the PUSCH resource # 1 are set to the TCI state # 2.
  • FIG. 21 shows a case where a plurality of beams (for example, spatial relation / TCI state / pseudo-collocation) are set in one UL signal / UL channel, but the present invention is not limited to this.
  • One beam eg, spatial relationship / TCI state / pseudo-collocation
  • the TCI state / spatial relationship / QCL may be set separately (for example, different) for each resource.
  • the TCI state # 1 is set for the SRS resource # 1 (or the antenna ports # 0 and # 1 corresponding to the SRS resource # 1), and the SRS resource # 2 (or the SRS resource # 2 is supported).
  • the association between the antenna port and the TCI state may be the same.
  • the TCI state # 1 is set for the PUSCH resource # 1 (or the antenna ports # 0 and # 1 corresponding to the PUSCH resource # 1), and the antenna corresponding to the PUSCH resource # 2 (or the antenna corresponding to the PUSCH resource # 2) is set.
  • the TCI state # 2 may be set for the ports # 2 and # 3).
  • the UE may perform retransmission control based on at least one of aspects 7-1 and 7-2.
  • the transmission data or UL data
  • the present invention is not limited to this.
  • the data source UE may be controlled to retransmit the UL data (FIG. 23).
  • the data source UE for example, UE # 1
  • CB # 1 is transmitted from UE # 1 (or the antenna port of UE # 1)
  • CB # 2 is transmitted to UE # 2. (Or, the case of transmitting from the antenna port of UE # 2) is shown.
  • UE # 1 may be controlled to retransmit CB from UE # 1 when at least one of CB # 1 and CB # 2 is erroneously transmitted. In this case, UE # 1 may be controlled to retransmit only the erroneous CB, or may be controlled to retransmit including the erroneous CB.
  • the resource used for retransmission may be a resource different from the resource scheduled for UL data transmission (for example, a resource for retransmission).
  • the retransmission resource may be defined in the specifications, or may be set from the base station to the UE by higher layer signaling or the like.
  • the UE may transmit the PUSCH for retransmission by using a predetermined resource.
  • the base station may detect UE # 1 (or UE # 1 and UE # 2). ) May be notified of information regarding the resend instruction. In this case, UE # 1 may be controlled to perform retransmission.
  • the UE to be retransmitted may be determined / selected based on which UL data (or UL data transmitted by which UE) is incorrect.
  • the UE (or the UE that missed the transmission) notified by the base station of the CB resend instruction (or the fact that the CB is incorrect) transmitted at the time of the first transmission may be controlled to retransmit the CB. ..
  • the base station may schedule a PUSCH resource for transmitting retransmission data to the UE.
  • the UE may transmit UL data instructed to be retransmitted using the scheduled resource from the base station.
  • the UE may be controlled to retransmit only the erroneous CB, or may be controlled to retransmit including the erroneous CB.
  • the resource used for retransmission may be a resource different from the resource scheduled for UL data transmission (for example, a resource for retransmission).
  • the retransmission resource may be defined in the specifications, or may be set from the base station to the UE by higher layer signaling or the like.
  • the UE may transmit the PUSCH for retransmission by using a predetermined resource.
  • the base station may notify the UE of the transmission source of the UL data of the UL data retransmission instruction. For example, if an error is detected in the CB # 1 transmitted from the UE # 1, the base station may notify the UE # 1 of the information regarding the retransmission instruction. Further, when an error is detected in the CB # 2 transmitted from the UE # 2, the base station may notify the UE # 2 of the information regarding the retransmission instruction. In this way, by retransmitting the UL data transmission by the erroneous UE, it is possible to eliminate the need for new inter-UE transfer for retransmission.
  • the base station If an error is detected in one of the CBs (for example, CB # 2 transmitted from UE # 2), the base station instructs both UEs (for example, UE # 1 and UE # 2) to retransmit. May be notified of information about. In this case, the retransmission may be performed only from the UE # 2, or the retransmission may be performed from both the UE # 1 and the UE # 2.
  • Option B The UE (or the UE that made a mistake in transmission) notified by the base station of the CB resend instruction (or that the CB is incorrect) transmitted at the time of the first transmission does not retransmit the CB (another UE made a mistake). It may be controlled to transmit CB).
  • the UE # 2 may be controlled to retransmit the CB # 1 (see FIG. 24).
  • UE # 1 may transfer / share information with CB # 1 to UE # 2
  • UE # 2 may transmit CB # 1 to the base station.
  • the base station may notify UE # 1 of the information regarding the retransmission instruction, or may notify both UE # 1 and UE # 2 of the information regarding the retransmission instruction.
  • the above embodiment (for example, the fifth embodiment) may be applied to the transfer control from UE # 1 to UE # 2.
  • CB # 2 If an error is detected in CB # 2 transmitted from UE # 2, it may be controlled to retransmit CB # 2 from UE # 1. In this case, since UE # 1 knows the information of CB # 2, transfer between UEs is unnecessary.
  • the base station may notify UE # 1 of the information regarding the retransmission instruction, or may notify both UE # 1 and UE # 2 of the information regarding the retransmission instruction.
  • an error is detected in the CBs from both UEs, it may be controlled to retransmit from a specific UE (for example, UE # 1), or it may be controlled to retransmit from each UE. good.
  • the above embodiment may be applied only to UEs for which UEs have reported support in UE capability signaling (eg, UE capability signaling). Further, in the above embodiment, the configuration in which a part of the data of UE # 1 is also transmitted from UE # 2 is shown, but based on the configuration, whether or not the data can be transferred from UE # 2 to U ## 1 (or , Bidirectional data transfer availability) may be reported by another UE capability signaling.
  • UE capability signaling eg, UE capability signaling
  • UE # 1 and UE # 2 may be read as a first UE and a second UE, a master UE and a slave UE, or a primary UE and a secondary UE.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 25 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request).
  • Uplink Control Information including at least one of SR)
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a reference signal for demodulation (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS positioning reference signal
  • PRS Positioning Reference Signal
  • PTRS phase tracking reference signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 26 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit information regarding the schedule to at least one of a plurality of terminals.
  • the control unit 110 may control the reception of UL data coordinatedly transmitted from a plurality of terminals based on the information regarding the schedule.
  • the transmission / reception unit 120 may transmit information regarding the schedule to at least one of a plurality of terminals by using the downlink control information unique to the terminal or the group common downlink control information.
  • the control unit 110 may control the reception of UL data coordinatedly transmitted from the plurality of terminals based on the information regarding the schedule.
  • the transmission / reception unit 120 may receive UL data to be cooperatively transmitted from the plurality of terminals based on information regarding a schedule to be transmitted to at least one of the plurality of terminals.
  • the control unit 110 is a resource or resource used for transmitting information regarding a part of the UL data divided based on at least one of the transport block unit, the code word unit, the code block unit, and the bit unit of the UL data. You may set up a pool.
  • the transmission / reception unit 120 may receive the sounding reference signal from a plurality of terminals.
  • the control unit 110 may control to receive UL transmissions cooperatively transmitted from a plurality of terminals based on the information regarding the schedule.
  • the antenna port used for transmitting the sounding reference signal and the antenna port used for UL transmission may be associated with each other.
  • FIG. 27 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output a baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the transmission / reception unit 220 may receive information regarding the schedule.
  • the transmission / reception unit 220 may transmit information regarding at least a part of UL data to another terminal.
  • the transmission / reception unit 220 may receive a synchronization signal used for synchronization with another terminal.
  • the control unit 110 may control to transmit the UL data in cooperation with other terminals based on the information regarding the schedule.
  • UL data may be transmitted using a number of ranks or layers greater than the number of antenna ports supported by the terminal and at least one of the other terminals.
  • the first demodulation reference signal corresponding to the first UL data transmitted by the terminal and the second demodulation reference signal corresponding to the second UL data transmitted by the other terminal are used.
  • at least some parameters may be set in common.
  • the transmission / reception unit 220 may receive information related to the schedule by the downlink control information peculiar to the terminal or the group common downlink control information.
  • the control unit 110 may control to transmit UL data in cooperation with other terminals based on the information regarding the schedule.
  • the terminal-specific downlink control information may include information regarding the schedule for the terminal and other terminals.
  • the terminal-specific downlink control information or group common downlink control information is at least the first parameter information used for transmitting information regarding at least a part of UL data and the second parameter information used for transmitting UL data. One may be included.
  • the transmission / reception unit 220 uses different downlink control information for the first parameter information used for transmitting information regarding at least a part of UL data and the second parameter information used for transmitting UL data. You may receive it.
  • the control unit 110 may control to transmit UL data in cooperation with other terminals based on the information regarding the schedule.
  • the transmission / reception unit 220 may transmit information about a part of UL data to another terminal by using an upper layer.
  • the transmission / reception unit 220 may transmit information about a part of UL data to another terminal by using a channel used for inter-device communication (D2D) and a channel for side link.
  • the transmission / reception unit 220 may transmit information about a part of UL data by using any resource included in the resource pool or a scheduled resource.
  • the transmission / reception unit 220 may transmit a sounding reference signal.
  • the transmission / reception unit 220 may receive information regarding the schedule.
  • the control unit 110 may control to perform UL transmission in cooperation with other terminals based on the information regarding the schedule.
  • the antenna port used for transmitting the sounding reference signal may be associated with the antenna port used for UL transmission.
  • At least one of different pseudocollocations, different transmission config indicators, and different spatial relationships may be set for each antenna port number.
  • At least one of the same pseudo-collocation, the same transmission config index, and the same spatial relationship may be set for the same antenna port number in the transmission of the sounding reference signal and the UL transmission.
  • control unit 110 may control so that the retransmission is performed from a predetermined terminal.
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 28 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
  • one subframe may be referred to as TTI
  • a plurality of consecutive subframes may be referred to as TTI
  • one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) on the website.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "uplink” and "downlink” may be read as words corresponding to communication between terminals (for example, "sidelink”).
  • the uplink channel, the downlink channel, and the like may be read as the side link channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency region when two elements are connected, one or more wires, cables, printed electrical connections, etc. are used, and as some non-limiting and non-comprehensive examples, the radio frequency region, microwaves. It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one embodiment of the present invention includes: a reception unit that receives information regarding a schedule; a transmission unit that transmits information regarding at least part of UL data to another terminal; and a control unit that controls, in cooperation with the other terminal, the transmission of the UL data on the basis of the information regarding the schedule.

Description

端末、無線通信方法及び基地局Terminals, wireless communication methods and base stations
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) has been specified for the purpose of higher data rate, lower latency, etc. in the Universal Mobile Telecommunications System (UMTS) network (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered. ..
 既存システム(例えば、LTEシステム)において、複数のアンテナでデータを送受信し、データレート(周波数利用効率)を向上させる無線通信技術としてMIMO(Multi Input Multi Output)システムがサポートされている。MIMOシステムにおいては、送受信機に複数の送信/受信アンテナを用意し、異なる送信アンテナから同時に異なる送信情報系列を送信する。 In an existing system (for example, LTE system), the MIMO (Multi Input Multi Output) system is supported as a wireless communication technology that transmits and receives data with multiple antennas and improves the data rate (frequency utilization efficiency). In a MIMO system, a plurality of transmission / reception antennas are prepared in a transceiver, and different transmission information sequences are simultaneously transmitted from different transmission antennas.
 また、MIMOシステムにおいて、異なる送信アンテナから同時に送信する送信情報系列が、全て同一のユーザのものであるシングルユーザMIMO(SU-MIMO(Single User MIMO))と、異なるユーザのものであるマルチユーザMIMO(MU-MIMO(Multiple User MIMO))とが規定されている。 Further, in a MIMO system, a single user MIMO (SU-MIMO (Single User MIMO)) in which transmission information sequences transmitted simultaneously from different transmission antennas are all belonging to the same user and a multi-user MIMO in which they belong to different users. (MU-MIMO (Multiple User MIMO)) is specified.
 将来の無線通信システム(例えば、NR)において、MIMOシステムを拡張して通信を行うことが検討されている。 In future wireless communication systems (for example, NR), it is being considered to extend the MIMO system for communication.
 例えば、ある端末のUL送信を、当該端末を含む複数の端末のアンテナ/アンテナポートを利用して行うこと(UE協調MIMO)が想定される。 For example, it is assumed that UL transmission of a certain terminal is performed using the antennas / antenna ports of a plurality of terminals including the terminal (UE cooperative MIMO).
 しかしながら、複数のUEのアンテナ/アンテナポートを利用した通信をどのように制御するかについて十分に検討されていない。 However, how to control communication using the antennas / antenna ports of multiple UEs has not been sufficiently examined.
 そこで、本開示は、複数のUEのアンテナ/アンテナポートを利用して通信が行われる場合であっても、通信を適切に制御することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, the present disclosure provides a terminal, a wireless communication method, and a base station capable of appropriately controlling communication even when communication is performed using antennas / antenna ports of a plurality of UEs. It is one of the purposes.
 本開示の一態様に係る端末は、スケジュールに関する情報を受信する受信部と、ULデータの少なくとも一部に関する情報を他の端末へ送信する送信部と、前記スケジュールに関する情報に基づいて、前記他の端末と協調して前記ULデータの送信を行うように制御する制御部と、を有することを特徴とする。 The terminal according to one aspect of the present disclosure includes a receiving unit that receives information on the schedule, a transmitting unit that transmits information on at least a part of UL data to another terminal, and the other terminal based on the information on the schedule. It is characterized by having a control unit that controls to transmit the UL data in cooperation with a terminal.
 本開示の一態様によれば、複数のUEのアンテナ/アンテナポートを利用して通信が行われる場合であっても、通信を適切に制御することができる。 According to one aspect of the present disclosure, communication can be appropriately controlled even when communication is performed using the antennas / antenna ports of a plurality of UEs.
図1A及び図1Bは、MU-MIMOとUE協調MIMOの一例を示す図である。1A and 1B are diagrams showing an example of MU-MIMO and UE cooperative MIMO. 図2は、UE協調MIMOのアンテナポートの一例を示す図である。FIG. 2 is a diagram showing an example of an antenna port of UE cooperative MIMO. 図3は、第1の実施形態に係るUE協調MIMOにおける同期信号の一例を示す図である。FIG. 3 is a diagram showing an example of a synchronization signal in UE cooperative MIMO according to the first embodiment. 図4A及び図4Bは、第2の実施形態に係るUE協調MIMOにおける通信制御の一例を示す図である。4A and 4B are diagrams showing an example of communication control in UE cooperative MIMO according to the second embodiment. 図5は、第2の実施形態に係るUE協調MIMOにおける通信制御の他の例を示す図である。FIG. 5 is a diagram showing another example of communication control in UE cooperative MIMO according to the second embodiment. 図6は、第3の実施形態に係るUE協調MIMOにおけるリソース割当ての一例を示す図である。FIG. 6 is a diagram showing an example of resource allocation in UE cooperative MIMO according to the third embodiment. 図7A及び図7Bは、第4の実施形態に係るUE協調MIMOにおける通信制御の一例を示す図である。7A and 7B are diagrams showing an example of communication control in UE cooperative MIMO according to the fourth embodiment. 図8A及び図8Bは、第4の実施形態に係るUE協調MIMOにおける通信制御の他の例を示す図である。8A and 8B are diagrams showing other examples of communication control in UE-coordinated MIMO according to the fourth embodiment. 図9A及び図9Bは、第4の実施形態に係るUE協調MIMOにおける通信制御の他の例を示す図である。9A and 9B are diagrams showing other examples of communication control in UE-coordinated MIMO according to the fourth embodiment. 図10A及び図10Bは、第4の実施形態に係るUE協調MIMOに利用するDCIの一例を示す図である。10A and 10B are diagrams showing an example of DCI used for UE cooperative MIMO according to the fourth embodiment. 図11は、第4の実施形態に係るUE協調MIMOにおける通信制御の他の例を示す図である。FIG. 11 is a diagram showing another example of communication control in UE cooperative MIMO according to the fourth embodiment. 図12は、第4の実施形態に係るUE協調MIMOにおける通信制御の他の例を示す図である。FIG. 12 is a diagram showing another example of communication control in UE cooperative MIMO according to the fourth embodiment. 図13A及び図13Bは、第5の実施形態に係るUE協調MIMOにおけるUE間情報共有の制御の一例を示す図である。13A and 13B are diagrams showing an example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment. 図14は、第5の実施形態に係るUE協調MIMOにおけるUE間情報共有の制御の他の例を示す図である。FIG. 14 is a diagram showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment. 図15は、第5の実施形態に係るUE協調MIMOにおけるUE間情報共有の制御の他の例を示す図である。FIG. 15 is a diagram showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment. 図16A及び図16Bは、第5の実施形態に係るUE協調MIMOにおけるUE間情報共有の制御の他の例を示す図である。16A and 16B are diagrams showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment. 図17A及び図17Bは、第5の実施形態に係るUE協調MIMOにおけるUE間情報共有の制御の他の例を示す図である。17A and 17B are diagrams showing another example of control of information sharing between UEs in UE cooperative MIMO according to the fifth embodiment. 図18A及び図18Bは、第6の実施形態に係るUE協調MIMOにおけるSRS送信の一例を示す図である。18A and 18B are diagrams showing an example of SRS transmission in UE cooperative MIMO according to the sixth embodiment. 図19は、第6の実施形態に係るUE協調MIMOにおけるSRS送信とPUSCH送信の一例を示す図である。FIG. 19 is a diagram showing an example of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment. 図20は、第6の実施形態に係るUE協調MIMOにおけるSRS送信とPUSCH送信の他の例を示す図である。FIG. 20 is a diagram showing other examples of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment. 図21は、第6の実施形態に係るUE協調MIMOにおけるSRS送信とPUSCH送信の他の例を示す図である。FIG. 21 is a diagram showing other examples of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment. 図22は、第6の実施形態に係るUE協調MIMOにおけるSRS送信とPUSCH送信の他の例を示す図である。FIG. 22 is a diagram showing other examples of SRS transmission and PUSCH transmission in UE cooperative MIMO according to the sixth embodiment. 図23は、第7の実施形態に係るUE協調MIMOにおける再送制御の一例を示す図である。FIG. 23 is a diagram showing an example of retransmission control in UE cooperative MIMO according to the seventh embodiment. 図24は、第7の実施形態に係るUE協調MIMOにおける再送制御の他の例を示す図である。FIG. 24 is a diagram showing another example of retransmission control in UE cooperative MIMO according to the seventh embodiment. 図25は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 25 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図26は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 26 is a diagram showing an example of the configuration of the base station according to the embodiment. 図27は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 27 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図28は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 28 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(MIMO拡張)
 将来の無線通信システムにおいて、端末のアンテナ/アンテナポート(以下、アンテナポートとも記す)数を増やして通信のスループットの向上を図ることが検討されている。一方で、UEにおけるアンテナポート数を増やす場合、アンテナポート間の距離が必要となるため、アンテナポート数の増加はUEのサイズ等により制限される。
(MIMO expansion)
In future wireless communication systems, it is being considered to increase the number of antennas / antenna ports (hereinafter, also referred to as antenna ports) of terminals to improve the communication throughput. On the other hand, when increasing the number of antenna ports in the UE, the distance between the antenna ports is required, so that the increase in the number of antenna ports is limited by the size of the UE and the like.
 UE毎のアンテナポート数を増やすことが制限される場合、UEのスループット/セル容量の向上を図るために、UE協調MIMO(例えば、UE corporative MIMO)、Tx/Rxダイバーシティ(Tx/Rx diversity)、又はマルチユーザMIMO(MU-MIMO enhancement)等を利用することが想定される。 When increasing the number of antenna ports for each UE is limited, UE cooperative MIMO (for example, UE corporate MIMO), Tx / Rx diversity (Tx / Rx diversity), in order to improve the UE throughput / cell capacity. Alternatively, it is assumed that multi-user MIMO (MU-MIMO enhancement) or the like will be used.
 UE協調MIMOを適用する場合、UEサイズ等の制約によりアンテナポート数に上限がある場合であっても、複数のUEのアンテナポートを利用することにより見かけ上のアンテナポート数を増加させることが可能となる。また、異なる位置のアンテナポート(又は、異なるアンテナポート番号9を利用することにより、空間相関が小さくなることも規定される。UE協調MIMOは、UE共同MIMO、UE corporative MIMO、UE間協調送信、UE間共同送信、UE間協調受信、UE間共同受信等と読み替えられてもよい。 When applying UE cooperative MIMO, it is possible to increase the apparent number of antenna ports by using the antenna ports of multiple UEs even if there is an upper limit to the number of antenna ports due to restrictions such as UE size. It becomes. It is also specified that the spatial correlation becomes smaller by using the antenna ports at different positions (or different antenna port numbers 9). UE cooperative MIMO is UE joint MIMO, UE corporate MIMO, and UE-to-UE cooperative transmission. It may be read as joint transmission between UEs, cooperative reception between UEs, joint reception between UEs, and the like.
 基地局と複数UE間の通信において4つのアンテナポート(又は、4ランク/4レイヤ)を利用する場合、MU-MIMOでは1UEあたりランク2のSU-MIMO相当となる(図1A参照)。これに対して、UE協調MIMOではランク4のSU-MIMO(又は、仮想4ポートアンテナ)に相当する(図1B参照)。 When four antenna ports (or 4 ranks / 4 layers) are used for communication between a base station and a plurality of UEs, MU-MIMO is equivalent to rank 2 SU-MIMO per UE (see FIG. 1A). On the other hand, in UE-coordinated MIMO, it corresponds to rank 4 SU-MIMO (or virtual 4-port antenna) (see FIG. 1B).
 例えば、UE協調MIMO(例えば、図1B)において、UE#1向けのランク4のデータ(例えば、DLデータ/DL-SCH)をUE#1-UE#2に送信し、UE#2からUE#1へデータを転送してもよい。これにより、UE#1は2アンテナポートしか具備しない場合であっても4アンテナポート相当のデータを受信することができる。 For example, in UE-coordinated MIMO (eg, FIG. 1B), rank 4 data for UE # 1 (eg, DL data / DL-SCH) is transmitted to UE # 1-UE # 2 and UE # 2 to UE # 2. Data may be transferred to 1. As a result, UE # 1 can receive data equivalent to 4 antenna ports even when it has only 2 antenna ports.
 あるいは、UE協調MIMO(例えば、図1B)において、UE#1のデータ(例えば、ULデータ/UL-SCH)をUE#1-UE#2から送信してもよい。これにより、UE#1が2アンテナポートしか具備しない場合であっても4アンテナポート相当(仮想4ポートアンテナ)のデータを送信することができる。 Alternatively, in UE cooperative MIMO (for example, FIG. 1B), the data of UE # 1 (for example, UL data / UL-SCH) may be transmitted from UE # 1-UE # 2. As a result, even when UE # 1 has only two antenna ports, it is possible to transmit data equivalent to four antenna ports (virtual four-port antenna).
 このように、ある端末のUL送信/DL受信を、当該端末を含む複数の端末のアンテナ/アンテナポートを利用して行うこと(UE協調MIMO)が想定されている。これにより、当該端末がサポートするアンテナポート数より多くのアンテナポートを利用して通信を行うことが可能となる(図2参照)。図2では、アンテナポートを2個有するUE同士が協調することにより4アンテナポート(仮想4アンテナポート)を利用した通信を行う場合の一例を示している。 As described above, it is assumed that UL transmission / DL reception of a certain terminal is performed using the antennas / antenna ports of a plurality of terminals including the terminal (UE cooperative MIMO). This makes it possible to communicate using more antenna ports than the number of antenna ports supported by the terminal (see FIG. 2). FIG. 2 shows an example of a case where UEs having two antenna ports cooperate with each other to perform communication using four antenna ports (virtual four antenna ports).
 しかし、複数UEのアンテナポートを利用した通信(例えば、UL送信処理/DL受信処理)をどのように制御するかについて十分に検討されていない。 However, how to control communication using the antenna ports of multiple UEs (for example, UL transmission processing / DL reception processing) has not been sufficiently examined.
 例えば、UE間における同期(例えば、キャリア周波数/位相/送信タイミング)をどのようにあわせるかが問題となる。あるいは、UE間のデータ/制御情報をどのように共有するかが問題となる。あるいは、UE協調MIMOを利用して送信する場合のスケジュール/再送をどのように制御するかが問題となる。あるいは、各アンテナポートに適用(又は、対応/関連する)ビーム/TCI状態/空間関係をどのように設定するかが問題となる。あるいは、UE協調MIMOを利用する場合の再送制御をどのように制御するかが問題となる。 For example, how to match the synchronization between UEs (for example, carrier frequency / phase / transmission timing) becomes a problem. Alternatively, how to share data / control information between UEs becomes a problem. Alternatively, the problem is how to control the schedule / retransmission when transmitting using UE cooperative MIMO. Alternatively, the question is how to set the applied (or corresponding / related) beam / TCI state / spatial relationship to each antenna port. Alternatively, how to control the retransmission control when using UE cooperative MIMO becomes a problem.
 そこで、本発明者らは、上記課題の少なくとも一つを解決するUE動作/基地局動作を検討し、本実施の形態を着想した。 Therefore, the present inventors examined the UE operation / base station operation that solves at least one of the above problems, and conceived the present embodiment.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法(又は、UE動作/基地局動作)は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method (or UE operation / base station operation) according to each embodiment may be applied individually or in combination.
 本開示において、「A/B」、「A及びBの少なくとも1つ」、は互いに読み替えられてもよい。同様に本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。 In the present disclosure, "A / B" and "at least one of A and B" may be read interchangeably. Similarly, in the present disclosure, "A / B / C" and "at least one of A, B and C" may be read interchangeably. In the present disclosure, the cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, and band may be read as each other. In the present disclosure, the index, the ID, the indicator, and the resource ID may be read as each other. In the present disclosure, support, control, controllable, working, working, may be read interchangeably.
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。 In the present disclosure, configuration, activate, update, indicate, enable, specify, and select may be read as each other.
 本開示において、用いる(use)、決定する(determine)、適用する(apply)、選択する(select)、は互いに読み替えられてもよい。 In the present disclosure, "use", "determine", "apply", and "select" may be read as each other.
 本開示において、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよい。本開示において、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、は互いに読み替えられてもよい。 In the present disclosure, link, associate, correspond, and map may be read as each other. In the present disclosure, “allocate”, “assign”, “monitor”, and “map” may be read as interchangeable with each other.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。 In the present disclosure, the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof. In the present disclosure, RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IE), and RRC messages may be read interchangeably.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 For MAC signaling, for example, a MAC control element (MAC Control Element (MAC CE)), a MAC Protocol Data Unit (PDU), or the like may be used. The broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
 本開示において、送達確認情報、HARQ-ACK、HARQ-ACK/NACK、HARQ-ACK情報、HARQ、ACK/NACK、ACK、NACK、NACKオンリー、UCI、は互いに読み替えられてもよい。 In the present disclosure, delivery confirmation information, HARQ-ACK, HARQ-ACK / NACK, HARQ-ACK information, HARQ, ACK / NACK, ACK, NACK, NACK only, UCI may be read as each other.
 本開示において、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。 In this disclosure, specific, dedicated, UE-specific, and UE-individual may be read interchangeably.
 本開示において、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 In the present disclosure, common, shared, group-common, UE common, and UE shared may be read as each other.
 本開示において、UE個別DCI、UE個別RNTIによってスクランブルされたCRCを有するDCI、は互いに読み替えられてもよい。UE個別RNTIは例えば、C-RNTIであってもよい。 In the present disclosure, the UE individual DCI and the DCI having the CRC scrambled by the UE individual RNTI may be read as each other. The UE individual RNTI may be, for example, C-RNTI.
 本開示において、UE共通DCI、UE共通RNTIによってスクランブルされたCRCを有するDCI、は互いに読み替えられてもよい。UE共通RNTIは例えば、multicast-RNTIであってもよい。 In the present disclosure, the UE common DCI and the DCI having a CRC scrambled by the UE common RNTI may be read as each other. The UE common RNTI may be, for example, multicast-RNTI.
 以下の説明では、2つのUE(UE#1とUE#2)が協調して送信を行う場合を示すが、協調送信を行うUE数は3以上であってもよい。また、以下の説明では、各UEにそれぞれ2個のアンテナポートが含まれる場合を示すが、各UEに含まれるアンテナポート数はこれに限られない。UE#1とUE#2で同じ数のアンテナポートが含まれてもよいし、異なる数のアンテナポートが含まれていてもよい。また、以下の説明では、ULにおける協調送信を例に挙げて説明するが、これに限られない。複数のUE間でDLデータを協調して送信する場合にも同様のメカニズムを適用してもよい。 The following description shows a case where two UEs (UE # 1 and UE # 2) cooperate to perform transmission, but the number of UEs performing cooperative transmission may be 3 or more. Further, in the following description, a case where each UE includes two antenna ports is shown, but the number of antenna ports included in each UE is not limited to this. UE # 1 and UE # 2 may contain the same number of antenna ports or may contain different numbers of antenna ports. Further, in the following description, the cooperative transmission in UL will be described as an example, but the present invention is not limited to this. A similar mechanism may be applied when DL data is transmitted cooperatively among a plurality of UEs.
(第1の実施形態)
 UEは、所定の同期信号に基づいて、UE間/アンテナポート間の同期を行うように制御してもよい。
(First Embodiment)
The UE may be controlled to synchronize between UEs / antenna ports based on a predetermined synchronization signal.
 UE協調送信を行うUEが所定の同期信号を受信した場合、当該所定の同期信号に基づいて、他のUEとの同期/他のUEのアンテナポートとの同期を制御してもよい。本開示において、UE協調送信を行うUEは、所定の上位レイヤパラメータ(例えば、UE協調MIMO用のパラメータ)が設定されたUE、又はUE協調送信をサポートするUEと読み替えられてもよい。 When a UE performing UE coordinated transmission receives a predetermined synchronization signal, synchronization with another UE / synchronization with an antenna port of another UE may be controlled based on the predetermined synchronization signal. In the present disclosure, the UE performing UE cooperative transmission may be read as a UE in which a predetermined upper layer parameter (for example, a parameter for UE cooperative MIMO) is set, or a UE that supports UE cooperative transmission.
 所定の同期信号は、周期的に送信/設定されてもよいし、非周期的に送信/設定されてもよい。所定の同期信号は、リソース、又はオケージョンにおいて送信されてもよい(図3参照)。リソースは、送信リソース、受信リソース、又は測定リソースと読み替えられてもよい。オケージョンは、送信オケージョン、受信オケージョン、又は測定オケージョンと読み替えられてもよい。 The predetermined synchronization signal may be transmitted / set periodically or may be transmitted / set aperiodically. A given sync signal may be transmitted in a resource or occasion (see Figure 3). The resource may be read as a transmit resource, a receive resource, or a measurement resource. Occasions may be read as transmit, receive, or measure.
 同期信号のリソース/オケージョンは、上位レイヤシグナリング等を利用して基地局からUEに通知/設定されてもよい。UEは、基地局から通知されたリソース/オケージョンに基づいて所定の同期信号の受信を制御してもよい。所定の同期信号は、設定されたリソース/オケージョンで常に送信されてもよいし、設定された複数のリソース/オケージョン(又は、リソース候補/オケージョン候補)のうち一部のリソース/オケージョンで送信されてもよい。 The resource / occasion of the synchronization signal may be notified / set from the base station to the UE by using higher layer signaling or the like. The UE may control the reception of a predetermined synchronization signal based on the resource / occasion notified from the base station. The predetermined synchronization signal may always be transmitted at a set resource / occasion, or may be transmitted at a part of a set resource / occasion (or a resource candidate / occasion candidate). May be good.
 UEは、同期信号を受信した場合、所定時間経過した後に同期(時間/周波数同期)を行うように制御してもよい。所定時間は、仕様で定義されてもよいし、上位レイヤシグナリングで基地局からUEに通知/設定されてもよいし、報告したUE能力情報に基いて決定されてもよい。 When the UE receives the synchronization signal, it may be controlled to perform synchronization (time / frequency synchronization) after a predetermined time has elapsed. The predetermined time may be defined in the specifications, may be notified / set from the base station to the UE by higher layer signaling, or may be determined based on the reported UE capability information.
 UEは、複数の同期信号を利用して同期を制御してもよいし、1つの同期信号を利用して同期を制御してもよい。例えば、複数の同期信号を利用する場合、UEは、過去に受信した複数回分の同期信号の受信結果に平均化処理を適用して、同期を制御してもよい。1つの同期信号を利用する場合、UEは、同期信号を1回受信するごとに同期を制御してもよい。 The UE may control synchronization by using a plurality of synchronization signals, or may control synchronization by using one synchronization signal. For example, when using a plurality of synchronization signals, the UE may control synchronization by applying an averaging process to the reception results of a plurality of synchronization signals received in the past. When using one synchronization signal, the UE may control synchronization each time the synchronization signal is received.
 所定の同期信号は、ネットワーク(例えば、基地局)から送信されてもよい。あるいは、所定の同期信号は、他のUE/他のUEのアンテナポートから送信されてもよい。他のUEは、UE間/アンテナポート間で協調送信/協調受信を行う場合に連携するUE又はペアとなるUEであってもよい。 The predetermined synchronization signal may be transmitted from a network (for example, a base station). Alternatively, the predetermined sync signal may be transmitted from the antenna port of the other UE / other UE. The other UE may be a UE that cooperates when performing cooperative transmission / reception between UEs / antenna ports, or a UE that is a pair.
 同期信号は、既存システム(例えば、Rel.16以前)のチャネル/信号(例えば、SSB/TRS/CSI-RS)が適用されてもよいし、新規のチャネル/信号が適用されてもよい。また、基地局とUE間の同期に利用される同期信号と、複数UE間の同期に利用される同期信号は、共通に設定されてもよいし、別々に設定されてもよい。 As the synchronization signal, the channel / signal (for example, SSB / TRS / CSI-RS) of the existing system (for example, before Rel.16) may be applied, or a new channel / signal may be applied. Further, the synchronization signal used for synchronization between the base station and the UE and the synchronization signal used for synchronization between a plurality of UEs may be set in common or may be set separately.
 UEは、同期信号の送信に利用されるリソース/オケージョンにおいて、同期信号を受信/検出した場合、受信/検出した同期信号を利用して、UE間/アンテナポート間の協調送信/協調受信のタイミングを決定してもよい。 When the UE receives / detects the synchronization signal in the resource / occasion used for transmitting the synchronization signal, the UE uses the received / detected synchronization signal to coordinate transmission / reception timing between the UEs / antenna ports. May be determined.
 同期信号のリソース/オケージョンは、基地局とUE間の同期のためのリソース/オケージョンであってもよいし、UE-UE間(アンテナポート-アンテナポート間)の同期のためのリソース/オケージョンであってもよい。あるいは、基地局とUE間の同期のためのリソース/オケージョンと、UE-UE間(アンテナポート-アンテナポート間)の同期のためのリソース/オケージョンとの両方がそれぞれ設定されてもよい。 The synchronization signal resource / occasion may be a resource / occasion for synchronization between the base station and the UE, or a resource / occasion for synchronization between the UE and the UE (antenna port-antenna port). You may. Alternatively, both the resource / occasion for synchronization between the base station and the UE and the resource / occasion for synchronization between the UE and the UE (between the antenna port and the antenna port) may be set respectively.
 このように、同期信号を利用してあるUE(又は、あるUEのアンテナポート)と、他のUE(又は、他のUEのアンテナポート)との同期を行うことにより、UE協調MIMOを適切に制御することができる。 In this way, by synchronizing a UE (or an antenna port of a certain UE) with another UE (or an antenna port of another UE) using a synchronization signal, UE cooperative MIMO can be appropriately performed. Can be controlled.
(第2の実施形態)
 UEは、UE協調MIMOを適用する他のUEと所定情報を共有するように制御してもよい。所定情報は、送信データ、制御情報、及びチャネル状態情報の少なくとも一つであってもよい。送信データは、送信データ情報、ULデータ、DLデータ、UL-SCH、又はDL-SCHと読み替えられてもよい。
(Second embodiment)
The UE may be controlled to share predetermined information with other UEs to which UE-coordinated MIMO is applied. The predetermined information may be at least one of transmission data, control information, and channel state information. The transmission data may be read as transmission data information, UL data, DL data, UL-SCH, or DL-SCH.
 以下の説明では、UE協調MIMOにおいて、送信データ(又は、PUSCH/ULデータ/UL-SCH)を送信する場合を例に挙げて説明するが、他のUL信号/ULチャネル(例えば、上り制御情報/PUCCH)を協調して送信する場合にも同様に適用することができる。 In the following description, a case where transmission data (or PUSCH / UL data / UL-SCH) is transmitted in UE cooperative MIMO will be described as an example, but another UL signal / UL channel (for example, uplink control information) will be described. / PUCCH) can be similarly applied to the case of cooperative transmission.
 図4A、図4Bは、第1のUE(UE#1)と、第2のUE(UE#2)とが協調してUL送信を行う場合の一例を示している。図4Aでは、UE#1がアンテナポート#0、#1を利用し、UE#2がアンテナポート#2、#3を利用し、仮想4ポートアンテナを利用して送信する場合を示している。なお、各UEのアンテナポート数(ここでは、2個ずつ)、協調送信に利用するランク数/レイヤ数(ここでは、4)、協調送信を行うUE数(ここでは、2)はこれに限られない。 4A and 4B show an example of a case where the first UE (UE # 1) and the second UE (UE # 2) cooperate to perform UL transmission. FIG. 4A shows a case where UE # 1 uses antenna ports # 0 and # 1, UE # 2 uses antenna ports # 2 and # 3, and a virtual 4-port antenna is used for transmission. The number of antenna ports of each UE (here, 2 each), the number of ranks / layers used for cooperative transmission (here, 4), and the number of UEs for cooperative transmission (here, 2) are limited to this. I can't.
 図4Bにおいて、基地局は、UL送信指示に関する情報をUEに送信する。本開示において、UL送信指示に関する情報は、UL送信のスケジューリングに関する情報、UL送信のトリガに関する情報、ULグラント、DLアサイメント(DLにおいて協調受信する場合)と読み替えられてもよい。 In FIG. 4B, the base station transmits information regarding the UL transmission instruction to the UE. In the present disclosure, the information regarding the UL transmission instruction may be read as information regarding the scheduling of UL transmission, information regarding the trigger of UL transmission, UL grant, and DL assignment (when cooperative reception is performed in DL).
 ここでは、UE#1の送信データ(例えば、送信データの一部)をUE#2からも送信する場合を示している。この場合、UE#1の送信データに関する情報がUE#2に報告/通知/転送/情報共有(以下、転送/情報共有とも記す)されてもよい。つまり、UE#1の送信データに関する情報がUE#1とUE#2間で共有される。 Here, the case where the transmission data of UE # 1 (for example, a part of the transmission data) is also transmitted from UE # 2 is shown. In this case, information about the transmission data of UE # 1 may be reported / notified / transferred / information shared (hereinafter, also referred to as transfer / information sharing) to UE # 2. That is, the information regarding the transmission data of UE # 1 is shared between UE # 1 and UE # 2.
 UE#1の送信データは、UE#1に対応するULデータ/UL-SCH、UE#1用のULデータ/UL-SCHと読み替えられてもよい。なお、ULデータ/UL-SCHは、UL制御情報/UCIと読み替えられてもよい。 The transmission data of UE # 1 may be read as UL data / UL-SCH corresponding to UE # 1 and UL data / UL-SCH for UE # 1. The UL data / UL-SCH may be read as UL control information / UCI.
 UE#1からUE#2に所定情報が送信/通知されることにより、UE#1とUE#2間の情報共有が行われてもよい。情報共有は、アンライセンスバンド(又は、シェアードスペクトラム)、WiFi、Bluetooth(登録商標)等の既存の通信方式が適用されてもよい。例えば、図4Bにおいて、UE#1は、上位レイヤを利用して所定情報をUE#2に転送/情報共有してもよい。つまり、UE間通信において上位レイヤシグナリングが利用されてもよい。 Information may be shared between UE # 1 and UE # 2 by transmitting / notifying predetermined information from UE # 1 to UE # 2. For information sharing, existing communication methods such as unlicensed band (or shared spectrum), WiFi, and Bluetooth (registered trademark) may be applied. For example, in FIG. 4B, UE # 1 may transfer / share predetermined information to UE # 2 by using an upper layer. That is, higher layer signaling may be used in communication between UEs.
 あるいは、情報共有は、基地局により設定された周期的な報告としてUE#1-UE#2間で共有されてもよい。あるいは、情報共有は、基地局からトリガされた非周期的な報告としてUE#1-UE#2間で共有されてもよい。あるいは、情報共有は、UE#1-UE#2間で自発的に共有される構成であってもよい。あるいは、各UEは、他のUEに対して、所定情報の報告又は共有を指示/命令できる構成であってもよい。 Alternatively, the information sharing may be shared between UE # 1 and UE # 2 as a periodic report set by the base station. Alternatively, the information sharing may be shared between UEs # 1 and UE # 2 as an aperiodic report triggered by the base station. Alternatively, the information sharing may be configured to be voluntarily shared between UEs # 1 and UE # 2. Alternatively, each UE may be configured to be able to instruct / instruct other UEs to report or share predetermined information.
 あるいは、D2Dでサポートされる仕様(例えば、物理レイヤ仕様/RAN1仕様)に基づいて、D2D用のチャネル等を利用してUE間で情報共有を行い、当該共有した情報を利用して複数UE間で協調送信を行うように制御してもよい。 Alternatively, based on the specifications supported by D2D (for example, physical layer specifications / RAN1 specifications), information is shared between UEs using a channel for D2D or the like, and the shared information is used between a plurality of UEs. It may be controlled to perform cooperative transmission with.
 図4Bでは、UE#1の送信データ(例えば、送信データの一部)をUE#2から送信される場合を示したが、これに限られない。UE#2の送信データ(例えば、送信データの一部)をUE#1から送信させてもよい。この場合、UE#2からUE#1への情報共有/情報提供が行われてもよい(図5参照)。 FIG. 4B shows a case where the transmission data of UE # 1 (for example, a part of the transmission data) is transmitted from UE # 2, but the present invention is not limited to this. The transmission data of UE # 2 (for example, a part of the transmission data) may be transmitted from UE # 1. In this case, information sharing / information provision may be performed from UE # 2 to UE # 1 (see FIG. 5).
 図5では、UE#1の送信データ(例えば、送信データの一部)に関する情報をUE#1からUE#2に転送し、UE#2の送信データ(例えば、送信データの一部)に関する情報をUE#2からUE#1に転送する場合を示している。UE#2からUE#1への送信データの転送方法は、UE#1からUE#2への送信データの転送方法と同様に制御してもよい。 In FIG. 5, information about transmission data of UE # 1 (for example, a part of transmission data) is transferred from UE # 1 to UE # 2, and information about transmission data of UE # 2 (for example, a part of transmission data). Is transferred from UE # 2 to UE # 1. The method of transferring transmission data from UE # 2 to UE # 1 may be controlled in the same manner as the method of transferring transmission data from UE # 1 to UE # 2.
 このように、基地局からの指示に基づいてUE間の情報共有を行った後に複数UEで協調送信を行うことにより、協調送信を適切に制御することができる。 In this way, it is possible to appropriately control the coordinated transmission by performing the coordinated transmission among the plurality of UEs after sharing the information between the UEs based on the instruction from the base station.
(第3の実施形態)
 UE協調MIMOを利用して送信/受信が行われる場合、所定のパラメータ/構成がUE間/アンテナポート間で共有されるように制御されてもよい。この場合、あるパラメータ/構成(例えば、第1のパラメータ/構成)は、UE間/アンテナポート間で共通に設定されてもよい。一方で、他のパラメータ/構成(例えば、第2のパラメータ/構成)は、UE間/アンテナポート間で別々に(例えば、異なって)設定されてもよい。
(Third embodiment)
When transmission / reception is performed using UE-coordinated MIMO, predetermined parameters / configurations may be controlled to be shared between UEs / antenna ports. In this case, a certain parameter / configuration (for example, the first parameter / configuration) may be set in common between UEs / antenna ports. On the other hand, other parameters / configurations (eg, second parameter / configuration) may be set separately (eg differently) between UEs / antenna ports.
 所定のパラメータ/構成は、復調用参照信号の設定(例えば、DMRS設定、又はDMRS configuration)、レイヤー数/ランク数(例えば、MIMO layer数/MIMO rank数)、送信信号リソース、及びDMRSリソースの少なくとも一つであってもよい。 Predetermined parameters / configurations include at least demodulation reference signal settings (eg DMRS settings or DMRS configurations), number of layers / ranks (eg MIMO layers / MIMO ranks), transmit signal resources, and DMRS resources. There may be one.
 DMRS設定は、時間方向のDMRSシンボル番号、追加DMRS(Additional DMRS)の挿入有無、及び周波数方向のDMRSタイプ(例えば、タイプ1又はタイプ2)の少なくとも一つであってもよい。 The DMRS setting may be at least one of the DMRS symbol number in the time direction, the presence / absence of insertion of the additional DMRS (Additional DMRS), and the DMRS type (for example, type 1 or type 2) in the frequency direction.
 送信信号リソース(又は、リソース)は、時間、周波数、CDM/直交符号、系列番号、及びサイクリックシフト番号の少なくとも一つであってもよい。DMRSリソースは、時間、周波数、CDM/直交符号、系列番号、サイクリックシフト番号、Combインデックス(例えば、Comb index)、及びCDMグループインデックス(例えば、CDM group index)の少なくとも一つであってもよい。送信信号リソース/DMRSリソースに関する情報は、送信指示(又は、スケジュール)の際にDCIを利用して基地局からUEにダイナミックに通知されてもよい。 The transmission signal resource (or resource) may be at least one of time, frequency, CDM / quadrature code, series number, and cyclic shift number. The DMRS resource may be at least one of time, frequency, CDM / orthogonal code, series number, cyclic shift number, Comb index (for example, Comb index), and CDM group index (for example, CDM group index). .. Information about the transmission signal resource / DMRS resource may be dynamically notified from the base station to the UE by using DCI at the time of transmission instruction (or schedule).
 ネットワーク(例えば、基地局)は、上位レイヤ/物理レイヤ制御情報(例えば、DCI)を利用して、所定のパラメータ/構成を所定のUEに設定してもよい。所定のUEは、協調送信を行う複数のUEであってもよいし、協調送信を行うUEのうち一部のUE(例えば、送信されるデータに対応するUE(又は、送信データの転送元UE))であってもよい。所定のパラメータ/構成は、通常の送信(例えば、UE-基地局間送信)とは別に(例えば、協調送信用として)設定されてもよい。 The network (for example, a base station) may set a predetermined parameter / configuration to a predetermined UE by using the upper layer / physical layer control information (for example, DCI). The predetermined UE may be a plurality of UEs that perform cooperative transmission, or some UEs among the UEs that perform cooperative transmission (for example, a UE corresponding to the data to be transmitted (or a UE that is a transfer source of the transmission data)). )) May be. Predetermined parameters / configurations may be set separately (eg, for coordinated transmission) from normal transmission (eg, UE-base station transmission).
 UEは、上位レイヤ/物理レイヤ制御情報(例えば、DCI)により、所定のパラメータ/構成が設定される場合、協調送信を行うUE/アンテナポート(例えば、ペアとなるUE/アンテナポート)においても同一の内容が設定されると想定してもよい。あるいは、UEは、一部のパラメータ/構成について同一の内容が設定され、別のパラメータ/構成について異なる内容が設定されると想定してもよい。 The UE is also the same in the UE / antenna port (for example, the paired UE / antenna port) that performs cooperative transmission when a predetermined parameter / configuration is set by the upper layer / physical layer control information (for example, DCI). It may be assumed that the contents of are set. Alternatively, the UE may assume that the same content is set for some parameters / configurations and different contents are set for different parameters / configurations.
 あるいは、UEは、所定のパラメータ/構成が設定される場合、ペアとなるUE/アンテナポートに、同一(又は、異なる)内容を通知/指示してもよい。ペアとなるUE/アンテナポートへの通知は、第2の態様におけるUE間の情報共有で利用する方法を適用してもよい。 Alternatively, the UE may notify / instruct the same (or different) contents to the paired UE / antenna port when a predetermined parameter / configuration is set. For the notification to the paired UE / antenna port, the method used for information sharing between UEs in the second aspect may be applied.
 例えば、DMRSシンボル番号等は、複数のUE間(例えば、UE#1とUE#2間)で同一に設定され、DMRSのCombインデックス/CDMグループインデックス等は複数のUE間で別々に(例えば、異なって)設定されてもよい。送信信号リソースは、複数のUEで重複して設定されてもよいし、別々に(例えば、異なって)設定されてもよい。 For example, the DMRS symbol number and the like are set to be the same among the plurality of UEs (for example, between UE # 1 and UE # 2), and the DMRS Comb index / CDM group index and the like are set separately among the plurality of UEs (for example, for example). May be set differently). The transmitted signal resource may be set in duplicate in a plurality of UEs, or may be set separately (for example, differently).
 図6は、協調して送信を行うUE#1とUE#2に対するリソース設定/リソース割当ての一例を示す図である。ここでは、UE#1がアンテナポート#0、#1を利用して送信し、UE#2がアンテナポート#2、#3を利用して送信する場合を示している。また、UE#1とUE#2に対して、第1のパラメータ/構成(ここでは、DMRSシンボル)として同じ内容が設定され、第2のパラメータ/構成(ここでは、Combインデックス)として異なる内容が設定される場合を示している。なお、第1のパラメータ/構成と第2のパラメータ/構成の内容はこれに限られない。 FIG. 6 is a diagram showing an example of resource setting / resource allocation for UE # 1 and UE # 2 that perform cooperative transmission. Here, a case where UE # 1 transmits using antenna ports # 0 and # 1 and UE # 2 transmits using antenna ports # 2 and # 3 is shown. Further, the same contents are set as the first parameter / configuration (here, DMRS symbol) for UE # 1 and UE # 2, and different contents are set as the second parameter / configuration (here, Comb index). Indicates the case where it is set. The contents of the first parameter / configuration and the second parameter / configuration are not limited to this.
 また、図6では、UE#1とUE#2の送信信号リソースが重複する場合を示しているが、これに限られずUE#1とUE#2の送信信号リソースが重複しない(又は、一部が重複する)構成としてもよい。 Further, FIG. 6 shows a case where the transmission signal resources of UE # 1 and UE # 2 overlap, but the present invention is not limited to this, and the transmission signal resources of UE # 1 and UE # 2 do not overlap (or part of them). May be duplicated).
 このように、UE協調MIMOを行う複数のUEに対して、一部のパラメータを共通に設定し、他のパラメータを別々に設定することにより、UE協調MIMO送信を適切に制御することが可能となる。 In this way, it is possible to appropriately control UE-coordinated MIMO transmission by setting some parameters in common and setting other parameters separately for multiple UEs that perform UE-coordinated MIMO. Become.
(第4の実施形態)
 UE協調MIMOを利用して送信/受信が行われる場合、基地局は、所定のDCIを利用して、協調して送信を行う複数のUEのうち少なくとも一つのUEにスケジュールに関する情報を送信する。
(Fourth Embodiment)
When transmission / reception is performed using UE-coordinated MIMO, the base station uses a predetermined DCI to transmit information about the schedule to at least one UE among a plurality of UEs that perform cooperative transmission.
 スケジュールに関する情報は、送信/受信に利用する周波数リソース、時間リソース、送信タイミング、及び受信タイミングの少なくとも一つを含んでいてもよい。また、スケジュールに関する情報は、UL送信指示に関する情報、又はDL受信指示に関する情報と読み替えられてもよい。 The information regarding the schedule may include at least one of the frequency resource, the time resource, the transmission timing, and the reception timing used for transmission / reception. Further, the information regarding the schedule may be read as the information regarding the UL transmission instruction or the information regarding the DL reception instruction.
 スケジュールに関する情報の送信は、以下の態様4-1~態様4-3の少なくとも一つに基づいて制御されてもよい。態様4-1~態様4-3のいずれを適用するかは、仕様で定義されてもよいし、上位レイヤシグナリング/DCI等を利用して切り替えて設定されてもよい。UEの能力情報(又は、UEから報告された能力情報)に基づいて、設定可能な態様は制限されてもよい。 The transmission of information regarding the schedule may be controlled based on at least one of the following aspects 4-1 to 4-3. Which of aspects 4-1 to 4-3 is applied may be defined in the specifications, or may be switched and set by using upper layer signaling / DCI or the like. The configurable aspects may be limited based on the capability information of the UE (or the capability information reported by the UE).
<態様4-1>
 UL送信指示/スケジュールに利用されるDCIは、UE固有のDCIであってもよい。つまり、UEは、UE毎に個別のDCIでスケジュールされてもよい(図7A参照)。UEは、自端末宛てのスケジュール情報を利用して、他のUEと協調してデータの送信(例えば、UL間協調MIMO送信)を行う。
<Aspect 4-1>
The DCI used for UL transmission instruction / schedule may be a UE-specific DCI. That is, the UEs may be scheduled in a separate DCI for each UE (see FIG. 7A). The UE uses the schedule information addressed to its own terminal to transmit data in cooperation with other UEs (for example, UL-to-UL cooperative MIMO transmission).
 図7Aにおいて、基地局は、UE#1とUE#2にスケジュール情報を送信する。ここでは、基地局は、UE#1に対してUE#1に対応するDCI(例えば、UE#1固有DCI)を利用してスケジュールに関する情報を送信してもよい。また、基地局は、UE#2に対してUE#2に対応するDCI(例えば、UE#2固有DCI)を利用してスケジュールに関する情報を送信してもよい。 In FIG. 7A, the base station transmits schedule information to UE # 1 and UE # 2. Here, the base station may transmit information about the schedule to UE # 1 by using the DCI corresponding to UE # 1 (for example, UE # 1 specific DCI). Further, the base station may transmit information about the schedule to UE # 2 by using the DCI corresponding to UE # 2 (for example, UE # 2 specific DCI).
 UE#1は、送信データ等の情報をUE#2に通知(情報共有)する。例えば、UE#1は、UE#2(又は、UE#2のアンテナポート)を利用して送信を行う送信データに関する情報をUE#2に転送/情報共有してもよい。 UE # 1 notifies (information sharing) information such as transmission data to UE # 2. For example, UE # 1 may transfer / share information about transmission data to be transmitted using UE # 2 (or the antenna port of UE # 2) to UE # 2.
 UE#1/UE#2は、基地局から受信したスケジュールに関する情報に基いて、協調して送信を行う。ここでは、UE#1に対応するULデータを、UE#1(又は、UE#1のアンテナポート)とUE#2(又は、UE#2のアンテナポート)から送信する場合を示している。なお、協調して送信する情報は、ULデータ(又は、UL-SCH)に限られず、UL制御情報(例えば、UCI)であってもよい。 UE # 1 / UE # 2 coordinately transmit based on the information about the schedule received from the base station. Here, the case where UL data corresponding to UE # 1 is transmitted from UE # 1 (or the antenna port of UE # 1) and UE # 2 (or the antenna port of UE # 2) is shown. The information to be transmitted in cooperation is not limited to UL data (or UL-SCH), but may be UL control information (for example, UCI).
 このように、各UEに対してUE個別のDCIを利用してスケジュールに関する情報を通知することにより、UE毎にスケジュールを柔軟に制御することができる。 In this way, by notifying each UE of information about the schedule using the DCI of each UE, the schedule can be flexibly controlled for each UE.
《バリエーション》
 図7Aでは、UE#1からUE#2に対して送信データ等の情報を通知(情報共有)する場合を示したが、これに限られない。UE#2からUE#1に対しても送信データ等の情報を通知(情報共有)してもよい(図7B参照)。
"variation"
FIG. 7A shows a case where information such as transmission data is notified (information sharing) from UE # 1 to UE # 2, but the present invention is not limited to this. Information such as transmission data may be notified (information sharing) from UE # 2 to UE # 1 (see FIG. 7B).
 図7Bでは、基地局からUE#1に対して第1のスケジュール情報が通知され、UE#2に対して第2のスケジュール情報が通知される場合を示している。スケジュール情報#1、#2は、UE#1からUE#2に通知される情報(例えば、情報共有1)の送信に利用されるリソースに関する情報と、UE#2からUE#1に通知される情報(例えば、情報共有2)の送信に利用されるリソースに関する情報との少なくとも一つ(例えば、両方)が含まれていてもよい。 FIG. 7B shows a case where the base station notifies UE # 1 of the first schedule information and UE # 2 is notified of the second schedule information. The schedule information # 1 and # 2 are information about resources used for transmitting information (for example, information sharing 1) notified from UE # 1 to UE # 2, and notified from UE # 2 to UE # 1. At least one (eg, both) with information about the resource used to transmit the information (eg, information sharing 2) may be included.
<態様4-2>
 UL送信指示/スケジュールに利用されるDCIは、複数のUEのうち一部のUEに対してのみ送信されてもよい。つまり、一部のUEに対してのみUE個別のDCIでスケジュールに関する情報が通知されてもよい(図8A参照)。スケジュールに関する情報は、当該DCIが送信されるUEに対するスケジュールに関する情報に加えて、他の端末に対するスケジュールに関する情報が含まれていてもよい。
<Aspect 4-2>
The DCI used for UL transmission instruction / schedule may be transmitted only to a part of UEs among a plurality of UEs. That is, only some UEs may be notified of schedule information by UE-specific DCI (see FIG. 8A). The information about the schedule may include information about the schedule for other terminals in addition to the information about the schedule for the UE to which the DCI is transmitted.
 図8Aにおいて、基地局は、UE#1にスケジュール情報を送信する。ここでは、基地局は、UE#1に対して当該UE#1に対応するRNTI(例えば、C-RNTI)でCRCスクランブルされたDCIを利用してスケジュールに関する情報を送信してもよい。当該DCIには、UE#1に対するスケジューリングに関する情報と、UE#2に対するスケジューリングに関する情報と、が含まれていてもよい。 In FIG. 8A, the base station transmits schedule information to UE # 1. Here, the base station may transmit information about the schedule to the UE # 1 by using the CRC scrambled DCI in the RNTI (for example, C-RNTI) corresponding to the UE # 1. The DCI may include information regarding scheduling for UE # 1 and information regarding scheduling for UE # 2.
 UE#1は、UE間の情報共有の一部として、UE#2のスケジュールに関する情報をUE#2に通知してもよい。UE#2は、取得したスケジューリング情報に基いて、UE間協調MIMOを利用してULデータ(例えば、UE#1から通知されたULデータ)を送信してもよい。なお、協調して送信する情報は、ULデータ(又は、UL-SCH)に限られず、UL制御情報(例えば、UCI)であってもよい。 UE # 1 may notify UE # 2 of information about the schedule of UE # 2 as part of information sharing between UEs. UE # 2 may transmit UL data (for example, UL data notified from UE # 1) by using inter-UE cooperative MIMO based on the acquired scheduling information. The information to be transmitted in cooperation is not limited to UL data (or UL-SCH), but may be UL control information (for example, UCI).
 このように、一部のUEに対してのみDCIを利用してスケジュールに関する情報を通知することにより、送信するDCI数の増加を抑制することができる。 In this way, by notifying information about the schedule using DCI only to some UEs, it is possible to suppress an increase in the number of DCIs to be transmitted.
《バリエーション》
 図8Aでは、UE#1からUE#2に対して送信データ等の情報を通知(情報共有)する場合を示したが、これに限られない。UE#2からUE#1に対しても送信データ等の情報を通知(情報共有)してもよい(図8B参照)。
"variation"
FIG. 8A shows a case where information such as transmission data is notified (information sharing) from UE # 1 to UE # 2, but the present invention is not limited to this. Information such as transmission data may be notified (information sharing) from UE # 2 to UE # 1 (see FIG. 8B).
 図8Bでは、基地局からUE#1に対して通知されるスケジュール情報に、UE#1からUE#2に通知される情報(例えば、情報共有1)の送信に利用されるリソースに関する情報と、UE#2からUE#1に通知される情報(例えば、情報共有2)の送信に利用されるリソースに関する情報との少なくとも一つ(例えば、両方)が含まれていてもよい。 In FIG. 8B, the schedule information notified from the base station to UE # 1 includes information regarding resources used for transmitting information notified from UE # 1 to UE # 2 (for example, information sharing 1). At least one (for example, both) of information about a resource used for transmission of information (for example, information sharing 2) notified from UE # 2 to UE # 1 may be included.
<態様4-3>
 UL送信指示/スケジュールに利用されるDCIは、複数UEに共通のDCI(例えば、グループコモンDCI)であってもよい。つまり、グループコモンDCIにより、複数のUE(例えば、UE#1とUE#2)に対してスケジュールに関する情報が通知されてもよい(図9A参照)。
<Aspect 4-3>
The DCI used for UL transmission instruction / schedule may be a DCI common to a plurality of UEs (for example, a group common DCI). That is, the group common DCI may notify a plurality of UEs (eg, UEs # 1 and UE # 2) of schedule information (see FIG. 9A).
 図9Aにおいて、基地局は、UE#1とUE#2にスケジュール情報を送信する。ここでは、基地局は、複数のUE(例えば、UE#1とUE#2のペア)に対して共通のRNTIでCRCスクランブルされたDCIを利用してスケジュールに関する情報を送信してもよい。当該DCIには、UE#1に対するスケジューリングに関する情報と、UE#2に対するスケジューリングに関する情報と、が含まれていてもよい。 In FIG. 9A, the base station transmits schedule information to UE # 1 and UE # 2. Here, the base station may transmit information about the schedule to a plurality of UEs (for example, a pair of UE # 1 and UE # 2) using a CRC scrambled DCI with a common RNTI. The DCI may include information regarding scheduling for UE # 1 and information regarding scheduling for UE # 2.
 各UEは、グループコモンDCIから自端末宛てのスケジューリング関する情報を取得してもよい。複数のUEに対する共通のRNTIは、上位レイヤシグナリング等により基地局からUEに通知/設定されてもよい。 Each UE may acquire information regarding scheduling addressed to its own terminal from the group common DCI. The common RNTI for a plurality of UEs may be notified / set from the base station to the UE by higher layer signaling or the like.
 UE#1は、送信データ等の情報をUE#2に通知(情報共有)する。例えば、UE#1は、UE#2(又は、UE#2のアンテナポート)を利用して送信を行う送信データに関する情報をUE#2に転送/情報共有してもよい。 UE # 1 notifies (information sharing) information such as transmission data to UE # 2. For example, UE # 1 may transfer / share information about transmission data to be transmitted using UE # 2 (or the antenna port of UE # 2) to UE # 2.
 UE#1/UE#2は、基地局から受信したスケジュールに関する情報に基いて、協調して送信を行う。ここでは、UE#1に対応するULデータを、UE#1(又は、UE#1のアンテナポート)とUE#2(又は、UE#2のアンテナポート)から送信する場合を示している。なお、協調して送信する情報は、ULデータ(又は、UL-SCH)に限られず、UL制御情報(例えば、UCI)であってもよい。 UE # 1 / UE # 2 coordinately transmit based on the information about the schedule received from the base station. Here, the case where UL data corresponding to UE # 1 is transmitted from UE # 1 (or the antenna port of UE # 1) and UE # 2 (or the antenna port of UE # 2) is shown. The information to be transmitted in cooperation is not limited to UL data (or UL-SCH), but may be UL control information (for example, UCI).
 このように、複数のUEに対して共通となるDCIを利用してスケジュールに関する情報を通知することにより、UE毎にDCIを別々に送信することが不要となる。 In this way, by notifying a plurality of UEs of information regarding the schedule using a common DCI, it is not necessary to separately transmit the DCI for each UE.
《バリエーション》
 図9Aでは、UE#1からUE#2に対して送信データ等の情報を通知(情報共有)する場合を示したが、これに限られない。UE#2からUE#1に対しても送信データ等の情報を通知(情報共有)してもよい(図9B参照)。
"variation"
FIG. 9A shows a case where information such as transmission data is notified (information sharing) from UE # 1 to UE # 2, but the present invention is not limited to this. Information such as transmission data may be notified (information sharing) from UE # 2 to UE # 1 (see FIG. 9B).
 図9Bでは、基地局からUE#1とUE#2に対して通知されるスケジュール情報に、UE#1からUE#2に通知される情報(例えば、情報共有1)の送信に利用されるリソースに関する情報と、UE#2からUE#1に通知される情報(例えば、情報共有2)の送信に利用されるリソースに関する情報との少なくとも一つ(例えば、両方)が含まれていてもよい。 In FIG. 9B, a resource used for transmitting information (for example, information sharing 1) notified from UE # 1 to UE # 2 in the schedule information notified from the base station to UE # 1 and UE # 2. May include at least one (eg, both) of information about and information about resources used to transmit information (eg, information sharing 2) notified from UE # 2 to UE # 1.
 態様4-1において、各UEは、自端末宛てのDCIにより自端末が送信するULデータ(又は、UL-SCH)又はPUSCHのスケジュール(例えば、リソース制御等)が行われると想定してもよい。 In aspect 4-1 it may be assumed that each UE performs UL data (or UL-SCH) or PUSCH schedule (for example, resource control, etc.) transmitted by the own terminal by DCI addressed to the own terminal. ..
 態様4-2/態様4-3において、UE#1は、UE#2宛ての制御情報を受信してもよい。この場合、1つのDCIを利用して各UE宛ての制御情報を送信することができる。 In aspect 4-2 / aspect 4-3, UE # 1 may receive control information addressed to UE # 2. In this case, control information addressed to each UE can be transmitted using one DCI.
 1つのDCIで各UE(ここでは、UE#1とUE#2)宛ての制御信号が送信される場合、当該DCIにおいてUE毎に個別のDCIフィールドが設定されてもよい(オプション4-1)。あるいは、当該DCIにおいてUE間共通のDCIフィールドが設定され、UE毎に異なる値が通知されてもよい(オプション4-2)。 When a control signal addressed to each UE (here, UE # 1 and UE # 2) is transmitted by one DCI, a separate DCI field may be set for each UE in the DCI (option 4-1). .. Alternatively, a DCI field common to UEs may be set in the DCI, and a different value may be notified for each UE (option 4-2).
《オプション4-1》
 1つのDCIにおいて、UE毎に個別DCIフィールドが規定されてもよい(図10A参照)。図10Aでは、DCIにおいて、TPMIフィールドがUE毎に設定される場合を示している。例えば、既存のDCIフィールドにおいて、TPMIフィールドを拡張して、UE毎に異なるTPMIを指示可能となるフィールドが設定されてもよい。
<< Option 4-1 >>
In one DCI, individual DCI fields may be defined for each UE (see FIG. 10A). FIG. 10A shows a case where the TPMI field is set for each UE in DCI. For example, in the existing DCI field, the TPMI field may be expanded to set a field capable of instructing a different TPMI for each UE.
 UE毎のDCIフィールドは、所定(又は、所定タイプ)のDCIフィールドのみであってもよい。UE毎の個別DCIフィールドが設定されないフィールドは、UE間で共通の値が想定(又は、UE間で共通に適用)されてもよい。 The DCI field for each UE may be only a predetermined (or predetermined type) DCI field. For a field in which an individual DCI field for each UE is not set, a common value may be assumed (or commonly applied among UEs).
 UE毎に個別に設定されるDCIフィールドは、UL MIMO用のプリコーダー、ランク指示、ULビーム指示(例えば、TPMI/SRI)、及びTPCコマンド(例えば、PUSCHのTPCコマンド)の少なくとも一つに関するフィールドであってもよい。 The DCI field set individually for each UE is a field related to at least one of a precoder for UL MIMO, a rank instruction, a UL beam instruction (for example, TPMI / SRI), and a TPC command (for example, a PUSCH TPC command). May be.
 あるいは、DMRSのCombインデックス(又は、CDMグループインデックス)がDCIで指示される場合、DMRS Combインデックス(又は、CDMグループインデックス)に関するフィールドがUE毎に個別に設定されてもよい。 Alternatively, when the DMRS Comb index (or CDM group index) is specified by DCI, the fields related to the DMRS Comb index (or CDM group index) may be set individually for each UE.
 あるいは、UE間で異なるリソースの指示をサポートする場合、時間リソース/周波数リソースに関するフィールドがUE毎に個別に設定されてもよい。 Alternatively, when supporting different resource instructions between UEs, the fields related to time resources / frequency resources may be set individually for each UE.
 UE毎に同じ/共通に設定されるDCIフィールドは、DCIフォーマット通知(DCI format indicator)フィールド、タイミング指示(timing indicator)フィールド等であってもよい。 The DCI field that is the same / commonly set for each UE may be a DCI format notification (DCI format indicator) field, a timing instruction (timing indicator) field, or the like.
《オプション4-2》
 UE間に共通のDCIフィールドにおいてUE毎に異なる値が通知されてもよい(図10B参照)。例えば、上位レイヤシグナリング等により各DCIのコードポイント(又は、DCIフィールドの各ビット値)に対する情報がUE毎に設定されてもよい。
<< Option 4-2 >>
A different value may be notified for each UE in a common DCI field among the UEs (see FIG. 10B). For example, information for each DCI code point (or each bit value of the DCI field) may be set for each UE by higher layer signaling or the like.
 図10Bでは、DCIにUE#1とUE#2に対応するTPMIフィールドが共通に設定され、TMPIフィールドのコードポイントとTMPIインデックスの対応関係がUE毎に別々に設定される場合を示している。これにより、共通のTPMIフィールドにより、UE毎に異なるTPMIインデックスを指定することが可能となる。 FIG. 10B shows a case where the TPMI field corresponding to UE # 1 and UE # 2 is set in common in DCI, and the correspondence between the code point of the TMPI field and the TMPI index is set separately for each UE. This makes it possible to specify a different TPMI index for each UE by using a common TPMI field.
<DCIフォーマット>
 UE間で協調して送信されるUL送信(例えば、PUSCH送信)用に所定のDCIフォーマットが規定されてもよい。あるいは、UE間の信号送信(例えば、情報共有)に利用するリソース割当て/スケジュール用に所定のDCIフォーマットが規定されてもよい。所定のDCIフォーマットは、既存のDCIフォーマットにおいてビットの読み替え等により構成されてもよい。
<DCI format>
A predetermined DCI format may be specified for UL transmission (eg, PUSCH transmission) that is transmitted cooperatively between UEs. Alternatively, a predetermined DCI format may be specified for resource allocation / scheduling used for signal transmission (eg, information sharing) between UEs. The predetermined DCI format may be configured by reading a bit in the existing DCI format or the like.
 例えば、所定のDCIフォーマットは、協調して送信されるUL送信(例えば、PUSCH送信)に利用されるフィールド、及びUE間信号送信(例えば、UE間の情報共有)に利用されるリソースを指示するフィールドの少なくとも一つが含まれてもよい。 For example, a given DCI format indicates a field used for UL transmission (eg, PUSCH transmission) transmitted in concert and a resource used for signal transmission between UEs (eg, information sharing between UEs). At least one of the fields may be included.
 基地局は、所定のDCIフォーマットを利用して、PUSCH送信(例えば、UL協調PUSCH送信)のスケジュールと、UE間通信におけるUE間信号送信の条件/スケジュール(例えば、リソース割当て等)と、の少なくとも一つ(例えば、両方)を指示してもよい(図11参照)。 The base station uses a predetermined DCI format to at least set a schedule for PUSCH transmission (for example, UL coordinated PUSCH transmission) and a condition / schedule for signal transmission between UEs in communication between UEs (for example, resource allocation, etc.). One (eg, both) may be indicated (see Figure 11).
 PUSCH送信(例えば、UE協調PUSCH送信)に利用されるフィールドは、UL MIMO用のプリコーダー、ランク指示、ULビーム指示(例えば、TPMI/SRI)、及びTPCコマンド(例えば、PUSCHのTPCコマンド)の少なくとも一つに関するフィールドであってもよい。 Fields used for PUSCH transmission (eg, UE-coordinated PUSCH transmission) include recorders for UL MIMO, rank instructions, UL beam instructions (eg, TPMI / SRI), and TPC commands (eg, PUSCH TPC commands). It may be a field related to at least one.
 あるいは、DMRSのCombインデックス(又は、CDMグループインデックス)がDCIで指示される場合、DMRS Combインデックス(又は、CDMグループインデックス)に関するフィールドが設定されてもよい。 Alternatively, when the DMRS Comb index (or CDM group index) is specified by DCI, a field related to the DMRS Comb index (or CDM group index) may be set.
 あるいは、UE間で異なるリソースの指示をサポートする場合、時間リソース/周波数リソースに関するフィールドが設定されてもよい。 Alternatively, if different resource instructions are supported between UEs, a field related to time resource / frequency resource may be set.
 UE間信号送信に利用されるリソースを指示するフィールドは、時間リソース/周波数リソースに関するフィールドであってもよいし、TPCコマンドに関するフィールドであってもよい。時間リソース/周波数リソースに関するフィールドは、UE間で異なるリソースの指示がサポートされる場合に設定されてもよい。TPCコマンドに関するフィールドは、クローズドループTPC(例えば、CL-TPC)をUE間信号送信で行う場合に設定されてもよい。 The field indicating the resource used for signal transmission between UEs may be a field related to a time resource / frequency resource or a field related to a TPC command. Fields for time resources / frequency resources may be set if different resource indications are supported across UEs. The field related to the TPC command may be set when the closed loop TPC (for example, CL-TPC) is performed in the signal transmission between UEs.
 UE間協調PUSCH送信、及びUE間信号送信用のリソース割当て/スケジュールの少なくとも一つを指示する所定のDCI(又は、所定のPDCCH)は、所定の制御リソースセット/サーチスペースで受信/検出される構成としてもよい。所定の制御リソースセット/サーチスペースは、所定の時間リソース、所定の周波数リソース、所定のサブキャリア間隔の少なくとも一つに読み替えられてもよい。 A predetermined DCI (or a predetermined PDCCH) indicating at least one of resource allocation / schedule for inter-UE cooperative PUSCH transmission and inter-UE signal transmission is received / detected in a predetermined control resource set / search space. It may be configured. The predetermined control resource set / search space may be read as at least one of a predetermined time resource, a predetermined frequency resource, and a predetermined subcarrier interval.
 UEは、所定の制御リソースセット/サーチスペースにおいて、UE協調PUSCH送信を指示するDCIについて検出(例えば、ブラインド検出)を試みてもよい。この場合、他の制御リソースセット/サーチスペースにおいて、UE協調PUSCH送信に対応するDCI(又は、PDCCH)の検出を行わないように制御してもよい。 The UE may attempt to detect (for example, blind detection) the DCI instructing the UE cooperative PUSCH transmission in a predetermined control resource set / search space. In this case, it may be controlled so that the DCI (or PDCCH) corresponding to the UE cooperative PUSCH transmission is not detected in another control resource set / search space.
 あるいは、所定のDCI(又は、所定のPDCCH)は、いかなる制御リソースセット/サーチスペースで受信/検出される構成としてもよい。 Alternatively, the predetermined DCI (or predetermined PDCCH) may be configured to be received / detected in any control resource set / search space.
 UEは、設定された制御リソースセット/サーチスペースにおいて、UE協調PUSCH送信を指示するDCIについて検出(例えば、ブラインド検出)を試みてもよい。UEは、所定のDCI(又は、所定のPDCCH)が、UE協調PUSCH送信用のRNTIでCRCスクランブルされているか否かに基づいて、UE協調PUSCHがスケジュールされているかを判断してもよい。あるいは、UEは、DCIの所定フィールドに基づいて、UE協調PUSCHがスケジュールされているかを判断してもよい。 The UE may attempt to detect (for example, blind detection) the DCI instructing the UE cooperative PUSCH transmission in the set control resource set / search space. The UE may determine whether the UE-coordinated PUSCH is scheduled based on whether the predetermined DCI (or the predetermined PDCCH) is CRC scrambled by the RNTI for UE-coordinated PUSCH transmission. Alternatively, the UE may determine if the UE cooperative PUSCH is scheduled based on a predetermined field of DCI.
<複数DCIを利用>
 第4の実施形態では、1つのDCI(又は、PDCCH)を利用して、下記の動作1、動作2を行う場合を示した。
動作1:UE協調PUSCHのスケジュールとUE間信号送信リソースの割り当て
動作2:UE#1のPUSCH(例えば、PUSCHリソース)のスケジュールとUE#2のPUSCHのスケジュール
<Use multiple DCIs>
In the fourth embodiment, the case where the following operations 1 and 2 are performed by using one DCI (or PDCCH) is shown.
Operation 1: UE-coordinated PUSCH schedule and allocation of inter-UE signal transmission resources Operation 2: UE # 1 PUSCH (for example, PUSCH resource) schedule and UE # 2 PUSCH schedule
 第4の実施形態はこれに限られず、複数回(例えば、2回)でDCI/PDCCHを送信してもよい。第1のDCIで一部の情報(例えば、スケジュールに関する情報)を送信し、第2のDCIで残りの情報が送信されてもよい。これにより、1回のDCIビットの数を低減し、符号化率の低減/誤り率の改善を図ることができる。 The fourth embodiment is not limited to this, and DCI / PDCCH may be transmitted a plurality of times (for example, twice). The first DCI may transmit some information (eg, information about the schedule) and the second DCI may transmit the rest of the information. As a result, the number of DCI bits at one time can be reduced, the coding rate can be reduced, and the error rate can be improved.
 例えば、第1のDCIを利用してUE共有情報が送信され、第2のDCIを利用してUE個別の情報が送信されてもよい(図12参照)。 For example, the UE shared information may be transmitted using the first DCI, and the UE individual information may be transmitted using the second DCI (see FIG. 12).
 第1のDCIは、所定のグループコモンに対応するRNTIでCRCスクランブルされてもよい。第1のDCIは、第2のDCI/PDCCHのリソース、モニタリングオケージョン、サーチスペース、及び制御リソースセットの少なくとも一つに関する情報を含んでいてもよい。この場合、第2のDCIの検出回数等を低減することができる。 The first DCI may be CRC scrambled with the RNTI corresponding to the predetermined group common. The first DCI may contain information about at least one of the resources, monitoring occasions, search space, and control resource set of the second DCI / PDCCH. In this case, the number of detections of the second DCI can be reduced.
 第1のDCIは、UE間共通のDCIフィールドを含む構成であってもよい。例えば、UE間で共通に設定されるパラメータを指定するフィールドが第1のDCIに含まれてもよい。当該フィールドは、例えば、PUSCHのタイミング指示(例えば、Timing indicator)フィールド、PUSCHの時間/周波数リソース指示フィールド、及びUE間信号送信のリソース指示フィールドの少なくとも一つであってもよい。 The first DCI may be configured to include a DCI field common to UEs. For example, the first DCI may include a field that specifies a parameter that is commonly set among UEs. The field may be, for example, at least one of a PUSCH timing instruction (for example, Timing indicator) field, a PUSCH time / frequency resource instruction field, and a resource instruction field for inter-UE signal transmission.
 第2のDCIは、UE個別のRNTIでCRCスクランブルされてもよい。第2のDCIは、UE個別のDCIフィールドを含む構成であってもよい。例えば、UE個別に設定されるパラメータを指定するフィールドが第2のDCIに含まれてもよい。当該フィールドは、例えば、UL MIMOプリコーダー/ランク指示フィールド、ULビーム指示(TPMI/SRI)フィールド、DMRS combインデックス(又は、CDMグループインデックス)フィールド、及びTPCコマンドフィールドの少なくとも一つであってもよい。 The second DCI may be CRC scrambled by the UE individual RNTI. The second DCI may be configured to include a UE-specific DCI field. For example, the second DCI may include a field that specifies parameters that are set individually for the UE. The field may be, for example, at least one of a UL MIMO recorder / rank indicator field, a UL beam indicator (TPMI / SRI) field, a DMRS comb index (or CDM group index) field, and a TPC command field. ..
 図12において、第1のDCIはグループコモン、第2のDCIはUE個別である場合を示したが、これに限られない。第1のDCI及び第2のDCIの両方がUE個別であってもよい。また、第1のDCIと第2のDCIは、同じスロット/同じCC/同じBWPで送信されてもよいし、異なるスロット/異なるCC/異なるBWPで送信されてもよい。 In FIG. 12, the case where the first DCI is a group common and the second DCI is a UE individual is shown, but the present invention is not limited to this. Both the first DCI and the second DCI may be UE-individual. Further, the first DCI and the second DCI may be transmitted in the same slot / same CC / same BWP, or may be transmitted in different slots / different CC / different BWP.
 第1のDCI/第2のDCIにDAIフィールド(例えば、カウンタDAI/トータルDAI)が含まれてもよい。カウンダDAIは、DCI(又は、PDCCH)のカウント値を示し、トータルDAIは、DCI(又は、PDCCH)のトータル数を示す。これにより、UEが一方のDCIを受信できなかった場合であっても、各DCIに含まれるカウンタDAI/トータルDAIに基づいて、第1のDCI/第2のDCIの検出ミスを判断することができる。 The first DCI / second DCI may include a DAI field (eg, counter DAI / total DAI). Kaunda DAI indicates the count value of DCI (or PDCCH), and total DAI indicates the total number of DCI (or PDCCH). As a result, even if the UE cannot receive one DCI, it is possible to determine the detection error of the first DCI / second DCI based on the counter DAI / total DAI included in each DCI. can.
 第1のDCI及び第2のDCI(又は、2ステップDCI)の受信が設定/規定されている場合において、UEが第1のDCI(例えば、グループコモンDCI)と第2のDCI(例えば、UE個別DCI)のいずれしか受信しない場合、UEはいずれかのDCIの受信誤りを検知してもよい。 When reception of a first DCI and a second DCI (or two-step DCI) is configured / defined, the UE has a first DCI (eg, a group common DCI) and a second DCI (eg, a UE). If only one of the individual DCIs) is received, the UE may detect a reception error in any of the DCIs.
 第1のDCIと第2のDCIにHARQプロセスIDフィールドが含まれる場合、UEは、同一のHARQプロセスIDを含む第1のDCIと第2のDCIが対応すると想定してもよい。同一のHARQプロセスIDについて第1のDCIと第2のDCIのいずれしか受信できなかった場合(例えば、所定時間内容において)、UEは、いずれかのDCIの誤りを検出してもよい。 When the first DCI and the second DCI include the HARQ process ID field, the UE may assume that the first DCI and the second DCI containing the same HARQ process ID correspond to each other. If only one of the first DCI and the second DCI can be received for the same HARQ process ID (eg, in a predetermined time content), the UE may detect an error in either DCI.
 第1のDCIと第2のDCIの送信/受信の順番が規定されていてもよい。例えば、第1のDCIの後に第2のDCIが送信/受信される構成としてもよい。これにより、UEにおけるDCIの誤り検出動作を簡略化することができる。 The order of transmission / reception of the first DCI and the second DCI may be specified. For example, the configuration may be such that the second DCI is transmitted / received after the first DCI. This makes it possible to simplify the DCI error detection operation in the UE.
 いずれかのDCIに誤りが発生した場合、UEは、UE間通信/UE協調PUSCH送信を行わないように制御してもよい。基地局は、UEから送信されるPUSCH送信(UE協調PUSCH送信)を受信しない場合、UEが第1のDCI/第2のDCIを検出ミスしたと判断して、DCIの再送を行ってもよい。 If an error occurs in any of the DCIs, the UE may control the UE to not perform inter-UE communication / UE cooperative PUSCH transmission. When the base station does not receive the PUSCH transmission (UE cooperative PUSCH transmission) transmitted from the UE, the base station may determine that the UE has missed the first DCI / second DCI and retransmit the DCI. ..
 あるいは、所定のDCIに誤りが発生した場合、UEは、UE間通信/UE協調PUSCH送信を行わないように制御してもよい。例えば、第1のDCIを検出ミスして第2のDCIを受信した場合、UEは、UE間通信は行い、UE協調PUSCH送信を行わないように制御してもよい。また、第1のDCIを受信して、第2のDCIを検出ミスした場合、UEは、UE間通信及びUE協調PUSCH送信の両方を行わないように制御してもよい。これにより、正しく受信できたDCIを適切に利用することが可能となる。 Alternatively, if an error occurs in a predetermined DCI, the UE may control so as not to perform inter-UE communication / UE cooperative PUSCH transmission. For example, when the first DCI is detected incorrectly and the second DCI is received, the UE may control the UE to perform inter-UE communication and not to perform UE cooperative PUSCH transmission. Further, when the first DCI is received and the second DCI is misdetected, the UE may be controlled so as not to perform both the inter-UE communication and the UE cooperative PUSCH transmission. This makes it possible to appropriately use the DCI that has been correctly received.
(第5の実施形態)
 UE協調MIMOを利用してUL送信を行う場合、UEは、物理レイヤの送信データを含むデータ/制御情報を、所定単位/所定ユニットに基づいて、他のUEへ報告/通知/転送/情報共有(以下、転送/情報共有とも記す)するように制御してもよい。
(Fifth Embodiment)
When performing UL transmission using UE cooperative MIMO, the UE reports / notifies / transfers / information sharing of data / control information including transmission data of the physical layer to other UEs based on a predetermined unit / predetermined unit. (Hereinafter, also referred to as transfer / information sharing) may be controlled.
 UEは、自端末が送信するULデータについて所定単位で分割し(図13A参照)、他のUEに転送/情報共有してもよい(図13B参照)。所定単位は、トランスポートブロック(TB)、コードワード(CW)、コードブロック(CB)、ビット単位の少なくとも一つであってもよい。図13A、図13Bでは、CB単位で分割する場合を示しているがこれに限られない。 The UE may divide the UL data transmitted by its own terminal into predetermined units (see FIG. 13A) and transfer / share information to other UEs (see FIG. 13B). The predetermined unit may be at least one of a transport block (TB), a code word (CW), a code block (CB), and a bit unit. 13A and 13B show a case of division in CB units, but the present invention is not limited to this.
 UEは、自端末が送信するULデータのTB/CW/CBの一部を分割することにより、自端末のUL-SCHで送信するデータと、他のUEへ転送/情報共有するデータと、に分割してもよい。TB/CW/CB単位に分割することにより、誤り判定/再送を適切に行うことができる。 By dividing a part of TB / CW / CB of the UL data transmitted by the own terminal, the UE divides the data transmitted by the UL-SCH of the own terminal into the data to be transferred / shared to other UEs. It may be divided. By dividing into TB / CW / CB units, error determination / retransmission can be appropriately performed.
 例えば、ULデータがCB単位で分割される場合、一方のUEから送信されるULデータ(CB)に誤りが生じても、誤ったCBのみ再送を行うことが可能となる。一方で、ULデータがビット単位分割される場合、一部のCBが誤った場合、全てのCBが再送されるように制御してもよい。 For example, when UL data is divided in CB units, even if an error occurs in the UL data (CB) transmitted from one UE, only the incorrect CB can be retransmitted. On the other hand, if the UL data is divided into bit units, or if some CBs are incorrect, all CBs may be controlled to be retransmitted.
 自端末(例えば、UE#1)で送信するULデータと、他のUE(例えば、UE#2)で送信するULデータの区分け(例えば、ULデータを分割する境界)は、上位レイヤ等で設定されてもよいし、所定ルールに基づいて決定されてもよい。 The division of UL data transmitted by the own terminal (for example, UE # 1) and UL data transmitted by another UE (for example, UE # 2) (for example, the boundary for dividing UL data) is set in a higher layer or the like. It may be determined or it may be determined based on a predetermined rule.
 上位レイヤによる設定は、TB/CW/CBの数に基づいて設定されてもよいし、各UEのUL-SCHのビット数に基づいて設定されてもよいし、各UEのUL-SCHの符号化率に基づいて設定されてもよい。 The setting by the upper layer may be set based on the number of TB / CW / CB, may be set based on the number of bits of UL-SCH of each UE, or may be set based on the number of UL-SCH of each UE. It may be set based on the conversion rate.
 所定ルールは、複数のUE(例えば、UE#1とUE#2)のUL-SCHのビット数を等しくすることであってもよい。UEは、所定ルールに基づいて、自端末に対応するデータ(例えば、自端末のアンテナポートから基地局に送信するデータ)と、他端末に対応するデータ(例えば、他端末のアンテナポートから基地局に送信するデータ)を分割してもよい。UEは、分割したデータ(例えば、TB/CW/CB/ビット)のうち、前半部分を自端末宛て、後半部分を他端末宛てとしてもよい。 The predetermined rule may be to equalize the number of UL-SCH bits of a plurality of UEs (for example, UE # 1 and UE # 2). Based on a predetermined rule, the UE has data corresponding to the own terminal (for example, data transmitted from the antenna port of the own terminal to the base station) and data corresponding to the other terminal (for example, the data corresponding to the antenna port of the other terminal to the base station). The data to be transmitted to) may be divided. The UE may assign the first half portion of the divided data (for example, TB / CW / CB / bit) to the own terminal and the latter half portion to another terminal.
<UE間情報共有>
 UE(例えば、UE#1)が他UE(例えば、UE#2)への転送/情報共有を行う場合、3GPP以外の他の通信システムの仕組み/メカニズムを利用してもよい。例えば、UE#1は、無線RAN(例えば、WiFi)、近距離間データ通信(例えば、Bluetooth)を利用して、UE#2に所定情報を送信するように制御してもよい(図14参照)。UEが他の通信システムの仕組み/メカニズムを利用して所定情報を通知することは、UEがUE間通信を目的とした上位レイヤへ転送する物理レイヤ情報を送信することに相当してもよい。UE#2は、上位レイヤから受信した物理レイヤ情報をUL-SCHで送信するように制御してもよい。
<Information sharing between UEs>
When a UE (for example, UE # 1) transfers / shares information to another UE (for example, UE # 2), a mechanism / mechanism of a communication system other than 3GPP may be used. For example, UE # 1 may be controlled to transmit predetermined information to UE # 2 by using wireless RAN (for example, WiFi) and short-distance data communication (for example, Bluetooth) (see FIG. 14). ). Notifying predetermined information by the UE using the mechanism / mechanism of another communication system may correspond to transmitting the physical layer information to be transferred to the upper layer for the purpose of inter-UE communication. UE # 2 may be controlled to transmit the physical layer information received from the upper layer by UL-SCH.
 図14では、UE#1が、ULデータ(例えば、CB#1+CB#2)のうち、CB#2を上位レイヤを利用してUE#2に送信する。そして、UE#1がULデータとして(例えば、UE#1のUL-SCHで)CB#1を送信し、UE#2がULデータとして(例えば、UE#2のUL-SCHで)CB#2を送信する場合を示している。 In FIG. 14, UE # 1 transmits CB # 2 of UL data (for example, CB # 1 + CB # 2) to UE # 2 by using an upper layer. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending.
 あるいは、UE(例えば、UE#1)が他UE(例えば、UE#2)への転送/情報共有を行う場合、物理レイヤのUE間送受信方式を利用してもよい。例えば、UE#1は、D2D用のチャネル、及びサイドリンクの少なくとも一つを利用して、UE#2に所定情報を送信するように制御してもよい(図15参照)。 Alternatively, when the UE (for example, UE # 1) transfers / shares information to another UE (for example, UE # 2), the inter-UE transmission / reception method of the physical layer may be used. For example, UE # 1 may be controlled to transmit predetermined information to UE # 2 by using at least one of a channel for D2D and a side link (see FIG. 15).
 図15では、UE#1が、ULデータ(例えば、CB#1+CB#2)のうち、CB#2をD2D/サイドリンクを利用してUE#2に送信する。そして、UE#1がULデータとして(例えば、UE#1のUL-SCHで)CB#1を送信し、UE#2がULデータとして(例えば、UE#2のUL-SCHで)CB#2を送信する場合を示している。 In FIG. 15, UE # 1 transmits CB # 2 of UL data (for example, CB # 1 + CB # 2) to UE # 2 using D2D / side link. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending.
 物理レイヤのUE間送受信方式を利用する場合、基地局がスケジュールを制御してもよい。UE間情報共有において、D2D/サイドリンクが適用される場合、複数UE間で自律的にリソースが選択されて送信が制御される構成(態様5-1)と、基地局が複数UE間における送信リソースを選択/スケジュールして送信が制御される構成(態様5-2)の少なくとも一つが適用されてもよい。 When using the inter-UE transmission / reception method of the physical layer, the base station may control the schedule. When D2D / sidelink is applied in information sharing between UEs, a configuration in which resources are autonomously selected among a plurality of UEs and transmission is controlled (aspect 5-1), and a base station transmits among a plurality of UEs. At least one of the configurations (Aspects 5-2) in which transmission is controlled by selecting / scheduling resources may be applied.
<態様5-1>
 UE-UE間で自律的にリソースを選択して送信が制御される場合、基地局が各UEに上位レイヤシグナリングを利用してリソースプールを設定してもよい。UEは、リソースプールに基づいて自律的にリソースを選択して他のUEへの送信を行ってもよい(図16A、図16B参照)。
<Aspect 5-1>
When transmission is controlled by autonomously selecting resources between UEs, a base station may set a resource pool for each UE by using upper layer signaling. The UE may autonomously select a resource based on the resource pool and transmit it to another UE (see FIGS. 16A and 16B).
 図16A、図16Bでは、UE#1が、上位レイヤであらかじめ設定されたリソースプールに含まれるリソースを利用して、ULデータ(例えば、CB#1+CB#2)のうち一部のULデータ(例えば、CB#2)をUE#2に送信する。そして、UE#1がULデータとして(例えば、UE#1のUL-SCHで)CB#1を送信し、UE#2がULデータとして(例えば、UE#2のUL-SCHで)CB#2を送信する場合を示している。基地局は、各UEに対するULデータのスケジュールと、UE間協調送信のスケジュールを同時に行ってもよい。 In FIGS. 16A and 16B, UE # 1 utilizes some UL data (for example, CB # 1 + CB # 2) of UL data (for example, CB # 2) by using the resources included in the resource pool preset in the upper layer. , CB # 2) is transmitted to UE # 2. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending. The base station may schedule UL data for each UE and schedule for coordinated transmission between UEs at the same time.
 図16Bでは、各UEに対してUE個別のDCIを送信する場合(態様4-1)を示したが、態様4-2/態様4-3で示した方法が適用されてもよい。 Although FIG. 16B shows a case where a UE-specific DCI is transmitted to each UE (Aspect 4-1), the method shown in Aspect 4-2 / Aspect 4-3 may be applied.
 上位レイヤによりリソースプールが設定されたUEは、UE間通信で信号を送信する場合、リソースプールの中からリソースを選択して、選択したリソースを利用して他の端末へ信号を送信すればよい。この場合、UEは、自律的にキャリアセンス等を行ってリソースプールの状態(例えば、空いているか否か)を判断してもよいし、基地局から周知/報知・指示される情報に基いてリソースプールの状態を判断してもよい。 When a UE whose resource pool is set by the upper layer transmits a signal by communication between UEs, it may select a resource from the resource pool and transmit a signal to another terminal using the selected resource. .. In this case, the UE may autonomously perform carrier sense or the like to determine the state of the resource pool (for example, whether or not it is free), or based on the information known / notified / instructed by the base station. You may judge the state of the resource pool.
 リソースプールの選択は、乱数等に基づいてUEがランダムに選択してもよいし、所定ルールに基づいて選択してもよい。受信側のUE(例えば、UE#2)は、上位レイヤで設定されたリソース(又は、リソースプール)を受信/測定し、自端末の宛ての信号の受信を行ってもよい。自端末宛ての信号であるかどうかを判断するには、例えば、データに挿入されたCRCを自端末のID(又は、C-RNTI)に基づいて解けるかどうか(例えば、CRCチェック)により判断してもよい。 The resource pool may be randomly selected by the UE based on a random number or the like, or may be selected based on a predetermined rule. The receiving UE (for example, UE # 2) may receive / measure the resource (or resource pool) set in the upper layer and receive the signal addressed to its own terminal. To determine whether the signal is addressed to the own terminal, for example, it is determined whether or not the CRC inserted in the data can be solved based on the ID (or C-RNTI) of the own terminal (for example, CRC check). You may.
 あるいは、UEは、UE間情報共有においてリソースプールを利用しなくてもよい。この場合、WiFiのCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)、NRU(NRアンライセンス)のLBT(Listen Before Talk)のように、リソースが空いていれば送信するように制御し、受信側は受信した信号を復号し、自端末宛ての信号化どうかをMACヘッダ等の情報に基いて判断してもよい。 Alternatively, the UE does not have to use the resource pool for information sharing between UEs. In this case, like WiFi CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) and NRU (NR unlicensed) LBT (Listen Before Talk), it is controlled to send if resources are available, and the receiving side. May decode the received signal and determine whether or not it is signalized to its own terminal based on information such as a MAC header.
<態様5-2>
 基地局がUE-UE間の送信のリソースを選択する場合、基地局は、各UEにUE-UE間送信で利用するリソースを指示/スケジュールしてもよい。UEは、基地局からスケジュールされたリソースを利用してUE-UE間送信を制御してもよい(図17A、図17B参照)。
<Aspect 5-2>
When the base station selects resources for transmission between UE and UE, the base station may instruct / schedule each UE the resources to be used for transmission between UE and UE. The UE may control the transmission between the UE and the UE by utilizing the resources scheduled from the base station (see FIGS. 17A and 17B).
 基地局からリソースを割当てられたデータ転送元UE(ここでは、UE#1)は、割り当てられたリソースを利用して、物理レイヤデータ(TB/CW/CB)を分割して、一部のデータ(ここでは、CB#2)を他のUE#2へ送信する。基地局からリソースを割当てられたデータ転送先UE(ここでは、UE#2)は、割当てられたリソースを測定/受信し、分割された物理レイヤデータ(TB/CW/CB)を受信して、UE2のUL-SCHを用いて基地局へ送信を行ってもよい。 The data transfer source UE (here, UE # 1) to which the resource is allocated from the base station divides the physical layer data (TB / CW / CB) by using the allocated resource and partially data. (Here, CB # 2) is transmitted to another UE # 2. The data transfer destination UE (here, UE # 2) to which the resource is allocated from the base station measures / receives the allocated resource, receives the divided physical layer data (TB / CW / CB), and receives the allocated physical layer data (TB / CW / CB). Transmission may be performed to the base station using UL-SCH of UE2.
 図17A、図17Bでは、UE#1が、基地局からスケジュールされたリソースを利用して、ULデータ(例えば、CB#1+CB#2)のうち一部のULデータ(例えば、CB#2)をUE#2に送信する。そして、UE#1がULデータとして(例えば、UE#1のUL-SCHで)CB#1を送信し、UE#2がULデータとして(例えば、UE#2のUL-SCHで)CB#2を送信する場合を示している。基地局は、各UEに対するULデータのスケジュールと、UE間協調送信のスケジュールを同時に行ってもよい。 In FIGS. 17A and 17B, UE # 1 uses a resource scheduled from the base station to obtain some UL data (for example, CB # 2) out of UL data (for example, CB # 1 + CB # 2). Send to UE # 2. Then, UE # 1 transmits CB # 1 as UL data (for example, in UL-SCH of UE # 1), and UE # 2 transmits CB # 2 as UL data (for example, in UL-SCH of UE # 2) CB # 2. Shows the case of sending. The base station may schedule UL data for each UE and schedule for coordinated transmission between UEs at the same time.
 図17Bでは、各UEに対してUE個別のDCIを送信する場合(態様4-1)を示したが、態様4-2/態様4-3で示した方法が適用されてもよい。 In FIG. 17B, the case where the DCI of each UE is transmitted to each UE (Aspect 4-1) is shown, but the method shown in Aspect 4-2 / Aspect 4-3 may be applied.
(第6の実施形態)
 UE協調MIMOを利用して通信を行う場合、基地局は、UEから送信されるUL信号に基づいて、各UEと当該基地局間のチャネル情報を把握してもよい。UL信号は、所定の参照信号(例えば、SRS)であってもよいし、他の信号であってもよい。
(Sixth Embodiment)
When communicating using UE cooperative MIMO, the base station may grasp the channel information between each UE and the base station based on the UL signal transmitted from the UE. The UL signal may be a predetermined reference signal (for example, SRS) or another signal.
 基地局は、各UEのスケジュール(例えば、UE協調MIMO送信のスケジュール/UE間信号送信のスケジュール)を行う前に、各UEにUL信号/RS(以下、SRSとも記す)の送信を指示/設定/トリガしてもよい。基地局は、受信したSRSに基づいて各UEのTPMI/SRIを決定してもよい。 The base station instructs / sets each UE to transmit UL signal / RS (hereinafter, also referred to as SRS) before scheduling each UE (for example, schedule of UE cooperative MIMO transmission / schedule of signal transmission between UEs). / May be triggered. The base station may determine the TPMI / SRI of each UE based on the received SRS.
 SRSの送信において、各UE(例えば、UE#1とUE#2)からそれぞれ送信されるSRS(ここでは、SRS#1、SRS#2)が異なるSRSリソースを利用してもよい(図18A参照)。基地局は、UE#1とUE#2に対して上位レイヤシグナリング等を利用して異なるSRSリソースを設定してもよい。 In the transmission of SRS, SRS (here, SRS # 1 and SRS # 2) transmitted from each UE (for example, UE # 1 and UE # 2) may use different SRS resources (see FIG. 18A). ). The base station may set different SRS resources for UE # 1 and UE # 2 by using higher layer signaling or the like.
 この場合、UE間でSRS送信タイミング(例えば、タイミングアドバンス)がずれていてもよい。各UEから送信されるSRSの送信タイミングが異なる場合、基地局はSRSの受信結果に基づいてタイミングアドバンスを調整してもよい。UEは、SRS送信豪に基地局からタイミングアドバンスについて制御されてもよい。 In this case, the SRS transmission timing (for example, timing advance) may be different between the UEs. When the transmission timing of the SRS transmitted from each UE is different, the base station may adjust the timing advance based on the reception result of the SRS. The UE may be controlled by the SRS transmitter Australia from the base station for timing advance.
 SRSに基づいてタイミングアドバンスが調整される場合、UEは、PDSCHで送信されるMAC CEに含まれるタイミングアドバンスコマンド(TA command in MAC CE)をSRS送信後に受信してもよい。UEは、当該タイミングアドバンスコマンドを受信した場合、受信情報に基いてタイミングアドバンス(又は、ULの送信タイミング)を調整してもよい。 When the timing advance is adjusted based on the SRS, the UE may receive the timing advance command (TA command in MAC CE) included in the MAC CE transmitted by the PDSCH after the SRS transmission. When the UE receives the timing advance command, the UE may adjust the timing advance (or UL transmission timing) based on the received information.
 あるいは、SRSの送信において、各UE(例えば、UE#1とUE#2)からそれぞれ送信されるSRS(ここでは、SRS#1、SRS#2)が同じ/共通のSRSリソースを利用してもよい(図18B参照)。基地局は、UE#1とUE#2に対して上位レイヤシグナリング等を利用して共通のSRSリソースを設定してもよい。各UEは、協調して1つのSRSリソースを利用してSRSを送信する。 Alternatively, in the transmission of SRS, the SRS (here, SRS # 1 and SRS # 2) transmitted from each UE (for example, UE # 1 and UE # 2) may use the same / common SRS resource. Good (see Figure 18B). The base station may set a common SRS resource for UE # 1 and UE # 2 by using upper layer signaling or the like. Each UE cooperates to transmit SRS using one SRS resource.
 この場合、UE間でSRS送信タイミング(タイミングアドバンス)をそろえる必要がある。このため、SRS送信前のUL送信(例えば、PRACH/SRS/PUSCH/PUCCH等)に基づいてタイミングアドバンスが調整されるように制御してもよい。 In this case, it is necessary to align the SRS transmission timing (timing advance) between the UEs. Therefore, it may be controlled so that the timing advance is adjusted based on the UL transmission (for example, PRACH / SRS / PUSCH / PUCCH, etc.) before the SRS transmission.
 SRS送信時とPUSCH送信時(例えば、UE協調PUSCH送信時)において、各アンテナポートの対応関係は同じとしてもよい(図19参照)。例えば、SRS送信時とPUSCH送信時において、UE間をまたがってアンテナポートが入れ替わらない構成としてもよい。あるいは、SRS送信時とPUSCH送信時において、ULビーム(例えば、SRI/空間関係)が変わらない構成としてもよい。 The correspondence between the antenna ports may be the same at the time of SRS transmission and at the time of PUSCH transmission (for example, at the time of UE cooperative PUSCH transmission) (see FIG. 19). For example, the antenna ports may not be interchanged between the UEs during SRS transmission and PUSCH transmission. Alternatively, the UL beam (for example, SRI / spatial relationship) may be configured to be the same during SRS transmission and PUSCH transmission.
 UEは、PUSCH送信における各アンテナポートのビーム(例えば、空間関係/TCI状態/疑似コロケーション)は、最近のSRS送信時と等しいと想定してもよい。図19では、SRS送信時におけるUE#1に対応するアンテナポート(#0、#1)、空間関係(#1)と、PUSCH送信時におけるUE#1に対応するアンテナポート(#0、#1)、空間関係(#1)が等しい場合を示している。同様に、SRS送信時におけるUE#2に対応するアンテナポート(#2、#3)、空間関係(#2)と、PUSCH送信時におけるUE#2に対応するアンテナポート(#2、#3)、空間関係(#2)が等しい場合を示している。 The UE may assume that the beam of each antenna port (for example, spatial relationship / TCI state / pseudo-collocation) in PUSCH transmission is equal to that at the time of recent SRS transmission. In FIG. 19, the antenna port (# 0, # 1) corresponding to UE # 1 at the time of SRS transmission, the spatial relationship (# 1), and the antenna port (# 0, # 1) corresponding to UE # 1 at the time of PUSCH transmission are shown. ), The case where the spatial relation (# 1) is equal is shown. Similarly, the antenna port (# 2, # 3) corresponding to UE # 2 at the time of SRS transmission, the spatial relationship (# 2), and the antenna port (# 2, # 3) corresponding to UE # 2 at the time of PUSCH transmission. , The case where the spatial relations (# 2) are equal is shown.
 図19では、PUSCH送信を例に挙げているが、これに限らずUE間で協調して送信する他のUL信号/ULチャネル(例えば、PUCCH)の送信においても同じメカニズム/ルールを適用してもよい。 Although PUSCH transmission is taken as an example in FIG. 19, the same mechanism / rule is applied to the transmission of other UL signals / UL channels (for example, PUCCH) that are cooperatively transmitted between UEs. May be good.
 1以上のUE(例えば、UE協調MIMOを行うUE)がUL信号/ULチャネルを送信する場合、1つのUL信号/ULチャネル(又は、1つのUL信号/ULチャネルのリソース)に複数のビーム(例えば、TCI状態、空間関係、又は疑似コロケーション(QCL))を設定してもよい。UL信号/ULチャネルは、SRS,PUSCH、及びPUCCHの少なくとも一つに読み替えられてもよい。 When one or more UEs (eg, UE performing UE cooperative MIMO) transmit UL signals / UL channels, multiple beams (or resources of one UL signal / UL channel) to one UL signal / UL channel (or resources of one UL signal / UL channel). For example, TCI states, spatial relationships, or pseudo-colocation (QCL)) may be set. The UL signal / UL channel may be read as at least one of SRS, PUSCH, and PUCCH.
 この場合、SRS/PUSCH/PUCCHのチャネル間(又は、信号とチャネル間)において、同一アンテナポート間は同一の物理アンテナポートにマッピングされる構成としてもよい(図20参照)。また、SRS/PUSCH/PUCCHのチャネル間(又は、信号とチャネル間)において、同一アンテナポート間は同一のビーム(例えば、TCI状態、空間関係、又は疑似コロケーション)が対応する構成としてもよい。 In this case, between the channels of SRS / PUSCH / PUCCH (or between the signal and the channel), the same antenna port may be mapped to the same physical antenna port (see FIG. 20). Further, the same beam (for example, TCI state, spatial relationship, or pseudo-collocation) may correspond between the channels of SRS / PUSCH / PUCCH (or between the signal and the channel) between the same antenna ports.
 図20では、SRS送信時のアンテナポートにおける番号とPUSCH送信時のアンテナポートにおける番号を等しくしている。また、SRS送信時とPUSCH送信時において、番号が同じアンテナポート間では同一のビーム(例えば、TCI状態、空間関係、又は疑似コロケーション)が設定されてもよい。また、共通のSRSリソース(例えば、SRSリソース#1)に対して複数のTCI状態(例えば、TCI状態#1とTCI状態#2)が設定されてもよい。 In FIG. 20, the number at the antenna port at the time of SRS transmission and the number at the antenna port at the time of PUSCH transmission are made equal. Further, the same beam (for example, TCI state, spatial relation, or pseudo-collocation) may be set between antenna ports having the same number during SRS transmission and PUSCH transmission. Further, a plurality of TCI states (for example, TCI state # 1 and TCI state # 2) may be set for a common SRS resource (for example, SRS resource # 1).
 アンテナポート#0と#1間は位相が連続し(コヒーレントである)、アンテナポート#2と#3間は位相が連続し(コヒーレントである)、アンテナポート#0-#1とアンテナポート#2-#3間位相は連続しない(コヒーレントでない)構成としてもよい。 The phase is continuous between antenna ports # 0 and # 1 (coherent), the phase is continuous between antenna ports # 2 and # 3 (coherent), and antenna ports # 0- # 1 and antenna port # 2 are continuous. -The phase between # 3 may be non-continuous (not coherent).
 また、アンテナポート毎に別々に(例えば、異なる)TCI状態/空間関係/QCLが設定可能であってもよい(図21参照)。図21では、共通のSRSリソース(例えば、SRSリソース#1)に対してTCI状態#1とTCI状態#2とを設定する場合を示している。この場合、所定ルールに基づいて各アンテナポートにTCI状態がマッピングされてもよい。ここでは、番号が小さいアンテナポート番号に対してインデックスが小さいTCI状態IDをマッピング/対応させる場合を示している。 Further, the TCI state / spatial relationship / QCL may be set separately (for example, different) for each antenna port (see FIG. 21). FIG. 21 shows a case where the TCI state # 1 and the TCI state # 2 are set for a common SRS resource (for example, SRS resource # 1). In this case, the TCI state may be mapped to each antenna port based on a predetermined rule. Here, the case where the TCI state ID having a small index is mapped / corresponding to the antenna port number having a small number is shown.
 具体的には、SRSリソース#1のアンテナポート#0、#1にTCI状態#1を設定し、SRSリソース#1のアンテナポート#2、#3にTCI状態#2を設定している。また、異なるUL信号/ULチャネルの送信(例えば、PUSCH送信)においても、アンテナポートとTCI状態の関連づけを同じとする場合を示している。具体的には、PUSCHリソース#1のアンテナポート#0、#1にTCI状態#1を設定し、PUSCHリソース#1のアンテナポート#2、#3にTCI状態#2を設定している。 Specifically, the antenna ports # 0 and # 1 of the SRS resource # 1 are set to the TCI state # 1, and the antenna ports # 2 and # 3 of the SRS resource # 1 are set to the TCI state # 2. Further, even in the transmission of different UL signals / UL channels (for example, PUSCH transmission), the case where the association between the antenna port and the TCI state is the same is shown. Specifically, the antenna ports # 0 and # 1 of the PUSCH resource # 1 are set to the TCI state # 1, and the antenna ports # 2 and # 3 of the PUSCH resource # 1 are set to the TCI state # 2.
<バリエーション>
 図21では、1つのUL信号/ULチャネルに複数のビーム(例えば、空間関係/TCI状態/疑似コロケーション)を設定する場合を示したがこれに限られない。各UL信号/ULチャネルに1つのビーム(例えば、空間関係/TCI状態/疑似コロケーション)が設定されてもよい(図22参照)。つまり、リソース毎に別々に(例えば、異なる)TCI状態/空間関係/QCLが設定可能であってもよい。
<Variations>
FIG. 21 shows a case where a plurality of beams (for example, spatial relation / TCI state / pseudo-collocation) are set in one UL signal / UL channel, but the present invention is not limited to this. One beam (eg, spatial relationship / TCI state / pseudo-collocation) may be set for each UL signal / UL channel (see FIG. 22). That is, the TCI state / spatial relationship / QCL may be set separately (for example, different) for each resource.
 図22では、SRSリソース#1(又は、SRSリソース#1に対応するアンテナポート#0、#1)に対してTCI状態#1を設定し、SRSリソース#2(又は、SRSリソース#2に対応するアンテナポート#2、#3)に対してTCI状態#2を設定する場合を示している。 In FIG. 22, the TCI state # 1 is set for the SRS resource # 1 (or the antenna ports # 0 and # 1 corresponding to the SRS resource # 1), and the SRS resource # 2 (or the SRS resource # 2 is supported). The case where the TCI state # 2 is set for the antenna ports # 2 and # 3) is shown.
 また、異なるUL信号/ULチャネルの送信(例えば、PUSCH送信)においても、アンテナポートとTCI状態の関連づけを同じとしてもよい。例えば、PUSCHリソース#1(又は、PUSCHリソース#1に対応するアンテナポート#0、#1)に対してTCI状態#1を設定し、PUSCHリソース#2(又は、PUSCHリソース#2に対応するアンテナポート#2、#3)に対してTCI状態#2を設定してもよい。 Further, even in the transmission of different UL signals / UL channels (for example, PUSCH transmission), the association between the antenna port and the TCI state may be the same. For example, the TCI state # 1 is set for the PUSCH resource # 1 (or the antenna ports # 0 and # 1 corresponding to the PUSCH resource # 1), and the antenna corresponding to the PUSCH resource # 2 (or the antenna corresponding to the PUSCH resource # 2) is set. The TCI state # 2 may be set for the ports # 2 and # 3).
(第7の実施形態)
 UE協調MIMOを利用して通信を行う場合、各UEが送信するデータ(例えば、TB/CW/CB単位)について送信をミスした場合(例えば、基地局で誤りが検出された場合)、所定の再送制御を行ってもよい。基地局は、CRCチェック又は誤り判定符号に基づいて再送指示をUEに指示してもよい。
(7th Embodiment)
When communicating using UE cooperative MIMO, if a transmission error is made for the data transmitted by each UE (for example, TB / CW / CB unit) (for example, if an error is detected in the base station), a predetermined value is specified. Retransmission control may be performed. The base station may instruct the UE to retransmit an instruction based on the CRC check or the error determination code.
 例えば、UEは、態様7-1及び態様7-2の少なくとも一つに基づいて再送制御を行ってもよい。以下の説明では、送信データ(又は、ULデータ)をCB単位で分割する場合を例に挙げるが、これに限られない。 For example, the UE may perform retransmission control based on at least one of aspects 7-1 and 7-2. In the following description, the case where the transmission data (or UL data) is divided in CB units will be given as an example, but the present invention is not limited to this.
<態様7-1>
 どちらのULデータ(又は、どちらのUEが送信したULデータ)が誤ったかに関わらず、データ送信元のUE(例えば、UE#1)がULデータを再送するように制御してもよい(図23参照)。図23では、UE#1のULデータ(例えば、CB#1+CB#2)のうち、CB#1をUE#1(又は、UE#1のアンテナポート)から送信し、CB#2をUE#2(又は、UE#2のアンテナポート)から送信する場合を示している。
<Aspect 7-1>
Regardless of which UL data (or UL data transmitted by which UE) is incorrect, the data source UE (for example, UE # 1) may be controlled to retransmit the UL data (FIG. 23). In FIG. 23, of the UL data of UE # 1 (for example, CB # 1 + CB # 2), CB # 1 is transmitted from UE # 1 (or the antenna port of UE # 1), and CB # 2 is transmitted to UE # 2. (Or, the case of transmitting from the antenna port of UE # 2) is shown.
 UE#1は、CB#1とCB#2の少なくとも一方の送信が誤った場合、UE#1からCBの再送を行うように制御してもよい。この場合、UE#1は、誤ったCBのみ再送するように制御してもよいし、誤っていないCBも含めて再送するように制御してもよい。 UE # 1 may be controlled to retransmit CB from UE # 1 when at least one of CB # 1 and CB # 2 is erroneously transmitted. In this case, UE # 1 may be controlled to retransmit only the erroneous CB, or may be controlled to retransmit including the erroneous CB.
 再送に利用するリソースは、ULデータ送信にスケジュールされたリソースと別のリソース(例えば、再送用リソース)であってもよい。再送用リソースは、仕様で定義されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。UEは、基地局から再送指示に関する情報(又は、誤りに関する情報)を受信した場合、所定のリソースを利用して再送用のPUSCHを送信してもよい。 The resource used for retransmission may be a resource different from the resource scheduled for UL data transmission (for example, a resource for retransmission). The retransmission resource may be defined in the specifications, or may be set from the base station to the UE by higher layer signaling or the like. When the UE receives the information regarding the retransmission instruction (or the information regarding the error) from the base station, the UE may transmit the PUSCH for retransmission by using a predetermined resource.
 基地局は、UE#1から送信されるCB#1、及びUE#2から送信されるCB#2の少なくとも一方に誤りが検出された場合、UE#1(又は、UE#1とUE#2)に再送指示に関する情報を通知してもよい。この場合、UE#1が再送を行うように制御すればよい。 If an error is detected in at least one of CB # 1 transmitted from UE # 1 and CB # 2 transmitted from UE # 2, the base station may detect UE # 1 (or UE # 1 and UE # 2). ) May be notified of information regarding the resend instruction. In this case, UE # 1 may be controlled to perform retransmission.
 このように、送信元又はデータ転送元のUE(UE#1)が再送を行うように制御することにより、他のUEに転送していないCBに誤りが検出された場合であっても、再送のために新たなUE間転送を不要することができる。 In this way, by controlling the UE (UE # 1) of the transmission source or the data transfer source to perform retransmission, even if an error is detected in the CB that has not been transferred to another UE, retransmission is performed. Therefore, new inter-UE transfer can be eliminated.
<態様7-2>
 どちらのULデータ(又は、どちらのUEが送信したULデータ)が誤ったかに基づいて、再送を行うUEが決定/選択されてもよい。
<Aspect 7-2>
The UE to be retransmitted may be determined / selected based on which UL data (or UL data transmitted by which UE) is incorrect.
《オプションA》
 初回送信時に送信したCBの再送指示(又は、当該CBが誤りである旨)を基地局から通知されたUE(又は、送信をミスしたUE)は、CBを再送するように制御してもよい。
<< Option A >>
The UE (or the UE that missed the transmission) notified by the base station of the CB resend instruction (or the fact that the CB is incorrect) transmitted at the time of the first transmission may be controlled to retransmit the CB. ..
 基地局は、再送用データを送信するPUSCHリソースをUEにスケジュールしてもよい。UEは、基地局からスケジュールされたリソースを利用した再送を指示されたULデータを送信してもよい。なお、UEは、誤ったCBのみ再送するように制御してもよいし、誤っていないCBも含めて再送するように制御してもよい。 The base station may schedule a PUSCH resource for transmitting retransmission data to the UE. The UE may transmit UL data instructed to be retransmitted using the scheduled resource from the base station. The UE may be controlled to retransmit only the erroneous CB, or may be controlled to retransmit including the erroneous CB.
 再送に利用するリソースは、ULデータ送信にスケジュールされたリソースと別のリソース(例えば、再送用リソース)であってもよい。再送用リソースは、仕様で定義されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。UEは、基地局から再送指示に関する情報(又は、誤りに関する情報)を受信した場合、所定のリソースを利用して再送用のPUSCHを送信してもよい。 The resource used for retransmission may be a resource different from the resource scheduled for UL data transmission (for example, a resource for retransmission). The retransmission resource may be defined in the specifications, or may be set from the base station to the UE by higher layer signaling or the like. When the UE receives the information regarding the retransmission instruction (or the information regarding the error) from the base station, the UE may transmit the PUSCH for retransmission by using a predetermined resource.
 基地局は、ULデータの再送指示を当該ULデータの送信元のUEに通知してもよい。例えば、UE#1から送信されるCB#1に誤りが検出された場合、基地局は、UE#1に再送指示に関する情報を通知してもよい。また、UE#2から送信されるCB#2に誤りが検出された場合、基地局は、UE#2に再送指示に関する情報を通知してもよい。このように、ULデータの送信を誤ったUEが再送することにより、再送のために新たなUE間転送を不要することができる。 The base station may notify the UE of the transmission source of the UL data of the UL data retransmission instruction. For example, if an error is detected in the CB # 1 transmitted from the UE # 1, the base station may notify the UE # 1 of the information regarding the retransmission instruction. Further, when an error is detected in the CB # 2 transmitted from the UE # 2, the base station may notify the UE # 2 of the information regarding the retransmission instruction. In this way, by retransmitting the UL data transmission by the erroneous UE, it is possible to eliminate the need for new inter-UE transfer for retransmission.
 なお、基地局は、いずれか一方のCB(例えば、UE#2から送信されるCB#2)に誤りが検出された場合、両方のUE(例えば、UE#1とUE#2)に再送指示に関する情報を通知してもよい。この場合、UE#2からのみ再送を行ってもよいし、UE#1とUE#2の両方から再送するように制御してもよい。 If an error is detected in one of the CBs (for example, CB # 2 transmitted from UE # 2), the base station instructs both UEs (for example, UE # 1 and UE # 2) to retransmit. May be notified of information about. In this case, the retransmission may be performed only from the UE # 2, or the retransmission may be performed from both the UE # 1 and the UE # 2.
《オプションB》
 初回送信時に送信したCBの再送指示(又は、当該CBが誤りである旨)を基地局から通知されたUE(又は、送信をミスしたUE)は、CBを再送しない(他のUEが誤ったCBを送信する)ように制御してもよい。
<< Option B >>
The UE (or the UE that made a mistake in transmission) notified by the base station of the CB resend instruction (or that the CB is incorrect) transmitted at the time of the first transmission does not retransmit the CB (another UE made a mistake). It may be controlled to transmit CB).
 例えば、UE#1から送信されるCB#1に誤りが検出された場合、UE#2からCB#1を再送するように制御してもよい(図24参照)。この場合、UE#1は、CB#1をUE#2に転送/情報共有し、UE#2がCB#1を基地局へ送信してもよい。基地局は、UE#1に再送指示に関する情報を通知してもよいし、UE#1とUE#2の両方に再送指示に関する情報を通知してもよい。UE#1からUE#2への転送制御は、上記実施形態(例えば、第5の実施形態)を適用してもよい。 For example, if an error is detected in the CB # 1 transmitted from the UE # 1, the UE # 2 may be controlled to retransmit the CB # 1 (see FIG. 24). In this case, UE # 1 may transfer / share information with CB # 1 to UE # 2, and UE # 2 may transmit CB # 1 to the base station. The base station may notify UE # 1 of the information regarding the retransmission instruction, or may notify both UE # 1 and UE # 2 of the information regarding the retransmission instruction. The above embodiment (for example, the fifth embodiment) may be applied to the transfer control from UE # 1 to UE # 2.
 UE#2から送信されるCB#2に誤りが検出された場合、UE#1からCB#2を再送するように制御してもよい。この場合、UE#1は、CB#2の情報を把握しているため、UE間転送は不要となる。基地局は、UE#1に再送指示に関する情報を通知してもよいし、UE#1とUE#2の両方に再送指示に関する情報を通知してもよい。 If an error is detected in CB # 2 transmitted from UE # 2, it may be controlled to retransmit CB # 2 from UE # 1. In this case, since UE # 1 knows the information of CB # 2, transfer between UEs is unnecessary. The base station may notify UE # 1 of the information regarding the retransmission instruction, or may notify both UE # 1 and UE # 2 of the information regarding the retransmission instruction.
 このように、送信を誤ったUEとは別のUEから再送を行うことにより、通信環境がよいUEから再送を行うことができる。 In this way, by retransmitting from a UE different from the UE in which the transmission is erroneous, it is possible to retransmit from a UE having a good communication environment.
 なお、両方のUEからのCBに誤りが検出された場合、特定のUE(例えば、UE#1)から再送するように制御してもよいし、各UEからそれぞれ再送するように制御してもよい。 If an error is detected in the CBs from both UEs, it may be controlled to retransmit from a specific UE (for example, UE # 1), or it may be controlled to retransmit from each UE. good.
(補足)
 上記実施形態は、UE能力シグナリング(例えば、UE capability signaling)でUEがサポートを報告したUEに限定して適用されてもよい。また、上記実施形態において、UE#1のデータの一部をUE#2からも送信させる構成を示したが、当該構成をベースとして、UE#2からU##1へのデータ転送可否(又は、双方向のデータ転送可否)については、別のUE能力シグナリングによりサポート可否が報告されてもよい。
(supplement)
The above embodiment may be applied only to UEs for which UEs have reported support in UE capability signaling (eg, UE capability signaling). Further, in the above embodiment, the configuration in which a part of the data of UE # 1 is also transmitted from UE # 2 is shown, but based on the configuration, whether or not the data can be transferred from UE # 2 to U ## 1 (or , Bidirectional data transfer availability) may be reported by another UE capability signaling.
 上記実施形態は、上位レイヤ制御信号等で基地局から設定された場合に適用される構成としてもよい。上記実施形態において、UE#1とUE#2は、第1のUEと第2のUE、マスタUEとスレーブUE、又はプライマリUEとセカンダリUEと読み替えられてもよい。 The above embodiment may be configured to be applied when it is set from a base station by an upper layer control signal or the like. In the above embodiment, UE # 1 and UE # 2 may be read as a first UE and a second UE, a master UE and a slave UE, or a primary UE and a secondary UE.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図25は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 25 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs). MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE. -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the base station (gNB) of NR is MN, and the base station (eNB) of LTE (E-UTRA) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of a plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a broadcast channel (Physical Broadcast Channel (PBCH)), and a downlink control channel (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. Further, the Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource for searching DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request). Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble to establish a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" to the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a reference signal for demodulation (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図26は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 26 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 In this example, the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 送受信部120は、スケジュールに関する情報を複数の端末の少なくとも一つに送信してもよい。制御部110は、スケジュールに関する情報に基づいて、複数の端末から協調して送信されるULデータの受信を制御してもよい。 The transmission / reception unit 120 may transmit information regarding the schedule to at least one of a plurality of terminals. The control unit 110 may control the reception of UL data coordinatedly transmitted from a plurality of terminals based on the information regarding the schedule.
 送受信部120は、端末固有の下り制御情報又はグループコモン下り制御情報を利用してスケジュールに関する情報を複数の端末の少なくとも一つに送信してもよい。制御部110は、スケジュールに関する情報に基づいて、前記複数の端末から協調して送信されるULデータの受信を制御してもよい。 The transmission / reception unit 120 may transmit information regarding the schedule to at least one of a plurality of terminals by using the downlink control information unique to the terminal or the group common downlink control information. The control unit 110 may control the reception of UL data coordinatedly transmitted from the plurality of terminals based on the information regarding the schedule.
 送受信部120は、複数の端末の少なくとも一つに送信するスケジュールに関する情報に基づいて、前記複数の端末から協調して送信されるULデータを受信してもよい。制御部110は、ULデータのうちトランスポートブロック単位、コードワード単位、コードブロック単位及びビット単位の少なくとも一つに基づいて分割された一部のULデータに関する情報の送信に利用されるリソース又はリソースプールを設定してもよい。 The transmission / reception unit 120 may receive UL data to be cooperatively transmitted from the plurality of terminals based on information regarding a schedule to be transmitted to at least one of the plurality of terminals. The control unit 110 is a resource or resource used for transmitting information regarding a part of the UL data divided based on at least one of the transport block unit, the code word unit, the code block unit, and the bit unit of the UL data. You may set up a pool.
 送受信部120は、サウンディング参照信号を複数の端末から受信してもよい。制御部110は、スケジュールに関する情報に基づいて、複数の端末から協調して送信されるUL送信を受信するように制御してもよい。サウンディング参照信号の送信に利用するアンテナポートと、UL送信に利用するアンテナポートとが関連づけられてもよい。 The transmission / reception unit 120 may receive the sounding reference signal from a plurality of terminals. The control unit 110 may control to receive UL transmissions cooperatively transmitted from a plurality of terminals based on the information regarding the schedule. The antenna port used for transmitting the sounding reference signal and the antenna port used for UL transmission may be associated with each other.
(ユーザ端末)
 図27は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 27 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 In this example, the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. When the transform precoding is enabled for a channel (for example, PUSCH), the transmission / reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
 送受信部220は、スケジュールに関する情報を受信してもよい。送受信部220は、ULデータの少なくとも一部に関する情報を他の端末へ送信してもよい。送受信部220は、他の端末との同期に利用される同期信号を受信してもよい。制御部110は、スケジュールに関する情報に基づいて、他の端末と協調して前記ULデータの送信を行うように制御してもよい。ULデータは、端末及び前記他の端末の少なくとも一方がサポートするアンテナポート数より多いランク又はレイヤ数を利用して送信されてもよい。ULデータの協調送信において、端末が送信する第1のULデータに対応する第1の復調用参照信号と、他の端末が送信する第2のULデータに対応する第2の復調用参照信号に対して、少なくとも一部のパラメータが共通に設定されてもよい。 The transmission / reception unit 220 may receive information regarding the schedule. The transmission / reception unit 220 may transmit information regarding at least a part of UL data to another terminal. The transmission / reception unit 220 may receive a synchronization signal used for synchronization with another terminal. The control unit 110 may control to transmit the UL data in cooperation with other terminals based on the information regarding the schedule. UL data may be transmitted using a number of ranks or layers greater than the number of antenna ports supported by the terminal and at least one of the other terminals. In the cooperative transmission of UL data, the first demodulation reference signal corresponding to the first UL data transmitted by the terminal and the second demodulation reference signal corresponding to the second UL data transmitted by the other terminal are used. On the other hand, at least some parameters may be set in common.
 送受信部220は、端末固有の下り制御情報又はグループコモン下り制御情報によりスケジュールに関する情報を受信してもよい。制御部110は、スケジュールに関する情報に基づいて、他の端末と協調してULデータの送信を行うように制御してもよい。端末固有の下り制御情報は、端末及び他の端末に対するスケジュールに関する情報を含んでもよい。端末固有の下り制御情報又はグループコモン下り制御情報は、ULデータの少なくとも一部に関する情報の送信に利用される第1のパラメータ情報、及びULデータの送信に利用される第2のパラメータ情報の少なくとも一つを含んでもよい。送受信部220は、ULデータの少なくとも一部に関する情報の送信に利用される第1のパラメータ情報と、ULデータの送信に利用される第2のパラメータ情報と、を異なる下り制御情報を利用して受信してもよい。 The transmission / reception unit 220 may receive information related to the schedule by the downlink control information peculiar to the terminal or the group common downlink control information. The control unit 110 may control to transmit UL data in cooperation with other terminals based on the information regarding the schedule. The terminal-specific downlink control information may include information regarding the schedule for the terminal and other terminals. The terminal-specific downlink control information or group common downlink control information is at least the first parameter information used for transmitting information regarding at least a part of UL data and the second parameter information used for transmitting UL data. One may be included. The transmission / reception unit 220 uses different downlink control information for the first parameter information used for transmitting information regarding at least a part of UL data and the second parameter information used for transmitting UL data. You may receive it.
 送受信部220は、ULデータのうちトランスポートブロック単位、コードワード単位、コードブロック単位及びビット単位の少なくとも一つに基づいて分割された一部のULデータに関する情報を他の端末へ送信してもよい。制御部110は、スケジュールに関する情報に基づいて、他の端末と協調してULデータの送信を行うように制御してもよい。送受信部220は、一部のULデータに関する情報を上位レイヤを利用して他の端末に送信してもよい。送受信部220は、一部のULデータに関する情報をデバイス間通信(D2D)に利用されるチャネル、及びサイドリンク用のチャネルを利用して他の端末に送信してもよい。送受信部220は、一部のULデータに関する情報をリソースプールに含まれるいずれかのリソース、又はスケジュールされるリソースを利用して送信してもよい。 Even if the transmission / reception unit 220 transmits information on a part of the UL data divided based on at least one of the transport block unit, the code word unit, the code block unit, and the bit unit of the UL data to another terminal. good. The control unit 110 may control to transmit UL data in cooperation with other terminals based on the information regarding the schedule. The transmission / reception unit 220 may transmit information about a part of UL data to another terminal by using an upper layer. The transmission / reception unit 220 may transmit information about a part of UL data to another terminal by using a channel used for inter-device communication (D2D) and a channel for side link. The transmission / reception unit 220 may transmit information about a part of UL data by using any resource included in the resource pool or a scheduled resource.
 送受信部220は、サウンディング参照信号を送信してもよい。送受信部220は、スケジュールに関する情報を受信してもよい。制御部110は、スケジュールに関する情報に基づいて、他の端末と協調してUL送信を行うように制御してもよい。サウンディング参照信号の送信に利用するアンテナポートと、UL送信に利用するアンテナポートとが関連づけられてもよい。アンテナポート番号毎に、異なる疑似コロケーション、異なる送信コンフィグ指標、及び異なる空間関係の少なくとも一つが設定されてもよい。サウンディング参照信号の送信とUL送信において、同一のアンテナポート番号に対して同じ疑似コロケーション、同じ送信コンフィグ指標、及び同じ空間関係の少なくとも一つが設定されてもよい。 The transmission / reception unit 220 may transmit a sounding reference signal. The transmission / reception unit 220 may receive information regarding the schedule. The control unit 110 may control to perform UL transmission in cooperation with other terminals based on the information regarding the schedule. The antenna port used for transmitting the sounding reference signal may be associated with the antenna port used for UL transmission. At least one of different pseudocollocations, different transmission config indicators, and different spatial relationships may be set for each antenna port number. At least one of the same pseudo-collocation, the same transmission config index, and the same spatial relationship may be set for the same antenna port number in the transmission of the sounding reference signal and the UL transmission.
 制御部110は、他の端末と協調して送信されるUL送信の再送を行う場合、所定の端末から再送が行われるように制御してもよい。 When the control unit 110 retransmits the UL transmission transmitted in cooperation with another terminal, the control unit 110 may control so that the retransmission is performed from a predetermined terminal.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In each case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図28は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 28 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (CC) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be configured by one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. The PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each. The time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as TTI, a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in the present disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) on the website. When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. The "network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. Further, words such as "uplink" and "downlink" may be read as words corresponding to communication between terminals (for example, "sidelink"). For example, the uplink channel, the downlink channel, and the like may be read as the side link channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a fraction)), Future Radio Access (FRA), New -Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB) , LTE 802.11 (Wi-Fi®), LTE 802.16 (WiMAX®), LTE 802.20, Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like. Further, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Further, "judgment (decision)" includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as "determining" such as accessing) (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used in the present disclosure, are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "bonded" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, one or more wires, cables, printed electrical connections, etc. are used, and as some non-limiting and non-comprehensive examples, the radio frequency region, microwaves. It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as an amended or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  スケジュールに関する情報を受信する受信部と、
     ULデータの少なくとも一部に関する情報を他の端末へ送信する送信部と、
     前記スケジュールに関する情報に基づいて、前記他の端末と協調して前記ULデータの送信を行うように制御する制御部と、を有することを特徴とする端末。
    A receiver that receives information about the schedule and
    A transmitter that sends information about at least part of UL data to other terminals,
    A terminal comprising: a control unit that controls to transmit the UL data in cooperation with the other terminal based on the information regarding the schedule.
  2.  前記受信部は、前記他の端末との同期に利用される同期信号を受信することを特徴とする請求項1に記載の端末。 The terminal according to claim 1, wherein the receiving unit receives a synchronization signal used for synchronization with the other terminal.
  3.  前記ULデータは、前記端末及び前記他の端末の少なくとも一方がサポートするアンテナポート数より多いランク又はレイヤ数を利用して送信されることを特徴とする請求項1又は請求項2に記載の端末。 The terminal according to claim 1 or 2, wherein the UL data is transmitted using a rank or a number of layers larger than the number of antenna ports supported by at least one of the terminal and the other terminal. ..
  4.  前記ULデータの協調送信において、前記端末が送信する第1のULデータに対応する第1の復調用参照信号と、前記他の端末が送信する第2のULデータに対応する第2の復調用参照信号に対して、少なくとも一部のパラメータが共通に設定されることを特徴とする請求項1から請求項3のいずれかに記載の端末。 In the cooperative transmission of UL data, a first demodulation reference signal corresponding to the first UL data transmitted by the terminal and a second demodulation reference signal corresponding to the second UL data transmitted by the other terminal. The terminal according to any one of claims 1 to 3, wherein at least a part of the parameters are set in common with respect to the reference signal.
  5.  スケジュールに関する情報を受信する工程と、
     ULデータの少なくとも一部に関する情報を他の端末へ送信する工程と、
     前記スケジュールに関する情報に基づいて、前記他の端末と協調して前記ULデータの送信を行うように制御する工程と、を有することを特徴とする端末の無線通信方法。
    The process of receiving information about the schedule and
    The process of transmitting information about at least a part of UL data to other terminals,
    A terminal wireless communication method comprising: a step of controlling to transmit the UL data in cooperation with the other terminal based on the information regarding the schedule.
  6.  スケジュールに関する情報を複数の端末の少なくとも一つに送信する送信部と、
     前記スケジュールに関する情報に基づいて、前記複数の端末から協調して送信されるULデータの受信を制御する制御部と、を有することを特徴とする基地局。
    A transmitter that sends information about the schedule to at least one of multiple terminals,
    A base station including a control unit that controls reception of UL data coordinatedly transmitted from the plurality of terminals based on the information regarding the schedule.
PCT/JP2021/000567 2021-01-08 2021-01-08 Terminal, wireless communication method, and base station WO2022149280A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/000567 WO2022149280A1 (en) 2021-01-08 2021-01-08 Terminal, wireless communication method, and base station
CN202180095352.8A CN116982335A (en) 2021-01-08 2021-01-08 Terminal, wireless communication method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000567 WO2022149280A1 (en) 2021-01-08 2021-01-08 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2022149280A1 true WO2022149280A1 (en) 2022-07-14

Family

ID=82357887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000567 WO2022149280A1 (en) 2021-01-08 2021-01-08 Terminal, wireless communication method, and base station

Country Status (2)

Country Link
CN (1) CN116982335A (en)
WO (1) WO2022149280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011643A1 (en) * 2022-07-15 2024-01-18 Nec Corporation Methods, terminal devices and computer readable medium for communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130029680A1 (en) * 2010-04-14 2013-01-31 Lg Electronics Inc. Method in which a terminal cooperates with another terminal to transmit data, and method for receiving the data
US20160219578A1 (en) * 2015-01-28 2016-07-28 Electronics And Telecommunications Research Institute Cooperative multi-antenna transmitting and receiving method and apparatus for mobile communication system, and method for configuring cluster for the same
JP2019506055A (en) * 2015-12-30 2019-02-28 アイディーエーシー ホールディングス インコーポレイテッド Method, system, and device for wireless transmit / receive unit coordination
US20200336178A1 (en) * 2019-04-18 2020-10-22 Huawei Technologies Co., Ltd. Uplink multi-user equipment (ue) cooperative transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130029680A1 (en) * 2010-04-14 2013-01-31 Lg Electronics Inc. Method in which a terminal cooperates with another terminal to transmit data, and method for receiving the data
US20160219578A1 (en) * 2015-01-28 2016-07-28 Electronics And Telecommunications Research Institute Cooperative multi-antenna transmitting and receiving method and apparatus for mobile communication system, and method for configuring cluster for the same
JP2019506055A (en) * 2015-12-30 2019-02-28 アイディーエーシー ホールディングス インコーポレイテッド Method, system, and device for wireless transmit / receive unit coordination
US20200336178A1 (en) * 2019-04-18 2020-10-22 Huawei Technologies Co., Ltd. Uplink multi-user equipment (ue) cooperative transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011643A1 (en) * 2022-07-15 2024-01-18 Nec Corporation Methods, terminal devices and computer readable medium for communication

Also Published As

Publication number Publication date
CN116982335A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
JP7216113B2 (en) Terminal and wireless communication method
WO2021024494A1 (en) Terminal and wireless communication method
WO2020090059A1 (en) User terminal and wireless communications method
EP3930274A1 (en) User terminal and wireless communication method
WO2020090060A1 (en) User terminal and wireless communication method
WO2020209282A1 (en) User terminal and wireless communication method
JPWO2020170398A1 (en) Terminals, wireless communication methods, base stations and systems
WO2020144774A1 (en) User terminal and wireless communication method
WO2022024378A1 (en) Terminal, wireless communication method, and base station
EP3955674A1 (en) User terminal and wireless communication method
WO2020144773A1 (en) User terminal and wireless communication method
WO2021186700A1 (en) Terminal, wireless communication method, and base station
WO2022102605A1 (en) Terminal, wireless communication method, and base station
WO2020188666A1 (en) User terminal and wireless communication method
WO2022162866A1 (en) Terminal, wireless communication method, and base station
EP3876432A1 (en) User equipment
WO2022044261A1 (en) Terminal, wireless communication method, and base station
WO2022024377A1 (en) Terminal, radio communication method, and base station
WO2021106167A1 (en) Terminal and wireless communication method
WO2020144775A1 (en) User terminal and wireless communication method
WO2022149280A1 (en) Terminal, wireless communication method, and base station
WO2022039154A1 (en) Terminal, wireless communication method, and base station
EP4161154A1 (en) Terminal, radio communication method, and base station
WO2020153210A1 (en) User terminal and wireless communication method
WO2020230243A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180095352.8

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21917506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP