WO2022149191A1 - Optical circuit board and method for forming same - Google Patents

Optical circuit board and method for forming same Download PDF

Info

Publication number
WO2022149191A1
WO2022149191A1 PCT/JP2021/000122 JP2021000122W WO2022149191A1 WO 2022149191 A1 WO2022149191 A1 WO 2022149191A1 JP 2021000122 W JP2021000122 W JP 2021000122W WO 2022149191 A1 WO2022149191 A1 WO 2022149191A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
thin film
optical circuit
circuit board
forming
Prior art date
Application number
PCT/JP2021/000122
Other languages
French (fr)
Japanese (ja)
Inventor
方省 赤澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/000122 priority Critical patent/WO2022149191A1/en
Publication of WO2022149191A1 publication Critical patent/WO2022149191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials

Definitions

  • the present invention relates to an optical circuit substrate and a method for forming the same, which comprises a solid solution thin film of bismuth oxide and silica doped with Er 3+ , for the purpose of application to the field of optoelectronics such as an optical amplifier.
  • An optical amplifier is an element that can amplify signal light in the state of direct light without converting it into an electric signal or the like. Due to these properties, the optical amplifier can suppress the loss of signal light due to scattering, etc., and enables long-distance transmission of signal light. Therefore, it is an indispensable optical component in modern optical communication. be.
  • the principle of the optical amplifier is that when there are many electrons excited in an orbit with a high energy level, the electrons in the excited state transition to a lower order due to an electromagnetic wave (stimulated light) emitted from the outside. , The phenomenon that light of the same phase is amplified and emitted (stimulated emission) is used.
  • An optical fiber is a typical example of an optical amplifier. Taking this optical fiber as an example, an oxide doped with a rare earth element at a low concentration is applied to a portion called a core through which signal light passes, and the electrons of this rare earth element are excited by the excitation light in a high energy order.
  • an optical amplifier using erbium (Er) as a dopant is called an erbium-Doped Fiber Amplifier (hereinafter referred to as EDFA), which has high transmission efficiency and is generally used in long-distance optical communication. Since it is suitable for amplifying signals of the wavelength used (1.55 ⁇ m band), it is an optical amplifier that is being widely put into practical use.
  • Er erbium
  • EDFA erbium-Doped Fiber Amplifier
  • an optical waveguide has a structure in which a clad layer is arranged around a core layer through which signal light passes, and the intensity of the signal light is increased by confining the signal light in the core layer by utilizing the difference in refractive index between the two. Also, the transmission efficiency is improved. The larger the difference in refractive index between the core layer and the clad layer, the higher the effect of confining light due to reflection, and the higher the transmission efficiency of signal light.
  • the core layer has silica (SiO 2 ), bismuth oxide (Bi 2 O 3 ), and germanium oxide (GeO 2 ) from the viewpoint of signal light transmission and the difference in refractive index from the core layer.
  • SiO 2 , germanium oxide (Bi 2 O 3 ), etc. can be a core layer with high transmission efficiency because the refractive index can be increased by mixing Bi 2 O 3 in the state of an amorphous network structure.
  • a method of adding zinc (hereinafter referred to as Zn) to a lithium-niobate composite oxide (hereinafter referred to as LiNbO 3 ) is an example.
  • Zn zinc
  • LiNbO 3 lithium-niobate composite oxide
  • Bi 2 O 3 absorbs light in the visible region, but is transparent to near-infrared light (wavelength: 1.3 to 1.5 ⁇ m) used in optical communication, so it is useful as a core layer in optical waveguides.
  • Material if SiO 2 is used for the clad layer, the difference in refractive index between the two is extremely large, so that it is possible to strongly confine the signal light in Bi 2 O 3 which is the core layer, and an optical waveguide with high transmission efficiency. Can be.
  • Bi 2 O 3 and SiO 2 are laminated, the refractive index changes rapidly at the interface, so there is a problem that the light loss due to scattering becomes very large.
  • the present invention provides a thin film material having high transmission efficiency, which is useful as a core layer of an optical waveguide, and a method for forming the thin film material.
  • An object of the present invention is to provide a thin film material that realizes an optical amplifier having high transmission efficiency in an optical network circuit having a structure in which optical components are laminated on a substrate, and a method for forming the thin film material.
  • a thin film doped with erbium (Er) is formed on a substrate (SiO 2 ) with an oxide obtained by dissolving silica (SiO 2 ) in bismuth oxide (Bi 2 O 3 ). It is a method of forming an optical circuit board.
  • a thin film material (hereinafter referred to as Bi 2 O 3 -SiO 2 ) doped with Er 3+ of 4 at% or more is added to a solid solution in which SiO 2 is dissolved in ⁇ -Bi 2 O 3 (hereinafter referred to as Bi 2 O 3 -SiO 2).
  • Bi 2 O 3 -SiO 2 Er
  • a method of forming this Bi 2 O 3 -SiO 2 : Er by a sputtering method and then post-annealing is provided.
  • SiO 2 is also a useful material as a clad layer, but since the refractive index is increased by adding Bi or germanium (hereinafter referred to as Ge), it can be a useful material as a core layer.
  • Bi Bi or germanium
  • the refractive index increases remarkably, so that it can be a core layer that realizes high transmission efficiency.
  • the sputtering method is used to form a laminate in which Bi 2 O 3 -SiO 2 : Er is applied to the core layer and SiO 2 is applied to the clad layer.
  • Bi 2 O 3 (hereinafter referred to as Bi 2 O 3 : Er) doped with Er 3+ is formed on SiO 2 that functions as a clad layer by a sputtering method, and Bi 2 O 3 : Er is the upper layer, SiO 2 To form a laminated body with the lower layer.
  • Bi 2 O 3 : Er atoms in Bi 2 O 3: Er and Si atoms in SiO 2 are mutually diffused, resulting in Bi 2 O 3 : Er.
  • the concentration of each element in the film thickness direction has a distribution that gradually changes. That is, since a sudden change in the refractive index at the above-mentioned interface is suppressed, high signal light confinement efficiency can be obtained.
  • Bi 2 O 3 -SiO 2 : Er is an optical amplifier that functions as a core layer and SiO 2 as a clad layer. Further, since the thin film laminated structure in which the optical waveguide is provided on the substrate is realized, the size can be reduced.
  • Bi 2 O 3 containing Er 3+ is formed on SiO 2 as a clad layer by a two-source simultaneous discharge sputtering method, and then post-annealed at 400 ° C. to obtain atomic atoms.
  • This is a method of causing mutual diffusion and forming Bi 2 O 3 -SiO 2 : Er as a core layer on SiO 2 .
  • FIG. 1 shows an aspect in which Bi 2 O 3 -SiO 2 : Er 13 as a core layer is formed on SiO 2 11 which is a clad layer. Then, FIG. 1 (a) shows a state immediately after film formation by the sputtering method, and FIG. 1 (b) shows a state in which Bi 2 O 3 : Er 12 is changed to Bi 2 O 3 -SiO 2 : Er 13 by post-annealing. Shows.
  • Bi 2 O 3 : Er 12 is formed by two-source simultaneous discharge sputtering using two targets.
  • a Bi 2 O 3 target, an Er 2 O 3 target, and a Si (100) single crystal substrate on which SiO 2 11 having a thickness of 1 ⁇ m is formed are installed in the chamber of the sputtering apparatus, respectively.
  • the board is installed at the opposite positions of the targets.
  • Bi 2 O 3 : Er 12 is formed on SiO 2 11 by the deposition and reaction of the sputter particles emitted from the targets.
  • the macro wave power for generating ECR plasma in the Bi 2 O 3 target was 500 W, and the RF power for applying the bias voltage to the target was 500 W.
  • the RF output in the Er 2 O 3 target was set to two conditions of 30 W and 60 W in order to compare and evaluate the effect of Er concentration on the stimulated emission effect.
  • the Er concentration is 1.5 at% Bi 2 O 3 : Er12 (hereinafter referred to as sample A), and when the RF output is 60 W, Er.
  • Bi 2 O 3 : Er 12 (hereinafter referred to as sample B) having a concentration of 4 at% was formed on SiO 2 11 of the substrate, respectively.
  • the film thickness of Bi 2 O 3 : Er12 was about 500 nm.
  • Sample A and Sample B were post-annealed in an O 2 atmosphere at 1 atm.
  • the purpose of this step is to cause mutual diffusion between SiO 2 11 and Bi 2 O 3 : Er 12 to change Bi 2 O 3 : Er 12 to Bi 2 O 3 -SiO 2 : Er 13.
  • the heat treatment temperature is 400 ° C. and the heat treatment time is 10 minutes.
  • FIG. 2 shows the crystal structure analysis results obtained by X-Ray diffraction (hereinafter referred to as XRD) with respect to the sample A after post-annealing.
  • XRD X-Ray diffraction
  • FIG. 3 shows the crystal structure analysis results obtained by XRD for the sample B after post-annealing. Similar to FIG. 2, when the detected peaks were identified, they all belonged to ⁇ -Bi 2 O 3 , so that the sample B was based on the ⁇ -phase Bi 2 O 3 having a cubic crystal. It turned out to be a phase.
  • FIG. 4 shows the distribution in the depth direction for each element of O, Si, Bi, and Er obtained by the secondary ion mass spectrometry (hereinafter referred to as SIMS) of sample A. Since the secondary ionic strength of each element changes sharply in the region of about 0.5 ⁇ m in depth, it is recognized that there is a clear interface between Bi 2 O 3 : Er 12 and SiO 211 . rice field. Further, since the secondary ionic strength of Bi and Er is the noise level in the SiO 2 region deeper than about 0.7 ⁇ m, it can be seen that Bi and Er are not contained in SiO 2 11.
  • SIMS secondary ion mass spectrometry
  • FIG. 5 shows the distribution in the depth direction for each element of O, Si, Bi, and Er obtained by SIMS of sample B. Since the secondary ions of Si are detected at high intensity in the region with a depth of about 0.5 ⁇ m from the outermost surface, it can be seen that Si is diffused in Bi 2 O 3 : Er12. On the other hand, in the region deeper than about 0.5 ⁇ m, secondary ions of Bi and Er are detected at constant values, and it can be seen that Bi and Er are also contained in SiO 211 . In addition, pile-up was observed in the secondary ion spectra of Bi and Er in the region of 0.7 to 1.2 ⁇ m in depth.
  • FIG. 6 shows an emission spectrum acquired by photoluminescence (hereinafter referred to as PL).
  • the sample was excited with a solid-state laser (output: 50 mW) with a wavelength of 532 nm, and the emission in the wavelength range was acquired at once by the CCD detector.
  • the emission spectrum of sample A the structure of crystal field splitting consisting of eight peaks is observed. This is because ⁇ -Bi 2 O 3 is a crystal belonging to the monoclinic system, and when Er 3+ replaces the Bi 3+ site, the symmetry around Er 3+ has a low symmetry such as C2v. is doing. That is, it was confirmed that Er 3+ , in which luminescence was observed, was a substitutional solid solution at the Bi 3+ site of the ⁇ -Bi 2 O 3 crystal.
  • FIG. 7 shows the emission spectrum of sample B obtained by the PL method. From this result, it is found that sample B does not have a clear crystal field splitting microstructure, suggesting that the luminescent Er 3+ is contained in the amorphous phase. Since the Bi 2 O 3 -SiO 2 compound having an indefinite ratio composition becomes amorphous until the crystallization temperature is reached, it is considered that Er 3+ bound to the Bi 2 O 3 -SiO 2 compound emits light.
  • the Bi 2 O 3 -SiO 2 : Er13 formed according to the present embodiment has a higher refractive index than SiO 211 , and therefore can be used as a core layer for transmitting the signal light of the optical network circuit. can. Further, since this Bi 2 O 3 -SiO 2 : Er 13 is formed by mutual diffusion between SiO 2 11 and Bi 2 O 3 : Er 12, the change in the element concentration in the vicinity of the interface is gradual and steep in the relevant part. Since there is no change in the refractive index, it is possible to have high signal light confinement efficiency. And this mutual diffusion occurs remarkably when the concentration of Er 3+ to be doped is 4 at% or more.
  • the doped Er 3+ exhibits strong light emission, so that it is imparted with an optical amplification effect by stimulated emission and can be applied as an optical amplifier. .. Moreover, since the emission spectrum in FIG. 7 is wide, a sufficiently wide bandwidth can be secured.
  • an optical amplifier with high transmission efficiency it is expected to be applied to an optical waveguide having a structure in which thin films are laminated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

For the purpose of application in a light amplifier having a thin-film-layered structure, the present invention provides: a solid solution thin film of a bismuth oxide (Bi2O3) doped with erbium (Er) and silica (SiO2); and a method for forming a material of the thin film. According to the present invention, an oxide thin film resulting from 4 at% or more of Er3+ being doped in δ-Bi2O3, serving as a matrix, is deposited on nondoped SiO2 by a sputtering method, and interdiffusion is then caused between Er-doped δ-Bi2O3 and SiO2 by performing post annealing in an oxidizing atmosphere, whereby a solid solution thin film that is deposited on SiO2 and in which Er is doped in a solid solution of δ-Bi2O3 and SiO2 is provided.

Description

光回路基板およびその形成方法Optical circuit board and its formation method
 本発明は、光増幅器などの光エレクトロニクス分野への適用を目的とする、Er3+をドープした酸化ビスマスとシリカの固溶体薄膜からなる、光回路基板およびその形成方法に関する。 The present invention relates to an optical circuit substrate and a method for forming the same, which comprises a solid solution thin film of bismuth oxide and silica doped with Er 3+ , for the purpose of application to the field of optoelectronics such as an optical amplifier.
 光増幅器は、信号光を電気信号等に変換せず、直接光の状態で増幅することができる素子である。このような性質を有することから、光増幅器は散乱等による信号光の損失を抑制することができ、信号光の長距離伝送が可能となるため、現代の光通信においては必要不可欠な光学部品である。 An optical amplifier is an element that can amplify signal light in the state of direct light without converting it into an electric signal or the like. Due to these properties, the optical amplifier can suppress the loss of signal light due to scattering, etc., and enables long-distance transmission of signal light. Therefore, it is an indispensable optical component in modern optical communication. be.
 光増幅器の原理は、エネルギー準位の高い軌道に励起している電子が多数ある状態において、その励起状態にある電子が、外部から照射される電磁波(励起光)によって低い順位に遷移する際に、同位相の光が増幅して放出される現象(誘導放出)を利用している。光増幅器の代表例として光ファイバーが挙げられる。この光ファイバーを例に掲げると、信号光が通るコアと呼ばれる部分に希土類元素を低濃度でドープした酸化物が適用されており、この希土類元素の電子が励起光によって高エネルギー順位に励起さる。励起状態の電子が信号光の照射によって基底状態に遷移する際、信号光と同位相の光が増幅して放出される。特に、ドーパントとしてエルビウム(Er)を用いた光増幅器は、エルビウム添加光ファイバー増幅器(Erbium-Doped Fiber Amplifier:以下、EDFAという)と呼ばれており、伝送効率が高く、長距離光通信で一般的に用いられる波長の信号(1.55μm帯)の増幅に適していることから、幅広く実用化が進んでいる光増幅器である。 The principle of the optical amplifier is that when there are many electrons excited in an orbit with a high energy level, the electrons in the excited state transition to a lower order due to an electromagnetic wave (stimulated light) emitted from the outside. , The phenomenon that light of the same phase is amplified and emitted (stimulated emission) is used. An optical fiber is a typical example of an optical amplifier. Taking this optical fiber as an example, an oxide doped with a rare earth element at a low concentration is applied to a portion called a core through which signal light passes, and the electrons of this rare earth element are excited by the excitation light in a high energy order. When the excited electrons transition to the ground state by irradiation with signal light, light having the same phase as the signal light is amplified and emitted. In particular, an optical amplifier using erbium (Er) as a dopant is called an erbium-Doped Fiber Amplifier (hereinafter referred to as EDFA), which has high transmission efficiency and is generally used in long-distance optical communication. Since it is suitable for amplifying signals of the wavelength used (1.55 μm band), it is an optical amplifier that is being widely put into practical use.
 一方、近年では、光通信システムの小型化を図るため、光ネットワーク回路では、光学部品を基板上に薄膜として積層する構造が主流になりつつある。このような構造の光ネットワーク回路において、EDFAのようなErをドープした酸化物を光増幅器のコアとして用いる場合、ファイバーの状態では適用できないため、Erがドープされた信号増幅セクションを、薄膜の層として設けせざるを得ない。 On the other hand, in recent years, in order to reduce the size of optical communication systems, the structure in which optical components are laminated as a thin film on a substrate is becoming mainstream in optical network circuits. In an optical network circuit with such a structure, when an Er-doped oxide such as EDFA is used as the core of an optical amplifier, it cannot be applied in the fiber state. Therefore, the Er-doped signal amplification section is used as a thin layer. There is no choice but to set it as.
 一般に光導波路では、信号光が通るコア層の周囲にクラッド層が配置される構造を取っており、両者の屈折率差を利用して、信号光をコア層に閉じ込めることにより、信号光の強度ならびに伝送効率を高めている。そして、コア層とクラッド層の屈折率差が大きいほど、反射による光の閉じ込め効果が高なり、信号光の伝送効率もそれに伴って高くなる。 Generally, an optical waveguide has a structure in which a clad layer is arranged around a core layer through which signal light passes, and the intensity of the signal light is increased by confining the signal light in the core layer by utilizing the difference in refractive index between the two. Also, the transmission efficiency is improved. The larger the difference in refractive index between the core layer and the clad layer, the higher the effect of confining light due to reflection, and the higher the transmission efficiency of signal light.
 このような光導波路においては、コア層には信号光の透過性およびコア層との屈折率差の観点から、シリカ(SiO2)、酸化ビスマス(Bi2O3)、酸化ゲルマニウム(GeO2)、酸化ホウ素(B2O3)および、酸化ガリウム(Ga2O3)が主に用いられ、これらはスパッタリング法などによって成膜することができる。また、SiO2、GeO2、B2O3などは、アモルファスの網目構造の状態でBi2O3を混合すると、屈折率を増大させることができるため、伝送効率の高いコア層となり得る。 In such an optical waveguide, the core layer has silica (SiO 2 ), bismuth oxide (Bi 2 O 3 ), and germanium oxide (GeO 2 ) from the viewpoint of signal light transmission and the difference in refractive index from the core layer. , Boron oxide (B 2 O 3 ) and gallium oxide (Ga 2 O 3 ) are mainly used, and these can be formed by a sputtering method or the like. Further, SiO 2 , GeO 2 , B 2 O 3 , etc. can be a core layer with high transmission efficiency because the refractive index can be increased by mixing Bi 2 O 3 in the state of an amorphous network structure.
 このような、高い屈折率を有する酸化物薄膜を形成するための従来技術としては、リチウム‐ニオブ複合酸化物(以下、LiNbO3という)に亜鉛(以下、Znという)を添加する手法が例に挙げられる。これはLiNbO3上にZnを蒸着し、Zn元素をLiNbO3側に熱拡散させることによって、LiNbO3表面の実効的な屈折率を増大させるという手法である。しかし、他の材料において、これと類似したプロセスを適用した例は、ほとんど知られていない。 As a conventional technique for forming such an oxide thin film having a high refractive index, a method of adding zinc (hereinafter referred to as Zn) to a lithium-niobate composite oxide (hereinafter referred to as LiNbO 3 ) is an example. Can be mentioned. This is a method of increasing the effective refractive index of the LiNbO 3 surface by depositing Zn on LiNbO 3 and thermally diffusing the Zn element toward the LiNbO 3 side. However, few are known of other materials applying similar processes.
 現状では、高い伝送効率を有する積層構造を光ネットワーク回路で実現するにあたり、コア層に用いる酸化物薄膜材料に課題がある。例えば、Bi2O3は可視領域の光は吸収するが、光通信で使用される近赤外光(波長:1.3~1.5μm)に対しては透明であるため、光導波路におけるコア層として有用な材料である。そして、この場合、クラッド層にSiO2を用いれば、両者の屈折率差は極めて大きいため、コア層であるBi2O3中に信号光を強く閉じ込めることが可能となり、伝送効率の高い光導波路となり得る。しかし、Bi2O3とSiO2を積層した場合、界面において急激に屈折率が変化するため、散乱による光損失が非常に大きくなるという課題がある。 At present, there is a problem in the oxide thin film material used for the core layer in realizing a laminated structure having high transmission efficiency in an optical network circuit. For example, Bi 2 O 3 absorbs light in the visible region, but is transparent to near-infrared light (wavelength: 1.3 to 1.5 μm) used in optical communication, so it is useful as a core layer in optical waveguides. Material. In this case, if SiO 2 is used for the clad layer, the difference in refractive index between the two is extremely large, so that it is possible to strongly confine the signal light in Bi 2 O 3 which is the core layer, and an optical waveguide with high transmission efficiency. Can be. However, when Bi 2 O 3 and SiO 2 are laminated, the refractive index changes rapidly at the interface, so there is a problem that the light loss due to scattering becomes very large.
 また、高い伝送効率を実現するためには、EDFAと同様にコア層にEr3+をドープし、誘導放出による光増幅作用を付与する必要があるが、コア層として選定した薄膜材料に対し、有効的に光増幅作用をもたらす適正なEr3+の濃度が明らかになっていない。Er3+をドープする量が適正より多い場合は、発光サイトへの固溶限界を超え、格子間位置にErO6ユニットが生成し、発光に寄与しないEr3+が増加することが懸念される。逆に、Erの量が適正より少ない場合、発光に寄与するErが少なくなるため、伝送効率が低下するという課題がある。 In addition, in order to achieve high transmission efficiency, it is necessary to dope Er 3+ to the core layer to impart an optical amplification effect by stimulated emission, as in EDFA. However, for the thin film material selected as the core layer, The proper concentration of Er 3+ that effectively produces photoamplification has not been clarified. If the amount of Er 3+ doped is greater than appropriate, there is concern that the solid solution limit to the luminescent site will be exceeded, ErO 6 units will be generated at the interstitial positions, and Er 3+ that does not contribute to luminescence will increase. .. On the contrary, when the amount of Er is smaller than the appropriate amount, the amount of Er that contributes to light emission is reduced, so that there is a problem that the transmission efficiency is lowered.
 加えて、適正なEr量を有するコア層を、クラッド層上に形成する方法も定まっていないという課題もある。 In addition, there is also a problem that the method of forming a core layer having an appropriate amount of Er on the clad layer has not been determined.
 このような課題に対し、本発明では、光導波路のコア層として有用な、高い伝送効率を有する薄膜材料と、その薄膜材料を形成する方法を提供する。 To solve such problems, the present invention provides a thin film material having high transmission efficiency, which is useful as a core layer of an optical waveguide, and a method for forming the thin film material.
 本発明の目的は、基板上に光学部品を積層した構造を有する光ネットワーク回路において、高い伝送効率を有する光増幅器を実現する薄膜材料と、その形成方法を提供することである。 An object of the present invention is to provide a thin film material that realizes an optical amplifier having high transmission efficiency in an optical network circuit having a structure in which optical components are laminated on a substrate, and a method for forming the thin film material.
 本発明の一実施態様は、酸化ビスマス(Bi)にシリカ(SiO)を固溶させた酸化物に、エルビウム(Er)をドープした薄膜を基板(SiO)上に成膜する光回路基板の形成方法であって、
 前記基板上にスパッタリング法を用いてBiを含む薄膜を成膜する第1の工程と、
 前記第1の工程で成膜された前記薄膜と前記基板との間で相互拡散を起こし、前記薄膜材料を固溶体薄膜に変化させる、ポストアニールを施す第2の工程と、
 を備える、光回路基板の形成方法である。
In one embodiment of the present invention, a thin film doped with erbium (Er) is formed on a substrate (SiO 2 ) with an oxide obtained by dissolving silica (SiO 2 ) in bismuth oxide (Bi 2 O 3 ). It is a method of forming an optical circuit board.
The first step of forming a thin film containing Bi 2 O 3 on the substrate by a sputtering method, and
A second step of post-annealing, which causes mutual diffusion between the thin film formed in the first step and the substrate to change the thin film material into a solid solution thin film.
It is a method of forming an optical circuit board.
クラッド層となるSiO2上にコア層となるBi2O3-SiO2:Erを形成した様相を示す模式図である。It is a schematic diagram which shows the appearance that Bi 2 O 3 -SiO 2 : Er which becomes a core layer is formed on SiO 2 which becomes a clad layer. Er濃度が1.5at%である試料Aに対し、ポストアニール後に、X線回折によって取得した、結晶構造分析結果を示す図である。It is a figure which shows the crystal structure analysis result obtained by the X-ray diffraction after post-annealing with respect to the sample A which Er concentration is 1.5 at%. Er濃度が4at%である試料Bに対し、ポストアニール後に、X線回折によって取得した、結晶構造分析結果を示す図である。It is a figure which shows the crystal structure analysis result obtained by the X-ray diffraction after post-annealing with respect to the sample B which Er concentration is 4 at%. Er濃度が1.5at%のである試料Aに対し、ポストアニール後に、二次イオン質量分析法よって取得した、O、Si、Bi、Erの深さ方向の元素分布を示す図である。It is a figure which shows the element distribution in the depth direction of O, Si, Bi, Er acquired by the secondary ion mass spectrometry after post-annealing with respect to the sample A which Er concentration is 1.5 at%. Er濃度が4at%である試料Bに対し、ポストアニール後に、二次イオン質量分析法よって取得した、O、Si、Bi、Erの深さ方向の元素分布を示す図である。It is a figure which shows the element distribution in the depth direction of O, Si, Bi, Er acquired by the secondary ion mass spectrometry after post-annealing with respect to the sample B which Er concentration is 4 at%. Er濃度が4at%である試料Aに対し、ポストアニール後に、フォトルミネッセンス法よって取得した、発光スペクトルを示す図である。It is a figure which shows the emission spectrum obtained by the photoluminescence method after post-annealing with respect to the sample A which Er concentration is 4 at%. Er濃度が4at%である試料Bに対し、ポストアニール後に、フォトルミネッセンス法よって取得した、発光スペクトルを示す図である。It is a figure which shows the emission spectrum obtained by the photoluminescence method after post-annealing with respect to the sample B which Er concentration is 4 at%.
 本発明の実施形態は、δ-Bi2O3にSiO2を固溶させた固溶体(以下、Bi2O3-SiO2という)に対し、4at%以上のEr3+をドープした薄膜材料(以下、Bi2O3-SiO2:Erという)を、コア層の薄膜材料として提供する。さらに、このBi2O3-SiO2:Erを、スパッタリング法と、次いで施工されるポストアニールによって形成する方法を提供する。 In the embodiment of the present invention, a thin film material (hereinafter referred to as Bi 2 O 3 -SiO 2 ) doped with Er 3+ of 4 at% or more is added to a solid solution in which SiO 2 is dissolved in δ-Bi 2 O 3 (hereinafter referred to as Bi 2 O 3 -SiO 2). Hereinafter, Bi 2 O 3 -SiO 2 : Er) is provided as a thin film material for the core layer. Further, a method of forming this Bi 2 O 3 -SiO 2 : Er by a sputtering method and then post-annealing is provided.
 上述のSiO2は、クラッド層としても有用な材料であるが、Biやゲルマニウム(以下、Geという)を添加することによって屈折率が増大するため、コア層として有用な材料とすることができる。特にBiを添加し、Bi2O3-SiO2とすると、屈折率は顕著に増大するため、高い伝送効率を実現するコア層となり得る。 The above-mentioned SiO 2 is also a useful material as a clad layer, but since the refractive index is increased by adding Bi or germanium (hereinafter referred to as Ge), it can be a useful material as a core layer. In particular, when Bi is added to make Bi 2 O 3 -SiO 2 , the refractive index increases remarkably, so that it can be a core layer that realizes high transmission efficiency.
 さらに、このBi2O3-SiO2に対して、4at.%以上の濃度でEr3+をドープしたBi2O3-SiO2:Erとすることによって、誘導放出による光増幅作用を有効的に発生させることが可能となる。
 一方、クラッド層には、Bi2O3-SiO2:Erと屈折率差が大きい、ノンドープのSiO2を選定する。
Furthermore, by using Bi 2 O 3 -SiO 2 : Er , which is doped with Er 3+ at a concentration of 4 at.% Or more , the optical amplification effect by stimulated emission is effective. Can be generated in.
On the other hand, for the clad layer, select non-doped SiO 2 which has a large difference in refractive index from Bi 2 O 3 -SiO 2 : Er.
 このように、コア層にBi2O3-SiO2:Er、クラッド層にSiO2が、それぞれ適用された積層体を形成するために、スパッタリング法を用いる。クラッド層として機能するSiO2上に、Er3+をドープしたBi2O3(以下、Bi2O3:Erという)をスパッタリング法によって成膜し、Bi2O3:Erを上層、SiO2を下層とした積層体を形成する。そして、この積層体に対して、ポストアニールを施すことにより、Bi2O3:Er中のBi原子とEr原子、ならびにSiO2中のSi原子が相互拡散することによって、Bi2O3:Er がBi2O3-SiO2:Erに変化する。あらかじめ成膜してあるBi2O3:Erの膜厚がSiO2に比べてかなり薄ければ、Bi2O3:Er膜の全域にわたってSiO2との反応が進行し、Bi2O3:Erが全てBi2O3-SiO2:Erに変化する。その下にはSiO2が残るため、結果として、コア層としてのBi2O3-SiO2:Erと、クラッド層としてのSiO2が積層した構造を得ることができる。 In this way, the sputtering method is used to form a laminate in which Bi 2 O 3 -SiO 2 : Er is applied to the core layer and SiO 2 is applied to the clad layer. Bi 2 O 3 (hereinafter referred to as Bi 2 O 3 : Er) doped with Er 3+ is formed on SiO 2 that functions as a clad layer by a sputtering method, and Bi 2 O 3 : Er is the upper layer, SiO 2 To form a laminated body with the lower layer. By post-annealing this laminate, Bi 2 O 3 : Er atoms in Bi 2 O 3: Er and Si atoms in SiO 2 are mutually diffused, resulting in Bi 2 O 3 : Er. Changes to Bi 2 O 3 -SiO 2 : Er. If the film thickness of Bi 2 O 3 : Er is considerably thinner than that of SiO 2 , the reaction with SiO 2 proceeds over the entire area of Bi 2 O 3 : Er film, and Bi 2 O 3 : All Er changes to Bi 2 O 3 -SiO 2 : Er. Since SiO 2 remains underneath, as a result, it is possible to obtain a structure in which Bi 2 O 3 -SiO 2 : Er as a core layer and SiO 2 as a clad layer are laminated.
 さらに、原子の相互拡散によって形成された2層間の界面では、膜厚方向に対する各元素濃度が緩やかに変化するような分布を持つ。すなわち、上述した界面における急激な屈折率の変化が抑制されるため、高い信号光の閉じ込め効率を得ることができる。 Furthermore, at the interface between the two layers formed by the mutual diffusion of atoms, the concentration of each element in the film thickness direction has a distribution that gradually changes. That is, since a sudden change in the refractive index at the above-mentioned interface is suppressed, high signal light confinement efficiency can be obtained.
 このようにして形成された薄膜材料では、Bi2O3-SiO2:Erがコア層、SiO2がクラッド層としてそれぞれ機能する光増幅器となる。さらに、基板上に光導波路を設けた薄膜の積層構造を達成しているため、小型化を図ることもできる。 In the thin film material thus formed, Bi 2 O 3 -SiO 2 : Er is an optical amplifier that functions as a core layer and SiO 2 as a clad layer. Further, since the thin film laminated structure in which the optical waveguide is provided on the substrate is realized, the size can be reduced.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の一実施形態について、以下に詳細を説明する。本実施形態は、2源同時放電式のスパッタリング法により、クラッド層となるSiO2上にEr3+を含むBi2O3を成膜した後、400℃でポストアニールを施すことによって、原子の相互拡散を生じさせ、コア層としてのBi2O3-SiO2:ErをSiO2上に形成する方法である。 An embodiment of the present invention will be described in detail below. In this embodiment, Bi 2 O 3 containing Er 3+ is formed on SiO 2 as a clad layer by a two-source simultaneous discharge sputtering method, and then post-annealed at 400 ° C. to obtain atomic atoms. This is a method of causing mutual diffusion and forming Bi 2 O 3 -SiO 2 : Er as a core layer on SiO 2 .
 図1は、クラッド層となるSiO211上にコア層となるBi2O3-SiO2:Er13を形成した様相を示している。そして、図1(a)はスパッタリング法による成膜直後の状態、図1(b)はポストアニールによって、Bi2O3:Er12がBi2O3-SiO2:Er13に変化した状態を、それぞれ示している。 FIG. 1 shows an aspect in which Bi 2 O 3 -SiO 2 : Er 13 as a core layer is formed on SiO 2 11 which is a clad layer. Then, FIG. 1 (a) shows a state immediately after film formation by the sputtering method, and FIG. 1 (b) shows a state in which Bi 2 O 3 : Er 12 is changed to Bi 2 O 3 -SiO 2 : Er 13 by post-annealing. Shows.
 本実施形態においては、2つのターゲットを用いた2源同時放電式スパッタリングにより、Bi2O3:Er12の成膜を行う。Bi2O3ターゲットと、Er2O3ターゲットと、膜厚1μmのSiO211が成膜されたSi(100)単結晶基板を、それぞれスパッタリング装置のチャンバー内に設置する。このとき、基板は各ターゲットの対向する位置に設置する。そして、2つのスパッタリングターゲット表面で同時に放電を発生させることにより、ターゲットから放出されるスパッタ粒子の堆積および反応によって、SiO211上にBi2O3:Er12を成膜する。 In the present embodiment, Bi 2 O 3 : Er 12 is formed by two-source simultaneous discharge sputtering using two targets. A Bi 2 O 3 target, an Er 2 O 3 target, and a Si (100) single crystal substrate on which SiO 2 11 having a thickness of 1 μm is formed are installed in the chamber of the sputtering apparatus, respectively. At this time, the board is installed at the opposite positions of the targets. Then, by generating electric discharges on the surfaces of the two sputtering targets at the same time, Bi 2 O 3 : Er 12 is formed on SiO 2 11 by the deposition and reaction of the sputter particles emitted from the targets.
 スパッタガスにはアルゴン(Ar)と、酸素(O2)の2種類を用い、それぞれ8sccm、6sccmの流量でチャンバー内に流入する。そして、Bi2O3ターゲットに対して電子サイクロトロン共鳴(Electron Cyclotron Resonance:以下、ECRという)放電、Er2O3ターゲットに対して高周波(Radio Frequency:以下、RFという)マグネトロン放電を、同時に発生させることにより、図1(a)に示すようなBi2O3:Er12とSiO211の積層体を得ることができる。 Two types of sputter gas, argon (Ar) and oxygen (O 2 ), are used and flow into the chamber at flow rates of 8 sccm and 6 sc cm, respectively. Then, an electron cyclotron resonance (hereinafter referred to as ECR) discharge is simultaneously generated for the Bi 2 O 3 target, and a high frequency (Radio Frequency: hereinafter referred to as RF) magnetron discharge is simultaneously generated for the Er 2 O 3 target. As a result, a laminated body of Bi 2 O 3 : Er 12 and SiO 2 11 as shown in FIG. 1 (a) can be obtained.
 なお、Bi2O3ターゲットにおけるECRプラズマを発生させるためのマクロ波のパワーは500W、ターゲットにバイアス電圧を印加するRFパワーは500Wとした。一方、Er2O3ターゲットにおける、RFの出力は、Er濃度が及ぼす誘導放出作用への影響を比較評価するため、30Wおよび60Wの2条件とした。 The macro wave power for generating ECR plasma in the Bi 2 O 3 target was 500 W, and the RF power for applying the bias voltage to the target was 500 W. On the other hand, the RF output in the Er 2 O 3 target was set to two conditions of 30 W and 60 W in order to compare and evaluate the effect of Er concentration on the stimulated emission effect.
 このように構成された本実施形態において、RFの出力が30Wのとき、Er濃度が1.5at%となるBi2O3:Er12(以下、試料Aという)、RFの出力が60Wのとき、Er濃度が4at%となるBi2O3:Er12(以下、試料Bという)が、それぞれ基板のSiO211上に成膜された。なお、いずれの試料においても、Bi2O3:Er12の膜厚は約500nmであった。 In this embodiment configured in this way, when the RF output is 30 W, the Er concentration is 1.5 at% Bi 2 O 3 : Er12 (hereinafter referred to as sample A), and when the RF output is 60 W, Er. Bi 2 O 3 : Er 12 (hereinafter referred to as sample B) having a concentration of 4 at% was formed on SiO 2 11 of the substrate, respectively. In all the samples, the film thickness of Bi 2 O 3 : Er12 was about 500 nm.
 次いで、試料A、および試料Bに対し、1気圧のO2雰囲気下でポストアニールを施した。この工程は、SiO211とBi2O3:Er12の間で相互拡散を起こし、Bi2O3:Er12をBi2O3-SiO2:Er13に変化させることを目的としている。なお、熱処理の温度は400℃、熱処理時間は10分である。 Then, Sample A and Sample B were post-annealed in an O 2 atmosphere at 1 atm. The purpose of this step is to cause mutual diffusion between SiO 2 11 and Bi 2 O 3 : Er 12 to change Bi 2 O 3 : Er 12 to Bi 2 O 3 -SiO 2 : Er 13. The heat treatment temperature is 400 ° C. and the heat treatment time is 10 minutes.
 図2はポストアニール後の試料Aに対し、X線回折(X-Ray diffraction:以下、XRDという)によって得られた、結晶構造分析結果を示している。回折パターンにおいて検出されたピークは、いずれも室温安定相であるα-Bi2O3に帰属するものと同定され、試料Aの表層は、単斜晶を有するα相のBi2O3が母相であることが分かった。 FIG. 2 shows the crystal structure analysis results obtained by X-Ray diffraction (hereinafter referred to as XRD) with respect to the sample A after post-annealing. The peaks detected in the diffraction pattern were all identified as belonging to α-Bi 2 O 3 which is a stable phase at room temperature, and the surface layer of sample A was composed of Bi 2 O 3 of α phase having monoclinic crystals. It turned out to be a phase.
 図3はポストアニール後の試料Bに対し、XRDによって得られた結晶構造分析結果を示している。図2と同様に、検出されたピークを同定したところ、いずれもδ-Bi2O3に帰属するものであったことから、試料Bは、立法晶を有するδ相のBi2O3が母相であることが分かった。 FIG. 3 shows the crystal structure analysis results obtained by XRD for the sample B after post-annealing. Similar to FIG. 2, when the detected peaks were identified, they all belonged to δ-Bi 2 O 3 , so that the sample B was based on the δ-phase Bi 2 O 3 having a cubic crystal. It turned out to be a phase.
 一般に、試料BのようなBi2O3のδ相は、アニオンサイトである酸素サイトの一部が空サイトとなっており、カチオンであるBi3+が面心立方格子(Face-Centered Cubic:fcc)を呈する構造であることが知られている。試料Bがこのような結晶構造を呈したのは、酸素と結合しやすいEr3+の濃度が高いことにより、酸素が選択的にEr3+と結合し、母相のBi2O3の酸化度が下がったことによるものと考えられる。なお、Bi2O3が還元されやすい材料であることは、一般によく知られている(例えば、非特許文献1)。 In general, in the δ phase of Bi 2 O 3 like sample B, a part of the oxygen site, which is an anion site, is an empty site, and the cation Bi 3+ is a face-centered cubic lattice (Face-Centered Cubic:). It is known to have a structure exhibiting fcc). The reason why sample B exhibited such a crystal structure is that the high concentration of Er 3+ , which easily binds to oxygen, causes oxygen to selectively bind to Er 3+ , and the oxidation of Bi 2 O 3 in the parent phase. It is probable that this was due to the decrease in degree. It is generally well known that Bi 2 O 3 is a material that is easily reduced (for example, Non-Patent Document 1).
 図4は、試料Aの二次イオン質量分析法(Secondary Ion Mass Spectrometry:以下、SIMSという)によって得られた、O、Si、Bi、Er各元素に対する、深さ方向の分布を示している。深さ約0.5μmの領域で、いずれの元素も二次イオン強度が急峻に変化していることから、Bi2O3:Er12とSiO211の間に、明確な界面があることが認められた。また、深さ約0.7μmより深いSiO2領域において、BiやErの二次イオン強度がノイズレベルであることから、SiO211内にBiやErは含まれていないことが分かる。さらに、Bi2O3-SiO2:Er13の領域においては、Siの二次イオン強度はSiO211に比べて3桁以上低下しており、SiもBi2O3-SiO2:Er13に含まれていないことも分かる。すなわち、試料Aでは、Bi2O3:Er12とSiO211の間で相互拡散はほとんど生じておらず、Bi2O3:Er12はBi2O3-SiO2:Er13に変化していないと考えられる。また、それぞれの層が明確な界面で隔たれた構造であるため、試料Aは界面における散乱等に起因する光損失が起こり得る。 FIG. 4 shows the distribution in the depth direction for each element of O, Si, Bi, and Er obtained by the secondary ion mass spectrometry (hereinafter referred to as SIMS) of sample A. Since the secondary ionic strength of each element changes sharply in the region of about 0.5 μm in depth, it is recognized that there is a clear interface between Bi 2 O 3 : Er 12 and SiO 211 . rice field. Further, since the secondary ionic strength of Bi and Er is the noise level in the SiO 2 region deeper than about 0.7 μm, it can be seen that Bi and Er are not contained in SiO 2 11. Furthermore, in the region of Bi 2 O 3 -SiO 2 : Er13, the secondary ionic strength of Si is more than 3 orders of magnitude lower than that of SiO 211, and Si is also included in Bi 2 O 3 -SiO 2 : Er13 . You can also see that it is not. That is, in sample A, almost no mutual diffusion occurred between Bi 2 O 3 : Er 12 and SiO 2 11, and Bi 2 O 3 : Er 12 did not change to Bi 2 O 3 -SiO 2 : Er 13. Conceivable. Further, since each layer has a structure separated by a clear interface, sample A may cause light loss due to scattering or the like at the interface.
 図5は、試料BのSIMSによって得られた、O、Si、Bi、Er各元素に対する、深さ方向の分布を示している。最表面から深さ約0.5μmの領域において、Siの二次イオンが高強度で検出されていることから、Bi2O3:Er12の中に、Siが拡散している様子が伺える。一方、深さ約0.5μmより深い領域では、BiとErの二次イオンが一定の値で検出されており、SiO211の中にもBiとErが含まれていることが分る。また、深さ0.7~1.2μmの領域で、BiとErの二次イオンスペクトルにパイルアップが認められた。これら結果から、SiO211のSi、Bi2O3:Er12のBiおよびErの各元素が、ポストアニールによって相互拡散したものと考えられる。加えて、深さ約0.5μm近傍における各元素の二次イオン強度は、試料Aに比べて緩やかに変化しており、界面で元素濃度が急激に変化していない様子が見られる。このことから、試料Bでは、界面における急激な屈折率の変化が生じないと考えられ、高い伝送効率を実現し得る。 FIG. 5 shows the distribution in the depth direction for each element of O, Si, Bi, and Er obtained by SIMS of sample B. Since the secondary ions of Si are detected at high intensity in the region with a depth of about 0.5 μm from the outermost surface, it can be seen that Si is diffused in Bi 2 O 3 : Er12. On the other hand, in the region deeper than about 0.5 μm, secondary ions of Bi and Er are detected at constant values, and it can be seen that Bi and Er are also contained in SiO 211 . In addition, pile-up was observed in the secondary ion spectra of Bi and Er in the region of 0.7 to 1.2 μm in depth. From these results, it is considered that the Si elements of SiO 211 and the Bi and Er elements of Bi 2 O 3 : Er 12 are mutually diffused by post-annealing. In addition, the secondary ionic strength of each element at a depth of about 0.5 μm changes more slowly than that of sample A, and it can be seen that the element concentration does not change sharply at the interface. From this, it is considered that the sample B does not cause a sudden change in the refractive index at the interface, and high transmission efficiency can be realized.
 検証のため、試料Bに対する元素の面内分布をSIMSによって取得した。その結果、Bi2O3-SiO2:Er13の領域では、Bi とErが面内で均一であるのに対し、Siは部分的に強度の高い領域が観測された。このことは、Siを高濃度に含むBi2O3とSiO2の化合物が形成されていることを示しており、基板由来のSiの一部がBi2O3:Er12内に拡散したものと考えられる。なお、Bi2O3とSiO2の主な化合物としては、Bi2SiO5が知られている(例えば、非特許文献2)。さらに深い領域まで分析を進めたところ、Bi やErがSiO211内に有意な強度で観測された。このことから、基板からBi2O3:Er12へのSiの拡散が主要なプロセスであるが、Bi2O3:Er12から基板へのBiやErの拡散も同時に進行したと結論づけられる。 For verification, the in-plane distribution of elements with respect to sample B was obtained by SIMS. As a result, in the region of Bi 2 O 3 -SiO 2 : Er13, Bi and Er were uniform in the plane, while Si was partially observed to have high intensity. This indicates that a compound of Bi 2 O 3 and SiO 2 containing a high concentration of Si is formed, and it is considered that a part of Si derived from the substrate is diffused in Bi 2 O 3 : Er 12. Conceivable. Bi 2SiO 5 is known as a main compound of Bi 2 O 3 and SiO 2 (for example, Non-Patent Document 2). When the analysis was advanced to a deeper region, Bi and Er were observed at a significant intensity in SiO 211 . From this, it can be concluded that the diffusion of Si from the substrate to Bi 2 O 3 : Er 12 is the main process, but the diffusion of Bi and Er from Bi 2 O 3 : Er 12 to the substrate also proceeded at the same time.
 図6は、フォトルミネッセンス(Photo-Luminescence:以下、PLという)によって取得した、発光スペクトルを示している。測定においては、波長532 nmの固体レーザー(出力:50 mW)で試料を励起し、CCD検出器により波長範囲の発光を一度に取得した。試料Aの発光スペクトルでは、8つのピークからなる結晶場分裂の構造が観測されている。これはα-Bi2O3が単斜晶系に属す結晶で、Er3+がBi3+サイトを置換した場合、Er3+の周りの対称性はC2vといった低い対称性を有することに起因している。すなわち、発光が観測されたEr3+がα-Bi2O3結晶のBi3+サイトに置換型固溶したものであることが確認された。 FIG. 6 shows an emission spectrum acquired by photoluminescence (hereinafter referred to as PL). In the measurement, the sample was excited with a solid-state laser (output: 50 mW) with a wavelength of 532 nm, and the emission in the wavelength range was acquired at once by the CCD detector. In the emission spectrum of sample A, the structure of crystal field splitting consisting of eight peaks is observed. This is because α-Bi 2 O 3 is a crystal belonging to the monoclinic system, and when Er 3+ replaces the Bi 3+ site, the symmetry around Er 3+ has a low symmetry such as C2v. is doing. That is, it was confirmed that Er 3+ , in which luminescence was observed, was a substitutional solid solution at the Bi 3+ site of the α-Bi 2 O 3 crystal.
 図7は、PL法によって取得した、試料Bの発光スペクトルを示している。この結果から、試料Bは明瞭な結晶場分裂の微細構造を持たないことが分かり、発光しているEr3+はアモルファス相に含まれていることが示唆される。不定比組成のBi2O3-SiO2化合物は結晶化温度に到達しないとアモルファスとなるため、Bi2O3-SiO2化合物に結合したEr3+が発光していると考えられる。 FIG. 7 shows the emission spectrum of sample B obtained by the PL method. From this result, it is found that sample B does not have a clear crystal field splitting microstructure, suggesting that the luminescent Er 3+ is contained in the amorphous phase. Since the Bi 2 O 3 -SiO 2 compound having an indefinite ratio composition becomes amorphous until the crystallization temperature is reached, it is considered that Er 3+ bound to the Bi 2 O 3 -SiO 2 compound emits light.
以上のことから、本実施形態よって形成されたBi2O3-SiO2:Er13は、SiO211よりも高い屈折率を有するため、光ネットワーク回路の信号光を伝送するコア層として用いることができる。また、このBi2O3-SiO2:Er13は、SiO211とBi2O3:Er12 との相互拡散によって形成されるため、界面近傍における元素濃度の変化が緩やかであり、当該部における急峻な屈折率の変化が生じない分、高い信号光の閉じ込め効率を持ち得る。そして、この相互拡散は、ドープされるEr3+の濃度が4at%以上である場合に、顕著に生じる。 From the above, the Bi 2 O 3 -SiO 2 : Er13 formed according to the present embodiment has a higher refractive index than SiO 211 , and therefore can be used as a core layer for transmitting the signal light of the optical network circuit. can. Further, since this Bi 2 O 3 -SiO 2 : Er 13 is formed by mutual diffusion between SiO 2 11 and Bi 2 O 3 : Er 12, the change in the element concentration in the vicinity of the interface is gradual and steep in the relevant part. Since there is no change in the refractive index, it is possible to have high signal light confinement efficiency. And this mutual diffusion occurs remarkably when the concentration of Er 3+ to be doped is 4 at% or more.
 このように形成されたBi2O3-SiO2:Er13 において、ドープされたEr3+は強い発光を示すため、誘導放出による光増幅作用が付与され、光増幅器として適用することが可能である。また図7の発光スペクトルは幅広であるため、十分に広いバンド幅を確保できている。 In the Bi 2 O 3 -SiO 2 : Er13 thus formed, the doped Er 3+ exhibits strong light emission, so that it is imparted with an optical amplification effect by stimulated emission and can be applied as an optical amplifier. .. Moreover, since the emission spectrum in FIG. 7 is wide, a sufficiently wide bandwidth can be secured.
 高い伝送効率を有する光増幅器として、薄膜を積層した構造を有する光導波路への適用が想定される。 As an optical amplifier with high transmission efficiency, it is expected to be applied to an optical waveguide having a structure in which thin films are laminated.

Claims (8)

  1.  酸化ビスマス(Bi)にシリカ(SiO)を固溶させた酸化物に、エルビウム(Er)をドープした薄膜を基板の上に成膜する光回路基板の形成方法であって、
     前記基板の上にスパッタリング法を用いてBiを含む薄膜を成膜する第1の工程と、
     前記第1の工程で成膜された前記薄膜と前記基板との間で相互拡散を起こし、前記薄膜を固溶体薄膜に変化させる、ポストアニールを施す第2の工程と、
     を備える、光回路基板の形成方法。
    A method for forming an optical circuit substrate in which a thin film doped with erbium (Er) is formed on an oxide obtained by dissolving silica (SiO 2 ) in bismuth oxide (Bi 2 O 3 ).
    The first step of forming a thin film containing Bi 2 O 3 on the substrate by a sputtering method, and
    A second step of post-annealing, which causes mutual diffusion between the thin film formed in the first step and the substrate and changes the thin film into a solid solution thin film.
    A method for forming an optical circuit board.
  2.  請求項1に記載の光回路基板の形成方法であって、前記スパッタリング法が、
      Biターゲットに対する電子サクロン共鳴放電と、
      Erターゲットに対する高周波マグネトロン放電と、
     を同時に行う、2源同時放電式のスパッタリング法であることを特徴とする、光回路基板の形成方法。
    The method for forming an optical circuit board according to claim 1, wherein the sputtering method is used.
    Electronic sacron resonance discharge to Bi 2 O 3 target,
    High frequency magnetron discharge to Er 2 O 3 target,
    A method for forming an optical circuit board, which is a two-source simultaneous discharge type sputtering method.
  3.  請求項1に記載する光回路基板の形成方法であって、前記ポストアニールが、1気圧の酸素雰囲気において、400℃、1時間の熱処理であることを特徴とする、光回路基板の形成方法。 The method for forming an optical circuit board according to claim 1, wherein the post-annealing is a heat treatment at 400 ° C. for 1 hour in an oxygen atmosphere of 1 atm.
  4.  請求項1、2または3に記載の光回路基板の形成方法であって、前記基板がSiOであることを特徴とする、光回路基板の形成方法。 The method for forming an optical circuit board according to claim 1, 2 or 3, wherein the substrate is SiO 2 .
  5.  BiにシリカSiOを固溶させた酸化物に、光増幅作用をもたらすためのErがドープされた固溶体薄膜であって、
      前記固溶体薄膜が、屈折率差の大きい基板の上に成膜されていることを特徴とする、
    光回路基板。
    A solid solution thin film in which Er is doped in an oxide obtained by dissolving silica SiO 2 in Bi 2 O 3 to bring about a photoamplifying action.
    The solid solution thin film is formed on a substrate having a large difference in refractive index.
    Optical circuit board.
  6.  請求項5に記載する光回路基板であって、前記Biがδ相であることを特徴とする、光回路基板。 The optical circuit board according to claim 5, wherein the Bi 2 O 3 has a δ phase.
  7.  請求項5に記載する光回路基板であって、前記Erが4at%以上ドープされていることを特徴とする、光回路基板。 The optical circuit board according to claim 5, wherein the Er is doped with 4 at% or more.
  8.  請求項5に記載の光回路基板であって、前記基板がSiOであることを特徴とする、光回路基板。 The optical circuit board according to claim 5, wherein the substrate is SiO 2 .
PCT/JP2021/000122 2021-01-05 2021-01-05 Optical circuit board and method for forming same WO2022149191A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000122 WO2022149191A1 (en) 2021-01-05 2021-01-05 Optical circuit board and method for forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000122 WO2022149191A1 (en) 2021-01-05 2021-01-05 Optical circuit board and method for forming same

Publications (1)

Publication Number Publication Date
WO2022149191A1 true WO2022149191A1 (en) 2022-07-14

Family

ID=82358128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000122 WO2022149191A1 (en) 2021-01-05 2021-01-05 Optical circuit board and method for forming same

Country Status (1)

Country Link
WO (1) WO2022149191A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033535A (en) * 2000-07-14 2002-01-31 Asahi Glass Co Ltd Optical amplification waveguide
US20030007763A1 (en) * 2001-07-06 2003-01-09 Michael Bazylenko Planar waveguide amplifier
JP2003227947A (en) * 2002-02-06 2003-08-15 Asahi Glass Co Ltd Method for manufacturing thin glass film and optical waveguide
WO2004006394A1 (en) * 2002-07-05 2004-01-15 Nec Corporation Optical wave guide and method for manufacture thereof
WO2019244628A1 (en) * 2018-06-21 2019-12-26 日本電信電話株式会社 Erbium-doped bismuth oxide film and manufacturing method therefor
WO2020110839A1 (en) * 2018-11-28 2020-06-04 日本電信電話株式会社 Method for producing erbium-doped bismuth oxide film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033535A (en) * 2000-07-14 2002-01-31 Asahi Glass Co Ltd Optical amplification waveguide
US20030007763A1 (en) * 2001-07-06 2003-01-09 Michael Bazylenko Planar waveguide amplifier
JP2003227947A (en) * 2002-02-06 2003-08-15 Asahi Glass Co Ltd Method for manufacturing thin glass film and optical waveguide
WO2004006394A1 (en) * 2002-07-05 2004-01-15 Nec Corporation Optical wave guide and method for manufacture thereof
WO2019244628A1 (en) * 2018-06-21 2019-12-26 日本電信電話株式会社 Erbium-doped bismuth oxide film and manufacturing method therefor
WO2020110839A1 (en) * 2018-11-28 2020-06-04 日本電信電話株式会社 Method for producing erbium-doped bismuth oxide film

Similar Documents

Publication Publication Date Title
US20030097858A1 (en) Silver sensitized erbium ion doped planar waveguide amplifier
JP2006309222A (en) Optical waveguide comprising quantum dot waveguide layer and manufacturing method therefor
US7369733B2 (en) Glass optical waveguide
WO2019244628A1 (en) Erbium-doped bismuth oxide film and manufacturing method therefor
US12012649B2 (en) Erbium-doped bismuth oxide film
WO2002081770A2 (en) Room temperature luminescent erbium oxide thin films for photonics
WO2022149191A1 (en) Optical circuit board and method for forming same
CN1985201A (en) Glass optical waveguide
Grivas et al. Dielectric binary oxide films as waveguide laser media: a review
Rönn Fabrication and characterization of atomic-layer-deposited Er2O3 for optical amplifier devices
Chryssou et al. Photoluminescence characterisation of Er3+/Yb3+ co-implanted alumina (Al2O3) thin films and sapphire crystals
Shin et al. Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs
Herreros et al. Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted-doped planar waveguides
JP3442979B2 (en) Method for manufacturing optical waveguide and glass thin film
Grishin et al. Highly luminescent garnets for magneto-optical photonic crystals
JP2002068779A (en) Producing method for light amplifying thin glass film
Serna et al. Improving the photoluminescence of thin films by nanostructuring the rare-earth ion distribution
JP4003826B2 (en) Method for producing glass thin film and optical waveguide
Tan et al. Characterization and Optical Properties of Erbium doped As2S3 Films Prepared by Multi-layer Magnetron Sputtering
Latif Techniques for MIR Rare Earth Doped Waveguide Lasers in Chalcogen Based Glasses
Kalusniak et al. (In, Er) 2O3 alloys and photoluminescence of Er3+ at indirect excitation via the crystalline host
Gourbilleau et al. Rare earth emitters coupled to Si nanoclusters in thin films
Miritello et al. Synthesis and luminescence properties of erbium silicate thin films
Gourbilleau et al. Rare-earth (Er, Nd)-doped Si nanostructures for integrated photonics
RU2156490C1 (en) Method for production of nonlinear-optical material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP